WO2018029750A1 - Laminated member and touch panel - Google Patents

Laminated member and touch panel Download PDF

Info

Publication number
WO2018029750A1
WO2018029750A1 PCT/JP2016/073283 JP2016073283W WO2018029750A1 WO 2018029750 A1 WO2018029750 A1 WO 2018029750A1 JP 2016073283 W JP2016073283 W JP 2016073283W WO 2018029750 A1 WO2018029750 A1 WO 2018029750A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
conductive layer
laminated member
transparent electrode
Prior art date
Application number
PCT/JP2016/073283
Other languages
French (fr)
Japanese (ja)
Inventor
水口創
河野友孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to PCT/JP2016/073283 priority Critical patent/WO2018029750A1/en
Publication of WO2018029750A1 publication Critical patent/WO2018029750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a laminated member and a touch panel.
  • the display electrode formed in the display area of the capacitive touch panel is a transparent electrode made of ITO (indium tin oxide) or the like.
  • ITO indium tin oxide
  • a metal thin film such as ITO is formed on the base material by sputtering or the like, and a photoresist, which is a photosensitive resin, is further applied to the surface and exposed through a photomask.
  • etching and resist removal are performed.
  • Patent Documents 1 and 2 disclose Technology has also been devised.
  • peripheral wiring connected to the transparent electrode is formed around the display area.
  • a method for forming this peripheral wiring a method of applying a conductive paste by a screen printing method or the like (Patent Documents 3 and 4) and a method of finely processing a conductive paste having a photosensitivity by a photolithography method are known ( Patent Documents 5 to 9).
  • the surrounding wiring ie, conductive layer formed on this base material, In addition to the transparent electrode layer, the photosensitive resin layer is also contacted.
  • an object of the present invention is to provide a laminated member having excellent ion migration resistance between a conductive layer and a photosensitive resin layer formed on a substrate.
  • the present inventors have found that the difference between the acid value of the resin having a carboxyl group contained in the photosensitive resin layer and the acid value of the resin having a carboxyl group contained in the conductive layer is 20 to 150 mgKOH. It was found that being in the range of / g is extremely effective in solving the above problems, and the present invention was completed.
  • the present invention includes a base material, a resin layer A formed on the base material, a transparent electrode layer B formed on the resin layer A, and the resin layer A and the transparent electrode layer B.
  • the resin layer A contains a resin (a) having a carboxyl group
  • the conductive layer C contains a resin (c) having conductive particles and a carboxyl group.
  • the conductive layer C is in contact with the resin layer A and the transparent electrode layer B, and the acid value of the organic component contained in the resin layer A is S A and the conductive layer C contains. when the acid value of the organic components were S C, and the value of S a -S C is a 20 ⁇ 150 mgKOH / g, to provide a laminated member.
  • the present invention it is possible to provide a laminated member that is extremely excellent in ion migration resistance between a conductive layer and a photosensitive resin layer formed on a substrate.
  • the ion migration resistance can be further enhanced by laminating OCA having a benzotriazole-based compound or an isobornyl skeleton.
  • the laminated member of the present invention includes a base material, a resin layer A formed on the base material, a transparent electrode layer B formed on the resin layer A, the resin layer A, and the transparent electrode layer.
  • a conductive layer C formed on B, and the resin layer A contains a resin (a) having a carboxyl group (hereinafter sometimes referred to as “resin (a)”), and the above.
  • the conductive layer C contains conductive particles and a resin (c) having a carboxyl group (hereinafter sometimes referred to as “resin (c)”), and the conductive layer C includes the resin layer A and the resin layer A.
  • the base material provided in the laminated member of the present invention refers to a support for forming a transparent electrode layer, a conductive layer or the like on the surface thereof.
  • the base material include a rigid substrate such as glass, a glass epoxy substrate, or a ceramic substrate, or a flexible substrate such as a polyester film or a polyimide film.
  • the resin layer A formed on the base material is a so-called photosensitive resin layer and functions as a photoresist for pattern formation of the transparent electrode layer B.
  • the resin (a) constituting the resin layer A has a carboxyl group in its molecular chain and is preferably alkali-soluble.
  • Examples of the resin (a) include an acrylic copolymer, an epoxy carboxylate compound, a polyamic acid, or a siloxane polymer, and an acrylic copolymer or an epoxy carboxylate compound having a high visible light transmittance is preferable.
  • An acrylic copolymer having a carboxyl group can be obtained by copolymerizing an acrylic monomer and an unsaturated acid such as an unsaturated carboxylic acid as a copolymerization component.
  • acrylic monomer examples include acrylic acid (hereinafter sometimes referred to as “AA”), methyl acrylate, ethyl acrylate (hereinafter sometimes referred to as “EA”), 2-ethylhexyl acrylate, n- Butyl acrylate (hereinafter sometimes referred to as “BA”), iso-butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl Acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodecyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glyco Acrylate, methoxydiethylene glycol acrylate, octafluoropentyl acrylate, phenoxyethyl
  • the unsaturated acid examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof.
  • the acid value of the resulting acrylic copolymer can be adjusted by the amount of the unsaturated acid used as the copolymer component.
  • the epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.
  • Examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, and epoxy resins. More specifically, for example, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether Bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, biphenol diglycidyl ether, tetramethylbiphenol glycidyl ether, trimethyl
  • Examples of the carboxyl compound having an unsaturated double bond that can be used as a starting material include (meth) acrylic acid, crotonic acid, cinnamic acid, and ⁇ -cyanocinnamic acid.
  • the acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride.
  • the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
  • An epoxy carboxylate compound is obtained by reacting a carboxyl group of an epoxy carboxylate compound whose acid value is adjusted with the above polybasic acid anhydride and a compound having an unsaturated double bond such as glycidyl (meth) acrylate. You may adjust the quantity of the reactive unsaturated double bond which has.
  • Urethane may be formed by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound.
  • the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
  • the acid value of the resin (a) is preferably 50 to 250 mgKOH / g since the resin layer A preferably functions as an alkali-soluble photoresist, and 60 to 150 mgKOH / g in order to further improve pattern processability. Is more preferable.
  • the acid value of the resin (a) can be measured according to JIS K 0070 (1992).
  • the visible light transmittance of the resin layer A is preferably 80% or more when the laminated member manufactured according to the present invention is a constituent element of the touch panel.
  • the transparent electrode layer B laminated on the resin layer A is not an entirely flat layer, but is an arbitrarily shaped pattern that is patterned using the function of the resin layer A as a photoresist. . That is, the transparent electrode layer does not completely cover the resin layer A, but the resin layer A is exposed at a portion where the pattern of the transparent electrode layer B is not formed.
  • the transparent electrode layer B is preferably composed of only a conductive component or contains a conductive component.
  • the conductive component constituting the transparent electrode layer B include indium, tin, zinc, gallium, antimony, titanium, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, oxides of these metals, or carbon nanotubes. Is mentioned. More specifically, for example, indium tin oxide (hereinafter sometimes referred to as “ITO”), indium zinc oxide, indium oxide-zinc oxide composite oxide, aluminum zinc oxide, gallium zinc oxide, Fluorine zinc oxide, fluorine indium oxide, antimony tin oxide, or fluorine tin oxide can be used.
  • ITO indium tin oxide
  • ITO or fibrous silver (hereinafter sometimes referred to as “silver fiber”), which has high conductivity and visible light transmittance and is advantageous in terms of price, is preferable, and is connected to the conductive layer C described later. Silver fiber is more preferable because of its high reliability.
  • Examples of the method for forming the transparent electrode layer before pattern processing include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
  • the thickness of the transparent electrode layer B is preferably 0.01 to 1.0 ⁇ m in order to achieve both good conductivity and visible light transmittance.
  • the thickness of the transparent electrode layer B is 0.01 ⁇ m or more, variation in resistance value can be suppressed.
  • the thickness of the transparent electrode layer B is 1.0 ⁇ m or less, the visible light transmittance can be increased.
  • the visible light transmittance of the transparent electrode layer B is preferably 80% or more for the same reason as the resin layer A.
  • the conductive layer C in contact with the resin layer A and the transparent electrode layer B contains conductive particles and a resin (c).
  • the conductive layer C is not an entirely flat layer, and may be a pattern having an arbitrary shape. In this case, the conductive layer C does not completely cover and hide the resin layer A and the transparent electrode layer B, and the resin layer A and / or the transparent electrode layer B is not formed in the portion where the pattern of the conductive layer C is not formed. Is exposed.
  • Examples of the conductive particles contained in the conductive layer C include silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, and alloys of these metals. Silver, gold or copper is preferred, and silver is more preferred because of its high stability and advantageous price.
  • the aspect ratio which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. preferable.
  • the aspect ratio of the conductive particles is 1.0 or more, the contact probability between the conductive particles is further increased.
  • the aspect ratio of the conductive particles is 2.0 or less, when the pattern of the conductive layer C is formed by the photolithography method, the exposure light is hardly shielded, and the development margin is widened.
  • the aspect ratio of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and randomly selecting primary particles of 100 conductive particles. It can be determined by measuring the major axis length and minor axis length and determining the aspect ratio from the average value of both.
  • the particle size of the conductive particles is preferably 0.05 to 2.0 ⁇ m, more preferably 0.1 to 1.5 ⁇ m.
  • the particle size of the conductive particles contained in the conductive layer C is determined by dissolving the collected conductive layer C in tetrahydrofuran (hereinafter sometimes referred to as “THF”), collecting the precipitated conductive particles, What was used and dried at 70 ° C. for 10 minutes was observed with an electron microscope, primary particles of 20 conductive particles were randomly selected, the maximum width of each was measured, and an average value thereof was obtained. Can be calculated.
  • THF tetrahydrofuran
  • the proportion of particles having a particle size of 0.3 to 2.0 ⁇ m in the conductive particles contained in the conductive layer C is determined by the conductive particles taken into the resin layer A when the pattern of the conductive layer C is formed by photolithography. Since it is easy to wash away, it is preferably 80% or more, more preferably 90% or more.
  • the proportion of particles with a particle size of 0.3 to 2.0 ⁇ m in the conductive particles contained in the conductive layer C is determined by observing the conductive particles with an electron microscope and randomly selecting the primary particles of 100 conductive particles. Then, the maximum width of each can be measured, and the maximum width can be determined from the proportion of primary particles in the range of 0.3 to 2.0 ⁇ m.
  • the ratio of the conductive particles contained in the conductive layer C is preferably 60 to 95% by mass.
  • the proportion of the conductive particles is 60% by mass or more, the contact probability between the conductive particles is increased, and the resistance value of the conductive layer C obtained can be stabilized.
  • the proportion of the conductive particles is 95% by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
  • Examples of the resin (c) contained in the conductive layer C include an acrylic copolymer or an epoxy carboxylate compound as in the resin (a), but an epoxy carboxylate compound is used to increase the adhesion of the obtained conductive layer C. Is preferred.
  • the conductive layer C may contain a photopolymerization initiator.
  • the pattern of the conductive layer C can be formed by a photolithography method.
  • the photopolymerization initiator include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) Benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzoph
  • the addition amount of the photopolymerization initiator is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the resin (c).
  • the addition amount of the photopolymerization initiator is 0.05 parts by mass or more, the cured density of the exposed part increases, and the remaining film ratio after development can be increased.
  • the addition amount of the photopolymerization initiator is 30 parts by mass or less, excessive light absorption by the photopolymerization initiator is suppressed.
  • the cross-sectional shape of the pattern of the conductive layer C to be obtained is rectangular, and a decrease in adhesion with the resin layer A is suppressed.
  • the conductive layer C may contain a sensitizer together with the photopolymerization initiator.
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the addition amount of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the resin (c). Photosensitivity improves that the addition amount of a sensitizer is 0.05 mass part or more. On the other hand, when the addition amount of the sensitizer is 10 parts by mass or less, excessive light absorption at the upper part of the coating film when the pattern of the conductive layer C is formed by a photolithography method is suppressed. As a result, the cross-sectional shape of the pattern of the conductive layer C to be formed is rectangular, and the adhesiveness with the resin layer A is prevented from being lowered.
  • the conductive layer C may contain a compound having a urethane bond.
  • the conductive layer C contains a compound having a urethane bond
  • the conductive layer becomes flexible, and as a result, flexibility can be imparted to the entire laminated member.
  • the method of adding a compound having a urethane bond to the conductive layer C include a method of adding a compound having a urethane bond to the composition for forming the conductive layer C.
  • a compound which has a urethane bond a urethane monomer or a polyurethane is mentioned, for example.
  • the amount of the compound having a urethane bond in the composition for forming the conductive layer C is preferably 0.05 to 100 parts by mass with respect to 100 parts by mass of the resin (c).
  • the addition amount of the compound having a urethane bond is 0.05 parts by mass or more, the flexibility of the obtained conductive layer C is sufficiently high.
  • the amount of the compound having a urethane bond is 100 parts by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
  • the conductive layer C may contain a compound having a cyclohexane skeleton.
  • the conductive layer C contains a compound having a cyclohexane skeleton, the conductive layer becomes flexible, and as a result, flexibility can be imparted to the entire laminated member.
  • Examples of the method for adding a compound having a cyclohexane skeleton to the conductive layer C include a method of adding a compound having a cyclohexane skeleton to the composition for forming the conductive layer C.
  • Examples of the compound having a cyclohexane skeleton include dicyclohexylmethane 4,4′-diisocyanate, trans-4-methylcyclohexyl isocyanate, takenate 600 (1,3-bis (isocyanatomethyl) cyclohexane; manufactured by Mitsui Chemicals), 1, 2-epoxycyclohexane, 1-vinyl-3,4-epoxycyclohexane, licarresin DME-100 (1,4-cyclohexanedimethanol diglycidyl ether; manufactured by Shin Nippon Rika Co., Ltd.), licarresin HBE-100 (4,4'- Polymer of isopropylidene dicyclohexanol and (chloromethyl) oxirane; manufactured by Nippon Nippon Chemical Co., Ltd.), ST-4000D (epoxy resin based on hydrogenated bisphenol A; manufactured by Nippon Steel Chemical Co., Ltd.), hydrogen
  • the amount of the compound having a cyclohexane skeleton in the composition for forming the conductive layer C is preferably 0.05 to 100 parts by mass with respect to 100 parts by mass of the resin (c).
  • the amount of the compound having a cyclohexane skeleton is 0.05 parts by mass or more, the flexibility of the obtained conductive layer C is sufficiently high.
  • the amount of the compound having a cyclohexane skeleton is 100 parts by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
  • the conductive layer C may contain a cured product of an epoxy resin.
  • the cured epoxy resin refers to a product obtained by reacting an epoxy resin with light or heat.
  • the epoxy resin include ethylene glycol-modified epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, glycidyl.
  • An amine type epoxy resin, a glycidyl ether type epoxy resin or a heterocyclic epoxy resin can be mentioned.
  • Resin is preferable, and hydrogenated bisphenol A type epoxy resin having high exposure light transmittance when the pattern of the conductive layer C is formed by photolithography is more preferable.
  • the addition amount of the epoxy resin in the composition for forming the conductive layer C is preferably 0.05 to 20 parts by mass with respect to 100 parts by mass of the resin (c).
  • the adhesiveness of the conductive layer C obtained and the resin layer A can be improved as the addition amount of an epoxy resin is 0.05 mass part or more.
  • the addition amount of the epoxy resin is 20 parts by mass or less, the solubility of the exposure film C in the developer is improved.
  • the thickness of the conductive layer C is preferably 2.0 to 8.0 ⁇ m. If the thickness of the conductive layer C is 2.0 ⁇ m or more, variation in resistance can be suppressed. On the other hand, if the thickness of the conductive layer C is 8.0 ⁇ m or less, the flexibility can be increased.
  • the difference between the acid value S A of the resin layer A, and an organic component acid value S C of the conductive layer C is 20 It is preferably ⁇ 150 mgKOH / g, more preferably 30 to 100 mgKOH / g, and further preferably 40 to 90 mgKOH / g.
  • the obtained conductive layer C is highly hygroscopic due to the resin (c) having a carboxyl group, and an ion migration phenomenon starting from the conductive particles easily occurs due to the influence.
  • S A is the layer A of 1 part by mass collected, dissolved in THF and 100 parts by weight, and titrated with 0.1 mol / L potassium hydroxide solution and the solution of phenolphthalein solution as an indicator, is calculated can do.
  • the value of S C first, 0.1 mol conductive layer C of 1 part by mass collected, dissolved in THF and 10 parts by weight, after removing the conductive particles with a filter or the like, the solution using phenolphthalein solution as an indicator
  • the acid value of the conductive layer C can be calculated by titration with a / L potassium hydroxide solution.
  • the epoxy resin when contained in the composition C, it can react with a carboxyl group in a curing process, and the organic component acid value of the conductive layer C can be lowered.
  • the laminated member of the present invention can be coated with an OCA (Optical Clear Adhesive) layer D having a benzotriazole-based compound or an isobornyl skeleton for the purpose of suppressing migration.
  • OCA Optical Clear Adhesive
  • benzotriazole compounds include 1H-benzotriazole (1,2,3-benzotriazole), 4-methylbenzotriazole, 5-methylbenzotriazole, benzotriazole-1-methylamine, 4-methylbenzotriazole-1-methyl Amine, 5-methylbenzotriazole-1-methylamine, N-methylbenzotriazole-1-methylamine, N-ethylbenzotriazole-1-methylamine, N, N-dimethylbenzotriazole-1-methylamine, N, N-diethylbenzotriazole-1-methylamine, N, N-dipropylbenzotriazole-1-methylamine, N, N-dibutylbenzotriazole-1-methylamine, N, N-dihexylbenzotriazole-1-methylamine , N, N Dioctylbenzotriazole-1-methylamine, N, N-dimethyl-4-benzotriazole-1-methylamine, N, N-dimethyl-5-benzotriazole-1
  • Examples of the compound having an isobornyl skeleton include isobornyl acetate, isobornyl acrylate, isobornyl methacrylate, isobornyl cyclohexanol, etc., and these compounds may be contained as one of the components of the acrylic copolymer. Good.
  • the OCA material for forming the OCA layer D is obtained by applying a pressure-sensitive adhesive containing the above compound onto a release-treated substrate and drying it.
  • the OCA layer D can be formed by thermocompression bonding of the obtained OCA material with a thermal laminator or the like.
  • the touch panel of the present invention includes the laminated member manufactured according to the present invention. More specifically, the laminated member of the present invention is suitably used as a member for a touch panel.
  • a touch panel system for example, a resistive film type, an optical type, an electromagnetic induction type, or a capacitance type can be mentioned.
  • a capacitance type touch panel requires particularly fine wiring, it is one embodiment of the present invention.
  • a laminated member in which a pattern of the conductive layer C is formed using a photolithography method is more preferably used.
  • the frame width can be reduced and the view area can be widened. it can.
  • a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a resin (a-3). The acid value of the obtained resin (a-3) was 83 mgKOH / g.
  • the acrylic copolymer solution was diluted with ethyl acetate to a resin solid content of 30%, and 1.2 g of Duranate P301-75E (Asahi Kasei Co., Ltd .; solid content 75%) was added thereto.
  • the product was coated on a 50 ⁇ m PET film having one surface released from the mold so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes to obtain OCA (d-2).
  • Example 1 ⁇ Formation of resin layer A> A biaxially stretched polyethylene terephthalate film having a thickness of 30 ⁇ m was prepared as a substrate. A resin (a-1), MPD-A and IC-369 mixed at a mass ratio of 100: 50: 1 is applied to one side of a substrate, heat treated and dried, and a resin having a thickness of 4 ⁇ m Layer A1 was formed.
  • a photomask is brought into close contact with the ITO thin film, the resin layer A1 and the ITO thin film are exposed with an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp, and further 200 mJ / cm 2 without passing through the photomask.
  • the resin layer A1 and the ITO thin film were exposed on the entire surface with an exposure amount, and then subjected to spray development with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds to form a patterned transparent electrode layer B1 on the resin layer A1.
  • composition for forming conductive layer C ⁇ Preparation of composition for forming conductive layer C>
  • resin (c-1) and 5.0 g of diethylene glycol were put 10.0 g and 5.0 g of diethylene glycol, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) By mixing, 15.0 g of a resin solution (solid content: 66.7% by mass) was obtained.
  • composition C1 is applied to the surface of the resin layer A1 and the patterned transparent electrode layer B1 with a screen printer so that the film thickness of the conductive layer C1 is 6 ⁇ m, cured at 140 ° C. for 60 minutes, and laminated member 1 and 2 were produced respectively.
  • the pattern of the conductive layer C1 of the laminated member 1 was formed by screen printing.
  • the acid value S A of the resin layer A1 1 part by mass of the resin layer A1 is sampled and dissolved in 100 parts by mass of THF. The solution is dissolved in 0.1 mol / L potassium hydroxide solution using a phenolphthalein solution as an indicator. Calculated by titration.
  • the organic component acid value S C of the conductive pattern C1 collected 1 part by weight of the conductive layer C1, it is dissolved in THF and 10 parts by weight, the solution was filtered through a polypropylene filter apertures 2 [mu] m, the filtrate It was calculated by titrating with a 0.1 mol / L potassium hydroxide solution using a phenolphthalein solution as an indicator.
  • S A resin the value of S C is contained in the resin layer A1, conductive layer C1 (a-1), the carboxyl group in the curing step for the point that is lower than the acid value of the (c-1) It seems that a part has disappeared due to a chemical reaction such as dehydration condensation.
  • Example 2 The laminated member shown in Table 1 was produced by the same method as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 6 In the same manner as in Example 1, the resin layer A and the transparent electrode layer B were formed on the substrate, and the ITO thin film was patterned.
  • composition C1 was applied to the surface of the resin layer A1 and the patterned transparent electrode layer B1 with a screen printer so that the thickness of the dry film was 5 ⁇ m, and dried at 70 ° C. for 10 minutes with a hot air dryer, After exposure at an exposure amount of 300 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp through a predetermined photomask, and spray-developing a 0.2% by mass aqueous sodium carbonate solution at a pressure of 0.1 MPa for 30 seconds, 140 Curing was performed at a temperature of 60 ° C. for 60 minutes to produce the laminated member 4 shown in FIG. 2 and the laminated member 5 shown in FIG. The laminated members 4 and 5 were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 to 16 The laminated member shown in Table 1 was produced by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 17 In the same manner as in Example 6, a laminated member in which the resin layer A, the patterned transparent electrode layer B, and the conductive layer C were laminated on the base material was manufactured.
  • ⁇ Formation of OCA layer D> Laminated member 6 shown in FIG. 5 is obtained by laminating OCA (d-1) on the surface of resin layer A1, patterned transparent electrode layer B1, and conductive layer C1 under the conditions of 80 ° C. and pressure of pressure 0.5 MPa.
  • Example 2 The same evaluation as in Example 1 was performed on the laminated members 6 and 7. The results are shown in Table 2.
  • Example 18 The laminated member shown in Table 1 was produced by the same method as in Example 17, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 3 The laminated member shown in Table 1 was produced by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • the laminated member of the present invention can be suitably used as a constituent element of a touch panel.

