WO2014069436A1 - Photosensitive conductive paste and method for producing conductive pattern - Google Patents

Photosensitive conductive paste and method for producing conductive pattern Download PDF

Info

Publication number
WO2014069436A1
WO2014069436A1 PCT/JP2013/079212 JP2013079212W WO2014069436A1 WO 2014069436 A1 WO2014069436 A1 WO 2014069436A1 JP 2013079212 W JP2013079212 W JP 2013079212W WO 2014069436 A1 WO2014069436 A1 WO 2014069436A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
compound
photosensitive conductive
photosensitive
pattern
Prior art date
Application number
PCT/JP2013/079212
Other languages
French (fr)
Japanese (ja)
Inventor
水口創
草野一孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013551084A priority Critical patent/JPWO2014069436A1/en
Publication of WO2014069436A1 publication Critical patent/WO2014069436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste

Definitions

  • the present invention relates to a photosensitive conductive paste and a method for producing a conductive pattern.
  • an organic-inorganic composite conductive pattern containing an organic component such as a resin and an inorganic component such as a conductive filler a large amount of fine silver flakes, copper powder, or carbon particles are mixed in the resin or adhesive.
  • a so-called polymer-type conductive paste has been put to practical use.
  • Patent Document 4 a conductive paste capable of acid etching (Patent Document 4) and a photosensitive curable conductive paste (Patent Documents 5 and 6) have been developed.
  • Patent Document 7 Although there is an example (Patent Document 7) in which a siloxane compound is applied as an insulating material having improved adhesion and hardness, it has been difficult to impart patternability and conductivity while maintaining adhesion and hardness.
  • the conductive pattern manufactured using the conventional photosensitive curable conductive paste has not only low conductivity and low surface hardness, but also ITO (indium tin oxide) on a glass or film substrate. The adhesion with the electrode was poor.
  • the present invention is sensitive to the fact that fine patterning is possible, the adhesion of the obtained conductive pattern to the substrate and the like is high and the surface hardness is high, and the conductivity can be expressed even at a relatively low temperature.
  • An object is to provide a conductive paste and a method of manufacturing a conductive pattern using the same.
  • the present invention provides a photosensitive conductive paste and a method for producing a conductive pattern described in the following (1) to (9).
  • a photosensitive conductive paste comprising a siloxane compound A, a compound B having an acid value of 30 to 250 mg / KOH, a photopolymerization initiator C, and a conductive filler D.
  • (3) The photosensitive conductive paste according to (1) or (2) above, wherein the compound B has a glass transition temperature of ⁇ 10 to 60 ° C.
  • thermosetting compound E has an alkoxy group or an epoxy group.
  • thermosetting compound E has an alkoxy group or an epoxy group.
  • conductive filler D is added in an amount of 70 to 95% by weight based on the total solid content in the photosensitive conductive paste. paste.
  • (10) Applying the photosensitive conductive paste according to any one of (1) to (9) on a substrate to obtain a coating film, a coating process, drying the coating film, a drying process, and after drying An exposure process for pattern exposure of the coating film, a development process for developing the coating film after exposure to form a pattern on the substrate, and a conductive pattern by curing the pattern at 100 to 300 ° C.
  • a method for producing a conductive pattern comprising: a curing step.
  • the photosensitive conductive paste of the present invention fine patterning for forming a conductive pattern is possible, and not only the development allowable width is remarkably widened, but also a conductive material having a low specific resistance even under low temperature curing conditions. A pattern can be obtained.
  • a conductive pattern having excellent adhesion to a substrate or the like and surface hardness can be obtained.
  • fine bump electrodes or wirings can be easily formed not only on a rigid substrate but also on a flexible substrate.
  • the photosensitive conductive paste of the present invention contains a siloxane compound A, a compound B having an acid value of 30 to 250 mg / KOH, a photopolymerization initiator C, and a conductive filler D.
  • the photosensitive conductive paste of the present invention imparts uneven distribution to the dispersibility of the conductive filler D by mixing the compound B with the siloxane compound A, and efficiently forms the conductive path, thereby reducing the conductivity at a low temperature. Achieve both expression and hardness.
  • the method for producing a conductive pattern of the present invention comprises a coating step of applying the photosensitive conductive paste of the present invention on a substrate to obtain a coating film, a drying step of drying the coating film, and the drying step described above.
  • the conductive pattern obtained by the method for producing a conductive pattern of the present invention is a composite of an organic component and an inorganic component, and the conductive fillers D contained in the photosensitive conductive paste of the present invention are cured. Conductivity is exhibited by contact with each other by curing shrinkage.
  • Siloxane compound A refers to a compound having a siloxane bond in the molecule.
  • the photosensitive conductive paste of the present invention has improved conductivity and hardness at low temperatures.
  • examples of the siloxane compound A include dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen silicone oil, polysiloxane, and the like. Among these, polysiloxane is preferable.
  • Polysiloxane includes polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, polyester-modified methylalkylpolysiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, or a part of the above siloxane compound with epoxy group, hydroxyl group , A mercapto group, an isocyanate group, a carboxyl group, a fluoroalkyl group, an aralkyl group, a long-chain alkyl group, a substituent having a urethane bond, or a substituent having an unsaturated double bond (for example, an acrylic group or a methacryl group), And a compound substituted with any of a substituent having an unsaturated double bond, a substituent having a urethane bond, a carboxyl group, a hydroxyl group, an aralkyl group
  • the siloxane compound A When the siloxane compound A has an unsaturated double bond, it reacts with the photosensitive component in the exposed area in the exposure process, thereby increasing the solubility difference in the developing solution between the unexposed area and the exposed area, thereby increasing the patterning property. preferable. Further, when the siloxane compound A has a carboxyl group or a hydroxyl group, a condensation reaction is caused at the time of curing, and as a result, the contact probability between the conductive fillers is improved and the conductivity is easily developed.
  • the siloxane compound A has an unsaturated double bond, a carboxyl group, a hydroxyl group, an aralkyl group, or a fluoroalkyl group, the surface hardness of the resulting conductive pattern can be increased.
  • the addition amount of the siloxane compound A is preferably 0.01 to 200 parts by weight, more preferably 0.02 to 100 parts by weight with respect to 100 parts by weight of the compound B.
  • the addition amount with respect to 100 parts by weight of Compound B is 0.01 parts by weight or more, the patterning property and the surface hardness are improved. On the other hand, flexibility is maintained when the addition amount with respect to 100 parts by weight of Compound B is 100 parts by weight or less.
  • Compound B having an acid value of 30 to 250 mg / KOH can have an alkali solubility within an appropriate range by taking such an acid value range.
  • the difference in solubility between the exposed portion and the unexposed portion is widened and fine processing becomes possible.
  • the acid value is less than 30 mg / KOH, the solubility of the soluble part is lowered in the development step after the coating film obtained by applying the photosensitive conductive paste is exposed.
  • the acid value exceeds 250 mgKOH / g, the allowable development width becomes narrow.
  • the acid value of the compound B can be measured according to JIS K 0070: 1992.
  • Examples of the compound B having an acid value of 30 to 250 mg / KOH include monomers, oligomers or polymers having one or more carboxyl groups in the molecule, or a mixture thereof. More specifically, an acrylic copolymer is mentioned, for example.
  • the acrylic copolymer refers to a copolymer containing an acrylic monomer as a copolymer component.
  • acrylic monomer constituting the acrylic copolymer examples include acrylic acid (hereinafter referred to as AA), methyl acrylate, ethyl acrylate (hereinafter referred to as EA), 2-ethylhexyl acrylate, n-butyl acrylate, iso-butyl acrylate, iso- Propane acrylate, glycidyl acrylate, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, Nn-butoxymethyl acrylamide, N-isobutoxymethyl acrylamide, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, isooctyl acrylate Lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxy
  • An alkali-soluble acrylic copolymer having a carboxyl group can be obtained by using an unsaturated acid such as an unsaturated carboxylic acid other than acrylic acid and methacrylic acid as a copolymerization monomer.
  • unsaturated acid is intended to include not only an unsaturated acid of the original meaning but also an acid anhydride of an unsaturated acid and a vinyl ester of an organic acid.
  • unsaturated acid used as the copolymerization monomer include unsaturated acids such as itaconic acid, crotonic acid, maleic acid, and fumaric acid, acid anhydrides of these unsaturated acids, vinyl acetate, and the like.
  • the alkali-soluble acrylic copolymer having a carboxyl group may be styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ⁇ -methylstyrene, chloromethylstyrene or hydroxy.
  • Styrenes such as methylstyrene, 1-vinyl-2-pyrrolidone and the like may be used as a part of the copolymerization monomer.
  • the acid value of the acrylic copolymer to be obtained can be adjusted depending on the amount of the copolymer component used (unsaturated acid or copolymer monomer other than unsaturated acid).
  • the glass transition temperature (hereinafter referred to as Tg) of Compound B is preferably ⁇ 10 to 60 ° C., and more preferably 10 to 40 ° C.
  • Tg glass transition temperature
  • the coating film obtained by applying the photosensitive conductive paste can be dried to suppress the tackiness of the dried film.
  • Tg 10 ° C. or higher
  • the above drying The shape stability with respect to the temperature change of the film is increased.
  • the Tg is 60 ° C. or less, the conductive pattern produced from the photosensitive conductive paste has flexibility at room temperature, and when the Tg is 40 ° C. or less, the internal stress when the conductive pattern is bent. Can be mitigated, and particularly the occurrence of cracks can be suppressed.
  • Tg of compound B can be calculated
  • DSC differential scanning calorimeter
  • the photopolymerization initiator C refers to a compound that decomposes by absorbing light having a short wavelength such as ultraviolet rays or generates a radical by causing a hydrogen abstraction reaction.
  • the photosensitive conductive paste of the present invention increases the crosslink density in the exposed area by adding the photopolymerization initiator C and increases the alkali solubility difference. As a result, fine processing becomes possible.
  • photopolymerization initiator C examples include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, Bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide, ethanone, 1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O— Acetyloxime), benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4 ′ -Methyl diphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophe 2,2-
  • the addition amount of the photopolymerization initiator C is preferably 0.05 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the compound B.
  • the added amount with respect to 100 parts by weight of Compound B is 5 parts by weight or more, the cured density of the exposed part of the photosensitive conductive paste increases, and the residual film ratio after development increases.
  • the added amount with respect to 100 parts by weight of compound B is 20 parts by weight or less, excessive light absorption of photopolymerization initiator C in the upper part of the coating film obtained by applying the photosensitive conductive paste is suppressed. The As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • the photosensitive conductive paste of the present invention may contain a sensitizer together with the photopolymerization initiator C.
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the addition amount of the sensitizer is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of Compound B. Photosensitivity improves enough that the addition amount with respect to 100 weight part compound B is 0.1 weight part or more. On the other hand, when the added amount with respect to 100 parts by weight of Compound B is 10 parts by weight or less, excessive light absorption of the photopolymerization initiator C in the upper part of the coating film obtained by applying the photosensitive conductive paste is suppressed. . As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • Examples of the conductive filler D include silver (Ag), gold (Au), copper (Cu), platinum (Pt), lead (Pb), tin (Sn), nickel (Ni), aluminum (Al), and tungsten. (W), molybdenum (Mo), chromium (Cr), metals such as titanium (Ti) or indium (In) or alloys thereof, or tin oxide, tin oxide (SnO 2 ) -antimony (Sb) dope, Examples include particles of indium oxide (In 2 O 3 ) -tin oxide dope, metal oxides such as ruthenium oxide (RuO 2 ), or a mixture of these particles. From the viewpoint of conductivity, particles of Ag, Cu, or Au are preferable. From the viewpoints of cost and stability, Ag particles are more preferable. By using the conductive filler D, the conductivity of the photosensitive conductive paste of the present invention is exhibited.
  • the volume average particle diameter of the conductive filler D is preferably from 0.1 to 10 ⁇ m, more preferably from 0.5 to 6 ⁇ m.
  • the volume average particle diameter is 0.1 ⁇ m or more, the contact probability between the conductive fillers in the curing step is improved, and the specific resistivity and the disconnection probability of the manufactured conductive pattern are lowered. Furthermore, in the exposure process, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste, facilitating fine patterning.
  • the volume average particle diameter is 10 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved.
  • the volume average particle diameter can be measured by a Coulter counter method.
  • the amount of the conductive filler D added is preferably 70 to 95% by weight, more preferably 80 to 90% by weight, based on the total solid content in the photosensitive conductive paste.
  • the addition amount with respect to the total solid content is 70% by weight or more, the contact probability between the conductive fillers D in the curing process is improved, and the specific resistivity and the disconnection probability of the manufactured conductive pattern are lowered.
  • the addition amount with respect to the total solid content is 95% by weight or less, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste in the exposure step, and fine patterning is performed. Becomes easy.
  • the total solid content means all components of the photosensitive conductive paste excluding the solvent when the photosensitive conductive paste contains a solvent.
  • the photosensitive conductive paste of the present invention may contain a solvent.
  • the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, ethyl lactate, 1-methoxy-2-propanol. 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate or propylene glycol monomethyl ether acetate, or a mixture of these solvents. It is done.
  • the photosensitive conductive paste of the present invention is a non-photosensitive polymer or plasticizer having no unsaturated double bond, leveling agent, surfactant, silane coupling agent, erasing agent, as long as the desired properties are not impaired. You may contain additives, such as a foaming agent or a pigment.
  • non-photosensitive polymer examples include an epoxy resin, a novolac resin, a phenol resin, a polyimide precursor, or a closed ring polyimide.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin.
  • leveling agent examples include a special vinyl polymer or a special acrylic polymer.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane. Methoxysilane is mentioned.
  • the photosensitive conductive paste is produced, for example, using a dispersing machine or a kneader such as a three-roller, a ball mill or a planetary ball mill.
  • the manufacturing method of a conductive pattern using the photosensitive conductive paste of the present invention includes the following steps. Applying the photosensitive conductive paste of the present invention on a substrate to obtain a coating film, coating process, drying the coating film obtained, drying process, pattern exposure of the coating film after drying, exposure process, after exposure A development step of developing the coating film to form a desired pattern on the substrate, and a curing step of curing the obtained pattern at 100 to 300 ° C. to obtain a conductive pattern.
  • the substrate examples include polyethylene terephthalate film (hereinafter referred to as PET film), polyimide film, polyester film or aramid film, epoxy resin substrate, polyetherimide resin substrate, polyetherketone resin substrate, polysulfone resin substrate, glass.
  • PET film polyethylene terephthalate film
  • polyimide film polyimide film
  • polyester film or aramid film epoxy resin substrate
  • polyetherimide resin substrate polyetherketone resin substrate
  • polysulfone resin substrate glass.
  • a substrate, a silicon wafer, an alumina substrate, an aluminum nitride substrate, or a silicon carbide substrate can be used.
  • Examples of the method for applying the photosensitive conductive paste on the substrate include spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a blade coater, die coater, calendar coater, meniscus coater, or bar coater.
  • the film thickness of the coating film to be obtained may be appropriately determined according to the coating method or the total solid content concentration or viscosity of the photosensitive conductive paste, but the film thickness after drying should be 0.1 to 50 ⁇ m. Is preferred.
  • the film thickness can be measured using a stylus type step meter such as “Surfcom” (registered trademark) 1400 (manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thickness at three random positions may be measured with a stylus-type step gauge (length measurement: 1 mm, scanning speed: 0.3 mm / sec), and the average value may be defined as the film thickness. it can.
  • Examples of the method for drying the obtained coating film include, for example, heating drying using an oven, a hot plate, infrared rays, or vacuum drying or vacuum drying. It is done.
  • the heating temperature is preferably 50 to 180 ° C., and the heating time is preferably 1 minute to several hours.
  • the dried coating film is exposed by a photolithography method.
  • a light source for exposure i-line (365 nm), h-line (405 nm) or g-line (436 nm) of a mercury lamp is preferable.
  • the desired pattern is obtained by developing the exposed coating film using a developer and dissolving and removing unexposed portions.
  • Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • An aqueous solution of aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine may be mentioned.
  • aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N— Polar solvents such as dimethylacetamide, dimethylsulfoxide or ⁇ -butyrolactone, alcohols such as methanol, ethanol or isopropanol, lactic acid ester Esters such as Le or propylene glycol monomethyl ether acetate, may be added to cyclopentanone, cyclohexanone, ketones such as isobutyl ketone or methyl isobutyl ketone or surfactant.
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl
  • Examples thereof include polar solvents such as amides or mixed solvents of these polar solvents with methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol or ethyl carbitol.
  • a development method for example, a method of spraying a developer onto the coating film surface while the substrate is left standing or rotating, a method of immersing the substrate in the developer, or an ultrasonic wave while immersing the substrate in the developer The method of applying is mentioned.
  • the pattern obtained by development may be rinsed with a rinse solution.
  • a rinse solution examples include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
  • a method for curing the obtained pattern for example, heating drying or vacuum drying using an oven, an inert oven, a hot plate, infrared rays, or the like can be given.
  • the temperature during curing (hereinafter sometimes simply referred to as “curing temperature”) is 100 to 300 ° C.
  • the curing temperature is less than 100 ° C., the volume shrinkage of the resin does not increase and the specific resistivity cannot be reduced.
  • the curing temperature exceeds 300 ° C., a conductive pattern cannot be formed on a material such as a substrate having low heat resistance. From this viewpoint, the curing temperature is preferably 120 to 180 ° C.
  • the conductive pattern manufactured using the photosensitive conductive paste of the present invention is suitably used as a peripheral wiring for a touch panel.
  • Examples of the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type.
  • the capacitance type touch panel particularly requires fine wiring, the photosensitive conductive paste of the present invention.
  • the conductive pattern manufactured using is more preferably used.
  • the photosensitive conductive paste was applied onto a PET film (thickness: 100 ⁇ m) by a screen printing method so that the thickness of the dried film was 7 ⁇ m, and the obtained coated film was dried in a drying oven at 100 ° C. for 5 minutes.
  • a group of straight lines arranged in a constant line and space (hereinafter referred to as L / S), that is, a translucent pattern, is defined as one unit, and after drying through a photomask having 11 types of units having different L / S values.
  • the coating film was exposed and developed to obtain patterns having different L / S values. Thereafter, all of the obtained 11 patterns were cured in a drying oven at 140 ° C.
  • the L / S value of each unit included in the photomask is 500/500, 250/250, 100/100, 50/50, 40/40, 30/30, 25/25, 20/20, 17 / 17, 15/15, and 10/10 (representing line width ( ⁇ m) / interval ( ⁇ m), respectively).
  • the obtained conductive pattern is observed with an optical microscope, a conductive pattern having no residue between the patterns and having no pattern peeling is confirmed, and the L / S value can be developed. The value was / S.
  • the exposure was performed using an exposure apparatus (PEM-6M; manufactured by Union Optics Co., Ltd.) for full line exposure with an exposure amount of 200 mJ / cm 2 (wavelength 365 nm conversion), and development was performed with 0.25 wt% sodium carbonate (Na 2 The substrate was immersed in an aqueous solution of CO 3 ) for 30 seconds, and then rinsed with ultrapure water.
  • PEM-6M manufactured by Union Optics Co., Ltd.
  • the photosensitive conductive paste was applied onto a PET film (thickness: 100 ⁇ m) by a screen printing method so that the thickness of the dried film was 7 ⁇ m, and the obtained coated film was dried in a drying oven at 100 ° C. for 5 minutes.
  • the dried coating film was exposed and developed through a photomask having a light-transmitting portion A having the pattern shown in FIG. 1 to obtain a pattern.
  • the obtained pattern was cured in a drying oven at 140 ° C. for 30 minutes to obtain a conductive pattern for measuring specific resistivity.
  • the line width of the conductive pattern for specific resistivity measurement was 0.400 mm, and the line length was 80 mm.
  • the exposure and development conditions were the same as in the patterning evaluation method.
  • the surface resistance value was measured by connecting a surface resistance meter to each end of the obtained conductive pattern for measuring specific resistivity, and the specific resistivity was calculated based on the following formula (1).
  • Specific resistivity surface resistance value ⁇ film thickness ⁇ line width / line length (1)
  • the line width is an average value obtained by observing the line width at three random positions with an optical microscope and analyzing the image data.
  • FIG. 2 is a diagram schematically showing a sample used for the flexibility test.
  • a photosensitive conductive paste is applied to a rectangular PET film (thickness 40 ⁇ m) having a length of 10 mm and a width of 100 mm by a screen printing method so that the thickness of the dry film becomes 7 ⁇ m, and the obtained coating film is dried in a drying oven at 100 ° C. For 5 minutes.
  • a photomask having a light-transmitting portion A having the pattern shown in FIG. 1 was placed, exposed and developed so that the light-transmitting portion A was at the center of the sample, and a pattern was obtained. Then, it was cured in a drying oven at 140 ° C. for 30 minutes to obtain a conductive pattern.
  • the exposure and development conditions were the same as in the patterning evaluation method.
  • the bending operation of bending the conductive pattern alternately inside and outside and bringing the sample short side B and the sample short side C into contact is repeated 100 times.
  • the resistance value of the conductive pattern was measured again using a tester.
  • the change amount of the resistance value before and after the bending operation was 20% or less and the conductive pattern was not cracked, peeled off or disconnected, was determined as A (good), and the other change was determined as B (poor).
  • ITO indium tin oxide
  • a photosensitive conductive paste was applied onto a PET film with ITO “ELECRYSTA” (registered trademark) V270L-TFS (manufactured by Nitto Denko Corporation) by a screen printing method so that the film thickness of the dried film was 7 ⁇ m.
  • the coating film was dried in a drying oven at 100 ° C. for 5 minutes, and then the entire surface was exposed. The exposure conditions were the same as in the patterning evaluation method. Then, after curing in a drying oven at 140 ° C.
  • ⁇ Evaluation method of surface hardness> A photosensitive conductive paste is applied onto a glass substrate by screen printing so that the dry film thickness is 7 ⁇ m, and the resulting coating film is dried in a drying oven at 100 ° C. for 5 minutes, and then the entire surface is exposed. did. The exposure conditions were the same as in the patterning evaluation method. Then, it was cured in a drying oven at 140 ° C. for 30 minutes, and the surface hardness of the obtained conductive film was measured. In addition, the surface hardness of the electrically conductive film was measured based on JISK5600: 1999.
  • siloxane Compound A As shown in Synthesis Examples 1 to 5 below, siloxane compounds A-1 to A-5 were prepared.
  • Synthesis Example 1 A 300 mL eggplant flask was charged with 23.23 g of p-aminobenzoic acid and 209.05 g of propylene glycol monomethyl ether acetate (PGMEA), stirred at room temperature for 30 minutes, and then 46.53 g of isocyanate propyltriethoxysilane and 1.19 g of dibutyltin dilaurate was further added and stirred in an oil bath at 70 ° C. for 1 hour.
  • PGMEA propylene glycol monomethyl ether acetate
  • the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes.
  • the internal temperature of the three-necked flask reached 100 ° C., and from that point, the mixture was heated and stirred for 2 hours (the internal temperature of the three-necked flask changed at 100 to 110 ° C.).
  • a total of 112.5 g of methanol, ethanol and water as by-products were distilled out.
  • the reaction solution obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain Compound (B-5).
  • the compound (B-5) obtained had an acid value of 222 mgKOH / g and Tg of 34.7 ° C.
  • Thermosetting compound E The following commercial products were prepared. ⁇ N-660 (manufactured by DIC Corporation) ⁇ ⁇ ⁇ Cresol novolac type epoxy resin ⁇ Nn-butoxymethylacrylamide [monomer] The following commercial products were prepared. ⁇ Light acrylate BP-4EA (manufactured by Kyoeisha Chemical Co., Ltd.) [solvent] The following commercial products were prepared.
  • Example 1 ⁇ DMEA (manufactured by Tokyo Chemical Industry Co., Ltd.) (Example 1) In a 100 mL clean bottle, 1.0 g BYK-307, 10.0 g compound B-1, 0.50 g “IRGACURE” (registered trademark) 369, 2.0 g BP-4A, 5.0 g DMEA, The mixture was mixed using “Awatori Rentaro” (registered trademark) (ARE-310; manufactured by Sinky Corporation) as a mixer, and 16.5 g of a photosensitive resin solution (solid content: 69.7% by weight) was added. Obtained.
  • the photosensitive conductive paste Using the obtained photosensitive conductive paste, the patterning property of the conductive pattern, the development margin, the specific resistivity, the flexibility, the adhesion with ITO, and the surface hardness were evaluated.
  • the developable value L / S which is an evaluation index of patterning property, was 17/17 ⁇ m, and it was confirmed that a good pattern was processed.
  • the specific resistivity was 6.9 ⁇ 10 ⁇ 5 ⁇ cm, and good results were obtained for the flexibility.
  • the surface hardness was 2H.
  • Table 2 shows the results of the same evaluation as in Example 1 using the photosensitive conductive paste having the composition shown in Table 1.
  • Table 2 shows the results of the same evaluation as in Example 1 using the photosensitive conductive paste having the composition shown in Table 1.
  • the photosensitive conductive pastes of Examples 1 to 12 were all excellent in patterning property and surface hardness, but the photosensitive conductive pastes of Comparative Examples 1 to 3 were all inferior in surface hardness.
  • the photosensitive conductive paste of the present invention can be suitably used for manufacturing conductive patterns such as peripheral wiring for touch panels.

Abstract

The purpose of the present invention is to provide: a photosensitive conductive paste which enables fine patterning and is capable of providing a conductive pattern that has high surface hardness and good adhesion to a substrate or the like, while exhibiting electrical conductivity at relatively low temperatures; and a method for producing a conductive pattern using this photosensitive conductive paste. The present invention provides a photosensitive conductive paste which contains a siloxane compound (A), a compound (B) having an acid value of 30-250 mg/KOH, a photopolymerization initiator (C) and a conductive filler (D).

