WO2015046096A1 - Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel - Google Patents

Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel Download PDF

Info

Publication number
WO2015046096A1
WO2015046096A1 PCT/JP2014/074994 JP2014074994W WO2015046096A1 WO 2015046096 A1 WO2015046096 A1 WO 2015046096A1 JP 2014074994 W JP2014074994 W JP 2014074994W WO 2015046096 A1 WO2015046096 A1 WO 2015046096A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive paste
thermoplastic resin
printing
electro
Prior art date
Application number
PCT/JP2014/074994
Other languages
French (fr)
Japanese (ja)
Inventor
康博 坂本
渉 川島
万紀 木南
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201480052717.9A priority Critical patent/CN105612585B/en
Priority to JP2014551449A priority patent/JP6767089B2/en
Publication of WO2015046096A1 publication Critical patent/WO2015046096A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1275Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]

Definitions

  • the present invention relates to a conductive paste and use thereof, and more specifically, a conductive paste excellent in fine line printability, a conductive circuit using the same, a conductive coating film, and the conductive coating film is a transparent conductive layer.
  • the present invention relates to a conductive laminate laminated on top and a touch panel using the conductive laminate.
  • Transparent touch panels that operate by touching the screen with a finger or a dedicated pen are widely used, including ATMs, car navigation systems, game machines, station ticket vending machines, photocopiers, museum commentary terminals, and convenience store information terminals. It is used for applications and is spreading.
  • the transparent touch panel is configured to form a switch by superposing two transparent conductive thin films.
  • an indium tin oxide film hereinafter sometimes abbreviated as ITO film
  • a substrate such as a polyester film or glass by vapor deposition or sputtering, and the ITO film is etched. In general, it is formed by patterning.
  • the printing method is excellent in substrate selectivity.
  • glass, ITO film, etching film obtained by etching a part of ITO, PET film, polyimide film, etc. can do.
  • the printing method has advantages in terms of cost and simplicity of equipment, and if a thin line can be formed by using a conductive paste by the printing method, there will be an extremely merit.
  • the conductive paste uses a binder resin as a binder with the base material, there is a merit for physical impact such as bending.
  • the fine line suitability of the conductive paste is required.
  • the width of the line and the space (hereinafter abbreviated as L / S) is often 200 ⁇ m (200/200 ⁇ m) or more, and the conductive pattern is relatively rough. It was enough if it could be formed, but due to the widespread use of capacitive touch panels, the recent requirement for L / S is 100/100 ⁇ m or less, and further L / S may be required to be 50/50 ⁇ m or less. The demand for fine wire suitability is increasing.
  • the conductive paste is filled in a printing plate having a concave pattern, and the filled conductive paste is received into a printing blanket having a silicone rubber sheet on the surface, and then from the printing blanket onto the substrate to be printed.
  • Gravure offset printing which is a method of printing and forming electrode patterns by transferring conductive paste, has attracted attention as an alternative to photolithography because it can form fine conductive patterns with high accuracy. ing.
  • a method of manufacturing a coating film by transferring a conductive ink to a transfer target composed of a glass substrate is conventionally known (see, for example, Patent Document 1). .
  • this conventional technology uses a designed conductive ink in consideration of application to a glass substrate that can be sintered at a high temperature, and is suitable for a touch panel using an ITO film provided on a PET film or the like. There was a problem that it was difficult.
  • the present invention has been made against the background of such prior art problems. That is, the object of the present invention is to have fine line printability of 50 ⁇ m or less and excellent adhesion to an ITO film in a conductive pattern formed by a low temperature process of 150 ° C. or less, and further to provide environmental reliability and high durability. An object is to provide a conductive paste that can be realized.
  • the present inventor has made fine line printing in gravure offset printing by including two or more kinds of thermoplastic binder resins having different number average molecular weights and a curing agent in the conductive paste.
  • the conductive pattern formed by a low-temperature process of 150 ° C. or less has excellent adhesion to the ITO film, and further has obtained knowledge that environmental reliability and high durability can be maintained.
  • thermoplastic resin (A) Is a polyurethane resin having a weight ratio of 4.0 times or less with respect to the thermoplastic resin (B), the thermoplastic resin (A) having a weight average molecular weight of 10,000 or more and a glass transition temperature of ⁇ 10 to 150 ° C.
  • thermoplastic resin (B) is an amorphous polyol and has a number average molecular weight of 500 to 6,000.
  • the curing agent (C) is an isocyanate compound, and the mixing amount of the curing agent (C) with respect to the thermoplastic resin (B) is a curing agent (with respect to the hydroxyl group of the thermoplastic resin (B)
  • the conductive paste according to any one of (1) to (4), wherein the isocyanate group of C) is 20 to 200 mol%.
  • the organic solvent (E) has a boiling point of 100 ° C. or higher and a weight fraction based on the total weight of the conductive paste is 25% by weight or less, according to any one of (1) to (5) Conductive paste.
  • Gravure offset printing The conductive paste is filled in a printing plate having a concave pattern, and the filled conductive paste is received by a printing blanket having a silicone rubber sheet on its surface, and then printed from the printing blanket.
  • the conductive paste according to any one of (1) to (7), which is used in a method of printing an electrode pattern by transferring a conductive paste onto a substrate.
  • Gravure offset printing of the conductive pace according to any one of (1) to (7) above filling a conductive paste with a printing plate having a concave pattern and applying the filled conductive paste on the surface After receiving the printing blanket having a silicone rubber sheet, the conductive coating is obtained by transferring the conductive paste from the printing blanket onto the substrate to be printed and printing and forming the electrode pattern.
  • the conductive paste of the present invention uses at least two types of thermoplastic binder resins having different number average molecular weights and a curing agent, so that the conductive paste is formed by a fine line gravure offset printability and a low temperature process of 150 ° C. or lower.
  • the pattern has excellent adhesion to the ITO film, and has both environmental reliability and high durability.
  • the conductive paste of this embodiment is a conductive paste containing at least the thermoplastic resin (A) and the thermoplastic resin (B), the curing agent (C), the conductive powder (D), and the organic solvent (E).
  • the weight ratio of the thermoplastic resin (A) to the thermoplastic resin (B) is 4.0 times or less, the thermoplastic resin (A) has a weight average molecular weight of 10,000 or more and a glass transition temperature of ⁇ 10 to It is a polyurethane resin or a polyester resin at 150 ° C., and the thermoplastic resin (B) is an amorphous polyol and has a number average molecular weight of 500 to 6,000.
  • thermoplastic resin (A) and the thermoplastic resin (B) used in the conductive paste of the present invention have different number average molecular weights, and the thermoplastic resin (A) is in a weight ratio with respect to the thermoplastic resin (B). Is 4.0 times or less.
  • the molecular weight distribution curve in GPC analysis often has a peak of more than two mountains. This is because the peak tops of the molecular weight distribution of each thermoplastic resin are different, and as a result, the molecular weight distribution becomes broader than when a single resin is used.
  • the ratio (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn of the whole binder resin is increased. This is environmental stability, high durability and printability. Contributes to realizing both.
  • the conductive paste of the present invention may contain three or more types of resins as long as environmental stability, durability and printability are not impaired.
  • the type of the thermoplastic resin (A) is not particularly limited, but is preferably a polyurethane resin or a polyester resin.
  • the durability of the coating film can be ensured in the application of the conductive paste or curing after printing, and the conductive powder such as metal powder inside the coating film can be secured between each other. High conductivity can be expressed by the closer distance.
  • the aromatic dicarboxylic acid in the total acid component is preferably 20 mol% or more, more preferably 35 mol% or more, and further preferably 50 mol% or more. If the aromatic dicarboxylic acid is less than 20% by weight, the strength of the coating film is lowered, and durability such as low-temperature flex resistance, heat resistance, moisture resistance, and thermal shock resistance may be lowered.
  • the upper limit with preferable aromatic dicarboxylic acid is 100 mol%.
  • aromatic dicarboxylic acid copolymerized with the polyester resin examples include terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid. Of these, terephthalic acid and isophthalic acid are preferably used in combination in view of physical properties and solvent solubility.
  • dicarboxylic acids copolymerized with the polyester include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid, dibasic acids having 12 to 28 carbon atoms, 1 , 4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, Dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as tricyclodecanedicarboxylic acid, hydroxycarboxylic acid such as hydroxybenzoic acid, lactic acid
  • polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and sulfonic acids such as sodium 5-sulfoisophthalate.
  • a metal base-containing dicarboxylic acid may be used in combination.
  • an acid anhydride such as trimellitic anhydride or phthalic anhydride may be post-added to give an acid value.
  • glycol component copolymerized with the polyester resin the following known glycols can be used.
  • an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of bisphenol F, or a polyvalent polyol such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, or polyglycerin may be used in combination.
  • the polyester resin preferably has no melting point (indicating that it is amorphous) from the viewpoint of adhesiveness, flexibility, solvent solubility, and the like.
  • the term “having no melting point” as used herein means that no clear melting peak is exhibited when measured using a differential scanning calorimeter (DSC).
  • thermoplastic resin (A) is a polyurethane resin
  • it is synthesized by a known method by blending an amorphous polyol, a polyisocyanate compound, and, if necessary, a chain extender. Since the polyurethane resin can be polymerized in a solution, it has a feature that it can easily obtain a higher molecular weight than the polyester resin.
  • the amorphous polyol include (meth) acrylic polyol, polycarbonate diol, polybutadiene polyol, polyester polyol and polyether polyol. Polycarbonate diol, polyether polyol, and polyester polyol are more preferable from the viewpoint of adhesiveness, flex resistance, and durability, and polyester polyol is more preferable from the viewpoint of freedom of molecular design.
  • the preferred component is the same as that of the polyester resin, but the molecular weight is preferably 1,000 or more, and the upper limit is It is preferably 20,000 or less, more preferably 10,000 or less.
  • the compound that can be used as a chain extender preferably has a hydroxyl group and an amino group, and may have either one or both.
  • Specific examples of components include dimethylolbutanoic acid and dimethylolpropionic acid, 1,2-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 2 , 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2 , 2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3′-hydroxypropanate, 2-normalbutyl-2-ethyl-1,3-propanediol, 3-ethyl-1,5-pentane Diol, 3-propyl-1,5-
  • Aliphatic Jami And compounds having two amino groups in one molecule such as aromatic diamines such as metaxylenediamine, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenyl ether. . These compounds may be used alone or in combination, and there is no problem.
  • the polyisocyanate compound used when synthesizing the polyurethane resin is not particularly limited, but aromatic, aliphatic, alicyclic diisocyanate and the like are preferable.
  • Examples include diisocyanate, isophorone diisocyanate, tetramethylene diisocyan
  • the number average molecular weight (Mn (A)) of the thermoplastic resin (A) is 10,000 to 70,000, more preferably 10,000 to 40,000, and still more preferably 10,000 to 30,000. It is. If Mn (A) is too low, it is not preferable in terms of durability and environmental stability. On the other hand, if Mn (A) is too high, the cohesive force of the resin increases and the durability and the like are improved, but the fine line printability in gravure offset printing is significantly reduced.
  • the glass transition temperature of the thermoplastic resin (A) is preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher. If the glass transition temperature is too low, the resin softens at a high temperature, which may reduce the reliability of the conductive thin film formed from the paste. Alternatively, the paste-containing component may move to the contact partner side during use, and the reliability of the conductive thin film may be reduced.
  • the glass transition temperature of the thermoplastic resin (A) is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and preferably 100 ° C. or lower in consideration of printability, adhesion, solubility, paste viscosity, printability, and the like. Further preferred.
  • the solid organic component of the conductive paste contains a carboxyl group, and the amount (acid value) of the carboxyl group is within a predetermined range.
  • the thermoplastic resin (A) preferably has an acid value within a specific range.
  • the acid value of the thermoplastic resin (A) is preferably 20 to 500 eq / ton, and more preferably 30 to 350 eq / ton. If the acid value of the thermoplastic resin (A) is too low, the adhesion between the formed conductive thin film and the substrate tends to be low.
  • thermoplastic resin (A) if the acid value of the thermoplastic resin (A) is too high, the water-absorbing property of the formed conductive thin film increases, and the hydrolysis of the thermoplastic resin may be accelerated by the catalytic action of the carboxyl group. There is a tendency that the reliability of the conductive thin film is lowered.
  • a diol compound having a carboxy group examples include dimethylolalkanoic acids such as dimethylolpropionic acid and dimethylolbutanoic acid, and amine salts of these dimethylolalkanoic acids.
  • dimethylolalkanoic acids such as dimethylolpropionic acid and dimethylolbutanoic acid
  • amine salts of these dimethylolalkanoic acids By adding these diol compounds having a carboxy group, the carboxy group can be easily introduced into the cured coating film, and the adhesion to the ITO film can be improved.
  • the diol compound having a carboxy group is preferably added so that the acid value of the nonvolatile organic component in a heat treatment at 130 ° C. for 30 minutes is 20 to 500 eq / ton, more preferably 30 to 350 eq / ton. .
  • the kind of the thermoplastic resin (B) is not particularly limited, but is preferably an amorphous polyol having a functional group capable of reacting with two or more isocyanate groups in one molecule.
  • examples include polyester polyols, polyether polyols, and polycarbonate polyols, and polyester polyols are more preferable because of the degree of freedom in molecular design.
  • terephthalic acid isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as dodecane dicarboxylic acid and azelaic acid, dibasic acids having 12 to 28 carbon atoms, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl Hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalene dicarboxylic
  • polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and sulfonic acids such as sodium 5-sulfoisophthalate.
  • a metal base-containing dicarboxylic acid may be used in combination.
  • an acid anhydride such as trimellitic anhydride or phthalic anhydride may be post-added to give an acid value.
  • glycol component in the case of using polyester polyol.
  • an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of bisphenol F, or a polyvalent polyol such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, or polyglycerin may be used in combination.
  • Further examples include polycaprolactone polyols obtained by ring-opening polymerization using ⁇ -caprolactone as a polyhydric alcohol. These may be used alone or in combination of two or more.
  • thermoplastic resin (B) is a polyether polyol
  • a polyether polyol for example, a polymer obtained by adding an alkylene oxide, such as ethylene oxide or propylene oxide, alone or a mixture to a polyhydric alcohol, such as glycerin or propylene glycol, alone or in a mixture.
  • thermoplastic resin (B) is a polycarbonate polyol
  • a polycarbonate diol containing one or two or more linear aliphatic diol-derived repeating units as a constituent unit one or two or more alicyclic diols
  • examples thereof include polycarbonate diol containing a repeating unit derived from a structural unit, or polycarbonate diol containing a repeating unit derived from both of these diols as a structural unit.
  • Specific examples of constituents include 1,6-hexanediol, 1,5-pentanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol as linear aliphatic diols.
  • the alicyclic diol include 1,4-cyclohexanedimethanol.
  • the number average molecular weight of the thermoplastic resin (B) is preferably 500 to 6,000, more preferably 500 to 4,000. If the number average molecular weight is too low, the viscosity of the conductive paste is lowered, and the suitability for fine line printing is lowered, which is not preferable. On the other hand, if the number average molecular weight is too high, the viscosity of the conductive paste is high, and the fine line printability in gravure offset printing is significantly reduced.
  • the thermoplastic resin (B) may have an acid value within a predetermined range in order to improve adhesion to the ITO film.
  • the weight ratio of the thermoplastic resin (A) to the thermoplastic resin (B) needs to be 4.0 times or less, more preferably 3.5 times or less, still more preferably 3.0 times or less. . If the weight ratio is too high, the viscosity of the conductive paste is high, and the fine line printability in gravure offset printing is significantly reduced.
  • polyurethane resins other than the thermoplastic resins described above polyester resins, epoxy resins, phenol resins, acrylic resins, styrene-acrylic resins, styrene-butadiene copolymers, polystyrene, polyamide resins
  • polyamideimide resin polycarbonate resin
  • vinyl chloride-vinyl acetate copolymer resin vinyl chloride-vinyl acetate copolymer resin
  • ethylene-vinyl acetate copolymer resin polyvinyl butyral resin
  • cellulose and modified celluloses cellulose
  • the kind of the curing agent (C) that can react with the binder resin of the present invention is not particularly limited, but an isocyanate compound is particularly preferable from the viewpoint of adhesion, flex resistance, curability, and the like. Furthermore, it is preferable to use those having an isocyanate group blocked as these isocyanate compounds because the storage stability is improved.
  • curing agents other than isocyanate compounds include known compounds such as amino resins such as methylated melamine, butylated melamine, benzoguanamine, and urea resin, acid anhydrides, imidazoles, epoxy resins, and phenol resins. These curing agents can be used in combination with a known catalyst or accelerator selected according to the type.
  • the blending ratio of the thermoplastic resin (B) and the curing agent (C) is such that the functional group capable of reacting with the hydroxyl group of the curing agent (C) is 20 to 200 mol% with respect to the hydroxyl group of the thermoplastic resin (B). It is preferably 50 to 150 mol%, more preferably 75 to 125 mol%.
  • aromatic diisocyanates such as tetramethylene diisocyanate and hexamethylene diisocyanate
  • aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate, etc.
  • Alicyclic diisocyanates, or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine
  • Low molecular active hydrogen compounds such as Polyester polyols, polyether polyols, terminal isocyanate group-containing compounds obtained by reacting a polymeric active hydrogen compound such as polyamides and the like.
  • Examples of the blocking agent for isocyanate groups include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, and oximes such as acetoxime, methylethyl ketoxime, and cyclohexanone oxime. Alcohols such as methanol, ethanol, propanol and butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, and tertiary alcohols such as t-butanol and t-pentanol.
  • phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, and oximes such as acetoxime, methyleth
  • Aromatic amines, imides, acetylacetone, acetoacetic ester, active methylene compounds such as malonic acid ethyl ester, mercaptans, imines, imidazoles, ureas, diaryl compounds, sodium bisulfite, etc. can be mentioned.
  • oximes, pyrazoles, active methylenes, imidazoles, and amines are particularly preferable from the viewpoint of curability.
  • the conductive powder (D) in the conductive paste of the present embodiment is used for imparting conductivity in the formed conductive pattern.
  • the conductive powder (D) in the present invention is preferably noble metal powder such as silver powder, gold powder, platinum powder and palladium powder, and base metal powder such as copper powder, nickel powder, aluminum powder and brass powder. Further, a plating powder obtained by plating different kinds of particles made of an inorganic material such as a base metal or silica with a noble metal such as silver, a base metal powder obtained by alloying with a noble metal such as silver, or the like can be given.
  • electroconductive powder which consists of nonmetals, such as carbon-type fillers, such as carbon black and graphite powder
  • electroconductive powder (D) electroconductive powder
  • the carbon black and / or graphite powder content may be 25 parts by mass or less, more preferably 11 parts by mass or less with respect to 100 parts by mass of the metal powder.
  • These conductive powders may be used alone or in combination.
  • silver powder alone or those mainly composed of silver powder is particularly preferable in that it is easy to obtain a coating film exhibiting high conductivity.
  • the shape of the conductive powder (D) is not particularly limited, but examples of preferable shapes are described in the known flake shape (flaky shape), spherical shape, dendritic shape (dendritic shape), and JP-A-9-306240. As shown, the shape (aggregated powder) in which the primary particles are aggregated three-dimensionally can be exemplified. Among these, flaky, spherical, and agglomerated powders are preferable, and they may be used alone or in combination.
  • the particle diameter of the conductive powder (D) is not particularly limited, but from the viewpoint of imparting fine wire suitability, a powder having a center diameter (D50) of 7 ⁇ m or less is preferable.
  • a powder having a center diameter (D50) of 7 ⁇ m or less is preferable.
  • the conductive powder having a center diameter larger than 7 ⁇ m is used, the shape of the formed fine wires is poor, and the fine wires may come into contact with each other, causing a short circuit.
  • the specific resistance of the conductive coating film obtained by curing the conductive paste is preferably 5.0 ⁇ 10 ⁇ 2 or less, more preferably 5.0 ⁇ 10 ⁇ 3 or less, from the viewpoint of obtaining an excellent conductive circuit. More preferably, it is ⁇ 10 ⁇ 4 or less.
  • inorganic substances can be added to the conductive paste of the present invention.
  • inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; various oxidations such as titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica and colloidal silica Products: various titanate compounds such as calcium titanate, magnesium titanate, strontium titanate; sulfides such as molybdenum disulfide; various fluorides such as magnesium fluoride and carbon fluoride; aluminum stearate
  • silica is preferable from the viewpoint of imparting printability. That is, when silica is present, the viscosity can be increased by physical cohesion between fillers containing silica and by pseudo-crosslinking by hydrogen bond formation.
  • the silica to be used can be used regardless of its particle diameter, its hydrophilicity or hydrophobicity.
  • thixotropic agents antifoaming agents, flame retardants, tackifiers, hydrolysis inhibitors, leveling agents, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, pigments and dyes
  • carbodiimide, epoxy, or the like can be appropriately used as a resin degradation inhibitor. These can be used alone or in combination.
  • the boiling point at 0.1013 MPa is preferably 100 ° C. or higher and lower than 350 ° C., more preferably 150 ° C. or higher and lower than 330 ° C. More preferably, the boiling point is 180 ° C. or higher and lower than 320 ° C. If the boiling point of the organic solvent (E) is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, when a low-temperature drying step is required (for example, 150 ° C. or less), a large amount of the solvent may remain in the coating film, causing a decrease in the reliability of the coating film. There are concerns.
  • the organic solvent (E), the thermoplastic resin (A), the thermoplastic resin (B) and the curing agent (C) are soluble, and the conductive powder (D) can be well dispersed.
  • Those are preferred.
  • examples of petroleum-based hydrocarbons include AF Solvent No. 4, No. 5, No. 6, No. 7, and No. 0 Solvent H manufactured by Nippon Oil Corporation. The above may be included. Such an organic solvent is appropriately contained so that the conductive paste has a viscosity suitable for printing or the like.
  • the content of the organic solvent (E) is preferably 25 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the total paste. If the content of the organic solvent (E) is too high, the paste viscosity becomes low and sagging occurs during fine line printing.
  • the concentration is a commercially available cone plate viscometer (for example, RE-85 manufactured by Toki Sangyo Co., Ltd.).
  • the measured value is preferably 10 to 500 Pa ⁇ s. If it is less than 10 Pa ⁇ s, the ratio of the organic solvent in the conductive paste is too large, and the transferability of the conductive paste from the printing blanket having the silicone rubber sheet on the surface to the substrate to be printed is reduced, and the printed matter is good. It becomes difficult to obtain.
  • the amount of conductive paste received from the printing plate to the printing blanket is reduced, and disconnection and stringing occur in the electrode pattern. More preferably, it is 20 to 300 dPa ⁇ s. In addition, it is also possible to dilute appropriately at the time of printing.
  • the conductive paste of the present invention preferably has an F value of 60 to 95%, more preferably 75 to 95%.
  • the filler mass part referred to here is the mass part of the conductive powder (D)
  • the solid content mass part is the mass part of the components other than the solvent
  • the conductive powder, binder resin, other curing agents and additives are all included. Including.
  • a conductive thin film can be formed by applying or printing the conductive paste of the present invention on a substrate to form a coating film, and then volatilizing and drying the organic solvent (E) contained in the coating film. .
  • the step of evaporating the organic solvent (E) is carried out under heating, whereby the curing reaction proceeds, and the conductivity, adhesion, and surface hardness of the conductive thin film after drying are improved.
  • the heating temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 110 ° C. or higher. Further, from the viewpoint of heat resistance of the underlying transparent conductive layer and energy saving in the production process, the heating temperature is preferably 150 ° C. or lower, more preferably 135 ° C. or lower, and further preferably 130 ° C. or lower.
  • the heating time is preferably 5 minutes or longer, more preferably 15 minutes or longer, and even more preferably 25 minutes or longer. When the heating time is less than 5 minutes, the conductive thin film is not sufficiently cured and the adhesion is insufficient.
  • the base material to which the conductive paste is applied is not particularly limited, and examples thereof include polycarbonate, acrylic, polyimide, and polyester.
  • a conductive laminated body can be obtained by providing a transparent conductive layer between the said base material and a conductive film, and laminating
  • the material of the transparent conductive layer is not particularly limited.
  • an ITO film mainly composed of indium tin oxide or a nanowire-based conductive thin film can be applied.
  • the transparent conductive layer is not limited to the one formed on the entire surface of the base material, but a layer obtained by removing a part of the transparent conductive layer by etching can also be used.
  • a touch panel can be manufactured using the conductive laminate of the present invention.
  • the touch panel may be a resistive film type or a capacitive type. Although it can be applied to any touch panel, since this paste is suitable for forming a thin line, it is preferably used for a capacitance method.
  • the touch panel manufacturing method is not particularly limited.
  • a conductive film is formed on a base material on which a transparent conductive layer such as an ITO film is laminated. It can be manufactured by applying or printing a paste, curing the conductive paste applied or printed by heating, forming a conductive laminate, and bonding the resulting conductive laminate to another conductive laminate. it can.
  • the conductive paste of the present invention is preferably used for electrode circuit wiring of touch panels, but besides that, it is used for electromagnetic shielding applications, electronic component circuit formation applications, conductive adhesives for terminals and lead wires, etc. Can also be used. Furthermore, it can also be suitably used for printing a material that is attracting attention as an alternative to a transparent conductive film such as an ITO film or ITO glass having a mesh pattern.
  • the physical properties of the polyester resin and the polyurethane resin in the present invention and the conductive paste were evaluated by the following methods.
  • the sample resin was dissolved or diluted in tetrahydrofuran so that the resin concentration was about 0.5% by weight, and filtered through a polytetrafluoroethylene membrane filter having a pore size of 0.5 ⁇ m to obtain a GPC measurement sample.
  • Tetrahydrofuran was used as a mobile phase
  • GPC gel permeation chromatograph
  • RI meter differential refractometer
  • the number-average molecular weight in terms of polystyrene of the sample resin was determined using the GPC measurement result of monodisperse polystyrene having a known number-average molecular weight, which was used as the number-average molecular weight (Mn) and the weight-average molecular weight (Mw) of the sample resin.
  • Mn number-average molecular weight
  • Mw weight-average molecular weight
  • shodex KF-802, 804L, 806L manufactured by Showa Denko KK was used as the column.
  • Glass transition temperature (Tg) 5 mg of sample resin is put in an aluminum sample pan, sealed, and measured with a differential scanning calorimeter (DSC) DSC-220 manufactured by Seiko Instruments Inc. up to 200 ° C. at a heating rate of 20 ° C./min. And the temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition.
  • DSC differential scanning calorimeter
  • Acid value 0.2 g of a sample was precisely weighed and dissolved in 20 ml of chloroform. Subsequently, it titrated with 0.01N potassium hydroxide (ethanol solution). A phenolphthalein solution was used as an indicator. The unit of the acid value was eq / ton, that is, the equivalent per 1 ton of the sample.
  • Pencil Hardness The conductive laminate test piece was placed on a 2 mm thick SUS304 plate, and the pencil hardness was measured according to JIS K 5600-5-4: 1999.
  • a nickel electroformed flat intaglio having a plurality of concave patterns with a line width of 30 ⁇ m, a depth of 20 ⁇ m and a pitch of 60 ⁇ m is used as a printing substrate, and PET film (Cosmo manufactured by Toyobo Co. Shine A4300) was prepared. Further, a silicone blanket having a thickness of 0.6 mm was used as a printing blanket. First, a predetermined amount of conductive paste was supplied to the surface of the flat intaglio, and the conductive paste was embedded in the concave pattern of the flat intaglio using a metal squeegee.
  • the silicone blanket was rotated in a state where it was pressed against the flat intaglio, and slid on the flat intaglio to receive the conductive paste embedded in the concave pattern of the flat intaglio on the surface of the silicone blanket.
  • the silicone blanket was rotated while being pressed against the PET film, and slid on the PET film to obtain a printed matter having a predetermined pattern on the surface of the PET film.
  • L / S was measured with a digital microscope VHX-2000 (manufactured by Keyence Co., Ltd.), the state of the fine line was observed, and the fine line printability was evaluated according to the following criteria.
  • There is no disconnection and there is no short circuit between the thin wires.
  • There is a partial disconnection or a short circuit between the thin wires.
  • Polyester 1 RV630 manufactured by Toyobo Co., Ltd. (number average molecular weight 23,000, acid value 20 eq / ton, glass transition temperature 7 ° C.)
  • Polyester 2 GK390 manufactured by Toyobo Co., Ltd. (number average molecular weight 18,000, acid value 80 eq / ton, glass transition temperature 7 ° C.)
  • Polyester 3 RV296 manufactured by Toyobo Co., Ltd. (number average molecular weight 14,000, acid value 80 eq / ton, glass transition temperature 71 ° C.)
  • Polyurethane 4 UR-PS9 manufactured by Toyobo Co., Ltd.
  • Polyester polyol 1 P-2013 manufactured by Kuraray Co., Ltd. (number average molecular weight 2,000, acid value 3 eq / ton, hydroxyl value 54.4 KOHmg / g)
  • Polyester polyol 2 P-2030 manufactured by Kuraray Co., Ltd. (number average molecular weight 2,000, acid value 4 eq / ton, hydroxyl value 55.4 KOHmg / g)
  • Polyester polyol 3 P-1030 manufactured by Kuraray Co., Ltd.
  • Polyester polyol 4 F-3010 manufactured by Kuraray Co., Ltd. (number average molecular weight 3,000, acid value 5 eq / ton, hydroxyl value 55.8 KOHmg / g)
  • Block isocyanate 1 Trixene BI 7982 manufactured by Baxenden (solid content: 70% by weight, isocyanate theoretical value: 10.2% by weight)
  • Block isocyanate 2 Trixene BI 7992 manufactured by Baxenden (solid content: 70% by weight, isocyanate theoretical value: 9.2% by weight)
  • Block isocyanate 3 Trixene BI 7950 manufactured by Baxenden (solid content 65 wt%, isocyanate theoretical value 7.4 wt%)
  • Silver powder 1 Fukuda Metal Foil Powder Industry Co., Ltd.
  • Silver powder 3 DOWA Hightech Co., Ltd.
  • Silver powder 4 DOWA Hi-Tech Co., Ltd.
  • Organic solvent 1 Diethylene glycol monoethyl ether acetate (boiling point 217 ° C)
  • Organic solvent 2 Diethylene glycol monobutyl ether acetate (boiling point 247 ° C.)
  • Organic solvent 3 tetraethylene glycol dimethyl ether (boiling point 276 ° C.)
  • Organic solvent 4 Triethylene glycol monobutyl ether (boiling point 278 ° C.)
  • Organic solvent 5 triethylene glycol diacetate (boiling point 300 ° C.)
  • Dispersant 1 Disperbyk 2155 manufactured by Big Chemie Japan Co., Ltd. Leveling agent 1: Kyoeisha Chemical Co., Ltd. MK Conch
  • Tables 3 and 4 show the results of various evaluations performed on the conductive pastes of Comparative Examples 1 to 3. As shown in Tables 3 and 4, it can be seen that the conductive pastes of Examples 1 to 7 can achieve both good printability and ITO adhesion.
  • the conductive paste of the present invention can be used for the production of printed wiring used in various electronic devices. It can also be used for electromagnetic shielding applications, circuit formation applications for electronic components, and conductive adhesives for terminals and lead wires.

