WO2014104053A1 - Conductive paste for screen printing, method for producing wiring line, and method for producing electrode - Google Patents

Conductive paste for screen printing, method for producing wiring line, and method for producing electrode Download PDF

Info

Publication number
WO2014104053A1
WO2014104053A1 PCT/JP2013/084568 JP2013084568W WO2014104053A1 WO 2014104053 A1 WO2014104053 A1 WO 2014104053A1 JP 2013084568 W JP2013084568 W JP 2013084568W WO 2014104053 A1 WO2014104053 A1 WO 2014104053A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
molecular weight
screen printing
paste
conductive
Prior art date
Application number
PCT/JP2013/084568
Other languages
French (fr)
Japanese (ja)
Inventor
岩村 栄治
英晴 佐藤
Original Assignee
荒川化学工業株式会社
ペルノックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社, ペルノックス株式会社 filed Critical 荒川化学工業株式会社
Priority to JP2014554472A priority Critical patent/JP6301267B2/en
Priority to KR1020157011587A priority patent/KR101753497B1/en
Publication of WO2014104053A1 publication Critical patent/WO2014104053A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing

Definitions

  • the present invention relates to a conductive paste for screen printing, a wiring manufacturing method, and an electrode manufacturing method.
  • the screen printing method is widely adopted as a method for manufacturing electronic parts such as wiring and electrodes at a low cost.
  • the limit is to form a conductive circuit having a thickness of about 1 to 2 ⁇ m.
  • a screen printing method is a suitable method for securing a thickness of several ⁇ m or more. .
  • the conductive paste used here is generally called a resin-cured or polymer-type conductive paste, and refers to a dispersion of conductive particles in an organic binder resin. Since it is in the form of a paste, it can be expected to reduce the size and weight of electronic components, improve productivity, and reduce costs. Moreover, a conductive circuit can be easily formed by printing or coating on a base material and drying. Furthermore, this drying and curing process can be performed at a low temperature without applying a high temperature to the substrate or the electronic component (see Patent Document 1).
  • touch panels have been rapidly spreading as represented by smartphones and tablet terminals as intuitive and user-friendly input devices.
  • touch panels for mobile terminals which have advanced functions and high image quality, it is necessary to detect the contact position with a finger or a touch pen with high accuracy, and therefore the wiring and electrodes formed around the touch panel are miniaturized.
  • the line width of circuit wiring itself and the width between wiring lines are required to be 50 ⁇ m or less.
  • the viscosity of a conductive paste generally used in a screen printing method is from about several Pa ⁇ s to about 100 Pa ⁇ s at the most.
  • Patent Document 2 discloses a conductive paste having a viscosity of 30.0 Pa ⁇ s or less at a shear rate of 500 s ⁇ 1 .
  • the paste moves on the screen mask plate while rotating by a squeegee called rolling.
  • the film is supplied onto the substrate through the opening to complete the transfer to the substrate.
  • it in order to be a paste capable of forming a high-definition printed pattern, it exhibits a lower viscosity when rolling and filling into openings, and the viscosity increases rapidly when transferred to the substrate. It has been considered necessary to maintain the printed shape on the substrate.
  • Patent Document 3 the viscosity measured at 25 ° C. is 10 Pa ⁇ s to 200 Pa ⁇ s at 5 rpm, and the ratio (TI value) between 2 rpm and 20 rpm is 4.0 to 10.0.
  • a paste is disclosed.
  • Patent Document 4 discloses a thixotropic index (when a viscosity value at a shear rate of 0.6 / sec at 23 ° C. is a viscosity value A and a viscosity value at a shear rate of 6 / sec is a viscosity value B).
  • a conductive paste having a viscosity value A / viscosity value B) of 1.2 to 2.5 and a viscosity value B of 30 Pa ⁇ s to 75 Pa ⁇ s is disclosed.
  • a conductive paste imparted with only thixotropy is used, the print transfer amount of the paste cannot be sufficiently controlled, and it is difficult to print a high-definition pattern.
  • the above-mentioned problems are mainly due to the fact that the amount of paste transferred onto the substrate greatly depends on the amount of passage from the screen opening during conductive paste printing. For this reason, if the amount of passage increases at the time of printing the conductive paste, the thin line portion is likely to bleed or become thick. At this time, the amount of passage increases as the fluidity of the paste increases.
  • the conductive paste generally contains a large amount of conductive particles having a high specific gravity. For this reason, the final application area is printed because it flows out of the printing area due to the weight of the conductive paste itself, etc., until it is dried, solidified or cured after being transferred onto the substrate by printing. It is easy to spread over a predetermined area.
  • a conductive paste containing an organic binder has a property (viscoelasticity) that has an elastic property (elastic deformation) simultaneously with flow (viscous flow). For this reason, it is difficult to evaluate the fluidity of the paste as a dispersion and the resulting printability by simply measuring the viscosity (steady viscosity) measured in a steady flow. Simply grasping and controlling the steady viscosity and thixotropy is not sufficient.
  • the present invention has been made in view of the above-mentioned problems, and can greatly contribute to the realization of, for example, a conductive paste used for forming fine wiring of 50 ⁇ m or less used for portable devices such as a touch panel and electrodes. .
  • the present inventors pay attention to the fact that the conductive paste is a dispersion system, and based on a concept different from the invention described in each of the above-mentioned prior art documents, while trying a multifaceted design based on viscous flow We conducted intensive analysis and examination. Until now, both the viscous flow and elastic deformation of the paste, more specifically, both the storage elastic modulus (elastic component) and the loss elastic modulus (viscous component) of the paste, There has been no analysis of independent control through optimization. As a result of repeated trial and error by the present inventors, as an example of its realization, a binder resin is formed by mixing a high molecular weight component and a low molecular weight component in a certain range of weight ratio. It has been found that such an appropriate relationship can be realized. The present invention was created from such a viewpoint.
  • one conductive paste of the present invention is a conductive paste containing a conductive metal powder, a binder resin, and a solvent, and the binder resin has a high molecular weight component having a weight average molecular weight of 40,000 to 100,000.
  • A and a low molecular weight component (B) having a weight average molecular weight of 5,000 or more and 10,000 or less, and the low molecular weight component (B) relative to the total amount of the high molecular weight component (A) and the low molecular weight component (B).
  • Weight fraction [100 ⁇ (B) / ⁇ (A) + (B) ⁇ ] satisfies 5% to 70%.
  • This conductive paste is excellent in printing workability and continuous printability, enables formation of a circuit pattern having a wiring width of, for example, 50 ⁇ m or less at high speed, and has good conductivity and adhesion to a substrate such as a PET film. Excellent in properties. As a result, high definition and printing workability are compatible, and further, performance required as a conductive coating film can be achieved.
  • Another conductive paste of the present invention is a conductive paste containing a conductive metal powder, a binder resin, and a solvent, and the viscosity of the conductive paste at 50 rpm at 25 ° C. by a rotational viscosity measurement method. 160 Pa ⁇ s to 300 Pa ⁇ s, and the loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa.
  • This conductive paste is excellent in printing workability and continuous printability, enables formation of a circuit pattern having a wiring width of, for example, 50 ⁇ m or less at high speed, and has good conductivity and a substrate such as a PET film. Excellent adhesion. As a result, high definition and printing workability are compatible, and further, performance required as a conductive coating film can be achieved.
  • the conductive paste of this embodiment is a conductive paste containing a conductive metal powder, a binder resin, and a solvent.
  • the conductive paste as a typical example has a viscosity at 25 ° C. and 50 rpm by a rotational viscosity measurement method of 160 Pa ⁇ s to 300 Pa ⁇ s, and a loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa. It is.
  • Step 2 The conductive paste of the present embodiment is specified by paste viscosity at 25 ° C. and 50 rpm (hereinafter also simply referred to as “steady viscosity”) by a rotational viscosity measurement method.
  • a conductive paste for screen printing moves on the screen mask plate while being rotated by a squeegee called rolling.
  • the 25 ° C. and 50 rpm measured by the rotational viscosity measurement method in the present embodiment corresponds to a state where the paste is rolling in a generally performed screen printing method.
  • This conductive paste can be screen-printed by satisfying the viscosity under the above-mentioned conditions in the range of 160 Pa ⁇ s to 300 Pa ⁇ s, more preferably 180 Pa ⁇ s to 280 Pa ⁇ s, For example, high-definition printability of 50 ⁇ m or less is possible.
  • the paste viscosity is smaller than 160 Pa ⁇ s, the paste fluidity becomes too high, so that an excess paste is supplied to the opening of the mask plate provided in the screen mesh, so that the print transfer The applied paste shape tends to be non-uniform.
  • the paste viscosity exceeds 300 Pa ⁇ s, the fluidity becomes insufficient and sufficient paste is not supplied to the opening of the mask plate, so that the printed and transferred conductive paste is likely to be chipped or disconnected. .
  • the conductive paste of this embodiment further has a loss elastic characteristic in a specific range at a strain amount of 0.1%.
  • the loss elastic modulus at a strain amount of 0.1% is preferably 7000 Pa or more and 30000 Pa or less, and more preferably 7000 Pa or more and 28500 Pa or less.
  • the distortion amount of 0.1% corresponds to the physical properties of the paste in a static state at the start of fluidization of the paste by squeezing in the screen printing method or on the substrate through the opening.
  • the loss elastic modulus characterizes the mechanical characteristics of the viscous component in the paste. Note that, by setting the loss elastic modulus within the above-described range at a strain amount of 0.1%, it is possible to achieve both high-definition printing and improved printing workability.
  • loss elastic modulus is less than 7000 Pa, bleeding tends to occur after print transfer.
  • loss elastic modulus is larger than 30000 Pa, there may be a problem in printing workability that it is difficult to roll by squeezing.
  • the storage elastic modulus at a strain amount of 0.1% is preferably in the range of 10000 Pa to 80000 Pa, and more preferably 15000 Pa to 50000 Pa.
  • the storage elastic modulus characterizes the elastic component in the paste, and screen printing is possible by setting the storage elastic modulus at a strain amount of 0.1% within the above range. In addition, high-definition printing can be realized by satisfying such a range. If the storage elastic modulus is smaller than 10000 Pa, it becomes difficult to maintain the shape after print transfer. On the other hand, if it exceeds 80000 Pa, the paste is difficult to fluidize, that is, it does not roll due to squeezing, or it tends to adhere to the squeegee.
  • the yield stress is typically preferably in the range of 10 Pa to 45 Pa, and more preferably in the range of 15 Pa to 36 Pa.
  • Yield stress represents the difficulty of deformation and fluidization of the paste at the start of squeezing in the screen printing method, and the difficulty of deformation of the transferred shape due to its own weight in the stationary state after print transfer. If the yield stress of the paste satisfies the above range, high-definition printability and printing workability can be achieved at a higher level. Note that if the yield stress is less than 10 Pa, the paste is easily deformed, and thus deforms after printing and deteriorates the high definition of printing. On the other hand, if the yield stress is greater than 45 Pa, the paste is difficult to deform, causing a problem that it does not deform at the start of squeezing and does not roll or adheres to the squeegee.
  • viscoelastic properties can be evaluated by measuring the shear stress dependence of the dynamic viscoelastic properties using a general viscoelasticity measuring device (rheometer).
  • rheometer general viscoelasticity measuring device
  • the above-mentioned storage elastic modulus and yield stress are a preferable aspect even if only one is stored in the above-mentioned range, the above-mentioned storage elastic modulus and yield stress are within the above-mentioned range. It is a more preferable aspect that both are contained.
  • the conductive paste of the present embodiment has the above characteristics. Preferred components and compositions for imparting these characteristics will be further described below.
  • the binder resin of the present embodiment which is a binder component, forms a paste-like substance form called a dispersion system together with the conductive powder, and realizes workability and printability suitable for the screen printing method in combination with the conductive powder. To do.
  • the type of binder resin used in this embodiment is not particularly limited.
  • the present inventors employ the binder resin that combines a resin having a high weight average molecular weight (resin having a high molecular weight component) and a resin having a low weight average molecular weight (resin having a low molecular weight component). Has been found to be more accurate.
  • the low molecular weight component resin is blended in the binder resin component (that is, in the total amount of the high molecular weight component resin and the low molecular weight component resin) at a ratio of 5 wt% to 70 wt%.
  • This facilitates the development of the paste on the mask plate in the screen printing method and facilitates the wrapping of the paste into the non-opening portion of the circuit pattern.
  • it is more preferably 8 wt% or more and 70 wt% or less.
  • the weight fraction [100 ⁇ (B) / ⁇ (A) + (B) ⁇ ] of the low molecular weight component to the total amount of the high molecular weight component and the low molecular weight component is 5% or more and 70%. Below, more preferably 8% or more and 70% or less is satisfied.
  • the above action lowers the elastic modulus of the viscous component as the conductive paste, and the paste has flexibility as the paste, while the steady viscosity of the conductive paste is extremely high compared to the conventional one. This is considered to be because Moreover, by mix
  • the resin of the high molecular weight component (also referred to as “high molecular weight component (A)”) of the present embodiment for example, a phenoxy resin having a weight average molecular weight of 40,000 to 100,000 (hereinafter “phenoxy”). Resin (A) ”) is preferably employed. In addition, it is more preferable from the above viewpoints that a phenoxy resin (A) of 50,000 or more and 80,000 or less is employed.
  • the phenoxy resin is typically bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A. It can be obtained by using bisphenols such as tetrafluorobisphenol A and epichlorohydrin.
  • urethane resin As a high molecular weight component (A) of this embodiment, a urethane resin, a urethane modified polyester resin, and a urethane modified epoxy resin can be employ
  • the example of the above-mentioned polyurethane resin is a poly (urea) urethane resin using a polymer polyol and a polyisocyanate and, if necessary, an amine as a raw material.
  • the polymer polyol include polyester polyol (hydroxyl-terminated polyester resin), polycarbonate polyol, polyether polyol, polyoxyalkylene polyol, and the like.
  • the raw material of this polyester polyol is the same as that of the polyester resin mentioned later.
  • polyisocyanate examples include butane-1,4-diisocyanate, 1,6-hexamethylene diisocyanate, lysine diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, Cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4, 4'-diphenyldimethylmethane diisocyanate, tolylene diisocyanate and the like.
  • the amine examples include diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, n-butylamine, mono-n-butylamine, diethanolamine, monoethanolamine, etc. Alkanolamines such as monoamine, monoethanolamine and diethanolamine.
  • the polyurethane resin employs an isocyanate group-terminated urethane prepolymer obtained by reacting the aforementioned polymer polyol and the aforementioned polyisocyanate with chain extension and / or chain termination with the aforementioned amine. obtain.
  • the weight average molecular weight of the polyurethane resin is not particularly limited. However, in consideration of the adhesion at the time of bending between the paste according to this embodiment and the substrate, the representative weight average molecular weight is 30,000 to 100,000, preferably 40,000 to 80,000.
  • a phenoxy resin (hereinafter referred to as “phenoxy resin”) having a weight average molecular weight of 5000 to 10,000. B) ”) is preferably employed.
  • a phenoxy resin (B) of 6000 or more and 8000 or less is employed. Therefore, the combination of the above-described high molecular weight component (A) and low molecular weight component (B) is a suitable example as a binder resin, and thus a conductive paste.
  • the weight average molecular weight is less than 5000, the fluidity of the binder is increased, and bleeding tends to occur and the line width tends to increase.
  • the weight average molecular weight is greater than 10,000, the viscosity of the binder resin is increased, the flexibility of the paste is lost, and printing workability may be hindered such as difficulty in rolling during printing.
  • phenoxy resin (B) which is the resin of the low molecular weight component (B)
  • polyethylene resin (C) polyester resin
  • by combining a part or all of the above phenoxy resin (B) and the polyester resin (C), in a conductive paste used for wiring or electrodes It is possible to obtain a wiring and / or electrode that is further excellent in film-forming properties, and that is more excellent in adhesion to a substrate, mechanical strength, and conductivity after drying / solidification / curing when formed on a resin film substrate. .
  • polyester resins are those obtained by reacting an acid component and a glycol component.
  • acid components are Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid; or Aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid; or Alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydrophthalic anhydride, 1,1′-bicyclohexane-4,4′-dicarboxylic acid, 2,6-decalin dicarboxylic acid; or And trivalent or higher polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride.
  • glycol components are: Ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, 1,4 -Aliphatic diols such as butanediol, 1,5-pentanediol, 1,6-hexanediol, dipropylene glycol; or Alicyclic diols such as 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F; or Trivalent or higher polyols such as glycerin, trimethylolpropane, trimethylolethane, diglycerin, triglycerin, 1,2,6-hexanetriol, pentaerythritol
  • the compatibility between the above-mentioned polyester resin and the solvent is improved and appropriate flexibility is imparted to the paste.
  • Printing workability is provided.
  • the acid value is higher than 50, a reaction product is generated on the surface of the conductive metal powder, and the viscosity of the paste rises during storage, which causes a problem in the temporal stability of the paste. Since the kind of polyester resin (C) used for this embodiment will not be restrict
  • Polyvinyl acetal resin A polyvinyl acetal resin is obtained by acetalizing a polyvinyl alcohol and an aldehyde.
  • the polyvinyl acetal resin include a polyvinyl formal resin, a polyvinyl acetoacetal resin, a polyvinyl alkyl acetal resin, a polyvinyl propional resin, a polyvinyl butyral resin, and a polyvinyl hexyl resin.
  • Modified epoxy resin examples include those obtained by modifying various known epoxy resins (including the phenoxy resin) with an amine compound (amine-modified epoxy resin), and further modifying the amine-modified epoxy resin with an isocyanate compound (amine / urethane). Modified epoxy resin).
  • the epoxy resin include a bisphenol type epoxy resin produced by glycidylating various bisphenols, a hydrogenated product of the bisphenol type epoxy resin, a phenol novolac resin, a novolac type obtained by reacting a cresol novolac resin with a haloepoxide. Examples thereof include epoxy resins and biphenyl type epoxy resins. Examples of the bisphenols include those described above.
  • amines examples include aromatic amines such as toluidines, xylidines, cumidine (isopropylaniline), hexylanilines, nonylanilines, dodecylanilines; or Cycloaliphatic amines such as cyclopentylamines, cyclohexylamines, norbornylamines; or Methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, stearylamine, icosylamine, 2-ethylhexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, diheptylamine, etc.
  • aromatic amines such as toluidines, xylidines, cumidine (isopropylaniline), hexylanilines, nonylanilines, dodecylani
  • alkanolamines such as diethanolamine, diisopropanolamine, di-2-hydroxybutylamine, N-methylethanolamine, N-ethylethanolamine, N-benzylethanolamine, and the like.
  • Examples of the polyisocyanate include those described above.
  • the conductive paste exhibiting the steady viscosity and viscoelastic behavior as described above can be obtained by containing a specific conductive metal powder or a specific binder resin.
  • the conductive metal powder is a component that is formed by the conductive paste of the present embodiment, for example, imparts conductivity to wirings and electrodes that form a circuit.
  • the powder is usually mixed with primary particles and secondary particles.
  • the average particle size of primary particles is 0.1 ⁇ m or more and 2 ⁇ m or less, and the maximum particle size of secondary particles is 10 ⁇ m or less.
  • the conductive paste is printed on the substrate through an opening provided in the screen mask plate.
  • the square opening formed by the stainless steel wire forming the mesh has an area ratio of 35% to 50% in order to maintain the mask strength.
  • the maximum length of the opening is at most about 25 ⁇ m.
  • those having an irregular shape in the primary particle shape exceed 60% by weight fraction in the conductive metal powder, or those having a spherical shape in the primary particle have a weight fraction in the conductive metal powder of 50% or less. It is preferable that By using a certain amount of irregularly shaped particles, the contact probability and the contact area between the conductive particles during drying / solidification / curing can be increased, and sufficiently high conductivity can be obtained as a wiring or an electrode. Further, by including an appropriate amount of spherical particles, it is possible to prevent an increase in steady viscosity and storage elastic modulus while having a high conductive solid content. In addition, since the surface area per volume is smaller than that of the irregular shape, the increase in loss elastic modulus is suppressed, and good printing workability is achieved in the spreadability of the paste on the mask plate and the rolling property during printing. Obtainable.
  • the primary particles in the present invention are those that are recognized as a single particle under SEM observation (observation magnifications from 1000 to 10,000 times), and the secondary particles are a plurality of particles under the same conditions. It means what is recognized as agglomerated. An indefinite shape is clearly recognized as a polygonal shape under the same observation conditions as described above. Further, the average particle size of the primary particle size is a value obtained by obtaining a circle-converted diameter by image analysis of an SEM image obtained under the same observation conditions as described above.
  • the maximum particle diameter of the secondary particles means the maximum length of aggregates (secondary particles) obtained by observing at least 10 visual fields under the same observation conditions as described above.
  • each particle size can be determined by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrack FRA 9220 manufactured by Leeds & Northrup).
  • Examples of the conductive metal powder that can be used in the present embodiment include gold, silver, copper, silver-plated copper powder, silver-copper composite powder, silver-copper alloy, amorphous copper, nickel, chromium, palladium, rhodium, Metal powders such as ruthenium, indium, silicon, aluminum, tungsten, morphbutene and platinum, inorganic powders coated with these metals, powders of metal oxides such as silver oxide, indium oxide, tin oxide, zinc oxide and ruthenium oxide Etc. These conductive particles may be used alone or in combination of two or more selected from the above group.
  • conductive particles they are highly conductive and have little increase in resistivity due to surface oxidation, so silver, copper coated with silver on the surface, and copper alloys coated with silver on the surface (zinc It is preferable to employ at least one selected from the group consisting of (and / or nickel).
  • Thixotropic agent A thixotropic agent can be added to the conductive paste of this embodiment in order to impart thixotropic properties suitable for the screen printing method.
  • the type of thixotropic agent is not particularly limited.
  • metal oxides such as alumina and titania
  • inorganic fine powders such as glass and carbon (including carbon black and graphite)
  • organic materials such as amide and polyethylene can be employed as the thixotropic agent.
  • the amount of thixotropic agent added is 1% or more and 5% or less, more preferably 1.2% or more and 4.5% or less in terms of weight fraction with respect to the total amount of paste. It is.
  • a thixotropic agent shows insulation, it is preferable to set it as the said addition amount range also from a viewpoint of preventing electroconductivity. From the same viewpoint, it is desirable that the addition amount of the thixotropic agent is 1% or more and 6% or less by weight with respect to the conductive powder.
  • the particle size is preferably set to 1 ⁇ m or less in order not to impede physical properties such as screen printing property, conductivity, and adhesion to a substrate.
  • a curing agent can be added to the conductive paste of the present embodiment from the viewpoint of promoting the curing of the binder resin and suppressing the increase in the resistance value between terminals before and after exposure to high temperature and high humidity due to the curing.
  • curing agents that can be added are isocyanate compounds, amine compounds, acid anhydride compounds, and the like.
  • isocyanate compounds that can be used as curing agents include polyisocyanates (unblocked isocyanates) used as raw materials for the above-mentioned polyurethane resins, blocked isocyanates produced by sealing them with various sealants, and the polyisocyanates Dimer to trimer of the above.
  • amine compounds among the above curing agents include aliphatic amines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, mensendiamine, isophoronediamine, hydrogenated and alicyclic amines such as m-xylenediamine, aromatic amines such as m-xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsorbone.
  • amine adducts, ketimines modified with these amines, polyamide resins having a reactive primary amine and secondary amine in the molecule, produced by condensation of dimer acid and polyamine, and the like can also be employed.
  • Examples of the acid anhydride compound among the above-mentioned curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol tris trimellitate, maleic anhydride, Tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride Succinic anhydride, methylcyclohexene dicarboxylic acid anhydride, alkylstyrene-maleic anhydride copolymer, chlorendic acid anhydride, polyazeline acid anhydride
  • the solvent used for the conductive paste of the present embodiment is not particularly limited. It can select suitably according to types, such as the solubility of the resin to be used, and the printing method.
  • Examples of the solvent of this embodiment include one or two types of ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, alicyclic solvents, aromatic solvents, alcohol solvents, water, and the like. It is a mixture of the above.
  • ester solvents include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, dimethyl carbonate, and the like.
  • ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, and cyclohexanenone.
  • glycol ether solvents include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, etc., acetates of these monoethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene Glycol monomethyl ether, propylene glycol monoethyl ether, and the like, and acetates of these monoethers.
  • examples of the aliphatic solvent include n-heptane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like.
  • examples of alicyclic solvents are methylcyclohexane, ethylcyclohexane, cyclohexane and the like.
  • examples of the aromatic solvent are toluene, xylene, tetralin and the like.
  • examples of alcohol solvents (excluding the above-mentioned glycol ether solvents) are ethanol, propanol, butanol and the like.
  • the conductive paste of the present embodiment includes a dispersant, a surface treatment agent, a friction improver, an infrared absorbent, an ultraviolet absorbent, an aromatic, an antioxidant, an organic pigment, an inorganic pigment, and an antifoaming agent as necessary. , Silane coupling agents, titanate coupling agents, plasticizers, flame retardants, humectants, ion scavengers, and the like.
  • the conductive paste of the present embodiment is prepared by blending a conductive metal powder, a binder resin, a solvent, and the above-mentioned thixotropic agent in a predetermined ratio as necessary, and mixing with a known kneader or disper. Obtained by.
  • an electrically conductive paste can also be obtained by mixing and dispersing with a three roll etc. as needed.
  • the usage-amount of the above-mentioned electroconductive metal powder, binder resin, a solvent, and a thixotropic agent is not specifically limited.
  • Conductive metal powder 65 wt% or more and 85 wt% or less
  • Binder resin 4 wt% or more and 8 wt% or less
  • Solvent 10 wt% or more and 30 wt% or less
  • Thixo agent 1 wt% or more and 6 wt% or less
  • the conductive paste of the present embodiment can be suitably applied particularly to the screen printing method, but may be applied to various conventionally known printing methods.
  • a screen with a fine mesh of 500 mesh or more is particularly preferable in order to cope with the high definition of the wiring width of 50 ⁇ m or less and the distance between the wiring and the electrode. It is preferable to use one having a diameter of 20 ⁇ m or less.
  • Arbitrary wirings and electrode patterns are formed on the screen mask plate with an emulsion or the like.
  • the conductive paste is printed on the substrate through a screen mask opening formed by an opening such as an emulsion and a mesh opening.
  • the area of the screen mask opening is preferably at least 30% with respect to the area of the opening of the transfer pattern formed by an emulsion or the like.
  • the typical screen plate type of this embodiment is a polyester screen, a combination screen, a metal screen, a nylon screen, or the like.
  • a high-tensile stainless steel wire when printing the conductive paste of the present embodiment, which has a relatively higher viscosity than before, it is preferable to use a high-tensile stainless steel wire.
  • the squeegee used for screen printing may be round, rectangular or square, and an abrasive squeegee can also be used to reduce the attack angle (the angle between the printing plate and the squeegee). .
  • Conventionally known conditions can be appropriately adopted as other printing conditions.
  • the conductive paste according to this embodiment is printed and transferred onto a substrate such as a substrate as described above, and then heated and dried and solidified, and is cured by a reaction between a curing agent and a binder resin.
  • the heating temperature is preferably 100 ° C. or higher and 150 ° C. or lower, and the heating time is preferably 5 minutes or longer and 120 minutes or shorter, for example.
  • the kind of the substrate on which the conductive paste of this embodiment is printed is not particularly limited, and a known material can be used.
  • typical resin film substrates are polyimide films, polyparaphenylene terephthalamide films, polyether nitrile films, polyether sulfone films, polyethylene terephthalate films, polyethylene naphthalate films, polyvinyl chloride films, and the like.
  • Typical substrate films are so-called ITO films formed by sputtering, wet coating, etc. on polymer films such as polyethylene terephthalate, polyethylene naphthalate polyester film, polycarbonate, polyethersulfone, acrylic resin, etc.
  • ITO glass having an ITO layer formed on glass.
  • a ceramic, a glass base material, etc. can be used as a base material with which the conductive paste of this embodiment is printed.
  • an ITO film in which an ITO layer is formed on a polyester film or an ITO glass in which an ITO layer is formed on glass is often used.
  • an anchor coat layer may be provided on the substrate, and a conductive paste may be printed on the anchor coat layer.
  • An anchor coat layer will not be specifically limited if the adhesiveness with a base material and also the adhesiveness of an electroconductive paste are favorable.
  • organic fillers, such as resin beads, and inorganic fillers, such as a metal oxide, can also be added as needed.
  • the method for providing the anchor coat layer is not particularly limited.
  • the anchor coat layer can be obtained by coating, drying and curing using a conventionally known coating method.
  • the conductive paste according to the present embodiment can be used for forming wiring and electrodes in a touch panel used for a smartphone, a tablet terminal, or the like.
  • the application is not particularly limited because it can be widely used in various industries.
  • Each component was blended at a blending ratio shown in Table 1, and kneaded with a three-roll mill to obtain a conductive paste.
  • Step 2 the paste viscosity at each rotational speed of 1, 10, 50, and 100 rpm at 25 ° C. was measured with a Brookfield viscometer (model, HBT).
  • Dynamic viscoelasticity measurement In this example, dynamic viscoelasticity measurement at 25 ° C. was performed with a Haake viscoelasticity measuring device (model, MARS).
  • the specific measurement method is as described in (1) to (3) below. (1) First, using a parallel plate made of titanium having a diameter of 35 mm, a conductive paste (sample) is sandwiched so that the gap is 0.3 mm. (2) Next, a shear strain of 0.01 to 100% is applied to the sample at a frequency of 1 Hz while sweeping. (3) The yield stress is measured from the linear deformation region of the dynamic storage elastic modulus and dynamic loss elastic modulus when the shear stress of (2) is applied, and the storage elastic modulus.
  • Printing of each conductive paste shown in each example and comparative example was performed using a high-precision screen printing apparatus (manufactured by Mino Group, model, access ASII-S5565). More specifically, using a screen mask plate (manufactured by Murakami Co., Ltd.) having a number of fine wiring patterns of 50 ⁇ m, 30 ⁇ m and 25 ⁇ m line and space shapes, on a polyethylene terephthalate film substrate (manufactured by Toray Industries, Inc., model, 100 sheets were continuously printed in a 500 ⁇ 500 mm area of Lumirror T60, 125 ⁇ m thick). Then, it was dried at 130 ° C. for 30 minutes.
  • the conditions for screen printing are as follows.
  • Appearance shape (High-definition printability) Appearance shape, average line width, and average line height were evaluated.
  • the evaluation criteria ( ⁇ , ⁇ , ⁇ ) of the external shape in the fine wiring portion of the line (wiring) portion are as follows.
  • The fine wiring portion was free from variation in thickness due to meandering, bleeding, wrinkling, and chipping, and the boundary line of the fine wiring portion was clear and good.
  • Some variation in thickness due to meandering was observed in the fine wiring part, but no bleeding, wrinkling or chipping occurred, and there was no problem in practical use.
  • X The fine wiring portion had a variation in thickness due to meandering, bleeding, wrinkling and chipping, and the boundary line was unclear.
  • the evaluation criteria ( ⁇ , ⁇ , ⁇ ) of the high definition of the printed line and space are as follows. A: The difference in the line width of the printed conductive paste with respect to the line pattern width of the screen mask plate was good within 10%. ⁇ : The difference in the line width of the printed conductive paste with respect to the line pattern width of the screen mask plate is more than 10% and within 20%, which is practically satisfactory. X: The difference in the line width of the printed conductive paste exceeded 20% with respect to the line pattern width of the screen mask plate, which was a practically problematic level. [Line height] The evaluation criteria ( ⁇ , ⁇ , ⁇ ) of the print transferability of the printed line and space are as follows.
  • the average line height of the printed conductive paste was 5 ⁇ m or more, which was good.
  • The average line height of the printed conductive paste was 3 ⁇ m or more and less than 5 ⁇ m, and there was no practical problem.
  • X The average line height of the printed conductive paste was less than 3 ⁇ m, which was a practically problematic level.
  • the specific resistance value was 1.0 ⁇ 10 ⁇ 4 ⁇ cm or more, which was a practically problematic level.
  • Adhesion evaluation Screen printing of polyethylene terephthalate film (manufactured by Toray Industries, Inc., model, Lumirror T60, 125 ⁇ m thickness) with each conductive paste shown in each example and comparative example so that the film thickness after drying is about 5 ⁇ m to 10 ⁇ m. did. Then, it is dried at 150 ° C. for 30 minutes, and a cross-cut cello tape (registered trademark) peel test based on a test method related to JIS (Japanese Industrial Standards), K5600-5-6 (Coating adhesion (cross-cut method)) The adhesion was evaluated.
  • JIS Japanese Industrial Standards
  • K5600-5-6 Coating adhesion (cross-cut method)
  • the evaluation criteria are as follows.
  • the test piece which was ⁇ in the above adhesion evaluation was further bent 180 ° three times in a state where it was wound around a cylindrical mandrel having a diameter of 20 mm in accordance with JIS (Japanese Industrial Standard), K5600-5-1. Thereafter, the occurrence of cracks was visually confirmed to evaluate whether or not there was a change in conductivity. In this test, no peeling occurred and no change in conductivity was evaluated as “ ⁇ ”.
  • Good adhesion without peeling.
  • Slightly peeled off, adhesion slightly poor.
  • X There is peeling across the entire surface and poor adhesion. (Double-circle): After a bending test, there is no peeling visually and there is no change in electroconductivity.
  • Examples 1, 4, 9, 11, 13, and 14 and Comparative Examples 1, 3, 6, and 7 were evaluated for continuous printability and high-speed printability.
  • the evaluation results are shown in Table 4.
  • the specific evaluation method is as follows. (Continuous printability) Change rate of line width ((average line width of 100th sheet ⁇ average line width of 5th sheet) ⁇ average line width of 5th sheet) and change rate of line height ((average line height of 100th sheet ⁇ The average line height of the fifth sheet) / average line height of the fifth sheet) was determined.
  • Evaluation criteria ( ⁇ , ⁇ , ⁇ ) are as follows. ⁇ : The rate of change was within 10%, which was good.
  • X The rate of change exceeded 20%, and it was at a level causing practical problems.
  • the conductive paste of the present invention can be widely used in various industries. Particularly preferably, the conductive paste is used for the formation of wiring and electrodes for touch panels used in smartphones and tablet terminals, but the use is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Conductive Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A conductive paste for screen printing according to one embodiment of the present invention contains a conductive metal powder, a binder resin and a solvent. The binder resin contains (A) a high molecular weight component that has a weight average molecular weight of from 40,000 to 100,000 (inclusive) and (B) a low molecular weight component that has a weight average molecular weight of from 5,000 to 10,000 (inclusive). The weight fraction of the low molecular weight component (B) relative to the total weight of the high molecular weight component (A) and the low molecular weight component (B), namely [100 × (B)/{(A) + (B)}] is from 5% to 70% (inclusive).