Description

感光性導電ペースト及び導電パターンの製造方法Photosensitive conductive paste and method for producing conductive pattern
 本発明は、感光性導電ペースト及び導電パターンの製造方法に関する。 The present invention relates to a photosensitive conductive paste and a method for producing a conductive pattern.
 樹脂等の有機成分と、導電フィラー等の無機成分とを含む有機-無機複合導電パターンを形成するために、樹脂や接着剤の中に微粒子状の銀フレーク、銅粉又はカーボン粒子を大量に混合した、いわゆるポリマー型の導電ペーストが実用化されている。 In order to form an organic-inorganic composite conductive pattern containing an organic component such as a resin and an inorganic component such as a conductive filler, a large amount of fine silver flakes, copper powder, or carbon particles are mixed in the resin or adhesive. A so-called polymer-type conductive paste has been put to practical use.
 実用化されているポリマー型の導電ペーストの多くは、スクリーン印刷法によりパターンを形成し、それを加熱硬化して導電パターンとするものである(特許文献1、2及び3)が、寸法が100μm以下のパターンを精度よく描画することは困難である。 Many of the polymer-type conductive pastes in practical use are those in which a pattern is formed by screen printing and then heat-cured to form a conductive pattern (Patent Documents 1, 2, and 3), but the dimensions are 100 μm. It is difficult to accurately draw the following pattern.
 そこで、微細なパターンを精度よく描画するために、酸性エッチング可能な導電ペースト(特許文献4)や、感光性硬化型導電ペースト(特許文献5及び6)が開発されている。 Therefore, in order to accurately draw a fine pattern, a conductive paste capable of acid etching (Patent Document 4) and a photosensitive curable conductive paste (Patent Documents 5 and 6) have been developed.
 密着性、硬度を高めた絶縁材としてシロキサン化合物を適用する例(特許文献7)はあるが、密着性と硬度を維持したままパターニング性と導電性を付与することは困難であった。 Although there is an example (Patent Document 7) in which a siloxane compound is applied as an insulating material having improved adhesion and hardness, it has been difficult to impart patternability and conductivity while maintaining adhesion and hardness.
特開平02-206675号公報Japanese Patent Laid-Open No. 02-206675 特開2007-207567号公報JP 2007-207567 A 特開2007-294451号公報JP 2007-294451 A 特開平10-64333号公報JP-A-10-64333 特開2004-361352号公報JP 2004-361352 A 国際公開第2004/61006号International Publication No. 2004/61006 特開2012-088610号公報JP 2012-088610 A
 従来の酸性エッチング可能な導電ペーストを用いてフォトグラフィー法によりパターン形成をするためには、導電ペーストの塗布膜上にさらにレジスト層を形成せねばならず、導電パターンの製造工程が煩雑化する問題を伴うものであった。また、従来の感光性硬化型導電ペーストを用いて製造される導電パターンは、導電性が低かったり、表面硬度が低かったりするばかりでなく、ガラスやフィルムの基板上にあるITO(酸化インジウムスズ)電極との密着性に劣るものであった。 In order to form a pattern by a photolithography method using a conventional acid-etchable conductive paste, a resist layer must be further formed on the conductive paste coating film, which complicates the manufacturing process of the conductive pattern. It was accompanied by. Moreover, the conductive pattern manufactured using the conventional photosensitive curable conductive paste has not only low conductivity and low surface hardness, but also ITO (indium tin oxide) on a glass or film substrate. The adhesion with the electrode was poor.
 そこで本発明は、微細パターニングが可能であり、かつ得られた導電パターンの基板等との密着性及び表面硬度が高く、さらには比較的低温においても導電性を発現させることが可能な、感光性導電ペースト及びそれを用いた導電パターンの製造方法を提供することを目的とする。 Therefore, the present invention is sensitive to the fact that fine patterning is possible, the adhesion of the obtained conductive pattern to the substrate and the like is high and the surface hardness is high, and the conductivity can be expressed even at a relatively low temperature. An object is to provide a conductive paste and a method of manufacturing a conductive pattern using the same.
 上記課題を解決するため、本発明は、以下の(1)~(9)に記載した感光性導電ペースト及び導電パターンの製造方法を提供する。
(1) シロキサン化合物Aと、酸価が30~250mg/KOHの化合物Bと、光重合開始剤Cと、導電性フィラーDと、を含む、感光性導電ペースト。
(2) 上記化合物Bは、不飽和二重結合を有する、上記(1)に記載の感光性導電ペースト。
(3) 上記化合物Bのガラス転移温度は、-10~60℃である、上記(1)又は(2)に記載の感光性導電ペースト。
(4) 上記化合物Bがエポキシアクリレートである、上記(1)~(3)のいずれかに記載の感光性導電ペースト。
(5) 上記シロキサン化合物Aは、不飽和二重結合、カルボキシル基、水酸基、アラルキル基及びフロロアルキル基からなる群から選ばれる置換基を有する、上記(1)~(4)のいずれかに記載の感光性導電ペースト。
(6) 上記シロキサン化合物Aは、カルボキシル基、水酸基及びウレタン結合からなる群から選ばれる置換基を有する、上記(1)~(5)のいずれかに記載の感光性導電ペースト。
(7) 熱硬化性化合物Eを含む、上記(1)~(6)のいずれかに記載の感光性導電ペースト。
(8) 上記熱硬化性化合物Eは、アルコキシ基又はエポキシ基を有する、上記(1)~(7)のいずれかに記載の感光性導電ペースト。
(9) 上記導電性フィラーDの添加量が感光性導電ペースト中の全固形分に対して70~95重量%である、上記(1)~(8)のいずれか一項記載の感光性導電ペースト。
(10) 上記(1)~(9)のいずれかに記載の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、上記塗布膜を乾燥する、乾燥工程と、乾燥後の上記塗布膜をパターン露光する、露光工程と、露光後の上記塗布膜を現像して、上記基板上にパターンを形成する、現像工程と、上記パターンを100~300℃でキュアして導電パターンを得る、キュア工程と、を備える、導電パターンの製造方法。
In order to solve the above problems, the present invention provides a photosensitive conductive paste and a method for producing a conductive pattern described in the following (1) to (9).
(1) A photosensitive conductive paste comprising a siloxane compound A, a compound B having an acid value of 30 to 250 mg / KOH, a photopolymerization initiator C, and a conductive filler D.
(2) The photosensitive conductive paste according to (1), wherein the compound B has an unsaturated double bond.
(3) The photosensitive conductive paste according to (1) or (2) above, wherein the compound B has a glass transition temperature of −10 to 60 ° C.
(4) The photosensitive conductive paste according to any one of (1) to (3), wherein the compound B is an epoxy acrylate.
(5) The siloxane compound A described in any one of (1) to (4) above, which has a substituent selected from the group consisting of an unsaturated double bond, a carboxyl group, a hydroxyl group, an aralkyl group, and a fluoroalkyl group. Photosensitive conductive paste.
(6) The photosensitive conductive paste according to any one of (1) to (5), wherein the siloxane compound A has a substituent selected from the group consisting of a carboxyl group, a hydroxyl group, and a urethane bond.
(7) The photosensitive conductive paste according to any one of (1) to (6), which contains a thermosetting compound E.
(8) The photosensitive conductive paste according to any one of (1) to (7), wherein the thermosetting compound E has an alkoxy group or an epoxy group.
(9) The photosensitive conductive material according to any one of (1) to (8), wherein the conductive filler D is added in an amount of 70 to 95% by weight based on the total solid content in the photosensitive conductive paste. paste.
(10) Applying the photosensitive conductive paste according to any one of (1) to (9) on a substrate to obtain a coating film, a coating process, drying the coating film, a drying process, and after drying An exposure process for pattern exposure of the coating film, a development process for developing the coating film after exposure to form a pattern on the substrate, and a conductive pattern by curing the pattern at 100 to 300 ° C. A method for producing a conductive pattern, comprising: a curing step.
 本発明の感光性導電ペーストによれば、導電パターンを形成するための微細パターニングが可能であり、その現像許容幅が顕著に広くなるばかりでなく、低温キュア条件においても、比抵抗率の低い導電パターンを得ることができる。また、本発明の感光性導電ペーストを用いることにより、基板等との密着性及び表面硬度に優れた、導電パターンを得ることができる。さらには、リジッド基板上のみならず、フレキシブル基板上においても微細なバンプ電極又は配線等を容易に形成することができる。 According to the photosensitive conductive paste of the present invention, fine patterning for forming a conductive pattern is possible, and not only the development allowable width is remarkably widened, but also a conductive material having a low specific resistance even under low temperature curing conditions. A pattern can be obtained. In addition, by using the photosensitive conductive paste of the present invention, a conductive pattern having excellent adhesion to a substrate or the like and surface hardness can be obtained. Further, fine bump electrodes or wirings can be easily formed not only on a rigid substrate but also on a flexible substrate.
実施例の比抵抗率評価に用いたフォトマスクの透光パターンを示す模式図である。It is a schematic diagram which shows the translucent pattern of the photomask used for the specific resistivity evaluation of an Example. 実施例の屈曲性試験に用いたサンプルの模式図である。It is a schematic diagram of the sample used for the flexibility test of the Example.
 本発明の感光性導電ペーストは、シロキサン化合物Aと、酸価が30~250mg/KOHの化合物Bと、光重合開始剤Cと、導電性フィラーDと、を含む。 The photosensitive conductive paste of the present invention contains a siloxane compound A, a compound B having an acid value of 30 to 250 mg / KOH, a photopolymerization initiator C, and a conductive filler D.
 本発明の感光性導電ペーストは、化合物Bにシロキサン化合物Aと混ぜることで導電性フィラーDの分散性に偏在性を与え、導電パスの形成を効率的に形成させることで低温での導電性を発現と硬度の両立を達成する。 The photosensitive conductive paste of the present invention imparts uneven distribution to the dispersibility of the conductive filler D by mixing the compound B with the siloxane compound A, and efficiently forms the conductive path, thereby reducing the conductivity at a low temperature. Achieve both expression and hardness.
 また、本発明の導電パターンの製造方法は、本発明の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、上記塗布膜を乾燥する、乾燥工程と、乾燥後の上記塗布膜をパターン露光する、露光工程と、露光後の上記塗布膜を現像して、上記基板上にパターンを形成する、現像工程と、上記パターンを100~300℃でキュアして導電パターンを得る、キュア工程と、を備えることを特徴とする。 Further, the method for producing a conductive pattern of the present invention comprises a coating step of applying the photosensitive conductive paste of the present invention on a substrate to obtain a coating film, a drying step of drying the coating film, and the drying step described above. An exposure process for pattern exposure of the coating film, and development of the coating film after exposure to form a pattern on the substrate, and curing of the pattern at 100 to 300 ° C. to obtain a conductive pattern And a curing step.
 本発明の導電パターンの製造方法により得られた導電パターンは、有機成分と無機成分との複合物となっており、本発明の感光性導電ペーストに含まれる導電性フィラーD同士が、キュア時の硬化収縮によって互いに接触することで導電性が発現するものである。 The conductive pattern obtained by the method for producing a conductive pattern of the present invention is a composite of an organic component and an inorganic component, and the conductive fillers D contained in the photosensitive conductive paste of the present invention are cured. Conductivity is exhibited by contact with each other by curing shrinkage.
 シロキサン化合物Aとは、分子内にシロキサン結合を有する化合物をいう。かかるシロキサン化合物Aを用いることにより、本発明の感光性導電ペーストは、低温での導電性発現と硬度が向上する。シロキサン化合物Aとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、ポリシロキサン等が挙げられ、中でもポリシロキサンが好ましい。 Siloxane compound A refers to a compound having a siloxane bond in the molecule. By using such siloxane compound A, the photosensitive conductive paste of the present invention has improved conductivity and hardness at low temperatures. Examples of the siloxane compound A include dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen silicone oil, polysiloxane, and the like. Among these, polysiloxane is preferable.
 ポリシロキサンにはポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性メチルアルキルポリシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン若しくはアラルキル変性ポリメチルアルキルシロキサン又は上記シロキサン化合物の一部をエポキシ基、水酸基、メルカプト基、イソシアネート基、カルボキシル基、フロロアルキル基、アラルキル基、長鎖アルキル基、ウレタン結合を有する置換基、若しくは、不飽和二重結合を有する置換基(たとえばアクリル基やメタクリル基等)、で置換した化合物が挙げられ、不飽和二重結合を有する置換基、ウレタン結合を有する置換基、カルボキシル基、水酸基、アラルキル基又はフロロアルキル基のいずれかで置換した化合物が好ましい。シロキサン化合物Aが不飽和二重結合を有すると、露光工程における露光部において感光性成分と反応することにより、未露光部と露光部との現像液に対する溶解度差が大きくなり、パターニング性が高まるため好ましい。また、シロキサン化合物Aがカルボキシル基、水酸基を有するとキュア時に縮合反応を起こし、その結果、導電性フィラー同士の接触確率が向上し、導電性が発現しやすくなるため好ましく、また、アラルキル基、フロロアルキル基又はウレタン結合を有すると、親水度及び疎水度が好適となり、未露光部と露光部との現像液に対する溶解度差が大きくなり、パターニング性が高まるため好ましい。さらには、シロキサン化合物Aが不飽和二重結合、カルボキシル基、水酸基、アラルキル基又はフロロアルキル基を有することで、得られる導電パターンの表面硬度も高めることができる。 Polysiloxane includes polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, polyester-modified methylalkylpolysiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, or a part of the above siloxane compound with epoxy group, hydroxyl group , A mercapto group, an isocyanate group, a carboxyl group, a fluoroalkyl group, an aralkyl group, a long-chain alkyl group, a substituent having a urethane bond, or a substituent having an unsaturated double bond (for example, an acrylic group or a methacryl group), And a compound substituted with any of a substituent having an unsaturated double bond, a substituent having a urethane bond, a carboxyl group, a hydroxyl group, an aralkyl group, or a fluoroalkyl group. Arbitrariness. When the siloxane compound A has an unsaturated double bond, it reacts with the photosensitive component in the exposed area in the exposure process, thereby increasing the solubility difference in the developing solution between the unexposed area and the exposed area, thereby increasing the patterning property. preferable. Further, when the siloxane compound A has a carboxyl group or a hydroxyl group, a condensation reaction is caused at the time of curing, and as a result, the contact probability between the conductive fillers is improved and the conductivity is easily developed. It is preferable to have an alkyl group or a urethane bond, since the hydrophilicity and hydrophobicity are suitable, the difference in solubility between the unexposed area and the exposed area in the developer is increased, and the patterning property is increased. Furthermore, since the siloxane compound A has an unsaturated double bond, a carboxyl group, a hydroxyl group, an aralkyl group, or a fluoroalkyl group, the surface hardness of the resulting conductive pattern can be increased.