Abstract

 The electro-conductive paste has fine-line printability of 50μm or less, outstanding adhesion to an ITO film in an electro-conductive pattern formed by a low-temperature process at a temperature not exceeding 150°C, and achieves environmental reliability and high durability. The electro-conductive paste contains at least: a thermoplastic resin (A) and a thermoplastic resin (B), a hardener (C), an electro-conductive powder (D) and an organic solvent (E). The weight ratio of thermoplastic resin (A) to thermoplastic resin (B) does not exceed 4.0:1, and thermoplastic resin (A) is a polyurethane resin or a polyester resin having a weight-average molecular weight of at least 10,000 and a glass transition temperature of -10 to 150°C. Thermoplastic resin (B) is a polyester polyol and/or polyether polyol, having a number average molecular weight of 500 to 6,000.

Description

導電性ペースト、導電性塗膜、導電回路、導電性積層体及びタッチパネルConductive paste, conductive coating film, conductive circuit, conductive laminate, and touch panel
 本発明は、導電性ペーストおよびその利用に関するものであり、さらに詳しくは細線印刷適性に優れる導電性ペースト、これを用いてなる導電回路、導電性塗膜、該導電性塗膜が透明導電性層上に積層した導電性積層体、及びその導電性積層体を用いたタッチパネルに関する。 The present invention relates to a conductive paste and use thereof, and more specifically, a conductive paste excellent in fine line printability, a conductive circuit using the same, a conductive coating film, and the conductive coating film is a transparent conductive layer. The present invention relates to a conductive laminate laminated on top and a touch panel using the conductive laminate.
 指や専用のペン等で画面に触れることにより操作を行う透明タッチパネルはATM、カーナビゲーションシステム、ゲーム機、駅の切符自動販売機、複写機、博物館の解説端末、及びコンビニの情報端末等、幅広い用途に用いられ、普及が進んでいる。透明タッチパネルは、透明な二枚の導電性薄膜を重ね合わせてスイッチを形成するように構成されている。透明タッチパネルの透明導電性薄膜としては、蒸着法やスパッタ法により酸化インジウム・スズ膜(以下ITO膜と略記する場合がある)をポリエステルフィルム、ガラス等の基材に付着させ、そのITO膜をエッチングすることによりパターニングして形成されているものが一般的である。 Transparent touch panels that operate by touching the screen with a finger or a dedicated pen are widely used, including ATMs, car navigation systems, game machines, station ticket vending machines, photocopiers, museum commentary terminals, and convenience store information terminals. It is used for applications and is spreading. The transparent touch panel is configured to form a switch by superposing two transparent conductive thin films. As a transparent conductive thin film of a transparent touch panel, an indium tin oxide film (hereinafter sometimes abbreviated as ITO film) is attached to a substrate such as a polyester film or glass by vapor deposition or sputtering, and the ITO film is etched. In general, it is formed by patterning.
 タッチパネルには種々の方式があり、抵抗膜方式と静電容量方式が代表的な方式である。近年、スマートフォンやタブレットPCの普及に伴い注目を浴びている静電容量方式は、指や専用のペンでパネルに触れることで起こる放電現象等を感知してパネル上の触れられた位置を特定する方式で、多点感知できることが抵抗膜方式に対する特徴である。多点感知を高解像度で行うために、従来の抵抗膜方式と比較し、多数の電極回路配線を形成させる必要がある。さらには、近年、ディスプレイ画面をより大きくするために、また商品デザイン上の要求により、電極回路配線が配置される額縁部をより狭くしたいとの要求が高まっている。このような背景から、多数の配線電極を高密度で形成させることが要求され、電極回路配線の高細線化の要求が一層強くなっている。 There are various types of touch panels, and a resistive film type and a capacitance type are representative types. In recent years, the electrostatic capacity method, which has been attracting attention with the spread of smartphones and tablet PCs, identifies the touched position on the panel by sensing a discharge phenomenon that occurs when the panel is touched with a finger or a dedicated pen. It is a feature of the resistive film system that multipoint sensing is possible. In order to perform multipoint sensing with high resolution, it is necessary to form a larger number of electrode circuit wirings than in the conventional resistive film method. Furthermore, in recent years, in order to make the display screen larger and due to demands on product design, there is an increasing demand for a narrower frame portion on which the electrode circuit wiring is arranged. From such a background, it is required to form a large number of wiring electrodes at a high density, and the demand for high-definition electrode circuit wiring is becoming stronger.
 多数の電極回路配線を高密度で形成させるためには、細い配線を短い間隔で配置すれば良い。そのための工法としては、フォトリソグラフィー法が挙げられるが、廃液処理による環境負荷が大きく、工程が煩雑であり、コスト的観点を含め多くの課題を抱えている。また、上記フォトリソグラフィー法によって形成された導電回路は、アルミニウムや銅など金属のみで形成されたものであるため、折り曲げ等の物理的衝撃に対して弱いという問題がある。またフォトリソグラフィー法がその使用環境から用いられる基材の主流がガラスであるが、タッチパネルの軽量化が求められる今日、基材の選択性が限られるというデメリットも抱えている。
一方で印刷法は基材選択性に優れ、例えばガラス、ITOフィルム、ITOの一部をエッチングしたエッチングフィルム、PETフィルム、ポリイミドフィルム、などの基材を問わず、種々基材に導電パターンを形成することができる。さらに印刷法はコスト面や設備の簡易さのメリットがあり、印刷法にて導電性ペーストを用いて細線を形成することができれば、極めてメリットが生じる。また、導電性ペーストは基材との結着剤としてバインダー樹脂を用いているため、折り曲げ等の物理的衝撃に対してメリットがある。しかしながら、印刷法において、導電性ペーストを用いて細い導電パターンを形成させるためには、導電性ペーストの細線適性が必要となる。
In order to form a large number of electrode circuit wirings at a high density, thin wirings may be arranged at short intervals. As a construction method therefor, a photolithography method can be cited, but the environmental burden due to waste liquid treatment is large, the process is complicated, and there are many problems including a cost viewpoint. In addition, since the conductive circuit formed by the photolithography method is formed only of a metal such as aluminum or copper, there is a problem that it is weak against physical impact such as bending. In addition, the mainstream of the base material used in the photolithography method from the environment in which it is used is glass, but today there is a demerit that the selectivity of the base material is limited because the weight reduction of the touch panel is required.
On the other hand, the printing method is excellent in substrate selectivity. For example, glass, ITO film, etching film obtained by etching a part of ITO, PET film, polyimide film, etc. can do. Further, the printing method has advantages in terms of cost and simplicity of equipment, and if a thin line can be formed by using a conductive paste by the printing method, there will be an extremely merit. In addition, since the conductive paste uses a binder resin as a binder with the base material, there is a merit for physical impact such as bending. However, in order to form a thin conductive pattern using a conductive paste in the printing method, the fine line suitability of the conductive paste is required.
 抵抗膜方式の電極回路配線に求められる線幅は、ラインとスペースの幅(以下、L/Sと略記する)が各々200μm(200/200μm)以上であることが多く、比較的粗い導電パターンが形成できれば事足りていたが、静電容量方式のタッチパネルの普及により近年のL/Sの要求は100/100μm以下となっており、さらにはL/Sが50/50μm以下を求められる場合もあり、細線適性に対する要求は更に高まってきている。 As for the line width required for the electrode circuit wiring of the resistance film system, the width of the line and the space (hereinafter abbreviated as L / S) is often 200 μm (200/200 μm) or more, and the conductive pattern is relatively rough. It was enough if it could be formed, but due to the widespread use of capacitive touch panels, the recent requirement for L / S is 100/100 μm or less, and further L / S may be required to be 50/50 μm or less. The demand for fine wire suitability is increasing.
 そこで、低コストでかつ有害な廃液等を生じることのない導電パターン形成方法に関する研究が種々なされている。なかでも、導電性ペーストを凹状のパターンを有する印刷版に充填し、充填した導電性ペーストを表面にシリコーンゴムシートを有する印刷用ブランケットへ受理した後、前記印刷用ブランケットから被印刷基材上へ導電性ペーストを転写して、電極パターンを印刷し形成する方法であるグラビアオフセット印刷法は、微細導電パターンを高い精度で形成することが可能であることから、フォトリソグラフィー法の代替法として注目されている。 Therefore, various researches have been made on conductive pattern formation methods that are low in cost and do not generate harmful waste liquids. In particular, the conductive paste is filled in a printing plate having a concave pattern, and the filled conductive paste is received into a printing blanket having a silicone rubber sheet on the surface, and then from the printing blanket onto the substrate to be printed. Gravure offset printing, which is a method of printing and forming electrode patterns by transferring conductive paste, has attracted attention as an alternative to photolithography because it can form fine conductive patterns with high accuracy. ing.
 グラビアオフセット印刷法を用い、導電パターンを形成する方法として、従来、ガラス基板からなる被転写体へ導電性インキを転写して塗膜を製造する方法が知られている(例えば特許文献1参照)。しかし、かかる従来技術は高温での焼結が可能なガラス基板への適用を考え、設計された導電性インクを用いており、PETフィルムなどに設けられたITOフィルムを用いたタッチパネルへの適合は困難であるという問題点があった。 As a method of forming a conductive pattern using a gravure offset printing method, a method of manufacturing a coating film by transferring a conductive ink to a transfer target composed of a glass substrate is conventionally known (see, for example, Patent Document 1). . However, this conventional technology uses a designed conductive ink in consideration of application to a glass substrate that can be sintered at a high temperature, and is suitable for a touch panel using an ITO film provided on a PET film or the like. There was a problem that it was difficult.
 以上のように、グラビアオフセット印刷法で細線を高精度に形成することは可能だが、加工工程の省エネ化や、フィルム基材の耐熱性の観点から低温での熱処理工程が強く求められており、150℃以下のより低い熱処理で塗膜物性を発現することが求められている。さらに近年のタッチパネルの小型化、汎用化に伴い、使用される環境、使用する頻度は従来よりも多種多用となっていることから、求められる形成電極において、環境信頼性や耐久性はますます高いものが必要となっている。 As described above, it is possible to form fine lines with high precision by the gravure offset printing method, but there is a strong demand for a heat treatment process at a low temperature from the viewpoint of energy saving of the processing process and the heat resistance of the film substrate. It is required to develop the physical properties of the coating film with a lower heat treatment of 150 ° C. or lower. Furthermore, with the recent downsizing and generalization of touch panels, the environment used and the frequency of use have become more versatile than before, so the environmental reliability and durability of the required formed electrodes are higher. Things are needed.
特許第5088063号公報Japanese Patent No. 5088063
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、50μm以下の細線印刷性を有し、かつ150℃以下の低温プロセスにより形成された導電パターンにおいてITOフィルムとの密着性に優れ、さらに環境信頼性、高耐久性
を実現することができる導電性ペーストを提供することにある。
The present invention has been made against the background of such prior art problems. That is, the object of the present invention is to have fine line printability of 50 μm or less and excellent adhesion to an ITO film in a conductive pattern formed by a low temperature process of 150 ° C. or less, and further to provide environmental reliability and high durability. An object is to provide a conductive paste that can be realized.
 本発明者は、かかる目的を達成するために鋭意検討した結果、導電性ペースト中に数平均分子量の異なる2種以上の熱可塑性バインダー樹脂と硬化剤を含有させることで、グラビアオフセット印刷における細線印刷性を付与でき、かつ150℃以下の低温プロセスにより形成された導電パターンにおいてITOフィルムとの密着性に優れ、さらに環境信頼性
、高耐久性を保持できるという知見を得た。
As a result of intensive studies to achieve the above object, the present inventor has made fine line printing in gravure offset printing by including two or more kinds of thermoplastic binder resins having different number average molecular weights and a curing agent in the conductive paste. The conductive pattern formed by a low-temperature process of 150 ° C. or less has excellent adhesion to the ITO film, and further has obtained knowledge that environmental reliability and high durability can be maintained.
すなわち、本発明は以下の構成からなる。
(1)少なくとも熱可塑性樹脂(A)ならびに熱可塑性樹脂(B)、硬化剤(C)と導電性粉末(D)および有機溶剤(E)を含む導電性ペーストであって、熱可塑性樹脂(A)が熱可塑性樹脂(B)に対して、重量比が4.0倍以下であり、熱可塑性樹脂(A)が重量平均分子量10,000以上かつガラス転移温度-10~150℃の、ポリウレタン樹脂及び/またはポリエステル樹脂であり、さらに熱可塑性樹脂(B)が非晶ポリオールであり、数平均分子量500~6,000であることを特徴とする導電性ペースト。
(2)導電性粉末(D)の平均粒子径(D50)が少なくとも7μm以下であることを特徴とする(1)に記載の導電性ペースト。
(3)熱可塑性樹脂(B)がポリエステルポリオール及び/またはポリエーテルポリオール、及び/またはポリカーボネートポリオールであることを特徴とする(1)~(2)に記載の導電性ペースト。
(4)130℃、30分の熱処理における不揮発性の有機成分の酸価が20~500eq/tonであることを特徴とする請求項1~3のいずれかに記載の導電性ペースト。
(5)硬化剤(C)がイソシアネート化合物であり、かつ熱可塑性樹脂(B)に対しての硬化剤(C)の混合量は、熱可塑性樹脂(B)の水酸基に対して、硬化剤(C)のイソシアネート基が20~200モル%であることを特徴とする(1)~(4)のいずれかに記載の導電性ペースト。
(6)有機溶剤(E)が沸点100℃以上であり、かつ導電性ペースト全重量に対する重量分率が25重量%以下であることを特徴とする(1)~(5)のいずれかに記載の導電性ペースト。
(7)導電性粉末(D)が主として銀からなることを特徴とする(1)~(6)のいずれかに記載の導電性ペースト。
(8)グラビアオフセット印刷(導電性ペーストを凹状のパターンを有する印刷版に充填し、充填した導電性ペーストを表面にシリコーンゴムシートを有する印刷用ブランケットへ受理した後、前記印刷用ブランケットから被印刷基材上へ導電性ペーストを転写して、電極パターンを印刷し形成する方法)に用いられることを特徴とする(1)~(7)のいずれかに記載の導電性ペースト。
(9)前記(1)~(7)のいずれかに記載の導電性ペースをグラビアオフセット印刷して(導電性ペーストを凹状のパターンを有する印刷版に充填し、充填した導電性ペーストを表面にシリコーンゴムシートを有する印刷用ブランケットへ受理した後、前記印刷用ブランケットから被印刷基材上へ導電性ペーストを転写して、電極パターンを印刷し形成する方法から)得られる導電性塗膜を乾燥および/または硬化して得られる印刷物。
(1O)ライン/スペースのピッチが100μm以下である(9)に記載の印刷物。
(11)前記(9)~(10)記載の印刷物を透明導電性層上に積層した導電性積層体。(12)前記(11)に記載の導電性積層体を用いたタッチパネル。
That is, the present invention has the following configuration.
(1) A conductive paste containing at least a thermoplastic resin (A) and a thermoplastic resin (B), a curing agent (C), a conductive powder (D), and an organic solvent (E), wherein the thermoplastic resin (A ) Is a polyurethane resin having a weight ratio of 4.0 times or less with respect to the thermoplastic resin (B), the thermoplastic resin (A) having a weight average molecular weight of 10,000 or more and a glass transition temperature of −10 to 150 ° C. And / or a polyester resin, wherein the thermoplastic resin (B) is an amorphous polyol and has a number average molecular weight of 500 to 6,000.
(2) The conductive paste according to (1), wherein the conductive powder (D) has an average particle size (D50) of at least 7 μm or less.
(3) The conductive paste according to (1) or (2), wherein the thermoplastic resin (B) is a polyester polyol and / or a polyether polyol and / or a polycarbonate polyol.
(4) The conductive paste according to any one of claims 1 to 3, wherein the acid value of the nonvolatile organic component in a heat treatment at 130 ° C for 30 minutes is 20 to 500 eq / ton.
(5) The curing agent (C) is an isocyanate compound, and the mixing amount of the curing agent (C) with respect to the thermoplastic resin (B) is a curing agent (with respect to the hydroxyl group of the thermoplastic resin (B) ( The conductive paste according to any one of (1) to (4), wherein the isocyanate group of C) is 20 to 200 mol%.
(6) The organic solvent (E) has a boiling point of 100 ° C. or higher and a weight fraction based on the total weight of the conductive paste is 25% by weight or less, according to any one of (1) to (5) Conductive paste.
(7) The conductive paste according to any one of (1) to (6), wherein the conductive powder (D) is mainly composed of silver.
(8) Gravure offset printing (The conductive paste is filled in a printing plate having a concave pattern, and the filled conductive paste is received by a printing blanket having a silicone rubber sheet on its surface, and then printed from the printing blanket. The conductive paste according to any one of (1) to (7), which is used in a method of printing an electrode pattern by transferring a conductive paste onto a substrate.
(9) Gravure offset printing of the conductive pace according to any one of (1) to (7) above (filling a conductive paste with a printing plate having a concave pattern and applying the filled conductive paste on the surface After receiving the printing blanket having a silicone rubber sheet, the conductive coating is obtained by transferring the conductive paste from the printing blanket onto the substrate to be printed and printing and forming the electrode pattern. And / or printed matter obtained by curing.