Abstract

Provided is a laminated member having excellent resistance to ion migration between a conductive layer formed upon a base material and a photosensitive resin layer. The present invention provides a laminated member comprising: a resin layer A formed upon said base material; a transparent electrode layer B formed upon the resin layer A; and a conductive layer C formed upon the resin layer A and the transparent electrode layer B. The resin layer A contains a resin (a) having a carboxyl group. The conductive layer C contains a resin (c) having conductive particles and a carboxyl group. The conductive layer C comes in contact with the resin layer A and the transparent electrode layer B. When the acid value of an organic component of the resin layer A is SA and the acid value of an organic component of the conductive layer C is SC, the value for SA-SC is 20-150 mgKOH/g.

Description

積層部材及びタッチパネルLaminated member and touch panel
 本発明は、積層部材及びタッチパネルに関する。 The present invention relates to a laminated member and a touch panel.
 静電容量式タッチパネルの表示領域に形成される表示電極は、ITO(酸化インジウムスズ)等からなる透明電極である。そのパターン加工のプロセスとしては、スパッタ等により基材にITO等の金属薄膜を膜付けして、その表面にさらに感光性を有する樹脂であるフォトレジストを塗布してフォトマスクを介して露光をし、現像でレジストパターンを形成した後にエッチング及びレジスト除去をするのが一般的である。 The display electrode formed in the display area of the capacitive touch panel is a transparent electrode made of ITO (indium tin oxide) or the like. As the pattern processing process, a metal thin film such as ITO is formed on the base material by sputtering or the like, and a photoresist, which is a photosensitive resin, is further applied to the surface and exposed through a photomask. In general, after forming a resist pattern by development, etching and resist removal are performed.
 一方で、基材上に予め感光性樹脂層及び透明電極層を積層したものを用意しておくことで、透明電極のパターンを形成する都度フォトレジストを塗布したり、除去したりすることを省く技術も考案されている(特許文献1及び2)。 On the other hand, by preparing a laminate of a photosensitive resin layer and a transparent electrode layer on a substrate in advance, it is possible to omit applying or removing a photoresist each time a transparent electrode pattern is formed. Technology has also been devised (Patent Documents 1 and 2).
 静電容量式タッチパネルでは表示領域の周辺には、透明電極と接続する周囲配線が形成される。この周囲配線の形成の方法としては、導電ペーストをスクリーン印刷法等で塗布する方法(特許文献3及び4)や、感光性を有する導電ペーストをフォトリソ法で微細加工する方法が知られている(特許文献5~9)。ここで、上記の感光性樹脂層及び透明電極層を積層した基材から形成した透明電極パターンに接続する周囲配線を形成しようとした場合、該基材上に形成される周囲配線すなわち導電層は、透明電極層のみならず、感光性樹脂層にも接触することとなる。 In the capacitive touch panel, peripheral wiring connected to the transparent electrode is formed around the display area. As a method for forming this peripheral wiring, a method of applying a conductive paste by a screen printing method or the like (Patent Documents 3 and 4) and a method of finely processing a conductive paste having a photosensitivity by a photolithography method are known ( Patent Documents 5 to 9). Here, when it is going to form the surrounding wiring connected to the transparent electrode pattern formed from the base material which laminated | stacked said photosensitive resin layer and transparent electrode layer, the surrounding wiring, ie, conductive layer formed on this base material, In addition to the transparent electrode layer, the photosensitive resin layer is also contacted.
特開2015-18157号公報Japanese Patent Laying-Open No. 2015-18157 特開2014-199814号公報JP 2014-199814 A 特開昭63-079727号公報JP 63-079727 A 特開2004-073740号公報JP 2004-073740 A 特許第5278632号公報Japanese Patent No. 5278632 国際公開第2013/108696号International Publication No. 2013/108696 特許第5360285号公報Japanese Patent No. 5360285 特許第5403187号公報Japanese Patent No. 5403187 国際公開第2013/146107号International Publication No. 2013/146107
 しかしながら、基材上の感光性樹脂層の表面に導電層が接触した部位においては、導電層と感光性樹脂層とのイオンマイグレーションが問題視されていた。 However, ion migration between the conductive layer and the photosensitive resin layer has been regarded as a problem at the site where the conductive layer is in contact with the surface of the photosensitive resin layer on the substrate.
 そこで本発明は、基材上に形成された導電層と感光性樹脂層とのイオンマイグレーション耐性に優れる、積層部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a laminated member having excellent ion migration resistance between a conductive layer and a photosensitive resin layer formed on a substrate.
 本発明者らは、鋭意検討をした結果、感光性樹脂層が含有するカルボキシル基を有する樹脂の酸価と、導電層が含有するカルボキシル基を有する樹脂の酸価との差が、20~150mgKOH/gの範囲にあることが、上記課題の解決に極めて有効であることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that the difference between the acid value of the resin having a carboxyl group contained in the photosensitive resin layer and the acid value of the resin having a carboxyl group contained in the conductive layer is 20 to 150 mgKOH. It was found that being in the range of / g is extremely effective in solving the above problems, and the present invention was completed.
 すなわち本発明は、基材と、上記基材上に形成された、樹脂層Aと、上記樹脂層A上に形成された、透明電極層Bと、上記樹脂層A及び上記透明電極層B上に形成された、導電層Cと、を備え、上記樹脂層Aは、カルボキシル基を有する樹脂(a)を含有し、上記導電層Cは、導電性粒子及びカルボキシル基を有する樹脂(c)を含有し、かつ、上記導電層Cが、上記樹脂層A及び上記透明電極層Bに接触しており、上記樹脂層Aが含有する有機成分の酸価をS、上記導電層Cが含有する有機成分の酸価をS、としたとき、S-Sの値が、20~150mgKOH/gである、積層部材を提供する。 That is, the present invention includes a base material, a resin layer A formed on the base material, a transparent electrode layer B formed on the resin layer A, and the resin layer A and the transparent electrode layer B. The resin layer A contains a resin (a) having a carboxyl group, and the conductive layer C contains a resin (c) having conductive particles and a carboxyl group. And the conductive layer C is in contact with the resin layer A and the transparent electrode layer B, and the acid value of the organic component contained in the resin layer A is S A and the conductive layer C contains. when the acid value of the organic components were S C, and the value of S a -S C is a 20 ~ 150 mgKOH / g, to provide a laminated member.
 本発明によれば、基材上に形成された導電層と感光性樹脂層とのイオンマイグレーション耐性に極めて優れる、積層部材を提供することができる。 According to the present invention, it is possible to provide a laminated member that is extremely excellent in ion migration resistance between a conductive layer and a photosensitive resin layer formed on a substrate.
 さらにベンゾトリアゾール系化合物もしくはイソボルニル骨格を有するOCAを積層させることでよりイオンマイグレーション耐性を高めることができる。 Furthermore, the ion migration resistance can be further enhanced by laminating OCA having a benzotriazole-based compound or an isobornyl skeleton.
積層部材の断面を示す概略図である。It is the schematic which shows the cross section of a laminated member. イオンマイグレーション耐性の評価に用いた積層部材の概略図である。It is the schematic of the laminated member used for evaluation of ion migration tolerance. 屈曲性の評価に用いた積層部材の概略図である。It is the schematic of the laminated member used for evaluation of flexibility. OCA層を積層した積層部材の断面を示す概略図である。It is the schematic which shows the cross section of the laminated member which laminated | stacked the OCA layer. OCA層を積層したイオンマイグレーション耐性の評価に用いた積層部材の概略図である。It is the schematic of the laminated member used for evaluation of the ion migration tolerance which laminated | stacked the OCA layer. OCA層を積層した屈曲性の評価に用いた積層部材の概略図である。It is the schematic of the laminated member used for the evaluation of the flexibility which laminated | stacked the OCA layer.
 本発明の積層部材は、基材と、上記基材上に形成された、樹脂層Aと、上記樹脂層A上に形成された、透明電極層Bと、上記樹脂層A及び上記透明電極層B上に形成された、導電層Cと、を備え、上記樹脂層Aは、カルボキシル基を有する樹脂(a)(以下、「樹脂(a)」と称すことがある。)を含有し、上記導電層Cは、導電性粒子及びカルボキシル基を有する樹脂(c)(以下、「樹脂(c)」と称すことがある。)を含有し、かつ、上記導電層Cが、上記樹脂層A及び上記透明電極層Bに接触しており、上記樹脂層Aが含有する有機成分の酸価をS、上記導電層Cが含有する有機成分の酸価をS、としたとき、S-Sの値が、20~150mgKOH/gであることを特徴とする。 The laminated member of the present invention includes a base material, a resin layer A formed on the base material, a transparent electrode layer B formed on the resin layer A, the resin layer A, and the transparent electrode layer. A conductive layer C formed on B, and the resin layer A contains a resin (a) having a carboxyl group (hereinafter sometimes referred to as “resin (a)”), and the above. The conductive layer C contains conductive particles and a resin (c) having a carboxyl group (hereinafter sometimes referred to as “resin (c)”), and the conductive layer C includes the resin layer A and the resin layer A. in contact with the transparent electrode layer B, when the acid value of the organic components of the resin layer a contains S a, the acid value of the organic component in which the conductive layer C contains S C, and, S a - the value of S C, characterized in that a 20 ~ 150mgKOH / g.
 本発明の積層部材が備える基材とは、その表面上に透明電極層や導電層等を形成するための、支持体をいう。基材としては、例えば、ガラス、ガラエポ基板若しくはセラミックス基板等のリジッド基板又はポリエステルフィルム若しくはポリイミドフィルム等のフレキシブル基板が挙げられる。 The base material provided in the laminated member of the present invention refers to a support for forming a transparent electrode layer, a conductive layer or the like on the surface thereof. Examples of the base material include a rigid substrate such as glass, a glass epoxy substrate, or a ceramic substrate, or a flexible substrate such as a polyester film or a polyimide film.
 基材上に形成されている樹脂層Aは、いわゆる感光性樹脂層であり、透明電極層Bのパターン形成のためのフォトレジストとして機能を果たしたものである。樹脂層Aを構成する樹脂(a)は、その分子鎖中にカルボキシル基を有しており、アルカリ可溶性が好ましい。樹脂(a)としては、例えば、アクリル系共重合体、エポキシカルボキシレート化合物、ポリアミック酸又はシロキサンポリマーが挙げられるが、可視光透過率の高いアクリル系共重合体又はエポキシカルボキシレート化合物が好ましい。 The resin layer A formed on the base material is a so-called photosensitive resin layer and functions as a photoresist for pattern formation of the transparent electrode layer B. The resin (a) constituting the resin layer A has a carboxyl group in its molecular chain and is preferably alkali-soluble. Examples of the resin (a) include an acrylic copolymer, an epoxy carboxylate compound, a polyamic acid, or a siloxane polymer, and an acrylic copolymer or an epoxy carboxylate compound having a high visible light transmittance is preferable.
 カルボキシル基を有するアクリル系共重合体は、アクリル系モノマー及び不飽和カルボン酸等の不飽和酸を共重合成分として、共重合させることにより得られる。 An acrylic copolymer having a carboxyl group can be obtained by copolymerizing an acrylic monomer and an unsaturated acid such as an unsaturated carboxylic acid as a copolymerization component.
 アクリル系モノマーとしては、例えば、アクリル酸(以下、「AA」と称すことがある。)、メチルアクリレート、エチルアクリレート(以下、「EA」と称すことがある。)、2-エチルヘキシルアクリレート、n-ブチルアクリレート(以下、「BA」と称すことがある。)、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物若しくはクレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー又はγ-アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられるが、樹脂層Aの可視光透過性を高めるため、脂肪鎖又は脂環式構造を有するアクリル系モノマーが好ましい。 Examples of the acrylic monomer include acrylic acid (hereinafter sometimes referred to as “AA”), methyl acrylate, ethyl acrylate (hereinafter sometimes referred to as “EA”), 2-ethylhexyl acrylate, n- Butyl acrylate (hereinafter sometimes referred to as “BA”), iso-butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl Acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodecyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glyco Acrylate, methoxydiethylene glycol acrylate, octafluoropentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, trifluoroethyl acrylate, aminoethyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 1-naphthyl acrylate, 2-naphthyl acrylate, thiophenol acrylate, benzyl Mercaptan acrylate, allylated cyclohexyl diacrylate, methoxylated cyclohexyl diacrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol Jiacri , Neopentyl glycol diacrylate, propylene glycol diacrylate, polypropylene glycol diacrylate, triglycerol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, Acrylamide, N-methoxymethyl acrylamide, N-ethoxymethyl acrylamide, Nn-butoxymethyl acrylamide, N-isobutoxymethyl acrylamide, acrylic of ethylene glycol diglycidyl ether having a hydroxyl group in which an epoxy group is opened with an unsaturated acid Acid adduct, acrylic acid adduct of diethylene glycol diglycidyl ether, neopen Epoxy such as acrylic acid adduct of chilled glycol diglycidyl ether, acrylic acid adduct of glycerin diglycidyl ether, acrylic acid adduct of bisphenol A diglycidyl ether, acrylic acid adduct of bisphenol F, or acrylic acid adduct of cresol novolac An acrylate monomer or γ-acryloxypropyltrimethoxysilane, or a compound in which an acryl group thereof is substituted with a methacryl group may be mentioned. In order to improve the visible light transmittance of the resin layer A, an aliphatic chain or an alicyclic structure is used. An acrylic monomer having
 不飽和酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。共重合成分として用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。 Examples of the unsaturated acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof. The acid value of the resulting acrylic copolymer can be adjusted by the amount of the unsaturated acid used as the copolymer component.
 エポキシカルボキシレート化合物とは、エポキシ化合物と、不飽和二重結合を有するカルボキシル化合物と、を出発原料として合成することができる化合物をいう。 The epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.
 出発原料となり得るエポキシ化合物としては、例えば、グリシジルエーテル類、脂環式エポキシ樹脂、グリシジルエステル類、グリシジルアミン類又はエポキシ樹脂が挙げられる。より具体的には、例えば、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート又はtert-ブチルグリシジルアミンが挙げられる。 Examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, and epoxy resins. More specifically, for example, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether Bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, biphenol diglycidyl ether, tetramethylbiphenol glycidyl ether, trimethylolpropane triglycidyl ether 3 ', 4'-epoxy Hexyl-3,4-epoxycyclohexane carboxylate or tert- butyl glycidyl amines.
 出発原料となり得る不飽和二重結合を有するカルボキシル化合物としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸又はα-シアノ桂皮酸が挙げられる。 Examples of the carboxyl compound having an unsaturated double bond that can be used as a starting material include (meth) acrylic acid, crotonic acid, cinnamic acid, and α-cyanocinnamic acid.
 エポキシカルボキシレート化合物と多塩基酸無水物とを反応させて、エポキシカルボキシレート化合物の酸価を調整しても構わない。多塩基酸無水物としては、例えば、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3-メチルテトラヒドロ無水フタル酸、4-メチルーヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が挙げられる。 The acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride. Examples of the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
 上記の多塩基酸無水物により酸価を調整したエポキシカルボキシレート化合物が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、エポキシカルボキシレート化合物が有する反応性の不飽和二重結合の量を調整しても構わない。 An epoxy carboxylate compound is obtained by reacting a carboxyl group of an epoxy carboxylate compound whose acid value is adjusted with the above polybasic acid anhydride and a compound having an unsaturated double bond such as glycidyl (meth) acrylate. You may adjust the quantity of the reactive unsaturated double bond which has.
 エポキシカルボキシレート化合物が有するヒドロキシ基と、ジイソシアネート化合物とを反応させることにより、ウレタン化をしても構わない。ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリデンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、アリルシアンジイソシアネート又はノルボルナンジイソシアネートが挙げられる。 Urethane may be formed by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound. Examples of the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
 樹脂(a)の酸価は、樹脂層Aがアルカリ可溶性のフォトレジストとして機能することが好ましいため、50~250mgKOH/gであることが好ましく、パターン加工性をより高めるため、60~150mgKOH/gがより好ましい。なお樹脂(a)の酸価は、JIS K 0070(1992)に準拠して測定することができる。 The acid value of the resin (a) is preferably 50 to 250 mgKOH / g since the resin layer A preferably functions as an alkali-soluble photoresist, and 60 to 150 mgKOH / g in order to further improve pattern processability. Is more preferable. The acid value of the resin (a) can be measured according to JIS K 0070 (1992).
 樹脂層Aの可視光透過率は、本発明により製造される積層部材をタッチパネルの構成要素とする場合には、80%以上であることが好ましい。 The visible light transmittance of the resin layer A is preferably 80% or more when the laminated member manufactured according to the present invention is a constituent element of the touch panel.
 樹脂層Aの上に積層されている透明電極層Bは、全面的に平坦な層ではなく、樹脂層Aのフォトレジストとしての機能を利用してパターン加工がされた、任意形状のパターンである。すなわち、透明電極層は樹脂層Aを完全に覆い隠しているのではなく、透明電極層Bのパターンが形成されていない部位においては、樹脂層Aが露出した状態となっている。 The transparent electrode layer B laminated on the resin layer A is not an entirely flat layer, but is an arbitrarily shaped pattern that is patterned using the function of the resin layer A as a photoresist. . That is, the transparent electrode layer does not completely cover the resin layer A, but the resin layer A is exposed at a portion where the pattern of the transparent electrode layer B is not formed.
 透明電極層Bは、導電成分のみからなるか、又は、導電成分を含有することが好ましい。透明電極層Bを構成する導電成分としては、例えば、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム若しくはタングステン又はこれら金属の酸化物あるいはカーボンナノチューブが挙げられる。より具体的には、例えば、インジウムスズ酸化物(以下、「ITO」と称すことがある。)、インジウム亜鉛酸化物、酸化インジウム-酸化亜鉛複合酸化物、アルミニウム亜鉛酸化物、ガリウム亜鉛酸化物、フッ素亜鉛酸化物、フッ素インジウム酸化物、アンチモンスズ酸化物又はフッ素スズ酸化物が挙げられる。中でも、導電性及び可視光透過性が高く、かつ価格面でも有利な、ITO又は繊維状の銀(以下、「銀繊維」と称すことがある。)が好ましく、後述する導電層Cとの接続信頼性が高い、銀繊維がより好ましい。 The transparent electrode layer B is preferably composed of only a conductive component or contains a conductive component. Examples of the conductive component constituting the transparent electrode layer B include indium, tin, zinc, gallium, antimony, titanium, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, oxides of these metals, or carbon nanotubes. Is mentioned. More specifically, for example, indium tin oxide (hereinafter sometimes referred to as “ITO”), indium zinc oxide, indium oxide-zinc oxide composite oxide, aluminum zinc oxide, gallium zinc oxide, Fluorine zinc oxide, fluorine indium oxide, antimony tin oxide, or fluorine tin oxide can be used. Among them, ITO or fibrous silver (hereinafter sometimes referred to as “silver fiber”), which has high conductivity and visible light transmittance and is advantageous in terms of price, is preferable, and is connected to the conductive layer C described later. Silver fiber is more preferable because of its high reliability.
 パターン加工をする前の、透明電極層の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法又はコーティング法が挙げられる。 Examples of the method for forming the transparent electrode layer before pattern processing include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
 透明電極層Bの厚さは、良好な導電性及び可視光透過性を両立させるため、0.01~1.0μmが好ましい。透明電極層Bの厚みが0.01μm以上であると、抵抗値のバラツキを抑制することができる。一方で、透明電極層Bの厚みが1.0μm以下であると、可視光透過率を高くすることができる。なお透明電極層Bの可視光透過率は、樹脂層Aと同様の理由から、80%以上であることが好ましい。 The thickness of the transparent electrode layer B is preferably 0.01 to 1.0 μm in order to achieve both good conductivity and visible light transmittance. When the thickness of the transparent electrode layer B is 0.01 μm or more, variation in resistance value can be suppressed. On the other hand, if the thickness of the transparent electrode layer B is 1.0 μm or less, the visible light transmittance can be increased. The visible light transmittance of the transparent electrode layer B is preferably 80% or more for the same reason as the resin layer A.
 樹脂層A及び透明電極層Bに接触している導電層Cは、導電性粒子、及び、樹脂(c)を含有する。導電層Cは、全面的に平坦な層ではなく、任意形状のパターンであっても構わない。この場合、導電層Cは樹脂層A及び透明電極層Bを完全に覆い隠しているのではなく、導電層Cのパターンが形成されていない部位においては、樹脂層A及び/又は透明電極層Bが露出した状態となっている。 The conductive layer C in contact with the resin layer A and the transparent electrode layer B contains conductive particles and a resin (c). The conductive layer C is not an entirely flat layer, and may be a pattern having an arbitrary shape. In this case, the conductive layer C does not completely cover and hide the resin layer A and the transparent electrode layer B, and the resin layer A and / or the transparent electrode layer B is not formed in the portion where the pattern of the conductive layer C is not formed. Is exposed.
 導電層Cが含有する導電性粒子としては、銀、金、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン若しくはインジウム又はこれら金属の合金が挙げられるが、導電性高い銀、金又は銅が好ましく、安定性が高くかつ価格面でも有利な、銀がより好ましい。 Examples of the conductive particles contained in the conductive layer C include silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, and alloys of these metals. Silver, gold or copper is preferred, and silver is more preferred because of its high stability and advantageous price.
 導電性粒子の形状としては、長軸長を短軸長で除した値であるアスペクト比が、1.0~3.0であることが好ましく、1.0~2.0であることがより好ましい。導電性粒子のアスペクト比が1.0以上であると、導電性粒子同士の接触確率が、より高まることになる。一方で、導電性粒子のアスペクト比が2.0以下であると、フォトリソグラフィー法で導電層Cのパターンを形成する場合において露光光が遮蔽されにくく、現像マージンが広くなる。導電性粒子のアスペクト比は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの長軸長及び短軸長を測定し、両者の平均値からアスペクト比を求めることで決定することができる。 As the shape of the conductive particles, the aspect ratio, which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. preferable. When the aspect ratio of the conductive particles is 1.0 or more, the contact probability between the conductive particles is further increased. On the other hand, when the aspect ratio of the conductive particles is 2.0 or less, when the pattern of the conductive layer C is formed by the photolithography method, the exposure light is hardly shielded, and the development margin is widened. The aspect ratio of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and randomly selecting primary particles of 100 conductive particles. It can be determined by measuring the major axis length and minor axis length and determining the aspect ratio from the average value of both.
 導電性粒子の粒径は、0.05~2.0μmが好ましく、0.1~1.5μmがより好ましい。導電性粒子の粒径が0.05μm以上であると、粒子間の相互作用が弱く、導電性粒子の分散状態を保ち易い。一方で、導電性粒子の粒径が2.0μm以下であると、形成した導電層Cのパターンのエッジをシャープにすることができる。導電層Cが含有する導電性粒子の粒径は、採取した導電層Cをテトラヒドロフラン(以下、「THF」と称すことがある。)に溶解し、沈降した導電性粒子を回収し、ボックスオーブンを用いて70℃で10分間乾燥をしたものについて、電子顕微鏡で観察し、無作為に20個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、それらの平均値を求めることで算出することができる。 The particle size of the conductive particles is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.5 μm. When the particle size of the conductive particles is 0.05 μm or more, the interaction between the particles is weak, and the dispersed state of the conductive particles can be easily maintained. On the other hand, when the particle size of the conductive particles is 2.0 μm or less, the edge of the pattern of the formed conductive layer C can be sharpened. The particle size of the conductive particles contained in the conductive layer C is determined by dissolving the collected conductive layer C in tetrahydrofuran (hereinafter sometimes referred to as “THF”), collecting the precipitated conductive particles, What was used and dried at 70 ° C. for 10 minutes was observed with an electron microscope, primary particles of 20 conductive particles were randomly selected, the maximum width of each was measured, and an average value thereof was obtained. Can be calculated.
 導電層Cが含有する導電性粒子に占める粒径0.3~2.0μmの粒子の割合は、フォトリソグラフィー法で導電層Cのパターンを形成する場合において樹脂層Aに取り込まれた導電性粒子の洗い流しが容易となるため、80%以上であることが好ましく、90%以上であることがより好ましい。 The proportion of particles having a particle size of 0.3 to 2.0 μm in the conductive particles contained in the conductive layer C is determined by the conductive particles taken into the resin layer A when the pattern of the conductive layer C is formed by photolithography. Since it is easy to wash away, it is preferably 80% or more, more preferably 90% or more.
 導電層Cが含有する導電性粒子に占める粒径0.3~2.0μmの粒子の割合は、電子顕微鏡で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、最大幅が0.3~2.0μmの範囲にあった一次粒子の割合から決定することができる。 The proportion of particles with a particle size of 0.3 to 2.0 μm in the conductive particles contained in the conductive layer C is determined by observing the conductive particles with an electron microscope and randomly selecting the primary particles of 100 conductive particles. Then, the maximum width of each can be measured, and the maximum width can be determined from the proportion of primary particles in the range of 0.3 to 2.0 μm.
 導電層Cが含有する導電性粒子の割合は、60~95質量%が好ましい。導電性粒子の割合が60質量%以上であると、導電性粒子同士の接触確率が高まり、得られる導電層Cの抵抗値を安定化することができる。一方で、導電性粒子の割合が95質量%以下であると、本発明の積層部材を屈曲させた場合の導電層Cの導電性を、より安定化できる。 The ratio of the conductive particles contained in the conductive layer C is preferably 60 to 95% by mass. When the proportion of the conductive particles is 60% by mass or more, the contact probability between the conductive particles is increased, and the resistance value of the conductive layer C obtained can be stabilized. On the other hand, when the proportion of the conductive particles is 95% by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
 導電層Cが含有する樹脂(c)としては、樹脂(a)同様、アクリル系共重合体又はエポキシカルボキシレート化合物が挙げられるが、得られる導電層Cの密着性を高めるため、エポキシカルボキシレート化合物が好ましい。 Examples of the resin (c) contained in the conductive layer C include an acrylic copolymer or an epoxy carboxylate compound as in the resin (a), but an epoxy carboxylate compound is used to increase the adhesion of the obtained conductive layer C. Is preferred.