 シロキサン化合物Aの添加量は、100重量部の化合物Bに対して0.01~200重量部が好ましく、0.02~100重量部がより好ましい。100重量部の化合物Bに対する添加量が0.01重量部以上であると、パターニング性及び表面硬度が向上する。一方で、100重量部の化合物Bに対する添加量が100重量部以下であると、屈曲性が維持される。 The addition amount of the siloxane compound A is preferably 0.01 to 200 parts by weight, more preferably 0.02 to 100 parts by weight with respect to 100 parts by weight of the compound B. When the addition amount with respect to 100 parts by weight of Compound B is 0.01 parts by weight or more, the patterning property and the surface hardness are improved. On the other hand, flexibility is maintained when the addition amount with respect to 100 parts by weight of Compound B is 100 parts by weight or less.
 酸価が30~250mg/KOHの化合物B(以下、単に「化合物B」と記すこともある)は、かかる酸価の範囲を採ることでアルカリ可溶性を適切な範囲とすることができ、これにより本発明の感光性導電ペーストを塗布して得られた塗布膜を露光した後の現像工程において、露光部と未露光部との溶解度差が広がり微細加工が可能となる。酸価が30mg/KOH未満であると、感光性導電ペーストを塗布して得られた塗布膜を露光した後の現像工程において、可溶部分の溶解性が低下する。一方で、酸価が250mgKOH/gを超えると、現像許容幅が狭くなる。なお、化合物Bの酸価は、JIS K 0070:1992に準拠して測定することができる。 Compound B having an acid value of 30 to 250 mg / KOH (hereinafter sometimes simply referred to as “Compound B”) can have an alkali solubility within an appropriate range by taking such an acid value range. In the development step after the coating film obtained by applying the photosensitive conductive paste of the present invention is exposed, the difference in solubility between the exposed portion and the unexposed portion is widened and fine processing becomes possible. When the acid value is less than 30 mg / KOH, the solubility of the soluble part is lowered in the development step after the coating film obtained by applying the photosensitive conductive paste is exposed. On the other hand, when the acid value exceeds 250 mgKOH / g, the allowable development width becomes narrow. In addition, the acid value of the compound B can be measured according to JIS K 0070: 1992.
 酸価が30~250mg/KOHの化合物Bとしては、例えば、分子内に一以上のカルボキシル基を有するモノマー、オリゴマー若しくはポリマー又はこれらの混合物が挙げられる。より具体的には、例えば、アクリル系共重合体が挙げられる。ここでアクリル系共重合体とは、共重合成分にアクリル系モノマーを含む、共重合体をいう。 Examples of the compound B having an acid value of 30 to 250 mg / KOH include monomers, oligomers or polymers having one or more carboxyl groups in the molecule, or a mixture thereof. More specifically, an acrylic copolymer is mentioned, for example. Here, the acrylic copolymer refers to a copolymer containing an acrylic monomer as a copolymer component.
 アクリル系共重合体を構成するアクリル系モノマーとしては、アクリル酸(以下、AA)、メチルアクリレート、エチルアクリレート(以下、EA)、2-エチルヘキシルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、γ-メタクリロキシプロピルトリメトキシシラン、アリル化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジトリメチロールプロパンテトラアクリレート、グリセロールジアクリレート、メトキシ化シクロヘキシルジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ビスフェノールAジアクリレート、ビスフェノールFジアクリレート、ビスフェノールA-エチレンオキサイド付加物のジアクリレート、ビスフェノールF-エチレンオキサイド付加物のジアクリレート、ビスフェノールA-プロピレンオキサイド付加物のジアクリレート、ビスフェノールAやビスフェノールF等のビスフェノール化合物のジグリシジルエーテルにアクリル酸が付加したエポキシアクリレートが挙げられる。また、上記アクリル系モノマーのアクリル基を、メタクリル基に置換した化合物等も好ましく用いることができる。これらのなかでもエポキシアクリレートが、好ましい。 Examples of the acrylic monomer constituting the acrylic copolymer include acrylic acid (hereinafter referred to as AA), methyl acrylate, ethyl acrylate (hereinafter referred to as EA), 2-ethylhexyl acrylate, n-butyl acrylate, iso-butyl acrylate, iso- Propane acrylate, glycidyl acrylate, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, Nn-butoxymethyl acrylamide, N-isobutoxymethyl acrylamide, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, isooctyl acrylate Lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate, octafluoropentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, trifluoroethyl acrylate, acrylamide, aminoethyl acrylate, phenyl acrylate, phenoxyethyl acrylate 1-naphthyl acrylate, 2-naphthyl acrylate, thiophenol acrylate, benzyl mercaptan acrylate, γ-methacryloxypropyltrimethoxysilane, allylated cyclohexyl diacrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol di Acrylate, ethylene glycol diacrylate, Diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate, ditrimethylolpropane tetraacrylate, glycerol diacrylate, methoxylated cyclohexyl diacrylate, neopentyl glycol diacrylate , Propylene glycol diacrylate, polypropylene glycol diacrylate, triglycerol diacrylate, trimethylolpropane triacrylate, bisphenol A diacrylate, bisphenol F diacrylate, diacrylate of bisphenol A-ethylene oxide adduct, bisphenol F-ethylene oxide Diacrylate adduct, diacrylate of bisphenol A- propylene oxide adduct include epoxy acrylates and acrylic acid was added to diglycidyl ether of bisphenol compounds such as bisphenol A, bisphenol F. Moreover, the compound etc. which substituted the acryl group of the said acryl-type monomer by the methacryl group can be used preferably. Of these, epoxy acrylate is preferred.
 カルボキシル基を有するアルカリ可溶性のアクリル系共重合体は、共重合モノマーとしてアクリル酸とメタクリル酸以外の不飽和カルボン酸等の不飽和酸を用いることにより得られる。なお、本発明において不飽和酸とは、本来の意味の不飽和酸だけでなく不飽和酸の酸無水物や有機酸のビニルエステルまで含む概念とする。共重合モノマーとして用いる不飽和酸としては、例えば、イタコン酸、クロトン酸、マレイン酸、フマル酸等の不飽和酸若しくはこれらの不飽和酸の酸無水物又は酢酸ビニル等が挙げられる。 An alkali-soluble acrylic copolymer having a carboxyl group can be obtained by using an unsaturated acid such as an unsaturated carboxylic acid other than acrylic acid and methacrylic acid as a copolymerization monomer. In the present invention, the term “unsaturated acid” is intended to include not only an unsaturated acid of the original meaning but also an acid anhydride of an unsaturated acid and a vinyl ester of an organic acid. Examples of the unsaturated acid used as the copolymerization monomer include unsaturated acids such as itaconic acid, crotonic acid, maleic acid, and fumaric acid, acid anhydrides of these unsaturated acids, vinyl acetate, and the like.
 また、カルボキシル基を有するアルカリ可溶性のアクリル系共重合体は、上記不飽和酸以外に、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン、クロロメチルスチレン若しくはヒドロキシメチルスチレン等のスチレン類、1-ビニル-2-ピロリドン等を共重合モノマーの一部に用いてもよい。
用いる共重合成分(不飽和酸や不飽和酸以外の共重合モノマー)の多少により、得られるアクリル系共重合体の酸価を調整することができる。
In addition to the unsaturated acid, the alkali-soluble acrylic copolymer having a carboxyl group may be styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, α-methylstyrene, chloromethylstyrene or hydroxy. Styrenes such as methylstyrene, 1-vinyl-2-pyrrolidone and the like may be used as a part of the copolymerization monomer.
The acid value of the acrylic copolymer to be obtained can be adjusted depending on the amount of the copolymer component used (unsaturated acid or copolymer monomer other than unsaturated acid).
 また、上記アクリル系共重合体が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、側鎖に反応性の不飽和二重結合を有する、アルカリ可溶性のアクリル系共重合体が得られる。 Moreover, it has a reactive unsaturated double bond in the side chain by reacting the carboxyl group of the acrylic copolymer with a compound having an unsaturated double bond such as glycidyl (meth) acrylate. An alkali-soluble acrylic copolymer is obtained.
 化合物Bのガラス転移温度(以下、Tg)は、-10~60℃であることが好ましく、10~40℃であることがより好ましい。Tgが-10℃以上であると、感光性導電ペーストを塗布して得られた塗布膜を乾燥した、乾燥膜のタック性を抑制することができ、Tgが10℃以上であると、上記乾燥膜の温度変化に対する形状安定性が高くなる。また、Tgが60℃以下であると、感光性導電ペーストから製造された導電パターンが室温において屈曲性を有し、Tgが40℃以下であると、上記導電パターンの屈曲させた時の内部応力が緩和され、特にクラックの発生を抑制することができる。なお、化合物BのTgは、示差走査熱量計(DSC)測定によって求めることができる。 The glass transition temperature (hereinafter referred to as Tg) of Compound B is preferably −10 to 60 ° C., and more preferably 10 to 40 ° C. When the Tg is −10 ° C. or higher, the coating film obtained by applying the photosensitive conductive paste can be dried to suppress the tackiness of the dried film. When the Tg is 10 ° C. or higher, the above drying The shape stability with respect to the temperature change of the film is increased. When the Tg is 60 ° C. or less, the conductive pattern produced from the photosensitive conductive paste has flexibility at room temperature, and when the Tg is 40 ° C. or less, the internal stress when the conductive pattern is bent. Can be mitigated, and particularly the occurrence of cracks can be suppressed. In addition, Tg of compound B can be calculated | required by a differential scanning calorimeter (DSC) measurement.
 光重合開始剤Cとは、紫外線等の短波長の光を吸収して分解するか、又は、水素引き抜き反応を起こして、ラジカルが生じる化合物をいう。かかる光重合開始剤Cを用いることにより、本発明の感光性導電ペーストは、光重合開始剤Cを添加することで露光部の架橋密度が上がり、アルカリ溶解度差が大きくなる。その結果微細加工が可能となる。光重合開始剤Cとしては、例えば、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド、エタノン、1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられる。 The photopolymerization initiator C refers to a compound that decomposes by absorbing light having a short wavelength such as ultraviolet rays or generates a radical by causing a hydrogen abstraction reaction. By using such a photopolymerization initiator C, the photosensitive conductive paste of the present invention increases the crosslink density in the exposed area by adding the photopolymerization initiator C and increases the alkali solubility difference. As a result, fine processing becomes possible. Examples of the photopolymerization initiator C include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, Bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide, ethanone, 1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O— Acetyloxime), benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4 ′ -Methyl diphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophe 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethyl Thioxanthone, benzyl, benzyldimethyl ketal, benzyl-β-methoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzo Suberon, methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis (p-azidobenzylidene) cyclohexanone, 6-bis (p Azidobenzylidene) -4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl- Propanedione-2- (o-benzoyl) oxime, 1,3-diphenyl-propanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (o-benzoyl) oxime , Michler's ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, 4,4′-azobisisobutyronitrile , Diphenyl disulfide, ben Photoreducing dyes such as thiazole disulfide, triphenylphosphine, camphorquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, carbon tetrabromide, tribromophenylsulfone, benzoin peroxide, eosin or methylene blue and ascorbic acid or triethanol The combination with reducing agents, such as an amine, is mentioned.
 光重合開始剤Cの添加量は、100重量部の化合物Bに対して0.05~30重量部が好ましく、5~20重量部がより好ましい。100重量部の化合物Bに対する添加量が5重量部以上であると、感光性導電ペーストを露光した部分の硬化密度が高くなり、現像後の残膜率が高くなる。一方で、100重量部の化合物Bに対する添加量が20重量部以下であると、感光性導電ペーストを塗布して得られた塗布膜上部における、光重合開始剤Cの過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基板との密着性低下が抑制される。 The addition amount of the photopolymerization initiator C is preferably 0.05 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the compound B. When the added amount with respect to 100 parts by weight of Compound B is 5 parts by weight or more, the cured density of the exposed part of the photosensitive conductive paste increases, and the residual film ratio after development increases. On the other hand, when the added amount with respect to 100 parts by weight of compound B is 20 parts by weight or less, excessive light absorption of photopolymerization initiator C in the upper part of the coating film obtained by applying the photosensitive conductive paste is suppressed. The As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
 本発明の感光性導電ペーストは、光重合開始剤Cと共に、増感剤を含んでいても構わない。 The photosensitive conductive paste of the present invention may contain a sensitizer together with the photopolymerization initiator C.
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール若しくは1-フェニル-5-エトキシカルボニルチオテトラゾール又はこれら増感剤の混合物が挙げられる。 Examples of the sensitizer include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethyl) Aminobenzal) acetone, 1,3-carbonylbis (4-diethylaminobenzal) acetone, 3,3-carbonylbis (7-diethylaminocoumarin), N-phenyl-N-ethylethanolamine, N-phenylethanolamine, N- Examples include tolyldiethanolamine, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 3-phenyl-5-benzoylthiotetrazole or 1-phenyl-5-ethoxycarbonylthiotetrazole, or a mixture of these sensitizers.
 増感剤の添加量は、100重量部の化合物Bに対して0.05~10重量部が好ましく、0.1~10重量部がより好ましい。100重量部の化合物Bに対する添加量が0.1重量部以上であると、光感度が十分に向上する。一方で、100重量部の化合物Bに対する添加量が10重量部以下であると、感光性導電ペーストを塗布して得られた塗布膜上部における光重合開始剤Cの過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基板との密着性低下が抑制される。 The addition amount of the sensitizer is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of Compound B. Photosensitivity improves enough that the addition amount with respect to 100 weight part compound B is 0.1 weight part or more. On the other hand, when the added amount with respect to 100 parts by weight of Compound B is 10 parts by weight or less, excessive light absorption of the photopolymerization initiator C in the upper part of the coating film obtained by applying the photosensitive conductive paste is suppressed. . As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
 導電性フィラーDとしては、例えば、銀(Ag)、金(Au)、銅(Cu)、白金(Pt)、鉛(Pb)、スズ(Sn)、ニッケル(Ni)、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、チタン(Ti)若しくはインジウム(In)等の金属類若しくはこれらの合金、又は、酸化スズ、酸化スズ(SnO)-アンチモン(Sb)ドープ、酸化インジウム(In)-酸化スズドープ、酸化ルテニウム(RuO)等の金属酸化物、の粒子あるいはこれら粒子の混合物が挙げられるが、導電性の観点からAg、Cu又はAuの粒子が好ましく、コスト及び安定性の観点からAgの粒子がより好ましい。かかる導電性フィラーDを用いることにより、本発明の感光性導電ペーストの導電性が発現する。 Examples of the conductive filler D include silver (Ag), gold (Au), copper (Cu), platinum (Pt), lead (Pb), tin (Sn), nickel (Ni), aluminum (Al), and tungsten. (W), molybdenum (Mo), chromium (Cr), metals such as titanium (Ti) or indium (In) or alloys thereof, or tin oxide, tin oxide (SnO 2 ) -antimony (Sb) dope, Examples include particles of indium oxide (In 2 O 3 ) -tin oxide dope, metal oxides such as ruthenium oxide (RuO 2 ), or a mixture of these particles. From the viewpoint of conductivity, particles of Ag, Cu, or Au are preferable. From the viewpoints of cost and stability, Ag particles are more preferable. By using the conductive filler D, the conductivity of the photosensitive conductive paste of the present invention is exhibited.
 導電性フィラーDの体積平均粒子径は、0.1~10μmが好ましく、0.5~6μmがより好ましい。体積平均粒子径が0.1μm以上であると、キュア工程での導電性フィラー同士の接触確率が向上し、製造された導電パターンの比抵抗率及び断線確率が低くなる。さらには、露光工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、微細パターニングが容易となる。一方で、体積平均粒子径が10μm以下であると、製造された導電パターンの表面平滑度、パターン精度及び寸法精度が向上する。なお、体積平均粒子径は、コールターカウンター法により測定することができる。 The volume average particle diameter of the conductive filler D is preferably from 0.1 to 10 μm, more preferably from 0.5 to 6 μm. When the volume average particle diameter is 0.1 μm or more, the contact probability between the conductive fillers in the curing step is improved, and the specific resistivity and the disconnection probability of the manufactured conductive pattern are lowered. Furthermore, in the exposure process, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste, facilitating fine patterning. On the other hand, when the volume average particle diameter is 10 μm or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved. The volume average particle diameter can be measured by a Coulter counter method.
 導電性フィラーDの添加量は、感光性導電ペースト中の全固形分に対して70~95重量%が好ましく、80~90重量%がより好ましい。全固形分に対する添加量が70重量%以上であると、キュア工程での導電性フィラーD同士の接触確率が向上し、製造された導電パターンの比抵抗率及び断線確率が低くなる。一方で、全固形分に対する添加量が95重量%以下であると、露光工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、微細なパターニングが容易となる。ここで全固形分とは、感光性導電ペーストが溶剤を含む場合には溶剤を除いた感光性導電ペーストの全構成成分をいう。 The amount of the conductive filler D added is preferably 70 to 95% by weight, more preferably 80 to 90% by weight, based on the total solid content in the photosensitive conductive paste. When the addition amount with respect to the total solid content is 70% by weight or more, the contact probability between the conductive fillers D in the curing process is improved, and the specific resistivity and the disconnection probability of the manufactured conductive pattern are lowered. On the other hand, when the addition amount with respect to the total solid content is 95% by weight or less, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste in the exposure step, and fine patterning is performed. Becomes easy. Here, the total solid content means all components of the photosensitive conductive paste excluding the solvent when the photosensitive conductive paste contains a solvent.
 本発明の感光性導電ペーストは、溶剤を含んでいても構わない。溶剤としては、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート若しくはプロピレングリコールモノメチルエーテルアセテート又はこれら溶剤の混合物が挙げられる。 The photosensitive conductive paste of the present invention may contain a solvent. Examples of the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, ethyl lactate, 1-methoxy-2-propanol. 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate or propylene glycol monomethyl ether acetate, or a mixture of these solvents. It is done.
 本発明の感光性導電ペーストは、その所望の特性を損なわない範囲であれば、不飽和二重結合を有しない非感光性ポリマー又は可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤若しくは顔料等の添加剤を含んでいても構わない。 The photosensitive conductive paste of the present invention is a non-photosensitive polymer or plasticizer having no unsaturated double bond, leveling agent, surfactant, silane coupling agent, erasing agent, as long as the desired properties are not impaired. You may contain additives, such as a foaming agent or a pigment.
 非感光性ポリマーとしては、例えば、エポキシ樹脂、ノボラック樹脂、フェノール樹脂、ポリイミド前駆体又は既閉環ポリイミドが挙げられる。 Examples of the non-photosensitive polymer include an epoxy resin, a novolac resin, a phenol resin, a polyimide precursor, or a closed ring polyimide.
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール又はグリセリンが挙げられる。 Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin.
 レベリング剤としては、例えば、特殊ビニル系重合物又は特殊アクリル系重合物が挙げられる。 Examples of the leveling agent include a special vinyl polymer or a special acrylic polymer.
 シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン又はビニルトリメトキシシランが挙げられる。 Examples of the silane coupling agent include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane. Methoxysilane is mentioned.
 感光性導電ペーストは、例えば、三本ローラー、ボールミル若しくは遊星式ボールミル等の分散機又は混練機を用いて製造される。 The photosensitive conductive paste is produced, for example, using a dispersing machine or a kneader such as a three-roller, a ball mill or a planetary ball mill.
 次に本発明の感光性導電ペーストを用いた、導電パターンの製造方法について説明する。本発明の感光性導電ペーストを用いた、導電パターンの製造方法は以下の各工程を備える。本発明の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程、得られた塗布膜を乾燥する、乾燥工程、乾燥後の上記塗布膜をパターン露光する、露光工程、露光後の塗布膜を現像して、基板上に所望のパターンを形成する現像工程、得られたパターンを100~300℃でキュアして導電パターンを得るキュア工程。 Next, a method for producing a conductive pattern using the photosensitive conductive paste of the present invention will be described. The manufacturing method of a conductive pattern using the photosensitive conductive paste of the present invention includes the following steps. Applying the photosensitive conductive paste of the present invention on a substrate to obtain a coating film, coating process, drying the coating film obtained, drying process, pattern exposure of the coating film after drying, exposure process, after exposure A development step of developing the coating film to form a desired pattern on the substrate, and a curing step of curing the obtained pattern at 100 to 300 ° C. to obtain a conductive pattern.
 基板としては、例えば、ポリエチレンテレフタレートフィルム(以下、PETフィルム)、ポリイミドフィルム、ポリエステルフィルム若しくはアラミドフィルム等のフィルム、エポキシ樹脂基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ガラス基板、シリコンウエハー、アルミナ基板、窒化アルミニウム基板又は炭化ケイ素基板が挙げられる。 Examples of the substrate include polyethylene terephthalate film (hereinafter referred to as PET film), polyimide film, polyester film or aramid film, epoxy resin substrate, polyetherimide resin substrate, polyetherketone resin substrate, polysulfone resin substrate, glass. A substrate, a silicon wafer, an alumina substrate, an aluminum nitride substrate, or a silicon carbide substrate can be used.
 感光性導電ペーストを基板上に塗布する方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷又はブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター若しくはバーコーターを用いた塗布が挙げられる。得られる塗布膜の膜厚は、塗布の方法又は感光性導電ペーストの全固形分濃度若しくは粘度等に応じて適宜決定すればよいが、乾燥後の膜厚が、0.1~50μmになることが好ましい。なお、膜厚は、例えば “サーフコム”(登録商標)1400((株)東京精密製)のような触針式段差計を用いて測定することができる。より具体的には、ランダムな3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/sec)でそれぞれ測定し、その平均値を膜厚とすることができる。 Examples of the method for applying the photosensitive conductive paste on the substrate include spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a blade coater, die coater, calendar coater, meniscus coater, or bar coater. Is mentioned. The film thickness of the coating film to be obtained may be appropriately determined according to the coating method or the total solid content concentration or viscosity of the photosensitive conductive paste, but the film thickness after drying should be 0.1 to 50 μm. Is preferred. The film thickness can be measured using a stylus type step meter such as “Surfcom” (registered trademark) 1400 (manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thickness at three random positions may be measured with a stylus-type step gauge (length measurement: 1 mm, scanning speed: 0.3 mm / sec), and the average value may be defined as the film thickness. it can.
 得られた塗布膜を乾燥する(感光性導電ペーストが溶剤を含む場合は、溶剤を揮発除去することも含む)方法としては、例えば、オーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。加熱温度は50~180℃が好ましく、加熱時間は1分~数時間が好ましい。 Examples of the method for drying the obtained coating film (including the case where the photosensitive conductive paste contains a solvent includes volatilization and removal of the solvent) include, for example, heating drying using an oven, a hot plate, infrared rays, or vacuum drying or vacuum drying. It is done. The heating temperature is preferably 50 to 180 ° C., and the heating time is preferably 1 minute to several hours.
 乾燥後の塗布膜は、フォトリソグラフィー法により露光する。露光の光源としては、水銀灯のi線(365nm)、h線(405nm)又はg線(436nm)が好ましい。 The dried coating film is exposed by a photolithography method. As a light source for exposure, i-line (365 nm), h-line (405 nm) or g-line (436 nm) of a mercury lamp is preferable.
 露光後の塗布膜を、現像液を用いて現像し、未露光部を溶解除去することで、所望のパターンが得られる。 The desired pattern is obtained by developing the exposed coating film using a developer and dissolving and removing unexposed portions.
 アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられるが、これらの水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール、エタノール若しくはイソプロパノール等のアルコール類、乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類等又は界面活性剤を添加しても構わない。 Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate. An aqueous solution of aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine may be mentioned. These aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N— Polar solvents such as dimethylacetamide, dimethylsulfoxide or γ-butyrolactone, alcohols such as methanol, ethanol or isopropanol, lactic acid ester Esters such as Le or propylene glycol monomethyl ether acetate, may be added to cyclopentanone, cyclohexanone, ketones such as isobutyl ketone or methyl isobutyl ketone or surfactant.
 有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド若しくはヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶媒が挙げられる。 Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl Examples thereof include polar solvents such as amides or mixed solvents of these polar solvents with methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol or ethyl carbitol.
 現像の方法としては、例えば、基板を静置又は回転させながら現像液を塗布膜面にスプレーする方法、基板を現像液中に浸漬する方法、又は、基板を現像液中に浸漬しながら超音波をかける方法が挙げられる。 As a development method, for example, a method of spraying a developer onto the coating film surface while the substrate is left standing or rotating, a method of immersing the substrate in the developer, or an ultrasonic wave while immersing the substrate in the developer The method of applying is mentioned.
 現像により得られたパターンは、リンス液によるリンス処理を施しても構わない。ここでリンス液としては、例えば、水あるいは水にエタノール若しくはイソプロピルアルコール等のアルコール類又は乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類を加えた水溶液が挙げられる。 The pattern obtained by development may be rinsed with a rinse solution. Examples of the rinsing liquid include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
 得られたパターンをキュアする方法としては、例えば、オーブン、イナートオーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。 As a method for curing the obtained pattern, for example, heating drying or vacuum drying using an oven, an inert oven, a hot plate, infrared rays, or the like can be given.
 キュアする際の温度(以下、単に「キュア温度」と記すこともある)は、100~300℃である。キュア温度が100℃未満であると、樹脂の体積収縮量が大きくならず、比抵抗率を小さくできない。一方で、キュア温度が300℃を超えると、耐熱性が低い基板等の材料上に導電パターンを形成することができない。かかる観点よりキュア温度は120~180℃が好ましい。 The temperature during curing (hereinafter sometimes simply referred to as “curing temperature”) is 100 to 300 ° C. When the curing temperature is less than 100 ° C., the volume shrinkage of the resin does not increase and the specific resistivity cannot be reduced. On the other hand, when the curing temperature exceeds 300 ° C., a conductive pattern cannot be formed on a material such as a substrate having low heat resistance. From this viewpoint, the curing temperature is preferably 120 to 180 ° C.