(1O) The printed matter according to (9), wherein the line / space pitch is 100 μm or less.
(11) A conductive laminate in which the printed matter according to (9) to (10) is laminated on a transparent conductive layer. (12) A touch panel using the conductive laminate according to (11).
本発明の導電性ペーストは、少なくとも2種類の数平均分子量の異なる熱可塑性バインダー樹脂と硬化剤を用いることで、導電性ペーストの細線グラビアオフセット印刷性と150℃以下の低温プロセスにより形成された導電パターンにおいて、ITOフィルムとの密着
性に優れ、さらに環境信頼性、高耐久性を両立したものである。
The conductive paste of the present invention uses at least two types of thermoplastic binder resins having different number average molecular weights and a curing agent, so that the conductive paste is formed by a fine line gravure offset printability and a low temperature process of 150 ° C. or lower. The pattern has excellent adhesion to the ITO film, and has both environmental reliability and high durability.
 以下、本発明の実施形態の導電性ペーストについて説明する。
 本実施形態の導電性ペーストは、少なくとも熱可塑性樹脂(A)ならびに熱可塑性樹脂(B)、硬化剤(C)と導電性粉末(D)および有機溶剤(E)を含む導電性ペーストであって、熱可塑性樹脂(A)が熱可塑性樹脂(B)に対して、重量比が4.0倍以下であり、熱可塑性樹脂(A)が重量平均分子量10,000以上かつガラス転移温度-10~150℃のポリウレタン樹脂またはポリエステル樹脂であり、さらに熱可塑性樹脂(B)が非晶ポリオールであり、数平均分子量500~6,000であることを特徴とする。
Hereinafter, the conductive paste of the embodiment of the present invention will be described.
The conductive paste of this embodiment is a conductive paste containing at least the thermoplastic resin (A) and the thermoplastic resin (B), the curing agent (C), the conductive powder (D), and the organic solvent (E). The weight ratio of the thermoplastic resin (A) to the thermoplastic resin (B) is 4.0 times or less, the thermoplastic resin (A) has a weight average molecular weight of 10,000 or more and a glass transition temperature of −10 to It is a polyurethane resin or a polyester resin at 150 ° C., and the thermoplastic resin (B) is an amorphous polyol and has a number average molecular weight of 500 to 6,000.
 本発明の導電性ペーストに用いられる熱可塑性樹脂(A)、熱可塑性樹脂(B)は異なる数平均分子量を有し、熱可塑性樹脂(A)が熱可塑性樹脂(B)に対して、重量比が4.0倍以下である。このような2種の異なる数平均分子量の熱可塑性樹脂をバインダー樹脂として用いた場合、GPC分析における分子量分布曲線が双山以上のピークとなる場合が多い。これは、それぞれの熱可塑性樹脂の分子量分布のピークトップが異なるためであり、その結果、分子量分布が単一樹脂を用いた場合よりもブロードになる。すなわち、単一樹脂と比較し、バインダー樹脂全体の重量平均分子量Mwと数平均分子量Mnの比(Mw/Mn)が大きくなることになるが、これが、環境安定性、高耐久性と印刷性の両立の実現に寄与している。 The thermoplastic resin (A) and the thermoplastic resin (B) used in the conductive paste of the present invention have different number average molecular weights, and the thermoplastic resin (A) is in a weight ratio with respect to the thermoplastic resin (B). Is 4.0 times or less. When two types of thermoplastic resins having different number average molecular weights are used as the binder resin, the molecular weight distribution curve in GPC analysis often has a peak of more than two mountains. This is because the peak tops of the molecular weight distribution of each thermoplastic resin are different, and as a result, the molecular weight distribution becomes broader than when a single resin is used. That is, compared with a single resin, the ratio (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn of the whole binder resin is increased. This is environmental stability, high durability and printability. Contributes to realizing both.
 なお、本発明の導電性ペーストには、環境安定性、耐久性と印刷性を損なわなければ3種類以上の樹脂が配合されていても良い。 It should be noted that the conductive paste of the present invention may contain three or more types of resins as long as environmental stability, durability and printability are not impaired.
 熱可塑性樹脂(A)の種類は特に限定されないが、ポリウレタン樹脂、ポリエステル樹脂、であることが好ましい。熱可塑性樹脂(A)として、これらの樹脂を用いることで導電性ペーストの塗布又は印刷後の硬化において、塗膜の耐久性が確保でき、さらに塗膜内部の金属粉末等の導電性粉末相互の距離が接近することにより高導電性を発現することができる。 The type of the thermoplastic resin (A) is not particularly limited, but is preferably a polyurethane resin or a polyester resin. By using these resins as the thermoplastic resin (A), the durability of the coating film can be ensured in the application of the conductive paste or curing after printing, and the conductive powder such as metal powder inside the coating film can be secured between each other. High conductivity can be expressed by the closer distance.
 熱可塑性樹脂(A)がポリエステル樹脂の場合、全酸成分のうち芳香族ジカルボン酸は20モル%以上が好ましく、35モル%以上がより好ましく、50モル%以上がさらに好ましい。芳香族ジカルボン酸が20ル%未満では塗膜の強度が低下し、低温の耐屈曲性、耐熱性や耐湿性や耐熱衝撃性等の耐久性などが低下する可能性がある。芳香族ジカルボン酸の好ましい上限は100モル%である。 When the thermoplastic resin (A) is a polyester resin, the aromatic dicarboxylic acid in the total acid component is preferably 20 mol% or more, more preferably 35 mol% or more, and further preferably 50 mol% or more. If the aromatic dicarboxylic acid is less than 20% by weight, the strength of the coating film is lowered, and durability such as low-temperature flex resistance, heat resistance, moisture resistance, and thermal shock resistance may be lowered. The upper limit with preferable aromatic dicarboxylic acid is 100 mol%.
 ポリエステル樹脂に共重合する芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸などが挙げられる。この内、物性面と溶剤溶解性からテレフタル酸とイソフタル酸を併用することが好ましい。 Examples of the aromatic dicarboxylic acid copolymerized with the polyester resin include terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid. Of these, terephthalic acid and isophthalic acid are preferably used in combination in view of physical properties and solvent solubility.
 また、ポリエステルに共重合するその他のジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸などの脂肪族ジカルボン酸、炭素数12~28の2塩基酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、2-メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、ダイマー酸、水素添加ダイマー酸、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸などの脂環族ジカルボン酸、ヒドロキシ安息香酸、乳酸などのヒドロキシカルボン酸が挙げられるが、耐湿性の面からセバシン酸、アジピン酸、アゼライン酸、1,4-シクロヘキサンジメタノールが好ましい。 Other dicarboxylic acids copolymerized with the polyester include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid, dibasic acids having 12 to 28 carbon atoms, 1 , 4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, Dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as tricyclodecanedicarboxylic acid, hydroxycarboxylic acid such as hydroxybenzoic acid, lactic acid Acid But, sebacic acid from the viewpoint of moisture resistance, adipic acid, azelaic acid, 1,4-cyclohexane dimethanol are preferred.
 また、発明の内容を損なわない範囲で、無水トリメリット酸、無水ピロメリット酸などの多価のカルボン酸、フマール酸などの不飽和ジカルボン酸、さらに、5-スルホイソフタル酸ナトリウム塩などのスルホン酸金属塩基含有ジカルボン酸を併用してもよい。また、ポリエステル樹脂を重合後、無水トリメリット酸、無水フタル酸などの酸無水物を後付加して酸価を付与してもよい。 Further, within the scope of not impairing the contents of the invention, polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and sulfonic acids such as sodium 5-sulfoisophthalate. A metal base-containing dicarboxylic acid may be used in combination. Further, after polymerization of the polyester resin, an acid anhydride such as trimellitic anhydride or phthalic anhydride may be post-added to give an acid value.
 ポリエステル樹脂に共重合するグリコール成分は、以下に示す公知のグリコールを使用できる。例えば、エチレングリコール、ネオペンチルグリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、2,2-ジエ1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、1,10-デカンジオールなどのアルキレングリコール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、トリシクロデカングリコール、ダイマージオールなどの脂環族グリコール、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールなどのポリエーテル系ジオールなどが挙げられる。また、ビスフェノールAのアルキレンオキサイド付加物、ビスフェノールFのアルキレンオキサイド付加物やトリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリグリセリンなどの多価ポリオールを併用してもよい。 As the glycol component copolymerized with the polyester resin, the following known glycols can be used. For example, ethylene glycol, neopentyl glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 2,2-die 1,3-propanediol, 2-methyl- 1,3-propanediol, 1,4-butanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, , 5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 1,9-nonanediol, 1,10-decanediol, etc. Alkylene glycol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol , Tricyclodecane glycol, alicyclic glycols such as dimer diol, diethylene glycol, polyethylene glycol, and polyether diols such as polytetramethylene glycol. Further, an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of bisphenol F, or a polyvalent polyol such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, or polyglycerin may be used in combination.
 ポリエステル樹脂としては、接着性、屈曲性、及び溶剤溶解性などから融点を有しない(非晶性であることを示す)ことが好ましい。ここで言う融点を有しないとは示差走査型熱量計(DSC)を用いて測定したときに明確な融解ピークを示さないことである。 The polyester resin preferably has no melting point (indicating that it is amorphous) from the viewpoint of adhesiveness, flexibility, solvent solubility, and the like. The term “having no melting point” as used herein means that no clear melting peak is exhibited when measured using a differential scanning calorimeter (DSC).
 熱可塑性樹脂(A)がポリウレタン樹脂の場合、非晶性ポリオールとポリイソシアネート化合物、必要により鎖延長剤を配合し、公知の方法で合成される。ポリウレタン樹脂は、溶液で重合できるため、ポリエステル樹脂より高分子量のものを得やすい特徴がある。非晶性ポリオールの好ましい例としては、(メタ)アクリルポリオール、ポリカーボネートジオール、ポリブタジエンポリオール、ポリエステルポリオールやポリエーテルポリオールなどが挙げられる。接着性、耐屈曲性、耐久性よりポリカーボネートジオール、ポリエーテルポリオール、ポリエステルポリオールがより好ましく、分子設計の自由度からポリエステルポリオールがさらに好ましい。 When the thermoplastic resin (A) is a polyurethane resin, it is synthesized by a known method by blending an amorphous polyol, a polyisocyanate compound, and, if necessary, a chain extender. Since the polyurethane resin can be polymerized in a solution, it has a feature that it can easily obtain a higher molecular weight than the polyester resin. Preferable examples of the amorphous polyol include (meth) acrylic polyol, polycarbonate diol, polybutadiene polyol, polyester polyol and polyether polyol. Polycarbonate diol, polyether polyol, and polyester polyol are more preferable from the viewpoint of adhesiveness, flex resistance, and durability, and polyester polyol is more preferable from the viewpoint of freedom of molecular design.
 熱可塑性樹脂(A)がポリウレタン樹脂の場合に使用する非晶性ポリオールがポリエステルポリオールの場合、好ましい成分は、前記のポリエステル樹脂と同様であるが、分子量としては1,000以上が好ましく、上限は20,000以下が好ましく、より好ましくは10,000以下である。 When the amorphous polyol used when the thermoplastic resin (A) is a polyurethane resin, the preferred component is the same as that of the polyester resin, but the molecular weight is preferably 1,000 or more, and the upper limit is It is preferably 20,000 or less, more preferably 10,000 or less.
 ポリウレタン樹脂を合成する際、鎖延長剤として使用できる化合物には水酸基及びアミノ基を有するものが好ましく、いずれか一方を有するものでも双方を有するものであっても良い。具体的な成分の例としては、ジメチロールブタン酸、ジメチロールプロピオン酸の他、1,2-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,2-ジメチル-3-ヒドロキシプロピル-2’,2’-ジメチル-3’-ヒドロキシプロパネート、2-ノルマルブチル-2-エチル-1,3-プロパンジオール、3-エチル-1,5-ペンタンジオール、3-プロピル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、3-オクチル-1,5-ペンタンジオール、3-フェニル-1,5-ペンタンジオール、2,5-ジメチル-3-ナトリウムスルホ-2,5-ヘキサンジオール、ダイマージオール(たとえば、ユニケマ・インターナショナル社製PRIPOOL-2033)等の1分子中に2個の水酸基を有する化合物、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリグリセリン等の多価アルコール、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の1分子に1個以上の水酸基とアミノ基を有するアミノアルコール、エチレンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンなどの脂肪族ジアミンやメタキシレンジアミン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンなどの1分子中に2個のアミノ基を有する化合物が挙げられる。これらの化合物は単独で用いてもよいし複数を併用しても何ら問題はない。 When synthesizing a polyurethane resin, the compound that can be used as a chain extender preferably has a hydroxyl group and an amino group, and may have either one or both. Specific examples of components include dimethylolbutanoic acid and dimethylolpropionic acid, 1,2-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 2 , 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2 , 2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3′-hydroxypropanate, 2-normalbutyl-2-ethyl-1,3-propanediol, 3-ethyl-1,5-pentane Diol, 3-propyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 3-octyl-1,5-pentane In one molecule such as all, 3-phenyl-1,5-pentanediol, 2,5-dimethyl-3-sodium sulfo-2,5-hexanediol, dimer diol (eg, PRIPOOL-2033 manufactured by Unikema International) A compound having two hydroxyl groups, trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, polyglycerin and other polyhydric alcohols, monoethanolamine, diethanolamine, triethanolamine and one molecule with one or more hydroxyl groups Amino alcohol having an amino group, ethylenediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, etc. Aliphatic Jami And compounds having two amino groups in one molecule such as aromatic diamines such as metaxylenediamine, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenyl ether. . These compounds may be used alone or in combination, and there is no problem.
 ポリウレタン樹脂を合成する際に使用するポリイソシアネート化合物は、特に限定されないが、芳香族、脂肪族、脂環族ジイソシアネートなどが好ましい。例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、2,6-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、4,4’-ジフェニレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、1,5-ナフタレンジイソシアネート、m-キシレンジイソシアネート、イソホロンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート等が挙げられる。 The polyisocyanate compound used when synthesizing the polyurethane resin is not particularly limited, but aromatic, aliphatic, alicyclic diisocyanate and the like are preferable. For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, m-phenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate 2,6-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 4,4′-diphenylene diisocyanate, 4,4′-diisocyanate diphenyl ether, 1,5-naphthalene diisocyanate, m-xylene Examples include diisocyanate, isophorone diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and toluene diisocyanate.
 熱可塑性樹脂(A)の数平均分子量(Mn(A))は10,000~70,000であり、より好ましくは10,000~40,000、さらに好ましくは10,000~30,000の範囲である。Mn(A)が低すぎると、耐久性、環境安定性の面で好ましくない。一方、Mn(A)が高すぎると、樹脂の凝集力が増し、耐久性等は向上するものの、グラビアオフセット印刷における細線印刷適性が顕著に低下する。 The number average molecular weight (Mn (A)) of the thermoplastic resin (A) is 10,000 to 70,000, more preferably 10,000 to 40,000, and still more preferably 10,000 to 30,000. It is. If Mn (A) is too low, it is not preferable in terms of durability and environmental stability. On the other hand, if Mn (A) is too high, the cohesive force of the resin increases and the durability and the like are improved, but the fine line printability in gravure offset printing is significantly reduced.
 熱可塑性樹脂(A)のガラス転移温度は-10℃以上であることが好ましく、0℃以上であることがより好ましい。ガラス転移温度が低すぎると、高温時に樹脂が軟化するため、ペーストから形成される導電性薄膜の信頼性が低下するおそれがあり、また、表面硬度の低下を誘発しタック性により製造工程及び/又は使用の際に接触相手側へのペースト含有成分の移行が生じて導電性薄膜の信頼性が低下するおそれがある。一方、熱可塑性樹脂(A)のガラス転移温度は、印刷性、密着性、溶解性、ペースト粘度、及び印刷性等を考慮すると150℃以下が好ましく、120℃以下がより好ましく、100℃以下が更に好ましい。 The glass transition temperature of the thermoplastic resin (A) is preferably −10 ° C. or higher, more preferably 0 ° C. or higher. If the glass transition temperature is too low, the resin softens at a high temperature, which may reduce the reliability of the conductive thin film formed from the paste. Alternatively, the paste-containing component may move to the contact partner side during use, and the reliability of the conductive thin film may be reduced. On the other hand, the glass transition temperature of the thermoplastic resin (A) is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and preferably 100 ° C. or lower in consideration of printability, adhesion, solubility, paste viscosity, printability, and the like. Further preferred.
