WO2010082652A1 - Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same - Google Patents

Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same Download PDF

Info

Publication number
WO2010082652A1
WO2010082652A1 PCT/JP2010/050504 JP2010050504W WO2010082652A1 WO 2010082652 A1 WO2010082652 A1 WO 2010082652A1 JP 2010050504 W JP2010050504 W JP 2010050504W WO 2010082652 A1 WO2010082652 A1 WO 2010082652A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
substrate
fine particles
network structure
Prior art date
Application number
PCT/JP2010/050504
Other languages
French (fr)
Japanese (ja)
Inventor
柿原康男
鈴木教一
Original Assignee
戸田工業株式会社
フジコピアン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社, フジコピアン株式会社 filed Critical 戸田工業株式会社
Publication of WO2010082652A1 publication Critical patent/WO2010082652A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Definitions

  • the present invention relates to a transparent conductive film, a transparent conductive film laminated substrate, and a method for manufacturing the same, in which an oxide film mainly composed of silicon oxide containing a network structure composed of metal fine particles is laminated.
  • Transparent conductive films are used for electrodes such as display devices such as plasma displays and organic EL, input sensors such as touch panels, thin-film amorphous Si solar cells and dye-sensitized solar cells.
  • thin films mainly composed of ITO (In and Sn oxides) and ZnO, which are transparent oxides, are mainly used and may be produced by a coating method of a fine particle dispersion solution.
  • a coating method of a fine particle dispersion solution In order to obtain high conductivity, it is generally produced by a vapor phase method using a sputtering apparatus or a vapor deposition apparatus.
  • a metal film is formed in a lattice shape or a mesh shape in place of the continuous transparent conductive film by the vapor phase method as described above, and the metal film portion is A discontinuous transparent conductive film having a conductivity and a hole having a light transmission property is disclosed.
  • an EMI shield film for a plasma display in which Cu is etched in a lattice after forming a continuous film of Cu film is actually employed, and a metal fine particle dispersion solution is applied or printed for the same purpose.
  • a method of forming a conductive portion having a network structure and performing plating has been studied. Any of these methods does not require a vacuum apparatus necessary for the vapor phase method, and can improve conductivity while ensuring transparency.
  • Patent Document 1 a transparent conductive film laminated substrate having a mesh structure by screen printing a metal fine particle paste on a substrate in a mesh shape and heating and firing and a manufacturing method thereof are known.
  • Patent Document 2 a method of forming a transparent conductive film on a substrate by preparing a W / O type emulsion from a metal fine particle dispersion solution, forming a network structure on the substrate by applying and drying on a substrate.
  • Transparent conductive films and transparent conductive film laminated substrates composed of materials having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are currently most demanded. Although it is, it has not been obtained yet.
  • the above-mentioned discontinuous transparent conductive film can obtain a transparent conductive film laminated substrate having high transmittance and high conductivity which are important as a transparent conductive film.
  • the conductive part inevitably becomes convex on the upper surface of the transparent conductive film laminated substrate due to the manufacturing method, and the flatness is not sufficient. Therefore, when another functional thin film is laminated on the upper part, for example, when used for an electrode for organic EL or an electrode of a thin film type solar cell, there is a concern that the light emission efficiency and the power generation efficiency are lowered.
  • transparent conductive film laminated substrates used in solar cells that require sufficient weather resistance and performance maintenance for long-term outdoor use, organic substances contained inside decompose and precipitate over time. Then, since there exists a possibility of causing the fall of electric power generation efficiency, the transparent conductive film comprised with the material stable for a long period of time is desired.
  • the present invention provides a transparent conductive film and a transparent conductive film laminated substrate that are made of a material having high transmittance, high conductivity, improved flatness, and excellent heat resistance and weather resistance.
  • the present invention is a transparent conductive film composed of an oxide film mainly composed of silicon oxide containing a network structure composed of metal fine particles (Invention 1).
  • the metal fine particles are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, and Sn, or an alloy containing two or more of the above metals. 1.
  • the present invention is the transparent conductive film according to the first or second aspect of the present invention, wherein the silicon oxide is generated using one or more of silica fine particles, silica-based compounds, and polysilazanes (Invention 3).
  • the present invention is a transparent conductive film laminated substrate in which the transparent conductive film according to any one of the first to third aspects of the present invention is laminated on a glass substrate or a ceramic substrate (Invention 4).
  • a glass substrate or an adhesive layer containing silica fine particles, one or more types of silica-based compounds, and an organic binder is used. It is a manufacturing method of the transparent conductive film laminated substrate of this invention 4 characterized by heat-baking, after transferring an adhesive layer with a network structure on a ceramic substrate (this invention 5).
  • the present invention is the manufacturing method according to the fifth aspect of the present invention, wherein a solution containing polysilazane as a main component is applied to the surface of the transparent conductive film laminated substrate, followed by heating and baking and / or humidification (the sixth aspect of the present invention).
  • the present invention is the manufacturing method according to the present invention 6 (invention 7) in which the surface of the transparent conductive film laminated substrate is subjected to chemical wet etching and / or physical polishing (etching or polishing).
  • a metal fine particle dispersion solution or an ink containing metal fine particles is applied or printed on the substrate 10, and then a conductive portion having a network structure is formed by heating and / or chemical treatment ((A in FIG. 1). )).
  • the conductive portion having the network structure is applied on the substrate 10 and dried to form an adhesive layer. . ((B) of FIG. 1). Further, it is bonded to a glass substrate 11 or a ceramic substrate having excellent optical transparency and heat resistance ((C) in FIG. 1). After confirming that it is sufficiently adhered, the substrate 10 is removed and the network structure is transferred together with the adhesive layer ((D) of FIG. 1).
  • a transparent conductive film and a transparent conductive film laminated substrate (5) composed of a material excellent in weather resistance can be obtained ((E) in FIG. 1).
  • a transparent conductive film 4 and a transparent conductive film laminated substrate 5 which are made of a material having high rate, high conductivity, improved flatness, and excellent heat resistance and weather resistance ((( G)).
  • the surface may be subjected to chemical wet etching and / or physical polishing (etching or polishing) for the purpose of further improving the flatness and conductivity of the transparent conductive film having improved surface flatness ( (H) of FIG.
  • the meaning of “contain” the network structure in which the transparent conductive film is composed of metal fine particles means that the network structure is completely formed as shown in FIG. An embedded mode and a mode in which at least a part of the network structure forms a surface as shown in FIG.
  • the adhesive layer may be formed on the glass substrate or ceramic substrate side, and the network structure may be transferred to the network structure by removing the base material by aligning the network structure with the substrate.
  • the metal species of the metal fine particles of the present invention Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, Sn, etc. can be used.
  • an alloy containing two or more of the above metals may be used.
  • the metal fine particles can be prepared using a gas phase method, a liquid phase method, a metal salt thermal decomposition method, or the like, which has been conventionally disclosed.
  • a method in which a network structure is formed using the metal salt or organometallic compound of the metal and then chemically or physically reduced can be used.
  • Metal fine particles are prepared in a dispersion solution or printing ink, and applied or printed on a substrate. Therefore, the surface of the metal fine particles is preferably treated with an appropriate surface treatment agent or dispersant.
  • an appropriate surface treatment agent or dispersant a surface treatment agent or dispersant that is optimally dispersed in each dispersion solution or each printing ink is preferably used.
  • a substrate for applying or printing a metal fine particle dispersion solution or printing ink containing metal fine particles can withstand the formation of a conductive part having a network structure with the metal fine particle dispersion solution or printing ink containing metal fine particles. And heat resistance.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyimide resins, A polyamide resin or the like is preferable.
  • a conductive part having a network structure containing metal fine particles After forming a conductive part having a network structure containing metal fine particles, it is preferable to perform heating and / or chemical treatment within a range that the substrate can withstand for the purpose of improving conductivity.
  • the thickness of the conductive part having a network structure containing metal fine particles is preferably 0.4 to 10 ⁇ m. When it is thinner than 0.4 ⁇ m, sufficient conductivity cannot be obtained. This is because when the thickness exceeds 10 ⁇ m, the line width of the net portion tends to be widened at the same time, resulting in a decrease in transmittance.
  • the entire surface of the base material on which the conductive portion having a network structure is formed is covered with a highly transparent adhesive to form the adhesive layer 2.
  • the adhesive used in the adhesive layer of the present invention is mainly composed of silica fine particles, one or more types of silica compounds, and an organic binder.
  • Organic binders include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), polyvinyl pyrrolidone, hydrocarbon resin , Ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, polyimide, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin Examples include at least one of the group consisting of polymers, and / or any mixture thereof.
  • colloidal silica in which colloidal silica fine particles are dispersed in water or an organic solvent, alkyl silicate, silane coupling agent, or a mixture thereof can be used.
  • the colloidal silica is preferably ultrafine particles having a particle diameter (diameter) of about 1 to 50 nm.
  • the particle diameter of the colloidal silica in the present invention is an average particle diameter according to the BET method (a surface area is measured by the BET method, and the average particle diameter is calculated by converting the particles to be true spheres).
  • the colloidal silica is a known one, and examples of commercially available ones include “methanol silica sol”, “MA-ST-M”, “IPA-ST”, “EG-ST”, “EG-ST-ZL”. “,” NPC-ST “,” DMAC-ST “,” MEK-ST “,” XBA-ST “,” MIBK-ST “(all products of Nissan Chemical Industries, Ltd., all trade names),” OSCAL1132 ”,“ OSCAL1232 ”,“ OSCAL1332 ”,“ OSCAL1432 ”,“ OSCAL1532 ”,“ OSCAL1632 ”,“ OSCAL1132 ”(above, products of Catalyst Chemical Industry Co., Ltd., all trade names). be able to.
  • alkyl silicate examples include, for example, methyl silicate, ethyl silicate, butyl silicate, or a hydrolysis polymerization reaction product obtained by mixing these together with a solvent, water and a hydrolysis polymerization catalyst, followed by hydrolysis and polymerization.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, ⁇ - (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxymethyltrimethoxysilane, ⁇ -glycidoxymethyltriexylsilane, ⁇ -glycidoxyethy
  • the content of the silica fine particles and the silica-based compound contained in the adhesive layer in the present invention is preferably in the range of 10% by weight to 80% by weight in the adhesive layer.
  • the content of the silica fine particles and the silica-based compound is outside the above range, the flatness of the finally obtained transparent conductive film laminated substrate is inferior, which is not preferable.
  • an ultraviolet absorber a color pigment, an antistatic agent, an antioxidant, a silane coupling agent, and the like can be used as necessary as additives in the adhesive layer.
  • the adhesive layer may be provided on one surface of the transfer substrate (glass substrate or ceramic substrate) instead of being provided on the base material side.
  • a coating agent in which the above-mentioned adhesive material is dissolved or dispersed in an organic solvent or water to adjust the viscosity is prepared and applied and dried by a conventionally known coating method such as gravure coating or spin coating. The method can be used.