 本発明の感光性導電ペーストを用いて製造される導電パターンは、タッチパネル用周囲配線として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、静電容量式タッチパネルは特に微細配線が求められることから、本発明の感光性導電ペーストを用いて製造される導電パターンが、より好適に用いられる。 The conductive pattern manufactured using the photosensitive conductive paste of the present invention is suitably used as a peripheral wiring for a touch panel. Examples of the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. However, since the capacitance type touch panel particularly requires fine wiring, the photosensitive conductive paste of the present invention. The conductive pattern manufactured using is more preferably used.
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明する。なお、各実施例及び比較例で用いた材料及び評価方法は、以下のとおりである。なお、特に断っていない限り、測定n数は1で行った。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In addition, the material and evaluation method which were used by each Example and the comparative example are as follows. In addition, the measurement n number was performed by 1 unless otherwise indicated.
 <パターニング性の評価方法>
 PETフィルム(厚み100μm)上に感光性導電ペーストを乾燥膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で5分間乾燥した。一定のラインアンドスペース(以下、L/S)で配列された直線群すなわち透光パターンを1つのユニットとし、L/Sの値が異なる11種類のユニットをそれぞれ有するフォトマスクを介して乾燥後の塗布膜を露光、現像して、L/Sの値が異なるパターンをそれぞれ得た。その後、得られた11のパターンを140℃で30分間乾燥オーブン内でいずれもキュアして、L/Sの値が異なる導電パターンをそれぞれ得た。なお、フォトマスクが有する各ユニットのL/Sの値は、500/500、250/250、100/100、50/50、40/40、30/30、25/25、20/20、17/17、15/15、10/10とした(それぞれ、ライン幅(μm)/間隔(μm)を表す)。得られた導電パターンを光学顕微鏡で観察し、パターン間に残渣がなく、かつパターン剥がれのないL/Sの値が最小の導電パターンを確認し、そのL/Sの値を、現像可能なL/Sの値とした。なお、露光は露光装置(PEM-6M;ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)の全線露光を行い、現像は0.25重量%の炭酸ナトリウム(NaCO)水溶液に基板を30秒浸漬させた後、超純水によるリンス処理を施して行った。
<Patternability evaluation method>
The photosensitive conductive paste was applied onto a PET film (thickness: 100 μm) by a screen printing method so that the thickness of the dried film was 7 μm, and the obtained coated film was dried in a drying oven at 100 ° C. for 5 minutes. A group of straight lines arranged in a constant line and space (hereinafter referred to as L / S), that is, a translucent pattern, is defined as one unit, and after drying through a photomask having 11 types of units having different L / S values. The coating film was exposed and developed to obtain patterns having different L / S values. Thereafter, all of the obtained 11 patterns were cured in a drying oven at 140 ° C. for 30 minutes to obtain conductive patterns having different L / S values. The L / S value of each unit included in the photomask is 500/500, 250/250, 100/100, 50/50, 40/40, 30/30, 25/25, 20/20, 17 / 17, 15/15, and 10/10 (representing line width (μm) / interval (μm), respectively). The obtained conductive pattern is observed with an optical microscope, a conductive pattern having no residue between the patterns and having no pattern peeling is confirmed, and the L / S value can be developed. The value was / S. The exposure was performed using an exposure apparatus (PEM-6M; manufactured by Union Optics Co., Ltd.) for full line exposure with an exposure amount of 200 mJ / cm 2 (wavelength 365 nm conversion), and development was performed with 0.25 wt% sodium carbonate (Na 2 The substrate was immersed in an aqueous solution of CO 3 ) for 30 seconds, and then rinsed with ultrapure water.
 <比抵抗率の評価方法>
 PETフィルム(厚み100μm)上に感光性導電ペーストを乾燥膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で5分間乾燥した。図1に示すパターンの透光部Aを有するフォトマスクを介して乾燥後の塗布膜を露光、現像して、パターンを得た。その後、得られたパターンを140℃で30分間乾燥オーブン内でキュアして、比抵抗率測定用導電パターンを得た。比抵抗率測定用導電パターンのライン幅は0.400mm、ライン長さは80mmとなるようにした。なお、露光及び現像の条件は、上記パターニング性の評価方法と同様とした。得られた比抵抗率測定用導電パターンのそれぞれの端部に表面抵抗計をつないで表面抵抗値を測定し、以下の式(1)に基づいて比抵抗率を算出した。
比抵抗率 = 表面抵抗値×膜厚×ライン幅/ライン長 ・・・ (1)
なお、ライン幅は、ランダムな3つの位置のライン幅を光学顕微鏡で観察し、画像データを解析して得られた平均値である。
<Evaluation method of specific resistivity>
The photosensitive conductive paste was applied onto a PET film (thickness: 100 μm) by a screen printing method so that the thickness of the dried film was 7 μm, and the obtained coated film was dried in a drying oven at 100 ° C. for 5 minutes. The dried coating film was exposed and developed through a photomask having a light-transmitting portion A having the pattern shown in FIG. 1 to obtain a pattern. Thereafter, the obtained pattern was cured in a drying oven at 140 ° C. for 30 minutes to obtain a conductive pattern for measuring specific resistivity. The line width of the conductive pattern for specific resistivity measurement was 0.400 mm, and the line length was 80 mm. The exposure and development conditions were the same as in the patterning evaluation method. The surface resistance value was measured by connecting a surface resistance meter to each end of the obtained conductive pattern for measuring specific resistivity, and the specific resistivity was calculated based on the following formula (1).
Specific resistivity = surface resistance value × film thickness × line width / line length (1)
The line width is an average value obtained by observing the line width at three random positions with an optical microscope and analyzing the image data.
 <屈曲性の評価方法>
 図2は、屈曲性試験に用いたサンプルを模式的に示した図である。縦10mm、横100mmの長方形のPETフィルム(厚み40μm)上に感光性導電ペーストを乾燥膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で5分間乾燥した。図1に示すパターンの透光部Aを有するフォトマスクを、透光部Aがサンプル中央にくるように配置して露光、現像して、パターンを得た。その後、140℃で30分間乾燥オーブン内でキュアして、導電パターンを得た。なお、露光及び現像の条件は、上記パターニング性の評価方法と同様とした。テスターを用いて、得られた導電パターンの抵抗値を測定してから、導電パターンを内側及び外側の交互に曲げてサンプル短辺Bとサンプル短辺Cとを接触させる屈曲動作を100回、繰り返し、再度テスターを用いて導電パターンの抵抗値を測定した。屈曲動作の前後の抵抗値の変化量が20%以下であり、かつ導電パターンにクラック、剥がれ又は断線がないものをA(good)と判定し、そうでないものをB(poor)と判定した。
<Flexibility evaluation method>
FIG. 2 is a diagram schematically showing a sample used for the flexibility test. A photosensitive conductive paste is applied to a rectangular PET film (thickness 40 μm) having a length of 10 mm and a width of 100 mm by a screen printing method so that the thickness of the dry film becomes 7 μm, and the obtained coating film is dried in a drying oven at 100 ° C. For 5 minutes. A photomask having a light-transmitting portion A having the pattern shown in FIG. 1 was placed, exposed and developed so that the light-transmitting portion A was at the center of the sample, and a pattern was obtained. Then, it was cured in a drying oven at 140 ° C. for 30 minutes to obtain a conductive pattern. The exposure and development conditions were the same as in the patterning evaluation method. After measuring the resistance value of the obtained conductive pattern using a tester, the bending operation of bending the conductive pattern alternately inside and outside and bringing the sample short side B and the sample short side C into contact is repeated 100 times. The resistance value of the conductive pattern was measured again using a tester. The change amount of the resistance value before and after the bending operation was 20% or less and the conductive pattern was not cracked, peeled off or disconnected, was determined as A (good), and the other change was determined as B (poor).
 <酸化インジウムスズ(ITO)との密着性の評価方法>
 ITO付きPETフィルム“ELECRYSTA”(登録商標)V270L-TFS(日東電工(株)製)上に感光性導電ペーストを乾燥膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で5分間乾燥してからその全面を露光した。なお、露光の条件は、上記パターニング性の評価方法と同様とした。その後、140℃で30分間乾燥オーブン内でキュアしてから、1mm幅で10×10の碁盤目状にカッターで切れ目を入れ、85℃、85%RHの恒温恒湿槽SH-661(エスペック(株)製)に240時間投入した。取り出したサンプルの碁盤目状の切れ目部位全体にセロハンテープ(ニチバン(株)製)を貼着して剥がし、残存マス数をカウントした。
<Method for evaluating adhesion to indium tin oxide (ITO)>
A photosensitive conductive paste was applied onto a PET film with ITO “ELECRYSTA” (registered trademark) V270L-TFS (manufactured by Nitto Denko Corporation) by a screen printing method so that the film thickness of the dried film was 7 μm. The coating film was dried in a drying oven at 100 ° C. for 5 minutes, and then the entire surface was exposed. The exposure conditions were the same as in the patterning evaluation method. Then, after curing in a drying oven at 140 ° C. for 30 minutes, a 1 mm wide, 10 × 10 grid pattern was cut with a cutter, and a constant temperature and humidity chamber SH-661 (Espec (85 ° C., 85% RH) For 240 hours. Cellophane tape (manufactured by Nichiban Co., Ltd.) was applied to the whole cut-out cut portion of the sample taken out and peeled off, and the number of remaining cells was counted.
 <表面硬度の評価方法>
 ガラス基板上に感光性導電ペーストを乾燥膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で5分間乾燥してからその全面を露光した。なお、露光の条件は、上記パターニング性の評価方法と同様とした。その後、140℃で30分間乾燥オーブン内でキュアして、得られた導電膜の表面硬度を測定した。なお、導電膜の表面硬度は、JIS K 5600:1999に準拠して測定した。
<Evaluation method of surface hardness>
A photosensitive conductive paste is applied onto a glass substrate by screen printing so that the dry film thickness is 7 μm, and the resulting coating film is dried in a drying oven at 100 ° C. for 5 minutes, and then the entire surface is exposed. did. The exposure conditions were the same as in the patterning evaluation method. Then, it was cured in a drying oven at 140 ° C. for 30 minutes, and the surface hardness of the obtained conductive film was measured. In addition, the surface hardness of the electrically conductive film was measured based on JISK5600: 1999.
 実施例及び比較例で用いた材料は以下のとおりである。 The materials used in the examples and comparative examples are as follows.
 [シロキサン化合物A]
以下の合成例1~5に示すように、シロキサン化合物A-1~5を用意した。
(合成例1)
300mLのナスフラスコに、23.23gのp-アミノ安息香酸及び209.05gのプロピレングリコールモノメチルエーテルアセテート(PGMEA)を仕込み、室温で30分間撹拌してから、46.53gのイソシアネートプロピルトリエトキシシラン及び1.19gジラウリン酸ジブチルスズをさらに仕込み、70℃のオイルバスで1時間撹拌した。その後室温まで放冷し、析出した固体をガラスフィルターにて濾取、乾燥させ、46.7gのカルボキシル基含有シロキサン化合物(A-1)を得た。
(合成例2)
500mLの三口フラスコに、17.03gのメチルトリメトキシシラン(0.125mol)、19.83gのフェニルトリメトキシシラン(0.1mol)、38.42gのカルボキシル基含有シラン化合物(A-1;0.1mol)、41.02gのγ-アクリロイルプロピルトリメトキシシラン(0.175mol)及び109.61gのジエチレングリコールモノエチルエーテルアセテート(以下、DMEA)を仕込み、40℃のオイルバスに漬けて撹拌しながら、水27.0gにリン酸0.237g(仕込みモノマー100重量部に対して0.2重量部)を溶かしたリン酸水溶液を、滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始から1時間後に、三口フラスコの内温が100℃に到達したため、そこから2時間加熱撹拌した(三口フラスコの内温は100~110℃で推移)。反応中に副生成物であるメタノール、エタノール、水が合計55g留出した。得られたシロキサン化合物溶液に、シロキサン化合物濃度が40重量%となるようにDMEAを加えて、シロキサン化合物溶液(A-2)を得た。
(合成例3)
500mLの三口フラスコに、54.48g(0.40mol)のメチルトリメトキシシラン、79.32g(0.40mol)のフェニルトリメトキシシラン、77.32g(0.20mol)のヒドロキシメチルトリエトキシシラン50重量%エタノール溶液、及び118.32gのDMEAを仕込み、40℃のオイルバスに漬けて撹拌しながら、水54gに燐酸0.345(仕込みモノマー100重量部に対して0.2重量部)を溶かしたリン酸水溶液を、滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始から1時間後に、三口フラスコの内温が100℃に到達したため、そこから2時間加熱撹拌した(三口フラスコの内温は100~110℃で推移)。反応中に副生成物であるメタノール、エタノール、水が合計165g留出した。得られたシロキサン化合物溶液に、シロキサン化合物濃度が40重量%となるようにDMEAを加えて、水酸基含有シロキサン化合物溶液(A-3)を得た。
(合成例4)
500mLの三口フラスコに54.48g(0.40mol)のメチルトリメトキシシラン、98.51g(0.50mol)のフェニルトリメトキシシラン、25.41g(0.10mol)の3-トリメトキシシリルプロピルコハク酸無水物、及び74.68gのDMEAを仕込み、40℃のオイルバスに漬けて撹拌しながら、水54gに燐酸0.349(仕込みモノマー100重量部に対して0.2重量部)を溶かしたリン酸水溶液を、滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始から1時間後に、三口フラスコの内温が100℃に到達したため、そこから2時間加熱撹拌した(三口フラスコの内温は100~110℃で推移)。反応中に副生成物であるメタノール、エタノール、水が合計112.5g留出した。得られたシロキサン化合物溶液に、シロキサン化合物濃度が40重量%となるようにDMEAを加えて、カルボキシル基含有シロキサン化合物溶液(A-4)を得た。
(合成例5)
500mLの三口フラスコに54.48g(0.40mol)のメチルトリメトキシシラン、79.32g(0.40mol)のフェニルトリメトキシシラン、49.48g(0.20mol)の3-イソシアネートプロピルトリエトキシシラン及び103.34gのDMEAを仕込み、40℃のオイルバスに漬けて撹拌しながら、水54gに燐酸0.345(仕込みモノマー100重量部に対して0.2重量部)を溶かしたリン酸水溶液を、滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始から1時間後に、三口フラスコの内温が100℃に到達したため、そこから2時間加熱撹拌した(三口フラスコの内温は100~110℃で推移)。反応中に副生成物であるメタノール、エタノール、水が合計125g留出した。得られたシロキサン化合物溶液に、シロキサン化合物濃度が40重量%となるようにDMEAを加えて、ウレタン結合含有シロキサン化合物溶液(A-5)を得た。
[その他のシロキサン化合物A]
以下の市販品(いずれもビックケミー・ジャパン(株)製)を用意した。
・BYK-307
・BYK-UV3500 ・・・(アクリル基を有する)
・BYK-377 ・・・(水酸基を有する)
・BYK-322 ・・・(アラルキル基を有する)
 [酸価が30~250mgKOHの化合物B]
以下の合成例6~10に示すように、B-1~5を用意した。
(合成例6)
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gのアクリル酸2-エチルヘキシル、20gのスチレン、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物(B-1)を得た。得られた化合物(B-1)の酸価は122mgKOH/g、Tgは17.7℃であった。
(合成例7)
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、50gのエチレンオキサイド変性ビスフェノールAジアクリレート(FA-324A)、20gのEA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物(B-2)を得た。得られた化合物(B-2)の酸価は96mgKOH/g、Tgは19.9℃であった。
(合成例8)
反応容器中に、200gのエポキシエステル3000A(共栄社化学(株)製;ビスフェノールA骨格を有するエポキシアクリレート化合物)、500gのDMEA、0.5gの2-メチルハイドロキノン(熱重合禁止剤)を0.5g及び75gのジヒドロキシプロピオン酸を仕込み、オイルバスを用いて45℃まで昇温させた。これに、84.1gのヘキサメチレンジイソシアネートを、反応温度が50℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に昇温させ、6時間後に反応液を赤外吸収スペクトル測定法により分析して、2250cm-1付近の吸収がないことを確認した。この反応液に、165gのグリシジルメタクリレートを添加後、さらに95℃に昇温させ、6時間反応を行って51.2重量%の化合物(B-3)溶液を得た。得られた化合物(B-3)の酸価は89mgKOH/g、Tgは27.2℃であった。
(合成例9)