 本発明においては、導電性ペーストの固形の有機成分中にカルボキシル基を含有し、該カルボキシル基量(酸価)が所定範囲内の量であることが好ましい。好ましい実施様態として熱可塑性樹脂(A)が、特定の範囲の酸価を有することが好ましい。熱可塑性樹脂(A)として特定の範囲の酸価を有する樹脂を用いることにより、形成される導電性薄膜の基材に対する密着性を著しく向上させることができる。熱可塑性樹脂(A)の酸価は、20~500eq/tonであることが好ましく、30~350eq/tonであることがより好ましい。熱可塑性樹脂(A)の酸価が低すぎると、形成される導電性薄膜と基材との密着性が低くなる傾向がある。一方、熱可塑性樹脂(A)の酸価が高すぎると、形成される導電性薄膜の吸水性が高くなる上、カルボキシル基による触媒作用により熱可塑性樹脂の加水分解が促進される可能性があり、導電性薄膜の信頼性の低下につながる傾向がある。 In the present invention, it is preferable that the solid organic component of the conductive paste contains a carboxyl group, and the amount (acid value) of the carboxyl group is within a predetermined range. As a preferred embodiment, the thermoplastic resin (A) preferably has an acid value within a specific range. By using a resin having an acid value in a specific range as the thermoplastic resin (A), the adhesion of the formed conductive thin film to the substrate can be remarkably improved. The acid value of the thermoplastic resin (A) is preferably 20 to 500 eq / ton, and more preferably 30 to 350 eq / ton. If the acid value of the thermoplastic resin (A) is too low, the adhesion between the formed conductive thin film and the substrate tends to be low. On the other hand, if the acid value of the thermoplastic resin (A) is too high, the water-absorbing property of the formed conductive thin film increases, and the hydrolysis of the thermoplastic resin may be accelerated by the catalytic action of the carboxyl group. There is a tendency that the reliability of the conductive thin film is lowered.
 また、導電性ペースト中にカルボキシ基を有するジオール化合物を添加することも可能である。例として、ジメチロールプロピオン酸、ジメチロールブタン酸などのジメチロールアルカン酸とこれらジメチロールアルカン酸のアミン塩などが挙げられる。これらカルボキシ基を有するジオール化合物を添加することで、硬化後の塗膜にカルボキシ基を容易に導入することができ、ITOフィルムへの密着性を向上させることが可能である。また、カルボキシ基を有するジオール化合物は、130℃、30分の熱処理における不揮発性の有機成分の酸価が20~500eq/tonになるように添加することが好ましく、30~350eq/tonがより好ましい。 Also, it is possible to add a diol compound having a carboxy group to the conductive paste. Examples include dimethylolalkanoic acids such as dimethylolpropionic acid and dimethylolbutanoic acid, and amine salts of these dimethylolalkanoic acids. By adding these diol compounds having a carboxy group, the carboxy group can be easily introduced into the cured coating film, and the adhesion to the ITO film can be improved. The diol compound having a carboxy group is preferably added so that the acid value of the nonvolatile organic component in a heat treatment at 130 ° C. for 30 minutes is 20 to 500 eq / ton, more preferably 30 to 350 eq / ton. .
 熱可塑性樹脂(B)の種類は特に限定されないが、1分子に2個以上のイソシアネート基と反応しうる官能基を有する非晶性ポリオールであることが好ましい。例として、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールが挙げられ、分子設計の自由度からポリエステルポリオールがより好ましい。熱可塑性樹脂(A)よりも数平均分子量の低い熱可塑性樹脂(B)を配合することにより、グラビアオフセット印刷を行う際のシリコーンブランケットからフィルムへの導電性ペーストの転写性を改良することができ、細線印刷性が顕著に向上する。 The kind of the thermoplastic resin (B) is not particularly limited, but is preferably an amorphous polyol having a functional group capable of reacting with two or more isocyanate groups in one molecule. Examples include polyester polyols, polyether polyols, and polycarbonate polyols, and polyester polyols are more preferable because of the degree of freedom in molecular design. By blending the thermoplastic resin (B) having a number average molecular weight lower than that of the thermoplastic resin (A), the transferability of the conductive paste from the silicone blanket to the film when performing gravure offset printing can be improved. Fine line printability is significantly improved.
 熱可塑性樹脂(B)としてポリエステルポリオールを使用する場合の好ましいジカルボン酸成分としては、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸などの脂肪族ジカルボン酸、炭素数12~28の2塩基酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、2-メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、ダイマー酸、水素添加ダイマー酸、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸などの脂環族ジカルボン酸、ヒドロキシ安息香酸、乳酸などのヒドロキシカルボン酸が挙げられる。これらは、単独で使用しても、2種以上の併用でもよい。また、この内、物性面と溶剤溶解性からテレフタル酸、イソフタル酸を併用することが好ましい。 As a preferable dicarboxylic acid component in the case of using a polyester polyol as the thermoplastic resin (B), terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as dodecane dicarboxylic acid and azelaic acid, dibasic acids having 12 to 28 carbon atoms, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl Hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalene dicarboxylic Acid Alicyclic dicarboxylic acids such as tricyclodecane acid, hydroxybenzoic acid, hydroxycarboxylic acids such as lactic acid. These may be used alone or in combination of two or more. Of these, terephthalic acid and isophthalic acid are preferably used in combination in view of physical properties and solvent solubility.
 また、発明の内容を損なわない範囲で、無水トリメリット酸、無水ピロメリット酸などの多価のカルボン酸、フマール酸などの不飽和ジカルボン酸、さらに、5-スルホイソフタル酸ナトリウム塩などのスルホン酸金属塩基含有ジカルボン酸を併用してもよい。また、ポリエステルポリオールを重合後、無水トリメリット酸、無水フタル酸などの酸無水物を後付加して酸価を付与してもよい。 Further, within the scope of not impairing the contents of the invention, polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and sulfonic acids such as sodium 5-sulfoisophthalate. A metal base-containing dicarboxylic acid may be used in combination. Further, after polymerization of the polyester polyol, an acid anhydride such as trimellitic anhydride or phthalic anhydride may be post-added to give an acid value.
 さらに、ポリエステルポリオールを使用する場合のグリコール成分は、以下に示す公知のグリコールを使用できる。例えば、エチレングリコール、ネオペンチルグリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、2,2-ジエ1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、1,10-デカンジオールなどのアルキレングリコール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、トリシクロデカングリコール、ダイマージオールなどの脂環族グリコール、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールなどのポリエーテル系ジオールなどが挙げられる。また、ビスフェノールAのアルキレンオキサイド付加物、ビスフェノールFのアルキレンオキサイド付加物やトリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリグリセリンなどの多価ポリオールを併用してもよい。さらに、例えばε-カプロラクトンを多価アルコールとして用いて開環重合して得られるようなポリカプロラクトンポリオール類等も挙げられる。
これらは、単独で使用しても、2種以上の併用でもよい。
Furthermore, the following well-known glycol can be used for the glycol component in the case of using polyester polyol. For example, ethylene glycol, neopentyl glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 2,2-die 1,3-propanediol, 2-methyl- 1,3-propanediol, 1,4-butanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, , 5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 1,9-nonanediol, 1,10-decanediol, etc. Alkylene glycol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol , Tricyclodecane glycol, alicyclic glycols such as dimer diol, diethylene glycol, polyethylene glycol, and polyether diols such as polytetramethylene glycol. Further, an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of bisphenol F, or a polyvalent polyol such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, or polyglycerin may be used in combination. Further examples include polycaprolactone polyols obtained by ring-opening polymerization using ε-caprolactone as a polyhydric alcohol.
These may be used alone or in combination of two or more.
 熱可塑性樹脂(B)がポリエーテルポリオール類の場合、例えばグリセリンやプロピレングリコール等の多価アルコールの単独または混合物に、エチレンオキサイド、プロピレンオキサイドなどのアルキレンオキサイドの単独または混合物を付加して得られるポリエーテルポリオール類、ポリテトラメチレングリコール類、更にアルキレンオキサイドにエチレンジアミン、エタノールアミン類などの多官能化合物を反応させて得られるポリエーテルポリオール類及び、これらポリエーテル類を媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール類等が含まれる。 When the thermoplastic resin (B) is a polyether polyol, for example, a polymer obtained by adding an alkylene oxide, such as ethylene oxide or propylene oxide, alone or a mixture to a polyhydric alcohol, such as glycerin or propylene glycol, alone or in a mixture. Ether polyols, polytetramethylene glycols, polyether polyols obtained by reacting alkylene oxide with polyfunctional compounds such as ethylenediamine and ethanolamine, and obtained by polymerizing acrylamide etc. using these polyethers as a medium And so-called polymer polyols.
 熱可塑性樹脂(B)がポリカーボネートポリオール類の場合、1種類または2種類以上の直鎖状脂肪族ジオール由来の繰り返し単位を構成単位として含むポリカーボネートジオール、1種類または2種類以上の脂環式ジオールに由来の繰り返し単位を構成単位として含むポリカーボネートジオール、またはこれら両方のジオール由来の繰り返し単位を構成単位として含むポリカーボネートジオールが挙げられる。具体的な構成成分としては、直鎖状脂肪族ジオールとして1,6-ヘキサンジオール、1,5-ペンタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオールなどが挙げられ、脂環式ジオールとして1,4-シクロヘキサンジメタノールなどが挙げられる。 When the thermoplastic resin (B) is a polycarbonate polyol, a polycarbonate diol containing one or two or more linear aliphatic diol-derived repeating units as a constituent unit, one or two or more alicyclic diols Examples thereof include polycarbonate diol containing a repeating unit derived from a structural unit, or polycarbonate diol containing a repeating unit derived from both of these diols as a structural unit. Specific examples of constituents include 1,6-hexanediol, 1,5-pentanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol as linear aliphatic diols. Examples of the alicyclic diol include 1,4-cyclohexanedimethanol.
 熱可塑性樹脂(B)の数平均分子量は500~6,000が好ましく、500~4,000がより好ましい。数平均分子量が低すぎると、導電性ペーストの粘度が低くなり、細線印刷適性が低下するので好ましくない。一方、数平均分子量が高すぎると、導電性ペーストの粘度が高く、グラビアオフセット印刷における細線印刷適性が顕著に低下する。また、熱可塑性樹脂(B)は、ITOフィルムへの密着性向上のため、所定範囲内の酸価を有しても良い。 The number average molecular weight of the thermoplastic resin (B) is preferably 500 to 6,000, more preferably 500 to 4,000. If the number average molecular weight is too low, the viscosity of the conductive paste is lowered, and the suitability for fine line printing is lowered, which is not preferable. On the other hand, if the number average molecular weight is too high, the viscosity of the conductive paste is high, and the fine line printability in gravure offset printing is significantly reduced. The thermoplastic resin (B) may have an acid value within a predetermined range in order to improve adhesion to the ITO film.
 熱可塑性樹脂(A)が熱可塑性樹脂(B)に対して、重量比が4.0倍以下である必要があり、より好ましくは3.5倍以下、更に好ましくは3.0倍以下である。重量比が高すぎると、導電性ペーストの粘度が高く、グラビアオフセット印刷における細線印刷適性が顕著に低下する。 The weight ratio of the thermoplastic resin (A) to the thermoplastic resin (B) needs to be 4.0 times or less, more preferably 3.5 times or less, still more preferably 3.0 times or less. . If the weight ratio is too high, the viscosity of the conductive paste is high, and the fine line printability in gravure offset printing is significantly reduced.
 本発明の導電性ペーストにおいて、上記に記載の熱可塑性樹脂以外のポリウレタン系樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、スチレン-アクリル樹脂、スチレン-ブタジエン共重合体、ポリスチレン、ポリアミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、塩化ビニル-酢酸ビニル共重合樹脂、エチレン-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂、セルロースおよび変性セルロース類等を併用することにも何ら制限は設けない。 In the conductive paste of the present invention, polyurethane resins other than the thermoplastic resins described above, polyester resins, epoxy resins, phenol resins, acrylic resins, styrene-acrylic resins, styrene-butadiene copolymers, polystyrene, polyamide resins, There is no restriction on the combined use of polyamideimide resin, polycarbonate resin, vinyl chloride-vinyl acetate copolymer resin, ethylene-vinyl acetate copolymer resin, polyvinyl butyral resin, cellulose and modified celluloses.
 本発明のバインダー樹脂に反応し得る硬化剤(C)の種類は特に限定されないが、接着性、耐屈曲性、硬化性等からイソシアネート化合物が特に好ましい。さらに、これらのイソシアネート化合物として、イソシアネート基をブロック化したものを使用すると、貯蔵安定性が向上し、好ましい。イソシアネート化合物以外の硬化剤としては、メチル化メラミン、ブチル化メラミン、ベンゾグアナミン、尿素樹脂等のアミノ樹脂、酸無水物、イミダゾール類、エポキシ樹脂、フェノール樹脂等の公知の化合物が挙げられる。これらの硬化剤には、その種類に応じて選択された公知の触媒あるいは促進剤を併用することもできる。熱可塑性樹脂(B)と硬化剤(C)の配合比は、熱塑性樹脂(B)の水酸基に対して、硬化剤(C)の水酸基と反応しうる官能基が、20~200モル%であることが好ましく、50~150モル%であることがより好ましく、75~125モル%であることがさらに好ましい。 The kind of the curing agent (C) that can react with the binder resin of the present invention is not particularly limited, but an isocyanate compound is particularly preferable from the viewpoint of adhesion, flex resistance, curability, and the like. Furthermore, it is preferable to use those having an isocyanate group blocked as these isocyanate compounds because the storage stability is improved. Examples of curing agents other than isocyanate compounds include known compounds such as amino resins such as methylated melamine, butylated melamine, benzoguanamine, and urea resin, acid anhydrides, imidazoles, epoxy resins, and phenol resins. These curing agents can be used in combination with a known catalyst or accelerator selected according to the type. The blending ratio of the thermoplastic resin (B) and the curing agent (C) is such that the functional group capable of reacting with the hydroxyl group of the curing agent (C) is 20 to 200 mol% with respect to the hydroxyl group of the thermoplastic resin (B). It is preferably 50 to 150 mol%, more preferably 75 to 125 mol%.
 本発明の導電性ペーストに配合することができるイソシアネート化合物の例としては、芳香族又は脂肪族のジイソシアネート、3価以上のポリイソシアネート等があり、低分子化合物、高分子化合物のいずれでもよい。例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、等の芳香族ジイソシアネート、水素化ジフェニルメタンジイソシアネート、水素化キシリレンジイソシアネート、ダイマー酸ジイソシアネート、イソホロンジイソシアネート等の脂環族ジイソシアネート、あるいはこれらのイソシアネート化合物の3量体、及びこれらのイソシアネート化合物の過剰量と例えばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の低分子活性水素化合物又は各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物等と反応させて得られる末端イソシアネート基含有化合物が挙げられる。また、イソシアネート基のブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等のオキシム類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノール等のハロゲン置換アルコール類、t-ブタノール、t-ペンタノール等の第三級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタム等のラクタム類、3,5-ジメチルピラゾール等のピラゾール類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステル等の活性メチレン化合物、メルカプタン類、イミン類、イミダゾール類、尿素類、ジアリール化合物類、重亜硫酸ソーダ等も挙げられる。このうち、硬化性よりオキシム類、ピラゾール類、活性メチレン類、イミダゾール類、アミン類が特に好ましい。 Examples of isocyanate compounds that can be blended in the conductive paste of the present invention include aromatic or aliphatic diisocyanates, trivalent or higher polyisocyanates, and any of low molecular compounds and high molecular compounds may be used. For example, aliphatic diisocyanates such as tetramethylene diisocyanate and hexamethylene diisocyanate, aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate, etc. Alicyclic diisocyanates, or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine Low molecular active hydrogen compounds such as Polyester polyols, polyether polyols, terminal isocyanate group-containing compounds obtained by reacting a polymeric active hydrogen compound such as polyamides and the like. Examples of the blocking agent for isocyanate groups include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, and oximes such as acetoxime, methylethyl ketoxime, and cyclohexanone oxime. Alcohols such as methanol, ethanol, propanol and butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, and tertiary alcohols such as t-butanol and t-pentanol. , Ε-caprolactam, δ-valerolactam, γ-butyrolactam, β-propylolactam and other lactams, and 3,5-dimethylpyrazole and other pyrazoles. Aromatic amines, imides, acetylacetone, acetoacetic ester, active methylene compounds such as malonic acid ethyl ester, mercaptans, imines, imidazoles, ureas, diaryl compounds, sodium bisulfite, etc. can be mentioned. Of these, oximes, pyrazoles, active methylenes, imidazoles, and amines are particularly preferable from the viewpoint of curability.