  • the thickness of the adhesive layer is preferably 0.5 to 50 ⁇ m, more preferably 1.0 to 30 ⁇ m. If the thickness of the adhesive layer is less than 0.5 ⁇ m, sufficient adhesion to the substrate may not be obtained. In addition, if the thickness of the adhesive layer is greater than 50 ⁇ m, it is not preferable because the firing time becomes longer when performing the heat firing in the next step.
  • the base material and the glass substrate 11 are bonded together, heat treatment and pressure treatment are performed as necessary, the base material is peeled off, and the transparent conductive film is formed.
  • a known transfer method can be used, and it may be appropriately selected according to the base material to be used, the material of the substrate to be transferred, and the adhesive layer.
  • a transfer method using a laminator, a transfer method using a press, a thermal transfer method using a thermal head, and the like can be used.
  • the substrate onto which the transparent conductive film has been transferred is heated and fired using a commonly used heating and firing furnace to decompose and scatter the organic binder.
  • the heating and baking temperature is preferably in the temperature range of 300 ° C. to 600 ° C. If the heating and baking temperature is less than 300 ° C., not only will the baking process take a long time and the productivity will decrease, but also the organic binder will remain in the transparent conductive film without being decomposed or scattered and the transmittance will decrease. This is not preferable because there is a possibility. On the other hand, when the heating and baking temperature is higher than 600 ° C., the glass substrate may be warped, which is not preferable.
  • the heating and baking time may be appropriately adjusted together with the baking temperature in accordance with the organic binder used for the adhesive layer, and may be usually treated for about 5 minutes to 10 hours, but is not particularly limited.
  • a transparent conductive film and a transparent conductive film laminated substrate made of a material having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are obtained. I can do it.
  • the transparent conductive film laminated substrate may be a silica fine particle and / or a silica-based material depending on a metal type, a film thickness, a line width, a heating temperature at the time of heating and firing, and a time of the conductive portion having a network structure including metal fine particles.
  • Surface flatness may deteriorate due to the difference in volume shrinkage between the compound and the metal fine particles. A method for further improving the surface flatness will be described below.
  • a solution containing polysilazane as a main material is applied to the surface of the transparent conductive film laminated substrate obtained by the above-described production method.
  • Polysilazane is a general term for linear or cyclic compounds having a silazane bond, —SiR 1 2 —NR 2 —SiR 1 2 — (R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon gas).
  • the Si—NR 2 —Si bond is decomposed by heating or reaction with moisture to form a Si—O—Si network.
  • perhydropolysilazane in which R 1 and R 2 in the above general formula are hydrogen, or partially organicized polysilazane in which R 2 is a methyl group is preferably used.
  • the solution prepared using polysilazane as a main raw material may contain a metal fine particle catalyst (such as Pd fine particle) or an amine catalyst in order to improve the reactivity of the silazane bond of polysilazane.
  • a metal fine particle catalyst such as Pd fine particle
  • an amine catalyst in order to improve the reactivity of the silazane bond of polysilazane.
  • the content of polysilazane in a solution containing polysilazane as a main raw material is preferably 40 wt% or less. More preferably, it is 20 wt% or less. If it is thicker than 40 wt%, it is not preferable because the viscosity increases when it is applied or there is a problem in storage stability.
  • the lower limit of the concentration is not particularly limited, but if it is 1 wt% or less, it is not preferable because the productivity is poor because it is necessary to repeatedly apply the coating several times in order to obtain a desired thickness.
  • the solvent used in the solution containing polysilazane as a main raw material is not particularly limited as long as it is a solvent that dissolves polysilazane and does not react rapidly with polysilazane.
  • Specific examples include aliphatic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and halogenated hydrocarbons. These solvents may be used alone or in combination.
  • aliphatic hydrocarbons such as octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane
  • aromatic hydrocarbons such as benzene, toluene, and xylene are preferable.
  • the method of applying a solution containing polysilazane as a main raw material is not particularly limited.
  • dip coating, spin coating, spray coating, flexographic printing, screen printing, gravure printing, roll coating, meniscus coating And die coating method is not particularly limited.
  • the glass substrate on which the silicon oxide gel body film is laminated at 100 to 500 ° C. in the air is vitrified by heating for 10 minutes to 24 hours.
  • a transparent conductive film laminated substrate having improved properties can be obtained ((H) in FIG. 1).
  • a transparent conductive film laminated substrate having improved surface flatness can be obtained by allowing it to stand for 1 to 4 weeks in the atmosphere at room temperature for vitrification.
  • etching or polishing it is preferable to perform a chemical wet etching method and / or a physical polishing method (etching or polishing) for the purpose of improving the surface property and conductivity of the transparent conductive film laminated substrate obtained by the above-described production method.
  • a mixed acid such as hydrofluoric acid or ammonium fluoride used in general wet etching of glass, or a commercially available glass etching agent (for example, glass etching agent manufactured by Flosstec) is used. It is preferable to use it.
  • Etching conditions are preferably determined by appropriately determining optimum conditions while confirming the surface flatness and conductivity of the transparent conductive film substrate.
  • polishing As a physical polishing method, a general glass polisher cloth, a glass polisher apparatus, or the like can be used. When a large area and high-speed workability are required, polishing may be performed using a commercially available apparatus for polishing display glass.
  • the surface resistance value in the transparent conductive laminated substrate according to the present invention is preferably 100 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ or less, and even more preferably 10 ⁇ / ⁇ or less. When it is 100 ⁇ / ⁇ or more, it is difficult to say that it is a highly conductive film, which is not preferable.
  • the center line surface roughness (Ra) in the transparent conductive laminated substrate according to the present invention is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m.
  • the thickness is larger than 1.0 ⁇ m, the function is deteriorated when the functional thin film is laminated, which is not preferable.
  • the total light transmittance in the transparent conductive laminated substrate according to the present invention is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. If it is 60% or less, it is difficult to say that it is highly transparent, which is not preferable.
  • a typical embodiment of the present invention is as follows.
  • silver fine particles are exemplified as the metal fine particles, but the metal species is not limited.
  • the centerline surface roughness (Ra) was measured using a stylus type surface roughness meter (manufactured by DEKTAK).
  • the surface resistance was measured at three points of the sample using MCP-T600 (manufactured by Mitsubishi Chemical Corporation), and the average value was defined as the surface resistance value.
  • the total light transmittance was determined by measuring the total light transmittance of the sample at three points using a haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and taking the average value as the transmittance.
  • Silver fine particles 1 had an average primary particle size of 60 nm as observed with an electron microscope.
  • ⁇ Preparation Method of Silver Fine Particle Dispersion Solution 2> (Prepared with reference to JP 2005-530005) 4 g of silver fine particles 1, 30 g of toluene, and 0.2 g of BYK-410 (manufactured by Big Chemie Japan) are mixed, dispersed for 1.5 minutes with an ultrasonic disperser with an output of 180 W, and 15 g of pure water is added. The obtained emulsion was subjected to a dispersion treatment for 30 seconds with an ultrasonic disperser with an output of 180 W to prepare a silver fine particle dispersion solution 2.
  • PET substrate polyethylene terephthalate resin substrate
  • heat treatment is performed at 70 ° C. in the atmosphere for 30 seconds, and further heat treatment is performed at 70 ° C. for 30 minutes in an atmosphere containing formic acid vapor, thereby forming a network composed of silver fine particles
  • stacked was produced.
  • Example 1 The following adhesive layer coating solution 1 is applied on a PET base material on which a network structure containing silver fine particles prepared by the above-described method is laminated so that the thickness after drying is 5 ⁇ m, and is 5 at a temperature of 100 ° C. The layer was dried to form an adhesive layer.
  • ⁇ Adhesive layer coating solution 1> After dissolving 8 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BL-2) in 52 g of normal butanol, 40 g of a methanol dispersion of silica sol (silica sol 30% by weight, average particle size 15 nm) is added and stirred to form an adhesive layer coating. Liquid 1 was produced.
  • a hot laminator (manufactured by Taisei Laminator, Taisei First Laminator) is made to face a surface of a glass substrate having a thickness of 1 mm on which the adhesive layer of a PET substrate having a network structure containing silver fine particles and an adhesive layer is formed.
  • VAII-700 the film was heat-welded at 180 ° C. and left to cool to room temperature, and then the PET base material was peeled off to transfer the network structure containing silver fine particles and the adhesive layer onto the glass substrate.
  • the glass substrate on which the network structure containing silver fine particles and the adhesive layer are laminated is heated and baked for 30 minutes in a baking furnace (Advantech Toyo Co., Ltd., electric muffle furnace KM-280) heated to 500 ° C. A glass substrate on which a conductive film was laminated was produced.
  • a baking furnace Advanced Technology Toyo Co., Ltd., electric muffle furnace KM-280
  • a perhydropolysilazane solution (manufactured by AZ-Electronic Materials, trade name: Aquamica NP-110) was applied to the surface of the transparent conductive film laminated substrate using a spin coater.
  • the center line average roughness (Ra) was 0.3 ⁇ m, and the surface flatness was excellent as compared with the conventional transparent conductive film.
  • the surface resistance value was 5 ⁇ / ⁇ , and the total light transmittance was 81%.
  • As a heat resistance test it was heated at 300 ° C. for 1 hour as a heat resistance test, but had the same surface resistance value and total light transmittance as before heating.
  • Example 2 Similar to Example 1 described above, a transparent conductive film laminated substrate having a network structure composed of silver fine particles and laminated with an oxide film mainly composed of silicon oxide was prepared.
  • the surface of the transparent conductive film laminated substrate was polished using a commercially available glass etchant to produce a transparent conductive film laminated substrate with improved surface properties.
  • the center line average roughness (Ra) was 0.1 ⁇ m, and the surface flatness was improved.
  • the surface resistance value was 3 ⁇ / ⁇ , and the total light transmittance was 81%.
  • Comparative Example 1 The silver fine particle dispersion solution was applied and dried on a PET substrate by the method described above, heat treatment and chemical treatment were performed, and a network structure containing silver fine particles was laminated.
  • the surface resistance value was 6 ⁇ / ⁇ , and the total light transmittance was 86%.
  • the center line average roughness (Ra) measured with a surface roughness meter was 1.2 ⁇ m, and the surface was poor in flatness.
  • the PET film contracted, and at the same time it turned yellow and lost its function as a transparent conductive film.
  • the transparent conductive film and the transparent conductive film stack substrate according to the present invention have low resistance and high transmittance, excellent heat resistance and flatness, and the transparent conductive film and the transparent conductive film laminated substrate according to the present invention. Since the production method can be easily produced without using a special apparatus, it is suitable for a thin film solar cell or a transparent electrode for organic EL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is a transparent conductive film, which is an oxide film the primary component of which is silicon oxide and which encapsulates a mesh-like structure formed from metal microparticles. Also provided is a substrate on which a transparent conductive film is laminated wherein the transparent conductive film is laminated on a glass or ceramic substrate. Further provided is a method for producing the same. The substrate on which the transparent conductive film is laminated has a high transmission rate and high conductivity, the surface is smooth, and said substrate comprises a mesh-like structure formed from metal microparticles having excellent heat resistance and weather resistance.

Description

金属微粒子で構成される網目状構造物を内包した透明導電性膜及び透明導電性膜積層基板とその製造方法Transparent conductive film including a network structure composed of metal fine particles, transparent conductive film laminated substrate, and method for manufacturing the same
 本発明は、金属微粒子で構成される網目状構造物を内包する酸化ケイ素を主成分とした酸化物膜が積層した透明導電性膜および透明導電性膜積層基板とその製造方法に関する。 The present invention relates to a transparent conductive film, a transparent conductive film laminated substrate, and a method for manufacturing the same, in which an oxide film mainly composed of silicon oxide containing a network structure composed of metal fine particles is laminated.
 プラズマディスプレイや有機ELなどの表示デバイス、タッチパネルなどの入力センサー、薄膜型アモルファスSi太陽電池や色素増感型太陽電池などの電極には透明性を有した導電性膜が使用されている。 Transparent conductive films are used for electrodes such as display devices such as plasma displays and organic EL, input sensors such as touch panels, thin-film amorphous Si solar cells and dye-sensitized solar cells.
 中でも透明酸化物であるITO(InとSnの酸化物)やZnOを主成分とした薄膜が主に用いられており、微粒子分散溶液の塗布法により作製される場合もあるが、高い透明性と高い導電性を得るために一般的にはスパッタ装置や蒸着装置を用いた気相法により作製されている。 In particular, thin films mainly composed of ITO (In and Sn oxides) and ZnO, which are transparent oxides, are mainly used and may be produced by a coating method of a fine particle dispersion solution. In order to obtain high conductivity, it is generally produced by a vapor phase method using a sputtering apparatus or a vapor deposition apparatus.
 一方、透明性を有した導電性膜の形成法として、前記のような気相法による連続膜の透明導電性膜のかわりに、金属膜を格子状や網目状に形成し、金属膜部が導電性を担い、空孔部が光透過性を担う形の不連続型の透明導電性膜が開示されている。例えば、Cu膜の連続膜を製膜した後に格子状にCuをエッチングしたプラズマディスプレイ用のEMIシールド膜は実際に採用されており、また、同目的のために金属微粒子分散溶液を塗布あるいは印刷することで網目状構造を持つ導電性部を形成させ、さらにめっきを施す方法が検討されている。いずれの手法も気相法に必要な真空装置が不要であり、透明性を確保したまま導電性を向上させることが可能な方法である。 On the other hand, as a method for forming a transparent conductive film, a metal film is formed in a lattice shape or a mesh shape in place of the continuous transparent conductive film by the vapor phase method as described above, and the metal film portion is A discontinuous transparent conductive film having a conductivity and a hole having a light transmission property is disclosed. For example, an EMI shield film for a plasma display in which Cu is etched in a lattice after forming a continuous film of Cu film is actually employed, and a metal fine particle dispersion solution is applied or printed for the same purpose. Thus, a method of forming a conductive portion having a network structure and performing plating has been studied. Any of these methods does not require a vacuum apparatus necessary for the vapor phase method, and can improve conductivity while ensuring transparency.
 従来より、金属微粒子ペーストを基板上へ網目状にスクリーン印刷し、加熱焼成することで網目状構造物を有する透明導電性膜積層基板とその製造法が知られている(特許文献1)。また金属微粒子分散溶液よりW/O型エマルジョンを調製し、基材上に塗布・乾燥させることで金属微粒子が網目状構造を形成し、透明導電性膜を基板上に形成する方法が知られている(特許文献2及び3)。 Conventionally, a transparent conductive film laminated substrate having a mesh structure by screen printing a metal fine particle paste on a substrate in a mesh shape and heating and firing and a manufacturing method thereof are known (Patent Document 1). Also known is a method of forming a transparent conductive film on a substrate by preparing a W / O type emulsion from a metal fine particle dispersion solution, forming a network structure on the substrate by applying and drying on a substrate. (Patent Documents 2 and 3).
特開2007-227906号公報JP 2007-227906 A 特表2005-530005号公報JP 2005-530005 Gazette 特開2007-234299号公報JP 2007-234299 A
 高透過率、高導電性であり、しかも平坦性を有し、且つ、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板は、現在最も要求されているところであるが、未だ得られていない。 Transparent conductive films and transparent conductive film laminated substrates composed of materials having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are currently most demanded. Although it is, it has not been obtained yet.
 即ち、上述した不連続型の透明導電性膜は、透明導電性膜として重要な高透過率と高導電性を有した透明導電性膜積層基板を得ることができるが、これらの透明導電性膜積層基板では、その製法から必然的に透明導電性膜積層基板の上面は導電性部が凸状になってしまい、平坦性が十分ではない。そのため上部に別の機能性薄膜を積層させる場合、例えば有機EL用の電極や薄膜型太陽電池の電極に用いた場合には発光効率や発電効率の低下が懸念される。 That is, the above-mentioned discontinuous transparent conductive film can obtain a transparent conductive film laminated substrate having high transmittance and high conductivity which are important as a transparent conductive film. In the laminated substrate, the conductive part inevitably becomes convex on the upper surface of the transparent conductive film laminated substrate due to the manufacturing method, and the flatness is not sufficient. Therefore, when another functional thin film is laminated on the upper part, for example, when used for an electrode for organic EL or an electrode of a thin film type solar cell, there is a concern that the light emission efficiency and the power generation efficiency are lowered.
 また、機能性薄膜を積層する場合には、現在のところ気相法プロセスに頼らざるを得ないところが多く、製膜時あるいは製膜前後に基板あるいは機能性薄膜積層基板を加熱する必要があるなど透明導電性膜積層基板に十分な耐熱性が要求される。 In addition, when laminating functional thin films, there are many places where it is currently necessary to rely on a vapor phase process, and it is necessary to heat a substrate or a functional thin film laminated substrate before or after film formation. Sufficient heat resistance is required for the transparent conductive film laminated substrate.
 さらに、室外での長期間の使用に対して十分な耐候性と性能維持が要求される太陽電池に用いられる透明導電性膜積層基板では、時間の経過とともに内部に含まれる有機物などが分解析出すると発電効率の低下を招く恐れがあるため、長期間安定した材料で構成された透明導電性膜が望まれる。 Furthermore, in transparent conductive film laminated substrates used in solar cells that require sufficient weather resistance and performance maintenance for long-term outdoor use, organic substances contained inside decompose and precipitate over time. Then, since there exists a possibility of causing the fall of electric power generation efficiency, the transparent conductive film comprised with the material stable for a long period of time is desired.
 そこで、本発明では、高透過率、高導電性であり、平坦性が改善され、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板を提供することとする。 Accordingly, the present invention provides a transparent conductive film and a transparent conductive film laminated substrate that are made of a material having high transmittance, high conductivity, improved flatness, and excellent heat resistance and weather resistance. And
 即ち、本発明は、金属微粒子で構成される網目状構造物を内包した酸化ケイ素を主成分とした酸化物膜から成る透明導電性膜である(本発明1)。 That is, the present invention is a transparent conductive film composed of an oxide film mainly composed of silicon oxide containing a network structure composed of metal fine particles (Invention 1).
 また、本発明は、金属微粒子が、Au、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snから選ばれた金属あるいは前記金属の二種類以上を含む合金である本発明1記載の透明導電性膜である(本発明2)。 In the present invention, the metal fine particles are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, and Sn, or an alloy containing two or more of the above metals. 1. The transparent conductive film according to 1 (Invention 2).
 また、本発明は、酸化ケイ素が、シリカ微粒子、シリカ系化合物、ポリシラザンの1種類以上を用いて生成した本発明1又は2記載の透明導電性膜である(本発明3)。 Further, the present invention is the transparent conductive film according to the first or second aspect of the present invention, wherein the silicon oxide is generated using one or more of silica fine particles, silica-based compounds, and polysilazanes (Invention 3).
 また、本発明は、本発明1~3記載の透明導電性膜をガラス基板又はセラミックス基板に積層した透明導電性膜積層基板である(本発明4)。 Further, the present invention is a transparent conductive film laminated substrate in which the transparent conductive film according to any one of the first to third aspects of the present invention is laminated on a glass substrate or a ceramic substrate (Invention 4).
 また、本発明は、基材上に金属微粒子で構成される網目状構造物を形成させた後、シリカ微粒子、シリカ系化合物の1種類以上及び有機物バインダーを含む接着層を介して、ガラス基板又はセラミックス基板上に網目構造物と共に接着層を転写した後、加熱焼成することを特徴とする本発明4記載の透明導電性膜積層基板の製造方法である(本発明5)。 In the present invention, after forming a network structure composed of metal fine particles on a base material, a glass substrate or an adhesive layer containing silica fine particles, one or more types of silica-based compounds, and an organic binder is used. It is a manufacturing method of the transparent conductive film laminated substrate of this invention 4 characterized by heat-baking, after transferring an adhesive layer with a network structure on a ceramic substrate (this invention 5).
 また、本発明は、前記透明導電性膜積層基板の表面にポリシラザンを主成分とする溶液を塗布した後、加熱焼成及び/又は加湿する本発明5記載の製造方法である(本発明6)。 Further, the present invention is the manufacturing method according to the fifth aspect of the present invention, wherein a solution containing polysilazane as a main component is applied to the surface of the transparent conductive film laminated substrate, followed by heating and baking and / or humidification (the sixth aspect of the present invention).
 また、本発明は、前記透明導電性膜積層基板の表面を化学的ウエットエッチング及び/又は物理的研磨(エッチングあるいはポリッシング)を行なう本発明6記載の製造方法である(本発明7)。 Further, the present invention is the manufacturing method according to the present invention 6 (invention 7) in which the surface of the transparent conductive film laminated substrate is subjected to chemical wet etching and / or physical polishing (etching or polishing).
本発明に係る透明導電性膜積層基板の製造方法を示したフローチャートである。It is the flowchart which showed the manufacturing method of the transparent conductive film laminated substrate which concerns on this invention.
 本発明の構成を図1に示す製造工程に従って、より詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail according to the manufacturing process shown in FIG.
 最初に基材10上に金属微粒子分散溶液又は金属微粒子を含有するインキを塗布又は印刷し、その後に加熱及び/又は化学処理により網目状構造を有する導電性部を形成させる(図1の(A))。 First, a metal fine particle dispersion solution or an ink containing metal fine particles is applied or printed on the substrate 10, and then a conductive portion having a network structure is formed by heating and / or chemical treatment ((A in FIG. 1). )).
 次に、シリカ微粒子及び/又はシリカ系化合物と有機バインダーを含む接着層コーティング剤2を用いて、前記網目状構造を有する導電性部を基材10上に塗布、乾燥して接着層を形成する。(図1の(B))。さらに光学的透過性及び耐熱性の優れているガラス基板11やセラミックス基板へ接着させる(図1の(C))。十分に接着されていることを確認した後に基材10を除去して網目状構造物を接着層と共に転写させる(図1の(D))。 Next, using the adhesive layer coating agent 2 containing silica fine particles and / or a silica-based compound and an organic binder, the conductive portion having the network structure is applied on the substrate 10 and dried to form an adhesive layer. . ((B) of FIG. 1). Further, it is bonded to a glass substrate 11 or a ceramic substrate having excellent optical transparency and heat resistance ((C) in FIG. 1). After confirming that it is sufficiently adhered, the substrate 10 is removed and the network structure is transferred together with the adhesive layer ((D) of FIG. 1).
 次に、600℃以下の温度で加熱焼成し、前記接着層中の有機バインダーや有機溶剤などを分解・飛散させることで、高透過率、高導電性であり、平坦性が改善され、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板(5)を得ることが出来る(図1の(E))。 Next, it is heated and fired at a temperature of 600 ° C. or less, and the organic binder and organic solvent in the adhesive layer are decomposed and scattered, so that it has high transmittance, high conductivity, improved flatness, and heat resistance. A transparent conductive film and a transparent conductive film laminated substrate (5) composed of a material excellent in weather resistance can be obtained ((E) in FIG. 1).