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、40gのアクリル酸2-エチルヘキシル、20gのスチレン、5gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物(B-4)を得た。得られた化合物(B-4)の酸価は35mgKOH/g、Tgは10.2℃であった。
(合成例10)
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、25gのアクリル酸2-エチルヘキシル、20gのスチレン、30gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物(B-5)を得た。得られた化合物(B-5)の酸価は222mgKOH/g、Tgは34.7℃であった。
[Siloxane Compound A]
As shown in Synthesis Examples 1 to 5 below, siloxane compounds A-1 to A-5 were prepared.
(Synthesis Example 1)
A 300 mL eggplant flask was charged with 23.23 g of p-aminobenzoic acid and 209.05 g of propylene glycol monomethyl ether acetate (PGMEA), stirred at room temperature for 30 minutes, and then 46.53 g of isocyanate propyltriethoxysilane and 1.19 g of dibutyltin dilaurate was further added and stirred in an oil bath at 70 ° C. for 1 hour. Thereafter, the mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration with a glass filter and dried to obtain 46.7 g of a carboxyl group-containing siloxane compound (A-1).
(Synthesis Example 2)
In a 500 mL three-necked flask, 17.03 g of methyltrimethoxysilane (0.125 mol), 19.83 g of phenyltrimethoxysilane (0.1 mol), 38.42 g of a carboxyl group-containing silane compound (A-1; 1 mol), 41.02 g of γ-acryloylpropyltrimethoxysilane (0.175 mol) and 109.61 g of diethylene glycol monoethyl ether acetate (hereinafter referred to as DMEA) were placed in an oil bath at 40 ° C. and stirred, An aqueous phosphoric acid solution in which 0.237 g of phosphoric acid (0.2 part by weight with respect to 100 parts by weight of charged monomer) was dissolved in 27.0 g was added over 10 minutes with a dropping funnel. After stirring at 40 ° C. for 1 hour, the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the three-necked flask reached 100 ° C., and from that point, the mixture was heated and stirred for 2 hours (the internal temperature of the three-necked flask changed at 100 to 110 ° C.). During the reaction, a total of 55 g of methanol, ethanol and water as by-products were distilled out. DMEA was added to the obtained siloxane compound solution so that the siloxane compound concentration was 40% by weight to obtain a siloxane compound solution (A-2).
(Synthesis Example 3)
In a 500 mL three-necked flask, 54.48 g (0.40 mol) methyltrimethoxysilane, 79.32 g (0.40 mol) phenyltrimethoxysilane, 77.32 g (0.20 mol) hydroxymethyltriethoxysilane 50 wt. % Ethanol solution and 118.32 g of DMEA were charged, and 0.345 phosphoric acid (0.2 parts by weight with respect to 100 parts by weight of charged monomer) was dissolved in 54 g of water while being immersed in an oil bath at 40 ° C. and stirred. The aqueous phosphoric acid solution was added with a dropping funnel over 10 minutes. After stirring at 40 ° C. for 1 hour, the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the three-necked flask reached 100 ° C., and from that point, the mixture was heated and stirred for 2 hours (the internal temperature of the three-necked flask changed at 100 to 110 ° C.). During the reaction, a total of 165 g of methanol, ethanol and water as by-products were distilled out. DMEA was added to the obtained siloxane compound solution so that the concentration of the siloxane compound was 40% by weight to obtain a hydroxyl group-containing siloxane compound solution (A-3).
(Synthesis Example 4)
In a 500 mL three-necked flask, 54.48 g (0.40 mol) methyltrimethoxysilane, 98.51 g (0.50 mol) phenyltrimethoxysilane, 25.41 g (0.10 mol) 3-trimethoxysilylpropyl succinic acid Phosphoric acid in which 0.349 phosphoric acid (0.2 part by weight with respect to 100 parts by weight of the charged monomer) was dissolved in 54 g of water while adding anhydride and 74.68 g of DMEA, being immersed in an oil bath at 40 ° C. and stirring. The acid aqueous solution was added with a dropping funnel over 10 minutes. After stirring at 40 ° C. for 1 hour, the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the three-necked flask reached 100 ° C., and from that point, the mixture was heated and stirred for 2 hours (the internal temperature of the three-necked flask changed at 100 to 110 ° C.). During the reaction, a total of 112.5 g of methanol, ethanol and water as by-products were distilled out. DMEA was added to the obtained siloxane compound solution so that the siloxane compound concentration was 40% by weight to obtain a carboxyl group-containing siloxane compound solution (A-4).
(Synthesis Example 5)
In a 500 mL three-necked flask, 54.48 g (0.40 mol) methyltrimethoxysilane, 79.32 g (0.40 mol) phenyltrimethoxysilane, 49.48 g (0.20 mol) 3-isocyanatopropyltriethoxysilane and An aqueous phosphoric acid solution prepared by dissolving 103.34 g of DMEA, dipping in an oil bath at 40 ° C. and stirring, dissolving 0.345 phosphoric acid (0.2 part by weight with respect to 100 parts by weight of the charged monomer) in 54 g of water, It was added over 10 minutes with a dropping funnel. After stirring at 40 ° C. for 1 hour, the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the three-necked flask reached 100 ° C., and from that point, the mixture was heated and stirred for 2 hours (the internal temperature of the three-necked flask changed at 100 to 110 ° C.). During the reaction, a total of 125 g of methanol, ethanol and water as by-products were distilled out. DMEA was added to the resulting siloxane compound solution so that the siloxane compound concentration was 40% by weight to obtain a urethane bond-containing siloxane compound solution (A-5).
[Other siloxane compound A]
The following commercially available products (all manufactured by Big Chemie Japan Co., Ltd.) were prepared.
・ BYK-307
・ BYK-UV3500 (having an acrylic group)
.BYK-377 (having hydroxyl groups)
.BYK-322 (having an aralkyl group)
[Compound B having an acid value of 30 to 250 mg KOH]
B-1 to 5 were prepared as shown in Synthesis Examples 6 to 10 below.
(Synthesis Example 6)
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 20 g EA, 40 g 2-ethylhexyl acrylate, 20 g styrene, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA over 1 hour. And dripped. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain Compound (B-1). The resulting compound (B-1) had an acid value of 122 mgKOH / g and Tg of 17.7 ° C.
(Synthesis Example 7)
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this, a mixture consisting of 50 g ethylene oxide modified bisphenol A diacrylate (FA-324A), 20 g EA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA, The solution was added dropwise over 1 hour. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g of glycidyl methacrylate, 1 g of triethylbenzylammonium chloride and 10 g of DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain compound (B-2). The acid value of the obtained compound (B-2) was 96 mgKOH / g, and Tg was 19.9 ° C.
(Synthesis Example 8)
In a reaction vessel, 200 g of epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd .; epoxy acrylate compound having bisphenol A skeleton), 500 g of DMEA, 0.5 g of 2-methylhydroquinone (thermal polymerization inhibitor) 0.5 g And 75 g of dihydroxypropionic acid were charged and heated to 45 ° C. using an oil bath. To this, 84.1 g of hexamethylene diisocyanate was gradually added dropwise so that the reaction temperature did not exceed 50 ° C. After completion of the dropping, the reaction temperature was raised to 80 ° C., and after 6 hours, the reaction solution was analyzed by an infrared absorption spectrum measurement method, and it was confirmed that there was no absorption near 2250 cm −1 . After adding 165 g of glycidyl methacrylate to this reaction solution, the temperature was further raised to 95 ° C., and the reaction was performed for 6 hours to obtain a 51.2 wt% compound (B-3) solution. The resulting compound (B-3) had an acid value of 89 mgKOH / g and Tg of 27.2 ° C.
(Synthesis Example 9)
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 30 g EA, 40 g 2-ethylhexyl acrylate, 20 g styrene, 5 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA over 1 hour. And dripped. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The reaction solution thus obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain compound (B-4). The obtained compound (B-4) had an acid value of 35 mgKOH / g and Tg of 10.2 ° C.
(Synthesis Example 10)
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 20 g EA, 25 g 2-ethylhexyl acrylate, 20 g styrene, 30 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA over 1 hour. And dripped. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The reaction solution obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain Compound (B-5). The compound (B-5) obtained had an acid value of 222 mgKOH / g and Tg of 34.7 ° C.
 [光重合開始剤C]
以下の市販品を用意した。
・“IRGACURE”(登録商標)369(チバジャパン(株)製)
 [導電性フィラーD]
表1に記載の材料、体積平均粒子径のものを用いた。
[Photoinitiator C]
The following commercial products were prepared.
・ "IRGACURE" (registered trademark) 369 (manufactured by Ciba Japan Co., Ltd.)
[Conductive filler D]
The materials listed in Table 1 and those having a volume average particle size were used.
 [熱硬化性化合物E]
以下の市販品を用意した。
・N-660(DIC(株)製) ・・・クレゾールノボラック型エポキシ樹脂
・N-n-ブトキシメチルアクリルアミド
 [モノマー]
以下の市販品を用意した。
・ライトアクリレートBP-4EA(共栄社化学株式会社製)
 [溶剤]
以下の市販品を用意した。
・DMEA(東京化成工業株式会社製)
 (実施例1)
 100mLクリーンボトルに、1.0gのBYK-307、10.0gの化合物B-1、0.50gの “IRGACURE”(登録商標)369、2.0gのBP-4A、5.0gのDMEA、を入れ、混合機として“あわとり錬太郎”(登録商標)(ARE-310;株式会社シンキー社製)を用いて混合し、16.5gの感光性樹脂溶液(固形分69.7重量%)を得た。
[Thermosetting compound E]
The following commercial products were prepared.
・ N-660 (manufactured by DIC Corporation) ・ ・ ・ Cresol novolac type epoxy resin ・ Nn-butoxymethylacrylamide [monomer]
The following commercial products were prepared.
・ Light acrylate BP-4EA (manufactured by Kyoeisha Chemical Co., Ltd.)
[solvent]
The following commercial products were prepared.
・ DMEA (manufactured by Tokyo Chemical Industry Co., Ltd.)
(Example 1)
In a 100 mL clean bottle, 1.0 g BYK-307, 10.0 g compound B-1, 0.50 g “IRGACURE” (registered trademark) 369, 2.0 g BP-4A, 5.0 g DMEA, The mixture was mixed using “Awatori Rentaro” (registered trademark) (ARE-310; manufactured by Sinky Corporation) as a mixer, and 16.5 g of a photosensitive resin solution (solid content: 69.7% by weight) was added. Obtained.
 11.7gの感光性樹脂溶液と、50.0gのAg粒子(体積平均粒子径:2μm)とを混ぜ合わせ、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混練して、61.7gの感光性導電ペーストを得た。 11.7 g of the photosensitive resin solution and 50.0 g of Ag particles (volume average particle diameter: 2 μm) were mixed and kneaded using a three-roller (EXAKT M-50; manufactured by EXAKT). 0.7 g of photosensitive conductive paste was obtained.
 得られた感光性導電ペーストを用いて、導電パターンのパターニング性、現像マージン、比抵抗率、屈曲性、ITOとの密着性及び表面硬度をそれぞれ評価した。パターニング性の評価指標となる現像可能な値L/Sの値は、17/17μmであり、良好なパターン加工されていることが確認された。比抵抗率は6.9×10-5Ωcmであり、屈曲性についても良好な結果が得られた。また、表面硬度は2Hであった。 Using the obtained photosensitive conductive paste, the patterning property of the conductive pattern, the development margin, the specific resistivity, the flexibility, the adhesion with ITO, and the surface hardness were evaluated. The developable value L / S, which is an evaluation index of patterning property, was 17/17 μm, and it was confirmed that a good pattern was processed. The specific resistivity was 6.9 × 10 −5 Ωcm, and good results were obtained for the flexibility. The surface hardness was 2H.
 (実施例2~14)
 表1に示す組成の感光性導電ペーストを用いて、実施例1と同様の評価を行った結果を表2に示す。
(Examples 2 to 14)
Table 2 shows the results of the same evaluation as in Example 1 using the photosensitive conductive paste having the composition shown in Table 1.
 (比較例1~3)
 表1に示す組成の感光性導電ペーストを用いて、実施例1と同様の評価を行った結果を表2に示す。
(Comparative Examples 1 to 3)
Table 2 shows the results of the same evaluation as in Example 1 using the photosensitive conductive paste having the composition shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12の感光性導電ペーストはいずれもパターニング性及び表面硬度に優れたものであったが、比較例1~3の感光性導電ペーストはいずれも表面硬度が劣るものであった。 The photosensitive conductive pastes of Examples 1 to 12 were all excellent in patterning property and surface hardness, but the photosensitive conductive pastes of Comparative Examples 1 to 3 were all inferior in surface hardness.
A 透光部
B、C サンプル短辺
D 導電パターン
E PETフィルム
A Translucent part B, C Sample short side D Conductive pattern E PET film
 本発明の感光性導電ペーストは、タッチパネル用周囲配線等の導電パターンの製造のために好適に利用できる。 The photosensitive conductive paste of the present invention can be suitably used for manufacturing conductive patterns such as peripheral wiring for touch panels.