Description

スクリーン印刷用導電性ペースト、並びに配線の製造方法及び電極の製造方法Conductive paste for screen printing, wiring manufacturing method and electrode manufacturing method
 本発明は、スクリーン印刷用導電性ペースト、並びに配線の製造方法及び電極の製造方法に関する。 The present invention relates to a conductive paste for screen printing, a wiring manufacturing method, and an electrode manufacturing method.
 配線や電極などの電子部品を低コストに製造する方法として、スクリーン印刷法が広く採用されている。グラビア印刷などの印刷方法では、1~2μm程度の厚みの導電性回路を形成することが限界であるの対して、数μm以上の厚みを確保するには、スクリーン印刷法は好適な手法である。 The screen printing method is widely adopted as a method for manufacturing electronic parts such as wiring and electrodes at a low cost. In a printing method such as gravure printing, the limit is to form a conductive circuit having a thickness of about 1 to 2 μm. On the other hand, a screen printing method is a suitable method for securing a thickness of several μm or more. .
 ここで用いられる導電性ペーストは、一般的に樹脂硬化型、ポリマー型導電性ペーストと呼ばれ、有機バインダー樹脂に導電性粒子を分散したものを指す。ペースト状であるため、電子部品の小型軽量化あるいは生産性の向上、低コスト化が期待できる。また、基材上に印刷あるいは塗工し、乾燥させることによって、容易に導電回路を形成できる。さらに、この乾燥、硬化工程では、基材や電子部品に高温を加えることなく、低温にて行うことが出来る(特許文献1参照)。 The conductive paste used here is generally called a resin-cured or polymer-type conductive paste, and refers to a dispersion of conductive particles in an organic binder resin. Since it is in the form of a paste, it can be expected to reduce the size and weight of electronic components, improve productivity, and reduce costs. Moreover, a conductive circuit can be easily formed by printing or coating on a base material and drying. Furthermore, this drying and curing process can be performed at a low temperature without applying a high temperature to the substrate or the electronic component (see Patent Document 1).
 近年、タッチパネルは操作が直感的でユーザーフレンドリーな入力装置として、スマートフォンやタブレット端末に代表されるように急激な普及を見せている。このような高機能化・高画質化が進む携帯端末のタッチパネルにおいては、指またはタッチペンでの接触位置を高精度で検出する必要があるためにタッチパネル周辺に形成される配線や電極の微細化が必須となる。最近では、回路の配線自体の線幅や配線間の幅が50μm以下とすることが求められている。 In recent years, touch panels have been rapidly spreading as represented by smartphones and tablet terminals as intuitive and user-friendly input devices. In such touch panels for mobile terminals, which have advanced functions and high image quality, it is necessary to detect the contact position with a finger or a touch pen with high accuracy, and therefore the wiring and electrodes formed around the touch panel are miniaturized. Required. Recently, the line width of circuit wiring itself and the width between wiring lines are required to be 50 μm or less.
 高精細なスクリーン印刷を可能とすべく、導電性ペーストの物性面での改良が種々提案されている。その多くはペースト粘度をより高くするものや、さらにチキソトロピー性を付与することを指向するものであった。 Various improvements in the physical properties of the conductive paste have been proposed to enable high-definition screen printing. Many of them are intended to increase the paste viscosity or to impart thixotropic properties.
 例えば、一般的にスクリーン印刷法で用いられる導電性ペーストの粘度は従来数Pa・sからせいぜい100Pa・s程度である。また、特許文献2には、せん断速度500s-1における粘度が30.0Pa・s以下である導電性ペーストが開示されている。 For example, the viscosity of a conductive paste generally used in a screen printing method is from about several Pa · s to about 100 Pa · s at the most. Patent Document 2 discloses a conductive paste having a viscosity of 30.0 Pa · s or less at a shear rate of 500 s −1 .
 他方、精度の高いスクリーン印刷を行うためには、スキージ等によって外力が加えられた際には低粘度化するが、外力が加えられない状態では高粘度を維持する、いわゆるチキソトロピー性を有する導電性ペーストが必要であると考えられた。 On the other hand, in order to perform high-accuracy screen printing, a low viscosity is applied when an external force is applied by a squeegee or the like, but a high viscosity is maintained when no external force is applied. The paste was considered necessary.
 スクリーン印刷用ペーストの印刷時の挙動を考えると、ペーストはスキージによってローリングと呼ばれる回転運動をしながらスクリーンマスク版上を移動する。スクリーンに設けられた所定のパターンの開口部に充填されると、開口部を通して基材上に供給されて基材への転写が完了する。これまで、高精細な印刷パターンを形成することが可能なペーストであるためには、ローリングや開口部への充填時には、より低粘度を呈し、基材に転写されると速やかに高粘度化して、基材上で印刷された形状を維持することが必要であると考えられてきた。 考 え る Considering the behavior of the screen printing paste during printing, the paste moves on the screen mask plate while rotating by a squeegee called rolling. When an opening having a predetermined pattern provided on the screen is filled, the film is supplied onto the substrate through the opening to complete the transfer to the substrate. In the past, in order to be a paste capable of forming a high-definition printed pattern, it exhibits a lower viscosity when rolling and filling into openings, and the viscosity increases rapidly when transferred to the substrate. It has been considered necessary to maintain the printed shape on the substrate.
 特許文献3には、25℃で測定した粘度が5rpmで10Pa・s~200Pa・sであり、2rpmと20rpmとの比率(TI値)が4.0~10.0であるスクリーン印刷用導電性ペーストが開示されている。また、特許文献4には、23℃にてせん断速度0.6/secでの粘度値を粘度値Aとし、せん断速度6/secでの粘度値を粘度値Bとした場合のチクソトロピック指数(粘度値A/粘度値B)が1.2~2.5であり、粘度値Bが30Pa・s~75Pa・sである導電性ペーストが開示されている。しかし、チキソトロピー性のみを付与した導電性ペーストを用いても、ペーストの印刷転写量は十分に制御できず、高精細なパターンの印刷は困難である。 In Patent Document 3, the viscosity measured at 25 ° C. is 10 Pa · s to 200 Pa · s at 5 rpm, and the ratio (TI value) between 2 rpm and 20 rpm is 4.0 to 10.0. A paste is disclosed. Patent Document 4 discloses a thixotropic index (when a viscosity value at a shear rate of 0.6 / sec at 23 ° C. is a viscosity value A and a viscosity value at a shear rate of 6 / sec is a viscosity value B). A conductive paste having a viscosity value A / viscosity value B) of 1.2 to 2.5 and a viscosity value B of 30 Pa · s to 75 Pa · s is disclosed. However, even when a conductive paste imparted with only thixotropy is used, the print transfer amount of the paste cannot be sufficiently controlled, and it is difficult to print a high-definition pattern.
特開平06-68924号公報Japanese Patent Application Laid-Open No. 06-68924 特開2012-094772公報JP2012-094772A 特開2010-47716公報JP 2010-47716 A 特開2012-17411公報JP 2012-17411 A
 しかし、配線パターンの高精細化において、例えば樹脂硬化型の導電性ペーストを用いると、回路の配線自体の線幅や配線間の幅が100μm以下といった高精細なパターンを形成しようとしても、実際に印刷して得られる配線の線幅は目標とする線幅よりも大きくなることが多い。従って、樹脂硬化型の導電性ペーストの使用は、電気的短絡や、配線のエッジ部が滲むことによる不均一な形状や不明瞭な境界につながるため、良好な導電回路を形成することができないという問題が顕在化し得る。 However, in the case of high-definition wiring patterns, for example, if a resin-cured conductive paste is used, even if an attempt is made to form a high-definition pattern in which the line width of the circuit wiring itself or the width between the wirings is 100 μm or less, The line width of the wiring obtained by printing is often larger than the target line width. Therefore, the use of a resin-curing type conductive paste leads to non-uniform shapes and unclear boundaries due to electrical short-circuiting and bleeding of the edge portion of the wiring, so that a favorable conductive circuit cannot be formed. Problems can become apparent.
 上述の問題は、主に、基材上へのペーストの転写量が、導電性ペースト印刷時のスクリーン開口部からの通過量に大きく依存することに起因する。そのため、導電性ペースト印刷時にその通過量が多くなると、細線部分の滲み(にじみ)や太りが起こりやすくなる。このとき、ペーストの流動性が高い方が通過量は多くなる。加えて、導電性ペーストは一般に比重の重い導電性粒子を大量に含有する。このため、印刷により基材上に転写後、乾燥・固化又は硬化するまでの間に、導電性ペースト自身の重量等によって、印刷領域よりも外側にはみ出すように流れるため最終的な塗布領域が印刷したい所定の領域に対して広がり易い。 The above-mentioned problems are mainly due to the fact that the amount of paste transferred onto the substrate greatly depends on the amount of passage from the screen opening during conductive paste printing. For this reason, if the amount of passage increases at the time of printing the conductive paste, the thin line portion is likely to bleed or become thick. At this time, the amount of passage increases as the fluidity of the paste increases. In addition, the conductive paste generally contains a large amount of conductive particles having a high specific gravity. For this reason, the final application area is printed because it flows out of the printing area due to the weight of the conductive paste itself, etc., until it is dried, solidified or cured after being transferred onto the substrate by printing. It is easy to spread over a predetermined area.
 さらに、高精細な回路パターンを印刷するためには、微細なスクリーンメッシュを使用する必要がある。そして、微細なスクリーンメッシュを使用するためには、できるだけ粒径の小さい導電性金属粉末を使用する必要がある。しかし、粒径の小さい導電性金属粉末は、粒径の大きいものに比して、印刷後、乾燥・固化中の導電性ペーストに含まれる溶剤やバインダー樹脂の動きに乗って流動しやすい。その結果、最終的な塗布領域が印刷領域より外側にはみ出したり、線幅の「太り」現象がより生じ易くなる。また、導電性金属粉末サイズを一定以下に小さくすると、樹脂硬化型の導電性ペーストの場合、粒子間の接触不足により導電性が低下し易くなる。このため、導電性を高める工夫(導電性粉末含有量の増加、不定形粒子の併用、カーボン粉末の添加など)が別途必要となる。しかしながら、導電性金属粉末の含有量の増加や不定形粒子の含有は、ペーストの粘度増大やチキソ性増大を生じさせ易いため、前述の印刷欠陥の発生や印刷作業性の低下がより一層起こりやすくなる。さらには、上述の各粉末又は各粒子の粒径が小さくなると、曲率効果による表面エネルギーの増大とともに微粉末の体積当たりの表面積が増大する。その結果、上述の各粉末の2次凝集が生じ易くなり、保存中の粘度増大などペーストの経時安定性に不具合が生じ易くなる問題がある。 Furthermore, in order to print a high-definition circuit pattern, it is necessary to use a fine screen mesh. In order to use a fine screen mesh, it is necessary to use a conductive metal powder having a particle size as small as possible. However, the conductive metal powder having a small particle size is more likely to flow on the movement of the solvent and binder resin contained in the conductive paste being dried and solidified after printing, as compared with a powder having a large particle size. As a result, the final application region is more likely to protrude beyond the printing region, and the “widthening” phenomenon of the line width is more likely to occur. In addition, when the conductive metal powder size is reduced below a certain level, in the case of a resin-cured conductive paste, the conductivity tends to decrease due to insufficient contact between particles. For this reason, a device for increasing the conductivity (increase in the content of conductive powder, combined use of amorphous particles, addition of carbon powder, etc.) is required separately. However, the increase in the content of the conductive metal powder and the inclusion of irregular shaped particles are likely to cause an increase in the viscosity and thixotropy of the paste. Become. Furthermore, when the particle size of each powder or each particle described above becomes small, the surface area per volume of the fine powder increases as the surface energy increases due to the curvature effect. As a result, secondary agglomeration of each of the above-mentioned powders is likely to occur, and there is a problem that defects in the aging stability of the paste such as increase in viscosity during storage tend to occur.
 ところで、ペーストの通過量を抑えるためには、ペースト粘度を高くした方が一般的には良いと考えられている。そこで、ペーストの粘度を増加させるために、ペースト中に含まれる固形分量を増量する、導電性金属粉末の含有量を増やす、あるいはバインダー成分である樹脂として分子量の大きな樹脂を用いるなどの手法が従来採用されてきた。 By the way, in order to suppress the passing amount of the paste, it is generally considered that it is better to increase the paste viscosity. Therefore, in order to increase the viscosity of the paste, conventionally, there have been methods such as increasing the solid content contained in the paste, increasing the content of the conductive metal powder, or using a resin having a high molecular weight as the resin as the binder component. Has been adopted.
 しかし、単純にペースト粘度を高めると、滲みは発生しにくくなるが、スキージ等で押圧してもペーストをスクリーン版に十分に落とし込むことが出来ない。その結果、スクリーン版の開口部から十分に通過させることが難しくなるため、回路や電極に欠けやかすれ、配線高さの低下や配線形状の不均一が生じることにより、導電性の低下(回路抵抗の上昇)や断線不良が生じ得る。また、ペーストの粘度が高いと、印刷マスク版上でペーストが均一に展開しない、印刷中にペーストがスキージに付着する、または均一にローリングしないという問題が生じる。加えて、連続印刷をした場合には、印刷性が経時変化するなどの印刷作業上の不具合も生じ得る。また、高せん断速度での粘度を低くしただけでは、転写時の滲みを抑制することはできない。 However, if the paste viscosity is simply increased, bleeding is less likely to occur, but the paste cannot be sufficiently dropped onto the screen plate even when pressed with a squeegee or the like. As a result, it becomes difficult to sufficiently pass through the opening of the screen plate, so that the circuit and the electrodes are chipped or faded, the wiring height is reduced and the wiring shape is uneven, resulting in a decrease in conductivity (circuit resistance). Rise) and disconnection failure may occur. Moreover, when the viscosity of the paste is high, there are problems that the paste does not spread uniformly on the printing mask plate, the paste adheres to the squeegee during printing, or does not roll uniformly. In addition, when continuous printing is performed, problems in printing work such as a change in printability with time may occur. Further, the bleeding at the time of transfer cannot be suppressed only by reducing the viscosity at a high shear rate.
 さらに、近年、産業界から要求されている100mm/sec程度のいわゆる高速印刷プロセスにおいては、せん断速度が上がればその粘度は自然に低下するため、「滲み」現象の発生率が増大する。従って、本発明者らは、従来手法のようなペースト全体としての粘度の制御だけでは高精細な印刷性を実現することはできず、多面的なアプローチが必要であると考えている。さらに、前述の従来手法を用いてペースト粘度を高くした場合、基材との密着性の低下という問題も生じ得る。タッチパネルでは基材として樹脂フィルムが用いられるため、操作時に基材の変形が繰り返されると密着性の問題が特に生じ易い。 Furthermore, in the so-called high-speed printing process of about 100 mm / sec requested from the industry in recent years, when the shear rate is increased, the viscosity is naturally reduced, and thus the occurrence rate of “bleeding” phenomenon is increased. Accordingly, the present inventors believe that high-definition printability cannot be realized only by controlling the viscosity of the entire paste as in the conventional method, and a multifaceted approach is necessary. Furthermore, when the paste viscosity is increased by using the above-described conventional method, there may be a problem that the adhesion with the substrate is lowered. Since a resin film is used as a base material in the touch panel, a problem of adhesion is particularly likely to occur when the base material is repeatedly deformed during operation.
 一般に、有機バインダーを含有する導電性ペーストは、流動(粘性流動)と同時に弾性的な性質(弾性変形)を併せ持つ性質(粘弾性)を有している。このため、単純に定常流で測定される粘度(定常粘度)によって、分散系であるペーストの流動性とその結果としての印刷性を評価することは難しい。単なる定常粘度やチキソトロピー性の把握やその制御だけでは不十分である。 Generally, a conductive paste containing an organic binder has a property (viscoelasticity) that has an elastic property (elastic deformation) simultaneously with flow (viscous flow). For this reason, it is difficult to evaluate the fluidity of the paste as a dispersion and the resulting printability by simply measuring the viscosity (steady viscosity) measured in a steady flow. Simply grasping and controlling the steady viscosity and thixotropy is not sufficient.
 上述の諸問題は、回路の配線自体の線幅や配線間の幅が100μm以下といった高精細なパターンを形成する場合に特に顕著となる。従って、高精細化がさらに進んだ、50μmや30μmといった配線幅や配線間隔に対応したスクリーン印刷用として用いられる樹脂硬化型の導電性ペーストの開発は未だ道半ばである。 The above-mentioned problems are particularly noticeable when a high-definition pattern in which the line width of the circuit wiring itself and the width between the wirings are 100 μm or less is formed. Accordingly, development of a resin-cured conductive paste used for screen printing corresponding to wiring widths and wiring intervals such as 50 μm and 30 μm, which has been further improved in definition, is still halfway.
 本発明は、上記のような諸問題に鑑みてなされたものであり、例えば、タッチパネルなど携帯機器に用いられる50μm以下の微細な配線や電極形成に用いられる導電性ペーストの実現に大きく貢献し得る。 The present invention has been made in view of the above-mentioned problems, and can greatly contribute to the realization of, for example, a conductive paste used for forming fine wiring of 50 μm or less used for portable devices such as a touch panel and electrodes. .
 本発明者らは、導電性ペーストが分散系であることに着眼し、上述の各先行技術文献に記載された発明とは異なる考え方に基づいて、粘性流動を踏まえた多面的な設計を試みるとともに鋭意分析と検討を重ねた。これまで、ペーストの粘性流動と弾性変形との両方を、より具体的には、ペーストの貯蔵弾性率(弾性成分)と損失弾性率(粘性成分)との両方を、導電性ペーストの構成成分の適正化によって独立に制御することについて分析された例は皆無である。本発明者らによる試行錯誤が重ねられた結果、その実現の一例として、高分子量成分と低分子量成分とがある所定範囲の重量比率で混合されることによってバインダー樹脂が形成されることにより、そのような適正な関係を実現し得ることが見出された。本発明は、そのような視点により創出された。 The present inventors pay attention to the fact that the conductive paste is a dispersion system, and based on a concept different from the invention described in each of the above-mentioned prior art documents, while trying a multifaceted design based on viscous flow We conducted intensive analysis and examination. Until now, both the viscous flow and elastic deformation of the paste, more specifically, both the storage elastic modulus (elastic component) and the loss elastic modulus (viscous component) of the paste, There has been no analysis of independent control through optimization. As a result of repeated trial and error by the present inventors, as an example of its realization, a binder resin is formed by mixing a high molecular weight component and a low molecular weight component in a certain range of weight ratio. It has been found that such an appropriate relationship can be realized. The present invention was created from such a viewpoint.
 すなわち、本発明の1つの導電性ペーストは、導電性金属粉末、バインダー樹脂、及び溶剤を含有する導電性ペーストであって、そのバインダー樹脂が、重量平均分子量が40000以上100000以下である高分子量成分(A)及び重量平均分子量が5000以上10000以下である低分子量成分(B)を含み、かつ前述の高分子量成分(A)及び前述の低分子量成分(B)の総量に対するその低分子量成分(B)の重量分率[100×(B)/{(A)+(B)}]が、5%以上70%以下を満たす。 That is, one conductive paste of the present invention is a conductive paste containing a conductive metal powder, a binder resin, and a solvent, and the binder resin has a high molecular weight component having a weight average molecular weight of 40,000 to 100,000. (A) and a low molecular weight component (B) having a weight average molecular weight of 5,000 or more and 10,000 or less, and the low molecular weight component (B) relative to the total amount of the high molecular weight component (A) and the low molecular weight component (B). ) Weight fraction [100 × (B) / {(A) + (B)}] satisfies 5% to 70%.
 この導電性ペーストは、印刷作業性、連続印刷性に優れつつ、高速で、例えば50μm以下の配線幅の回路パターンの形成を可能にし、かつ良好な導電性と例えばPETフィルムなどの基材に対する密着性に優れている。その結果、高精細性と印刷作業性が両立し、さらに導電性塗膜として必要とされる性能が達成され得る。 This conductive paste is excellent in printing workability and continuous printability, enables formation of a circuit pattern having a wiring width of, for example, 50 μm or less at high speed, and has good conductivity and adhesion to a substrate such as a PET film. Excellent in properties. As a result, high definition and printing workability are compatible, and further, performance required as a conductive coating film can be achieved.
 また、本発明のもう1つの導電性ペーストは、導電性金属粉末、バインダー樹脂、及び溶剤を含有する導電性ペーストであって、回転粘度測定法による25℃で50rpmにおける前記導電性ペーストの粘度が、160Pa・s以上300Pa・s以下であり、かつ、歪量0.1%における損失弾性率が、7000Pa以上30000Pa以下である。 Another conductive paste of the present invention is a conductive paste containing a conductive metal powder, a binder resin, and a solvent, and the viscosity of the conductive paste at 50 rpm at 25 ° C. by a rotational viscosity measurement method. 160 Pa · s to 300 Pa · s, and the loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa.
 この導電性ペーストは、印刷作業性、連続印刷性に優れつつ、高速で、例えば50μm以下の配線幅の回路パターンの形成を可能にし、かつ良好な導電性と、例えばPETフィルムなどの基材に対する密着性に優れている。その結果、高精細性と印刷作業性が両立し、さらに導電性塗膜として必要とされる性能が達成され得る。 This conductive paste is excellent in printing workability and continuous printability, enables formation of a circuit pattern having a wiring width of, for example, 50 μm or less at high speed, and has good conductivity and a substrate such as a PET film. Excellent adhesion. As a result, high definition and printing workability are compatible, and further, performance required as a conductive coating film can be achieved.
 本発明によれば、スクリーン印刷法における高精細性と印刷作業性が両立し、さらに導電性塗膜として必要とされる性能が達成され得る。従って、特にスマートフォンやタブレット端末などに用いられるタッチパネルの配線や電極の形成に用いるのに好適な導電性ペーストを実現することができる。 According to the present invention, high-definition and printing workability in the screen printing method are compatible, and further, performance required as a conductive coating film can be achieved. Therefore, it is possible to realize a conductive paste suitable for use in the formation of wiring and electrodes for touch panels used particularly for smartphones and tablet terminals.
 本発明の実施形態を、以下に詳細に述べる。 Embodiments of the present invention will be described in detail below.
<第1の実施形態>
 本実施形態の導電性ペーストは、導電性金属粉末、バインダー樹脂および溶剤を含む導電性ペーストである。代表的な例としての導電性ペーストは、回転粘度測定法による25℃、50rpmにおける粘度が160Pa・s以上300Pa・s以下であり、かつ歪量0.1%における損失弾性率が7000Pa以上30000Pa以下である。
<First Embodiment>
The conductive paste of this embodiment is a conductive paste containing a conductive metal powder, a binder resin, and a solvent. The conductive paste as a typical example has a viscosity at 25 ° C. and 50 rpm by a rotational viscosity measurement method of 160 Pa · s to 300 Pa · s, and a loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa. It is.
 また、上述の導電性ペーストを、代表的にはスクリーン印刷法により、基材上に塗布する工程についても以下に説明する。 In addition, a process of applying the above-described conductive paste on a substrate typically by a screen printing method will be described below.
(定常粘度)
 本実施形態の導電性ペーストは、回転粘度測定法による25℃、50rpmにおけるペースト粘度(以下、単に、「定常粘度」ともいう)により特定される。
(Steady viscosity)
The conductive paste of the present embodiment is specified by paste viscosity at 25 ° C. and 50 rpm (hereinafter also simply referred to as “steady viscosity”) by a rotational viscosity measurement method.
 スクリーン印刷用導電性ペースト(以下、単に「導電性ペースト」又は「ペースト」ともいう)は、スキージによってローリングと呼ばれる回転運動をしながらスクリーンマスク版上を移動する。本実施形態における回転粘度測定法による25℃、50rpmとは、一般的に行われるスクリーン印刷法においてペーストがローリングしている状態に相当する。この導電性ペーストは、前述の条件における粘度を160Pa・s以上300Pa・s以下の範囲内、より好適には、180Pa・s以上280Pa・s以下を満たすことにより、スクリーン印刷が可能であるとともに、例えば50μm以下の高精細印刷性が可能となる。 A conductive paste for screen printing (hereinafter, also simply referred to as “conductive paste” or “paste”) moves on the screen mask plate while being rotated by a squeegee called rolling. The 25 ° C. and 50 rpm measured by the rotational viscosity measurement method in the present embodiment corresponds to a state where the paste is rolling in a generally performed screen printing method. This conductive paste can be screen-printed by satisfying the viscosity under the above-mentioned conditions in the range of 160 Pa · s to 300 Pa · s, more preferably 180 Pa · s to 280 Pa · s, For example, high-definition printability of 50 μm or less is possible.
 なお、仮に、ペースト粘度が160Pa・sよりも小さい場合は、ペーストの流動性が高くなりすぎるため、スクリーンメッシュに設けられたマスク版の開口部に過剰なペーストが供給されることによって、印刷転写されたペースト形状が不均一になりやすい。一方、ペースト粘度が300Pa・sを超えると、流動性が不十分となって十分なペーストがマスク版の開口部に供給されないために、印刷転写された導電性ペーストに欠けや断線が発生しやすい。 If the paste viscosity is smaller than 160 Pa · s, the paste fluidity becomes too high, so that an excess paste is supplied to the opening of the mask plate provided in the screen mesh, so that the print transfer The applied paste shape tends to be non-uniform. On the other hand, if the paste viscosity exceeds 300 Pa · s, the fluidity becomes insufficient and sufficient paste is not supplied to the opening of the mask plate, so that the printed and transferred conductive paste is likely to be chipped or disconnected. .
(損失弾性率)
 本実施形態の導電性ペーストは、さらに歪量0.1%における特定の範囲の損失弾性特性を備えている。
(Loss elastic modulus)
The conductive paste of this embodiment further has a loss elastic characteristic in a specific range at a strain amount of 0.1%.
 具体的には、歪量0.1%における損失弾性率が、7000Pa以上30000Pa以下であることが好ましく、7000Pa以上28500Pa以下であることがより好ましい。歪量0.1%は、スクリーン印刷法におけるスキージングによるペーストの流動化開始時、もしくは開口部を通して基板上に印刷転写されたペーストの静置状態の物性に相当するものである。また、損失弾性率は、ペースト中の粘性成分の機械的特性を性格づけるものである。なお、歪量0.1%において損失弾性率を前述の範囲内とすることにより、高精細印刷の実現と印刷作業性の向上とを両立させることができる。 Specifically, the loss elastic modulus at a strain amount of 0.1% is preferably 7000 Pa or more and 30000 Pa or less, and more preferably 7000 Pa or more and 28500 Pa or less. The distortion amount of 0.1% corresponds to the physical properties of the paste in a static state at the start of fluidization of the paste by squeezing in the screen printing method or on the substrate through the opening. The loss elastic modulus characterizes the mechanical characteristics of the viscous component in the paste. Note that, by setting the loss elastic modulus within the above-described range at a strain amount of 0.1%, it is possible to achieve both high-definition printing and improved printing workability.
 なお、仮に、損失弾性率が7000Paよりも小さい場合は、印刷転写後に滲みを生じやすくなる。他方、仮に損失弾性率が30000Paよりも大きい場合は、スキージングによりローリングし難いという印刷作業性の問題が生じ得る。さらに、そのような損失弾性率の場合、そもそもマスク版上にペーストをヘラ等で展開する(塗り広げる)ことがしにくく、マスク版に塗布されるペースト量の不均一が生じ得る。その結果、特に大きなマスク版で印刷する場合に、局所的な印刷量の不均一が生じる問題が発生し得る。 If the loss elastic modulus is less than 7000 Pa, bleeding tends to occur after print transfer. On the other hand, if the loss elastic modulus is larger than 30000 Pa, there may be a problem in printing workability that it is difficult to roll by squeezing. Furthermore, in the case of such a loss elastic modulus, it is difficult to spread (spread) the paste on the mask plate with a spatula or the like in the first place, and the amount of paste applied to the mask plate may be uneven. As a result, when printing with a particularly large mask plate, there may be a problem that local printing amount non-uniformity occurs.
(貯蔵弾性率および降伏応力)
 歪量0.1%における貯蔵弾性率、及び/又は降伏応力を適正な範囲内に収めることは、本実施形態の導電性ペーストのさらに好ましい一態様である。
(Storage modulus and yield stress)
It is a further preferable aspect of the conductive paste of the present embodiment that the storage elastic modulus and / or the yield stress at a strain amount of 0.1% are within an appropriate range.
 本実施形態の導電性ペーストにおいては、歪量0.1%における貯蔵弾性率が、10000Pa以上80000Pa以下の範囲内であることが好ましく、15000Pa以上50000Pa以下であることがより好ましい。前記貯蔵弾性率はペースト中の弾性成分を性格づけるものであり、歪量0.1%における貯蔵弾性率を前記の範囲内とすることによってスクリーン印刷が可能となる。加えて、そのような範囲を満たすことにより、高精細印刷を実現することができる。なお、仮に貯蔵弾性率が10000Paよりも小さいと、印刷転写後の形状を維持しにくくなる。他方、80000Paを超えると、ペーストは流動化しにくく、すなわちスキージングによりローリングしない、あるいはスキージに付着しやすいなどの問題を与える。 In the conductive paste of the present embodiment, the storage elastic modulus at a strain amount of 0.1% is preferably in the range of 10000 Pa to 80000 Pa, and more preferably 15000 Pa to 50000 Pa. The storage elastic modulus characterizes the elastic component in the paste, and screen printing is possible by setting the storage elastic modulus at a strain amount of 0.1% within the above range. In addition, high-definition printing can be realized by satisfying such a range. If the storage elastic modulus is smaller than 10000 Pa, it becomes difficult to maintain the shape after print transfer. On the other hand, if it exceeds 80000 Pa, the paste is difficult to fluidize, that is, it does not roll due to squeezing, or it tends to adhere to the squeegee.
 本実施形態の導電性ペーストにおいては、降伏応力が、代表的には10Pa以上45Pa以下の範囲内であることが好ましく、さらに15Pa以上36Pa以下の範囲内にあることがより好ましい。 In the conductive paste of this embodiment, the yield stress is typically preferably in the range of 10 Pa to 45 Pa, and more preferably in the range of 15 Pa to 36 Pa.
 降伏応力は、スクリーン印刷法におけるスキージング開始時のペーストの変形流動化の難易性、印刷転写後の静置状態における自重による転写形状の変形の難易性を表す。ペーストの降伏応力が前述の範囲を満たせば、高精細印刷性と印刷作業性をより高いレベルで両立させることができる。なお、仮に降伏応力が10Paよりも小さいと、ペーストは変形し易いことから、印刷後に変形し印刷の高精細性を劣化させる。一方、降伏応力が45Paよりも大きいと、ペーストは変形し難くスキージング開始時に変形せずローリングしなかったり、スキージに付着してしまう問題を生じる。 Yield stress represents the difficulty of deformation and fluidization of the paste at the start of squeezing in the screen printing method, and the difficulty of deformation of the transferred shape due to its own weight in the stationary state after print transfer. If the yield stress of the paste satisfies the above range, high-definition printability and printing workability can be achieved at a higher level. Note that if the yield stress is less than 10 Pa, the paste is easily deformed, and thus deforms after printing and deteriorates the high definition of printing. On the other hand, if the yield stress is greater than 45 Pa, the paste is difficult to deform, causing a problem that it does not deform at the start of squeezing and does not roll or adheres to the squeegee.
 これらの粘弾性特性は、一般的な粘弾性測定装置(レオメータ)を用いて、動的粘弾性特性のせん断応力依存性を測定することにより評価することができる。なお、上述の貯蔵弾性率と降伏応力とは、いずれか一方のみを上述の範囲内に収めたものであっても好ましい態様であるが、上述の貯蔵弾性率と降伏応力とを、上述の範囲内にいずれも収めることは、より好適な一態様となる。 These viscoelastic properties can be evaluated by measuring the shear stress dependence of the dynamic viscoelastic properties using a general viscoelasticity measuring device (rheometer). In addition, although the above-mentioned storage elastic modulus and yield stress are a preferable aspect even if only one is stored in the above-mentioned range, the above-mentioned storage elastic modulus and yield stress are within the above-mentioned range. It is a more preferable aspect that both are contained.
 本実施形態の導電性ペーストは、以上の特性を備えたものであるが、以下、これらの特性を付与するための好ましい成分および組成についてさらに説明する。 The conductive paste of the present embodiment has the above characteristics. Preferred components and compositions for imparting these characteristics will be further described below.
(バインダー樹脂)
 バインダー成分である本実施形態のバインダー樹脂は、導電性粉末とともに分散系と呼ばれるペースト状の物質形態を形成し、導電性粉末と相俟ってスクリーン印刷法に適した作業性や印刷性を実現する。
(Binder resin)
The binder resin of the present embodiment, which is a binder component, forms a paste-like substance form called a dispersion system together with the conductive powder, and realizes workability and printability suitable for the screen printing method in combination with the conductive powder. To do.
 本実施形態に使用するバインダー樹脂の種類は特に限定されない。一方、本発明者らは、重量平均分子量の高い樹脂(高分子量成分の樹脂)と重量平均分子量の低い樹脂(低分子量成分の樹脂)を組み合わせたバインダー樹脂を採用することにより、上述の諸特性がより確度高く実現することを見出した。 The type of binder resin used in this embodiment is not particularly limited. On the other hand, the present inventors employ the binder resin that combines a resin having a high weight average molecular weight (resin having a high molecular weight component) and a resin having a low weight average molecular weight (resin having a low molecular weight component). Has been found to be more accurate.
 具体的には、低分子量成分の樹脂を、バインダー樹脂成分中(つまり、高分子量成分の樹脂と低分子量成分の樹脂との総量中)において5重量%以上70重量%以下の割合で配合することにより、スクリーン印刷法におけるペーストのマスク版上への展開を容易にするとともに、回路パターンの非開口部へのペーストの回り込みを容易にする。前述の観点から言えば、8重量%以上70重量%以下であることがより好ましい。換言すれば、前述の高分子量成分及び前述の低分子量成分の総量に対するその低分子量成分の重量分率[100×(B)/{(A)+(B)}]が、5%以上70%以下、より好ましくは8%以上70%以下を満たす。 Specifically, the low molecular weight component resin is blended in the binder resin component (that is, in the total amount of the high molecular weight component resin and the low molecular weight component resin) at a ratio of 5 wt% to 70 wt%. This facilitates the development of the paste on the mask plate in the screen printing method and facilitates the wrapping of the paste into the non-opening portion of the circuit pattern. From the above viewpoint, it is more preferably 8 wt% or more and 70 wt% or less. In other words, the weight fraction [100 × (B) / {(A) + (B)}] of the low molecular weight component to the total amount of the high molecular weight component and the low molecular weight component is 5% or more and 70%. Below, more preferably 8% or more and 70% or less is satisfied.
 上述の作用は、導電性ペーストとしての粘性成分における弾性率を低下させるとともに、導電性ペーストの定常粘度において、従来のものに比べ極端な高粘度でありながら、ペーストとしては柔軟性をもったものとなるためであると考えられる。また、上述の割合で配合することにより、印刷時にペーストがローリングしなかったり、スキージに付着したりする問題を回避することができる。さらには、このときペースト全体としての高粘度は維持されることにより、印刷後のペーストに滲みによる配線幅の太りや高精細性の劣化を防ぐことができる。 The above action lowers the elastic modulus of the viscous component as the conductive paste, and the paste has flexibility as the paste, while the steady viscosity of the conductive paste is extremely high compared to the conventional one. This is considered to be because Moreover, by mix | blending in the above-mentioned ratio, the problem that a paste does not roll at the time of printing or it adheres to a squeegee can be avoided. Furthermore, the high viscosity of the paste as a whole is maintained at this time, thereby preventing an increase in wiring width and deterioration of high definition due to bleeding in the paste after printing.
 上述のとおり、重量平均分子量の高い樹脂(高分子量成分の樹脂)と重量平均分子量の低い樹脂(低分子量成分の樹脂)を組み合わせることにより、高粘度のペーストであっても、柔軟な粘性成分による優れた印刷作業性と高精細性を実現することができる。すなわち、その実現の一例として、本発明者らは、高分子量成分と低分子量成分とが上述の範囲内の重量比率で混合されることが、たとえ高速処理であっても、例えば50μm以下の配線幅の回路パターンの形成を可能にし、かつ良好な導電性と例えばPETフィルムなどの基材に対する優れた密着性につながることを知見した。 As described above, by combining a resin with a high weight average molecular weight (resin with a high molecular weight component) and a resin with a low weight average molecular weight (resin with a low molecular weight component), even a paste with a high viscosity is caused by a flexible viscous component. Excellent printing workability and high definition can be realized. That is, as an example of the realization, the present inventors have found that a high molecular weight component and a low molecular weight component are mixed at a weight ratio within the above range, for example, a wiring having a thickness of 50 μm or less, even at high speed processing. It has been found that it is possible to form a circuit pattern with a width, and that it leads to good conductivity and excellent adhesion to a substrate such as a PET film.
 上述の各観点から言えば、本実施形態の高分子量成分(「高分子量成分(A)」ともいう)の樹脂として、例えば、重量平均分子量が、40000以上100000以下のフェノキシ樹脂(以下、「フェノキシ樹脂(A)」という)が採用されることが好ましい。加えて、50000以上80000以下のフェノキシ樹脂(A)が採用されることが上述の各観点から更に好ましい。フェノキシ樹脂は、代表的には、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類と、エピクロルヒドリンとを用いることによって得られる。 From the viewpoints described above, as the resin of the high molecular weight component (also referred to as “high molecular weight component (A)”) of the present embodiment, for example, a phenoxy resin having a weight average molecular weight of 40,000 to 100,000 (hereinafter “phenoxy”). Resin (A) ") is preferably employed. In addition, it is more preferable from the above viewpoints that a phenoxy resin (A) of 50,000 or more and 80,000 or less is employed. The phenoxy resin is typically bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A. It can be obtained by using bisphenols such as tetrafluorobisphenol A and epichlorohydrin.
(ウレタン系樹脂)
 また、本実施形態の高分子量成分(A)として、例えば、ウレタン樹脂、ウレタン変性ポリエステル樹脂、ウレタン変性エポキシ樹脂を採用し得る。フィルム基材が折り曲げられるような外力又は変形が与えられたときにも優れた密着性を発揮ないし維持することができることから、これらのウレタン系の高分子量成分(A)を採用することは好適な一態様である。
(Urethane resin)
Moreover, as a high molecular weight component (A) of this embodiment, a urethane resin, a urethane modified polyester resin, and a urethane modified epoxy resin can be employ | adopted, for example. It is preferable to employ these urethane-based high molecular weight components (A) because excellent adhesion can be exhibited or maintained even when an external force or deformation is applied such that the film substrate is bent. It is one mode.
 ここで、上述のポリウレタン樹脂の例は、高分子ポリオール及びポリイソシアネート、並びに、必要に応じてアミンを原料とするポリ(ウレア)ウレタン樹脂である。
 また、該高分子ポリオールの例は、ポリエステルポリオール(水酸基末端ポリエステル樹脂)、ポリカーボネートポリオール、ポリエーテルポリオール、ポリオキシアルキレンポリオール等である。
 なお、該ポリエステルポリオールの原料は、後述するポリエステル樹脂のそれと同様である。
 また、該ポリイソシアネートの例は、ブタン-1,4-ジイソシアネート、1,6-ヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、トリレンジイソシアネート等である。
 また、該アミンの例は、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等のジアミンや、n-ブチルアミン、モノ-n-ブチルアミン、ジエタノールアミン、モノエタノールアミン等のモノアミン、モノエタノールアミン、ジエタノールアミン等のアルカノールアミン等である。
 加えて、該ポリウレタン樹脂は、前述の高分子ポリオールおよび前述のポリイソシアネートを反応させることによって得られるイソシアネート基末端ウレタンプレポリマーを、前述のアミンで鎖伸長および/または鎖停止させたものを採用し得る。
 また、該ポリウレタン樹脂の重量平均分子量は特に限定されない。但し、本実施形態にかかるペーストと基材との折り曲げ時の密着性を考慮すると、代表的な重量平均分子量は、30000以上100000以下、好ましくは40000以上80000以下である。
Here, the example of the above-mentioned polyurethane resin is a poly (urea) urethane resin using a polymer polyol and a polyisocyanate and, if necessary, an amine as a raw material.
Examples of the polymer polyol include polyester polyol (hydroxyl-terminated polyester resin), polycarbonate polyol, polyether polyol, polyoxyalkylene polyol, and the like.
In addition, the raw material of this polyester polyol is the same as that of the polyester resin mentioned later.
Examples of the polyisocyanate include butane-1,4-diisocyanate, 1,6-hexamethylene diisocyanate, lysine diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, Cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4, 4'-diphenyldimethylmethane diisocyanate, tolylene diisocyanate and the like.
Examples of the amine include diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4′-diamine, n-butylamine, mono-n-butylamine, diethanolamine, monoethanolamine, etc. Alkanolamines such as monoamine, monoethanolamine and diethanolamine.
In addition, the polyurethane resin employs an isocyanate group-terminated urethane prepolymer obtained by reacting the aforementioned polymer polyol and the aforementioned polyisocyanate with chain extension and / or chain termination with the aforementioned amine. obtain.
The weight average molecular weight of the polyurethane resin is not particularly limited. However, in consideration of the adhesion at the time of bending between the paste according to this embodiment and the substrate, the representative weight average molecular weight is 30,000 to 100,000, preferably 40,000 to 80,000.
 また、上述の各観点から言えば、本実施形態の低分子量成分(「低分子量成分(B)」ともいう)の樹脂として、重量平均分子量5000以上10000以下のフェノキシ樹脂(以下、「フェノキシ樹脂(B)」という)が採用されることが好ましい。加えて、6000以上8000以下のフェノキシ樹脂(B)が採用されることが上述の各観点から更に好ましい。従って、上述の高分子量成分(A)と低分子量成分(B)との組合せは、バインダー樹脂、ひいては導電性ペーストとして好適な例である。 Further, from the viewpoints described above, as the resin of the low molecular weight component (also referred to as “low molecular weight component (B)”) of the present embodiment, a phenoxy resin (hereinafter referred to as “phenoxy resin”) having a weight average molecular weight of 5000 to 10,000. B) ") is preferably employed. In addition, it is more preferable from the above viewpoints that a phenoxy resin (B) of 6000 or more and 8000 or less is employed. Therefore, the combination of the above-described high molecular weight component (A) and low molecular weight component (B) is a suitable example as a binder resin, and thus a conductive paste.
 なお、仮に重量平均分子量が5000よりも小さいと、バインダーの流動性が増して、滲みやすく線幅の太りが発生し易い。他方、仮に重量平均分子量が10000よりも大きいと、バインダー樹脂の粘度が高くなりペーストの柔軟性が失われ、印刷時にローリングし難いなど、印刷作業性を阻害する可能性がある。 In addition, if the weight average molecular weight is less than 5000, the fluidity of the binder is increased, and bleeding tends to occur and the line width tends to increase. On the other hand, if the weight average molecular weight is greater than 10,000, the viscosity of the binder resin is increased, the flexibility of the paste is lost, and printing workability may be hindered such as difficulty in rolling during printing.
(ポリエステル樹脂)
 また、低分子量成分(B)の樹脂であるフェノキシ樹脂(B)の全部または一部を重量平均分子量5000~10000であって、酸価が10~50の範囲内であるポリエステル樹脂(以下、「ポリエステル樹脂(C)」という)に置き換えることも可能である。本実施形態においては、上述のフェノキシ樹脂(B)の一部又は全部とポリエステル樹脂(C)とを組み合わせることにより、配線や電極に用いられる導電性ペーストにおいて、使用される溶剤への溶解性と造膜性がさらに優れ、樹脂フィルム基材に形成した場合の基材との密着性や機械的強度、乾燥・固化/硬化後の導電性においてより優れた配線及び/又は電極を得ることができる。
(Polyester resin)
Further, all or part of the phenoxy resin (B), which is the resin of the low molecular weight component (B), has a weight average molecular weight of 5000 to 10,000 and an acid value in the range of 10 to 50 (hereinafter referred to as “ It is also possible to replace it with “polyester resin (C)”. In the present embodiment, by combining a part or all of the above phenoxy resin (B) and the polyester resin (C), in a conductive paste used for wiring or electrodes, It is possible to obtain a wiring and / or electrode that is further excellent in film-forming properties, and that is more excellent in adhesion to a substrate, mechanical strength, and conductivity after drying / solidification / curing when formed on a resin film substrate. .
 ポリエステル樹脂の例は、酸成分とグリコール成分とを反応させたものである。
 また、酸成分の例は、
 テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;又は、
 コハク酸、アジピン酸、アゼライン酸、セバチン酸、ドデカンジカルボン酸等の脂肪族ジカルボン酸;又は、
 1,4-シクロヘキサンジカルボン酸、ヘキサヒドロ無水フタル酸、1,1´-ビシクロヘキサン-4,4´-ジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸;又は、
 無水トリメリット酸、無水ピロメリット酸等の3価以上のポリカルボン酸等である。
 また、グリコール成分の例は、
 エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ネオペンチルグリコ-ル、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジプロピレングリコール等の脂肪族系ジオール;又は、
 1,4-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF等の脂環系ジオール;又は、
 グリセリン、トリメチロールプロパン、トリメチロールエタン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、ジペンタエリスリトール、ソルビトール、マンニトール等の3価以上のポリオールである。
 なお、該ポリエステル樹脂の物性は特に限定されないが、代表的な酸価は10以上50以下である。
Examples of polyester resins are those obtained by reacting an acid component and a glycol component.
Examples of acid components are
Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid; or
Aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid; or
Alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydrophthalic anhydride, 1,1′-bicyclohexane-4,4′-dicarboxylic acid, 2,6-decalin dicarboxylic acid; or
And trivalent or higher polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride.
Examples of glycol components are:
Ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, 1,4 -Aliphatic diols such as butanediol, 1,5-pentanediol, 1,6-hexanediol, dipropylene glycol; or
Alicyclic diols such as 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F; or
Trivalent or higher polyols such as glycerin, trimethylolpropane, trimethylolethane, diglycerin, triglycerin, 1,2,6-hexanetriol, pentaerythritol, dipentaerythritol, dipentaerythritol, sorbitol, mannitol.
In addition, although the physical property of this polyester resin is not specifically limited, A typical acid value is 10-50.
 特に、酸価を10以上50以下の範囲内に収めることにより、上述のポリエステル樹脂と溶剤との相溶性が向上しペーストに適度な柔軟性が付与されるため、高粘度ペーストであっても適度な印刷作業性が付与される。さらには、樹脂フィルムなどの基材に対する十分な密着性が得られる点でも、酸価を10以上50以下にすることはより好ましい。なお、仮に酸価が10よりも小さいと基材との密着性が十分ではない。他方、仮に酸価が50よりも大きくなると、導電性金属粉末表面で反応物を生じて、保存時に粘度が上昇するなどペーストの経時安定性に不具合が生じる。本実施形態に用いられるポリエステル樹脂(C)の種類は、前記の分子量、酸価が満たされていれば特に制限されるものではないため、一般的に知られたものを用いることができる。 In particular, by keeping the acid value within the range of 10 or more and 50 or less, the compatibility between the above-mentioned polyester resin and the solvent is improved and appropriate flexibility is imparted to the paste. Printing workability is provided. Furthermore, it is more preferable to set the acid value to 10 or more and 50 or less from the viewpoint of obtaining sufficient adhesion to a substrate such as a resin film. If the acid value is less than 10, the adhesion to the substrate is not sufficient. On the other hand, if the acid value is higher than 50, a reaction product is generated on the surface of the conductive metal powder, and the viscosity of the paste rises during storage, which causes a problem in the temporal stability of the paste. Since the kind of polyester resin (C) used for this embodiment will not be restrict | limited especially if the said molecular weight and an acid value are satisfy | filled, what is generally known can be used.
(ポリビニルアセタール樹脂)
 ポリビニルアセタール樹脂は、ポリビニルアルコールとアルデヒド類をアセタール化反応させることによって得られる。該ポリビニルアセタール樹脂の例は、ポリビニルホルマール樹脂、ポリビニルアセトアセタール樹脂、ポリビニルアルキルアセタール樹脂、ポリビニルプロピオナール樹脂、ポリビニルブチラール樹脂、ポリビニルヘキシラール樹脂等である。
(Polyvinyl acetal resin)
A polyvinyl acetal resin is obtained by acetalizing a polyvinyl alcohol and an aldehyde. Examples of the polyvinyl acetal resin include a polyvinyl formal resin, a polyvinyl acetoacetal resin, a polyvinyl alkyl acetal resin, a polyvinyl propional resin, a polyvinyl butyral resin, and a polyvinyl hexyl resin.
(変性エポキシ樹脂)
 変性エポキシ樹脂の例は、各種公知のエポキシ樹脂(前記フェノキシ樹脂を含む)をアミン化合物で変性したもの(アミン変性エポキシ樹脂)、該アミン変性エポキシ樹脂を更にイソシアネート化合物で変性したもの(アミン・ウレタン変性エポキシ樹脂)である。
 該エポキシ樹脂の例は、各種ビスフェノール類をグリシジル化して生成されるビスフェノール型エポキシ樹脂、当該ビスフェノール型エポキシ樹脂の水添物、フェノールノボラック樹脂、クレゾールノボラック樹脂にハロエポキシドを反応させて得られるノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等である。
 なお、該ビスフェノール類の例は、前述のものが挙げられる。
 また、該アミン類との例は、トルイジン類、キシリジン類、クミジン(イソプロピルアニリン)類、ヘキシルアニリン類、ノニルアニリン類、ドデシルアニリン類等の該芳香族アミン類;又は、
 シクロペンチルアミン類、シクロヘキシルアミン類、ノルボニルアミン類等の脂環族アミン類;又は、
 メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ステアリルアミン、イコシルアミン、2-エチルヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘプチルアミン等の脂肪族アミン類;又は
 ジエタノ-ルアミン、ジイソプロパノ-ルアミン、ジ-2-ヒドロキシブチルアミン、N-メチルエタノ-ルアミン、N-エチルエタノ-ルアミン、N-ベンジルエタノ-ルアミン等のアルカノ-ルアミン類である。
 また、該ポリイソシアネートの例は、前述のものが挙げられる。
(Modified epoxy resin)
Examples of modified epoxy resins include those obtained by modifying various known epoxy resins (including the phenoxy resin) with an amine compound (amine-modified epoxy resin), and further modifying the amine-modified epoxy resin with an isocyanate compound (amine / urethane). Modified epoxy resin).
Examples of the epoxy resin include a bisphenol type epoxy resin produced by glycidylating various bisphenols, a hydrogenated product of the bisphenol type epoxy resin, a phenol novolac resin, a novolac type obtained by reacting a cresol novolac resin with a haloepoxide. Examples thereof include epoxy resins and biphenyl type epoxy resins.
Examples of the bisphenols include those described above.
Examples of the amines include aromatic amines such as toluidines, xylidines, cumidine (isopropylaniline), hexylanilines, nonylanilines, dodecylanilines; or
Cycloaliphatic amines such as cyclopentylamines, cyclohexylamines, norbornylamines; or
Methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, stearylamine, icosylamine, 2-ethylhexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, diheptylamine, etc. Or alkanolamines such as diethanolamine, diisopropanolamine, di-2-hydroxybutylamine, N-methylethanolamine, N-ethylethanolamine, N-benzylethanolamine, and the like.
Examples of the polyisocyanate include those described above.
(導電性粒子)
 上述のような定常粘度と粘弾性挙動を示す導電性ペーストは、特定の導電性金属粉末、又は特定のバインダー樹脂を含有することにより得ることができる。
(Conductive particles)
The conductive paste exhibiting the steady viscosity and viscoelastic behavior as described above can be obtained by containing a specific conductive metal powder or a specific binder resin.
 導電性金属粉末は、本実施形態の導電性ペーストによって形成される、例えば回路を形成する配線や電極に導電性を付与するための成分である。 The conductive metal powder is a component that is formed by the conductive paste of the present embodiment, for example, imparts conductivity to wirings and electrodes that form a circuit.
 粉末には、一次粒子と二次粒子が混在しているのが通常である。本実施形態における導電性金属粉末では、一次粒子の平均粒子サイズが0.1μ以上2μm以下であり、二次粒子の最大粒子径が10μ以下であることが好ましい。スクリーン印刷法において、導電性ペーストはスクリーンマスク版に設けられた開口部を通して基板上に印刷される。 The powder is usually mixed with primary particles and secondary particles. In the conductive metal powder in the present embodiment, it is preferable that the average particle size of primary particles is 0.1 μm or more and 2 μm or less, and the maximum particle size of secondary particles is 10 μm or less. In the screen printing method, the conductive paste is printed on the substrate through an opening provided in the screen mask plate.
 メッシュマスクを用いた一般的なスクリーン印刷法では、メッシュを形成するステンレス線材によって形成される方形の開口部はマスク強度を維持するために35%~50%の面積率である。例えば、50μm幅の配線や電極を形成する場合には、開口部の最大長さはせいぜい25μm程度となる。前述の範囲の粒子サイズの導電性金属粉末を用いることにより、導電性金属粉末が金属などの剛体においてもメッシュ開口部を導電性ペーストがスムースに通過するだけでなく、印刷作業時に目詰りを起こさないようにすることができる。また、前述の範囲の粒子サイズを用いることにより、粒子径が数nm~数十nmのいわゆるナノ粒子などの極端なサイズの微粒子を用いることによる定常粘度の低下やチキソ性の低下を防ぎ、前述の定常粘度と貯蔵弾性率を発現させることができる。 In a general screen printing method using a mesh mask, the square opening formed by the stainless steel wire forming the mesh has an area ratio of 35% to 50% in order to maintain the mask strength. For example, when forming a wiring or electrode having a width of 50 μm, the maximum length of the opening is at most about 25 μm. By using a conductive metal powder with a particle size in the above-mentioned range, not only does the conductive metal powder pass smoothly through the mesh opening even when the conductive metal powder is a rigid body such as a metal, it also causes clogging during printing operations. Can not be. In addition, by using a particle size in the above-mentioned range, it is possible to prevent a decrease in steady-state viscosity and a decrease in thixotropy due to the use of extremely sized fine particles such as so-called nanoparticles having a particle size of several nanometers to several tens of nanometers. The stationary viscosity and storage elastic modulus can be expressed.
 さらに、一次粒子形状において不定形状を呈するものが導電性金属粉末中の重量分率で60%を超えるか、あるいは一次粒子において球状を呈するものが導電性金属粉末中の重量分率で50%以下であることが好ましい。一定量の不定形粒子を用いることにより、乾燥・固化/硬化時に導電性粒子同士の接触確率と接触面積を高め、配線や電極として十分な高い導電性を得ることができる。また、適当量の球状粒子を含むことにより、高い導電性の固形分量でありながら、定常粘度や貯蔵弾性率の増大を防ぐことができる。加えて、体積あたりの表面積が不定形に比べ小さくなることにより、損失弾性率の増大を抑制して、ペーストのマスク版上への展開性や印刷時のローリング性において、良好な印刷作業性を得ることができる。 Further, those having an irregular shape in the primary particle shape exceed 60% by weight fraction in the conductive metal powder, or those having a spherical shape in the primary particle have a weight fraction in the conductive metal powder of 50% or less. It is preferable that By using a certain amount of irregularly shaped particles, the contact probability and the contact area between the conductive particles during drying / solidification / curing can be increased, and sufficiently high conductivity can be obtained as a wiring or an electrode. Further, by including an appropriate amount of spherical particles, it is possible to prevent an increase in steady viscosity and storage elastic modulus while having a high conductive solid content. In addition, since the surface area per volume is smaller than that of the irregular shape, the increase in loss elastic modulus is suppressed, and good printing workability is achieved in the spreadability of the paste on the mask plate and the rolling property during printing. Obtainable.
 なお、本発明における一次粒子とは、SEM観察下(観察倍率1000倍から10000倍までの条件)で単一の粒子として認められるものを、二次粒子とは、同様の条件において複数の粒子が凝集して構成されたものとして認められるものをいう。不定形状とは、前記と同様の観察条件において、明らかに多角形状として認められるものである。また、一次粒子径の平均粒子サイズとは、前記と同様の観察条件において得られたSEM像を画像解析するなどして円換算直径を求めたものを示す。二次粒子の最大粒子径とは、前記と同様の観察条件において少なくとも10視野以上を観察し、そこでみとめらた凝集体(二次粒子)の最大長さを意味する。また、各粒子径は、例えば、レーザー回折/散乱式粒度分布測定装置(一例として、Leeds&Northrup社製マイクロトラックFRA9220)等を用いても求めることができる。 The primary particles in the present invention are those that are recognized as a single particle under SEM observation (observation magnifications from 1000 to 10,000 times), and the secondary particles are a plurality of particles under the same conditions. It means what is recognized as agglomerated. An indefinite shape is clearly recognized as a polygonal shape under the same observation conditions as described above. Further, the average particle size of the primary particle size is a value obtained by obtaining a circle-converted diameter by image analysis of an SEM image obtained under the same observation conditions as described above. The maximum particle diameter of the secondary particles means the maximum length of aggregates (secondary particles) obtained by observing at least 10 visual fields under the same observation conditions as described above. In addition, each particle size can be determined by using, for example, a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrack FRA 9220 manufactured by Leeds & Northrup).
 本実施形態に採用し得る導電性金属粉末の種類は、例えば、金、銀、銅、銀メッキ銅粉、銀-銅複合粉、銀-銅合金、アモルファス銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、ケイ素、アルミニウム、タングステン、モルブテン、白金等の金属粉、これらの金属で被覆した無機物粉体、酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、及び酸化ルテニウム等の金属酸化物の粉末等である。これらの導電性粒子は、上述の群から選ばれる1種または2種以上組み合わされ得る。これらの導電性粒子の中でも、高導電性であり、かつ表面酸化による抵抗率の上昇が少ないことから、銀、銀が表面にコーティングされた銅、及び銀が表面にコーティングされた銅合金(亜鉛および/もしくはニッケルを含む)からなる群より選ばれる少なくとも1種を採用することが好ましい。 Examples of the conductive metal powder that can be used in the present embodiment include gold, silver, copper, silver-plated copper powder, silver-copper composite powder, silver-copper alloy, amorphous copper, nickel, chromium, palladium, rhodium, Metal powders such as ruthenium, indium, silicon, aluminum, tungsten, morphbutene and platinum, inorganic powders coated with these metals, powders of metal oxides such as silver oxide, indium oxide, tin oxide, zinc oxide and ruthenium oxide Etc. These conductive particles may be used alone or in combination of two or more selected from the above group. Among these conductive particles, they are highly conductive and have little increase in resistivity due to surface oxidation, so silver, copper coated with silver on the surface, and copper alloys coated with silver on the surface (zinc It is preferable to employ at least one selected from the group consisting of (and / or nickel).
(チキソ剤)
 本実施形態の導電性ペーストには、スクリーン印刷法に適したチキソトロピー性を付与するためにチキソ剤を添加することができる。チキソ剤の種類は特に限定されない。例えば、アルミナやチタニアなどの金属酸化物、ガラス、炭素(カーボンブラック、グラファイト等を含む)等の無機系微粉末、アマイドやポリエチレンなどの有機系材料がチキソ剤として採用され得る。貯蔵弾性率や粘度を増大させないようにするために、チキソ剤の添加量はペースト全体量に対して重量分率で1%以上5%以下、より好ましくは1.2%以上4.5%以下である。また、チキソ剤が絶縁性を示すものである場合は、導電性を阻害しないようにする観点からも、特に、前記の添加量の範囲とすることが好ましい。また同様の観点から、チキソ剤の添加量は、導電性粉末に対して重量分率で1%以上6%以下とすることが望ましい。また、無機系粉末のチキソ剤を用いる場合には、スクリーン印刷性および導電性、基材への密着性などの物性を阻害しないために、その粒子サイズを1μm以下とすることが好ましい。
(Thixotropic agent)
A thixotropic agent can be added to the conductive paste of this embodiment in order to impart thixotropic properties suitable for the screen printing method. The type of thixotropic agent is not particularly limited. For example, metal oxides such as alumina and titania, inorganic fine powders such as glass and carbon (including carbon black and graphite), and organic materials such as amide and polyethylene can be employed as the thixotropic agent. In order not to increase the storage elastic modulus and viscosity, the amount of thixotropic agent added is 1% or more and 5% or less, more preferably 1.2% or more and 4.5% or less in terms of weight fraction with respect to the total amount of paste. It is. Moreover, when a thixotropic agent shows insulation, it is preferable to set it as the said addition amount range also from a viewpoint of preventing electroconductivity. From the same viewpoint, it is desirable that the addition amount of the thixotropic agent is 1% or more and 6% or less by weight with respect to the conductive powder. In addition, when an inorganic powder thixotropic agent is used, the particle size is preferably set to 1 μm or less in order not to impede physical properties such as screen printing property, conductivity, and adhesion to a substrate.
(硬化剤)
 バインダー樹脂の硬化を促進し、硬化により高温高湿曝露前後での端子間抵抗値の上昇を抑制する等の観点から、本実施形態の導電性ペーストには硬化剤を添加することができる。添加しうる硬化剤の例は、イソシアネート化合物、アミン化合物、酸無水物化合物等である。硬化剤として用い得るイソシアネート化合物の例は、上述のポリウレタン樹脂の原料として用いたポリイソシアネート(非ブロック化イソシアネート)、それらを各種封止剤で封止して生成されるブロック化イソシアネート、該ポリイソシアネートの二量体乃至三量体等である。
(Curing agent)
A curing agent can be added to the conductive paste of the present embodiment from the viewpoint of promoting the curing of the binder resin and suppressing the increase in the resistance value between terminals before and after exposure to high temperature and high humidity due to the curing. Examples of curing agents that can be added are isocyanate compounds, amine compounds, acid anhydride compounds, and the like. Examples of isocyanate compounds that can be used as curing agents include polyisocyanates (unblocked isocyanates) used as raw materials for the above-mentioned polyurethane resins, blocked isocyanates produced by sealing them with various sealants, and the polyisocyanates Dimer to trimer of the above.
 上述の硬化剤のうちアミン化合物の例は、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン等の脂肪族アミン、N-アミノエチルピペラジン、メンゼンジアミン、イソホロンジアミン、水素添加m-キシレンジアミン等の脂環族アミン、m―キシリレンジアミン、m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルソルフォン等の芳香族アミン等である。また、これらアミンを変性した、アミンアダクト類、ケチミン類や、ダイマー酸とポリアミンの縮合により生成する、分子中に反応性の一級アミンと二級アミンを有するポリアミド樹脂等も採用し得る。 Examples of amine compounds among the above curing agents include aliphatic amines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, mensendiamine, isophoronediamine, hydrogenated and alicyclic amines such as m-xylenediamine, aromatic amines such as m-xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsorbone. In addition, amine adducts, ketimines modified with these amines, polyamide resins having a reactive primary amine and secondary amine in the molecule, produced by condensation of dimer acid and polyamine, and the like can also be employed.
 上述の硬化剤のうち酸無水物化合物の例は、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、アルキルスチレン-無水マレイン酸共重合体、クロレンド酸無水物、ポリアゼライン酸無水物、無水メチルナジック酸等である。 Examples of the acid anhydride compound among the above-mentioned curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol tris trimellitate, maleic anhydride, Tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride Succinic anhydride, methylcyclohexene dicarboxylic acid anhydride, alkylstyrene-maleic anhydride copolymer, chlorendic acid anhydride, polyazeline acid anhydride, methyl nadic acid anhydride, and the like.
 (溶剤)
 本実施形態の導電性ペーストに用いる溶剤は、特に限定はない。使用する樹脂の溶解性や印刷方法等の種類に応じて、適宜選択する事ができる。本実施形態の溶剤の例は、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、脂環族系溶剤、芳香族系溶剤、アルコール系溶剤、水等の1種または2種以上を混合したものである。
(solvent)
The solvent used for the conductive paste of the present embodiment is not particularly limited. It can select suitably according to types, such as the solubility of the resin to be used, and the printing method. Examples of the solvent of this embodiment include one or two types of ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, alicyclic solvents, aromatic solvents, alcohol solvents, water, and the like. It is a mixture of the above.
 なお、エステル系溶剤の例は、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸アミル、乳酸エチル、炭酸ジメチル等が挙げられる。ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンベンゼン、ジイソブチルケトン、ジアセトンアルコール、イソホロン、シクロヘキサンノン等が挙げられる。グリコールエーテル系溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル等、これらモノエーテル類の酢酸エステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等や、これらモノエーテル類の酢酸エステル等である。 Examples of ester solvents include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, dimethyl carbonate, and the like. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, and cyclohexanenone. Examples of glycol ether solvents include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, etc., acetates of these monoethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene Glycol monomethyl ether, propylene glycol monoethyl ether, and the like, and acetates of these monoethers.
 他方、脂肪族系溶剤の例は、n-ヘプタン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等である。脂環族系溶剤の例は、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘキサン等である。芳香族系溶剤の例は、トルエン、キシレン、テトラリン等である。アルコール系溶剤(上述のグリコールエーテル系溶剤を除く)の例は、エタノール、プロパノール、ブタノール等である。 On the other hand, examples of the aliphatic solvent include n-heptane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like. Examples of alicyclic solvents are methylcyclohexane, ethylcyclohexane, cyclohexane and the like. Examples of the aromatic solvent are toluene, xylene, tetralin and the like. Examples of alcohol solvents (excluding the above-mentioned glycol ether solvents) are ethanol, propanol, butanol and the like.
(その他添加物)
 本実施形態の導電性ペーストは、必要に応じて、分散剤、表面処理剤、耐摩擦向上剤、赤外線吸収剤、紫外線吸収剤、芳香剤、酸化防止剤、有機顔料、無機顔料、消泡剤、シランカップリング剤、チタネート系カップリング剤、可塑剤、難燃剤、保湿剤、イオン捕捉剤等を含有することができる。
(Other additives)
The conductive paste of the present embodiment includes a dispersant, a surface treatment agent, a friction improver, an infrared absorbent, an ultraviolet absorbent, an aromatic, an antioxidant, an organic pigment, an inorganic pigment, and an antifoaming agent as necessary. , Silane coupling agents, titanate coupling agents, plasticizers, flame retardants, humectants, ion scavengers, and the like.
(構成成分の混合方法)
 本実施形態の導電性ペーストは、導電性金属粉末、バインダー樹脂、及び溶剤、並びに、必要に応じて上述のチキソ剤等を所定の割合で配合し、公知の混練機やディスパーにて混合させることによって得られる。なお、必要に応じて3本ロール等にて混合分散させることにより導電性ペーストを得ることもできる。
 なお、上述の導電性金属粉末、バインダー樹脂、溶剤、及びチキソ剤の使用量は特に限定されない。但し、本実施形態の導電性ペーストの粘度、損失弾性率、及び貯蔵弾性率を、上述した範囲に設定し易くするため、代表的な数値範囲が以下のように設定される。
 導電性金属粉末:65重量%以上85重量%以下
 バインダー樹脂:4重量%以上8重量%以下
 溶剤  :10重量%以上30重量%以下
 チキソ剤:1重量%以上6重量%以下
(Method of mixing components)
The conductive paste of the present embodiment is prepared by blending a conductive metal powder, a binder resin, a solvent, and the above-mentioned thixotropic agent in a predetermined ratio as necessary, and mixing with a known kneader or disper. Obtained by. In addition, an electrically conductive paste can also be obtained by mixing and dispersing with a three roll etc. as needed.
In addition, the usage-amount of the above-mentioned electroconductive metal powder, binder resin, a solvent, and a thixotropic agent is not specifically limited. However, in order to make it easy to set the viscosity, loss elastic modulus, and storage elastic modulus of the conductive paste of the present embodiment within the above-described ranges, typical numerical ranges are set as follows.
Conductive metal powder: 65 wt% or more and 85 wt% or less Binder resin: 4 wt% or more and 8 wt% or less Solvent: 10 wt% or more and 30 wt% or less Thixo agent: 1 wt% or more and 6 wt% or less
(ペーストの印刷方法)
 本実施形態の導電性ペーストを用い、各種印刷法により基材上に印刷することにより、高精細な配線や電極を形成することができる。形成される配線や電極の形状は、各種配線パターン、電極パターン等に適宜対応し得るものであるため、特に限定されない。
(Paste printing method)
By using the conductive paste of this embodiment and printing on a substrate by various printing methods, high-definition wiring and electrodes can be formed. The shape of the formed wiring or electrode is not particularly limited because it can appropriately correspond to various wiring patterns, electrode patterns, and the like.
 また、本実施形態の導電性ペーストは、特にスクリーン印刷法に好適に適用することができるが、従来公知の種々の印刷法に適用してもよい。スクリーン印刷法においては、50μm以下の配線幅や配線・電極間距離の高精細化に対応するため、特に好ましくは500メッシュ以上の微細なメッシュのスクリーンであって、スクリーン線径はできるだけ細く、少なくともφ20μm以下のものを用いることが好ましい。スクリーンマスク版上には乳剤等によって任意の配線や電極パターンが形成される。また、乳剤等の開口部とメッシュ開口部によって形成されるスクリーンマスク開口部を通して、導電性ペーストは基板上に印刷される。なお、このスクリーンマスク開口部の面積は乳剤等によって形成される転写パターンの開口部面積に対して少なくとも30%以上あることが好ましい。 Further, the conductive paste of the present embodiment can be suitably applied particularly to the screen printing method, but may be applied to various conventionally known printing methods. In the screen printing method, a screen with a fine mesh of 500 mesh or more is particularly preferable in order to cope with the high definition of the wiring width of 50 μm or less and the distance between the wiring and the electrode. It is preferable to use one having a diameter of 20 μm or less. Arbitrary wirings and electrode patterns are formed on the screen mask plate with an emulsion or the like. In addition, the conductive paste is printed on the substrate through a screen mask opening formed by an opening such as an emulsion and a mesh opening. The area of the screen mask opening is preferably at least 30% with respect to the area of the opening of the transfer pattern formed by an emulsion or the like.
 本実施形態の代表的なスクリーン版の種類は、ポリエステルスクリーン、コンビネーションスクリーン、メタルスクリーン、ナイロンスクリーン等である。特に、従来よりも比較的高粘度となる本実施形態の導電性ペーストを印刷する場合は、高張力ステンレス線材を使用することが好ましい。スクリーン印刷時に用いるスキージは、丸形、長方形、正方形のいずれの形状であっても良く、またアタック角度(印刷時の版とスキージの角度)を小さくするために、研磨スキージも使用することができる。その他の印刷条件等は、従来公知の条件を適宜採用することができる。 The typical screen plate type of this embodiment is a polyester screen, a combination screen, a metal screen, a nylon screen, or the like. In particular, when printing the conductive paste of the present embodiment, which has a relatively higher viscosity than before, it is preferable to use a high-tensile stainless steel wire. The squeegee used for screen printing may be round, rectangular or square, and an abrasive squeegee can also be used to reduce the attack angle (the angle between the printing plate and the squeegee). . Conventionally known conditions can be appropriately adopted as other printing conditions.
(印刷後の乾燥・固化/硬化方法)
 本実施形態に係る導電性ペーストは、上述のように基板等の基材上に印刷、パターン転写された後に、加熱して乾燥・固化、および硬化剤とバインダー樹脂との反応により硬化される。溶剤の十分な揮発および硬化剤とバインダー樹脂との反応のために、加熱温度は、例えば100℃以上150℃以下が好ましく、加熱時間は、例えば5分以上120分以下が好ましい。
(Drying / solidification / curing method after printing)
The conductive paste according to this embodiment is printed and transferred onto a substrate such as a substrate as described above, and then heated and dried and solidified, and is cured by a reaction between a curing agent and a binder resin. For sufficient volatilization of the solvent and reaction between the curing agent and the binder resin, the heating temperature is preferably 100 ° C. or higher and 150 ° C. or lower, and the heating time is preferably 5 minutes or longer and 120 minutes or shorter, for example.
(基材フィルム)
 本実施形態の導電性ペーストが印刷される基材の種類は、特に限定されるものではなく公知のものを使用することができる。例えば、代表的な樹脂フィルム基材は、ポリイミドフィルム、ポリパラフェニレンテレフタルアミドフィルム、ポリエーテルニトリルフィルム、ポリエーテルスルホンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリ塩化ビニルフィルム等である。また、代表的な基材フィルムは、ポリエチレンテレフタレート、ポリエチレンナフタレートのポリエステルフィルム、ポリカーボネート、ポリエーテルサルホン、アクリル樹脂等の高分子フィルム上にITO層をスパッタリング、ウェットコート等により形成したいわゆるITOフィルム、ITO層をガラス上に形成したITOガラス等である。また、セラミック、ガラス基材等も、本実施形態の導電性ペーストが印刷される基材として用いることができる。
(Base film)
The kind of the substrate on which the conductive paste of this embodiment is printed is not particularly limited, and a known material can be used. For example, typical resin film substrates are polyimide films, polyparaphenylene terephthalamide films, polyether nitrile films, polyether sulfone films, polyethylene terephthalate films, polyethylene naphthalate films, polyvinyl chloride films, and the like. Typical substrate films are so-called ITO films formed by sputtering, wet coating, etc. on polymer films such as polyethylene terephthalate, polyethylene naphthalate polyester film, polycarbonate, polyethersulfone, acrylic resin, etc. ITO glass having an ITO layer formed on glass. Moreover, a ceramic, a glass base material, etc. can be used as a base material with which the conductive paste of this embodiment is printed.
 なお、特にタッチパネルにおいては、ポリエステルフィルム上にITO層を形成したITOフィルム、又はガラス上にITO層を形成したITOガラスが多く用いられる。また、必要に応じ、基材にアンカーコート層を設け、このアンカーコート層上に導電性ペーストを印刷してもよい。アンカーコート層は、基材との密着性、更には導電性ペーストの密着性が良好であれば、特に限定されない。また、樹脂ビーズ等の有機フィラーや金属酸化物等の無機フィラーも必要に応じ添加することができる。アンカーコート層を設ける方法も特に限定されない。例えば、従来公知の塗工方法を用いて塗布、乾燥、硬化することによってアンカーコート層を得ることができる。 In particular, in the touch panel, an ITO film in which an ITO layer is formed on a polyester film or an ITO glass in which an ITO layer is formed on glass is often used. Further, if necessary, an anchor coat layer may be provided on the substrate, and a conductive paste may be printed on the anchor coat layer. An anchor coat layer will not be specifically limited if the adhesiveness with a base material and also the adhesiveness of an electroconductive paste are favorable. Moreover, organic fillers, such as resin beads, and inorganic fillers, such as a metal oxide, can also be added as needed. The method for providing the anchor coat layer is not particularly limited. For example, the anchor coat layer can be obtained by coating, drying and curing using a conventionally known coating method.
(用途の好適な例)
 本実施形態に関わる導電性ペーストは、スマートフォンやタブレット端末などに用いられるタッチパネルにおける配線および電極の形成に用いることができる。しかしながら、その用途は、各種産業において広く用いられ得るため、特に限定されない。
(Preferred example of application)
The conductive paste according to the present embodiment can be used for forming wiring and electrodes in a touch panel used for a smartphone, a tablet terminal, or the like. However, the application is not particularly limited because it can be widely used in various industries.
[実施例]
 以下、実施例および比較例を示して本実施形態についてより具体的に説明するが、以下の実施例は本実施形態の例示のためのみであり、本実施形態を限定するものではない。なお、実施例中、「部」、「%」は、それぞれ重量部、重量%を意味する。
[Example]
Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the following examples are only for exemplification of the present embodiment, and do not limit the present embodiment. In the examples, “parts” and “%” mean parts by weight and% by weight, respectively.
 表1に示す配合割合で各成分を配合し、3本ロールミルにて混練して導電性ペーストを得た。 Each component was blended at a blending ratio shown in Table 1, and kneaded with a three-roll mill to obtain a conductive paste.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の略号・記号は以下のとおりである。
・フェノキシ樹脂1:三菱化学製、1256、重量平均分子量56000
・フェノキシ樹脂2:新日鐵住金化学製、YP-50、重量平均分子量70000
・変性エポキシ樹脂:荒川化学製、KA1433J、重量平均分子量90000
・ポリビニルアセタール樹脂a:積水化学製、エスレックBM-5、重量平均分子量53000
・ウレタン変性ポリエステル樹脂:東洋紡製、バイロンUR-3200、重量平均分子量40000
・ウレタン樹脂:旭硝子製、プレミノール-4019と住化バイエルウレタン製スミジュール44Sと溶剤(カルビトールアセテート系)とを混合加熱することにより作製、重量平均分子量56000
・フェノキシ樹脂3:三菱化学製、4010P、重量平均分子量6000
・ポリエステル樹脂A:ユニチカ製、XA0847、重量平均分子量8000、酸価10mgKOH/g
・ポリエステル樹脂B:ユニチカ製、XA0653、重量平均分子量5000、酸価20mgKOH/g
・ポリエステル樹脂C:東洋紡製、バイロン200、重量平均分子量17000、酸価<2mgKOH/g
・フェノキシ樹脂4:三菱化学製、YX6954、重量平均分子量38000
・ポリビニルアセタール樹脂b:積水化学製、エスレックKS-5、重量平均分子量130000
・AgC-251(不定形、銀粉):福田金属箔粉工業製、AgC-251(不定形、銀粉)、平均一次粒径1.5μm、一次粒子の最大粒子径6μm
・AG-2-1C(球状、銀粉):DOWAエレクトロニクス製、AG-2-1C(球状、銀粉)、平均一次粒径0.8μm、一次粒子の最大粒子径3μm
・AgC-201Z(フレーク状銀粉):福田金属箔粉工業製、AgC-201Z(フレーク状銀粉)、平均一次粒径4μm、一次粒子の最大粒子径10μm
・AO-SCX-1(球状、銀コート粉):DOWAエレクトロニクス製、AO-SCX-1(球状銀コート銅亜鉛粉)、平均一次粒径2μm、一次粒子の最大粒子径8μm
・AO-SCX-3(球状、銀コート粉):DOWAエレクトロニクス製、AO-SCX-3(球状、銀コート銅亜鉛ニッケル粉)、平均一次粒径2μm、一次粒子の最大粒子径9μm
・AgC-B(不定形、銀粉):福田金属箔粉工業製、AgC-B(不定形、銀粉)、平均一次粒径5μm、一次粒子の最大粒子径20μm
・硬化剤:ブロック化イソシアネート(旭化成ケミカルズ社製、デュラネートSBN-70D)
・表面処理剤:チタネート系カップリング剤(味の素ファインテクノ製、プレンアクトKR-TTS)
・チキソ剤1:金属酸化物(日本アエロジル製、AEROSIL、R202)
・チキソ剤2:無機系微粉末(ライオン製、カーボンECP600JD)
The abbreviations and symbols in Table 1 are as follows.
-Phenoxy resin 1: manufactured by Mitsubishi Chemical, 1256, weight average molecular weight 56000
-Phenoxy resin 2: manufactured by Nippon Steel & Sumitomo Chemical, YP-50, weight average molecular weight 70000
-Modified epoxy resin: Arakawa Chemicals, KA1433J, weight average molecular weight 90000
Polyvinyl acetal resin a: manufactured by Sekisui Chemical Co., Ltd., ESREC BM-5, weight average molecular weight 53000
Urethane modified polyester resin: manufactured by Toyobo, Byron UR-3200, weight average molecular weight 40000
Urethane resin: manufactured by Asahi Glass, Preminol-4019, Sumika Bayer Urethane Sumidur 44S, and solvent (carbitol acetate type) mixed and heated, weight average molecular weight 56000
Phenoxy resin 3: manufactured by Mitsubishi Chemical Corporation, 4010P, weight average molecular weight 6000
-Polyester resin A: manufactured by Unitika, XA0847, weight average molecular weight 8000, acid value 10 mgKOH / g
Polyester resin B: manufactured by Unitika, XA0653, weight average molecular weight 5000, acid value 20 mgKOH / g
Polyester resin C: manufactured by Toyobo, Byron 200, weight average molecular weight 17000, acid value <2 mg KOH / g
Phenoxy resin 4: manufactured by Mitsubishi Chemical, YX6954, weight average molecular weight 38000
Polyvinyl acetal resin b: manufactured by Sekisui Chemical Co., Ltd., ESREC KS-5, weight average molecular weight 130000
AgC-251 (irregular shape, silver powder): manufactured by Fukuda Metal Foil Powder Industry, AgC-251 (irregular shape, silver powder), average primary particle size 1.5 μm, maximum primary particle size 6 μm
AG-2-1C (spherical, silver powder): manufactured by DOWA Electronics, AG-2-1C (spherical, silver powder), average primary particle size 0.8 μm, maximum primary particle size 3 μm
AgC-201Z (flaky silver powder): manufactured by Fukuda Metal Foil Powder Industry, AgC-201Z (flaky silver powder), average primary particle size 4 μm, maximum primary particle size 10 μm
AO-SCX-1 (spherical, silver-coated powder): manufactured by DOWA Electronics, AO-SCX-1 (spherical silver-coated copper-zinc powder), average primary particle size 2 μm, maximum primary particle size 8 μm
AO-SCX-3 (spherical, silver coated powder): manufactured by DOWA Electronics, AO-SCX-3 (spherical, silver coated copper zinc nickel powder), average primary particle size 2 μm, maximum primary particle size 9 μm
AgC-B (indefinite shape, silver powder): manufactured by Fukuda Metal Foil Powder Industry, AgC-B (indefinite shape, silver powder), average primary particle size 5 μm, maximum primary particle size 20 μm
・ Curing agent: Blocked isocyanate (manufactured by Asahi Kasei Chemicals, Duranate SBN-70D)
・ Surface treatment agent: Titanate coupling agent (manufactured by Ajinomoto Fine-Techno, Plenact KR-TTS)
・ Thixotropic agent 1: metal oxide (manufactured by Nippon Aerosil Co., Ltd., AEROSIL, R202)
・ Thixotropic agent 2: inorganic fine powder (made by Lion, carbon ECP600JD)
 上述の処理によって得られた各導電性ペーストの各種特性について評価した。評価結果を表2に示す。なお、具体的な評価方法は、以下の通りである。 The various characteristics of each conductive paste obtained by the above treatment were evaluated. The evaluation results are shown in Table 2. A specific evaluation method is as follows.
 (定常粘度測定)
 本実施例においては、ブルックフィールド粘度計(型式,HBT)により、25℃における1,10,50,100rpmの各回転数でのペースト粘度を測定した。
(動的粘弾性測定)
 本実施例においては、Haake社製粘弾性測定装置(型式,MARS)により25℃における動的粘弾性測定をおこなった。なお、具体的な測定方法は以下の(1)~(3)に記載のとおりである。
(1)まず、直径35mmのチタン製並行平板を用いて、間隙が0.3mmになるように導電性ペースト(試料)を挟み込む。
(2)次に、周波数1Hzにて、その試料に対して0.01~100%のせん断歪みを掃引しながら印加する。
(3)(2)のせん断応力が印加されたときの動的貯蔵弾性率と動的損失弾性率、および貯蔵弾性率の線形変形領域から降伏応力を測定する。
(Steady viscosity measurement)
In this example, the paste viscosity at each rotational speed of 1, 10, 50, and 100 rpm at 25 ° C. was measured with a Brookfield viscometer (model, HBT).
(Dynamic viscoelasticity measurement)
In this example, dynamic viscoelasticity measurement at 25 ° C. was performed with a Haake viscoelasticity measuring device (model, MARS). The specific measurement method is as described in (1) to (3) below.
(1) First, using a parallel plate made of titanium having a diameter of 35 mm, a conductive paste (sample) is sandwiched so that the gap is 0.3 mm.
(2) Next, a shear strain of 0.01 to 100% is applied to the sample at a frequency of 1 Hz while sweeping.
(3) The yield stress is measured from the linear deformation region of the dynamic storage elastic modulus and dynamic loss elastic modulus when the shear stress of (2) is applied, and the storage elastic modulus.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各実施例及び比較例に示される各導電性ペーストの印刷は、高精度スクリーン印刷装置(株式会社ミノグループ製、型式,アクセスASII-S5565)を用いて行われた。より具体的には、50μm、30μmおよび25μmのライン・アンド・スペース形状の微細配線パターンを多数有するスクリーンマスク版(株式会社ムラカミ製)を用い、ポリエチレンテレフタレートフィルム基板上(東レ株式会社製、型式,ルミラーT60、125μm厚)の500×500mmの領域に、連続100枚の印刷が行われた。その後、130℃で30分乾燥させた。スクリーン印刷時の条件は下記の通りである。 Printing of each conductive paste shown in each example and comparative example was performed using a high-precision screen printing apparatus (manufactured by Mino Group, model, access ASII-S5565). More specifically, using a screen mask plate (manufactured by Murakami Co., Ltd.) having a number of fine wiring patterns of 50 μm, 30 μm and 25 μm line and space shapes, on a polyethylene terephthalate film substrate (manufactured by Toray Industries, Inc., model, 100 sheets were continuously printed in a 500 × 500 mm area of Lumirror T60, 125 μm thick). Then, it was dried at 130 ° C. for 30 minutes. The conditions for screen printing are as follows.
(印刷条件)
・スクリーン:ステンレスマスク640メッシュ
・スクリーン枠:950×950mm
・線径:φ15mm
・乳剤:IC-10000
・紗厚:21μm
・総厚:33μm 公差±2μm
・スキージ:ウレタン研磨スキージ
・スキージ角度:75°
・スキージアタック角度:50°
・スキージ硬度:80度
・スキージ速度:50~100mm/秒
・スキージ押込み量:2.0mm
・クリアランス:3.0mm
(Printing conditions)
・ Screen: Stainless steel mask 640 mesh ・ Screen frame: 950 × 950 mm
・ Wire diameter: φ15mm
・ Emulsion: IC-10000
・ Thickness: 21μm
・ Total thickness: 33μm Tolerance ± 2μm
・ Squeegee: Urethane polishing squeegee ・ Squeegee angle: 75 °
・ Ski Dia Attack Angle: 50 °
・ Squeegee hardness: 80 degrees ・ Squeegee speed: 50 to 100 mm / second ・ Squeegee push-in amount: 2.0 mm
・ Clearance: 3.0mm
 上記の工程によって得られた導電性ペーストの配線パターン塗布物について各種性能を評価した。評価結果を表3に示す。なお、具体的な評価方法は以下に記す。 Various performances of the conductive paste wiring pattern coating obtained by the above process were evaluated. The evaluation results are shown in Table 3. A specific evaluation method is described below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(印刷性評価)
 スクリーン印刷した配線部分の形状(配線の直線性や滲み)を、3次元レーザーマイクロスコープ(株式会社キーエンス社製VK-X200)を用いて観察し、付属の画像解析装置を用いて印刷後の細線幅を読み取った。具体的には、5枚目の印刷物について、それぞれ任意のライン・アンド・スペース5組を選択した上で、1組につき200箇所を測定することにより、ライン幅とスペース幅の平均値を求めた。
(Printability evaluation)
The shape of the wiring part printed on the screen (linearity and bleeding of the wiring) is observed using a three-dimensional laser microscope (VK-X200 manufactured by Keyence Corporation), and the fine line after printing using the attached image analyzer I read the width. Specifically, with respect to the fifth printed matter, an arbitrary value of line width and space width was determined by selecting five arbitrary line and space sets and measuring 200 locations per set. .
(高精細印刷性)
 外観形状、平均ライン幅、平均ライン高さを評価した。
[外観形状]
 ライン(配線)部分の微細配線部分における外観形状の評価基準(○、△、×)は、以下の通りである。
○:微細配線部分は、蛇行による太さのばらつき、滲み、掠れ、欠けを生じておらず、微細配線部分の境界線が明瞭で良好であった。
△:微細配線部分は、蛇行による太さのばらつきが多少見られたが、滲み、掠れ、欠けを生じておらず、実用上差し支えの無いレベルであった。
×:微細配線部分は、蛇行による太さのばらつきが見られ、滲み、掠れ、欠けがあり、境界線が不明瞭であった。
[ライン幅]
 印刷されたライン・アンド・スペースの高精細性の評価基準(○、△、×)は以下の通りである。
○:スクリーンマスク版のラインパターン幅に対して、印刷された導電性ペーストのライン幅の違いが10%以内で良好であった。
△:スクリーンマスク版のラインパターン幅に対して、印刷された導電性ペーストのライン幅の違いが10%を超え20%以内で、実用上差し支えの無いレベルであった。
×:スクリーンマスク版のラインパターン幅に対して、印刷された導電性ペーストのライン幅の違いが20%を超えて実用上問題となるレベルであった。
[ライン高さ]
 印刷されたラインアンドスペースの印刷転写性の評価基準(○、△、×)は以下の通りである。
○:印刷された導電性ペーストの平均ライン高さが5μm以上であり良好であった。
△:印刷された導電性ペーストの平均ライン高さが3μm以上、5μm未満であり、実用上差し支えの無いレベルであった。
×:印刷された導電性ペーストの平均ライン高さが3μm未満で実用上問題となるレベルであった。
(High-definition printability)
Appearance shape, average line width, and average line height were evaluated.
[Appearance shape]
The evaluation criteria (◯, Δ, ×) of the external shape in the fine wiring portion of the line (wiring) portion are as follows.
○: The fine wiring portion was free from variation in thickness due to meandering, bleeding, wrinkling, and chipping, and the boundary line of the fine wiring portion was clear and good.
Δ: Some variation in thickness due to meandering was observed in the fine wiring part, but no bleeding, wrinkling or chipping occurred, and there was no problem in practical use.
X: The fine wiring portion had a variation in thickness due to meandering, bleeding, wrinkling and chipping, and the boundary line was unclear.
[Line width]
The evaluation criteria (◯, Δ, ×) of the high definition of the printed line and space are as follows.
A: The difference in the line width of the printed conductive paste with respect to the line pattern width of the screen mask plate was good within 10%.
Δ: The difference in the line width of the printed conductive paste with respect to the line pattern width of the screen mask plate is more than 10% and within 20%, which is practically satisfactory.
X: The difference in the line width of the printed conductive paste exceeded 20% with respect to the line pattern width of the screen mask plate, which was a practically problematic level.
[Line height]
The evaluation criteria (◯, Δ, ×) of the print transferability of the printed line and space are as follows.
A: The average line height of the printed conductive paste was 5 μm or more, which was good.
Δ: The average line height of the printed conductive paste was 3 μm or more and less than 5 μm, and there was no practical problem.
X: The average line height of the printed conductive paste was less than 3 μm, which was a practically problematic level.
(基本性能評価)
 さらに、本実施形態の導電性ペーストの塗布物について、その基本性能となる導電性
と密着性を評価した。評価結果を表3に示す。具体的な評価方法は、以下の通りである。
(印刷作業性)
 スクリーンマスク版上でのペーストの展開性、印刷時のローリング性、印刷時のスキージ付着性を外観観察により評価した。評価基準(○、×)は以下の通りである。
[ペースト展開性]
○:ペーストをマスク版上に塗り広げる際にかすれ、ペースト量の不均一が生じ難く、展開性が良好であった。
×:ペーストをマスク版上に塗り広げる際にかすれ、ペースト量の不均一が生じ易く、実用上問題となるレベルであった。
[印刷時のローリング性]
○:印刷時にペーストがローリングしない、もしくはし難い状況が発生せず、良好であった。
×:印刷時にペーストがローリングしにくく、実用上問題となるレベルであった。
[印刷時のスキージ付着性]
○:印刷時にペーストのスキージ付着が発生しなかった。
×:印刷時にペーストのスキージ付着が発生しやすく、実用上問題となるレベルであった。
(Basic performance evaluation)
Furthermore, the conductivity and adhesiveness which become the basic performance were evaluated about the coated object of the electrically conductive paste of this embodiment. The evaluation results are shown in Table 3. The specific evaluation method is as follows.
(Printability)
The spreadability of the paste on the screen mask plate, the rolling property during printing, and the squeegee adhesion during printing were evaluated by appearance observation. Evaluation criteria (◯, ×) are as follows.
[Paste expandability]
◯: When the paste was spread on the mask plate, it was faint, and the paste amount was hardly generated, and the spreadability was good.
X: When paste was spread on the mask plate, it was faint, and the paste amount was likely to be non-uniform, resulting in a practical problem.
[Rolling property during printing]
○: The paste did not roll during printing, or a difficult situation did not occur and was good.
X: The paste was difficult to roll during printing, and it was a level causing a problem in practical use.
[Squeegee adhesion during printing]
○: No squeegee adhesion of paste occurred during printing.
X: Squeegee adhesion of the paste is likely to occur at the time of printing, which is a level that causes a practical problem.
(導電性測定)
 ガラス基板上に0.5cm×10cmのパターンを形成し、130℃にて30分間加熱処理を行なった後に、4探針法にて抵抗値を測定し、シート抵抗と膜厚に基づいて比抵抗値を算出し導電率を求めた。評価基準(○、△、×)は以下の通りである。
○:比抵抗値が5.0×10-5Ωcm未満であり良好であった。
△:比抵抗値が5.0×10-5Ωcm以下、1.0×10-4Ωcm未満であり、実用上差し支えの無いレベルであった。
×:比抵抗値が1.0×10-4Ωcm以上であり、実用上問題となるレベルであった。
(密着性評価)
 ポリエチレンテレフタレートフィルム(東レ株式会社製、型式,ルミラーT60、125μm厚)上に、各実施例及び比較例に示す各導電性ペーストを、乾燥後の膜厚がおよそ5μ乃至10μmになるようにスクリーン印刷した。その後、150℃にて30分乾燥させ、JIS(日本工業規格),K5600-5-6(塗膜の付着性(クロスカット法))に関する試験方法に基づき、クロスカットセロテープ(登録商標)剥離試験を行い、密着性を評価した。なお、評価基準(◎、○、△、×)は下記の通りである。
 なお、上記の密着性評価で○であった試験片を、さらにJIS(日本工業規格),K5600-5-1に従い、直径20mmの円筒マンドレルに巻きつけた状態で180°の折り曲げを3回行った後に、クラックの発生を目視で確認し、導電性の変化があるか否かを評価した。この試験において剥離の発生がなく、かつ導電性の変化もなかったものを「◎」として評価した。
 ○:剥離なく、密着性良好。
 △:若干剥離有り、密着性やや不良。
 ×:全面剥離が有り、密着性不良。
 ◎:折り曲げ試験後に目視で剥離なく、導電性の変化がない。
(Conductivity measurement)
A pattern of 0.5 cm × 10 cm is formed on a glass substrate, and after heat treatment at 130 ° C. for 30 minutes, the resistance value is measured by a four-probe method, and the specific resistance is based on the sheet resistance and film thickness. The value was calculated to determine the conductivity. Evaluation criteria (◯, Δ, ×) are as follows.
○: The specific resistance value was less than 5.0 × 10 −5 Ωcm, which was favorable.
Δ: Specific resistance value is 5.0 × 10 −5 Ωcm or less and less than 1.0 × 10 −4 Ωcm, which is a practically acceptable level.
X: The specific resistance value was 1.0 × 10 −4 Ωcm or more, which was a practically problematic level.
(Adhesion evaluation)
Screen printing of polyethylene terephthalate film (manufactured by Toray Industries, Inc., model, Lumirror T60, 125 μm thickness) with each conductive paste shown in each example and comparative example so that the film thickness after drying is about 5 μm to 10 μm. did. Then, it is dried at 150 ° C. for 30 minutes, and a cross-cut cello tape (registered trademark) peel test based on a test method related to JIS (Japanese Industrial Standards), K5600-5-6 (Coating adhesion (cross-cut method)) The adhesion was evaluated. The evaluation criteria (◎, ○, Δ, ×) are as follows.
In addition, the test piece which was ○ in the above adhesion evaluation was further bent 180 ° three times in a state where it was wound around a cylindrical mandrel having a diameter of 20 mm in accordance with JIS (Japanese Industrial Standard), K5600-5-1. Thereafter, the occurrence of cracks was visually confirmed to evaluate whether or not there was a change in conductivity. In this test, no peeling occurred and no change in conductivity was evaluated as “◎”.
○: Good adhesion without peeling.
Δ: Slightly peeled off, adhesion slightly poor.
X: There is peeling across the entire surface and poor adhesion.
(Double-circle): After a bending test, there is no peeling visually and there is no change in electroconductivity.
 さらに、実施例1,4,9,11,13,14、比較例1,3,6,7について連続印刷性と高速印刷性の評価をおこなった。評価結果を表4に示す。具体的な評価方法は以下の通りである。
(連続印刷性)
 ライン幅の変化率((100枚目の平均ライン幅-5枚目の平均ライン幅)÷5枚目の平均ライン幅)とライン高さの変化率((100枚目の平均ライン高さ-5枚目の平均ライン高さ)÷5枚目の平均ライン高さ)をそれぞれ求めた。評価基準(○、△、×)は、以下の通りである。
○:変化率が10%以内であり良好であった。
△:変化率が10%を超え、20%以下であり、実用上差し支えの無いレベルであった。
×:変化率が20%を超え、実用上問題となるレベルであった。
Further, Examples 1, 4, 9, 11, 13, and 14 and Comparative Examples 1, 3, 6, and 7 were evaluated for continuous printability and high-speed printability. The evaluation results are shown in Table 4. The specific evaluation method is as follows.
(Continuous printability)
Change rate of line width ((average line width of 100th sheet−average line width of 5th sheet) ÷ average line width of 5th sheet) and change rate of line height ((average line height of 100th sheet− The average line height of the fifth sheet) / average line height of the fifth sheet) was determined. Evaluation criteria (◯, Δ, ×) are as follows.
○: The rate of change was within 10%, which was good.
(Triangle | delta): The change rate exceeded 10% and was 20% or less, and it was the level which is practically satisfactory.
X: The rate of change exceeded 20%, and it was at a level causing practical problems.
(高速印刷性)
 ライン・アンド・スペースが30μmにおける5枚目の印刷物において、スキージ速度50mm/秒に対する100mm/秒のライン幅の変化率((100mm/秒における平均ライン幅-50mm/秒の平均ライン幅)÷50mm/秒の平均ライン幅)と前記ライン高さの変化率((100mm/秒における平均ライン高さ-50mm/秒の平均ライン高さ)÷50mm/秒の平均ライン高さ)をそれぞれ求めた。評価基準(○、△、×)は以下の通りである。
○:変化率が10%以内であり良好であった。
△:変化率が10%を超え20%以下であり、実用上差し支えの無いレベルであった。
×:変化率が20%を超え、実用上問題となるレベルであった。
(High-speed printability)
Change rate of line width of 100 mm / second with respect to squeegee speed of 50 mm / second ((average line width at 100 mm / second−average line width of 50 mm / second) ÷ 50 mm in the fifth printed matter with a line and space of 30 μm Average line width of / second) and the rate of change of the line height ((average line height at 100 mm / second−average line height of 50 mm / second) ÷ average line height of 50 mm / second), respectively. Evaluation criteria (◯, Δ, ×) are as follows.
○: The rate of change was within 10%, which was good.
(Triangle | delta): The change rate exceeded 10% and was 20% or less, and it was the level which is practically satisfactory.
X: The rate of change exceeded 20%, and it was at a level causing practical problems.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上述の各実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、上述の各実施形態及び各実施例の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。 The disclosure of each of the above-described embodiments is described for explaining the embodiments, and is not described for limiting the present invention. In addition, modifications that exist within the scope of the present invention including other combinations of the above-described embodiments and examples are also included in the scope of the claims.
 本発明の導電性ペーストは、各種の産業に広く用いられ得る。特に好適には、スマートフォンやタブレット端末などに用いられるタッチパネルの配線や電極の形成の用途としてこの導電性ペーストは用いられるが、その用途は特に限定されない。 The conductive paste of the present invention can be widely used in various industries. Particularly preferably, the conductive paste is used for the formation of wiring and electrodes for touch panels used in smartphones and tablet terminals, but the use is not particularly limited.

Claims (20)

  1.  導電性金属粉末、バインダー樹脂、及び溶剤を含有する導電性ペーストであって、
     前記バインダー樹脂が、
      重量平均分子量が40000以上100000以下である高分子量成分(A)及び重量平均分子量が5000以上10000以下である低分子量成分(B)を含み、かつ
     前記高分子量成分(A)及び前記低分子量成分(B)の総量に対する前記低分子量成分(B)の重量分率[100×(B)/{(A)+(B)}]が、5%以上70%以下を満たす、
     スクリーン印刷用導電性ペースト。
    A conductive paste containing a conductive metal powder, a binder resin, and a solvent,
    The binder resin is
    A high molecular weight component (A) having a weight average molecular weight of 40,000 to 100,000, and a low molecular weight component (B) having a weight average molecular weight of 5,000 to 10,000, and the high molecular weight component (A) and the low molecular weight component ( The weight fraction [100 × (B) / {(A) + (B)}] of the low molecular weight component (B) with respect to the total amount of B) satisfies 5% to 70%,
    Conductive paste for screen printing.
  2.  回転粘度測定法による25℃で50rpmにおける前記導電性ペーストの粘度が、160Pa・s以上300Pa・s以下であり、かつ
     歪量0.1%における損失弾性率が、7000Pa以上30000Pa以下である、
     請求項1に記載のスクリーン印刷用導電性ペースト。
    The viscosity of the conductive paste at 25 ° C. and 50 rpm by a rotational viscosity measurement method is 160 Pa · s to 300 Pa · s, and the loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa.
    The conductive paste for screen printing according to claim 1.
  3.  歪量0.1%における貯蔵弾性率が、10000Pa以上80000Pa以下である、
     請求項1又は請求項2に記載のスクリーン印刷用導電性ペースト。
    The storage elastic modulus at a strain amount of 0.1% is 10,000 Pa or more and 80,000 Pa or less.
    The conductive paste for screen printing according to claim 1 or 2.
  4.  降伏応力が、10Pa以上45Pa以下である、
     請求項1乃至請求項3のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    Yield stress is 10 Pa or more and 45 Pa or less,
    The conductive paste for screen printing according to any one of claims 1 to 3.
  5.  前記バインダー樹脂が、さらに酸価が10以上50以下であるポリエステル樹脂(C)を含む、
     請求項1乃至請求項4のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    The binder resin further includes a polyester resin (C) having an acid value of 10 or more and 50 or less,
    The conductive paste for screen printing according to any one of claims 1 to 4.
  6.  前記導電性金属粉末に含まれる一次粒子の平均粒子サイズが、0.1μm以上2μm以下であり、
     前記導電性金属粉末に対して、前記一次粒子のうち不定形状を呈するものの重量分率が60%を超え、かつ、
     前記導電性金属粉末に含まれる二次粒子の最大粒子径が10μ以下である、
     請求項1乃至請求項5のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    The average particle size of primary particles contained in the conductive metal powder is 0.1 μm or more and 2 μm or less,
    With respect to the conductive metal powder, the weight fraction of the primary particles exhibiting an indefinite shape exceeds 60%, and
    The maximum particle size of the secondary particles contained in the conductive metal powder is 10 μm or less,
    The conductive paste for screen printing according to any one of claims 1 to 5.
  7.  前記導電性金属粉末に含まれる一次粒子の平均粒子サイズが、0.1μm以上2μm以下であり、
     前記導電性金属粉末に対して、前記一次粒子のうち球状を呈するものの重量分率が50%以下であり、かつ
     前記導電性金属粉末に含まれる二次粒子の最大粒子径が10μ以下である、
     請求項1乃至請求項5のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    The average particle size of primary particles contained in the conductive metal powder is 0.1 μm or more and 2 μm or less,
    The weight fraction of the primary particles that are spherical with respect to the conductive metal powder is 50% or less, and the maximum particle size of the secondary particles contained in the conductive metal powder is 10 μm or less.
    The conductive paste for screen printing according to any one of claims 1 to 5.
  8.  さらに、チキソ剤を含有し、
     前記導電性ペーストの全体に対して、前記チキソ剤の重量分率が1%以上5%以下である、
     請求項1乃至請求項7のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    In addition, it contains a thixotropic agent,
    The weight fraction of the thixotropic agent is 1% or more and 5% or less with respect to the entire conductive paste.
    The conductive paste for screen printing according to any one of claims 1 to 7.
  9.  前記導電性金属粉末が、銀、銀がコーティングされた銅、及び銀がコーティングされた銅合金からなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項8のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    The conductive metal powder is at least one selected from the group consisting of silver, copper coated with silver, and a copper alloy coated with silver.
    The conductive paste for screen printing according to any one of claims 1 to 8.
  10.  前記導電性ペーストが、タッチパネルの配線または電極用である、
     請求項1乃至請求項9のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    The conductive paste is for touch panel wiring or electrodes,
    The conductive paste for screen printing according to any one of claims 1 to 9.
  11.  スクリーン印刷法により、請求項1乃至請求項10のいずれか1項に記載の前記導電性ペーストを基材上に塗布する工程を含む、
     配線の製造方法。
    A step of applying the conductive paste according to any one of claims 1 to 10 on a substrate by a screen printing method,
    Wiring manufacturing method.
  12.  スクリーン印刷法により、請求項1乃至請求項10のいずれか1項に記載の前記導電性ペーストを基材上に塗布する工程を含む、
     電極の製造方法。
    A step of applying the conductive paste according to any one of claims 1 to 10 on a substrate by a screen printing method,
    Electrode manufacturing method.
  13.  スクリーンメッシュが、500メッシュ以上の高張力ステンレス線材により形成されている、
     請求項11又は請求項12に記載の配線の製造方法。
    The screen mesh is formed of a high-tensile stainless steel wire of 500 mesh or more,
    The manufacturing method of the wiring of Claim 11 or Claim 12.
  14.  導電性金属粉末、バインダー樹脂、及び溶剤を含有する導電性ペーストであって、
     回転粘度測定法による25℃で50rpmにおける前記導電性ペーストの粘度が、160Pa・s以上300Pa・s以下であり、かつ
     歪量0.1%における損失弾性率が、7000Pa以上30000Pa以下である、
     スクリーン印刷用導電性ペースト。
    A conductive paste containing a conductive metal powder, a binder resin, and a solvent,
    The viscosity of the conductive paste at 25 ° C. and 50 rpm by a rotational viscosity measurement method is 160 Pa · s to 300 Pa · s, and the loss elastic modulus at a strain amount of 0.1% is 7000 Pa to 30000 Pa.
    Conductive paste for screen printing.
  15.  前記バインダー樹脂が、
     重量平均分子量が40000以上100000以下である高分子量成分(A)及び重量平均分子量が5000以上10000以下である低分子量成分(B)を含み、かつ
     前記高分子量成分(A)及び前記低分子量成分(B)の総量に対する前記低分子量成分(B)の重量分率[100×(B)/{(A)+(B)}]が、5%以上70%以下を満たす、
     請求項14に記載のスクリーン印刷用導電性ペースト。
    The binder resin is
    A high molecular weight component (A) having a weight average molecular weight of 40,000 to 100,000, and a low molecular weight component (B) having a weight average molecular weight of 5,000 to 10,000, and the high molecular weight component (A) and the low molecular weight component ( The weight fraction [100 × (B) / {(A) + (B)}] of the low molecular weight component (B) with respect to the total amount of B) satisfies 5% to 70%,
    The conductive paste for screen printing according to claim 14.
  16.  歪量0.1%における貯蔵弾性率が、10000以上80000Pa以下である、
     請求項14又は請求項15に記載のスクリーン印刷用導電性ペースト。
    The storage elastic modulus at a strain of 0.1% is 10,000 or more and 80,000 Pa or less.
    The conductive paste for screen printing according to claim 14 or claim 15.
  17.  降伏応力が、10Pa以上45Pa以下である、
     請求項14乃至請求項16のいずれか1項に記載のスクリーン印刷用導電性ペースト。
    Yield stress is 10 Pa or more and 45 Pa or less,
    The conductive paste for screen printing according to any one of claims 14 to 16.
  18.  スクリーン印刷法により、請求項14乃至請求項17のいずれか1項に記載の前記導電性ペーストを基材上に塗布する工程を含む、
     配線の製造方法。
    A step of applying the conductive paste according to any one of claims 14 to 17 on a substrate by a screen printing method,
    Wiring manufacturing method.
  19.  スクリーン印刷法により、請求項14乃至請求項17のいずれか1項に記載の前記導電性ペーストを基材上に塗布する工程を含む、
     電極の製造方法。
    A step of applying the conductive paste according to any one of claims 14 to 17 on a substrate by a screen printing method,
    Electrode manufacturing method.
  20.  スクリーンメッシュが、500メッシュ以上の高張力ステンレス線材により形成されている、
     請求項18又は請求項19に記載の配線の製造方法。
    The screen mesh is formed of a high-tensile stainless steel wire of 500 mesh or more,
    20. A method for manufacturing a wiring according to claim 18 or claim 19.
PCT/JP2013/084568 2012-12-27 2013-12-25 Conductive paste for screen printing, method for producing wiring line, and method for producing electrode WO2014104053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014554472A JP6301267B2 (en) 2012-12-27 2013-12-25 Conductive paste for screen printing, wiring manufacturing method and electrode manufacturing method
KR1020157011587A KR101753497B1 (en) 2012-12-27 2013-12-25 Conductive paste for screen printing, method for producing wiring line, and method for producing electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285972 2012-12-27
JP2012285972 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104053A1 true WO2014104053A1 (en) 2014-07-03

Family

ID=51021132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084568 WO2014104053A1 (en) 2012-12-27 2013-12-25 Conductive paste for screen printing, method for producing wiring line, and method for producing electrode

Country Status (4)

Country Link
JP (1) JP6301267B2 (en)
KR (1) KR101753497B1 (en)
TW (1) TWI624511B (en)
WO (1) WO2014104053A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046096A1 (en) * 2013-09-30 2015-04-02 東洋紡株式会社 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel
JP2015109195A (en) * 2013-12-04 2015-06-11 京都エレックス株式会社 Thermosetting type electroconductive paste composition
JP6008436B1 (en) * 2015-01-27 2016-10-19 帝国インキ製造株式会社 High-quality and high-definition screen printing ink composition for glass substrate, printed matter obtained by screen printing the ink composition, and method for producing the printed matter
WO2016194882A1 (en) * 2015-06-01 2016-12-08 株式会社ノリタケカンパニーリミテド Electroconductive composition and method for forming electrode
KR101893470B1 (en) * 2017-08-22 2018-08-30 한국화학연구원 Paste composition for forming electrodes for three-dimensional printing and electrodes using the same
WO2022163045A1 (en) 2021-01-27 2022-08-04 サカタインクス株式会社 Electroconductive resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388558B2 (en) * 2015-05-29 2018-09-12 富士フイルム株式会社 Conductive film, touch panel sensor, and touch panel
CN111261322A (en) * 2020-02-13 2020-06-09 轻工业部南京电光源材料科学研究所 Silk-screen conductive silver paste for touch screen and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515090A (en) * 1997-08-29 2001-09-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー Contact printing adhesive composition and method for producing said composition
JP2003124052A (en) * 2001-10-11 2003-04-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic part
JP2007096013A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Manufacturing method of electronic component
JP2008112716A (en) * 2006-10-04 2008-05-15 Shoei Chem Ind Co Conductor paste for multilayer electronic part
JP2010047716A (en) * 2008-08-22 2010-03-04 Toyo Ink Mfg Co Ltd Electroconductive ink composition for screen printing and electroconductive coated film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108781A (en) * 2008-04-14 2009-10-19 주식회사 동진쎄미켐 Black paste composition having conductivity property, filter for shielding electromagnetic interference and display device comprising the same
TWI390005B (en) * 2008-12-31 2013-03-21 Eternal Chemical Co Ltd Solvent-free conductive paste composition and solar cell element employing the same
JP5146567B2 (en) 2011-05-30 2013-02-20 東洋インキScホールディングス株式会社 Conductive ink, laminate with conductive pattern and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515090A (en) * 1997-08-29 2001-09-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー Contact printing adhesive composition and method for producing said composition
JP2003124052A (en) * 2001-10-11 2003-04-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic part
JP2007096013A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Manufacturing method of electronic component
JP2008112716A (en) * 2006-10-04 2008-05-15 Shoei Chem Ind Co Conductor paste for multilayer electronic part
JP2010047716A (en) * 2008-08-22 2010-03-04 Toyo Ink Mfg Co Ltd Electroconductive ink composition for screen printing and electroconductive coated film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046096A1 (en) * 2013-09-30 2015-04-02 東洋紡株式会社 Electro-conductive paste, electro-conductive film, electro-conductive circuit, electro-conductive laminate, and touch panel
JP2015109195A (en) * 2013-12-04 2015-06-11 京都エレックス株式会社 Thermosetting type electroconductive paste composition
JP6008436B1 (en) * 2015-01-27 2016-10-19 帝国インキ製造株式会社 High-quality and high-definition screen printing ink composition for glass substrate, printed matter obtained by screen printing the ink composition, and method for producing the printed matter
US9879145B2 (en) 2015-01-27 2018-01-30 Teikoku Printing Inks Mfg. Co. Ltd. High-quality/high-definition screen printing ink composition for glass substrate, printed product obtained by screen printing said ink composition, and manufacturing method for said printed product
WO2016194882A1 (en) * 2015-06-01 2016-12-08 株式会社ノリタケカンパニーリミテド Electroconductive composition and method for forming electrode
JPWO2016194882A1 (en) * 2015-06-01 2017-06-15 株式会社ノリタケカンパニーリミテド Conductive composition and electrode forming method
KR101893470B1 (en) * 2017-08-22 2018-08-30 한국화학연구원 Paste composition for forming electrodes for three-dimensional printing and electrodes using the same
WO2022163045A1 (en) 2021-01-27 2022-08-04 サカタインクス株式会社 Electroconductive resin composition

Also Published As

Publication number Publication date
KR20150091042A (en) 2015-08-07
TWI624511B (en) 2018-05-21
JP6301267B2 (en) 2018-03-28
KR101753497B1 (en) 2017-07-03
JPWO2014104053A1 (en) 2017-01-12
TW201435004A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
JP6301267B2 (en) Conductive paste for screen printing, wiring manufacturing method and electrode manufacturing method
JP6592363B2 (en) Conductive composition for thin film printing and method for forming thin film conductive pattern
JP4832615B1 (en) Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP5742112B2 (en) Curable electromagnetic wave shielding adhesive film and method for producing the same
WO2011096222A1 (en) Electrically conductive ink, and laminate having electrically conductive pattern attached thereto and process for production thereof
JP6734925B2 (en) Silver paste for flexible substrates
US9676947B2 (en) Thermosetting conductive paste
TW200848480A (en) Conductive ink
JP5146567B2 (en) Conductive ink, laminate with conductive pattern and method for producing the same
TWI752117B (en) Conductive paste, conductive film, method for producing conductive film, conductive fine wiring, and method for producing conductive fine wiring
JP6407014B2 (en) Conductive composition for thin film printing and method for forming thin film conductive pattern
JP5859823B2 (en) Heat curable conductive paste composition
WO2014098036A1 (en) Conductive paste
WO2018051831A1 (en) Silver paste for resin substrate
JP5771072B2 (en) Conductive paste
JP5466769B2 (en) Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
TWI810274B (en) conductive paste
WO2022153925A1 (en) Electroconductive composition, electroconductive paste, electric circuit, flexible electric-circuit object, and method for producing molded object
JP2009110947A (en) Ink composition for printing, and forming method of black matrix and bus electrode of front plate for plasma display panel using above composition
JP2009099505A (en) Ink composition for printing, black matrix of front plate for plasma display panel using the composition, and forming method of bus electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554472

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867861

Country of ref document: EP

Kind code of ref document: A1