 導電層Cは、光重合開始剤を含有しても構わない。導電層Cが重合開始剤を含有すると、フォトリソグラフィー法により導電層Cのパターンを形成することができる。光重合開始剤としては、例えば、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノンー1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、又は、メチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられるが、光感度の高い、オキシムエステル系化合物が好ましい。 The conductive layer C may contain a photopolymerization initiator. When the conductive layer C contains a polymerization initiator, the pattern of the conductive layer C can be formed by a photolithography method. Examples of the photopolymerization initiator include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) Benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4′-methyldiphenyl Ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, Benzyl, benzyldimethyl ketal, benzyl-β-methoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzosuberone , Methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis (p-azidobenzylidene) cyclohexanone, 6-bis (p-a Dobenzylidene) -4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2- (O-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O-ethoxycarbonyl) oxime, 1-phenyl- Propanedion-2- (O-benzoyl) oxime, 1,3-diphenyl-propanetrione-2- (O-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (O-benzoyl) oxime , Michler's ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, 4,4′-azobisisobutyronitrile , Diphenyl disulfide, benzuchi A photoreductive dye such as sol disulfide, triphenylphosphine, camphorquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, carbon tetrabromide, tribromophenylsulfone, benzoin peroxide, eosin, or methylene blue, and ascorbic acid or A combination with a reducing agent such as triethanolamine can be mentioned, and an oxime ester compound having high photosensitivity is preferable.
 導電層Cのパターンをフォトリソグラフィー法で形成する場合の光重合開始剤の添加量は、樹脂(c)100質量部に対して、0.05~30質量部が好ましい。光重合開始剤の添加量が0.05質量部以上であると、露光部の硬化密度が増加して、現像後の残膜率を高くすることができる。一方で、光重合開始剤の添加量が30質量部以下であると、光重合開始剤による過剰な光吸収が抑制される。その結果、得られる導電層Cのパターンの断面形状が矩形となり、樹脂層Aとの密着性低下が抑制される。 When the pattern of the conductive layer C is formed by a photolithography method, the addition amount of the photopolymerization initiator is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the resin (c). When the addition amount of the photopolymerization initiator is 0.05 parts by mass or more, the cured density of the exposed part increases, and the remaining film ratio after development can be increased. On the other hand, when the addition amount of the photopolymerization initiator is 30 parts by mass or less, excessive light absorption by the photopolymerization initiator is suppressed. As a result, the cross-sectional shape of the pattern of the conductive layer C to be obtained is rectangular, and a decrease in adhesion with the resin layer A is suppressed.
 導電層Cは光重合開始剤と共に、増感剤を含有しても構わない。 The conductive layer C may contain a sensitizer together with the photopolymerization initiator.
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール又は1-フェニル-5-エトキシカルボニルチオテトラゾールが挙げられる。 Examples of the sensitizer include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethyl) Aminobenzal) acetone, 1,3-carbonylbis (4-diethylaminobenzal) acetone, 3,3-carbonylbis (7-diethylaminocoumarin), N-phenyl-N-ethylethanolamine, N-phenylethanolamine, N- Examples include tolyldiethanolamine, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 3-phenyl-5-benzoylthiotetrazole or 1-phenyl-5-ethoxycarbonylthiotetrazole.
 増感剤の添加量は、樹脂(c)100質量部に対して0.05~10質量部が好ましい。増感剤の添加量が0.05質量部以上であると、光感度が向上する。一方で、増感剤の添加量が10質量部以下であると、導電層Cのパターンをフォトリソグラフィー法で形成する場合における、塗布膜上部での、過剰な光吸収が抑制される。その結果、形成される導電層Cのパターンの断面形状が矩形となり、樹脂層Aとの密着性低下が抑制される。 The addition amount of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the resin (c). Photosensitivity improves that the addition amount of a sensitizer is 0.05 mass part or more. On the other hand, when the addition amount of the sensitizer is 10 parts by mass or less, excessive light absorption at the upper part of the coating film when the pattern of the conductive layer C is formed by a photolithography method is suppressed. As a result, the cross-sectional shape of the pattern of the conductive layer C to be formed is rectangular, and the adhesiveness with the resin layer A is prevented from being lowered.
 導電層Cは、ウレタン結合を有する化合物を含有しても構わない。導電層Cがウレタン結合を有する化合物を含有することで、導電層が柔軟性のあるものとなり、その結果、積層部材全体に柔軟性を付与することができる。導電層Cにウレタン結合を有する化合物を含有させる方法としては、例えば、導電層Cを形成するための組成物に、ウレタン結合を有する化合物を添加する方法が挙げられる。ウレタン結合を有する化合物としては、例えば、ウレタンモノマー又はポリウレタンが挙げられる。 The conductive layer C may contain a compound having a urethane bond. When the conductive layer C contains a compound having a urethane bond, the conductive layer becomes flexible, and as a result, flexibility can be imparted to the entire laminated member. Examples of the method of adding a compound having a urethane bond to the conductive layer C include a method of adding a compound having a urethane bond to the composition for forming the conductive layer C. As a compound which has a urethane bond, a urethane monomer or a polyurethane is mentioned, for example.
 導電層Cを形成するための組成物における、ウレタン結合を有する化合物の添加量は、樹脂(c)100質量部に対して0.05~100質量部が好ましい。ウレタン結合を有する化合物の添加量が0.05質量部以上であると、得られる導電層Cの柔軟性が十分に高くなる。一方で、ウレタン結合を有する化合物の添加量が100質量部以下であると、本発明の積層部材を屈曲させた場合の導電層Cの導電性を、より安定化できる。 The amount of the compound having a urethane bond in the composition for forming the conductive layer C is preferably 0.05 to 100 parts by mass with respect to 100 parts by mass of the resin (c). When the addition amount of the compound having a urethane bond is 0.05 parts by mass or more, the flexibility of the obtained conductive layer C is sufficiently high. On the other hand, if the amount of the compound having a urethane bond is 100 parts by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
 導電層Cは、シクロヘキサン骨格を有する化合物を含有しても構わない。導電層Cがシクロヘキサン骨格を有する化合物を含有することで、導電層が柔軟性のあるものとなり、その結果、積層部材全体に柔軟性を付与することができる。導電層Cにシクロヘキサン骨格を有する化合物を含有させる方法としては、例えば、導電層Cを形成するための組成物に、シクロヘキサン骨格を有する化合物を添加する方法が挙げられる。シクロヘキサン骨格を有する化合物としては、例えば、ジシクロヘキシルメタン4,4’-ジイソシアネート、トランス-4-メチルシクロヘキシルイソシアネート、タケネート600(1,3-ビス(イソシアナートメチル)シクロヘキサン;三井化学社製)、1,2-エポキシシクロヘキサン、1-ビニル-3,4-エポキシシクロヘキサン、リカレジンDME-100(1,4-シクロヘキサンジメタノールジグリシジルエーテル;新日本理化株式会社製)、リカレジンHBE-100(4,4’-イソプロピリデンジシクロヘキサノールと(クロロメチル)オキシランとのポリマー;新日本理化株式会社製)、ST-4000D(水添ビスフェノールAを主成分とするエポキシ樹脂;新日鐵化学株式会社製)、水添ビスフェノールAのPO付加物ジアクリレート、水添ビスフェノールAのEO付加物ジメタクリレート、水添ビスフェノールAのPO付加物ジメタクリレート、シクロヘキシルアクリレート又はシクロヘキシルメタクリレートが挙げられる。 The conductive layer C may contain a compound having a cyclohexane skeleton. When the conductive layer C contains a compound having a cyclohexane skeleton, the conductive layer becomes flexible, and as a result, flexibility can be imparted to the entire laminated member. Examples of the method for adding a compound having a cyclohexane skeleton to the conductive layer C include a method of adding a compound having a cyclohexane skeleton to the composition for forming the conductive layer C. Examples of the compound having a cyclohexane skeleton include dicyclohexylmethane 4,4′-diisocyanate, trans-4-methylcyclohexyl isocyanate, takenate 600 (1,3-bis (isocyanatomethyl) cyclohexane; manufactured by Mitsui Chemicals), 1, 2-epoxycyclohexane, 1-vinyl-3,4-epoxycyclohexane, licarresin DME-100 (1,4-cyclohexanedimethanol diglycidyl ether; manufactured by Shin Nippon Rika Co., Ltd.), licarresin HBE-100 (4,4'- Polymer of isopropylidene dicyclohexanol and (chloromethyl) oxirane; manufactured by Nippon Nippon Chemical Co., Ltd.), ST-4000D (epoxy resin based on hydrogenated bisphenol A; manufactured by Nippon Steel Chemical Co., Ltd.), hydrogenated Bisphenol A PO adduct diacrylate acrylate, EO-adduct dimethacrylate of hydrogenated bisphenol A, PO adduct dimethacrylate of hydrogenated bisphenol A, cyclohexyl acrylate or cyclohexyl methacrylate.
 導電層Cを形成するための組成物における、シクロヘキサン骨格を有する化合物の添加量は、樹脂(c)100質量部に対して0.05~100質量部が好ましい。シクロヘキサン骨格を有する化合物の添加量が0.05質量部以上であると、得られる導電層Cの柔軟性が十分に高くなる。一方で、シクロヘキサン骨格を有する化合物の添加量が100質量部以下であると、本発明の積層部材を屈曲させた場合の導電層Cの導電性を、より安定化できる。 The amount of the compound having a cyclohexane skeleton in the composition for forming the conductive layer C is preferably 0.05 to 100 parts by mass with respect to 100 parts by mass of the resin (c). When the amount of the compound having a cyclohexane skeleton is 0.05 parts by mass or more, the flexibility of the obtained conductive layer C is sufficiently high. On the other hand, when the amount of the compound having a cyclohexane skeleton is 100 parts by mass or less, the conductivity of the conductive layer C when the laminated member of the present invention is bent can be further stabilized.
 導電層Cはエポキシ樹脂の硬化物を含有しても構わない。ここでエポキシ樹脂の硬化物とは、エポキシ樹脂を光又は熱により反応させたものをいう。エポキシ樹脂としては、例えば、エチレングリコール変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂又は複素環式エポキシ樹脂が挙げられるが、得られる導電層Cの樹脂層Aへの密着性を高めるため、ビスフェノールA型エポキシ樹脂又は水添ビスフェノールA型エポキシ樹脂が好ましく、導電層Cのパターンをフォトリソグラフィー法で形成する場合における露光光の透過性が高い、水添ビスフェノールA型エポキシ樹脂がより好ましい。 The conductive layer C may contain a cured product of an epoxy resin. Here, the cured epoxy resin refers to a product obtained by reacting an epoxy resin with light or heat. Examples of the epoxy resin include ethylene glycol-modified epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, glycidyl. An amine type epoxy resin, a glycidyl ether type epoxy resin or a heterocyclic epoxy resin can be mentioned. In order to improve the adhesion of the obtained conductive layer C to the resin layer A, a bisphenol A type epoxy resin or a hydrogenated bisphenol A type epoxy is used. Resin is preferable, and hydrogenated bisphenol A type epoxy resin having high exposure light transmittance when the pattern of the conductive layer C is formed by photolithography is more preferable.
 導電層Cを形成するための組成物における、エポキシ樹脂の添加量は、樹脂(c)100質量部に対して0.05~20質量部が好ましい。エポキシ樹脂の添加量が0.05質量部以上であると、得られる導電層Cと、樹脂層Aとの密着性を高めることができる。一方で、エポキシ樹脂の添加量が20質量部以下であると、露光膜Cの現像液に対する溶解性が良好となる。 The addition amount of the epoxy resin in the composition for forming the conductive layer C is preferably 0.05 to 20 parts by mass with respect to 100 parts by mass of the resin (c). The adhesiveness of the conductive layer C obtained and the resin layer A can be improved as the addition amount of an epoxy resin is 0.05 mass part or more. On the other hand, when the addition amount of the epoxy resin is 20 parts by mass or less, the solubility of the exposure film C in the developer is improved.
 導電層Cの厚みは2.0~8.0μmが好ましい。導電層Cの厚みが2.0μm以上であれば抵抗のバラツキを抑えることができる。一方で、導電層Cの厚みが8.0μm以下であれば柔軟性を高くすることができる。 The thickness of the conductive layer C is preferably 2.0 to 8.0 μm. If the thickness of the conductive layer C is 2.0 μm or more, variation in resistance can be suppressed. On the other hand, if the thickness of the conductive layer C is 8.0 μm or less, the flexibility can be increased.
 本発明の積層部材のイオンマイグレーション耐性をより向上させるため、樹脂層Aの酸価Sと、導電層Cの有機成分酸価Sとの差(S-Sの値)は、20~150mgKOH/gであることが好ましく、30~100mgKOH/gであることがより好ましく、40~90mgKOH/gであることがさらに好ましい。得られる導電層Cは、カルボキシル基を有する樹脂(c)に起因して吸湿性が高く、その影響で導電性粒子を起点とするイオンマイグレーション現象が起こりやすい。しかしながら、S-Sの値が20mgKOH/g以上であると、水分を樹脂層Aが優先的に吸湿するため、導電層Cの吸湿が抑制され、結果として積層部材のイオンマイグレーション耐性を向上させることができる。一方で、S-Sの値が150mgKOH/g以下であると、樹脂層Aと導電層Cとがそれぞれ含有する、樹脂(a)及び樹脂(c)のカルボキシル基同士の水素結合量を増やすことができ、樹脂層Aと導電層Cとの密着性を向上させることができる。 For ion migration resistance of the laminated member further improve the present invention, the difference between the acid value S A of the resin layer A, and an organic component acid value S C of the conductive layer C (the value of S A -S C) is 20 It is preferably ˜150 mgKOH / g, more preferably 30 to 100 mgKOH / g, and further preferably 40 to 90 mgKOH / g. The obtained conductive layer C is highly hygroscopic due to the resin (c) having a carboxyl group, and an ion migration phenomenon starting from the conductive particles easily occurs due to the influence. However, improved when the value of S A -S C is at 20 mgKOH / g or more, since the water resin layer A moisture absorption preferentially, the moisture absorption is suppressed conductive layer C, and ion migration resistance of resulting laminated member Can be made. On the other hand, when the value of S A -S C is less than 150 mgKOH / g, and the resin layer A and the conductive layer C containing respectively, a hydrogen bond amount between the carboxyl group of the resin (a) and the resin (c) The adhesion between the resin layer A and the conductive layer C can be improved.
 Sの値は、採取した1質量部の層Aを、100質量部のTHFに溶解し、該溶液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して、算出することができる。 The value of S A is the layer A of 1 part by mass collected, dissolved in THF and 100 parts by weight, and titrated with 0.1 mol / L potassium hydroxide solution and the solution of phenolphthalein solution as an indicator, is calculated can do.
 Sの値は、まず、採取した1質量部の導電層Cを、10質量部のTHFに溶解し、フィルター等で導電粒子を除去後、該溶液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して導電層Cの酸価を算出することができる。
なお組成物Cにエポキシ樹脂が含有されている場合、キュア工程でカルボキシル基と反応し、導電層Cの有機成分酸価を下げることができる。 本発明の積層部材は、マイグレーションの抑制を目的に、ベンゾトリアゾール系化合物またはイソボルニル骨格を有するOCA(Optical Clear Adhesive)層Dで被覆できる。
The value of S C, first, 0.1 mol conductive layer C of 1 part by mass collected, dissolved in THF and 10 parts by weight, after removing the conductive particles with a filter or the like, the solution using phenolphthalein solution as an indicator The acid value of the conductive layer C can be calculated by titration with a / L potassium hydroxide solution.
In addition, when the epoxy resin is contained in the composition C, it can react with a carboxyl group in a curing process, and the organic component acid value of the conductive layer C can be lowered. The laminated member of the present invention can be coated with an OCA (Optical Clear Adhesive) layer D having a benzotriazole-based compound or an isobornyl skeleton for the purpose of suppressing migration.
 ベンゾトリアゾール系化合物としては1H-ベンゾトリアゾール(1,2,3-ベンゾトリアゾール)、4-メチルベンゾトリアゾール、5-メチルベンゾトリアゾール、ベンゾトリアゾール-1-メチルアミン、4-メチルベンゾトリアゾール-1-メチルアミン、5-メチルベンゾトリアゾール-1-メチルアミン、N-メチルベンゾトリアゾール-1-メチルアミン、N-エチルベンゾトリアゾール-1-メチルアミン、N,N-ジメチルベンゾトリアゾール-1-メチルアミン、N,N-ジエチルベンゾトリアゾール-1-メチルアミン、N,N-ジプロピルベンゾトリアゾール-1-メチルアミン、N,N-ジブチルベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシルベンゾトリアゾール-1-メチルアミン、N,N-ジオクチルベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-5-ベンゾトリアゾール-1-メチルアミンなどが挙げられる。 Examples of benzotriazole compounds include 1H-benzotriazole (1,2,3-benzotriazole), 4-methylbenzotriazole, 5-methylbenzotriazole, benzotriazole-1-methylamine, 4-methylbenzotriazole-1-methyl Amine, 5-methylbenzotriazole-1-methylamine, N-methylbenzotriazole-1-methylamine, N-ethylbenzotriazole-1-methylamine, N, N-dimethylbenzotriazole-1-methylamine, N, N-diethylbenzotriazole-1-methylamine, N, N-dipropylbenzotriazole-1-methylamine, N, N-dibutylbenzotriazole-1-methylamine, N, N-dihexylbenzotriazole-1-methylamine , N, N Dioctylbenzotriazole-1-methylamine, N, N-dimethyl-4-benzotriazole-1-methylamine, N, N-dimethyl-5-benzotriazole-1-methylamine, N, N-diethyl-4-benzo Triazole-1-methylamine, N, N-diethyl-5-benzotriazole-1-methylamine, N, N-dipropyl-4-benzotriazole-1-methylamine, N, N-dipropyl-5-benzotriazole- 1-methylamine, N, N-dibutyl-4-benzotriazole-1-methylamine, N, N-dibutyl-5-benzotriazole-1-methylamine, N, N-dihexyl-4-benzotriazole-1- Examples include methylamine, N, N-dihexyl-5-benzotriazole-1-methylamine It is.
 イソボルニル骨格を有する化合物としてはイソボルニルアセテート、イソボルニルアクリレート、イソボルニルメタクリレート、イソボルニルシクロヘキサノールなどが挙げられ、これら化合物をアクリル共重合体の構成成分の一つとして含有してもよい。 Examples of the compound having an isobornyl skeleton include isobornyl acetate, isobornyl acrylate, isobornyl methacrylate, isobornyl cyclohexanol, etc., and these compounds may be contained as one of the components of the acrylic copolymer. Good.
 OCA層Dを形成するためのOCA材は上記化合物を含有する粘着剤を離型処理された基材の上に塗工し、乾燥することで得られる。得られたOCA材を熱ラミネーター等で熱圧着することでOCA層Dを形成することができる。 The OCA material for forming the OCA layer D is obtained by applying a pressure-sensitive adhesive containing the above compound onto a release-treated substrate and drying it. The OCA layer D can be formed by thermocompression bonding of the obtained OCA material with a thermal laminator or the like.
 本発明のタッチパネルは、本発明により製造された積層部材を具備する。より具体的には、本発明の積層部材は、タッチパネル用の部材として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、静電容量式タッチパネルは特に微細な配線が求められることから、本発明の一態様である、フォトリソグラフィー法を用いて導電層Cのパターンを形成した積層部材がより好適に用いられる。そのような導電層Cのパターンをその周囲配線として備え、かつ該周囲配線が50μmピッチ(配線幅+配線間幅)以下であるタッチパネルにおいては、額縁幅を細くでき、ビューエリアを広くすることができる。 The touch panel of the present invention includes the laminated member manufactured according to the present invention. More specifically, the laminated member of the present invention is suitably used as a member for a touch panel. As a touch panel system, for example, a resistive film type, an optical type, an electromagnetic induction type, or a capacitance type can be mentioned. However, since a capacitance type touch panel requires particularly fine wiring, it is one embodiment of the present invention. A laminated member in which a pattern of the conductive layer C is formed using a photolithography method is more preferably used. In a touch panel provided with such a pattern of the conductive layer C as its peripheral wiring and the peripheral wiring having a pitch of 50 μm or less (wiring width + inter-wiring width), the frame width can be reduced and the view area can be widened. it can.
 以下に本発明を実施例及び比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the embodiments of the present invention are not limited thereto.
 各実施例及び比較例で用いた材料は、以下のとおりである。 The materials used in each example and comparative example are as follows.
 [樹脂(a)]
 (合成例1)
 共重合比率(質量基準):EA/メタクリル酸2-エチルヘキシル(以下、「2-EHMA」と称すことがある。)/BA/N-メチロールアクリルアミド(以下、「MAA」と称すことがある。)/AA=20/40/20/5/15
窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」と称すことがある。)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのBA、5gのMAA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-1)を得た。得られた樹脂(a-1)の酸価は103mgKOH/gであった。
[Resin (a)]
(Synthesis Example 1)
Copolymerization ratio (mass basis): EA / 2-ethylhexyl methacrylate (hereinafter sometimes referred to as “2-EHMA”) / BA / N-methylolacrylamide (hereinafter sometimes referred to as “MAA”) / AA = 20/40/20/5/15
150 g of diethylene glycol monoethyl ether acetate (hereinafter sometimes referred to as “DMEA”) was charged into a reaction vessel in a nitrogen atmosphere, and the temperature was raised to 80 ° C. using an oil bath. To this, a mixture of 20 g EA, 40 g 2-EHMA, 20 g BA, 5 g MAA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added. It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a resin (a-1). The acid value of the obtained resin (a-1) was 103 mgKOH / g.
 (合成例2)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=20/20/20/15/25
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、20gの2-EHMA、20gのBA、5gのMAA、25gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-2)を得た。得られた樹脂(a-2)の酸価は153mgKOH/gであった。
(Synthesis Example 2)
Copolymerization ratio (mass basis): EA / 2-EHMA / BA / MAA / AA = 20/20/20/15/25
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this, a mixture of 20 g EA, 20 g 2-EHMA, 20 g BA, 5 g MAA, 25 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added. It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain a resin (a-2). The acid value of the obtained resin (a-2) was 153 mgKOH / g.
 (合成例3)
 共重合比率(質量基準):EA/2-EHMA/スチレン(以下、「St」と称すことがある。)/グリシジルメタクリレート(以下、「GMA」と称すことがある。)/AA=30/30/25/5/10
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、30gの2-EHMA、25gのSt、10gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-3)を得た。得られた樹脂(a-3)の酸価は83mgKOH/gであった。
[樹脂(c)]
 (合成例4)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=30/20/20/25/5
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、20gの2-EHMA、20gのBA、25gのMAA、5gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(c-1)を得た。得られた樹脂(c-1)の酸価は29mgKOH/gであった。
(Synthesis Example 3)
Copolymerization ratio (mass basis): EA / 2-EHMA / styrene (hereinafter sometimes referred to as “St”) / glycidyl methacrylate (hereinafter sometimes referred to as “GMA”) / AA = 30/30 / 25/5/10
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 30 g EA, 30 g 2-EHMA, 25 g St, 10 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA dropwise over 1 hour. did. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a resin (a-3). The acid value of the obtained resin (a-3) was 83 mgKOH / g.
[Resin (c)]
(Synthesis Example 4)
Copolymerization ratio (mass basis): EA / 2-EHMA / BA / MAA / AA = 30/20/20/25/5
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this, a mixture consisting of 30 g EA, 20 g 2-EHMA, 20 g BA, 25 g MAA, 5 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA is 1 It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a resin (c-1). The acid value of the obtained resin (c-1) was 29 mgKOH / g.
 (合成例5)
 共重合比率(質量基準):EA/2-EHMA/スチレン/GMA/AA=20/40/25/5/10
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、25gのSt、10gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(c-2)を得た。得られた樹脂(c-2)の酸価は73mgKOH/gであった。
(Synthesis Example 5)
Copolymerization ratio (mass basis): EA / 2-EHMA / styrene / GMA / AA = 20/40/25/5/10
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 20 g EA, 40 g 2-EHMA, 25 g St, 10 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA dropwise over 1 hour. did. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The reaction solution thus obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain a resin (c-2). The acid value of the obtained resin (c-2) was 73 mgKOH / g.
 (合成例6)
 窒素雰囲気の反応溶液中に、492.1gのカルビトールアセテート、860.0gのEOCN-103S(日本化薬(株)製;クレゾールノボラック型エポキシ樹脂;エポキシ当量:215.0g/当量)、288.3gのAA、4.92gの2,6-ジ-tert-ブチル-p-クレゾール及び4.92gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mg・KOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。引き続き、この反応液に169.8gのカルビトールアセテート及び201.6gのテトラヒドロ無水フタル酸を仕込み、95℃で4時間反応させ、樹脂(c-3)を得た。得られた樹脂(c-3)の酸価は104mgKOH/gであった。
(Synthesis Example 6)
492.1 g carbitol acetate, 860.0 g EOCN-103S (manufactured by Nippon Kayaku Co., Ltd .; cresol novolac type epoxy resin; epoxy equivalent: 215.0 g / equivalent), 288. 3 g of AA, 4.92 g of 2,6-di-tert-butyl-p-cresol and 4.92 g of triphenylphosphine were charged, and the acid value of the reaction solution at a temperature of 98 ° C. was 0.5 mg · KOH / g. It was made to react until it became the following, and the epoxy carboxylate compound was obtained. Subsequently, 169.8 g of carbitol acetate and 201.6 g of tetrahydrophthalic anhydride were added to this reaction solution and reacted at 95 ° C. for 4 hours to obtain a resin (c-3). The acid value of the obtained resin (c-3) was 104 mgKOH / g.
 (合成例7)
 窒素雰囲気の反応容器中に、368.0gのRE-310S(日本化薬(株)製;エポキシ当量:184.0g/当量)、141.2gのAA、1.02gのハイドロキノンモノメチルエーテル及び1.53gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mgKOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。その後、この反応溶液に755.5gのカルビトールアセテート、268.3gの2,2-ビス(ジメチロール)-プロピオン酸、1.08gの2-メチルハイドロキノン及び140.3gのスピログリコールを加え、45℃に昇温した。この溶液に485.2gのトリメチルヘキサメチレンジイソシアネートを、反応温度が65℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に上昇させ、赤外吸収スペクトル測定法により、2250cm-1付近の吸収がなくなるまで6時間反応させ、樹脂(c-4)を得た。得られた樹脂(c-4)の酸価は80.0mgKOH/gであった。
(Synthesis Example 7)
In a reaction vessel under a nitrogen atmosphere, 368.0 g of RE-310S (manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent: 184.0 g / equivalent), 141.2 g of AA, 1.02 g of hydroquinone monomethyl ether and 1. 53 g of triphenylphosphine was charged and reacted at a temperature of 98 ° C. until the acid value of the reaction solution became 0.5 mgKOH / g or less to obtain an epoxycarboxylate compound. Thereafter, 755.5 g of carbitol acetate, 268.3 g of 2,2-bis (dimethylol) -propionic acid, 1.08 g of 2-methylhydroquinone and 140.3 g of spiroglycol were added to the reaction solution at 45 ° C. The temperature was raised to. To this solution, 485.2 g of trimethylhexamethylene diisocyanate was gradually added dropwise so that the reaction temperature did not exceed 65 ° C. After completion of the dropping, the reaction temperature was raised to 80 ° C., and the mixture was reacted for 6 hours until absorption at around 2250 cm −1 disappeared by infrared absorption spectrum measurement method, to obtain a resin (c-4). The acid value of the obtained resin (c-4) was 80.0 mgKOH / g.
 [光重合開始剤]
・IRGACURE(登録商標)OXE-01(以下、「OXE-01」と称すことがある。);チバジャパン(株)製
・IRGACURE(登録商標)369(以下、「IC-369」と称すことがある。);チバジャパン(株)製
 [モノマー]
・ライトアクリレートMPD-A(以下、「MPD-A」と称すことがある。);共栄社化学(株)製
 [ウレタン結合を有する化合物]
・UA-160TM(共栄社化学(株)製)
 [シクロヘキサン骨格を有する化合物]
・jER(登録商標)YX-8000(以下、「YX-8000」と称すことがある。);三菱化学(株)製
 [透明電極材料]
・ITO(酸化インジウム97質量%、酸化スズ3質量%)
・銀繊維(線径5nm、線長5μm)
 [OCA(d)] (合成例8)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのEA、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
[Photopolymerization initiator]
IRGACURE (registered trademark) OXE-01 (hereinafter sometimes referred to as “OXE-01”); manufactured by Ciba Japan Co., Ltd. • IRGACURE (registered trademark) 369 (hereinafter referred to as “IC-369”) Yes); manufactured by Ciba Japan Co., Ltd. [Monomer]
Light acrylate MPD-A (hereinafter sometimes referred to as “MPD-A”); manufactured by Kyoeisha Chemical Co., Ltd. [Compound with urethane bond]
・ UA-160TM (manufactured by Kyoeisha Chemical Co., Ltd.)
[Compound having cyclohexane skeleton]
-JER (registered trademark) YX-8000 (hereinafter sometimes referred to as "YX-8000"); manufactured by Mitsubishi Chemical Corporation [transparent electrode material]
・ ITO (97% by mass of indium oxide, 3% by mass of tin oxide)
・ Silver fiber (wire diameter 5nm, wire length 5μm)
[OCA (d)] (Synthesis Example 8)