Claims (10)

  1.  シロキサン化合物Aと、
     酸価が30~250mg/KOHの化合物Bと、
     光重合開始剤Cと、
     導電性フィラーDと、を含む、感光性導電ペースト。
    Siloxane compound A;
    Compound B having an acid value of 30 to 250 mg / KOH,
    Photopolymerization initiator C;
    A photosensitive conductive paste comprising a conductive filler D.
  2.  前記化合物Bは、不飽和二重結合を有する、請求項1記載の感光性導電ペースト。 The photosensitive conductive paste according to claim 1, wherein the compound B has an unsaturated double bond.
  3.  前記化合物Bのガラス転移温度は、-10~60℃である、請求項1又は2記載の感光性導電ペースト。 3. The photosensitive conductive paste according to claim 1, wherein the compound B has a glass transition temperature of −10 to 60 ° C.
  4.  前記化合物Bがエポキシアクリレートである、請求項1~3のいずれか一項記載の感光性導電ペースト。 The photosensitive conductive paste according to any one of claims 1 to 3, wherein the compound B is an epoxy acrylate.
  5.  前記シロキサン化合物Aは、不飽和二重結合を有する置換基、ウレタン結合を有する置換基、カルボキシル基、水酸基、アラルキル基及びフロロアルキル基からなる群から選ばれる置換基を有する、請求項1~4のいずれか一項記載の感光性導電ペースト。 The siloxane compound A has a substituent selected from the group consisting of a substituent having an unsaturated double bond, a substituent having a urethane bond, a carboxyl group, a hydroxyl group, an aralkyl group, and a fluoroalkyl group. The photosensitive electrically conductive paste as described in any one of these.
  6.  前記シロキサン化合物Aは、カルボキシル基、水酸基及びウレタン結合を有する置換基からなる群から選ばれる置換基を有する、請求項1~5のいずれか一項記載の感光性導電ペースト。 The photosensitive conductive paste according to any one of claims 1 to 5, wherein the siloxane compound A has a substituent selected from the group consisting of a carboxyl group, a hydroxyl group, and a substituent having a urethane bond.
  7.  熱硬化性化合物Eを含む、請求項1~6のいずれか一項記載の感光性導電ペースト。 The photosensitive conductive paste according to any one of claims 1 to 6, comprising a thermosetting compound E.
  8.  前記熱硬化性化合物Eは、アルコキシ基又はエポキシ基を有する、請求項1~7のいずれか一項記載の感光性導電ペースト。 The photosensitive conductive paste according to any one of claims 1 to 7, wherein the thermosetting compound E has an alkoxy group or an epoxy group.
  9.  前記導電性フィラーDの添加量が感光性導電ペースト中の全固形分に対して70~95重量%である、請求項1~8のいずれか一項記載の感光性導電ペースト。 The photosensitive conductive paste according to any one of claims 1 to 8, wherein the addition amount of the conductive filler D is 70 to 95% by weight with respect to the total solid content in the photosensitive conductive paste.
  10.  請求項1~9のいずれか一項記載の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、
     前記塗布膜を乾燥する、乾燥工程と、
     乾燥後の前記塗布膜をパターン露光する、露光工程と、
     露光後の前記塗布膜を現像して、前記基板上にパターンを形成する、現像工程と、
     前記パターンを100~300℃でキュアして導電パターンを得る、キュア工程と、を備える、導電パターンの製造方法。
    A coating step of coating the photosensitive conductive paste according to any one of claims 1 to 9 on a substrate to obtain a coating film;
    Drying the coating film, and a drying step;
    An exposure step of pattern-exposing the coating film after drying; and
    Developing the coating film after exposure to form a pattern on the substrate; and
    And a curing step of curing the pattern at 100 to 300 ° C. to obtain a conductive pattern.
PCT/JP2013/079212 2012-10-31 2013-10-29 Photosensitive conductive paste and method for producing conductive pattern WO2014069436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551084A JPWO2014069436A1 (en) 2012-10-31 2013-10-29 Photosensitive conductive paste and method for producing conductive pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012239840 2012-10-31
JP2012-239840 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069436A1 true WO2014069436A1 (en) 2014-05-08

Family

ID=50627341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079212 WO2014069436A1 (en) 2012-10-31 2013-10-29 Photosensitive conductive paste and method for producing conductive pattern

Country Status (3)

Country Link
JP (1) JPWO2014069436A1 (en)
TW (1) TW201423268A (en)
WO (1) WO2014069436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168325A1 (en) * 2017-03-17 2018-09-20 東レ株式会社 Method for manufacturing substrate equipped with wiring electrode, and substrate equipped with wiring electrode
TWI658108B (en) * 2014-05-13 2019-05-01 日商東麗股份有限公司 Manufacturing method of conductive paste, touch panel and conductive pattern

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246637A (en) * 1998-03-02 1999-09-14 Taiyo Ink Mfg Ltd Photosensitive composition and baked material pattern obtained by using same
JP2003104755A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Paste
JP2003162921A (en) * 2001-11-28 2003-06-06 Taiyo Ink Mfg Ltd Photocuring/thermosetting electrically conductive composition and method for forming conductive circuit using the same
JP2004055345A (en) * 2002-07-19 2004-02-19 Harima Chem Inc Conductive paste for microscopic circuit formation
JP2005326724A (en) * 2004-05-17 2005-11-24 Toppan Printing Co Ltd Photosensitive resin composition for resistance element and laminate or element embedded substrate using the same
JP2008298880A (en) * 2007-05-29 2008-12-11 Nagase Chemtex Corp Photosensitive composition
WO2012124438A1 (en) * 2011-03-14 2012-09-20 東レ株式会社 Photosensitive conductive paste and method of manufacturing conductive pattern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246637A (en) * 1998-03-02 1999-09-14 Taiyo Ink Mfg Ltd Photosensitive composition and baked material pattern obtained by using same
JP2003104755A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Paste
JP2003162921A (en) * 2001-11-28 2003-06-06 Taiyo Ink Mfg Ltd Photocuring/thermosetting electrically conductive composition and method for forming conductive circuit using the same
JP2004055345A (en) * 2002-07-19 2004-02-19 Harima Chem Inc Conductive paste for microscopic circuit formation
JP2005326724A (en) * 2004-05-17 2005-11-24 Toppan Printing Co Ltd Photosensitive resin composition for resistance element and laminate or element embedded substrate using the same
JP2008298880A (en) * 2007-05-29 2008-12-11 Nagase Chemtex Corp Photosensitive composition
WO2012124438A1 (en) * 2011-03-14 2012-09-20 東レ株式会社 Photosensitive conductive paste and method of manufacturing conductive pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658108B (en) * 2014-05-13 2019-05-01 日商東麗股份有限公司 Manufacturing method of conductive paste, touch panel and conductive pattern
WO2018168325A1 (en) * 2017-03-17 2018-09-20 東レ株式会社 Method for manufacturing substrate equipped with wiring electrode, and substrate equipped with wiring electrode
JPWO2018168325A1 (en) * 2017-03-17 2019-06-27 東レ株式会社 Method of manufacturing substrate with wiring electrode
KR20190126055A (en) * 2017-03-17 2019-11-08 도레이 카부시키가이샤 Method for Manufacturing Substrate with Wire Electrode and Substrate with Wire Electrode
KR102276074B1 (en) * 2017-03-17 2021-07-12 도레이 카부시키가이샤 Method for manufacturing a substrate with a wiring electrode and a substrate with a wiring electrode
US11449180B2 (en) 2017-03-17 2022-09-20 Toray Industries, Inc. Method for manufacturing substrate equipped with wiring electrode, and substrate equipped with wiring electrode

Also Published As

Publication number Publication date
JPWO2014069436A1 (en) 2016-09-08
TW201423268A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP5967079B2 (en) Conductive paste and conductive pattern manufacturing method
JP5278632B2 (en) Photosensitive conductive paste and method for producing conductive pattern
JP5928453B2 (en) Photosensitive conductive paste and method for producing conductive pattern
JP5360285B2 (en) Photosensitive conductive paste
WO2011114846A1 (en) Photosensitive conductive paste and method for forming conductive pattern
JP6225708B2 (en) Capacitive touch panel
WO2014069436A1 (en) Photosensitive conductive paste and method for producing conductive pattern
JP6645186B2 (en) Method for manufacturing conductive paste, touch panel and conductive pattern
JP5764931B2 (en) Photosensitive paste for forming organic-inorganic composite conductive pattern and method for producing organic-inorganic composite conductive pattern
JP5673890B1 (en) Conductive paste and conductive pattern manufacturing method
JP5978683B2 (en) Manufacturing method of substrate with conductive pattern
US9081278B2 (en) Photosensitive conductive paste and method of producing conductive pattern
JP2013182800A (en) Photosensitive conductive paste
JP6717439B1 (en) Laminated material
CN107735840B (en) Conductive paste, touch sensor member, and method for manufacturing conductive pattern
JP2023121921A (en) conductive paste
JP2013196998A (en) Photosensitive conductive paste
WO2018029749A1 (en) Production method for conductive pattern-forming member
JP2019114497A (en) Conductive paste and method for producing conductive pattern forming substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013551084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850121

Country of ref document: EP

Kind code of ref document: A1