 さらに、表面平坦性を改善する目的で、表面にポリシラザンを主成分とする溶液を塗布した後(図1の(F))、加熱及び/又は加湿し、ポリシラザンをガラス化させることで、高透過率、高導電性であり、平坦性が改善され、耐熱性と耐候性に優れた材料で構成された透明導電性膜4及び透明導電性膜積層基板5を得ることが出来る(図1の(G))。 Furthermore, for the purpose of improving surface flatness, after applying a solution containing polysilazane as a main component on the surface ((F) in FIG. 1), heating and / or humidification is performed to vitrify the polysilazane, thereby increasing the transmittance. It is possible to obtain a transparent conductive film 4 and a transparent conductive film laminated substrate 5 which are made of a material having high rate, high conductivity, improved flatness, and excellent heat resistance and weather resistance ((( G)).
 また、前記、表面平坦性を改善した透明導電性膜の平坦性と導電性をより向上させる目的で、表面を化学的ウエットエッチング及び/又は物理的研磨(エッチングあるいはポリッシング)を行なっても良い(図1の(H))。 The surface may be subjected to chemical wet etching and / or physical polishing (etching or polishing) for the purpose of further improving the flatness and conductivity of the transparent conductive film having improved surface flatness ( (H) of FIG.
 従って、本発明において、透明導電性膜が金属微粒子で構成される網目状構造物を「内包」する(Contain)という意味は、図1の(G)に示すように網目状構造物が完全に埋没した態様と、図1の(H)に示すように網目状構造物の少なくとも一部が表面を形成する態様とを含む。 Therefore, in the present invention, the meaning of “contain” the network structure in which the transparent conductive film is composed of metal fine particles (Contain) means that the network structure is completely formed as shown in FIG. An embedded mode and a mode in which at least a part of the network structure forms a surface as shown in FIG.
 前記、接着層の形成は、ガラス基板やセラミック基板側に設けて、網目状構造物を基板に合わせて基材を除去して網目状構造物を転写させてもよい。 The adhesive layer may be formed on the glass substrate or ceramic substrate side, and the network structure may be transferred to the network structure by removing the base material by aligning the network structure with the substrate.
 本発明の金属微粒子の金属種としてはAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snなどを用いることが出来る。あるいは前記金属を二種類以上含む合金であっても良い。近年、電子回路の微細配線形成用に用いられているAu、Ag、Cu、Pt、PdあるいはAu、Ag、Cu、Pt、Pdを二種類以上含む合金を用いるのがより好ましい。 As the metal species of the metal fine particles of the present invention, Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, Sn, etc. can be used. Alternatively, an alloy containing two or more of the above metals may be used. In recent years, it is more preferable to use Au, Ag, Cu, Pt, Pd, or an alloy containing two or more kinds of Au, Ag, Cu, Pt, Pd, which has been used for forming fine wiring of electronic circuits.
 金属微粒子は、従来開示されている、気相法、液相法、金属塩の熱分解法などを用いて調製することができる。あるいは、前記金属の金属塩または有機金属化合物を用いて網目状構造を形成させた後、化学的あるいは物理的に還元する方法も用いることが出来る。 The metal fine particles can be prepared using a gas phase method, a liquid phase method, a metal salt thermal decomposition method, or the like, which has been conventionally disclosed. Alternatively, a method in which a network structure is formed using the metal salt or organometallic compound of the metal and then chemically or physically reduced can be used.
 金属微粒子は分散溶液又は印刷用インキなどに調製し、基材上に塗布又は印刷される。そのため、金属微粒子の表面は適当な表面処理剤又は分散剤などで処理されていることが好ましい。表面処理剤又は分散剤は各分散溶液や各印刷用インキに最適に分散する表面処理剤又は分散剤を用いるのが好ましい。 Metal fine particles are prepared in a dispersion solution or printing ink, and applied or printed on a substrate. Therefore, the surface of the metal fine particles is preferably treated with an appropriate surface treatment agent or dispersant. As the surface treatment agent or dispersant, a surface treatment agent or dispersant that is optimally dispersed in each dispersion solution or each printing ink is preferably used.
 金属微粒子分散溶液又は金属微粒子を含む印刷インキを塗布または印刷する基材は、金属微粒子分散溶液又は金属微粒子を含む印刷インキによる網目状構造を有する導電性部を形成させるのに耐えうる、耐薬品性および耐熱性を有する必要がある。また、ガラス基板又はセラミックス基板への金属微粒子で構成される網目状構造物の転写のし易さから、上記条件に合う基材としてはポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂や、ポリイミド樹脂、ポリアミド樹脂などが好ましい。 A substrate for applying or printing a metal fine particle dispersion solution or printing ink containing metal fine particles can withstand the formation of a conductive part having a network structure with the metal fine particle dispersion solution or printing ink containing metal fine particles. And heat resistance. Moreover, from the ease of transfer of a network structure composed of metal fine particles to a glass substrate or a ceramic substrate, as a base material that meets the above conditions, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyimide resins, A polyamide resin or the like is preferable.
 次に、金属微粒子を含む網目状構造を有する導電性部を形成する場合には、特許文献2記載の金属微粒子分散溶液の塗布する方法や特許文献1記載の金属微粒子分散インクをスクリーン印刷する方法を用いても良い。 Next, when forming a conductive portion having a network structure containing metal fine particles, a method of applying a metal fine particle dispersion solution described in Patent Document 2 or a method of screen printing a metal fine particle dispersed ink described in Patent Document 1 May be used.
 金属微粒子を含む網目状構造を有する導電性部を形成した後、導電性の向上を目的に基材が耐えうる範囲で加熱及び/又は化学処理を行うことが好ましい。 After forming a conductive part having a network structure containing metal fine particles, it is preferable to perform heating and / or chemical treatment within a range that the substrate can withstand for the purpose of improving conductivity.
 金属微粒子を含む網目状構造を有する導電性部の厚みは0.4~10μmが好ましい。0.4μmより薄い場合には、十分な導電性が得られない。10μmを超える場合には同時に網部分の線幅が広がり易く、結果的に透過率の低下をもたらすためである。 The thickness of the conductive part having a network structure containing metal fine particles is preferably 0.4 to 10 μm. When it is thinner than 0.4 μm, sufficient conductivity cannot be obtained. This is because when the thickness exceeds 10 μm, the line width of the net portion tends to be widened at the same time, resulting in a decrease in transmittance.
 次に、図1(B)に示すように網目状構造を有する導電性部が形成された基材の一面全体を透明性の高い接着剤で覆い接着層2を形成する。 Next, as shown in FIG. 1B, the entire surface of the base material on which the conductive portion having a network structure is formed is covered with a highly transparent adhesive to form the adhesive layer 2.
 また、本発明の接着層に使用される接着剤はシリカ微粒子、シリカ系化合物の1種類以上および有機物バインダーを主原料とする。 The adhesive used in the adhesive layer of the present invention is mainly composed of silica fine particles, one or more types of silica compounds, and an organic binder.
 有機物バインダーとしては、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリビニルブチラール、ポリビニルアセタール、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、ポリビニルピロリドン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、塩素化ポリプロピレン、ポリイミド、ウレア、セルロース、酢酸ビニル、ABS樹脂、ポリウレタン、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂およびこれらの共重合体からなる群の少なくとも1つ、及び又はこれらいずれか混合物などが例示される。 Organic binders include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), polyvinyl pyrrolidone, hydrocarbon resin , Ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, polyimide, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin Examples include at least one of the group consisting of polymers, and / or any mixture thereof.
 シリカ微粒子、シリカ系化合物としてはコロイド状態のシリカ微粒子を水又は有機溶媒に分散させたコロイダルシリカ、アルキルシリケート、シランカップリング剤またはこれらの混合物等が使用可能である。 As the silica fine particles and silica-based compounds, colloidal silica in which colloidal silica fine particles are dispersed in water or an organic solvent, alkyl silicate, silane coupling agent, or a mixture thereof can be used.
 上記コロイダルシリカとしては粒子径(直径)が1~50nm程度の超微粒子のものであることが好ましい。なお、本発明におけるコロイダルシリカの粒子径は、BET法による平均粒子径(BET法により表面積を測定し、粒子が真球であるとして換算して平均粒子径を算出する)である。 The colloidal silica is preferably ultrafine particles having a particle diameter (diameter) of about 1 to 50 nm. The particle diameter of the colloidal silica in the present invention is an average particle diameter according to the BET method (a surface area is measured by the BET method, and the average particle diameter is calculated by converting the particles to be true spheres).
 上記コロイダルシリカは、公知のものであり、市販のものとしては、例えば、「メタノールシリカゾル」、「MA-ST-M」、「IPA-ST」、「EG-ST」、「EG-ST-ZL」、「NPC-ST」、「DMAC-ST」、「MEK-ST」、「XBA-ST」、「MIBK-ST」(以上、日産化学工業(株)製品、いずれも商品名)、「OSCAL1132」、「OSCAL1232」、「OSCAL1332」、「OSCAL1432」、「OSCAL1532」、「OSCAL1632」、「OSCAL1132」、(以上、触媒化成工業(株)製品、いずれも商品名)で市販されているものを挙げることができる。 The colloidal silica is a known one, and examples of commercially available ones include “methanol silica sol”, “MA-ST-M”, “IPA-ST”, “EG-ST”, “EG-ST-ZL”. "," NPC-ST "," DMAC-ST "," MEK-ST "," XBA-ST "," MIBK-ST "(all products of Nissan Chemical Industries, Ltd., all trade names)," OSCAL1132 ”,“ OSCAL1232 ”,“ OSCAL1332 ”,“ OSCAL1432 ”,“ OSCAL1532 ”,“ OSCAL1632 ”,“ OSCAL1132 ”(above, products of Catalyst Chemical Industry Co., Ltd., all trade names). be able to.
 上記アルキルシリケートとしては、たとえばメチルシリケート、エチルシリケート、ブチルシリケート、またはこれらを溶媒、水、加水分解重合触媒とともに混合して、加水分解・重合することによって得られる加水分解重合反応物が挙げられる。 Examples of the alkyl silicate include, for example, methyl silicate, ethyl silicate, butyl silicate, or a hydrolysis polymerization reaction product obtained by mixing these together with a solvent, water and a hydrolysis polymerization catalyst, followed by hydrolysis and polymerization.
 上記シランカップリング剤としてはメチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン等が挙げられる。 Examples of the silane coupling agent include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriexylsilane, γ-glycidoxyethyltrimethoxysila Γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxy Silane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylo Oxyethyltrimethoxysilane, γ- (meth) acrylooxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) Acryloxypropyltriethoxysilane, γ- (meth) acrylooxy Propyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, Decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β ( Aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-pheny Examples include ru-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, and methyltrichlorosilane.
 本発明における接着層に含まれる該シリカ微粒子、シリカ系化合物の含有量は接着層中の10重量%~80重量%の範囲であることが好ましい。該シリカ微粒子、シリカ系化合物の含有量が上記範囲以外の場合は最終的に得られる透明導電性膜積層基板の平坦性が劣るため好ましくない。 The content of the silica fine particles and the silica-based compound contained in the adhesive layer in the present invention is preferably in the range of 10% by weight to 80% by weight in the adhesive layer. When the content of the silica fine particles and the silica-based compound is outside the above range, the flatness of the finally obtained transparent conductive film laminated substrate is inferior, which is not preferable.
 また、接着層には添加剤として紫外線吸収剤、着色顔料、帯電防止剤、酸化防止剤、シランカップリング剤等も適宜、必要に応じて使用することができる。 In addition, an ultraviolet absorber, a color pigment, an antistatic agent, an antioxidant, a silane coupling agent, and the like can be used as necessary as additives in the adhesive layer.
 接着層は、基材側に設ける代わりに被転写基板(ガラス基板やセラミック基板)の一面に設けておいてもよい。 The adhesive layer may be provided on one surface of the transfer substrate (glass substrate or ceramic substrate) instead of being provided on the base material side.
 接着層の形成方法としては、上記の接着剤材料を有機溶剤または水に溶解あるいは水に分散し粘度を調整したコーティング剤を作製し、グラビヤコーティング、スピンコーティングなど従来公知のコーティング法により塗布乾燥する方法を用いることができる。 As a method for forming the adhesive layer, a coating agent in which the above-mentioned adhesive material is dissolved or dispersed in an organic solvent or water to adjust the viscosity is prepared and applied and dried by a conventionally known coating method such as gravure coating or spin coating. The method can be used.
 接着層の厚みは好ましくは0.5~50μm、さらに好ましくは1.0~30μmである。接着層の厚みが0.5μm未満では基板に対する接着性が十分得られない場合があり好ましくない。また、接着層の厚みが50μmよりも厚いと次工程で加熱焼成する際に焼成時間が長くなるため好ましくない。 The thickness of the adhesive layer is preferably 0.5 to 50 μm, more preferably 1.0 to 30 μm. If the thickness of the adhesive layer is less than 0.5 μm, sufficient adhesion to the substrate may not be obtained. In addition, if the thickness of the adhesive layer is greater than 50 μm, it is not preferable because the firing time becomes longer when performing the heat firing in the next step.
 次に図1(C)に示すように、基材とガラス基板11とを貼り合せた後、必要に応じて加熱処理、加圧処理などの行い、基材を剥離し、透明導電性膜をガラス基板11に転写させる。転写方法は、公知の転写方法が使用可能であり、使用する基材と被転写基板の材質、接着層に応じて、適宜選択すればよい。例えば、ラミネーターで転写する方法、プレス機で転写する方法、サーマルヘッドで熱転写する方法などを用いることができる。 Next, as shown in FIG. 1C, after the base material and the glass substrate 11 are bonded together, heat treatment and pressure treatment are performed as necessary, the base material is peeled off, and the transparent conductive film is formed. Transfer to the glass substrate 11. As the transfer method, a known transfer method can be used, and it may be appropriately selected according to the base material to be used, the material of the substrate to be transferred, and the adhesive layer. For example, a transfer method using a laminator, a transfer method using a press, a thermal transfer method using a thermal head, and the like can be used.
 次に透明導電性膜が転写された基板を通常用いられる加熱焼成炉を用いて加熱焼成し有機物バインダーを分解、飛散させる。ここで、加熱焼成温度は300℃~600℃の温度範囲で行う事が好ましい。加熱焼成温度が300℃未満であれば焼成工程が長時間となり生産性が低下するばかりでなく、有機物バインダーの一部が分解、飛散せずに透明導電膜中に残留して透過率が低下する可能性があるため好ましくない。一方、加熱焼成温度が600℃よりも高い場合はガラス基板の反りが生じる場合があり好ましくない。 Next, the substrate onto which the transparent conductive film has been transferred is heated and fired using a commonly used heating and firing furnace to decompose and scatter the organic binder. Here, the heating and baking temperature is preferably in the temperature range of 300 ° C. to 600 ° C. If the heating and baking temperature is less than 300 ° C., not only will the baking process take a long time and the productivity will decrease, but also the organic binder will remain in the transparent conductive film without being decomposed or scattered and the transmittance will decrease. This is not preferable because there is a possibility. On the other hand, when the heating and baking temperature is higher than 600 ° C., the glass substrate may be warped, which is not preferable.
 加熱焼成時間は接着層に使用する有機物バインダーに応じて焼成温度とともに適宜調整すればよく、通常5分~10時間程度処理すればよいが、特に限定されるものではない。 The heating and baking time may be appropriately adjusted together with the baking temperature in accordance with the organic binder used for the adhesive layer, and may be usually treated for about 5 minutes to 10 hours, but is not particularly limited.
 前記作製法により高透過率、高導電性であり、しかも平坦性を有し、且つ、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板を得ることが出来る。 By the above production method, a transparent conductive film and a transparent conductive film laminated substrate made of a material having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are obtained. I can do it.
 さらに、前記透明導電性膜積層基板は、金属微粒子を含む網目状構造を有する導電性部の金属種、膜厚、線幅及び加熱焼成時の加熱温度、時間によって、シリカ微粒子及び/又はシリカ系化合物と金属微粒子との体積収縮率の差により表面平坦性が悪化する場合がある。そこで、表面の平坦性をより改善する手法について次に説明する。 Further, the transparent conductive film laminated substrate may be a silica fine particle and / or a silica-based material depending on a metal type, a film thickness, a line width, a heating temperature at the time of heating and firing, and a time of the conductive portion having a network structure including metal fine particles. Surface flatness may deteriorate due to the difference in volume shrinkage between the compound and the metal fine particles. A method for further improving the surface flatness will be described below.
 まず、上述した作製法により得られた透明導電性膜積層基板の表面にポリシラザンを主原料とする溶液を塗布する。 First, a solution containing polysilazane as a main material is applied to the surface of the transparent conductive film laminated substrate obtained by the above-described production method.
 ポリシラザンは、-SiR -NR-SiR -(RおよびRは、それぞれ独立に、水素原子または炭化水素気を示す)シラザン結合を有する線状または環状の化合物の総称であり、加熱又は水分との反応によってSi-NR-Si結合が分解してSi-O-Siネットワークを形成する材料である。本発明においては、上記一般式のR、Rが水素であるペルヒドロポリシラザン、又はRがメチル基である、部分的に有機化されたポリシラザンが好ましく用いられる。 Polysilazane is a general term for linear or cyclic compounds having a silazane bond, —SiR 1 2 —NR 2 —SiR 1 2 — (R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon gas). The Si—NR 2 —Si bond is decomposed by heating or reaction with moisture to form a Si—O—Si network. In the present invention, perhydropolysilazane in which R 1 and R 2 in the above general formula are hydrogen, or partially organicized polysilazane in which R 2 is a methyl group is preferably used.
 ポリシラザンを主原料として調製する溶液中には、ポリシラザンのシラザン結合の反応性を向上させるために、金属微粒子触媒(Pd微粒子など)又はアミン触媒などが含まれていても良い。 The solution prepared using polysilazane as a main raw material may contain a metal fine particle catalyst (such as Pd fine particle) or an amine catalyst in order to improve the reactivity of the silazane bond of polysilazane.
 ポリシラザンを主原料とする溶液中におけるポリシラザンの含有量は40wt%以下が好ましい。より好ましくは20wt%以下である。40wt%より濃い場合は、塗布する場合に粘度が上昇する場合や、保存安定性に問題があり好ましくない。濃度の下限値は特に制限はないが1wt%以下であると、所望の厚みを得るために何度も重ね塗りする必要があるため生産性が悪く好ましくない。 The content of polysilazane in a solution containing polysilazane as a main raw material is preferably 40 wt% or less. More preferably, it is 20 wt% or less. If it is thicker than 40 wt%, it is not preferable because the viscosity increases when it is applied or there is a problem in storage stability. The lower limit of the concentration is not particularly limited, but if it is 1 wt% or less, it is not preferable because the productivity is poor because it is necessary to repeatedly apply the coating several times in order to obtain a desired thickness.
 ポリシラザンを主原料とする溶液に用いる溶媒としては、ポリシラザンを溶解して急激にポリシラザンと反応しない溶媒であれば特に限定されない。具体的には脂肪族炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類、などが挙げられる。これらの溶媒を単独に用いても混合して用いても良い。ポリシラザンの溶解性とポリシラザンとの低反応性から、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素が好ましい。 The solvent used in the solution containing polysilazane as a main raw material is not particularly limited as long as it is a solvent that dissolves polysilazane and does not react rapidly with polysilazane. Specific examples include aliphatic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and halogenated hydrocarbons. These solvents may be used alone or in combination. In view of the solubility of polysilazane and low reactivity with polysilazane, aliphatic hydrocarbons such as octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane, and aromatic hydrocarbons such as benzene, toluene, and xylene are preferable.
 ポリシラザンを主原料とする溶液を塗布する方法は、特に限定されず、例えば、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷、ロールコート法、メニスカスコート法、ダイコート法などが挙げられる。 The method of applying a solution containing polysilazane as a main raw material is not particularly limited. For example, dip coating, spin coating, spray coating, flexographic printing, screen printing, gravure printing, roll coating, meniscus coating And die coating method.
 ポリシラザンを主原料とする溶液を塗布した後、大気中、100~500℃で前記酸化ケイ素ゲル体膜が積層したガラス基板を、10分~24時間加熱させることでガラス化させることで、表面平坦性が改善された透明導電性膜積層基板を得ることができる(図1の(H))。 After applying a solution containing polysilazane as a main raw material, the glass substrate on which the silicon oxide gel body film is laminated at 100 to 500 ° C. in the air is vitrified by heating for 10 minutes to 24 hours. A transparent conductive film laminated substrate having improved properties can be obtained ((H) in FIG. 1).
 あるいは、大気中、室温下で1週間~4週間静置させることでガラス化し、表面平坦性が改善された透明導電性膜積層基板を得ることができる。 Alternatively, a transparent conductive film laminated substrate having improved surface flatness can be obtained by allowing it to stand for 1 to 4 weeks in the atmosphere at room temperature for vitrification.
 大気中において100℃以下で加熱する場合には、加湿することが好ましい。加湿することによりシラザン結合の反応が促進され、ガラス化のための静置時間を短縮させることが出来る。 When heating at 100 ° C. or lower in the atmosphere, it is preferable to humidify. By humidifying, the reaction of the silazane bond is promoted, and the standing time for vitrification can be shortened.
 さらに、上述の作製法により得られた透明導電性膜積層基板の表面性と導電性を向上する目的で化学的ウエットエッチング法及び/又は物理的研磨法(エッチングあるいはポリッシング)を行なうことが好ましい。 Furthermore, it is preferable to perform a chemical wet etching method and / or a physical polishing method (etching or polishing) for the purpose of improving the surface property and conductivity of the transparent conductive film laminated substrate obtained by the above-described production method.
 化学的ウエットエッチング法としては、一般的なガラスのウエットエッチング時に用いられる、フッ酸、フッ化アンモニウムなどの混酸を用いたり、市販のガラスエッチング剤(例えば、フロステック社製ガラスエッチング剤など)を用いることが好ましい。 As a chemical wet etching method, a mixed acid such as hydrofluoric acid or ammonium fluoride used in general wet etching of glass, or a commercially available glass etching agent (for example, glass etching agent manufactured by Flosstec) is used. It is preferable to use it.
 エッチング条件は、透明導電性膜基板の表面平坦性及び導電性を確認しながら適宜最適条件を決めて行なうことが好ましい。 Etching conditions are preferably determined by appropriately determining optimum conditions while confirming the surface flatness and conductivity of the transparent conductive film substrate.
 物理的研磨法としては、一般的なガラスポリッシャー布、ガラスポリッシャー装置などを用いることが出来る。大面積で高速作業性を要求される場合には、ディスプレイガラス研磨用の市販装置などを用いて研磨を行なっても良い。 As a physical polishing method, a general glass polisher cloth, a glass polisher apparatus, or the like can be used. When a large area and high-speed workability are required, polishing may be performed using a commercially available apparatus for polishing display glass.
 本発明に係る透明導電性積層基板における表面抵抗値は、100Ω/□以下が好ましく、より好ましくは50Ω/□以下であり、更により好ましくは10Ω/□以下である。100Ω/□以上の場合は、高導電性膜とは言い難く好ましくない。 The surface resistance value in the transparent conductive laminated substrate according to the present invention is preferably 100Ω / □ or less, more preferably 50Ω / □ or less, and even more preferably 10Ω / □ or less. When it is 100Ω / □ or more, it is difficult to say that it is a highly conductive film, which is not preferable.
 本発明に係る透明導電性積層基板における中心線表面粗さ(Ra)は、1.0μm以下が好ましく、より好ましくは0.5μm以下であり、更により好ましくは0.1μmである。1.0μmより大きい場合は、機能性薄膜を積層した場合に機能を低下させるため好ましくない。 The center line surface roughness (Ra) in the transparent conductive laminated substrate according to the present invention is preferably 1.0 μm or less, more preferably 0.5 μm or less, and even more preferably 0.1 μm. When the thickness is larger than 1.0 μm, the function is deteriorated when the functional thin film is laminated, which is not preferable.
 本発明に係る透明導電性積層基板における全光線透過率は、60%以上が好ましく、より好ましくは70%以上であり、更により好ましくは80%以上である。60%以下の場合は、高透明性とは言い難く好ましくない。 The total light transmittance in the transparent conductive laminated substrate according to the present invention is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. If it is 60% or less, it is difficult to say that it is highly transparent, which is not preferable.
 本発明の代表的な実施例は、次のとおりである。 A typical embodiment of the present invention is as follows.
 実施例では金属微粒子として銀微粒子の例を記述するが、金属種を限定するものではない。 In the examples, silver fine particles are exemplified as the metal fine particles, but the metal species is not limited.
 透明導電性膜積層基板の表面粗さは、触針式表面粗さ計(DEKTAK製)を用いて、中心線表面粗さ(Ra)を測定した。 For the surface roughness of the transparent conductive film laminated substrate, the centerline surface roughness (Ra) was measured using a stylus type surface roughness meter (manufactured by DEKTAK).
 表面抵抗は、MCP-T600(三菱化学株式会社製)を用いて、試料の3点を測定し、その平均値を表面抵抗値とした。 The surface resistance was measured at three points of the sample using MCP-T600 (manufactured by Mitsubishi Chemical Corporation), and the average value was defined as the surface resistance value.
 全光線透過率は、ヘイズメーターNDH2000(日本電色工業株式会社製)を用いて、試料の全光線透過率を3点測定し、その平均値を透過率とした。 The total light transmittance was determined by measuring the total light transmittance of the sample at three points using a haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and taking the average value as the transmittance.
 <銀微粒子1の調製法>
 硝酸銀40g、ブチルアミン37.9g、メタノール200mLを加え、1時間攪拌し、A液を調製した。別にイソアスコルビン酸62.2gを取り、水400mLを加え攪拌して溶解し、続いてメタノール200mLを加えB液を調製した。B液をよく攪拌しA液をB液に1時間20分かけて滴下した。滴下終了後、3時間30分攪拌を継続した。攪拌終了後、30分間静置し固形物を沈降させた。上澄みをデカンテーションにより取り除いた後、新たに水500mLを加え、攪拌、静置、デカンテーションにより上澄み液を取り除いた。この精製操作を3回繰り返した。沈降した固形物を40℃の乾燥機中で乾燥し、水分を除去した。さらに、得られた銀微粒子20gとDisperbyk-106(ビッグケミージャパン社製)0.2gをメタノール100mLと純水5mLの混合溶液中に混合し、1時間混合した後に、純水100mLを加えて、スラリーをろ過した後、40℃の乾燥機中で乾燥させて、銀微粒子1を得た。銀微粒子1は電子顕微鏡による観察から一次粒子の平均粒子径が60nmであった。
<Preparation Method of Silver Fine Particle 1>
40 g of silver nitrate, 37.9 g of butylamine, and 200 mL of methanol were added and stirred for 1 hour to prepare solution A. Separately, 62.2 g of isoascorbic acid was taken, 400 mL of water was added and dissolved by stirring, and then 200 mL of methanol was added to prepare solution B. B liquid was stirred well and A liquid was dripped at B liquid over 1 hour and 20 minutes. After completion of the dropwise addition, stirring was continued for 3 hours and 30 minutes. After the completion of stirring, the mixture was allowed to stand for 30 minutes to precipitate the solid. After removing the supernatant by decantation, 500 mL of water was newly added, and the supernatant was removed by stirring, standing, and decantation. This purification operation was repeated three times. The settled solid was dried in a dryer at 40 ° C. to remove moisture. Furthermore, 20 g of the obtained silver fine particles and 0.2 g of Disperbyk-106 (manufactured by Big Chemie Japan) were mixed in a mixed solution of 100 mL of methanol and 5 mL of pure water, mixed for 1 hour, and then 100 mL of pure water was added, After filtering the slurry, the slurry was dried in a dryer at 40 ° C. to obtain silver fine particles 1. Silver fine particles 1 had an average primary particle size of 60 nm as observed with an electron microscope.
 <銀微粒子分散溶液2の調製法>(特表2005-530005を参考に調製)
 銀微粒子1を4g、トルエン30g、BYK-410(ビッグケミージャパン社製)0.2gを混合し、出力180Wの超音波分散機で1.5分間分散化処理を行い、純水15gを添加し、得られた乳濁液を出力180Wの超音波分散機で30秒間分散処理を行い、銀微粒子分散溶液2を調製した。
<Preparation Method of Silver Fine Particle Dispersion Solution 2> (Prepared with reference to JP 2005-530005)
4 g of silver fine particles 1, 30 g of toluene, and 0.2 g of BYK-410 (manufactured by Big Chemie Japan) are mixed, dispersed for 1.5 minutes with an ultrasonic disperser with an output of 180 W, and 15 g of pure water is added. The obtained emulsion was subjected to a dispersion treatment for 30 seconds with an ultrasonic disperser with an output of 180 W to prepare a silver fine particle dispersion solution 2.
 <銀微粒子を含む網目状構造物の作製法>
 厚み100μmのポリエチレンテレフタレート樹脂基材(以下PET基材)上に、銀微粒子分散溶液をバーコーターにより塗布した後、乾燥させることでPET基材上に金属微粒子が網目状に繋がった透明導電性膜を作製した。さらに、導電性部位の導電性を向上させるため、大気中70℃で30秒の間熱処理を施し、さらにギ酸蒸気を含む雰囲気中で、70℃で30分熱処理し、銀微粒子で構成される網目状構造物が積層された基材を作製した。
<Method for producing network structure containing silver fine particles>
A transparent conductive film in which metal fine particles are connected in a network form on a PET substrate by applying a silver fine particle dispersion solution on a polyethylene terephthalate resin substrate (hereinafter referred to as PET substrate) having a thickness of 100 μm using a bar coater and then drying. Was made. Further, in order to improve the conductivity of the conductive portion, heat treatment is performed at 70 ° C. in the atmosphere for 30 seconds, and further heat treatment is performed at 70 ° C. for 30 minutes in an atmosphere containing formic acid vapor, thereby forming a network composed of silver fine particles The base material with which the structure was laminated | stacked was produced.
 実施例1:
 上述した方法により作製した銀微粒子を含む網目状構造物が積層されたPET基材上に、下記の接着層コーティング液1を乾燥後の厚みが5μmとなるよう塗布し、100℃の温度で5分乾燥させて接着層を形成した。
Example 1:
The following adhesive layer coating solution 1 is applied on a PET base material on which a network structure containing silver fine particles prepared by the above-described method is laminated so that the thickness after drying is 5 μm, and is 5 at a temperature of 100 ° C. The layer was dried to form an adhesive layer.
 <接着層コーティング液1>
 ポリビニルブチラール樹脂(積水化学製、エスレックBL-2)8gをノルマルブタノール52gに溶解させた後、シリカゾルのメタノール分散体(シリカゾル30重量%、平均粒径15nm)40gを加えて攪拌し、接着層コーティング液1を作製した。
<Adhesive layer coating solution 1>
After dissolving 8 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BL-2) in 52 g of normal butanol, 40 g of a methanol dispersion of silica sol (silica sol 30% by weight, average particle size 15 nm) is added and stirred to form an adhesive layer coating. Liquid 1 was produced.
 <転写>
 厚さ1mmのガラス基材表面に、銀微粒子を含む網目状構造物および接着層が形成されたPET基材の接着層が形成された表面を対向させ、ホットラミネーター(大成ラミネーター製、大成ファーストラミネーターVAII-700)を用いて180℃で熱圧接し、室温に下がるまで放置した後、PET基材を剥離して銀微粒子を含む網目状構造物および接着層をガラス基板上に転写した。
<Transfer>
A hot laminator (manufactured by Taisei Laminator, Taisei First Laminator) is made to face a surface of a glass substrate having a thickness of 1 mm on which the adhesive layer of a PET substrate having a network structure containing silver fine particles and an adhesive layer is formed. Using VAII-700), the film was heat-welded at 180 ° C. and left to cool to room temperature, and then the PET base material was peeled off to transfer the network structure containing silver fine particles and the adhesive layer onto the glass substrate.
 <加熱焼成>
 前記銀微粒子を含む網目状構造物および接着層が積層されたガラス基板を500℃に加熱した焼成炉(アドバンテック東洋株式会社製、電気マッフル炉KM-280)中で30分間加熱焼成し、透明導電性膜が積層されたガラス基板を作製した。
<Heating and firing>
The glass substrate on which the network structure containing silver fine particles and the adhesive layer are laminated is heated and baked for 30 minutes in a baking furnace (Advantech Toyo Co., Ltd., electric muffle furnace KM-280) heated to 500 ° C. A glass substrate on which a conductive film was laminated was produced.
 <平坦化>
 ペルヒドロポリシラザン溶液(AZ-エレクトロニックマテリアルズ社製、商品名:アクアミカNP-110)を、前記透明導電性膜積層基板表面にスピンコーターを用いて塗布した。
<Planarization>
A perhydropolysilazane solution (manufactured by AZ-Electronic Materials, trade name: Aquamica NP-110) was applied to the surface of the transparent conductive film laminated substrate using a spin coater.
 次に、250℃で3時間焼成することで、ペルヒドロポリシラザンをガラス化させ、銀微粒子で構成される網目状構造物を有した、酸化ケイ素を主成分とした酸化物膜が積層した透明導電性膜積層基板を得た。 Next, it is baked at 250 ° C. for 3 hours to vitrify perhydropolysilazane, and has a network structure composed of silver fine particles, and a transparent conductive film in which an oxide film mainly composed of silicon oxide is laminated. A conductive film laminated substrate was obtained.
 中心線平均粗さ(Ra)は0.3μmであり、従来の透明導電性膜に比較して表面平坦性に優れていた。表面抵抗値は5Ω/□であり、全光線透過率は81%であった。耐熱性試験として耐熱性テストとして300℃で1時間加熱したが、加熱前と同様の表面抵抗値と全光線透過率であった。 The center line average roughness (Ra) was 0.3 μm, and the surface flatness was excellent as compared with the conventional transparent conductive film. The surface resistance value was 5Ω / □, and the total light transmittance was 81%. As a heat resistance test, it was heated at 300 ° C. for 1 hour as a heat resistance test, but had the same surface resistance value and total light transmittance as before heating.
 実施例2:
 上述した実施例1と同様に、銀微粒子で構成される網目状構造物を有した、酸化ケイ素を主成分とした酸化物膜が積層した透明導電性膜積層基板を作成した。
Example 2:
Similar to Example 1 described above, a transparent conductive film laminated substrate having a network structure composed of silver fine particles and laminated with an oxide film mainly composed of silicon oxide was prepared.
 次に、市販のガラスエッチング剤を用いて透明導電性膜積層基板の表面を研磨処理し、表面性を改善した透明導電性膜積層基板を作成した。
中心線平均粗さ(Ra)は0.1μmであり、表面平坦性が改善されていた。表面抵抗値は3Ω/□であり、全光線透過率は81%であった。
Next, the surface of the transparent conductive film laminated substrate was polished using a commercially available glass etchant to produce a transparent conductive film laminated substrate with improved surface properties.
The center line average roughness (Ra) was 0.1 μm, and the surface flatness was improved. The surface resistance value was 3Ω / □, and the total light transmittance was 81%.
 比較例1:
 上述した方法により銀微粒子分散溶液をPET基材上に塗布・乾燥させ、熱処理及び化学処理を施し、銀微粒子を含む網目状構造物を積層した。表面抵抗値は6Ω/□、全光線透過率は86%であった。
Comparative Example 1:
The silver fine particle dispersion solution was applied and dried on a PET substrate by the method described above, heat treatment and chemical treatment were performed, and a network structure containing silver fine particles was laminated. The surface resistance value was 6Ω / □, and the total light transmittance was 86%.
 表面粗さ計で測定した中心線平均粗さ(Ra)は1.2μmであり、平坦性の乏しい表面であった。耐熱性テストとして300℃で1時間加熱したところ、PETフィルムが収縮してしまうと同時に黄色に変色し透明導電性膜としての機能を失ってしまった。 The center line average roughness (Ra) measured with a surface roughness meter was 1.2 μm, and the surface was poor in flatness. When heated at 300 ° C. for 1 hour as a heat resistance test, the PET film contracted, and at the same time it turned yellow and lost its function as a transparent conductive film.
 本発明に係る透明導電性膜および透明導電性膜積基板は、低抵抗で高透過率であり、耐熱性および平坦性に優れ、本発明に係る透明導電性膜及び透明導電性膜積層基板の製造方法は、特別な装置を用いることなく容易に作製することが可能であるので、薄膜型太陽電池又は有機EL用の透明電極に好適である。 The transparent conductive film and the transparent conductive film stack substrate according to the present invention have low resistance and high transmittance, excellent heat resistance and flatness, and the transparent conductive film and the transparent conductive film laminated substrate according to the present invention. Since the production method can be easily produced without using a special apparatus, it is suitable for a thin film solar cell or a transparent electrode for organic EL.
1:金属微粒子で構成させる網目状構造物 
2:シリカフィラー混合系接着層
3:ポリシラザン溶液
4:透明導電性膜
5:透明導電性膜積層基板 
10:基材
11:ガラス基板
1: Network structure composed of fine metal particles
2: Silica filler mixed adhesive layer 3: Polysilazane solution 4: Transparent conductive film 5: Transparent conductive film laminated substrate
10: Base material 11: Glass substrate

Claims (7)

  1.  金属微粒子で構成される網目状構造物を内包した酸化ケイ素を主成分とした酸化物膜から成る透明導電性膜。 A transparent conductive film composed of an oxide film composed mainly of silicon oxide containing a network structure composed of fine metal particles.
  2.  金属微粒子が、Au、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snから選ばれた金属あるいは前記金属の二種類以上を含む合金である請求項1記載の透明導電性膜。 2. The transparent conductive material according to claim 1, wherein the metal fine particles are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, and Sn, or an alloy containing two or more kinds of the metals. film.
  3.  酸化ケイ素が、シリカ微粒子、シリカ系化合物、ポリシラザンの1種類以上を用いて生成した請求項1又は2記載の透明導電性膜。 The transparent conductive film according to claim 1 or 2, wherein the silicon oxide is produced using at least one of silica fine particles, silica-based compound, and polysilazane.
  4.  請求項1~3記載の透明導電性膜をガラス基板又はセラミックス基板に積層した透明導電性膜積層基板。 A transparent conductive film laminated substrate obtained by laminating the transparent conductive film according to claim 1 on a glass substrate or a ceramic substrate.
  5.  基材上に金属微粒子で構成される網目状構造物を形成させた後、シリカ微粒子、シリカ系化合物の1種類以上及び有機物バインダーを含む接着層を介して、ガラス基板又はセラミックス基板上に網目構造物と共に接着層を転写した後、加熱焼成することを特徴とする請求項4記載の透明導電性膜積層基板の製造方法。 After forming a network structure composed of metal fine particles on a base material, a network structure is formed on a glass substrate or ceramic substrate through an adhesive layer containing silica fine particles, one or more types of silica compounds and an organic binder. The method for producing a transparent conductive film laminated substrate according to claim 4, wherein the adhesive layer is transferred together with the product and then heated and fired.
  6.  前記透明導電性膜積層基板の表面にポリシラザンを主成分とする溶液を塗布した後、加熱焼成及び/又は加湿する請求項5記載の製造方法。 The manufacturing method according to claim 5, wherein a solution containing polysilazane as a main component is applied to the surface of the transparent conductive film laminated substrate, and then heated and / or humidified.
  7.  前記透明導電性膜積層基板の表面を化学的ウエットエッチング及び/又は物理的研磨を行なう請求項6記載の製造方法。 The manufacturing method according to claim 6, wherein the surface of the transparent conductive film laminated substrate is subjected to chemical wet etching and / or physical polishing.
PCT/JP2010/050504 2009-01-19 2010-01-18 Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same WO2010082652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009136A JP5363125B2 (en) 2009-01-19 2009-01-19 Transparent conductive film laminated substrate and manufacturing method thereof
JP2009-009136 2009-01-19

Publications (1)

Publication Number Publication Date
WO2010082652A1 true WO2010082652A1 (en) 2010-07-22

Family

ID=42339904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050504 WO2010082652A1 (en) 2009-01-19 2010-01-18 Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same

Country Status (3)

Country Link
JP (1) JP5363125B2 (en)
TW (1) TW201044463A (en)
WO (1) WO2010082652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294048B1 (en) * 2016-09-08 2020-12-02 Goodrich Corporation Apparatus and methods of electrically conductive optical semiconductor coating

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185933A (en) * 2011-03-03 2012-09-27 Panasonic Corp Substrate provided with transparent conductive film and organic electroluminescent element
WO2014028754A1 (en) * 2012-08-16 2014-02-20 Cima Nanotech Israel Ltd. Emulsions for preparing transparent conductive coatings
CN103677357B (en) * 2012-09-06 2016-12-28 宸鸿科技(厦门)有限公司 For the covering plate structure of contact panel and manufacture method thereof and contact panel
US9985344B2 (en) * 2014-12-23 2018-05-29 Te Connectivity Corporation Electronic article and process of producing an electronic article
US11189393B2 (en) 2015-03-23 2021-11-30 Bando Chemical Industries, Ltd. Conductive coated composite body and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182191A (en) * 1996-12-25 1998-07-07 Mitsubishi Materials Corp Transparent electroconductive film and composition for forming the same
JPH1135855A (en) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device
JP2002083518A (en) * 1999-11-25 2002-03-22 Sumitomo Metal Mining Co Ltd Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
JP2005048056A (en) * 2003-07-28 2005-02-24 Sumitomo Metal Mining Co Ltd Coating liquid for forming low transmission transparent electroconductive film, low transmission transparent electroconductive film, low transmission transparent electroconductive base material and display applied with this base material
JP2005050668A (en) * 2003-07-28 2005-02-24 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive film with low transmissivity, transparent conductive film with low transmissivity, base material for transparent conductive film with low transmissivity, and display device adopting the base material
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2010012714A (en) * 2008-07-04 2010-01-21 Toda Kogyo Corp Method for manufacturing functional thin-film, functional thin-film, method for manufacturing functional thin-film laminated base material, and functional thin-film laminated base material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182191A (en) * 1996-12-25 1998-07-07 Mitsubishi Materials Corp Transparent electroconductive film and composition for forming the same
JPH1135855A (en) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and display device
JP2002083518A (en) * 1999-11-25 2002-03-22 Sumitomo Metal Mining Co Ltd Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
JP2005048056A (en) * 2003-07-28 2005-02-24 Sumitomo Metal Mining Co Ltd Coating liquid for forming low transmission transparent electroconductive film, low transmission transparent electroconductive film, low transmission transparent electroconductive base material and display applied with this base material
JP2005050668A (en) * 2003-07-28 2005-02-24 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive film with low transmissivity, transparent conductive film with low transmissivity, base material for transparent conductive film with low transmissivity, and display device adopting the base material
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2010012714A (en) * 2008-07-04 2010-01-21 Toda Kogyo Corp Method for manufacturing functional thin-film, functional thin-film, method for manufacturing functional thin-film laminated base material, and functional thin-film laminated base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294048B1 (en) * 2016-09-08 2020-12-02 Goodrich Corporation Apparatus and methods of electrically conductive optical semiconductor coating
US10955747B2 (en) 2016-09-08 2021-03-23 Goodrich Corporation Apparatus and methods of electrically conductive optical semiconductor coating
US11852977B2 (en) 2016-09-08 2023-12-26 Danbury Mission Technologies, Llc Apparatus and methods of electrically conductive optical semiconductor coating

Also Published As

Publication number Publication date
JP5363125B2 (en) 2013-12-11
TW201044463A (en) 2010-12-16
JP2010165638A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010082652A1 (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
CN106479232B (en) Graphene-containing coating film and method for producing same
US8101231B2 (en) Processes for forming photovoltaic conductive features from multiple inks
US20120015472A1 (en) Method of producing solar cell module
JP5644825B2 (en) Silica porous body, laminated body and composition for optical use, and method for producing silica porous body
CN109206017B (en) Graphene-doped glass coating liquid and preparation method thereof
KR20070028579A (en) Paste composition and solar cell element employing same
JP2008536791A5 (en)
KR20140094415A (en) Coating composition for transparent conductive film, transparent conductive film and method for fabricating the same
CN102341866A (en) Electrically conductive paste composition and electrically conductive film formed by using same
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
JP6866104B2 (en) Conductors, their manufacturing methods, and devices containing them
JP5640310B2 (en) Composition, antireflection film substrate, and solar cell system
JP2007067392A (en) Member for electronic elements and method of manufacturing same
JP2010129379A (en) Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same
CN112213895B (en) Inorganic salt electrochromic film and preparation method and application thereof
JP2010143802A (en) Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those
JP2011222453A (en) Base material with conductive film
JP2012094830A (en) Transparent conductive film composition for solar battery and transparent conductive film
KR101444820B1 (en) manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
JP6530644B2 (en) Composition for forming ITO conductive film and ITO conductive film
JP5370241B2 (en) Method for producing porous silica
KR100420049B1 (en) A composition for a protective layer of a transparent conductive layer and a method of preparing a protective layer using the same
JP5709351B2 (en) Method for producing coating solution for forming silica-based transparent coating on microlens array
JP2017031384A (en) Composition for forming phosphorus-doped tin oxide and phosphorus-doped tin oxide conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731321

Country of ref document: EP

Kind code of ref document: A1