 本実施形態の導電性ペーストにおける導電性粉末(D)は、形成される導電性パターンにおける導電性を付与するために用いられる。
 本発明における導電性粉末(D)としては、銀粉、金粉、白金粉、パラジウム粉等の貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉等の卑金属粉が好ましい。また、卑金属やシリカ等の無機物からなる異種粒子を銀等の貴金属でめっきしためっき粉、銀等の貴金属で合金化した卑金属粉等が挙げられる。また、本発明における導電性粉末(D)として、カーボンブラック、グラファイト粉などの炭素系のフィラー等の非金属からなる導電性粉末を用いても良い。カーボンブラック、グラファイト粉を含む場合の、カーボンブラック及び/又はグラファイト粉の含有量としては、金属粉末100質量部に対して、25質量部以下、さらに好ましくは11質量部以下で配合することができる。これらの導電性粉末は、単独で用いてもよく、また併用してもよい。これらの中で、銀粉単独又は銀粉を主体とするものが高い導電性を示す塗膜を得やすい点で、特に好ましい。
The conductive powder (D) in the conductive paste of the present embodiment is used for imparting conductivity in the formed conductive pattern.
The conductive powder (D) in the present invention is preferably noble metal powder such as silver powder, gold powder, platinum powder and palladium powder, and base metal powder such as copper powder, nickel powder, aluminum powder and brass powder. Further, a plating powder obtained by plating different kinds of particles made of an inorganic material such as a base metal or silica with a noble metal such as silver, a base metal powder obtained by alloying with a noble metal such as silver, or the like can be given. Moreover, you may use the electroconductive powder which consists of nonmetals, such as carbon-type fillers, such as carbon black and graphite powder, as electroconductive powder (D) in this invention. When carbon black and graphite powder are included, the carbon black and / or graphite powder content may be 25 parts by mass or less, more preferably 11 parts by mass or less with respect to 100 parts by mass of the metal powder. . These conductive powders may be used alone or in combination. Among these, silver powder alone or those mainly composed of silver powder is particularly preferable in that it is easy to obtain a coating film exhibiting high conductivity.
 導電性粉末(D)の形状は特に限定されないが、好ましい形状の例としては、公知のフレーク状(リン片状)、球状、樹枝状(デンドライト状)、特開平9-306240号公報に記載されているように1次粒子が3次元状に凝集した形状(凝集粉)等を挙げることができる。これらの中で、フレーク状、球状、凝集粉が好ましく、単独で用いてもよく、また併用してもよい。 The shape of the conductive powder (D) is not particularly limited, but examples of preferable shapes are described in the known flake shape (flaky shape), spherical shape, dendritic shape (dendritic shape), and JP-A-9-306240. As shown, the shape (aggregated powder) in which the primary particles are aggregated three-dimensionally can be exemplified. Among these, flaky, spherical, and agglomerated powders are preferable, and they may be used alone or in combination.
 導電性粉末(D)の粒子径は特に限定されないが、細線適性を付与するという観点から、中心径(D50)が7μm以下であるものが好ましい。中心径が7μmより大きい導電性粉末を用いた場合には、形成された細線の形状が悪く、細線同士が接触を起こし短絡を招く可能性がある。 The particle diameter of the conductive powder (D) is not particularly limited, but from the viewpoint of imparting fine wire suitability, a powder having a center diameter (D50) of 7 μm or less is preferable. When the conductive powder having a center diameter larger than 7 μm is used, the shape of the formed fine wires is poor, and the fine wires may come into contact with each other, causing a short circuit.
  導電ペーストを硬化させた導電性塗膜の比抵抗は、優れた導電回路を得るという観点から5.0×10-2以下が好ましく、5.0×10-3以下がより好ましく、5.0×10-4以下がさらに好ましい。 The specific resistance of the conductive coating film obtained by curing the conductive paste is preferably 5.0 × 10 −2 or less, more preferably 5.0 × 10 −3 or less, from the viewpoint of obtaining an excellent conductive circuit. More preferably, it is × 10 −4 or less.
 本発明の導電性ペーストには、下記の無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。中でも、本発明の導電性ペーストにおいては、印刷性を付与するという観点で、シリカが好適である。すなわち、シリカが存在するとシリカを含むフィラー同士の物理凝集力、さらには水素結合形成による擬似架橋によって粘度を高めることができる。使用するシリカにおいてはその粒子径や、その親水性、疎水性は問わずに使用することができる。 The following inorganic substances can be added to the conductive paste of the present invention. Examples of inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; various oxidations such as titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica and colloidal silica Products: various titanate compounds such as calcium titanate, magnesium titanate, strontium titanate; sulfides such as molybdenum disulfide; various fluorides such as magnesium fluoride and carbon fluoride; aluminum stearate, calcium stearate Um, zinc stearate, various metal soaps such as magnesium stearate and the like; may be used talc, bentonite, talc, calcium carbonate, bentonite, kaolin, glass fiber, mica or the like. By adding these inorganic substances, it may be possible to improve printability and heat resistance, as well as mechanical properties and long-term durability. Among these, in the conductive paste of the present invention, silica is preferable from the viewpoint of imparting printability. That is, when silica is present, the viscosity can be increased by physical cohesion between fillers containing silica and by pseudo-crosslinking by hydrogen bond formation. The silica to be used can be used regardless of its particle diameter, its hydrophilicity or hydrophobicity.
 また、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、顔料、染料を用いることができる。さらには樹脂分解抑制剤としてカルボジイミド、エポキシ等を適宜使用することもできる。これらは単独もしくは併用で用いることができる。 Further, thixotropic agents, antifoaming agents, flame retardants, tackifiers, hydrolysis inhibitors, leveling agents, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, pigments and dyes can be used. Furthermore, carbodiimide, epoxy, or the like can be appropriately used as a resin degradation inhibitor. These can be used alone or in combination.
 本発明における有機溶剤(E)としては、0.1013MPaにおける沸点が100℃以上、350℃未満であることが好ましく、より好ましくは沸点が150℃以上、330℃未満である。さらに好ましくは沸点が180℃以上、320℃未満である。有機溶剤(E)の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、低温乾燥工程が求められる場合(例えば150℃以下)において、溶剤が塗膜中に多量に残存する可能性があり、塗膜の信頼性低下を引き起こす懸念がある。 As the organic solvent (E) in the present invention, the boiling point at 0.1013 MPa is preferably 100 ° C. or higher and lower than 350 ° C., more preferably 150 ° C. or higher and lower than 330 ° C. More preferably, the boiling point is 180 ° C. or higher and lower than 320 ° C. If the boiling point of the organic solvent (E) is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, when a low-temperature drying step is required (for example, 150 ° C. or less), a large amount of the solvent may remain in the coating film, causing a decrease in the reliability of the coating film. There are concerns.
 また有機溶剤(E)としては、熱可塑性樹脂(A)、熱可塑性樹脂(B)と硬化剤(C)が可溶であり、かつ、導電性粉末(D)を良好に分散させることができるものが好ましい。例えば、シクロヘキサノン、トルエン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン、トリアミルベンゼン、n-ドデカノール、ジエチレングリコール、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノアセテート、トリエチレングリコールジアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコール、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールモノブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、酪酸ベンジル、安息香酸ベンジルなどが挙げられる。また、石油系炭化水素類としては、新日本石油(株)製のAFソルベント4号、5号、6号、7号、および0号ソルベントHなども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。
 このような有機溶剤は、導電性ペーストが、印刷などに適した粘度となるように適宜含有される。
Further, as the organic solvent (E), the thermoplastic resin (A), the thermoplastic resin (B) and the curing agent (C) are soluble, and the conductive powder (D) can be well dispersed. Those are preferred. For example, cyclohexanone, toluene, isophorone, γ-butyrolactone, benzyl alcohol, Exson Chemical's Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene, triamylbenzene, n-dodecanol , Diethylene glycol, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether Triethylene glycol monobutyl ether acetate, tetraethylene glycol, tetraethylene glycol dimethyl ether, tetraethylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, tripropylene glycol monomethyl ether acetate, tripropylene glycol monobutyl ether, tripropylene glycol monobutyl ether Examples include acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, benzyl butyrate, benzyl benzoate, and the like. In addition, examples of petroleum-based hydrocarbons include AF Solvent No. 4, No. 5, No. 6, No. 7, and No. 0 Solvent H manufactured by Nippon Oil Corporation. The above may be included.
Such an organic solvent is appropriately contained so that the conductive paste has a viscosity suitable for printing or the like.
 有機溶剤(E)の含有量としては、ペースト全重量100重量部に対して25重量部以下であることが好ましく、20重量部以下であることがさらに好ましい。有機溶剤(E)の含有量が高すぎるとペースト粘度が低くなり、細線印刷の際にダレを生じる。 The content of the organic solvent (E) is preferably 25 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the total paste. If the content of the organic solvent (E) is too high, the paste viscosity becomes low and sagging occurs during fine line printing.
 グラビアオフセット印刷に、このような導電性ペーストを用いる場合、良好な印刷適性を得るためには、その濃度が、市販のコーンプレート型粘度計(例えば、東機産業(株)製、RE―85型、コーン形状角度3°、R14など)による測定値(25℃、回転数2.5rpmで回転開始180秒後の測定値)で、10~500Pa・sであることが好ましい。10Pa・s未満であると導電性ペースト中の有機溶剤の割合が多すぎて、表面にシリコーンゴムシートを有する印刷用ブランケットから被印刷基板への導電性ペーストの転写性が低下し、良好な印刷物を得ることが困難となる。一方、500Pa・sを超えると印刷版に充填されにくく、またドクターブレードでのかきとり性が悪化し、地汚れ(非画線部へのペーストの付着)が生じやすくなる。さらに印刷版から印刷用ブランケットへの導電性ペーストの受理量が少なり、電極パターンに断線や糸引きが生じる。より好ましくは20~300dPa・sである。なお、印刷時に適宜希釈することも可能である。 When such a conductive paste is used for gravure offset printing, in order to obtain good printability, its concentration is a commercially available cone plate viscometer (for example, RE-85 manufactured by Toki Sangyo Co., Ltd.). The measured value (measured value after 180 seconds at the start of rotation at 25 ° C., rotation speed 2.5 rpm) with a mold, cone shape angle 3 °, R14, etc., is preferably 10 to 500 Pa · s. If it is less than 10 Pa · s, the ratio of the organic solvent in the conductive paste is too large, and the transferability of the conductive paste from the printing blanket having the silicone rubber sheet on the surface to the substrate to be printed is reduced, and the printed matter is good. It becomes difficult to obtain. On the other hand, if it exceeds 500 Pa · s, it is difficult to fill the printing plate, the scraping property with a doctor blade is deteriorated, and background stains (adhesion of paste to non-image areas) are likely to occur. Further, the amount of conductive paste received from the printing plate to the printing blanket is reduced, and disconnection and stringing occur in the electrode pattern. More preferably, it is 20 to 300 dPa · s. In addition, it is also possible to dilute appropriately at the time of printing.
 本発明の導電性ペーストは、F値が60~95%であることが好ましく、より好ましくは75~95%である。F値とはペースト中に含まれる全固形分100質量部に対するフィラー質量部を示す数値であり、F値=(フィラー質量部/固形分質量部)×100で表される。ここで言うフィラー質量部とは導電性粉末(D)の質量部、固形分質量部とは溶剤以外の成分の質量部であり、導電性粉末、バインダー樹脂、その他の硬化剤や添加剤を全て含む。F値が60%未満であると良好な導電性が得られず、95%をこえると基材との密着性及び/又は導電性塗膜の硬度が低下する傾向にあり、さらに印刷性の低下も避けられない。
 本発明の導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる有機溶剤(E)を揮散させ乾燥させることにより、導電性薄膜を形成することができる。
The conductive paste of the present invention preferably has an F value of 60 to 95%, more preferably 75 to 95%. The F value is a numerical value indicating the filler mass part with respect to 100 mass parts of the total solid content contained in the paste, and is represented by F value = (filler mass part / solid mass part) × 100. The filler mass part referred to here is the mass part of the conductive powder (D), the solid content mass part is the mass part of the components other than the solvent, and the conductive powder, binder resin, other curing agents and additives are all included. Including. If the F value is less than 60%, good conductivity cannot be obtained, and if it exceeds 95%, the adhesion to the substrate and / or the hardness of the conductive coating film tends to decrease, and further the printability decreases. Is inevitable.
A conductive thin film can be formed by applying or printing the conductive paste of the present invention on a substrate to form a coating film, and then volatilizing and drying the organic solvent (E) contained in the coating film. .
 有機溶剤(E)を揮散させる工程は、加熱下で行うことで硬化反応が進行し、乾燥後の導電性薄膜の導電性や密着性、表面硬度が良好となる。加熱温度は80℃以上が好ましく、100℃以上がより好ましく、110℃以上がさらに好ましい。また、下地の透明導電性層の耐熱性、及び生産工程における省エネルギーの観点から、加熱温度は150℃以下が好ましく、135℃以下がより好ましく、130℃以下がさらに好ましい。加熱時間は5分以上が好ましく、15分以上がより好ましく、25分以上がさらに好ましい。加熱時間が5分未満の場合、導電性薄膜の硬化が不十分で、密着性が不足する。 The step of evaporating the organic solvent (E) is carried out under heating, whereby the curing reaction proceeds, and the conductivity, adhesion, and surface hardness of the conductive thin film after drying are improved. The heating temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 110 ° C. or higher. Further, from the viewpoint of heat resistance of the underlying transparent conductive layer and energy saving in the production process, the heating temperature is preferably 150 ° C. or lower, more preferably 135 ° C. or lower, and further preferably 130 ° C. or lower. The heating time is preferably 5 minutes or longer, more preferably 15 minutes or longer, and even more preferably 25 minutes or longer. When the heating time is less than 5 minutes, the conductive thin film is not sufficiently cured and the adhesion is insufficient.
 導電性ペーストが塗布される基材は特に限定されないが、例えば、ポリカーボネート、アクリル、ポリイミド、ポリエステル等が挙げられる。また、前記基材と導電性膜との間に透明導電性層を設け、導電性薄膜を透明導電性層上に積層することにより、導電性積層体を得ることができる。透明導電性層の素材は特に限定されないが、例えば、酸化インジウム・スズを主成分としてなるITO膜や、ナノワイヤーベースの導電薄膜を適用することが可能である。また、透明導電性層は基材全面に形成されたものだけでなく、エッチングにより透明導電性層の一部が除去されたものを使用することもできる。 The base material to which the conductive paste is applied is not particularly limited, and examples thereof include polycarbonate, acrylic, polyimide, and polyester. Moreover, a conductive laminated body can be obtained by providing a transparent conductive layer between the said base material and a conductive film, and laminating | stacking a conductive thin film on a transparent conductive layer. The material of the transparent conductive layer is not particularly limited. For example, an ITO film mainly composed of indium tin oxide or a nanowire-based conductive thin film can be applied. Further, the transparent conductive layer is not limited to the one formed on the entire surface of the base material, but a layer obtained by removing a part of the transparent conductive layer by etching can also be used.
 本発明の導電性積層体を用い、タッチパネルを製造することができる。タッチパネルは、抵抗膜方式であっても静電容量方式であってもよい。いずれのタッチパネルにも適用が可能であるが、本ペーストは、細線形成に好適であるため、静電容量方式に用いられることが好ましい。 A touch panel can be manufactured using the conductive laminate of the present invention. The touch panel may be a resistive film type or a capacitive type. Although it can be applied to any touch panel, since this paste is suitable for forming a thin line, it is preferably used for a capacitance method.
 タッチパネルの製造方法としては、特に限定されるものではないが、例えば、ITO膜等
の透明導電性層を積層した基材上に、硬化後、導電性を与える回路を形成するように、導電性ペーストを塗布又は印刷し、加熱により塗布又は印刷した導電性ペーストを硬化させ、導電性積層体を形成させ、得られる導電性積層体を別の導電性積層体と貼り合わせることにより製造することができる。
The touch panel manufacturing method is not particularly limited. For example, a conductive film is formed on a base material on which a transparent conductive layer such as an ITO film is laminated. It can be manufactured by applying or printing a paste, curing the conductive paste applied or printed by heating, forming a conductive laminate, and bonding the resulting conductive laminate to another conductive laminate. it can.
 本発明の導電性ペーストは、タッチパネルの電極回路配線用として好適に用いられるが、それ以外にも、電磁波シールド用途、電子部品の回路形成用途、端子やリード線の導電性接着剤等の用途にも使用することが可能である。さらにメッシュ状のパターンを有したITOフィルムやITOガラスなどの透明導電性膜の代替として注目されている材料の印刷にも好適に用いることができる。 The conductive paste of the present invention is preferably used for electrode circuit wiring of touch panels, but besides that, it is used for electromagnetic shielding applications, electronic component circuit formation applications, conductive adhesives for terminals and lead wires, etc. Can also be used. Furthermore, it can also be suitably used for printing a material that is attracting attention as an alternative to a transparent conductive film such as an ITO film or ITO glass having a mesh pattern.
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、特に断らない限り例中の「部」は「質量部」を示し、固形分濃度とは有機溶剤を完全に揮発させた後の不揮発分のことを示す。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In addition, this invention is not limited to the following embodiment. Unless otherwise specified, “parts” in the examples indicates “parts by mass”, and the solid content concentration indicates a non-volatile content after the organic solvent is completely volatilized.
 本発明におけるポリエステル樹脂及びポリウレタン樹脂の物性評価、および、導電性ペーストの評価は、下記の方法により行った。 The physical properties of the polyester resin and the polyurethane resin in the present invention and the conductive paste were evaluated by the following methods.
1.数平均分子量
 試料樹脂を、樹脂濃度が0.5重量%程度となるようにテトラヒドロフランに溶解または希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過し、GPC測定試料とした。テトラヒドロフランを移動相とし、(株)島津製作所製のゲル浸透クロマトグラフ(GPC)Prominenceを用い、示差屈折計(RI計)を検出器として、カラム温度30℃、流量1ml/分にて樹脂試料のGPC測定を行なった。数平均分子量既知の単分散ポリスチレンのGPC測定結果を用いて試料樹脂のポリスチレン換算数平均分子量を求め、それを試料樹脂の数平均分子量(Mn)、重量平均分子量(Mw)とした。ただしカラムは昭和電工(株)製のshodex KF-802、804L、806Lを用いた。
1. Number average molecular weight The sample resin was dissolved or diluted in tetrahydrofuran so that the resin concentration was about 0.5% by weight, and filtered through a polytetrafluoroethylene membrane filter having a pore size of 0.5 μm to obtain a GPC measurement sample. Tetrahydrofuran was used as a mobile phase, a gel permeation chromatograph (GPC) Prominence manufactured by Shimadzu Corporation was used, a differential refractometer (RI meter) was used as a detector, a column temperature of 30 ° C., and a flow rate of 1 ml / min. GPC measurement was performed. The number-average molecular weight in terms of polystyrene of the sample resin was determined using the GPC measurement result of monodisperse polystyrene having a known number-average molecular weight, which was used as the number-average molecular weight (Mn) and the weight-average molecular weight (Mw) of the sample resin. However, shodex KF-802, 804L, 806L manufactured by Showa Denko KK was used as the column.
2.ガラス転移温度(Tg)
 試料樹脂5mgをアルミニウム製サンプルパンに入れて密封し、セイコーインスツルメンツ(株)製の示差走査熱量分析計(DSC)DSC-220を用いて、200℃まで、昇温速度20℃/分にて測定し、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度で求めた。
2. Glass transition temperature (Tg)
5 mg of sample resin is put in an aluminum sample pan, sealed, and measured with a differential scanning calorimeter (DSC) DSC-220 manufactured by Seiko Instruments Inc. up to 200 ° C. at a heating rate of 20 ° C./min. And the temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition.
3.酸価
 試料0.2gを精秤し20mlのクロロホルムに溶解した。ついで、0.01Nの水酸化カリウム(エタノール溶液)で滴定して求めた。指示薬には、フェノールフタレイン溶液を用いた。酸価の単位はeq/ton、すなわち試料1トン当たりの当量とした。
3. Acid value 0.2 g of a sample was precisely weighed and dissolved in 20 ml of chloroform. Subsequently, it titrated with 0.01N potassium hydroxide (ethanol solution). A phenolphthalein solution was used as an indicator. The unit of the acid value was eq / ton, that is, the equivalent per 1 ton of the sample.
5.導電性積層体テストピースの作製
 厚み100μmのアニール処理をしたPETフィルム(東洋紡(株)製コスモシャインA
4300)又はITO膜(尾池工業(株)製、KH150)に、スクリーン印刷法により導電性ペーストを印刷し、幅30mm、長さ50mmのべた塗りパターンを形成し、130℃で30分乾燥、硬化したものを導電性積層体テストピースとした。乾燥膜厚は8~12μmになるように印刷時の塗布厚を調整した。
5. Preparation of conductive laminate test piece PET film annealed to a thickness of 100 μm (Cosmo Shine A manufactured by Toyobo Co., Ltd.)
4300) or ITO film (Oike Industry Co., Ltd., KH150), a conductive paste is printed by a screen printing method to form a solid coating pattern with a width of 30 mm and a length of 50 mm, and dried at 130 ° C. for 30 minutes. The cured product was used as a conductive laminate test piece. The coating thickness at the time of printing was adjusted so that the dry film thickness was 8 to 12 μm.
6.密着性
 導電性積層体テストピースを用いてJIS K-5400-5-6:1990に従って、セロテープ(登録商標)(ニチバン(株)製)を用い、剥離試験により評価した。1mm間隔で10マス×10マスの計100マス目のクロスカットを形成し、セロハンテープピーリングを行った。ITOフィルム上の塗膜の剥がれ具合を、目視にて評価した。評価基準は以下の通りである。
  ○:まったく剥がれないもの。
  △:一部に剥がれが生じたもの。
  ×:50%以上の剥がれが生じたもの。
6). Adhesiveness Using a conductive laminate test piece, according to JIS K-5400-5-6: 1990, evaluation was performed by a peel test using Cellotape (registered trademark) (manufactured by Nichiban Co., Ltd.). A crosscut of a total of 100 squares of 10 squares × 10 squares was formed at 1 mm intervals, and cellophane tape peeling was performed. The degree of peeling of the coating film on the ITO film was visually evaluated. The evaluation criteria are as follows.
○: It is not peeled off at all.
Δ: Some peeled off.
X: 50% or more peeling occurred.
7.比抵抗
 導電性積層体テストピースのシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD-565L((株)TECLOCK製)を用い、PETフィルムの厚みをゼロ点として硬化塗膜の厚みを3点測定し、その平均値を用いた。シート抵抗はLoresta-GP MCP-T610((株)三菱化学アナリテック製)を用いてテ
ストピース4枚について測定し、その平均値を用いた。
7). Specific Resistance The sheet resistance and film thickness of the conductive laminate test piece were measured, and the specific resistance was calculated. Thickness gauge SMD-565L (manufactured by TECLOCK Co., Ltd.) was used for the film thickness, and the thickness of the cured coating film was measured at three points with the thickness of the PET film as the zero point, and the average value was used. The sheet resistance was measured for four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the average value was used.
8.鉛筆硬度
 導電性積層体テストピースを厚さ2mmのSUS304板上に置き、JIS K 5600-5-4:1999に従って鉛筆硬度を測定した。
8). Pencil Hardness The conductive laminate test piece was placed on a 2 mm thick SUS304 plate, and the pencil hardness was measured according to JIS K 5600-5-4: 1999.
9.高温高湿処理後の密着評価
 導電性積層体テストピースを85℃-85%RHの高温高湿槽に入れ、120hrの処理を行った後に、得られたテストピースに、1mm間隔で10マス×10マスの計100マス目のクロスカットを形成し、セロハンテープピーリングを行った。そして、ITOフィルム上の塗膜の剥がれ具合を、目視にて評価した。評価基準は以下の通りである。
 ○:まったく剥がれないもの。
 △:一部に剥がれが生じたもの。
 ×:50%以上の剥がれが生じたもの。
9. Adhesion evaluation after high-temperature and high-humidity treatment The conductive laminate test piece was placed in a high-temperature and high-humidity tank of 85 ° C-85% RH and treated for 120 hr. A cross cut of 100 squares of 10 squares in total was formed, and cellophane tape peeling was performed. And the peeling condition of the coating film on an ITO film was evaluated visually. The evaluation criteria are as follows.
○: It is not peeled off at all.
Δ: Some peeled off.
X: 50% or more peeling occurred.
10.細線印刷性の評価
 グラビアオフセット印刷に使用する印刷版としてライン幅30μm、深さ20μm、ピッチ60μmの複数の凹状パターンを有するニッケル電鋳平面凹版を、被印刷基材としてPETフィルム(東洋紡社製コスモシャインA4300)をそれぞれ用意した。また、印刷用ブランケットとして厚さ0.6mmのシリコーンブランケットを用いた。先ず、平面凹版表面に導電性ペーストを所定量供給し、金属製スキージを用いて平面凹版の凹状パターンに導電性ペーストを埋め込んだ。次に、シリコーンブランケットを平面凹版上に圧接した状態で回転させ、平面凹版上でスライドさせることにより、平面凹版の凹状パターンに埋め込まれた導電性ペーストをシリコーンブランケット表面に受理した。最後に、シリコーンブランケットをPETフィルムに圧接した状態で回転させ、PETフィルム上でスライドさせることにより、PETフィルム表面に所定のパターンを有する印刷物を得た。上記印刷物を用い、デジタルマイクロスコープ VHX-2000((株)キーエンス製
)でL/Sを測定し、また細線の状態の観察を実施して下記判断基準により細線印刷性を評価した。
  ○:断線がなく、細線間の短絡(ショート)がない。
  ×:一部断線もしくは細線間の短絡(ショート)がある。
10. Evaluation of fine line printability As a printing plate used for gravure offset printing, a nickel electroformed flat intaglio having a plurality of concave patterns with a line width of 30 μm, a depth of 20 μm and a pitch of 60 μm is used as a printing substrate, and PET film (Cosmo manufactured by Toyobo Co. Shine A4300) was prepared. Further, a silicone blanket having a thickness of 0.6 mm was used as a printing blanket. First, a predetermined amount of conductive paste was supplied to the surface of the flat intaglio, and the conductive paste was embedded in the concave pattern of the flat intaglio using a metal squeegee. Next, the silicone blanket was rotated in a state where it was pressed against the flat intaglio, and slid on the flat intaglio to receive the conductive paste embedded in the concave pattern of the flat intaglio on the surface of the silicone blanket. Finally, the silicone blanket was rotated while being pressed against the PET film, and slid on the PET film to obtain a printed matter having a predetermined pattern on the surface of the PET film. Using the printed matter, L / S was measured with a digital microscope VHX-2000 (manufactured by Keyence Co., Ltd.), the state of the fine line was observed, and the fine line printability was evaluated according to the following criteria.
○: There is no disconnection and there is no short circuit between the thin wires.
×: There is a partial disconnection or a short circuit between the thin wires.
11.導電性ペーストの作製
 表1、2に示す配合割合(質量比)で各成分を配合し、3本ロールミルにて混練して、実施例1~7、比較例1~3の導電性ペーストを得た。
11. Preparation of conductive paste Each component was blended at a blending ratio (mass ratio) shown in Tables 1 and 2 and kneaded by a three-roll mill to obtain conductive pastes of Examples 1 to 7 and Comparative Examples 1 to 3. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
ポリエステル1:東洋紡(株)製 RV630 (数平均分子量23,000、酸価20eq/ton、ガラス転移温度7℃)
ポリエステル2:東洋紡(株)製 GK390 (数平均分子量18,000、酸価80eq/ton、ガラス転移温度7℃)
ポリエステル3:東洋紡(株)製 RV296 (数平均分子量14,000、酸価80eq/ton、ガラス転移温度71℃)
ポリウレタン4:東洋紡(株)製 UR-PS9 (数平均分子量22,000、酸価170eq/ton、ガラス転移温度100℃)
ポリエステルポリオール1:(株)クラレ製 P-2013(数平均分子量2,000、酸価3eq/ton、水酸基価54.4KOHmg/g)
ポリエステルポリオール2:(株)クラレ製 P-2030(数平均分子量2,000、酸価4eq/ton、水酸基価55.4KOHmg/g)
ポリエステルポリオール3:(株)クラレ製 P-1030(数平均分子量1,000、酸価3eq/ton、水酸基価111.3KOHmg/g)
ポリエステルポリオール4:(株)クラレ製 F-3010(数平均分子量3,000、酸価5eq/ton、水酸基価55.8KOHmg/g)
ブロックイソシアネート1:Baxenden社製 Trixene BI 7982(固形分率70重量%、イソシアネート理論値10.2重量%)
ブロックイソシアネート2:Baxenden社製 Trixene BI 7992(固形分率70重量%、イソシアネート理論値9.2重量%)
ブロックイソシアネート3:Baxenden社製 TrixeneBI 7950 (固形分率65重量%、イソシアネート理論値7.4重量%)
銀粉1:福田金属箔粉工業(株) AgC-251 (D50=1.8μm、フレーク状銀粉)
銀粉2:(株)フェロ・ジャパン SF30 (D50=1.0μm、フレーク状銀粉)銀粉3:DOWAハイテック(株) G-35 (D50=6.1μm、凝集銀粉)
銀粉4:DOWAハイテック(株) AG-2-1C (D50=1.1μm、球状銀粉)
有機溶剤1:ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)
有機溶剤2:ジエチレングリコールモノブチルエーテルアセテート(沸点247℃)
有機溶剤3:テトラエチレングリコールジメチルエーテル(沸点276℃)
有機溶剤4:トリエチレングリコールモノブチルエーテル(沸点278℃)
有機溶剤5:トリエチレングリコールジアセテート(沸点300℃)
分散剤1:ビックケミー・ジャパン(株)製 Disperbyk2155
レベリング剤1:共栄社化学(株) MKコンク
Figure JPOXMLDOC01-appb-T000002
Polyester 1: RV630 manufactured by Toyobo Co., Ltd. (number average molecular weight 23,000, acid value 20 eq / ton, glass transition temperature 7 ° C.)
Polyester 2: GK390 manufactured by Toyobo Co., Ltd. (number average molecular weight 18,000, acid value 80 eq / ton, glass transition temperature 7 ° C.)
Polyester 3: RV296 manufactured by Toyobo Co., Ltd. (number average molecular weight 14,000, acid value 80 eq / ton, glass transition temperature 71 ° C.)
Polyurethane 4: UR-PS9 manufactured by Toyobo Co., Ltd. (number average molecular weight 22,000, acid value 170 eq / ton, glass transition temperature 100 ° C.)
Polyester polyol 1: P-2013 manufactured by Kuraray Co., Ltd. (number average molecular weight 2,000, acid value 3 eq / ton, hydroxyl value 54.4 KOHmg / g)
Polyester polyol 2: P-2030 manufactured by Kuraray Co., Ltd. (number average molecular weight 2,000, acid value 4 eq / ton, hydroxyl value 55.4 KOHmg / g)
Polyester polyol 3: P-1030 manufactured by Kuraray Co., Ltd. (number average molecular weight 1,000, acid value 3 eq / ton, hydroxyl value 111.3 KOHmg / g)
Polyester polyol 4: F-3010 manufactured by Kuraray Co., Ltd. (number average molecular weight 3,000, acid value 5 eq / ton, hydroxyl value 55.8 KOHmg / g)
Block isocyanate 1: Trixene BI 7982 manufactured by Baxenden (solid content: 70% by weight, isocyanate theoretical value: 10.2% by weight)
Block isocyanate 2: Trixene BI 7992 manufactured by Baxenden (solid content: 70% by weight, isocyanate theoretical value: 9.2% by weight)
Block isocyanate 3: Trixene BI 7950 manufactured by Baxenden (solid content 65 wt%, isocyanate theoretical value 7.4 wt%)
Silver powder 1: Fukuda Metal Foil Powder Industry Co., Ltd. AgC-251 (D50 = 1.8 μm, flaky silver powder)
Silver powder 2: Ferro Japan SF30 (D50 = 1.0 μm, flaky silver powder) Silver powder 3: DOWA Hightech Co., Ltd. G-35 (D50 = 6.1 μm, aggregated silver powder)
Silver powder 4: DOWA Hi-Tech Co., Ltd. AG-2-1C (D50 = 1.1 μm, spherical silver powder)
Organic solvent 1: Diethylene glycol monoethyl ether acetate (boiling point 217 ° C)
Organic solvent 2: Diethylene glycol monobutyl ether acetate (boiling point 247 ° C.)
Organic solvent 3: tetraethylene glycol dimethyl ether (boiling point 276 ° C.)
Organic solvent 4: Triethylene glycol monobutyl ether (boiling point 278 ° C.)
Organic solvent 5: triethylene glycol diacetate (boiling point 300 ° C.)
Dispersant 1: Disperbyk 2155 manufactured by Big Chemie Japan Co., Ltd.
Leveling agent 1: Kyoeisha Chemical Co., Ltd. MK Conch
 12.評価結果
 実施例1~7比較例1~3の導電性ペーストにおいて各種評価を行なった結果を表3、4に記載した。表3、4に示すように、実施例1~7の導電性ペーストにおいて、良好な印刷性とITO密着性の両立が可能となることがわかる。
12 Evaluation Results Examples 1 to 7 Tables 3 and 4 show the results of various evaluations performed on the conductive pastes of Comparative Examples 1 to 3. As shown in Tables 3 and 4, it can be seen that the conductive pastes of Examples 1 to 7 can achieve both good printability and ITO adhesion.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の導電性ペーストは、各種電子機器に用いられるプリント配線等の製造に利用することが可能である。また、電磁波シールド用途、電子部品の回路形成用途、端子やリード線の導電性接着剤等の用途にも使用することが可能である。 The conductive paste of the present invention can be used for the production of printed wiring used in various electronic devices. It can also be used for electromagnetic shielding applications, circuit formation applications for electronic components, and conductive adhesives for terminals and lead wires.

Claims (12)

  1.  少なくとも熱可塑性樹脂(A)ならびに熱可塑性樹脂(B)、硬化剤(C)と導電性粉末(D)および有機溶剤(E)を含む導電性ペーストであって、熱可塑性樹脂(A)が熱可塑性樹脂(B)に対して、重量比が4.0倍以下であり、熱可塑性樹脂(A)が重量平均分子量10,000以上かつガラス転移温度-10~150℃の、ポリウレタン樹脂及び/またはポリエステル樹脂であり、さらに熱可塑性樹脂(B)が非晶ポリオールであり、数平均分子量500~6,000であることを特徴とする導電性ペースト。 A conductive paste containing at least a thermoplastic resin (A), a thermoplastic resin (B), a curing agent (C), a conductive powder (D), and an organic solvent (E), wherein the thermoplastic resin (A) is hot A polyurethane resin having a weight ratio of 4.0 times or less with respect to the plastic resin (B), a thermoplastic resin (A) having a weight average molecular weight of 10,000 or more and a glass transition temperature of −10 to 150 ° C. A conductive paste, which is a polyester resin, wherein the thermoplastic resin (B) is an amorphous polyol and has a number average molecular weight of 500 to 6,000.
  2.  導電性粉末(D)の平均粒子径(D50)が少なくとも7μm以下であることを特徴とする請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive powder (D) has an average particle diameter (D50) of at least 7 µm or less.
  3.  熱可塑性樹脂(B)がポリエステルポリオール及び/またはポリエーテルポリオール、及び/またはポリカーボネートポリオールであることを特徴とする請求項1~2に記載の導電性ペースト。 3. The conductive paste according to claim 1, wherein the thermoplastic resin (B) is a polyester polyol and / or a polyether polyol and / or a polycarbonate polyol.
  4.  130℃、30分の熱処理における不揮発性の有機成分の酸価が20~500eq/tonであることを特徴とする請求項1~3のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the acid value of the nonvolatile organic component in a heat treatment at 130 ° C for 30 minutes is 20 to 500 eq / ton.
  5.  硬化剤(C)がイソシアネート化合物であり、かつ熱可塑性樹脂(B)に対しての硬化剤(C)の混合量は、熱可塑性樹脂(B)の水酸基に対して、硬化剤(C)のイソシアネート基が20~200モル%であることを特徴とする請求項1~4のいずれかに記載の導電性ペースト。 The curing agent (C) is an isocyanate compound, and the mixing amount of the curing agent (C) with respect to the thermoplastic resin (B) is that of the curing agent (C) with respect to the hydroxyl group of the thermoplastic resin (B). The conductive paste according to any one of claims 1 to 4, wherein the isocyanate group is 20 to 200 mol%.
  6.  有機溶剤(E)が沸点100℃以上であり、かつ導電性ペースト全重量に対する重量分率が25重量%以下であることを特徴とする請求項1~5のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 5, wherein the organic solvent (E) has a boiling point of 100 ° C or higher and a weight fraction based on the total weight of the conductive paste is 25% by weight or less.
  7.  導電性粉末(D)が主として銀からなることを特徴とする請求項1~6のいずれかに記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive powder (D) is mainly composed of silver.
  8.  グラビアオフセット印刷(導電性ペーストを凹状のパターンを有する印刷版に充填し、充填した導電性ペーストを表面にシリコーンゴムシートを有する印刷用ブランケットへ受理した後、前記印刷用ブランケットから被印刷基材上へ導電性ペーストを転写して、電極パターンを印刷し形成する方法)に用いられることを特徴とする請求項1~7のいずれかに記載の導電性ペースト。 Gravure offset printing (The conductive paste is filled into a printing plate having a concave pattern, and the filled conductive paste is received by a printing blanket having a silicone rubber sheet on the surface, and then printed on the substrate to be printed from the printing blanket. The conductive paste according to any one of claims 1 to 7, which is used in a method of transferring an electrically conductive paste to a substrate and printing and forming an electrode pattern.
  9.  請求項1~7のいずれかに記載の導電性ペースをグラビアオフセット印刷して(導電性ペーストを凹状のパターンを有する印刷版に充填し、充填した導電性ペーストを表面にシリコーンゴムシートを有する印刷用ブランケットへ受理した後、前記印刷用ブランケットから被印刷基材上へ導電性ペーストを転写して、電極パターンを印刷し形成する方法から)得られる導電性塗膜を乾燥および/または硬化して得られる印刷物。 Printing the conductive paste according to any one of claims 1 to 7 by gravure offset printing (filling a conductive paste with a printing plate having a concave pattern, and a silicone rubber sheet on the surface of the filled conductive paste) After receiving into the blanket for printing, the conductive paste is transferred from the printing blanket onto the substrate to be printed, and the resulting conductive coating is dried and / or cured) The printed matter obtained.
  10.  ライン/スペースのピッチが100μm以下である請求項9に記載の印刷物。 The printed matter according to claim 9, wherein the line / space pitch is 100 μm or less.
  11.  請求項9~10記載の印刷物を透明導電性層上に積層した導電性積層体。 A conductive laminate obtained by laminating the printed matter according to claim 9 on a transparent conductive layer.
  12.  請求項11に記載の導電性積層体を用いたタッチパネル。 A touch panel using the conductive laminate according to claim 11.
PCT/JP2014/074994 2013-09-30 2014-09-22 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel WO2015046096A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480052717.9A CN105612585B (en) 2013-09-30 2014-09-22 Electrocondution slurry, conductive coating, galvanic circle, electric conductivity laminate and touch-screen
JP2014551449A JP6767089B2 (en) 2013-09-30 2014-09-22 Conductive pastes, conductive coatings, conductive circuits, conductive laminates and touch panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204073 2013-09-30
JP2013204073 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046096A1 true WO2015046096A1 (en) 2015-04-02

Family

ID=52743233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074994 WO2015046096A1 (en) 2013-09-30 2014-09-22 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel

Country Status (4)

Country Link
JP (1) JP6767089B2 (en)
CN (1) CN105612585B (en)
TW (1) TWI648748B (en)
WO (1) WO2015046096A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031804A (en) * 2014-07-28 2016-03-07 Dic株式会社 Conductive paste and method for forming conductive pattern
WO2016170943A1 (en) * 2015-04-21 2016-10-27 東レ株式会社 Laminate member and touch panel
WO2017102351A1 (en) * 2015-12-16 2017-06-22 Ferro Gmbh Thermoplastic screen printing paste
WO2017170496A1 (en) * 2016-03-29 2017-10-05 東洋紡株式会社 Malleable conductive paste and method for producing curved printed circuit board
WO2018029750A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Laminated member and touch panel
WO2018051831A1 (en) * 2016-09-16 2018-03-22 株式会社ノリタケカンパニーリミテド Silver paste for resin substrate
WO2019017366A1 (en) * 2017-07-19 2019-01-24 東洋紡株式会社 Adhesive agent composition
JPWO2019039209A1 (en) * 2017-08-24 2020-08-06 東洋紡株式会社 Conductive paste, three-dimensional printed circuit, touch sensor and their manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702323B (en) * 2016-03-15 2017-08-25 张家港瑞诺光电材料科技有限公司 A kind of compliant conductive silver paste and preparation method
KR20180024827A (en) * 2016-08-31 2018-03-08 주식회사 동진쎄미켐 Conductive composition and conductive laminate using the same
CN110097998B (en) * 2018-01-31 2021-06-15 上海宝银电子材料有限公司 Conductive silver paste for transfer printing process touch screen and preparation method thereof
CN108749244B (en) * 2018-06-07 2020-07-14 浙江欣麟新材料技术有限公司 Optical high-flexibility conductive glass film and preparation method thereof
CN109903885B (en) * 2018-12-29 2020-10-02 无锡帝科电子材料股份有限公司 Conductive paste, application thereof, solar cell electrode and solar cell
CN110993149A (en) * 2019-12-26 2020-04-10 无锡晶睿光电新材料有限公司 Silver paste for metal grid capacitive flexible touch screen and preparation method and application thereof
CN111370159A (en) * 2020-03-11 2020-07-03 中国人民解放军国防科技大学 Conductive paste and preparation method and application thereof
CN114189983B (en) * 2020-09-15 2024-03-26 北京梦之墨科技有限公司 Flexible conductive paste and flexible circuit board
CN113593776B (en) * 2021-07-30 2023-03-10 长春捷翼汽车零部件有限公司 Wire harness production method and wire harness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046076A1 (en) * 2009-10-15 2011-04-21 東洋紡績株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
WO2011083813A1 (en) * 2010-01-08 2011-07-14 東洋紡績株式会社 Electrically conductive paste and metal thin film
JP2012216287A (en) * 2011-03-31 2012-11-08 Taiyo Holdings Co Ltd Conductive paste
JP2013131385A (en) * 2011-12-21 2013-07-04 Taiyo Holdings Co Ltd Conductive paste
JP2014080555A (en) * 2012-10-16 2014-05-08 Pelnox Ltd Thermosetting composition, and thermosetting conductive paste
WO2014104053A1 (en) * 2012-12-27 2014-07-03 荒川化学工業株式会社 Conductive paste for screen printing, method for producing wiring line, and method for producing electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168631B2 (en) * 2001-12-28 2008-10-22 東洋製罐株式会社 Paint for metal packaging and metal packaging using the coating
JP5376808B2 (en) * 2008-01-25 2013-12-25 Dic株式会社 Method for producing transparent conductive film, transparent conductive film and touch panel
JP5219140B2 (en) * 2008-10-24 2013-06-26 東洋紡株式会社 Low-temperature conductive paste for plating and electrical wiring using the same
JP5699447B2 (en) * 2009-10-09 2015-04-08 東洋インキScホールディングス株式会社 Conductive ink
TWI570197B (en) * 2011-03-31 2017-02-11 Taiyo Holdings Co Ltd Conductive paste
JP6081233B2 (en) * 2012-03-16 2017-02-15 日東電工株式会社 Adhesive composition and adhesive sheet
JP5610112B1 (en) * 2013-01-30 2014-10-22 Dic株式会社 Conductive paste, conductive pattern forming method, and printed conductive pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046076A1 (en) * 2009-10-15 2011-04-21 東洋紡績株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
WO2011083813A1 (en) * 2010-01-08 2011-07-14 東洋紡績株式会社 Electrically conductive paste and metal thin film
JP2012216287A (en) * 2011-03-31 2012-11-08 Taiyo Holdings Co Ltd Conductive paste
JP2013131385A (en) * 2011-12-21 2013-07-04 Taiyo Holdings Co Ltd Conductive paste
JP2014080555A (en) * 2012-10-16 2014-05-08 Pelnox Ltd Thermosetting composition, and thermosetting conductive paste
WO2014104053A1 (en) * 2012-12-27 2014-07-03 荒川化学工業株式会社 Conductive paste for screen printing, method for producing wiring line, and method for producing electrode

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031804A (en) * 2014-07-28 2016-03-07 Dic株式会社 Conductive paste and method for forming conductive pattern
WO2016170943A1 (en) * 2015-04-21 2016-10-27 東レ株式会社 Laminate member and touch panel
JP6090537B1 (en) * 2015-04-21 2017-03-08 東レ株式会社 Laminated member and touch panel
US10275104B2 (en) 2015-04-21 2019-04-30 Toray Industries, Inc. Laminate member and touch panel
US20180362783A1 (en) * 2015-12-16 2018-12-20 Ferro Gmbh Thermoplastic Screen Printing Paste
WO2017102351A1 (en) * 2015-12-16 2017-06-22 Ferro Gmbh Thermoplastic screen printing paste
US10941305B2 (en) 2015-12-16 2021-03-09 Ferro Corporation Thermoplastic screen printing paste
WO2017170496A1 (en) * 2016-03-29 2017-10-05 東洋紡株式会社 Malleable conductive paste and method for producing curved printed circuit board
KR20180128449A (en) * 2016-03-29 2018-12-03 도요보 가부시키가이샤 Electricity-conductive paste and manufacturing method of a curved printed wiring board
CN108885916A (en) * 2016-03-29 2018-11-23 东洋纺株式会社 The manufacturing method of ductility conductivity slurry and curve surface printing wiring board
JPWO2017170496A1 (en) * 2016-03-29 2019-02-07 東洋紡株式会社 Expandable conductive paste and method for producing curved printed wiring board
KR102346389B1 (en) * 2016-03-29 2022-01-04 도요보 가부시키가이샤 Method for manufacturing flexible conductive paste and curved printed wiring board
JP7055096B2 (en) 2016-03-29 2022-04-15 東洋紡株式会社 Manufacturing method of ductile conductive paste and curved printed wiring board
JP7055096B6 (en) 2016-03-29 2022-06-24 東洋紡株式会社 Manufacturing method of ductile conductive paste and curved printed wiring board
WO2018029750A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Laminated member and touch panel
WO2018051831A1 (en) * 2016-09-16 2018-03-22 株式会社ノリタケカンパニーリミテド Silver paste for resin substrate
JPWO2018051831A1 (en) * 2016-09-16 2019-06-27 株式会社ノリタケカンパニーリミテド Silver paste for resin substrates
WO2019017366A1 (en) * 2017-07-19 2019-01-24 東洋紡株式会社 Adhesive agent composition
JPWO2019039209A1 (en) * 2017-08-24 2020-08-06 東洋紡株式会社 Conductive paste, three-dimensional printed circuit, touch sensor and their manufacturing method

Also Published As

Publication number Publication date
CN105612585B (en) 2018-03-16
JPWO2015046096A1 (en) 2017-03-09
CN105612585A (en) 2016-05-25
JP6767089B2 (en) 2020-10-14
TW201517060A (en) 2015-05-01
TWI648748B (en) 2019-01-21

Similar Documents

Publication Publication Date Title
JP6767089B2 (en) Conductive pastes, conductive coatings, conductive circuits, conductive laminates and touch panels
JP4968410B2 (en) Conductive paste, conductive film, touch panel, and method of manufacturing conductive thin film
JP4702499B1 (en) Conductive ink, laminate with conductive pattern and method for producing the same
TWI525644B (en) Conductive paste, conductive film, electrical circuit and touch panel
JP5146567B2 (en) Conductive ink, laminate with conductive pattern and method for producing the same
JP6343903B2 (en) Conductive paste and printed circuit using the same
KR20100015580A (en) Conductive paste, and printed circuit board and planar heat generating body each using the same
JP2008171828A (en) Conductive paste, and printed circuit using it
JPWO2018092762A1 (en) A conductive paste, a conductive film, a method for manufacturing a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring.
JP6303367B2 (en) Conductive paste, conductive film and touch panel
JP2012253172A (en) Manufacturing method of conductive circuit
JPWO2017018427A1 (en) Conductive film manufacturing method and conductive film
JP4158080B2 (en) Conductive paste
JP4514390B2 (en) Conductive paste and printed circuit using the same
JP2006252807A (en) Conductive paste and laminate using this
JP2006260818A (en) Conductive paste and printed circuit using the same
CN111512398B (en) Conductive paste
JP4573089B2 (en) Conductive paste and printed circuit using the same
JP2005174797A (en) Polymer type conductive paste
JP2005133056A (en) Polymer type conductive paste

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014551449

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847790

Country of ref document: EP

Kind code of ref document: A1