In a nitrogen atmosphere reaction vessel, 150 g of ethyl acetate was charged and heated to 80 ° C. using an oil bath. To this was added dropwise a mixture of 50.0 g EA, 10.0 g 2-hydroxyethyl acrylate, 0.8 g 2,2′-azobisisobutyronitrile and 10 g ethyl acetate over 1 hour. . After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction.
 次に上記アクリル共重合体溶液に1gの1,2,3-ベンゾトリアゾールを添加し、樹脂固形分が30%になるように酢酸エチルで希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-1)を得た。 Next, 1 g of 1,2,3-benzotriazole was added to the acrylic copolymer solution, diluted with ethyl acetate so that the resin solid content was 30%, and 1.2 g of Duranate P301-75E ( Asahi Kasei Co., Ltd. (with a solid content of 75%) was added onto a 50 μm PET film that had been release-treated on one side so that the thickness after drying would be 25 μm, and 75 ° C. for 5 minutes. The OCA (d-1) was obtained by drying.
 (合成例9)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのイソボルニルメタクリレート、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
(Synthesis Example 9)
In a nitrogen atmosphere reaction vessel, 150 g of ethyl acetate was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 50.0 g isobornyl methacrylate, 10.0 g 2-hydroxyethyl acrylate, 0.8 g 2,2′-azobisisobutyronitrile and 10 g ethyl acetate over 1 hour. And dripped. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction.
 次に上記アクリル共重合体溶液を酢酸エチルで樹脂固形分が30%になるように希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-2)を得た。 Next, the acrylic copolymer solution was diluted with ethyl acetate to a resin solid content of 30%, and 1.2 g of Duranate P301-75E (Asahi Kasei Co., Ltd .; solid content 75%) was added thereto. The product was coated on a 50 μm PET film having one surface released from the mold so that the thickness after drying was 25 μm, and dried at 75 ° C. for 5 minutes to obtain OCA (d-2).
 (合成例10)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのイソボルニルメタクリレート、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
(Synthesis Example 10)
In a nitrogen atmosphere reaction vessel, 150 g of ethyl acetate was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 50.0 g isobornyl methacrylate, 10.0 g 2-hydroxyethyl acrylate, 0.8 g 2,2′-azobisisobutyronitrile and 10 g ethyl acetate over 1 hour. And dripped. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction.
 次に上記アクリル共重合体溶液に1gの1,2,3-ベンゾトリアゾールを添加し、樹脂固形分が30%になるように酢酸エチルで希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-3)を得た。 Next, 1 g of 1,2,3-benzotriazole was added to the acrylic copolymer solution, diluted with ethyl acetate so that the resin solid content was 30%, and 1.2 g of Duranate P301-75E ( Asahi Kasei Co., Ltd. (with a solid content of 75%) was added onto a 50 μm PET film that had been release-treated on one side so that the thickness after drying would be 25 μm, and 75 ° C. for 5 minutes. OCA (d-3) was obtained by drying.
 (実施例1)
 <樹脂層Aの形成>
 基材として、厚さ30μmの二軸延伸ポリエチレンテレフタレートフィルムを用意した。基材の片面に、樹脂(a-1)、MPD-A及びIC-369が100:50:1の質量割合で混合されたものを塗布し、熱処理及び乾燥して、厚さが4μmの樹脂層A1を形成した。
(Example 1)
<Formation of resin layer A>
A biaxially stretched polyethylene terephthalate film having a thickness of 30 μm was prepared as a substrate. A resin (a-1), MPD-A and IC-369 mixed at a mass ratio of 100: 50: 1 is applied to one side of a substrate, heat treated and dried, and a resin having a thickness of 4 μm Layer A1 was formed.
 <透明電極層Bの形成>
 樹脂層Aの表面に、ITOの焼結体ターゲットを備えたスパッタ装置を用いて、ITOからなる厚さ20nmのITO薄膜を形成した。
<Formation of transparent electrode layer B>
An ITO thin film made of ITO and having a thickness of 20 nm was formed on the surface of the resin layer A using a sputtering apparatus equipped with an ITO sintered body target.
 <ITO薄膜のパターン加工>
 ITO薄膜にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量で樹脂層A1及びITO薄膜を露光し、さらにフォトマスクを介すことなく、200mJ/cmの露光量で樹脂層A1及びITO薄膜を全面露光した露光後、30℃の1質量%炭酸ナトリウム水溶液で30秒間スプレー現像し、樹脂層A1上にパターン加工された透明電極層B1を形成した。
<Pattern processing of ITO thin film>
A photomask is brought into close contact with the ITO thin film, the resin layer A1 and the ITO thin film are exposed with an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp, and further 200 mJ / cm 2 without passing through the photomask. The resin layer A1 and the ITO thin film were exposed on the entire surface with an exposure amount, and then subjected to spray development with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds to form a patterned transparent electrode layer B1 on the resin layer A1.
 <導電層Cを形成するための組成物の調製>
 100mLクリーンボトルに、10.0gの樹脂(c-1)及び5.0gのジエチレングリコールを入れ、自転-公転真空ミキサー“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)で混合して、15.0gの樹脂溶液(固形分66.7質量%)を得た。
<Preparation of composition for forming conductive layer C>
In a 100 mL clean bottle, put 10.0 g of resin (c-1) and 5.0 g of diethylene glycol, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) By mixing, 15.0 g of a resin solution (solid content: 66.7% by mass) was obtained.
 得られた15.0gの樹脂溶液に、56.7gの銀粒子を混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、71.7gの組成物C1を得た。 56.7 g of silver particles were mixed with 15.0 g of the obtained resin solution and kneaded using a three roller mill (EXAKT M-50; manufactured by EXAKT) to obtain 71.7 g of composition C1. It was.
 <導電層Cの形成>
 樹脂層A1及びパターン加工された透明電極層B1の表面に、組成物C1をスクリーン印刷機で導電層C1の膜厚が6μmになるように塗布し、140℃で60分間キュアを行い、積層部材1及び2をそれぞれ製造した。積層部材1の導電層C1のパターンはスクリーン印刷により形成をした。
<Formation of conductive layer C>
The composition C1 is applied to the surface of the resin layer A1 and the patterned transparent electrode layer B1 with a screen printer so that the film thickness of the conductive layer C1 is 6 μm, cured at 140 ° C. for 60 minutes, and laminated member 1 and 2 were produced respectively. The pattern of the conductive layer C1 of the laminated member 1 was formed by screen printing.
 積層部材1の樹脂層A1の酸価Sは98mgKOH/g、導電パターンC1の有機成分酸価Sは26mgKOH/gであり、S-Sの値は、72mgKOH/gであった。 Acid value S A of the resin layer A1 of a laminated member 1 98 mgKOH / g, the organic component acid value S C of the conductive pattern C1 is 26 mg KOH / g, the value of S A -S C was 72 mg KOH / g.
 樹脂層A1の酸価Sについては1質量部の樹脂層A1を採取し、100質量部のTHFに溶解し、該溶液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して算出した。また、導電パターンC1の有機成分酸価Sについては1質量部の導電層C1を採取し、10質量部のTHFに溶解し、該溶液を開孔2μmのポリプロピレンフィルターで濾過し、ろ液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して算出した。 なお、S、Sの値が樹脂層A1、導電層C1に含有される樹脂(a-1)、(c-1)の酸価よりも低くなった点についてはキュア工程でカルボキシル基の一部が脱水縮合等の化学反応により一部消失したものと思われる。 For the acid value S A of the resin layer A1, 1 part by mass of the resin layer A1 is sampled and dissolved in 100 parts by mass of THF. The solution is dissolved in 0.1 mol / L potassium hydroxide solution using a phenolphthalein solution as an indicator. Calculated by titration. As for the organic component acid value S C of the conductive pattern C1 collected 1 part by weight of the conductive layer C1, it is dissolved in THF and 10 parts by weight, the solution was filtered through a polypropylene filter apertures 2 [mu] m, the filtrate It was calculated by titrating with a 0.1 mol / L potassium hydroxide solution using a phenolphthalein solution as an indicator. Incidentally, S A, resin the value of S C is contained in the resin layer A1, conductive layer C1 (a-1), the carboxyl group in the curing step for the point that is lower than the acid value of the (c-1) It seems that a part has disappeared due to a chemical reaction such as dehydration condensation.
 <イオンマイグレーション耐性の評価>
 図2に示す積層部材2を、85℃、85%RHの高温高湿槽に投入し、端子部からDC5Vの電圧を印加して、急激に抵抗値が3桁低下する短絡時間を確認した。計10個の導電パターン形成部材1で同評価を繰り返し、それらの平均値を、イオンマイグレーション耐性の値とした。結果を表2に示す。
<Evaluation of ion migration resistance>
The laminated member 2 shown in FIG. 2 was put into a high-temperature and high-humidity tank of 85 ° C. and 85% RH, and a voltage of DC 5 V was applied from the terminal portion, and a short-circuit time in which the resistance value suddenly decreased by three digits was confirmed. The same evaluation was repeated with a total of ten conductive pattern forming members 1, and the average value thereof was taken as the value of ion migration resistance. The results are shown in Table 2.
 <屈曲性の評価>
 図3に示す積層部材3について、テスターを用いて抵抗値を測定した。その後、導電層Cが内側、外側、内側、外側と交互になるように積層部材を折り曲げて、図3に示す短辺Dと短辺Eとを接触させては元に戻す屈曲動作を100回繰り返してから、再度テスターを用いて抵抗値を測定し、抵抗値の変化率(%)を算出した。結果を表2に示す。
<Evaluation of flexibility>
About the laminated member 3 shown in FIG. 3, resistance value was measured using the tester. Thereafter, the laminated member is bent so that the conductive layer C alternates between the inner side, the outer side, the inner side, and the outer side, and the short side D and the short side E shown in FIG. After repeating, the resistance value was measured again using a tester, and the change rate (%) of the resistance value was calculated. The results are shown in Table 2.
 (実施例2~5)
 表1に示す積層部材を実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Examples 2 to 5)
The laminated member shown in Table 1 was produced by the same method as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
 (実施例6)
 実施例1と同様の方法で、基材上に樹脂層A及び透明電極層Bを形成し、ITO薄膜のパターン加工をした。
(Example 6)
In the same manner as in Example 1, the resin layer A and the transparent electrode layer B were formed on the substrate, and the ITO thin film was patterned.
 <導電層Cの形成>
 樹脂層A1及びパターン加工された透明電極層B1の表面に、組成物C1をスクリーン印刷機で乾燥膜の膜厚が5μmになるように塗布し、70℃で10分間熱風乾燥機で乾燥後、所定のフォトマスクを介して超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光し、0.2質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、図2に示す積層部材4、及び、図3に示す積層部材5をそれぞれ製造した。 積層部材4及び5について、実施例1と同様の評価を行った。結果を表2に示す。
<Formation of conductive layer C>
The composition C1 was applied to the surface of the resin layer A1 and the patterned transparent electrode layer B1 with a screen printer so that the thickness of the dry film was 5 μm, and dried at 70 ° C. for 10 minutes with a hot air dryer, After exposure at an exposure amount of 300 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp through a predetermined photomask, and spray-developing a 0.2% by mass aqueous sodium carbonate solution at a pressure of 0.1 MPa for 30 seconds, 140 Curing was performed at a temperature of 60 ° C. for 60 minutes to produce the laminated member 4 shown in FIG. 2 and the laminated member 5 shown in FIG. The laminated members 4 and 5 were evaluated in the same manner as in Example 1. The results are shown in Table 2.
 (実施例7~16)
 表1に示す積層部材を実施例6と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Examples 7 to 16)
The laminated member shown in Table 1 was produced by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
 (実施例17)
 実施例6と同様の方法で、基材上に樹脂層A及びパターン加工した透明電極層B、導電層Cを積層した積層部材を製造した。
<OCA層Dの形成>
 樹脂層A1及びパターン加工した透明電極層B1、導電層C1の表面にOCA(d-1)を80℃、圧着圧力0.5MPaの条件でラミネートして、図5に示す積層部材6、及び図6に示す積層部材7をそれぞれ製造した。
(Example 17)
In the same manner as in Example 6, a laminated member in which the resin layer A, the patterned transparent electrode layer B, and the conductive layer C were laminated on the base material was manufactured.
<Formation of OCA layer D>
Laminated member 6 shown in FIG. 5 is obtained by laminating OCA (d-1) on the surface of resin layer A1, patterned transparent electrode layer B1, and conductive layer C1 under the conditions of 80 ° C. and pressure of pressure 0.5 MPa. Laminated members 7 shown in FIG.
 積層部材6及び7について、実施例1と同様の評価を行った。結果を表2に示す。 The same evaluation as in Example 1 was performed on the laminated members 6 and 7. The results are shown in Table 2.
 (実施例18~19)
 表1に示す積層部材を実施例17と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Examples 18 to 19)
The laminated member shown in Table 1 was produced by the same method as in Example 17, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
 (比較例1及び2)
 表1に示す積層部材を実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Comparative Examples 1 and 2)
The laminated member shown in Table 1 was produced by the same method as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
 (比較例3)
 表1に示す積層部材を実施例6と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Comparative Example 3)
The laminated member shown in Table 1 was produced by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~19においては、いずれもイオンマイグレーション耐性に優れる積層部材を製造できていることが判る。 It can be seen that in Examples 1 to 19, laminated members having excellent ion migration resistance can be produced.
 本発明の積層部材は、タッチパネルの構成要素として好適に利用することができる。 The laminated member of the present invention can be suitably used as a constituent element of a touch panel.
1 透明電極層B
2 導電パターンC
3 層A
4 支持体
5 端子部
6 導電層C
7 短辺D
8 短辺E
9 OCA層D
1 Transparent electrode layer B
2 Conductive pattern C
3 layers A
4 Support 5 Terminal 6 Conductive Layer C
7 Short side D
8 Short side E
9 OCA layer D

Claims (10)

  1.  基材と、
     前記基材上に形成された、樹脂層Aと、
     前記樹脂層A上に形成された、透明電極層Bと、
     前記樹脂層A及び前記透明電極層B上に形成された、導電層Cと、を備え、
     前記樹脂層Aは、カルボキシル基を有する樹脂(a)を含有し、
     前記導電層Cは、導電性粒子及びカルボキシル基を有する樹脂(c)を含有し、かつ、
     前記導電層Cが、前記樹脂層A及び前記透明電極層Bに接触しており、
     前記樹脂層Aが含有する有機成分の酸価をS、前記導電層Cが含有する有機成分の酸価をS、としたとき、S-Sの値が、20~150mgKOH/gである、積層部材。
    A substrate;
    A resin layer A formed on the substrate;
    A transparent electrode layer B formed on the resin layer A;
    A conductive layer C formed on the resin layer A and the transparent electrode layer B;
    The resin layer A contains a resin (a) having a carboxyl group,
    The conductive layer C contains conductive particles and a resin (c) having a carboxyl group, and
    The conductive layer C is in contact with the resin layer A and the transparent electrode layer B,
    When the resin layer A is the acid value S A of the organic component containing the acid value of the organic component the conductive layer C contains S C, and the value of S A -S C is, 20 ~ 150 mgKOH / g A laminated member.
  2.  前記導電層Cが、光重合開始剤もしくはその反応物を含有する、請求項1記載の積層部材。 The laminated member according to claim 1, wherein the conductive layer C contains a photopolymerization initiator or a reaction product thereof.
  3.  前記導電層Cが、ウレタン結合を有する化合物を含有する、請求項1又は2記載の積層部材。 The laminated member according to claim 1 or 2, wherein the conductive layer C contains a compound having a urethane bond.
  4.  前記導電層Cが、シクロヘキサン骨格を有する化合物を含有する、請求項1~3のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 3, wherein the conductive layer C contains a compound having a cyclohexane skeleton.
  5.  前記透明電極層Bが、銀を含有する、請求項1~4のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 4, wherein the transparent electrode layer B contains silver.
  6.  前記銀が、繊維状である、請求項5記載の積層部材。 The laminated member according to claim 5, wherein the silver is fibrous.
  7.  前記透明電極層Bの厚さが0.1~1.0μmであり、導電層Cの厚さが2.0~8.0μmである、請求項1~6のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 6, wherein the transparent electrode layer B has a thickness of 0.1 to 1.0 µm, and the conductive layer C has a thickness of 2.0 to 8.0 µm. .
  8.  前記樹脂層Aと、前記透明電極層Bと、導電層C上に積層されたOCA層Dがイソボルニル骨格を含有する、請求項1~7のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 7, wherein the resin layer A, the transparent electrode layer B, and the OCA layer D laminated on the conductive layer C contain an isobornyl skeleton.
  9.  前記層Dがベンゾトリアゾール系化合物を含有する、請求項1~8のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 8, wherein the layer D contains a benzotriazole-based compound.
  10.  請求項1~9のいずれか一項記載の積層部材を備える、タッチパネル。 A touch panel comprising the laminated member according to any one of claims 1 to 9.
PCT/JP2016/073283 2016-08-08 2016-08-08 Laminated member and touch panel WO2018029750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073283 WO2018029750A1 (en) 2016-08-08 2016-08-08 Laminated member and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073283 WO2018029750A1 (en) 2016-08-08 2016-08-08 Laminated member and touch panel

Publications (1)

Publication Number Publication Date
WO2018029750A1 true WO2018029750A1 (en) 2018-02-15

Family

ID=61162039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073283 WO2018029750A1 (en) 2016-08-08 2016-08-08 Laminated member and touch panel

Country Status (1)

Country Link
WO (1) WO2018029750A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208394A (en) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd Composition for forming insulating layer, and touch panel
JP2013077234A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Touch panel and method for manufacturing touch panel
JP2013083996A (en) * 2010-04-14 2013-05-09 Toray Ind Inc Touch panel member
WO2013118875A1 (en) * 2012-02-09 2013-08-15 ダイソー株式会社 Photocurable resin composition containing fine metal particles and use of same
WO2013146107A1 (en) * 2012-03-28 2013-10-03 東レ株式会社 Photosensitive conductive paste and method for producing conductive pattern
JP2013206050A (en) * 2012-03-28 2013-10-07 Toray Ind Inc Method of manufacturing touch panel
WO2014156827A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Conductive sheet, manufacturing method therefor, and touch panel
WO2014156364A1 (en) * 2013-03-26 2014-10-02 富士フイルム株式会社 Touch panel and display device
WO2015008617A1 (en) * 2013-07-17 2015-01-22 富士フイルム株式会社 Layered body for touch panel, and touch panel
JP2015018157A (en) * 2013-07-12 2015-01-29 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern using the same, and conductive pattern substrate
WO2015046096A1 (en) * 2013-09-30 2015-04-02 東洋紡株式会社 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel
JP2015153009A (en) * 2014-02-12 2015-08-24 日立化成株式会社 Method for manufacturing touch panel substrate with protective film, photosensitive resin composition and photosensitive element to be used for the same, and touch panel obtained by the same
JP2016046031A (en) * 2014-08-21 2016-04-04 日立化成株式会社 Laminate, method for producing laminate, film set and electronic component
JP2016070973A (en) * 2014-09-26 2016-05-09 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083996A (en) * 2010-04-14 2013-05-09 Toray Ind Inc Touch panel member
JP2012208394A (en) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd Composition for forming insulating layer, and touch panel
JP2013077234A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Touch panel and method for manufacturing touch panel
WO2013118875A1 (en) * 2012-02-09 2013-08-15 ダイソー株式会社 Photocurable resin composition containing fine metal particles and use of same
WO2013146107A1 (en) * 2012-03-28 2013-10-03 東レ株式会社 Photosensitive conductive paste and method for producing conductive pattern
JP2013206050A (en) * 2012-03-28 2013-10-07 Toray Ind Inc Method of manufacturing touch panel
WO2014156364A1 (en) * 2013-03-26 2014-10-02 富士フイルム株式会社 Touch panel and display device
WO2014156827A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Conductive sheet, manufacturing method therefor, and touch panel
JP2015018157A (en) * 2013-07-12 2015-01-29 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern using the same, and conductive pattern substrate
WO2015008617A1 (en) * 2013-07-17 2015-01-22 富士フイルム株式会社 Layered body for touch panel, and touch panel
WO2015046096A1 (en) * 2013-09-30 2015-04-02 東洋紡株式会社 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel
JP2015153009A (en) * 2014-02-12 2015-08-24 日立化成株式会社 Method for manufacturing touch panel substrate with protective film, photosensitive resin composition and photosensitive element to be used for the same, and touch panel obtained by the same
JP2016046031A (en) * 2014-08-21 2016-04-04 日立化成株式会社 Laminate, method for producing laminate, film set and electronic component
JP2016070973A (en) * 2014-09-26 2016-05-09 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate

Similar Documents

Publication Publication Date Title
JP6150021B2 (en) Method for manufacturing conductive pattern forming member
JP5967079B2 (en) Conductive paste and conductive pattern manufacturing method
WO2014208445A1 (en) Electroconductive paste, method for manufacturing an electroconductive pattern, and touch panel
JP6090537B1 (en) Laminated member and touch panel
JP2018120652A (en) Conductive pattern forming film
WO2017208842A1 (en) Method for producing multilayer pattern formed base and method for producing touch panel
WO2018029750A1 (en) Laminated member and touch panel
TWI658108B (en) Manufacturing method of conductive paste, touch panel and conductive pattern
JP5403187B1 (en) Photosensitive conductive paste and method for producing conductive pattern
WO2018029749A1 (en) Production method for conductive pattern-forming member
WO2014156677A1 (en) Conductive paste and method for producing conductive paste
JPWO2014069436A1 (en) Photosensitive conductive paste and method for producing conductive pattern
TW201806771A (en) Lamination member and touch panel having a conductive layer and a photosensitive resin layer formed on a substrate and having excellent ion migration tolerance
JP6717439B1 (en) Laminated material
TW201807498A (en) Conductive patterning forming member and method of manufacturing the same including a coating step, a drying step, an exposure step, a developing step, and a curing step
CN107735840B (en) Conductive paste, touch sensor member, and method for manufacturing conductive pattern
TWI658329B (en) Reactive resin composition, circuit pattern and circuit board
JP2019052945A (en) Pressure sensor manufacturing method
JP2011029113A (en) Photosensitive black paste, and method of forming bus electrode black layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP