WO2011077804A1 - Transparent electrode and organic electronic device - Google Patents

Transparent electrode and organic electronic device Download PDF

Info

Publication number
WO2011077804A1
WO2011077804A1 PCT/JP2010/067218 JP2010067218W WO2011077804A1 WO 2011077804 A1 WO2011077804 A1 WO 2011077804A1 JP 2010067218 W JP2010067218 W JP 2010067218W WO 2011077804 A1 WO2011077804 A1 WO 2011077804A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
conductive layer
polymer
binder
electrode
Prior art date
Application number
PCT/JP2010/067218
Other languages
French (fr)
Japanese (ja)
Inventor
孝敏 末松
博和 小山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2011077804A1 publication Critical patent/WO2011077804A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a transparent electrode and an organic electronic device, and more particularly to a transparent electrode excellent in smoothness, conductivity, transparency, flexibility and water resistance, and an organic electronic device using the transparent electrode.
  • the transparent electrode is an indispensable constituent technology even in various displays having different display methods.
  • transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
  • organic electronic device applications such as organic EL and organic thin-film solar cells, current leakage due to irregularities on the surface of the transparent electrode and distortion of layer formation are likely to cause light emission failure, power generation failure, etc. A high degree of smoothness is required.
  • Transparent electrodes used in organic electronic devices such as organic EL and organic thin-film solar cells are metal oxides typified by indium-tin composite oxide (ITO) films on substrates such as glass and transparent plastic films. Is mainly used. However, since the transparent electrode using a metal oxide is inferior in flexibility, there is a problem that a minute crack is formed on the surface of the transparent electrode when bending is repeated.
  • ITO indium-tin composite oxide
  • Patent Document 3 a method for producing a transparent conductive layer made of a conductive polymer and a non-aqueous binder on the ITO electrode (see Patent Document 3) has been proposed.
  • a non-aqueous binder By adding a non-aqueous binder, the strength and thickness of the transparent conductive layer necessary to supplement the flexibility of the ITO electrode can be obtained without impairing the transparency, but the conductivity of the transparent conductive layer can be reduced by reducing the conductive polymer ratio. There has been a problem that the performance is significantly reduced.
  • Patent Document 3 since the binder is non-aqueous, impurities in the binder cannot be removed by washing with water, and there is a problem that the function of the organic electronic device is deteriorated.
  • the objective of this invention is transparency, smoothness, electroconductivity, flexibility which can be used for organic electronic devices, such as an organic EL element and an organic solar cell
  • An object of the present invention is to provide a transparent electrode excellent in water resistance and an organic electronic device using the transparent electrode. In particular, it is to provide a transparent electrode excellent in flexibility and an organic electronic device using the transparent electrode by controlling the nanoindentation elastic modulus of the transparent conductive layer.
  • a transparent electrode having a transparent conductive layer comprising a conductive polymer and a binder on a flexible transparent substrate
  • the binders of the transparent conductive layer have a crosslinked structure, or the binder and the conductive polymer Has a crosslinked structure
  • the binder is a polymer (A) represented by the following general formula (A)
  • the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more and 10 GPa or less.
  • X 1 to X 3 each independently represents a hydrogen atom or a methyl group
  • R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. (Mol%), and 50 ⁇ l + m + n ⁇ 100.) 2.
  • the transparent electrode excellent in transparency, smoothness, electroconductivity, flexibility, and water resistance which can be used for organic electronic devices, such as an organic EL element and an organic solar cell, and this transparent electrode are used. It is to provide an organic electronic device.
  • the nanoindentation elastic modulus of the transparent conductive layer it is possible to provide a transparent electrode excellent in flexibility and an organic electronic device using the transparent electrode.
  • the binder of the transparent conductive layer has a crosslinked structure, or the binder and the The conductive polymer has a crosslinked structure, the binder is the polymer (A) represented by the general formula (A), and the nanoindentation elastic modulus of the transparent conductive layer is 4 GPa or more and 10 GPa or less. It is characterized by being.
  • the binder of the transparent conductive layer or the conductive polymer and the binder are cross-linked, the binder is the polymer (A), and the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more.
  • the binder is the polymer (A)
  • the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more.
  • a conductive polymer having a ⁇ -conjugated conductive polymer component and a polyanion component is used as the conductive polymer, and the polymer (A) is used as the binder, so that more transparent, conductive A transparent electrode having excellent properties can be obtained.
  • the conductive polymer of the present invention is a conductive polymer having a ⁇ -conjugated conductive polymer component and a polyanion component.
  • Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a poly anion described later. .
  • the ⁇ -conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
  • Precursor monomers used in the formation of ⁇ -conjugated conductive polymers have a ⁇ -conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidant, a ⁇ -conjugated system is formed in the main chain. It is what is done. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3 , 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxy Pyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-Butylthiophene, 3-hexyl Thiophene, 3-h
  • polyanions used in the present invention are substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted polyester, It is a combination, and consists of a structural unit having an anionic group and a structural unit having no anionic group.
  • This poly anion is a solubilized polymer that solubilizes the ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be any functional group capable of causing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate ester Group, monosubstituted phosphate group, phosphate group, carboxy group, sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly Isoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • it may be a polyanion further having F (fluorine atom) in the compound.
  • F fluorine atom
  • Nafion manufactured by Dupont
  • Flemion manufactured by Asahi Glass Co., Ltd.
  • the compound having a sulfonic acid when the compound having a sulfonic acid is formed by applying and drying the conductive polymer-containing layer, it is crosslinked when heated at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more. Since the reaction is accelerated, the washing resistance and solvent resistance of the coating film are remarkably improved, which is particularly preferable.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable.
  • These poly anions have high compatibility with the binder, and can further increase the conductivity of the obtained conductive polymer.
  • the degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, an anionic group A method of producing by polymerization of the containing polymerizable monomer may be mentioned.
  • Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanionic salt, it is preferably transformed into a polyanionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like.
  • the ultrafiltration method is preferable from the viewpoint of easy work.
  • Such a conductive polymer is preferably a commercially available material.
  • a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • a water-soluble organic compound may be contained as a dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and ⁇ -butyrolactone.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the binder of the present invention is characterized in that a transparent conductive layer is formed together with a conductive polymer, and the binder is crosslinked with each other, or at least a part of the binder and the conductive polymer has a crosslinked structure.
  • the water washing process can be performed without dissolving or swelling the film, foreign matters on the film and impurities in the film can be removed, and current leakage of the organic electronic device can be suppressed. , Can improve the lifetime.
  • a cross-linking agent may be included in the cross-linking of the binders or between the binder and the conductive polymer, and the cross-linking agent is compatible with the resin and is not particularly limited as long as it forms a cross-linked structure.
  • an oxazoline crosslinking agent, a carbodiimide crosslinking agent, a blocked isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a formaldehyde crosslinking agent, or the like can be used alone or in combination.
  • the binder is the above polymer (A), but it is preferable that the anionic component of the conductive polymer is a polysulfonic acid group because the polymer (A) has a large effect of assisting the conductivity. It is an aspect.
  • the transparent conductive layer according to the present invention may contain a binder other than the polymer (A) as a binder as long as the effects of the present invention are not impaired.
  • the binder other than the polymer (A) include polyester resins, acrylic resins, polyurethane resins, acrylic urethane resins, polycarbonate resins, cellulose resins, and polyvinyl acetal resins.
  • the crosslinking can be measured by a change in glass transition temperature and nanoindentation elastic modulus of the transparent conductive layer, and a change in functional group by FTIR measurement.
  • the nanoindentation elastic modulus in the present invention is a method of calculating an elastic modulus from the degree of dent of a needle by pressing a minute needle against the transparent conductive layer with a constant load.
  • a value obtained by measuring a transparent conductive layer produced on a glass substrate is defined as a nanoindentation elastic modulus.
  • the transparent conductive layer can have appropriate stretchability, and even if the transparent electrode is repeatedly bent, the transparent conductive layer surface is cracked. It does not occur and the smoothness of the surface of the transparent conductive layer can be maintained.
  • the nano-indentation elastic modulus of the transparent conductive layer is set to 4 GPa or more, even if protrusions such as impurities are present on the auxiliary electrode such as an ITO electrode, when the electrode is bent, the transparent conductive material around the protrusions is transparent. Layer deformation can be prevented.
  • the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or less, if there are protrusions such as impurities on the auxiliary electrode, the conductivity of the conductive polymer layer is low. The layer is deformed and causes a malfunction of the organic electronic device.
  • the nanoindentation elastic modulus of the transparent conductive layer is preferably 5.5 GPa or more and 7.0 GPa or less. (Measurement of nanoindentation elastic modulus)
  • the nanoindentation elastic modulus can be measured as follows.
  • a triangular pyramid diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) having an edge curvature radius of 75 to 100 nm was used.
  • the polymer (A) according to the present invention is a polymer (A) represented by the general formula (A).
  • X 1 to X 3 each independently represents a hydrogen atom or a methyl group
  • R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms.
  • l, m, and n represent the composition ratio (mol%), and 50 ⁇ l + m + n ⁇ 100.
  • the polymer (A) according to the present invention is a polymer (A) represented by the general formula (A), and the main copolymerization component is a monomer (repeating unit) 1 to 3 represented by the following general formulas 1 to 3.
  • the component of 50 mol% or more of the copolymer component is any of the monomers 1 to 3 represented by the following general formulas 1 to 3, or the components of the monomers 1 to 3 represented by the following general formulas 1 to 3.
  • a copolymer having a total of 50 mol% or more is preferred.
  • the total of the components of the monomers 1 to 3 represented by the following general formulas 1 to 3 is 80 mol% or more, and further any one of the monomers 1 to 3 represented by the following general formulas 1 to 3 It is also a preferred embodiment. That is, in the general formula (A), 0 ⁇ l ⁇ 100, 0 ⁇ m ⁇ 100, and 0 ⁇ n ⁇ 100.
  • X 1 to X 3 each independently represents a hydrogen atom or a methyl group.
  • R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms.
  • other monomer components may be copolymerized, but a monomer component having high hydrophilicity is more preferable.
  • the polymer (A) preferably has a number average molecular weight of 0 to 5% by mass with a molecular weight of 1000 or less.
  • the amount of the low molecular component is small, it is possible to further reduce the storage stability of the device and the behavior of having a barrier in the direction perpendicular to the layer when exchanging charges in the direction perpendicular to the conductive layer.
  • the content of the molecular weight of 1000 or less is 0 to 5% by mass or less.
  • a redispersion method or preparative GPC is synthesized by synthesizing a monodisperse polymer by living polymerization.
  • a method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used.
  • the reprecipitation method the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers.
  • preparative GPC is, for example, recycled preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and a polymer-dissolved solution can be separated by molecular weight to cut the desired low molecular weight. This is how you can do it.
  • the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained.
  • the molecular weight can be adjusted by the addition amount of the monomer, for example, if a polymer having a molecular weight of 20,000 is synthesized, the formation of a low molecular weight body can be suppressed. From the viewpoint of production suitability, reprecipitation and living polymerization are preferred.
  • the number average molecular weight and molecular weight distribution of the binder of the present invention can be measured by generally known gel permeation chromatography (GPC).
  • the solvent to be used is not particularly limited as long as the water-soluble binder dissolves, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable.
  • the measurement temperature is not particularly limited, but 40 ° C. is preferable.
  • the number average molecular weight of the polymer (A) of the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
  • the molecular weight distribution of the polymer (A) of the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25.
  • the molecular weight distribution is represented by a ratio of (weight average molecular weight / number average molecular weight).
  • the content with a molecular weight of 1000 or less was converted to a ratio by integrating the area with a molecular weight of 1000 or less and dividing by the area of the entire distribution in the distribution obtained by GPC.
  • the living radical polymerization solvent is inactive under reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable.
  • the living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the ratio of the conductive polymer and the polymer (A) in the transparent conductive layer is adjusted, and the coating liquid containing these in the flexible transparent substrate After coating, a drying process or a heat treatment may be performed at 100 ° C to 200 ° C.
  • the ratio of the content of the conductive polymer to the polymer (A) is approximately 10/90 to 70/30 and dried at the above temperature,
  • the elastic modulus can be within the range of the present invention.
  • the above elastic modulus range can be easily set within the range of the present invention by setting the above ratio to the range of 120 ° C. to 150 ° C.
  • the ratio of the polymer (A) to the conductive polymer when the ratio of the polymer (A) to the conductive polymer is 30% or less, the amount of the conductive polymer in the transparent conductive layer is increased, and the value of the nanoindentation elastic modulus is 4.0 or less. Transparency is also impaired. Further, when the ratio of the polymer (A) to the conductive polymer is 900% or more, the amount of the polymer (A) in the transparent conductive layer increases, the value of the nanoindentation elastic modulus becomes 10.0 or more and the conductive property is increased. Sexuality gets worse.
  • the transparent conductive layer can be formed by applying and drying a liquid mixture comprising at least a conductive polymer and a binder on a transparent substrate or a transparent substrate having an auxiliary electrode.
  • concentration of the solid content in the coating solution is preferably from 0.5% by mass to 30% by mass, and from 1 to 20% by mass is the stagnation stability of the solution, the smoothness of the coating film, and the leakage. It is more preferable from the viewpoint of the prevention effect.
  • Coating methods include roll coating, bar coating, dip coating, spin coating, casting, die coating, blade coating, gravure coating, curtain coating, spray coating, doctor coating, letterpress (letterpress) )
  • Printing method stencil (screen) printing method, lithographic (offset) printing method, intaglio (gravure) printing method, spray printing method, inkjet printing method and the like can be used.
  • the dry film thickness of the conductive polymer-containing layer is preferably 30 nm to 2000 nm.
  • the conductive layer of the present invention preferably has a thickness of 100 nm or more because the decrease in conductivity is large in the region of less than 100 nm, and more preferably 200 nm or more from the viewpoint of further improving the leakage prevention effect. Further, it is more preferably 1000 nm or less from the viewpoint of maintaining high transmittance.
  • the polyanion is polysulfonic acid
  • cleaning tolerance and solvent tolerance of a transparent conductive layer can be improved significantly.
  • the preservability of the organic electronic device using this transparent conductive layer can be improved.
  • a temperature of 100 ° C. or higher is preferable from the viewpoint of achieving the above effect, and a temperature of 200 ° C. or lower is preferable from the viewpoint of suppressing the other reaction and achieving the above effect.
  • the treatment temperature is more preferably 110 ° C. or more and 180 ° C. or less, and the treatment time is more preferably 15 minutes or more. There is no particular upper limit for the treatment time, but it is preferably 120 minutes or less in view of productivity.
  • the transparent conductive layer may be subjected to surface treatment, and conventionally known techniques can be used for the surface treatment.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the transparent electrode having a transparent conductive layer composed of at least a conductive polymer and a binder is at least formed of a transparent conductive layer comprising the conductive polymer of the present invention and a binder alone, or
  • the transparent conductive layer of the present invention is laminated on other known conductive electrode layers such as ITO and ZnO, or a stripe-like, mesh-like or random mesh-like electrode described later.
  • the transparent conductive layer of the present invention is laminated, or the transparent conductive layer of the present invention includes a striped, mesh, or random mesh electrode at least partially embedded.
  • the transparent electrode contains a transparent conductive layer comprising at least a conductive polymer and a binder, Not Jowa.
  • the electrode having the transparent conductive layer of the present invention preferably further includes an auxiliary electrode composed of a light-impermeable conductive portion and a light-transmitting window portion.
  • the light-opaque conductive portion of the auxiliary electrode is preferably a metal from the viewpoint of good conductivity, and examples of the metal material include gold, silver, copper, iron, nickel, and chromium.
  • the metal of the conductive part may be an alloy, and the metal layer may be a single layer or a multilayer.
  • the shape of the auxiliary electrode is not particularly limited, but, for example, the conductive portion has a stripe shape, a mesh shape, or a random mesh shape.
  • a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method.
  • a conductor layer is formed on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, and plating, or a metal foil is formed with an adhesive. After being laminated on the material, it can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by screen printing, or applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, followed by plating treatment As another method, a method using silver salt photographic technology can also be used.
  • a method using silver salt photographic technology can be carried out, for example, referring to paragraph numbers (0076) to (0112) of JP2009-140750A and examples.
  • the method for carrying out the plating process by gravure printing of the catalyst ink can be carried out with reference to, for example, JP-A-2007-281290.
  • Random network structure As a random network structure, for example, a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 Can be used. As another method, for example, a method for forming a random network structure of metal nanowires by applying and drying a coating solution containing metal nanowires as described in JP-T-2009-505358 can be used.
  • Metal nanowire refers to a fibrous structure having a metal element as a main component.
  • the metal nanowire means a number of fibrous structures having a minor axis from the atomic scale to the nm size.
  • the average length is preferably 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, and particularly preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • the average minor axis of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the minor axis is preferably 20% or less.
  • the basis weight of the metal nanowire is preferably 0.005 g / m 2 to 0.5 g / m 2 , more preferably 0.01 g / m 2 to 0.2 g / m 2 .
  • metal used for the metal nanowire copper, iron, cobalt, gold, silver or the like can be used, but silver is preferable from the viewpoint of conductivity.
  • a single metal may be used, in order to achieve both conductivity and stability (sulfurization, oxidation resistance, and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.
  • metal nanowire there is no restriction
  • well-known means such as a liquid phase method and a gaseous-phase method, can be used.
  • a well-known manufacturing method can be used.
  • a method for producing silver nanowires Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252, a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871.
  • the above-described method for producing silver nanowires can be preferably applied because silver nanowires can be easily produced in an aqueous solution, and the conductivity of silver is maximum in metals.
  • [Washing treatment] If there are foreign matter or impurities on the surface or inside of the transparent electrode, the performance such as the lifetime of the organic electronic device is greatly deteriorated.
  • the water washing treatment in the present invention refers to washing the transparent conductive layer using a washing solution of an aqueous solvent.
  • the aqueous solvent represents a solvent in which 50% by mass or more is water. Of course, pure water containing no other solvent may be used.
  • the ultrapure water means water having a specific resistance of about 18 M ⁇ ⁇ cm and a total organic carbon TOC measured by a method according to JISK0551 of less than 0.05 mg / L when the water temperature is 25 ° C.
  • the component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. preferable.
  • the cleaning liquid may contain a surfactant.
  • the flexible transparent substrate used for the electrode of the present invention is not particularly limited as long as it has high light transmittance and excellent flexibility.
  • a resin substrate, a resin film, and the like are preferably mentioned. From the viewpoint of productivity and performance such as lightness and flexibility, a transparent resin film is used. It is preferable to use it.
  • the flexible transparent substrate is preferably a transparent resin film because it is flexible. If it is a transparent resin film, it is resistant to deformation and impact due to external force, and is difficult to break.
  • a transparent resin film which can be used preferably, About the material, a shape, a structure, thickness, etc., it can select suitably from well-known things.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • polystyrene resin films polyolefin resin films such as cyclic olefin resins
  • Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, poly
  • the resin film transmittance of 80% or more at 0 nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • an inorganic or organic film or a hybrid film of both may be formed on the front or back surface of the transparent substrate, and the water vapor transmission rate (25 ⁇ 0) measured by a method in accordance with JIS K 7129-1992. .5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less barrier film, and further conforms to JIS K 7126-1987
  • the oxygen permeability measured by the above method is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1
  • a high barrier film of ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less is preferable.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the organic electronic device in the present invention has a first electrode and a second electrode facing each other on a substrate, and has at least one organic functional layer between the first electrode and the second electrode.
  • at least one of the first electrode and the second electrode is an electrode including the transparent electrode layer of the present invention.
  • the organic functional layer include, but are not limited to, an organic light emitting layer, an organic photoelectric conversion layer, and a liquid crystal polymer layer.
  • the present invention is particularly effective when the functional layer is a thin film and an organic light emitting layer or an organic photoelectric conversion layer, which is a current-driven device.
  • Example 1 [Binder of the present invention: synthesis of polymer (A)] ⁇ Synthesis of Binder of the Present Invention: Polymer (A) by Living Radical Polymerization Using ATRP (Atom Transfer Radical Polymerization) Method> “Synthesis of Initiator 1” Synthesis Example 1 (Synthesis of Methoxycapped Oligoethylene Glycol 2-Bromoisobutyrate (Initiator 1)) 2-Bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was kept at 0 ° C.
  • ITO substrate A ITO flexible transparent substrate A and ITO glass substrate A
  • Photolithographic method is used on a substrate in which ITO (indium tin oxide) is deposited to a thickness of 150 nm by sputtering on the surface of the substrate A (flexible transparent substrate A) without the barrier layer and on the front surface of the substrate A (glass substrate A).
  • the substrate was immersed in isopropyl alcohol, and subjected to ultrasonic cleaning treatment for 10 minutes with an ultrasonic cleaner Bransonic 3510J-MT (manufactured by Nippon Emerson), and ITO substrate A (ITO flexible transparent substrate A, And ITO glass substrate A)).
  • silver nanowire substrate A (silver nanowire flexible transparent substrate A and silver nanowire glass substrate A)
  • silver nanowire dispersion liquid is applied to the surface of the substrate A (flexible transparent substrate A) without the barrier layer and the surface of the substrate A (glass substrate A), and the basis weight of the silver nanowire is 0.06 g / m.
  • the silver nanowire dispersion liquid was applied using a bar coating method so as to be 2 and dried and heated at 120 ° C. for 20 minutes. Thus, the metal fine particle removing solution was removed, and silver nanowire substrates A (silver nanowire flexible transparent substrate A and silver nanowire glass substrate A) were produced.
  • Silver nanowire dispersions are described in Adv. Mater.
  • Transparent conductive layer coating liquids A to O which are mixed liquids of the following conductive polymer and binder, were prepared.
  • the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1).
  • cleaning tolerance were measured with the following method.
  • folds 45 degrees inside and outside was performed 100 times, and the smoothness before and behind operation was measured.
  • ITO electrode 2 (ITO flexible transparent electrode 2, ITO glass electrode 2)
  • the ITO electrode 2 (ITO flexible transparent electrode 2 and ITO glass electrode 2) was formed in the same manner as the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that the drying temperature was changed from 120 ° C to 150 ° C. The same measurement was performed.
  • ITO electrodes 3 and 4 ITO flexible transparent electrodes 3 and 4 and ITO glass electrodes 3 and 4)
  • ITO electrode 1 ITO flexible transparent electrode 1 and ITO glass electrode 1
  • the transparent conductive layer coating liquid A is changed to the transparent conductive layer coating liquids B and C and the drying temperature 120 ° C. is changed to 180 ° C.
  • ITO electrodes 3 and 4 ITO flexible transparent electrodes 3 and 4 and ITO glass electrodes 3 and 4) were prepared, and the same measurement was performed.
  • ITO electrodes 5 to 9 (ITO flexible transparent electrodes 5 to 9 and ITO glass electrodes 5 to 9)
  • ITO electrodes 5 to 9 (ITO flexible transparent electrodes 5 to 9, ITO glass electrodes 5 to 9) were prepared, and the same measurement was performed.
  • ITO electrodes 10 to 14 ITO flexible transparent electrodes 10 to 14 and ITO glass electrodes 10 to 14
  • ITO electrodes 10 to 14 ITO flexible in the same manner as ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that transparent conductive layer coating liquid A was changed to transparent conductive layer coating liquids D to H.
  • Transparent electrodes 10 to 14 and ITO glass electrodes 10 to 14 were prepared and subjected to the same measurement.
  • ITO electrodes 15 to 19 (ITO flexible transparent electrodes 15 to 19 and ITO glass electrodes 15 to 19) >> Similar to ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1), except that transparent conductive layer coating solution A was changed to transparent conductive layer coating solutions I to L and O, and drying temperature 120 ° C. was changed to 150 ° C. In this way, ITO electrodes 15 to 19 (ITO flexible transparent electrodes 15 to 19 and ITO glass electrodes 15 to 19) were prepared and subjected to the same measurement.
  • Silver Nanowire Electrodes 20-27 Small Nanowire Flexible Transparent Electrodes 20-27 and Silver Nanowire Glass Electrodes 20-27
  • ITO electrodes 2 to 9 ITO flexible
  • the ITO substrate A ITO flexible transparent substrate A and ITO glass substrate A
  • silver nanowire substrate A silver nanowire flexible transparent substrate A and silver nanowire glass substrate A
  • Silver nanowire electrodes 20 to 27 were prepared in the same manner as the transparent electrodes 2 to 9 and the ITO glass electrodes 2 to 9).
  • auxiliary electrode Although it depends on the configuration of the auxiliary electrode, it is preferably 1 ⁇ 10 7 ⁇ / ⁇ or less. Evaluation was performed as an index representing conductivity according to the following evaluation criteria.
  • Light transmittance is 70% or more and less than 75%
  • XX Total light transmittance is 0% or more and less than 70% (cleaning resistance)
  • Water: isopropyl alcohol 8: 2 (mass ratio) was added as a washing solvent to the beaker and stirred with a stirrer.
  • a sample of ITO glass electrode or silver nanowire glass electrode was immersed therein for 3 minutes, and further washed with running ultrapure water for 5 minutes. Then, the surface of the transparent conductive layer was visually observed to see if there was any disturbance such as swelling or film peeling, and was evaluated as an index representing washing resistance according to the following evaluation criteria.
  • There is no disorder such as swelling or film peeling on the surface of the transparent conductive layer.
  • X There is disorder such as swelling or film peeling on the surface of the transparent conductive layer (measurement of nanoindentation elastic modulus). Using a Triboscope manufactured by Hystron, it was mounted on SPI3800N manufactured by SII Nano Technology and measured.
  • the projected area A of the indenter contact portion is extrapolated by approximating the initial 30% of the unloading curve to a straight line from the depth-load curve obtained by the indentation test.
  • the contact depth h of the contact portion is obtained as a function of h from the shape of the indenter.
  • the apparatus was calibrated and measured in advance so that the hardness obtained as a result of pressing fused quartz was 9 GPa.
  • the cantilever is SI-DF20 (manufactured by Seiko Instruments Inc.), with a resonance frequency of 120 to 150 kHz, a spring constant of 12 to 20 N / m, and a measurement area of 10 ⁇ m square measured at a scanning frequency of 1 Hz in a DFM mode (Dynamic Force Mode). did.
  • the smoothness was evaluated based on the following evaluation criteria for the arithmetic average roughness Ra value obtained according to JIS B601 (1994).
  • the transparent electrode is preferably 50 nm or less. As a result of the measurement, Ra was less than 20 nm for all the prepared electrodes before the bending operation.
  • Ra value after folding is less than 20 nm ⁇ : Ra value after folding is 20 nm or more and less than 50 nm ⁇ : Ra value after folding is 50 nm or more and less than 100 nm ⁇ : After bending Ra value is 100 nm or more and less than 300 nm.
  • XX Ra value after bending is 300 nm or more.
  • the peak around 3400 cm ⁇ 1 derived from the hydroxyl group of the binder decreases, and the binders, the crosslinking agent and the binder, or the binder and the conductive polymer are dehydrated and condensed.
  • an ether-derived peak appeared at 1140 cm ⁇ 1 .
  • no cross-linking was detected in the transparent electrode coated with the coating liquid A.
  • the increase in the nanoindentation elastic modulus is observed in all the transparent electrodes as compared with the transparent electrode coated with the coating liquid A, and the transparent conductive layer is crosslinked by the addition of the polymer A or a crosslinking agent. I understand.
  • organic EL devices 1 to 27 were produced according to the following procedure. About the electrode with water-washing tolerance, it used after performing the water-wash process.
  • each of crucibles for vapor deposition in a commercially available vacuum vapor deposition apparatus was filled with an optimal amount of constituent materials for each layer for manufacturing each element.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • the deposition crucible containing ⁇ -NPD was energized and heated, and deposited on the anode electrode at a deposition rate of 0.1 nm / second.
  • a hole transport layer was provided.
  • each light emitting layer was provided by the following procedure.
  • Ir-1 and Ir-2 and compound 1-1 were co-deposited at a deposition rate of 0.1 nm / second so that the concentration of Ir-1 was 13% by mass and Ir-2 was 3.7% by mass.
  • a green-red phosphorescent light emitting layer having a maximum wavelength of 622 nm and a thickness of 10 nm was formed.
  • E-1 and Compound 1-1 were co-evaporated at a deposition rate of 0.1 nm / second so that E-1 was 10% by mass, and a blue phosphorescent light emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm was formed. Formed.
  • M-1 is vapor-deposited to a thickness of 5 nm to form a hole blocking layer, and CsF is co-deposited with M-1 so that the film thickness ratio is 10%, and an electron transport layer having a thickness of 45 nm is formed. Formed.
  • the cathode electrode except for the ends so that external lead terminals of the anode electrode and the cathode electrode can be formed.
  • An adhesive was applied around the substrate, a flexible sealing member was bonded, and then the adhesive was cured by heat treatment to produce organic EL devices 1 to 27.
  • the lifetime of the organic EL devices 1 to 27 was evaluated by the following method. (lifespan) Five elements out of 10 elements manufactured by the same manufacturing procedure were continuously emitted at an initial luminance of 5000 cd / m 2 , the time until the luminance was halved was determined, and the average value was defined as the lifetime. Further, the operation of bending the remaining 5 elements inward and outward by 45 ° was performed 100 times to obtain the lifetime. The ratio of the lifetime before and after the bending was obtained and evaluated as the lifetime of the organic EL device after the bending according to the following evaluation criteria. It is preferable that it is 70% or more. A: The ratio of life before and after bending is 85% or more and less than 100%.
  • The ratio of life before and after bending is 70% or more and less than 85%.
  • X The ratio of life before and after bending. 30% or more and less than 50%
  • XX The ratio of the life before and after bending is 0% or more and less than 30%. Table 2 shows the results.
  • the transparent conductive layer can have appropriate stretchability, and even if the transparent electrode is repeatedly bent, the transparent conductive layer It can be seen that the surface is not cracked, and that the bending of the electrode prevents the transparent conductive layer from being deformed together with the protruding portion of the auxiliary electrode, thereby suppressing the deterioration of the function of the organic electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a transparent electrode which has high transparency, high smoothness, high conductivity, high flexibility and good water resistance and is usable in organic electronic devices such as organic EL devices and organic solar batteries. The transparent electrode comprises a flexible transparent substrate and a transparent conductive layer, which comprises a conductive polymer and binder(s), formed on said flexible transparent substrate, characterized in that said binder in the transparent conductive layer has a self-crosslinked structure or said binder and said conductive polymer together have a crosslinked structure, said binder is a polymer (A) represented by general formula (A), and the nanoindentation modulus of said transparent conductive layer is 4 GPa to 10 GPa inclusive. Also provided is an organic electronic device using said transparent electrode.

Description

透明電極および有機電子デバイスTransparent electrodes and organic electronic devices
 本発明は、透明電極および有機電子デバイスに関し、詳しくは平滑性、導電性、透明性、可撓性、耐水性に優れた透明電極および該透明電極を用いた有機電子デバイスに関する。 The present invention relates to a transparent electrode and an organic electronic device, and more particularly to a transparent electrode excellent in smoothness, conductivity, transparency, flexibility and water resistance, and an organic electronic device using the transparent electrode.
 近年、薄型TV等の需要の高まりに伴い、液晶、プラズマ、有機EL、フィールドエミッションなど、各種方式のディスプレイ技術の開発が盛んになされている。これら表示方式がそれぞれ異なる各種ディスプレイにおいても、透明電極は必須の構成技術となっている。また、TV以外でもタッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子においても、透明電極は欠くことのできない技術要素となっている。特に、有機ELや有機薄膜太陽電池といった有機電子デバイス用途では、透明電極表面の凹凸による電流のリークや層形成の歪みにより、発光不良、発電不良等が発生しやすく、透明電極表面に対しては高度な平滑性が要求されている。 In recent years, with the increasing demand for thin TVs, various types of display technologies such as liquid crystal, plasma, organic EL, and field emission have been actively developed. The transparent electrode is an indispensable constituent technology even in various displays having different display methods. In addition to TVs, transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements. In particular, in organic electronic device applications such as organic EL and organic thin-film solar cells, current leakage due to irregularities on the surface of the transparent electrode and distortion of layer formation are likely to cause light emission failure, power generation failure, etc. A high degree of smoothness is required.
 有機ELや有機薄膜太陽電池などの有機電子デバイスに用いられる透明電極は、ガラスや透明なプラスチックフィルム等の基材上に、インジウム-スズの複合酸化物(ITO)膜に代表される金属酸化物が主に使用されている。しかし、金属酸化物を用いた透明電極は可撓性に劣るため、折り曲げを繰り返すと透明電極表面に微小な亀裂が入るという問題があった。 Transparent electrodes used in organic electronic devices such as organic EL and organic thin-film solar cells are metal oxides typified by indium-tin composite oxide (ITO) films on substrates such as glass and transparent plastic films. Is mainly used. However, since the transparent electrode using a metal oxide is inferior in flexibility, there is a problem that a minute crack is formed on the surface of the transparent electrode when bending is repeated.
 この問題を解決する方法としてπ共役系高分子に代表される導電性ポリマーを適当な溶媒に溶解または分散した塗液を用い、塗布や印刷によって透明導電体層を形成する方法(特許文献1参照)が提案されている。しかし、この方法では、ITO電極と比較して可撓性が改善されるものの、透明性、導電性が著しく低下するという課題があった。また、異物除去や不純物の除去を目的として導電性ポリマー層を水洗処理すると、導電性ポリマー層が膨潤や溶解することにより、平滑性が損なわれるという課題があった。 As a method of solving this problem, a method of forming a transparent conductor layer by coating or printing using a coating solution in which a conductive polymer typified by a π-conjugated polymer is dissolved or dispersed in an appropriate solvent (see Patent Document 1) ) Has been proposed. However, in this method, although flexibility is improved as compared with the ITO electrode, there is a problem that transparency and conductivity are remarkably lowered. In addition, when the conductive polymer layer is washed with water for the purpose of removing foreign substances or impurities, there is a problem that smoothness is impaired due to swelling or dissolution of the conductive polymer layer.
 また、ITO電極の平滑性向上のため、導電性ポリマーをITO電極上に積層する方法も知られている(特許文献2参照)。しかし、この構成では、ITO電極上に不純物などの突起が存在すると、導電性ポリマー層の弾性が低いため、電極を折り曲げたときに、導電性ポリマー層が突起部分とともに変形し、有機電子デバイスの機能不良の原因となる。また、これを防ぐために導電性ポリマー層を厚くすると、透明電極の透明性が損なわれ、これらを両立させることは難しい。 Also known is a method of laminating a conductive polymer on an ITO electrode in order to improve the smoothness of the ITO electrode (see Patent Document 2). However, in this configuration, if there are protrusions such as impurities on the ITO electrode, the elasticity of the conductive polymer layer is low. Therefore, when the electrode is bent, the conductive polymer layer is deformed together with the protrusions, and the organic electronic device It causes malfunction. Moreover, when the conductive polymer layer is thickened to prevent this, the transparency of the transparent electrode is impaired, and it is difficult to achieve both of them.
 これに対して、ITO電極上に導電性ポリマーと非水系バインダーからなる透明導電層を作製する方法(特許文献3参照)が提案されている。非水系バインダー添加により、透明性を損なうことなく、ITO電極の可撓性を補うのに必要な透明導電層の強度と厚みを得られるが、導電性ポリマー比率の低下により、透明導電層の導電性が著しく低下するという課題があった。また、特許文献3ではバインダーが非水系であるので、水洗処理によりバインダー中の不純物を取り除くことができず有機電子デバイスの機能が低下するという課題があった。 On the other hand, a method for producing a transparent conductive layer made of a conductive polymer and a non-aqueous binder on the ITO electrode (see Patent Document 3) has been proposed. By adding a non-aqueous binder, the strength and thickness of the transparent conductive layer necessary to supplement the flexibility of the ITO electrode can be obtained without impairing the transparency, but the conductivity of the transparent conductive layer can be reduced by reducing the conductive polymer ratio. There has been a problem that the performance is significantly reduced. Further, in Patent Document 3, since the binder is non-aqueous, impurities in the binder cannot be removed by washing with water, and there is a problem that the function of the organic electronic device is deteriorated.
特開平6-273964号公報JP-A-6-273964 特開2003-45665号公報JP 2003-45665 A 特表2008-533701号公報Special table 2008-533701 gazette
 本発明は、上記課題に鑑みなされたものであり、本発明の目的は、有機EL素子、有機太陽電池といった有機電子デバイスに用いることのできる、透明性、平滑性、導電性、可撓性、耐水性に優れた透明電極、および該透明電極を用いた有機電子デバイスを提供することにある。特に、透明導電層のナノインデンテーション弾性率を制御することにより、可撓性に優れた透明電極および該透明電極を用いた有機電子デバイスを提供することにある。 This invention is made | formed in view of the said subject, The objective of this invention is transparency, smoothness, electroconductivity, flexibility which can be used for organic electronic devices, such as an organic EL element and an organic solar cell, An object of the present invention is to provide a transparent electrode excellent in water resistance and an organic electronic device using the transparent electrode. In particular, it is to provide a transparent electrode excellent in flexibility and an organic electronic device using the transparent electrode by controlling the nanoindentation elastic modulus of the transparent conductive layer.
 本発明の上記目的は、下記の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.フレキシブル透明基板上に、導電性ポリマーとバインダーとを有してなる透明導電層を有する透明電極において、前記透明導電層の該バインダー同士が架橋構造を有するかまたは、該バインダーと該導電性ポリマーとが架橋構造を有しており、該バインダーが下記一般式(A)で表されるポリマー(A)であり、かつ前記透明導電層のナノインデンテーション弾性率が4GPa以上10GPa以下であることを特徴とする透明電極。 1. In a transparent electrode having a transparent conductive layer comprising a conductive polymer and a binder on a flexible transparent substrate, the binders of the transparent conductive layer have a crosslinked structure, or the binder and the conductive polymer Has a crosslinked structure, the binder is a polymer (A) represented by the following general formula (A), and the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more and 10 GPa or less. Transparent electrode.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、X~Xはそれぞれ独立に、水素原子またはメチル基を表し、R~Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を表し、50≦l+m+n≦100である。)
 2.前記透明導電層のナノインデンテーション弾性率が5.5GPa以上7.0GPa以下であることを特徴とする前記1に記載の透明電極。
(In the formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group, and R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. (Mol%), and 50 ≦ l + m + n ≦ 100.)
2. 2. The transparent electrode according to 1 above, wherein the transparent conductive layer has a nanoindentation elastic modulus of 5.5 GPa to 7.0 GPa.
 3.前記導電性ポリマーが、π共役系導電性高分子成分とポリ陰イオン成分とを有してなる導電性ポリマーであることを特徴とする前記1または2に記載の透明電極。 3. 3. The transparent electrode according to 1 or 2, wherein the conductive polymer is a conductive polymer having a π-conjugated conductive polymer component and a polyanion component.
 4.前記ポリ陰イオン成分がポリスルホン酸であることを特徴とする前記3に記載の透明電極。 4. 4. The transparent electrode as described in 3 above, wherein the polyanion component is polysulfonic acid.
 5.前記1から4のいずれか1項に記載の透明電極を用いたことを特徴とする有機電子デバイス。 5. 5. An organic electronic device using the transparent electrode according to any one of 1 to 4 above.
 本発明によれば、有機EL素子、有機太陽電池といった有機電子デバイスに用いることのできる、透明性、平滑性、導電性、可撓性、耐水性に優れた透明電極、および該透明電極を用いた有機電子デバイスを提供することにある。特に、透明導電層のナノインデンテーション弾性率を制御することにより、可撓性に優れた透明電極および該透明電極を用いた有機電子デバイスを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the transparent electrode excellent in transparency, smoothness, electroconductivity, flexibility, and water resistance which can be used for organic electronic devices, such as an organic EL element and an organic solar cell, and this transparent electrode are used. It is to provide an organic electronic device. In particular, by controlling the nanoindentation elastic modulus of the transparent conductive layer, it is possible to provide a transparent electrode excellent in flexibility and an organic electronic device using the transparent electrode.
 以下、本発明を実施するための形態について説明するが、本発明はこれらに限定されない。 Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to these.
 本発明は、フレキシブル透明基板上に、導電性ポリマーとバインダーとを有してなる透明導電層を有する透明電極において、前記透明導電層の該バインダー同士が架橋構造を有するかまたは、該バインダーと該導電性ポリマーとが架橋構造を有しており、該バインダーが上記一般式(A)で表されるポリマー(A)であり、かつ前記透明導電層のナノインデンテーション弾性率が4GPa以上10GPa以下であることを特徴とする。 In the transparent electrode having a transparent conductive layer comprising a conductive polymer and a binder on a flexible transparent substrate, the binder of the transparent conductive layer has a crosslinked structure, or the binder and the The conductive polymer has a crosslinked structure, the binder is the polymer (A) represented by the general formula (A), and the nanoindentation elastic modulus of the transparent conductive layer is 4 GPa or more and 10 GPa or less. It is characterized by being.
 本発明においては、特に前記透明導電層のバインダー同士または導電性ポリマーとバインダーとが架橋されており、バインダーが上記ポリマー(A)であり、かつ前記透明導電層のナノインデンテーション弾性率が4GPa以上10GPa以下であることで、透明性、平滑性、導電性、可撓性、耐水性に優れた透明電極が得られる。 In the present invention, in particular, the binder of the transparent conductive layer or the conductive polymer and the binder are cross-linked, the binder is the polymer (A), and the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more. By being 10 GPa or less, a transparent electrode excellent in transparency, smoothness, conductivity, flexibility, and water resistance can be obtained.
 また、本発明において導電性ポリマーとしてπ共役系導電性高分子成分とポリ陰イオン成分とを有してなる導電性ポリマーを用い、バインダーとしてポリマー(A)を用いることにより、より透明性、導電性の優れた透明電極が得られる。 Further, in the present invention, a conductive polymer having a π-conjugated conductive polymer component and a polyanion component is used as the conductive polymer, and the polymer (A) is used as the binder, so that more transparent, conductive A transparent electrode having excellent properties can be obtained.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様等について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
 [導電性ポリマー]
 本発明の導電性ポリマーはπ共役系導電性高分子成分とポリ陰イオン成分とを有してなる導電性ポリマーである。
[Conductive polymer]
The conductive polymer of the present invention is a conductive polymer having a π-conjugated conductive polymer component and a polyanion component.
 こうした導電性ポリマーは、後述するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリ陰イオンの存在下で化学酸化重合することによって容易に製造できる。 Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a poly anion described later. .
 [π共役系導電性高分子]
 本発明に用いるπ共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類、の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。
[Π-conjugated conductive polymer]
The π-conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
 [π共役系導電性高分子前駆体モノマー]
 π共役系導電性高分子の形成に用いられる前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
[Π-conjugated conductive polymer precursor monomer]
Precursor monomers used in the formation of π-conjugated conductive polymers have a π-conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidant, a π-conjugated system is formed in the main chain. It is what is done. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
 該前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3 , 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxy Pyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-Butylthiophene, 3-hexyl Thiophene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythione Phen, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyloxy Thiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3-methyl -4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3-isobutyl Aniline, 2-anilinesulfonic acid, 3-aniline Examples thereof include phosphorus sulfonic acid.
 [ポリ陰イオン]
 本発明に用いるポリ陰イオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
[Poly anion]
The polyanions used in the present invention are substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted polyester, It is a combination, and consists of a structural unit having an anionic group and a structural unit having no anionic group.
 このポリ陰イオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。 This poly anion is a solubilized polymer that solubilizes the π-conjugated conductive polymer in a solvent.
 また、ポリ陰イオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 Also, the anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリ陰イオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be any functional group capable of causing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate ester Group, monosubstituted phosphate group, phosphate group, carboxy group, sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリ陰イオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly Isoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
 また、化合物内に更にF(フッ素原子)を有するポリ陰イオンであっても良い。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)などを挙げることができる。 Further, it may be a polyanion further having F (fluorine atom) in the compound. Specifically, Nafion (manufactured by Dupont) containing a perfluorosulfonic acid group, Flemion (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group, and the like can be mentioned.
 これらのうち、スルホン酸を有する化合物であると、導電性ポリマー含有層を塗布、乾燥することによって形成した後に、100℃以上200℃以下の温度で5分以上の加熱処理を施した場合、架橋反応が促進するため、塗布膜の洗浄耐性や溶媒耐性が著しく向上することから、特に好ましい。 Among these, when the compound having a sulfonic acid is formed by applying and drying the conductive polymer-containing layer, it is crosslinked when heated at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more. Since the reaction is accelerated, the washing resistance and solvent resistance of the coating film are remarkably improved, which is particularly preferable.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリ陰イオンは、バインダーとの相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These poly anions have high compatibility with the binder, and can further increase the conductivity of the obtained conductive polymer.
 ポリ陰イオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。 The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 ポリ陰イオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。 Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, an anionic group A method of producing by polymerization of the containing polymerizable monomer may be mentioned.
 アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。 Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。 The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
 得られたポリマーがポリ陰イオン塩である場合には、ポリ陰イオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。 When the obtained polymer is a polyanionic salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
 こうした導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCleviosシリーズとして、Aldrich社からPEDOT-PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることが出来る。 Such a conductive polymer is preferably a commercially available material. For example, a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
 2nd.ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、水酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。前記水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリンなどが挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトンなどが挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、などが挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。 2nd. A water-soluble organic compound may be contained as a dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and γ-butyrolactone. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 [バインダー]
 本発明のバインダーは、導電性ポリマーとともに透明導電層を形成し、バインダー同士で架橋した構造あるいは、バインダーと導電性ポリマーの少なくとも一部が架橋構造を有することを特徴とする。
[binder]
The binder of the present invention is characterized in that a transparent conductive layer is formed together with a conductive polymer, and the binder is crosslinked with each other, or at least a part of the binder and the conductive polymer has a crosslinked structure.
 これにより、水洗処理を行っても、膜の溶解や膨潤をすることがなく水洗処理が可能となり、膜上の異物や膜中の不純物を取り除くことができ、有機電子デバイスの電流リークを抑制でき、寿命を向上することができる。 As a result, even if the water washing process is performed, the water washing process can be performed without dissolving or swelling the film, foreign matters on the film and impurities in the film can be removed, and current leakage of the organic electronic device can be suppressed. , Can improve the lifetime.
 さらに、バインダー同士あるいは、バインダーと導電性ポリマーの架橋には架橋剤を含んでいても良く、架橋剤は、樹脂との相溶性があり、架橋構造を作れば特に限定されない。例えば架橋剤としてオキサゾリン系架橋剤、カルボジイミド系架橋剤、ブロックイソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、ホルムアルデヒド系架橋剤等を単独あるいは複数併用して用いることができる。 Furthermore, a cross-linking agent may be included in the cross-linking of the binders or between the binder and the conductive polymer, and the cross-linking agent is compatible with the resin and is not particularly limited as long as it forms a cross-linked structure. For example, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, a blocked isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a formaldehyde crosslinking agent, or the like can be used alone or in combination.
 本発明において、バインダーは上記のポリマー(A)であるが、前記導電性ポリマーの陰イオン成分がポリスルホン酸基であることが、ポリマー(A)が導電性をアシストする効果が大きいことから、好ましい態様である。 In the present invention, the binder is the above polymer (A), but it is preferable that the anionic component of the conductive polymer is a polysulfonic acid group because the polymer (A) has a large effect of assisting the conductivity. It is an aspect.
 本発明に係る透明導電層は、バインダーとしてポリマー(A)以外のバインダーを本発明の効果を損なわない範囲で含有してもよい。ポリマー(A)以外のバインダーとしては、例えばポリエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、アクリルウレタン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアセタール系樹脂等が挙げられる。 The transparent conductive layer according to the present invention may contain a binder other than the polymer (A) as a binder as long as the effects of the present invention are not impaired. Examples of the binder other than the polymer (A) include polyester resins, acrylic resins, polyurethane resins, acrylic urethane resins, polycarbonate resins, cellulose resins, and polyvinyl acetal resins.
 また、架橋は透明導電層のガラス転移温度やナノインデンテーション弾性率の変化、さらにFTIR測定による官能基の変化により測定できる。 Moreover, the crosslinking can be measured by a change in glass transition temperature and nanoindentation elastic modulus of the transparent conductive layer, and a change in functional group by FTIR measurement.
 [ナノインデンテーション弾性率]
 本発明におけるナノインデンテーション弾性率とは、透明導電層に微小な針を一定荷重で押し付けて、針のへこみ具合から、弾性率を算出する手法である。
[Nanoindentation elastic modulus]
The nanoindentation elastic modulus in the present invention is a method of calculating an elastic modulus from the degree of dent of a needle by pressing a minute needle against the transparent conductive layer with a constant load.
 本発明では、ガラス基板上に作製した透明導電層を測定した値をナノインデンテーション弾性率とした。 In the present invention, a value obtained by measuring a transparent conductive layer produced on a glass substrate is defined as a nanoindentation elastic modulus.
 本発明における透明導電層のナノインデンテーション弾性率を10GPa以下にすることで、透明導電層は適度な伸縮性をもつことができ、透明電極の折り曲げを繰り返しても、透明導電層表面にヒビが生じることがなく、透明導電層表面の平滑性が保持できる。 By setting the nanoindentation elastic modulus of the transparent conductive layer in the present invention to 10 GPa or less, the transparent conductive layer can have appropriate stretchability, and even if the transparent electrode is repeatedly bent, the transparent conductive layer surface is cracked. It does not occur and the smoothness of the surface of the transparent conductive layer can be maintained.
 一方、透明導電層のナノインデンテーション弾性率を4GPa以上にすることで、ITO電極などの補助電極上に不純物などの突起が存在しても、電極を折り曲げたときに、突起周辺部の透明導電層の変形を防止できる。 On the other hand, by setting the nano-indentation elastic modulus of the transparent conductive layer to 4 GPa or more, even if protrusions such as impurities are present on the auxiliary electrode such as an ITO electrode, when the electrode is bent, the transparent conductive material around the protrusions is transparent. Layer deformation can be prevented.
 逆に、透明導電層のナノインデンテーション弾性率を4GPa以下のとき、補助電極上に不純物などの突起が存在すると、導電性ポリマー層の弾性が低いため、電極の折り曲げると、突起部分とともに透明導電層が変形し、有機電子デバイスの機能不良の原因となる。透明導電層のナノインデンテーション弾性率は5.5GPa以上、7.0GPa以下にすることが好ましい。
(ナノインデンテーション弾性率測定)
 ナノインデンテーション弾性率は以下のようにして測定することができる。
On the contrary, when the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or less, if there are protrusions such as impurities on the auxiliary electrode, the conductivity of the conductive polymer layer is low. The layer is deformed and causes a malfunction of the organic electronic device. The nanoindentation elastic modulus of the transparent conductive layer is preferably 5.5 GPa or more and 7.0 GPa or less.
(Measurement of nanoindentation elastic modulus)
The nanoindentation elastic modulus can be measured as follows.
 Hysitron社製Triboscopeを用いて、エスアイアイナノテクノロジー社製SPI3800Nに装着し測定した。 Using a Triscope made by Hystron, it was mounted on SPI3800N made by SII Nano Technology and measured.
 測定には、圧子としてベルコビッチ型圧子(先端稜角142.3°)と呼ばれる三角錘型ダイヤモンド製圧子で、先端曲率半径75~100nmのものを用いた。 In the measurement, a triangular pyramid diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) having an edge curvature radius of 75 to 100 nm was used.
 表面に直角に当て、徐々に印加し、最大荷重到達後に荷重を0にまで徐々に戻す。 ¡Apply gradually to the surface at a right angle and apply gradually, and gradually return the load to 0 after reaching the maximum load.
 この時の最大荷重Pを圧子接触部の投影面積Aで除した値P/Aを硬度として算出し、この値(硬度=P/A(GPa))を、ナノインデンテーション弾性率を表す指標として示す。 A value P / A obtained by dividing the maximum load P at this time by the projected area A of the indenter contact portion is calculated as hardness, and this value (hardness = P / A (GPa)) is used as an index representing the nanoindentation elastic modulus. Show.
 [ポリマー(A)]
 本発明に係るポリマー(A)は、前記一般式(A)で表されるポリマー(A)である。一般式(A)中、X~Xはそれぞれ独立に、水素原子またはメチル基を表し、R~Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を表し、50≦l+m+n≦100である。
[Polymer (A)]
The polymer (A) according to the present invention is a polymer (A) represented by the general formula (A). In general formula (A), X 1 to X 3 each independently represents a hydrogen atom or a methyl group, and R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. l, m, and n represent the composition ratio (mol%), and 50 ≦ l + m + n ≦ 100.
 本発明に係るポリマー(A)は、前記一般式(A)で表されるポリマー(A)であり、主たる共重合成分が下記一般式1~3で表されるモノマー(繰り返し単位)1~3であり、共重合成分の50mol%以上の成分が下記一般式1~3で表されるモノマー1~3のいずれか、あるいは、下記一般式1~3で表されるモノマー1~3の成分の合計が50mol%以上ある共重合ポリマーであることが好ましい。下記一般式1~3で表されるモノマー1~3の成分の合計が80mol%以上であることがより好ましく、さらに、下記一般式1~3で表されるモノマー1~3いずれか単独のモノマーから形成されたホモポリマーであっても良く、また、好ましい実施形態である。即ち、一般式(A)において、0≦l≦100であり、0≦m≦100であり、0≦n≦100である。 The polymer (A) according to the present invention is a polymer (A) represented by the general formula (A), and the main copolymerization component is a monomer (repeating unit) 1 to 3 represented by the following general formulas 1 to 3. The component of 50 mol% or more of the copolymer component is any of the monomers 1 to 3 represented by the following general formulas 1 to 3, or the components of the monomers 1 to 3 represented by the following general formulas 1 to 3. A copolymer having a total of 50 mol% or more is preferred. More preferably, the total of the components of the monomers 1 to 3 represented by the following general formulas 1 to 3 is 80 mol% or more, and further any one of the monomers 1 to 3 represented by the following general formulas 1 to 3 It is also a preferred embodiment. That is, in the general formula (A), 0 ≦ l ≦ 100, 0 ≦ m ≦ 100, and 0 ≦ n ≦ 100.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、X~Xはそれぞれ独立に、水素原子、またはメチル基を表す。R~Rはそれぞれ独立に、炭素数が5以下のアルキレン基を表す。)
 ポリマー(A)においては、他のモノマー成分が共重合されていてもかまわないが、親水性の高いモノマー成分であることがより好ましい。
(In the formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group. R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms.)
In the polymer (A), other monomer components may be copolymerized, but a monomer component having high hydrophilicity is more preferable.
 また、ポリマー(A)は数平均分子量において、分子量1000以下の含有量が0~5質量%以下であることが好ましい。低分子成分が少ないことで、素子の保存性や、導電層に対して垂直方向に電荷をやりとりする際の、層に対して垂直方向に障壁があるような挙動をより低下させることができる。 The polymer (A) preferably has a number average molecular weight of 0 to 5% by mass with a molecular weight of 1000 or less. When the amount of the low molecular component is small, it is possible to further reduce the storage stability of the device and the behavior of having a barrier in the direction perpendicular to the layer when exchanging charges in the direction perpendicular to the conductive layer.
 このポリマー(A)の数平均分子量において、分子量1000以下の含有量が0~5質量%以下とする方法としては、再沈殿法、分取GPCに、リビング重合による単分散のポリマーを合成等により、低分子量成分を除去する、または低分子量成分の生成を抑制する方法を用いることができる。再沈殿法は、ポリマーが溶解可能な溶媒へ溶解し、ポリマーを溶解した溶媒より溶解性の低い溶媒中へ滴下することにより、ポリマーを析出させ、モノマー、触媒、オリゴマー等の低分子量成分を除去する方法である。また、分取GPCは例えばリサイクル分取GPCLC-9100(日本分析工業社製)、ポリスチレンゲルカラムで、ポリマーを溶解した溶液をカラムに通すことにより分子量で分けることができ、所望の低分子量をカットすることができる方法である。リビング重合は、開始種の生成が経時で変化せず、また停止反応等の副反応が少なく、分子量の揃ったポリマーが得られる。分子量はモノマーの添加量により調整できるため、例えば分子量を2万のポリマーを合成すれば、低分子量体の生成を抑制することができる。生産適性から、再沈殿法、リビング重合が好ましい。 In the number average molecular weight of the polymer (A), the content of the molecular weight of 1000 or less is 0 to 5% by mass or less. For example, a redispersion method or preparative GPC is synthesized by synthesizing a monodisperse polymer by living polymerization. A method of removing the low molecular weight component or suppressing the generation of the low molecular weight component can be used. In the reprecipitation method, the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do. In addition, preparative GPC is, for example, recycled preparative GPCLC-9100 (manufactured by Nippon Analytical Industrial Co., Ltd.), polystyrene gel column, and a polymer-dissolved solution can be separated by molecular weight to cut the desired low molecular weight. This is how you can do it. In the living polymerization, the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the addition amount of the monomer, for example, if a polymer having a molecular weight of 20,000 is synthesized, the formation of a low molecular weight body can be suppressed. From the viewpoint of production suitability, reprecipitation and living polymerization are preferred.
 本発明のバインダーの数平均分子量、分子量分布の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。使用する溶媒は、水溶性バインダーが溶解すれば特に制限はなく、THF、DMF、CHClが好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが40℃が好ましい。 The number average molecular weight and molecular weight distribution of the binder of the present invention can be measured by generally known gel permeation chromatography (GPC). The solvent to be used is not particularly limited as long as the water-soluble binder dissolves, and THF, DMF, and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable. The measurement temperature is not particularly limited, but 40 ° C. is preferable.
 本発明のポリマー(A)の数平均分子量は3,000~2,000,000の範囲が好ましく、より好ましくは4,000~500,000、更に好ましくは5000~100000の範囲内である。 The number average molecular weight of the polymer (A) of the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000.
 本発明のポリマー(A)の分子量分布は1.01~1.30が好ましく、より好ましくは1.01~1.25である。分子量分布は(重量平均分子量/数平均分子量)の比で表す。 The molecular weight distribution of the polymer (A) of the present invention is preferably 1.01 to 1.30, more preferably 1.01 to 1.25. The molecular weight distribution is represented by a ratio of (weight average molecular weight / number average molecular weight).
 分子量1000以下の含有量はGPCにより得られた分布において、分子量1000以下の面積を積算し、分布全体の面積で割ることで割合を換算した。 The content with a molecular weight of 1000 or less was converted to a ratio by integrating the area with a molecular weight of 1000 or less and dividing by the area of the entire distribution in the distribution obtained by GPC.
 リビングラジカル重合溶剤は、反応条件化で不活性であり、モノマー、生成するポリマーを溶解できれば特に制限はないが、アルコール系溶媒と水の混合溶媒が好ましい。リビングラジカル重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。 The living radical polymerization solvent is inactive under reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable. The living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
 本発明において、透明導電層のナノインデンテーション弾性率を4GPa以上10GPa以下とするには、透明導電層の導電性ポリマーとポリマー(A)の比率を調節し、フレキシブル透明基板にこれらを含む塗布液を塗布した後、100℃以上200℃以下で乾燥処理、または加熱処理を行えばよい。 In the present invention, in order to set the nanoindentation elastic modulus of the transparent conductive layer to 4 GPa or more and 10 GPa or less, the ratio of the conductive polymer and the polymer (A) in the transparent conductive layer is adjusted, and the coating liquid containing these in the flexible transparent substrate After coating, a drying process or a heat treatment may be performed at 100 ° C to 200 ° C.
 特に、導電性ポリマーとポリマー(A)の含有量の比率(導電性ポリマー/ポリマー(A)(質量比))を、概ね10/90~70/30の比率とし上記温度で乾燥することで、上記弾性率を本発明の範囲にすることができる。 In particular, the ratio of the content of the conductive polymer to the polymer (A) (conductive polymer / polymer (A) (mass ratio)) is approximately 10/90 to 70/30 and dried at the above temperature, The elastic modulus can be within the range of the present invention.
 さらに乾燥温度としては、上記比率で、120℃から150℃の範囲にすることで、容易に上記弾性率の範囲を本発明の範囲とすることができる。 Furthermore, as the drying temperature, the above elastic modulus range can be easily set within the range of the present invention by setting the above ratio to the range of 120 ° C. to 150 ° C.
 本発明では、導電性ポリマーに対するポリマー(A)の比率が30%以下にすると、透明導電層に占める導電性ポリマーの量が多くなり、ナノインデンテーション弾性率の値が4.0以下になるとともに透明性も損なわれる。 また、導電性ポリマーに対するポリマー(A)の比率が900%以上にすると、透明導電層に占めるポリマー(A)の量が多くなり、ナノインデンテーション弾性率の値が10.0以上になるとともに導電性が悪くなる。
[透明導電層]
 本発明において、透明導電層は、少なくとも導電性ポリマーとバインダーを有してなる混合液を透明基板または補助電極を持つ透明基板上に塗布、乾燥することで形成することができる。また、塗布液中の固形分の濃度は0.5質量%から30質量%であることが好ましく、1から20質量%であることが、液の停滞安定性、塗布膜の平滑性や、リーク防止効果の発現の視点で、より好ましい。
In the present invention, when the ratio of the polymer (A) to the conductive polymer is 30% or less, the amount of the conductive polymer in the transparent conductive layer is increased, and the value of the nanoindentation elastic modulus is 4.0 or less. Transparency is also impaired. Further, when the ratio of the polymer (A) to the conductive polymer is 900% or more, the amount of the polymer (A) in the transparent conductive layer increases, the value of the nanoindentation elastic modulus becomes 10.0 or more and the conductive property is increased. Sexuality gets worse.
[Transparent conductive layer]
In the present invention, the transparent conductive layer can be formed by applying and drying a liquid mixture comprising at least a conductive polymer and a binder on a transparent substrate or a transparent substrate having an auxiliary electrode. The concentration of the solid content in the coating solution is preferably from 0.5% by mass to 30% by mass, and from 1 to 20% by mass is the stagnation stability of the solution, the smoothness of the coating film, and the leakage. It is more preferable from the viewpoint of the prevention effect.
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等を用いることができる。 Coating methods include roll coating, bar coating, dip coating, spin coating, casting, die coating, blade coating, gravure coating, curtain coating, spray coating, doctor coating, letterpress (letterpress) ) Printing method, stencil (screen) printing method, lithographic (offset) printing method, intaglio (gravure) printing method, spray printing method, inkjet printing method and the like can be used.
 導電性ポリマー含有層の乾燥膜厚は30nmから2000nmであることが好ましい。本発明の導電層は100nmを切る領域では導電性の低下が大きくなることから100nm以上であることがより好ましく、リーク防止効果をより高める視点からは200nm以上であることがさらに好ましい。また、高い透過率を維持する視点から1000nm以下であることがより好ましい。 The dry film thickness of the conductive polymer-containing layer is preferably 30 nm to 2000 nm. The conductive layer of the present invention preferably has a thickness of 100 nm or more because the decrease in conductivity is large in the region of less than 100 nm, and more preferably 200 nm or more from the viewpoint of further improving the leakage prevention effect. Further, it is more preferably 1000 nm or less from the viewpoint of maintaining high transmittance.
 特に、ポリ陰イオンがポリスルホン酸である場合、塗布乾燥後に、さらに、100℃以上200℃以下の温度で5分以上の追加の加熱処理を施すことが好ましい。これにより、透明導電層の洗浄耐性、溶媒耐性を著しく向上できる。また、この透明導電層を用いた有機電子デバイスの保存性を向上できる。100℃以上であると上記効果を奏することができる観点から好ましく、200℃以下であると別な反応も抑制されて、上記効果を奏することができる観点から好ましい。処理温度としては110℃以上180℃以下であることがより好ましく、処理時間としては15分以上であることがより好ましい。処理時間の上限は特にないが、生産性を考えると120分以下であることが好ましい。 In particular, when the polyanion is polysulfonic acid, it is preferable to perform additional heat treatment for 5 minutes or more at a temperature of 100 ° C. or higher and 200 ° C. or lower after the coating and drying. Thereby, the washing | cleaning tolerance and solvent tolerance of a transparent conductive layer can be improved significantly. Moreover, the preservability of the organic electronic device using this transparent conductive layer can be improved. A temperature of 100 ° C. or higher is preferable from the viewpoint of achieving the above effect, and a temperature of 200 ° C. or lower is preferable from the viewpoint of suppressing the other reaction and achieving the above effect. The treatment temperature is more preferably 110 ° C. or more and 180 ° C. or less, and the treatment time is more preferably 15 minutes or more. There is no particular upper limit for the treatment time, but it is preferably 120 minutes or less in view of productivity.
 また、濡れ性の観点から、透明導電層は表面処理を施してもよく、表面処理については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。
[透明電極]
 本発明において、少なくとも導電性ポリマーとバインダーからなる透明導電層を有する透明電極とは、少なくとも電極が本発明の導電性ポリマーとバインダーを有してなる透明導電層単体で形成されている、あるいは、補助電極として、ITO、ZnOなど、公知の他の導電性電極層に本発明の透明導電層が積層されている、あるいは、後述のストライプ状、あるいはメッシュ状、あるいは、ランダムな網目状電極等に本発明の透明導電層が積層されている、あるいは、本発明の透明導電層にストライプ状、あるいはメッシュ状、あるいは、ランダムな網目状電極等が少なくとも一部が埋め込まれている形態などを挙げることができるが、透明電極が少なくとも導電性ポリマーとバインダーを有してなる透明導電層を含んでいれば、これらに限定はされない。
[補助電極]
 大面積化に対応するためには、本発明の透明導電層を有する電極が、さらに、光不透過の導電部と透光性窓部とからなる補助電極を有することが好ましい。
Further, from the viewpoint of wettability, the transparent conductive layer may be subjected to surface treatment, and conventionally known techniques can be used for the surface treatment. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
[Transparent electrode]
In the present invention, the transparent electrode having a transparent conductive layer composed of at least a conductive polymer and a binder is at least formed of a transparent conductive layer comprising the conductive polymer of the present invention and a binder alone, or As an auxiliary electrode, the transparent conductive layer of the present invention is laminated on other known conductive electrode layers such as ITO and ZnO, or a stripe-like, mesh-like or random mesh-like electrode described later. The transparent conductive layer of the present invention is laminated, or the transparent conductive layer of the present invention includes a striped, mesh, or random mesh electrode at least partially embedded. However, if the transparent electrode contains a transparent conductive layer comprising at least a conductive polymer and a binder, Not Jowa.
[Auxiliary electrode]
In order to cope with an increase in area, the electrode having the transparent conductive layer of the present invention preferably further includes an auxiliary electrode composed of a light-impermeable conductive portion and a light-transmitting window portion.
 補助電極の光不透過の導電部は導電性が良い点で金属であることが好ましく、金属材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム等が挙げられる。また導電部の金属は合金でも良く、金属層は単層でも多層でも良い。 The light-opaque conductive portion of the auxiliary electrode is preferably a metal from the viewpoint of good conductivity, and examples of the metal material include gold, silver, copper, iron, nickel, and chromium. The metal of the conductive part may be an alloy, and the metal layer may be a single layer or a multilayer.
 補助電極の形状は特に制限はないが、例えば、導電部がストライプ状、あるいはメッシュ状、あるいは、ランダムな網目状である。導電部がストライプ状、あるいはメッシュ状の補助電極を形成する方法としては、特に、制限はなく、従来公知な方法が利用できる。例えば、基材全面に金属層を形成し、公知のフォトリソ法によって形成できる。具体的には、基材上に全面に、蒸着、スパッタ、めっき等の1或いは2以上の物理的或いは化学的形成手法を用いて導電体層を形成する、あるいは、金属箔を接着剤で基材に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状、あるいはメッシュ状に加工できる。 The shape of the auxiliary electrode is not particularly limited, but, for example, the conductive portion has a stripe shape, a mesh shape, or a random mesh shape. There are no particular limitations on the method of forming the stripe-shaped or mesh-shaped auxiliary electrode with the conductive portion, and a conventionally known method can be used. For example, a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method. Specifically, a conductor layer is formed on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, and plating, or a metal foil is formed with an adhesive. After being laminated on the material, it can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
 別な方法としては、金属微粒子を含有するインクをスクリーン印刷により所望の形状に印刷する方法や、メッキ可能な触媒インクをグラビア印刷、あるいは、インクジェット方式で所望の形状に塗布した後、メッキ処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。銀塩写真技術を応用した方法については、例えば、特開2009-140750号公報の段落番号(0076)~(0112)、および実施例を参考にして実施できる。触媒インクをグラビア印刷してメッキ処理する方法については、例えば、特開2007-281290号公報を参考にして実施できる。
(ランダムな網目構造)
 ランダムな網目構造としては、例えば、特表2005-530005号公報に記載のような、金属微粒子を含有する液を塗布乾燥することにより、自発的に導電性微粒子の無秩序な網目構造を形成する方法を利用できる。別な方法としては、例えば、特表2009-505358号公報に記載のような、金属ナノワイヤを含有する塗布液を塗布乾燥することで、金属ナノワイヤのランダムな網目構造を形成させる方法を利用できる。
As another method, a method of printing an ink containing metal fine particles in a desired shape by screen printing, or applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, followed by plating treatment As another method, a method using silver salt photographic technology can also be used. A method using silver salt photographic technology can be carried out, for example, referring to paragraph numbers (0076) to (0112) of JP2009-140750A and examples. The method for carrying out the plating process by gravure printing of the catalyst ink can be carried out with reference to, for example, JP-A-2007-281290.
(Random network structure)
As a random network structure, for example, a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 Can be used. As another method, for example, a method for forming a random network structure of metal nanowires by applying and drying a coating solution containing metal nanowires as described in JP-T-2009-505358 can be used.
 金属ナノワイヤとは、金属元素を主要な構成要素とする繊維状構造体のことをいう。特に、本発明において金属ナノワイヤとは、原子スケールからnmサイズの短径を有する多数の繊維状構造体を意味する。 Metal nanowire refers to a fibrous structure having a metal element as a main component. In particular, in the present invention, the metal nanowire means a number of fibrous structures having a minor axis from the atomic scale to the nm size.
 金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。金属ナノワイヤの平均短径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。金属ナノワイヤの目付け量は0.005g/m~0.5g/mであるのが好ましく、0.01g/m~0.2g/mであるのがより好ましい。 As the metal nanowire, in order to form a long conductive path with one metal nanowire, the average length is preferably 3 μm or more, more preferably 3 to 500 μm, and particularly preferably 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, although there is no restriction | limiting in particular in an average breadth, it is preferable that it is small from a transparency viewpoint, and the larger one is preferable from a conductive viewpoint. The average minor axis of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the minor axis is preferably 20% or less. The basis weight of the metal nanowire is preferably 0.005 g / m 2 to 0.5 g / m 2 , more preferably 0.01 g / m 2 to 0.2 g / m 2 .
 金属ナノワイヤに用いられる金属としては銅、鉄、コバルト、金、銀等を用いることができるが、導電性の観点から銀が好ましい。また、金属は単一で用いてもよいが、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、主成分となる金属と1種類以上の他の金属を任意の割合で含んでもよい。 As the metal used for the metal nanowire, copper, iron, cobalt, gold, silver or the like can be used, but silver is preferable from the viewpoint of conductivity. In addition, although a single metal may be used, in order to achieve both conductivity and stability (sulfurization, oxidation resistance, and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.
 金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745、金ナノワイヤの製造方法としては特開2006-233252号公報等、銅ナノワイヤの製造方法としては特開2002-266007号公報等、コバルトナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、好ましく適用することができる。
[水洗処理]
 透明電極はその表面や内部に異物や不純物があると、有機電子デバイスの寿命などの性能に大きく低下する。本発明においては水洗処理をすることが好ましい。本発明における水洗処理は水系溶媒の洗浄液を使って透明導電層を洗浄することをいう。水系溶媒とは50質量%以上が水である溶媒を表す。もちろん、他の溶媒を含有しない純水であっても良い。さらに、洗浄液中の異物の少なさから、超純水であることが望ましい。超純水とは、水温が25℃のとき、比抵抗が18MΩ・cm程度で、JISK0551に準じた方法で測定された全有機炭素TOCが0.05mg/L未満である水のことをいう。水系溶媒の水以外の成分は、水に相溶する溶剤であれば特に制限はないが、アルコール系の溶媒を好ましく用いることができ、中でも、沸点が比較的水に近いイソプロピルアルコールを用いることが好ましい。さらに透明導電層の濡れ性を改善するため、洗浄液は界面活性剤を含んでいてもよい。また、洗浄液はフィルター成分が溶出しない限り、各種フィルターを介したものであることが、洗浄液中の異物が少なくなることから、好ましい。
〔フレキシブル透明基板〕
 本発明の電極に用いられるフレキシブル透明基板としては、高い光透過性を有し、フレキシブル性に優れていれば特に制限はない。例えば、表面への導電層の形成のし易さ等の点で、樹脂基板、樹脂フィルムなどが好適に挙げられるが、生産性の観点や軽量性と柔軟性といった性能の観点から透明樹脂フィルムを用いることが好ましい。
There is no restriction | limiting in particular in the manufacturing method of metal nanowire, For example, well-known means, such as a liquid phase method and a gaseous-phase method, can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing silver nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252, a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871. In particular, the above-described method for producing silver nanowires can be preferably applied because silver nanowires can be easily produced in an aqueous solution, and the conductivity of silver is maximum in metals.
[Washing treatment]
If there are foreign matter or impurities on the surface or inside of the transparent electrode, the performance such as the lifetime of the organic electronic device is greatly deteriorated. In the present invention, it is preferable to perform a water washing treatment. The water washing treatment in the present invention refers to washing the transparent conductive layer using a washing solution of an aqueous solvent. The aqueous solvent represents a solvent in which 50% by mass or more is water. Of course, pure water containing no other solvent may be used. Furthermore, it is desirable to use ultrapure water because there are few foreign substances in the cleaning liquid. The ultrapure water means water having a specific resistance of about 18 MΩ · cm and a total organic carbon TOC measured by a method according to JISK0551 of less than 0.05 mg / L when the water temperature is 25 ° C. The component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. preferable. Furthermore, in order to improve the wettability of the transparent conductive layer, the cleaning liquid may contain a surfactant. Moreover, as long as the filter component does not elute, it is preferable that the cleaning solution is passed through various filters because foreign substances in the cleaning solution are reduced.
[Flexible transparent substrate]
The flexible transparent substrate used for the electrode of the present invention is not particularly limited as long as it has high light transmittance and excellent flexibility. For example, in terms of ease of forming a conductive layer on the surface, a resin substrate, a resin film, and the like are preferably mentioned. From the viewpoint of productivity and performance such as lightness and flexibility, a transparent resin film is used. It is preferable to use it.
 本発明でフレキシブル透明基板としては、フレキシブルであることから、透明樹脂フィルムとするのが好ましい。透明樹脂フィルムであれば、外力による変形や衝撃に強く、割れにくい。好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム、等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 In the present invention, the flexible transparent substrate is preferably a transparent resin film because it is flexible. If it is a transparent resin film, it is resistant to deformation and impact due to external force, and is difficult to break. There is no restriction | limiting in particular in the transparent resin film which can be used preferably, About the material, a shape, a structure, thickness, etc., it can select suitably from well-known things. For example, polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Also, examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 また、透明基板の表面または裏面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高バリア性フィルムであることが好ましい。 Further, an inorganic or organic film or a hybrid film of both may be formed on the front or back surface of the transparent substrate, and the water vapor transmission rate (25 ± 0) measured by a method in accordance with JIS K 7129-1992. .5 ° C., relative humidity (90 ± 2)% RH) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less barrier film, and further conforms to JIS K 7126-1987 The oxygen permeability measured by the above method is 1 × 10 −3 ml / m 2 · 24 h · atm or less, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 A high barrier film of × 10 −3 g / (m 2 · 24 h) or less is preferable.
 高バリア性フィルムとするために透明基板の表面または裏面に形成されるバリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As a material for forming a barrier film formed on the front or back surface of the transparent substrate in order to form a high barrier film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 [有機電子デバイス]
 本発明における有機電子デバイスは基板上に対向する第一電極と第二電極を有し、第一電極と第二電極との電極間に少なくとも1層の有機機能層を有する。本発明において第一電極と第二電極の少なくとも一方の電極が本発明の透明電極層を含む電極である。有機機能層としては、有機発光層、有機光電変換層、液晶ポリマー層などが挙げられるが、特に限定されない。本発明は、機能層が薄膜でかつ電流駆動系のデバイスである有機発光層、有機光電変換層である場合において、特に有効である。
[Organic electronic devices]
The organic electronic device in the present invention has a first electrode and a second electrode facing each other on a substrate, and has at least one organic functional layer between the first electrode and the second electrode. In the present invention, at least one of the first electrode and the second electrode is an electrode including the transparent electrode layer of the present invention. Examples of the organic functional layer include, but are not limited to, an organic light emitting layer, an organic photoelectric conversion layer, and a liquid crystal polymer layer. The present invention is particularly effective when the functional layer is a thin film and an organic light emitting layer or an organic photoelectric conversion layer, which is a current-driven device.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。尚、特に断りない限り、実施例中の「部」あるいは「%」の表示は、「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, “part” or “%” in the examples represents “part by mass” or “% by mass”.
 実施例1
[本発明のバインダー:ポリマー(A)の合成]
<ATRP(Atom Transfer Radical Polymerization)法を用いたリビングラジカル重合による本発明のバインダー:ポリマー(A)の合成>
「開始剤1の合成」
 合成例1 (メトキシキャップされたオリゴエチレングリコール・2-ブロモイソブチリレート(開始剤1)の合成)
 50ml三口フラスコに2-ブロモイソブチリルブロミド(7.3g、35mmol)とトリエチルアミン(2.48g、35mmol)及びTHF(20ml)を加え、アイスバスにより内温を0℃に保持した。この溶液内にオリゴエチレングリコール(10g、23mmol、エチレングリコールユニット7~8、Laporte Specialties社製)の33%THF溶液30mlを滴下した。30分攪拌後、溶液を室温にし、更に4時間攪拌した。THFをロータリーエバポレーターにより減圧除去後、残渣をジエチルエーテルに溶解し、分駅ロートに移した。水を加えエーテル層を3回洗浄後、エーテル層をMgSO4により乾燥させた。エーテルをロータリーエバポレーターにより減圧留去し、開始剤1を8.2g(収率73%)得た。
Example 1
[Binder of the present invention: synthesis of polymer (A)]
<Synthesis of Binder of the Present Invention: Polymer (A) by Living Radical Polymerization Using ATRP (Atom Transfer Radical Polymerization) Method>
“Synthesis of Initiator 1”
Synthesis Example 1 (Synthesis of Methoxycapped Oligoethylene Glycol 2-Bromoisobutyrate (Initiator 1))
2-Bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was kept at 0 ° C. with an ice bath. In this solution, 30 ml of a 33% THF solution of oligoethylene glycol (10 g, 23 mmol, ethylene glycol units 7-8, manufactured by Laporte Specialties) was added dropwise. After stirring for 30 minutes, the solution was brought to room temperature and further stirred for 4 hours. After THF was removed under reduced pressure by a rotary evaporator, the residue was dissolved in diethyl ether and transferred to a minute funnel. Water was added and the ether layer was washed three times, and then the ether layer was dried with MgSO 4. The ether was distilled off under reduced pressure using a rotary evaporator to obtain 8.2 g (yield 73%) of initiator 1.
 合成例2 (ポリ(2-ヒドロキシエチルアクリレート)の合成)
 開始剤1(500mg、1.02mmol)、2-ヒドロキシエチルアクリレート(4.64g、40mmol、東京化成社製)、50:50 v/v% メタノール/水混合溶媒5mlをシュレンク管に投入し、減圧下液体窒素に10分間シュレンク管を浸した。シュレンク管を液体窒素から出し、5分後に窒素置換を行った。この操作を3回行った後、窒素下で、ビピリジン(400mg、2.56mmol)、CuBr(147mg、1.02mmol)を加え、20℃で攪拌した。30分後、ろ紙とシリカを敷いた4cm桐山ロート上に反応溶液を滴下し、減圧で反応溶液を回収した。ロータリーエバポレーターにより溶媒を減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量13100、分子量分布1.17、分子量<1000の含量0質量%、の水溶性バインダー1を2.60g(収率84%)得た。
Synthesis Example 2 (Synthesis of poly (2-hydroxyethyl acrylate))
Initiator 1 (500 mg, 1.02 mmol), 2-hydroxyethyl acrylate (4.64 g, 40 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), 50:50 v / v% methanol / water mixed solvent 5 ml was put into a Schlenk tube, and the pressure was reduced. The Schlenk tube was immersed in the lower liquid nitrogen for 10 minutes. The Schlenk tube was taken out of liquid nitrogen and replaced with nitrogen after 5 minutes. After performing this operation three times, bipyridine (400 mg, 2.56 mmol) and CuBr (147 mg, 1.02 mmol) were added under nitrogen, and the mixture was stirred at 20 ° C. After 30 minutes, the reaction solution was dropped onto a 4 cm Kiriyama funnel with filter paper and silica, and the reaction solution was recovered under reduced pressure. The solvent was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 2.60 g (yield 84%) of a water-soluble binder 1 having a number average molecular weight of 13100, a molecular weight distribution of 1.17, and a molecular weight of <1000 and a content of 0% by mass was obtained.
 構造、分子量は各々H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。
<GPC測定条件>
装置:Wagers2695(Separations Module)
検出器:Waters 2414 (Refractive Index Detector)
カラム:Shodex Asahipak GF-7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
 合成例3 (ポリ(2-ヒドロキシエチルビニルエーテル)、ポリ(2-ヒドロキシエチルアクリルアミド)、の合成)
 合成例2の(ポリ(2-ヒドロキシエチルアクリレート)の合成)において、2-ヒドロキシエチルアクリレートを、それぞれ、下記の作製しようとするポリマーに対応するモノマーに代えた他は同様にして、ポリ(2-ヒドロキシエチルビニルエーテル)、ポリ(2-ヒドロキシエチルアクリルアミド)、(数平均分子量約2万、分子量<1000の含量0質量%)をそれぞれ得た。
[基板A(フレキシブル透明基板A、およびガラス基板A)の作製]
《基板A(フレキシブル透明基板A)の作製》
 二軸延伸PENフィルムに、大気圧プラズマ放電処理法を用いて、低密度層、中密度層、高密度層、のユニットを3層積層した透明ガスバリア性を持つ基板A(フレキシブル透明基板A)を作製した。
The structure and molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
<GPC measurement conditions>
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
Synthesis Example 3 (Synthesis of poly (2-hydroxyethyl vinyl ether) and poly (2-hydroxyethyl acrylamide))
In Synthesis Example 2 (Synthesis of poly (2-hydroxyethyl acrylate)), except that 2-hydroxyethyl acrylate was replaced with a monomer corresponding to the polymer to be prepared, poly (2 -Hydroxyethyl vinyl ether), poly (2-hydroxyethylacrylamide), (number average molecular weight of about 20,000, molecular weight <1000% content by mass).
[Production of Substrate A (Flexible Transparent Substrate A and Glass Substrate A)]
<< Production of Substrate A (Flexible Transparent Substrate A) >>
A substrate A having a transparent gas barrier property (flexible transparent substrate A) in which three layers of a low density layer, a medium density layer, and a high density layer are laminated on a biaxially stretched PEN film using an atmospheric pressure plasma discharge treatment method. Produced.
 JIS K 7129-1992に準拠した方法により水蒸気透過度を測定した結果、10-3g/(m・24h)以下であった。JIS K 7126-1987に準拠した方法により酸素透過度を測定した結果、10-3ml/(m・24hr・MPa)以下であった。
《基板A(ガラス基板A)の作製》
 ガラス基板を、基板A(ガラス基板A)として用意した。
[ITO基板A(ITOフレキシブル透明基板A、およびITOガラス基板A)の作製]
 基板A(フレキシブル透明基板A)のバリア層のない面に、および、基板A(ガラス基板A)の表の面に、ITO(インジウムチンオキシド)をスパッタ法により150nm成膜した基板にフォトリソ法によりパターニングを行った後、イソプロピルアルコールに基板を浸漬し、超音波洗浄器ブランソニック3510J-MT(日本エマソン社製)により10分間の超音波洗浄処理を施し、ITO基板A(ITOフレキシブル透明基板A、およびITOガラス基板A))を作製した。
[銀ナノワイヤ基板A(銀ナノワイヤフレキシブル透明基板A、および銀ナノワイヤガラス基板A)の作製]
 また、基板A(フレキシブル透明基板A)のバリア層のない面に、および、基板A(ガラス基板A)の表面に、下記の銀ナノワイヤ分散液を、銀ナノワイヤの目付け量が0.06g/mとなるように、銀ナノワイヤ分散液をバーコート法を用いて塗布し120℃、20分乾燥加熱後、下記の金属微粒子除去液をスクリーン印刷を用いて、パターン印刷し、超純水で洗浄することにより金属微粒子除去液を除去し、銀ナノワイヤ基板A(銀ナノワイヤフレキシブル透明基板A、および銀ナノワイヤガラス基板A)を作製した。
(銀ナノワイヤ分散液)
 銀ナノワイヤ分散液は、Adv.Mater.,2002,14,833~837に記載の方法を参考に、PVP K30(数平均分子量5万;ISP社製)を利用して、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、洗浄処理した後、ヒドロキシプロピルメチルセルロース60SH-50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。
(金属微粒子除去液)
 また、金属微粒子除去液は以下の組成のものを使用した。
As a result of measuring the water vapor permeability by a method based on JIS K 7129-1992, it was 10 −3 g / (m 2 · 24 h) or less. As a result of measuring oxygen permeability by a method according to JIS K 7126-1987, it was 10 −3 ml / (m 2 · 24 hr · MPa) or less.
<< Production of Substrate A (Glass Substrate A) >>
A glass substrate was prepared as substrate A (glass substrate A).
[Production of ITO substrate A (ITO flexible transparent substrate A and ITO glass substrate A)]
Photolithographic method is used on a substrate in which ITO (indium tin oxide) is deposited to a thickness of 150 nm by sputtering on the surface of the substrate A (flexible transparent substrate A) without the barrier layer and on the front surface of the substrate A (glass substrate A). After patterning, the substrate was immersed in isopropyl alcohol, and subjected to ultrasonic cleaning treatment for 10 minutes with an ultrasonic cleaner Bransonic 3510J-MT (manufactured by Nippon Emerson), and ITO substrate A (ITO flexible transparent substrate A, And ITO glass substrate A)).
[Production of silver nanowire substrate A (silver nanowire flexible transparent substrate A and silver nanowire glass substrate A)]
Further, the following silver nanowire dispersion liquid is applied to the surface of the substrate A (flexible transparent substrate A) without the barrier layer and the surface of the substrate A (glass substrate A), and the basis weight of the silver nanowire is 0.06 g / m. The silver nanowire dispersion liquid was applied using a bar coating method so as to be 2 and dried and heated at 120 ° C. for 20 minutes. Thus, the metal fine particle removing solution was removed, and silver nanowire substrates A (silver nanowire flexible transparent substrate A and silver nanowire glass substrate A) were produced.
(Silver nanowire dispersion)
Silver nanowire dispersions are described in Adv. Mater. , 2002, 14, 833 to 837, using PVP K30 (number average molecular weight 50,000; manufactured by ISP) to produce silver nanowires having an average minor axis of 75 nm and an average length of 35 μm, After silver nanowires are filtered and washed using an ultrafiltration membrane, hydroxypropylmethylcellulose 60SH-50 (manufactured by Shin-Etsu Chemical Co., Ltd.) is redispersed in an aqueous solution containing 25% by mass of silver, and the silver nanowire dispersion liquid Was prepared.
(Metal particulate removal solution)
Further, the metal fine particle removing liquid having the following composition was used.
 〈金属微粒子除去液の作製〉
 エチレンジアミン4酢酸第2鉄アンモニウム         60g
 エチレンジアミン4酢酸                 2.0g
 メタ重亜硫酸ナトリウム                  15g
 チオ硫酸アンモニウム                   70g
 マレイン酸                       5.0g
 純水で1Lに仕上げ、硫酸またはアンモニア水でpHを5.5に調整し、金属微粒子除去液を作製した。また、金属微粒子除去液BFの粘度をカルボキシメチルセルロースナトリウム(SIGMA-ALDRICH社製;C5013、以下CMCと略記する)で10Pa・s(10000cP)に調整した。
[透明導電層塗布液A~Oの調製]
 下記の導電性ポリマーとバインダーの混合液である透明導電層塗布液A~Oを調製した。
<Preparation of metal fine particle removal solution>
Ethylenediaminetetraacetic acid ferric ammonium 60g
Ethylenediaminetetraacetic acid 2.0 g
Sodium metabisulfite 15g
70g ammonium thiosulfate
Maleic acid 5.0g
Finished to 1 L with pure water, and adjusted to pH 5.5 with sulfuric acid or ammonia water, a metal fine particle removing solution was prepared. The viscosity of the metal fine particle removing liquid BF was adjusted to 10 Pa · s (10000 cP) with sodium carboxymethylcellulose (manufactured by SIGMA-ALDRICH; C5013, hereinafter abbreviated as CMC).
[Preparation of transparent conductive layer coating solutions A to O]
Transparent conductive layer coating liquids A to O, which are mixed liquids of the following conductive polymer and binder, were prepared.
 (透明導電層塗布液Aの調製)
 導電性ポリマー/バインダー=100/0(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
(H.C.Starck社製)(単独にて使用)
 (透明導電層塗布液Bの調製)
 導電性ポリマー/バインダー=5/95(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           0.265g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.475g
 (透明導電層塗布液Cの調製)
 導電性ポリマー/バインダー=5/95(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           0.265g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.475g
 ジメチルスルホキシド                 0.10g
 (透明導電層塗布液Dの調製)
 導電性ポリマー/バインダー=10/90(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           0.529g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                            0.45g
 (透明導電層塗布液Eの調製)
 導電性ポリマー/バインダー=30/70(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           1.587g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.350g
 (透明導電層塗布液Fの調製)
 導電性ポリマー/バインダー=50/50(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           2.645g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.250g
 (透明導電層塗布液Gの調製)
 導電性ポリマー/バインダー=70/30(質量比)の混合液
 PEDOT-PSS CLEVIOS、PH510(固形分1.89%)
  (H.C.Starck社製)           3.704g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.150g
 (透明導電層塗布液Hの調製)
 導電性ポリマー/バインダー=80/20(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           4.233g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.100g
 (透明導電層塗布液Iの調製)
 導電性ポリマー/バインダー=30/70(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           1.587g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.350g
 ジメチルスルホキシド                 0.10g
 (透明導電層塗布液Jの調製)
 導電性ポリマー/バインダー=30/70(質量比)の混合液
 PEDOT-PSS CLEVIOS P AI 4083
  (固形分1.5%)(H.C.Starck社製)  2.000g
 ポリヒドロキシエチルアクリレート(合成例2、固形分20%水溶液)
                           0.350g
 (透明導電層塗布液Kの調製)
 導電性ポリマー/バインダー=30/70(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           1.587g
 ポリヒドロキシエチルビニルエーテル
  (数平均分子量2万、固形分20%水溶液)     0.350g
 (透明導電層塗布液Lの調製)
 導電性ポリマー/バインダー=30/70(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           1.587g
 ポリヒドロキシエチルアクリルアミド
  (数平均分子量2万、固形分20%水溶液)     0.350g
 (透明導電層塗布液Oの調製)
 導電性ポリマー/バインダー=10/90(質量比)の混合液
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)
  (H.C.Starck社製)           0.529g
 ポリビニルアルコール PVA-235(クレハ製)固形分2%水溶液
                           4.500g
 ジメチルスルホキシド                0.100g
 エポキシ系架橋剤 デナコールEX-313
  (ナガセケムテックス(株))           0.500g
 [透明電極の作製]
 《ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)の作製》
 作製したITO基板A(ITOフレキシブル透明基板AおよびITOガラス基板A)にスピンコーターを用いて、乾燥膜厚300nmになるように回転数を調整して透明導電層塗布液Aを塗布し、ふき取りにより不要部分をふき取った後、120℃、20分で加熱乾燥し、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)とした。ITOガラス電極1について、以下の方法で、透過率、導電性、ナノインデンテーション弾性率、洗浄耐性を測定した。また、ITOフレキシブル透明電極1について、内側と外側に45°折り曲げる操作を100回行い、操作前後での、平滑性を測定した。
(Preparation of transparent conductive layer coating solution A)
Conductive polymer / binder = 100/0 (mass ratio) mixed solution PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) (used alone)
(Preparation of transparent conductive layer coating solution B)
Mixed liquid of conductive polymer / binder = 5/95 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 0.265 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.475g
(Preparation of transparent conductive layer coating solution C)
Mixed liquid of conductive polymer / binder = 5/95 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 0.265 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.475g
Dimethyl sulfoxide 0.10g
(Preparation of transparent conductive layer coating solution D)
Mixed liquid of conductive polymer / binder = 10/90 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 0.529 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.45g
(Preparation of transparent conductive layer coating solution E)
Mixed liquid of conductive polymer / binder = 30/70 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 1.587 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.350g
(Preparation of transparent conductive layer coating solution F)
Conductive polymer / binder = 50/50 (mass ratio) mixed solution PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 2.645 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.250g
(Preparation of transparent conductive layer coating solution G)
Mixed liquid of conductive polymer / binder = 70/30 (mass ratio) PEDOT-PSS CLEVIOS, PH510 (solid content 1.89%)
(Manufactured by HC Starck) 3.704 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.150g
(Preparation of transparent conductive layer coating solution H)
Conductive polymer / binder = 80/20 (mass ratio) mixed solution PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 4.233 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.100g
(Preparation of transparent conductive layer coating liquid I)
Mixed liquid of conductive polymer / binder = 30/70 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 1.587 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.350g
Dimethyl sulfoxide 0.10g
(Preparation of transparent conductive layer coating solution J)
Mixed liquid of conductive polymer / binder = 30/70 (mass ratio) PEDOT-PSS CLEVIOS P AI 4083
(Solid content 1.5%) (manufactured by HC Starck) 2,000 g
Polyhydroxyethyl acrylate (Synthesis Example 2, 20% solid content aqueous solution)
0.350g
(Preparation of transparent conductive layer coating solution K)
Mixed liquid of conductive polymer / binder = 30/70 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 1.587 g
Polyhydroxyethyl vinyl ether (number average molecular weight 20,000, solid content 20% aqueous solution) 0.350 g
(Preparation of transparent conductive layer coating solution L)
Mixed liquid of conductive polymer / binder = 30/70 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 1.587 g
Polyhydroxyethylacrylamide (number average molecular weight 20,000, solid content 20% aqueous solution) 0.350 g
(Preparation of transparent conductive layer coating solution O)
Mixed liquid of conductive polymer / binder = 10/90 (mass ratio) PEDOT-PSS CLEVIOS PH510 (solid content 1.89%)
(Manufactured by HC Starck) 0.529 g
Polyvinyl alcohol PVA-235 (made by Kureha) 2% solid content aqueous solution 4.500 g
Dimethyl sulfoxide 0.100g
Epoxy-based crosslinking agent Denacol EX-313
(Nagase ChemteX Corporation) 0.500g
[Preparation of transparent electrode]
<< Preparation of ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) >>
Using a spin coater, the transparent conductive layer coating liquid A was applied to the ITO substrate A (ITO flexible transparent substrate A and ITO glass substrate A) thus prepared so as to have a dry film thickness of 300 nm. After wiping off an unnecessary part, it heat-dried at 120 degreeC and 20 minutes, and was set as the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1). About the ITO glass electrode 1, the transmittance | permeability, electroconductivity, nanoindentation elastic modulus, and the washing | cleaning tolerance were measured with the following method. Moreover, about the ITO flexible transparent electrode 1, operation which bend | folds 45 degrees inside and outside was performed 100 times, and the smoothness before and behind operation was measured.
 《ITO電極2(ITOフレキシブル透明電極2、ITOガラス電極2、)の作製》
 乾燥温度120℃を150℃に変えた以外は、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)と同様の方法で、ITO電極2(ITOフレキシブル透明電極2およびITOガラス電極2)を作製し、同様の測定を行った。
<< Production of ITO electrode 2 (ITO flexible transparent electrode 2, ITO glass electrode 2) >>
The ITO electrode 2 (ITO flexible transparent electrode 2 and ITO glass electrode 2) was formed in the same manner as the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that the drying temperature was changed from 120 ° C to 150 ° C. The same measurement was performed.
 (ITO電極3,4(ITOフレキシブル透明電極3,4、およびITOガラス電極3,4)の作製)
 透明導電層塗布液Aを透明導電層塗布液B、Cに変え、乾燥温度120℃を180℃に変えた以外は、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)と同様の方法で、ITO電極3,4(ITOフレキシブル透明電極3,4、およびITOガラス電極3,4)を作製し、同様の測定を行った。
(Production of ITO electrodes 3 and 4 (ITO flexible transparent electrodes 3 and 4 and ITO glass electrodes 3 and 4))
The same method as the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that the transparent conductive layer coating liquid A is changed to the transparent conductive layer coating liquids B and C and the drying temperature 120 ° C. is changed to 180 ° C. Then, ITO electrodes 3 and 4 (ITO flexible transparent electrodes 3 and 4 and ITO glass electrodes 3 and 4) were prepared, and the same measurement was performed.
 《ITO電極5~9(ITOフレキシブル透明電極5~9、およびITOガラス電極5~9)の作製》
 透明導電層塗布液Aを透明導電層塗布液D~Hに変え、乾燥温度120℃を150℃に変えた以外は、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)と同様の方法で、ITO電極5~9(ITOフレキシブル透明電極5~9、ITOガラス電極5~9)を作製し、同様の測定を行った。
《ITO電極10~14(ITOフレキシブル透明電極10~14、およびITOガラス電極10~14)の作製》
 透明導電層塗布液Aを透明導電層塗布液D~Hに変えた以外は、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)と同様の方法で、ITO電極10~14(ITOフレキシブル透明電極10~14、ITOガラス電極10~14)を作製し、同様の測定を行った。
《ITO電極15~19(ITOフレキシブル透明電極15~19、およびITOガラス電極15~19)の作製》
 透明導電層塗布液Aを透明導電層塗布液I~L、Oに変え、乾燥温度120℃を150℃に変えた以外は、ITO電極1(ITOフレキシブル透明電極1およびITOガラス電極1)と同様の方法で、ITO電極15~19(ITOフレキシブル透明電極15~19、およびITOガラス電極15~19)を作製し、同様の測定を行った。
<< Production of ITO electrodes 5 to 9 (ITO flexible transparent electrodes 5 to 9 and ITO glass electrodes 5 to 9) >>
The same method as that for the ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that the transparent conductive layer coating solution A is changed to the transparent conductive layer coating solutions D to H and the drying temperature 120 ° C. is changed to 150 ° C. Then, ITO electrodes 5 to 9 (ITO flexible transparent electrodes 5 to 9, ITO glass electrodes 5 to 9) were prepared, and the same measurement was performed.
<< Production of ITO electrodes 10 to 14 (ITO flexible transparent electrodes 10 to 14 and ITO glass electrodes 10 to 14) >>
ITO electrodes 10 to 14 (ITO flexible) in the same manner as ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1) except that transparent conductive layer coating liquid A was changed to transparent conductive layer coating liquids D to H. Transparent electrodes 10 to 14 and ITO glass electrodes 10 to 14) were prepared and subjected to the same measurement.
<< Production of ITO electrodes 15 to 19 (ITO flexible transparent electrodes 15 to 19 and ITO glass electrodes 15 to 19) >>
Similar to ITO electrode 1 (ITO flexible transparent electrode 1 and ITO glass electrode 1), except that transparent conductive layer coating solution A was changed to transparent conductive layer coating solutions I to L and O, and drying temperature 120 ° C. was changed to 150 ° C. In this way, ITO electrodes 15 to 19 (ITO flexible transparent electrodes 15 to 19 and ITO glass electrodes 15 to 19) were prepared and subjected to the same measurement.
 《銀ナノワイヤ電極20~27(銀ナノワイヤフレキシブル透明電極20~27、および銀ナノワイヤガラス電極20~27)の作製》
 ITO基板A(ITOフレキシブル透明基板A、およびITOガラス基板A)を銀ナノワイヤ基板A(銀ナノワイヤフレキシブル透明基板A、および銀ナノワイヤガラス基板A)に変えた以外は、ITO電極2~9(ITOフレキシブル透明電極2~9、およびITOガラス電極2~9)と同様の方法で、銀ナノワイヤ電極20~27(銀ナノワイヤフレキシブル透明電極20~27、および銀ナノワイヤガラス電極20~27)、を作製した。
<< Preparation of Silver Nanowire Electrodes 20-27 (Silver Nanowire Flexible Transparent Electrodes 20-27 and Silver Nanowire Glass Electrodes 20-27) >>
ITO electrodes 2 to 9 (ITO flexible) except that the ITO substrate A (ITO flexible transparent substrate A and ITO glass substrate A) is changed to a silver nanowire substrate A (silver nanowire flexible transparent substrate A and silver nanowire glass substrate A). Silver nanowire electrodes 20 to 27 (silver nanowire flexible transparent electrodes 20 to 27 and silver nanowire glass electrodes 20 to 27) were prepared in the same manner as the transparent electrodes 2 to 9 and the ITO glass electrodes 2 to 9).
 《評価》
 作製した透明電極について以下の評価を行った。
(導電性)
 導電性の評価として、抵抗率計(ロレスタGP(MCP-T610型):(株)ダイヤインスツルメンツ社製)を用いて表面抵抗を測定した。レンジオーバーで測定不可の試料については、3cm×3cmの試料を作製して、導電性ポリマー含有層上の対向する2辺に端から約2mmの幅で銀ペーストを塗布し、KEITHLEY製ソースメジャーユニット2400型を用いて、1Vの直流電圧を印加し、その時の電流値から1v/電流値を面抵抗値とした。補助電極の構成にもよるが、1×10Ω/□以下であることが好ましい。下記評価基準に則り導電性を表す指標として評価した。
◎:表面抵抗が、1×10Ω/□未満である
○:表面抵抗が、1×10Ω/□以上、1×10Ω/□未満である
△:表面抵抗が、1×10Ω/□以上、1×10Ω/□未満である
×:表面抵抗が、1×10Ω/□以上、1×10Ω/□未満である
××:表面抵抗が、1×10Ω/□以上である
(透過率)
 透過率の評価として、東京電色社製 HAZE METER NDH5000を用いて、全光線透過率を測定した。素子での光ロスから、80%以上であることが好ましい。下記評価基準に則り透過率を表す指標として評価した。
◎:全光線透過率が、85%以上である
○:全光線透過率が、80%以上、85%未満である
△:全光線透過率が、75%以上、80%未満である
×:全光線透過率が、70%以上、75%未満である
××:全光線透過率が、0%以上、70%未満である
(洗浄耐性)
 ビーカーに洗浄溶媒として、水:イソプロピルアルコール=8:2(質量比)を投入し、スターラーで撹拌した。そこに、ITOガラス電極、または、銀ナノワイヤガラス電極、の試料を3分間浸漬し、さらに超純水の流水で5分間の水洗処理を実施した。そして、透明導電層表面に膨潤や膜剥がれなどの乱れがないか目視にて観察し、下記評価基準に則り洗浄耐性を表す指標として評価した。
○:透明導電層表面に膨潤や膜剥がれなどの乱れがない
×:透明導電層表面に膨潤や膜剥がれなどの乱れがある
(ナノインデンテーション弾性率測定)
 Hysitron社製Triboscopeを用いて、エスアイアイナノテクノロジー社製SPI3800Nに装着し測定した。測定には、圧子としてベルコビッチ型圧子(先端稜角142.3°)と呼ばれる三角錘型ダイヤモンド製圧子で、先端曲率半径75~100nmのものを用いた。表面に直角に当て、徐々に印加し、最大荷重到達後に荷重を0にまで徐々に戻す。この時の最大荷重Pを圧子接触部の投影面積Aで除した値P/Aを硬度として算出し、この値(硬度=P/A(GPa))を、ナノインデンテーション弾性率を表す指標として示す。
<Evaluation>
The following evaluation was performed about the produced transparent electrode.
(Conductivity)
For the evaluation of conductivity, the surface resistance was measured using a resistivity meter (Loresta GP (MCP-T610 type): manufactured by Dia Instruments Co., Ltd.). For samples that cannot be measured due to range over, prepare a 3cm x 3cm sample, apply silver paste to the opposite two sides on the conductive polymer-containing layer with a width of about 2mm from the end, and make a source measure unit made by KEITHLEY Using a Model 2400, a DC voltage of 1 V was applied, and 1 v / current value was defined as a sheet resistance value from the current value at that time. Although it depends on the configuration of the auxiliary electrode, it is preferably 1 × 10 7 Ω / □ or less. Evaluation was performed as an index representing conductivity according to the following evaluation criteria.
A: Surface resistance is less than 1 × 10 6 Ω / □: Surface resistance is 1 × 10 6 Ω / □ or more and less than 1 × 10 7 Ω / □ Δ: Surface resistance is 1 × 10 7 Ω / □ or more and less than 1 × 10 8 Ω / □: Surface resistance is 1 × 10 8 Ω / □ or more and less than 1 × 10 9 Ω / □ XX: Surface resistance is 1 × 10 9 Ω / □ or more (transmittance)
As evaluation of the transmittance, the total light transmittance was measured using a HAZE METER NDH5000 manufactured by Tokyo Denshoku Co., Ltd. From the optical loss in the element, it is preferably 80% or more. Evaluation was performed as an index representing transmittance according to the following evaluation criteria.
A: Total light transmittance is 85% or more. O: Total light transmittance is 80% or more and less than 85%. Δ: Total light transmittance is 75% or more and less than 80%. Light transmittance is 70% or more and less than 75% XX: Total light transmittance is 0% or more and less than 70% (cleaning resistance)
Water: isopropyl alcohol = 8: 2 (mass ratio) was added as a washing solvent to the beaker and stirred with a stirrer. A sample of ITO glass electrode or silver nanowire glass electrode was immersed therein for 3 minutes, and further washed with running ultrapure water for 5 minutes. Then, the surface of the transparent conductive layer was visually observed to see if there was any disturbance such as swelling or film peeling, and was evaluated as an index representing washing resistance according to the following evaluation criteria.
○: There is no disorder such as swelling or film peeling on the surface of the transparent conductive layer. X: There is disorder such as swelling or film peeling on the surface of the transparent conductive layer (measurement of nanoindentation elastic modulus).
Using a Triboscope manufactured by Hystron, it was mounted on SPI3800N manufactured by SII Nano Technology and measured. For the measurement, a triangular pyramid diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) having a tip curvature radius of 75 to 100 nm was used. Apply to the surface at a right angle and apply gradually. After reaching the maximum load, gradually return the load to zero. A value P / A obtained by dividing the maximum load P at this time by the projected area A of the indenter contact portion is calculated as hardness, and this value (hardness = P / A (GPa)) is used as an index representing the nanoindentation elastic modulus. Show.
 尚、圧子接触部の投影面積Aは、押し込み試験によって得られた深さ-荷重曲線のうち、除荷曲線の初期30%を直線に近似して外挿、深さ軸と交差する点を圧子接触部の接触深さhとし、圧子の形状よりhの関数として求められる。なお、標準試料として、溶融石英を押し込んだ結果得られる硬さが9GPaとなるよう、事前に装置を校正して測定した。 Note that the projected area A of the indenter contact portion is extrapolated by approximating the initial 30% of the unloading curve to a straight line from the depth-load curve obtained by the indentation test. The contact depth h of the contact portion is obtained as a function of h from the shape of the indenter. As a standard sample, the apparatus was calibrated and measured in advance so that the hardness obtained as a result of pressing fused quartz was 9 GPa.
 原理の詳細は、Handbook of Micro/Nano Tribology(Bharat Bhushan編 CRC)に記載されている。測定は最大荷重が30μNとして行った。測定時の温度は20℃であった。
(平滑性)
 折り曲げ後の平滑性の評価として、原子間力顕微鏡(Atomic Force Microscopy:AFM)SPI3800Nプローブステーション及びSPA400多機能型ユニット(セイコーインスツルメンツ社製)を用い、表面粗さRaを測定した。
Details of the principle are described in Handbook of Micro / Nano Tribology (CRC edited by Bharat Bhushan). The measurement was performed with a maximum load of 30 μN. The temperature at the time of measurement was 20 ° C.
(Smoothness)
As evaluation of the smoothness after bending, the surface roughness Ra was measured using an atomic force microscope (AFM) SPI3800N probe station and a SPA400 multifunctional unit (manufactured by Seiko Instruments Inc.).
 カンチレバーは、SI-DF20(セイコーインスツルメンツ社製)を用い、共振周波数120~150kHz、バネ定数12~20N/m、DFMモード(Dynamic Force Mode)にて、測定領域10μm角を、走査周波数1Hzで測定した。JIS B601(1994)に準じて求めた算術平均粗さRa値について、下記評価基準に基づいて平滑性を評価した。透明電極としては、50nm以下であることが好ましい。尚、測定の結果、作製したすべての電極は、折り曲げ操作を行う前、Raが20nm未満であった。
◎:折り曲げ後のRa値が、20nm未満である
○:折り曲げ後のRa値が、20nm以上、50nm未満である
△:折り曲げ後のRa値が、50nm以上、100nm未満である
×:折り曲げ後のRa値が、100nm以上、300nm未満である
××:折り曲げ後のRa値が、300nm以上である
 以上の結果を表2に示す。
The cantilever is SI-DF20 (manufactured by Seiko Instruments Inc.), with a resonance frequency of 120 to 150 kHz, a spring constant of 12 to 20 N / m, and a measurement area of 10 μm square measured at a scanning frequency of 1 Hz in a DFM mode (Dynamic Force Mode). did. The smoothness was evaluated based on the following evaluation criteria for the arithmetic average roughness Ra value obtained according to JIS B601 (1994). The transparent electrode is preferably 50 nm or less. As a result of the measurement, Ra was less than 20 nm for all the prepared electrodes before the bending operation.
◎: Ra value after folding is less than 20 nm ○: Ra value after folding is 20 nm or more and less than 50 nm Δ: Ra value after folding is 50 nm or more and less than 100 nm ×: After bending Ra value is 100 nm or more and less than 300 nm. XX: Ra value after bending is 300 nm or more.
 (架橋の確認)
 フーリエ変換赤外分光装置(島津製作所製FTIR-8300)にて、各サンプルのIRスペクトルを測定した。
(Confirmation of crosslinking)
The IR spectrum of each sample was measured with a Fourier transform infrared spectrometer (FTIR-8300 manufactured by Shimadzu Corporation).
 塗布液Aを塗布した透明電極以外のすべて透明電極において、バインダーの水酸基に由来する3400cm-1付近のピークが減少し、バインダー同士、架橋剤とバインダー、またはバインダーと導電性ポリマーとが脱水縮合することにより生成するエーテル由来のピークが1140cm-1に出現した。一方、塗布液Aを塗布した透明電極では架橋は検出されなかった。また、ナノインデンテーション弾性率の増加も塗布液Aを塗布した透明電極と比較して、すべての透明電極で増加がみられ、ポリマーAや架橋剤の添加により透明導電層が架橋していることがわかる。 In all the transparent electrodes other than the transparent electrode coated with the coating liquid A, the peak around 3400 cm −1 derived from the hydroxyl group of the binder decreases, and the binders, the crosslinking agent and the binder, or the binder and the conductive polymer are dehydrated and condensed. As a result, an ether-derived peak appeared at 1140 cm −1 . On the other hand, no cross-linking was detected in the transparent electrode coated with the coating liquid A. In addition, the increase in the nanoindentation elastic modulus is observed in all the transparent electrodes as compared with the transparent electrode coated with the coating liquid A, and the transparent conductive layer is crosslinked by the addition of the polymer A or a crosslinking agent. I understand.
 [有機ELデバイスの作製]
 上記で作製したITOフレキシブル透明電極1~19、銀ナノワイヤフレキシブル透明電極20~27を用いて、以下の手順で有機ELデバイス1~27を作製した。水洗耐性のある電極については水洗処理を行ってから用いた。
[Production of organic EL devices]
Using the ITO flexible transparent electrodes 1 to 19 and the silver nanowire flexible transparent electrodes 20 to 27 produced as described above, organic EL devices 1 to 27 were produced according to the following procedure. About the electrode with water-washing tolerance, it used after performing the water-wash process.
 作製した各透明電極について、PEDOT/PSS〔poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)〕=1:2.5の分散液であるBaytron PH510(H.C.Starck社製)をスピンコーターで1000rpm、3分間塗布し、厚さ30nmの導電層を形成することで透明電極を面電極化して、アノード電極を形成した。 For each of the prepared transparent electrodes, a spin coater of Baytron PH510 (manufactured by HC Starck), which is a dispersion of PEDOT / PSS [poly (3,4-ethylenediothiophene) -poly (styrenesulfonate)] = 1: 2.5, was used. Was applied at 1000 rpm for 3 minutes, and a conductive layer having a thickness of 30 nm was formed to convert the transparent electrode into a surface electrode, thereby forming an anode electrode.
 次いで、市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々の素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Next, each of crucibles for vapor deposition in a commercially available vacuum vapor deposition apparatus was filled with an optimal amount of constituent materials for each layer for manufacturing each element. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 はじめに、真空度1×10-4Paまで減圧した後、α-NPDの入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で、アノード電極上に蒸着し、30nmの正孔輸送層を設けた。 First, after reducing the vacuum to 1 × 10 −4 Pa, the deposition crucible containing α-NPD was energized and heated, and deposited on the anode electrode at a deposition rate of 0.1 nm / second. A hole transport layer was provided.
 次いで、以下の手順で各発光層を設けた。 Next, each light emitting layer was provided by the following procedure.
 Ir-1が13質量%、Ir-2が3.7質量%の濃度になるように、Ir-1、Ir-2及び化合物1-1を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光層を形成した。 Ir-1 and Ir-2 and compound 1-1 were co-deposited at a deposition rate of 0.1 nm / second so that the concentration of Ir-1 was 13% by mass and Ir-2 was 3.7% by mass. A green-red phosphorescent light emitting layer having a maximum wavelength of 622 nm and a thickness of 10 nm was formed.
 次いで、E-1が10質量%になるように、E-1及び化合物1-1を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光層を形成した。 Next, E-1 and Compound 1-1 were co-evaporated at a deposition rate of 0.1 nm / second so that E-1 was 10% by mass, and a blue phosphorescent light emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm was formed. Formed.
 その後、M-1を膜厚5nmに蒸着して正孔阻止層を形成し、更にCsFを膜厚比で10%になるようにM-1と共蒸着し、厚さ45nmの電子輸送層を形成した。 Thereafter, M-1 is vapor-deposited to a thickness of 5 nm to form a hole blocking layer, and CsF is co-deposited with M-1 so that the film thickness ratio is 10%, and an electron transport layer having a thickness of 45 nm is formed. Formed.
 更に、アルミニウム110nmを蒸着して陰極を形成した。 Further, aluminum was deposited with a thickness of 110 nm to form a cathode.
 次いで、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材を使用し、アノード電極及びカソード電極の外部取り出し端子が形成出来る様に端部を除きカソード電極の周囲に接着剤を塗り、可撓性封止部材を貼合した後、熱処理で接着剤を硬化させて、有機ELデバイス1~27を作製した。 Next, using a flexible sealing member made of polyethylene terephthalate as a base material and depositing Al 2 O 3 with a thickness of 300 nm, the cathode electrode except for the ends so that external lead terminals of the anode electrode and the cathode electrode can be formed. An adhesive was applied around the substrate, a flexible sealing member was bonded, and then the adhesive was cured by heat treatment to produce organic EL devices 1 to 27.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[有機ELデバイスの評価]
 有機ELデバイス1~27について以下の方法で寿命の評価を行った。
(寿命)
 同一作製手順にて作製した10素子のうち5素子を、初期の輝度を5000cd/mで連続発光させて、輝度が半減するまでの時間を求め、その平均値を寿命とした。また、残りの5素子を内側と外側に45°折り曲げる操作を100回行い、寿命を求めた。折り曲げ前後での寿命の比率を求め、以下の評価基準に則り折り曲げ後の有機ELデバイスの寿命として評価した。70%以上であることが好ましい。
◎:折り曲げ前後での寿命の比率が、85%以上、100%未満である
○:折り曲げ前後での寿命の比率が、70%以上、85%未満である
×:折り曲げ前後での寿命の比率が、30%以上、50%未満である
××:折り曲げ前後での寿命の比率が、0%以上、30%未満である
 結果を表2に示す。
[Evaluation of organic EL devices]
The lifetime of the organic EL devices 1 to 27 was evaluated by the following method.
(lifespan)
Five elements out of 10 elements manufactured by the same manufacturing procedure were continuously emitted at an initial luminance of 5000 cd / m 2 , the time until the luminance was halved was determined, and the average value was defined as the lifetime. Further, the operation of bending the remaining 5 elements inward and outward by 45 ° was performed 100 times to obtain the lifetime. The ratio of the lifetime before and after the bending was obtained and evaluated as the lifetime of the organic EL device after the bending according to the following evaluation criteria. It is preferable that it is 70% or more.
A: The ratio of life before and after bending is 85% or more and less than 100%. ○: The ratio of life before and after bending is 70% or more and less than 85%. X: The ratio of life before and after bending. 30% or more and less than 50% XX: The ratio of the life before and after bending is 0% or more and less than 30%. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1中、
 ※1:導電性ポリマー/バインダーの質量比
 ※2:ナノインデンテーション弾性率[GPa]
 PH510:PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)
 4083:PEDOT-PSS CLEVIOS P AI 4083(固形分1.5%)(H.C.Starck社製)
In Table 1,
* 1: Mass ratio of conductive polymer / binder * 2: Nanoindentation elastic modulus [GPa]
PH510: PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck)
4083: PEDOT-PSS CLEVIOS P AI 4083 (solid content 1.5%) (manufactured by HC Starck)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1、表2から明らかなように、表1、表2の有機ELデバイス3、4、19、21、22から透明導電層のナノインデンテーション弾性率が10Gpa以上になると透明導電層表面に微細なひびが入り、平滑性が損なわれることがわかる。また、有機ELデバイス1、2、9、14、27から補助電極上に不純物などの突起が存在すると、導電性ポリマー層の弾性が低いため、電極を折り曲げると突起周辺部で透明導電層の変形がし、有機機能層にダメージを与え、有機電子デバイスの寿命が大幅に低下したことがわかる。 As is clear from Tables 1 and 2, when the nanoindentation elastic modulus of the transparent conductive layer is 10 Gpa or more from the organic EL devices 3, 4, 19, 21, and 22 in Tables 1 and 2, the surface of the transparent conductive layer becomes fine. It can be seen that cracks occur and the smoothness is impaired. In addition, if there is a protrusion such as an impurity on the auxiliary electrode from the organic EL devices 1, 2, 9, 14, and 27, the elasticity of the conductive polymer layer is low. Therefore, when the electrode is bent, the transparent conductive layer is deformed around the protrusion. However, it can be seen that the organic functional layer was damaged and the lifetime of the organic electronic device was greatly reduced.
 以上から、ナノインデンテーション弾性率を4GPa以上10GPa以下(本発明の構成)にすることで、透明導電層は適度な伸縮性をもつことができ、透明電極の折り曲げを繰り返しても、透明導電層表面にヒビが生じることがなく、電極の折り曲げにより、補助電極の突起部分とともに透明導電層が変形することがなく有機電子デバイスの機能の低下を抑制できることがわかる。 From the above, by setting the nanoindentation elastic modulus to 4 GPa or more and 10 GPa or less (configuration of the present invention), the transparent conductive layer can have appropriate stretchability, and even if the transparent electrode is repeatedly bent, the transparent conductive layer It can be seen that the surface is not cracked, and that the bending of the electrode prevents the transparent conductive layer from being deformed together with the protruding portion of the auxiliary electrode, thereby suppressing the deterioration of the function of the organic electronic device.

Claims (5)

  1.  フレキシブル透明基板上に、導電性ポリマーとバインダーとを有してなる透明導電層を有する透明電極において、前記透明導電層の該バインダー同士が架橋構造を有するかまたは、該バインダーと該導電性ポリマーとが架橋構造を有しており、該バインダーが下記一般式(A)で表されるポリマー(A)であり、かつ前記透明導電層のナノインデンテーション弾性率が4GPa以上10GPa以下であることを特徴とする透明電極。
    Figure JPOXMLDOC01-appb-C000001

     (式中、X~Xはそれぞれ独立に、水素原子またはメチル基を表し、R~Rはそれぞれ独立に、炭素数5以下のアルキレン基を表す。l、m、nは構成率(mol%)を表し、50≦l+m+n≦100である。)
    In a transparent electrode having a transparent conductive layer comprising a conductive polymer and a binder on a flexible transparent substrate, the binders of the transparent conductive layer have a crosslinked structure, or the binder and the conductive polymer Has a crosslinked structure, the binder is a polymer (A) represented by the following general formula (A), and the nano-indentation elastic modulus of the transparent conductive layer is 4 GPa or more and 10 GPa or less. Transparent electrode.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group, and R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. (Mol%), and 50 ≦ l + m + n ≦ 100.)
  2.  前記透明導電層のナノインデンテーション弾性率が5.5GPa以上7.0GPa以下であることを特徴とする請求項1に記載の透明電極。 2. The transparent electrode according to claim 1, wherein the transparent conductive layer has a nanoindentation elastic modulus of 5.5 GPa to 7.0 GPa.
  3.  前記導電性ポリマーが、π共役系導電性高分子成分とポリ陰イオン成分とを有してなる導電性ポリマーであることを特徴とする請求項1または2に記載の透明電極。 The transparent electrode according to claim 1, wherein the conductive polymer is a conductive polymer having a π-conjugated conductive polymer component and a polyanion component.
  4.  前記ポリ陰イオン成分がポリスルホン酸であることを特徴とする請求項3に記載の透明電極。 The transparent electrode according to claim 3, wherein the polyanion component is polysulfonic acid.
  5.  請求項1から4のいずれか1項に記載の透明電極を用いたことを特徴とする有機電子デバイス。 An organic electronic device using the transparent electrode according to any one of claims 1 to 4.
PCT/JP2010/067218 2009-12-22 2010-10-01 Transparent electrode and organic electronic device WO2011077804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-290323 2009-12-22
JP2009290323 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011077804A1 true WO2011077804A1 (en) 2011-06-30

Family

ID=44195350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067218 WO2011077804A1 (en) 2009-12-22 2010-10-01 Transparent electrode and organic electronic device

Country Status (1)

Country Link
WO (1) WO2011077804A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008826A1 (en) * 2011-07-11 2013-01-17 富士フイルム株式会社 Conductive sheet, touch panel, display device, method for producing said conductive sheet, and recording medium
FR2996359A1 (en) * 2012-10-03 2014-04-04 Hutchinson CONDUCTIVE TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
US9384907B2 (en) 2011-07-01 2016-07-05 Hutchinson Current-conducting electrode and corresponding manufacturing process
JP2016126954A (en) * 2015-01-07 2016-07-11 コニカミノルタ株式会社 Conductive film and method for producing conductive film
WO2016167221A1 (en) * 2015-04-13 2016-10-20 富士フイルム株式会社 Transparent base material film laminate, touch panel sensor film, touch panel, image display device, and method for improving visibility of image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985417A (en) * 1996-09-03 1999-11-16 Motorola, Inc. Polymer stabilized molecular whole transporting materials for organic electroluminescence displays
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2005104141A (en) * 2003-09-11 2005-04-21 Teijin Ltd Transparent conductive laminate and transparent touch panel
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
WO2007061559A2 (en) * 2005-11-23 2007-05-31 Brewer Science Inc. Photocurable, conductive, transparent polymer coatings
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985417A (en) * 1996-09-03 1999-11-16 Motorola, Inc. Polymer stabilized molecular whole transporting materials for organic electroluminescence displays
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2005104141A (en) * 2003-09-11 2005-04-21 Teijin Ltd Transparent conductive laminate and transparent touch panel
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
WO2007061559A2 (en) * 2005-11-23 2007-05-31 Brewer Science Inc. Photocurable, conductive, transparent polymer coatings
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9384907B2 (en) 2011-07-01 2016-07-05 Hutchinson Current-conducting electrode and corresponding manufacturing process
WO2013008826A1 (en) * 2011-07-11 2013-01-17 富士フイルム株式会社 Conductive sheet, touch panel, display device, method for producing said conductive sheet, and recording medium
FR2996359A1 (en) * 2012-10-03 2014-04-04 Hutchinson CONDUCTIVE TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
WO2014053572A3 (en) * 2012-10-03 2014-07-24 Hutchinson Transparent conductive electrode and associated production method
US20150262730A1 (en) * 2012-10-03 2015-09-17 Hutchinson Transparent conductive electrode and associated production method
US9905332B2 (en) 2012-10-03 2018-02-27 Hutchinson Transparent conductive electrode and associated production method
JP2016126954A (en) * 2015-01-07 2016-07-11 コニカミノルタ株式会社 Conductive film and method for producing conductive film
WO2016167221A1 (en) * 2015-04-13 2016-10-20 富士フイルム株式会社 Transparent base material film laminate, touch panel sensor film, touch panel, image display device, and method for improving visibility of image display device
JPWO2016167221A1 (en) * 2015-04-13 2018-02-08 富士フイルム株式会社 Transparent substrate film laminate, sensor film for touch panel, touch panel, image display device, and method for improving visibility of image display device
US10345941B2 (en) 2015-04-13 2019-07-09 Fujifilm Corporation Transparent base material film laminate, touch panel sensor film, touch panel, image display device, and method for improving visibility of image display device

Similar Documents

Publication Publication Date Title
JP5673674B2 (en) Transparent electrode and organic electronic device using the same
WO2012014621A1 (en) Transparent conductive film and organic electroluminescent element
US10251267B2 (en) Transparent electrode, organic electronic element, and method for producing transparent electrode
US8987720B2 (en) Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
JP5673549B2 (en) Organic electronic devices
JP5987843B2 (en) Composition for forming transparent electrode, transparent electrode, organic electronic device, and method for producing transparent electrode
JP5888084B2 (en) Transparent electrode for organic electronic device, method for producing transparent electrode for organic electronic device, and organic electronic device
WO2011077804A1 (en) Transparent electrode and organic electronic device
JP5673675B2 (en) Method for producing transparent electrode, transparent electrode and organic electronic device
JP2011096437A (en) Transparent electrode, organic el element, and organic electronic device
JP5782855B2 (en) Transparent electrode and organic electroluminescence device
WO2013061967A1 (en) Transparent conductive film and organic electroluminescent element
JP6003582B2 (en) Manufacturing method of transparent electrode
JP2012069316A (en) Transparent electrode and organic electronic element
JP5983408B2 (en) Manufacturing method of transparent electrode
JP2011238471A (en) Manufacturing method of transparent electrode
JP2011249104A (en) Method of manufacturing transparent electrode, and organic electronic element
JP2012243401A (en) Transparent conductive film and organic electroluminescent element
JP5402447B2 (en) Method for manufacturing organic electronic device
JP5245128B2 (en) Organic electronic device and manufacturing method thereof
JP5245127B2 (en) Organic electronic device
JP5494390B2 (en) Transparent conductive film and organic electroluminescence element
JP2012099340A (en) Method for manufacturing electrode, electrode and organic electronic element
JP2011222384A (en) Method for manufacturing pattern electrode and organic electronic device employing pattern electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP