JP2010143802A - Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those - Google Patents

Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those Download PDF

Info

Publication number
JP2010143802A
JP2010143802A JP2008324354A JP2008324354A JP2010143802A JP 2010143802 A JP2010143802 A JP 2010143802A JP 2008324354 A JP2008324354 A JP 2008324354A JP 2008324354 A JP2008324354 A JP 2008324354A JP 2010143802 A JP2010143802 A JP 2010143802A
Authority
JP
Japan
Prior art keywords
silicon oxide
transparent conductive
film
conductive film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008324354A
Other languages
Japanese (ja)
Inventor
Yasuo Kakihara
康男 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008324354A priority Critical patent/JP2010143802A/en
Publication of JP2010143802A publication Critical patent/JP2010143802A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film having high transmittance, high conductivity, surface flatness and excellent heat resistance and containing a network structure composed of metal fine particles, a substrate in which the transparent conductive film is laid, and to provide a method for producing the transparent conductive film. <P>SOLUTION: The transparent conductive film is based on a silicon oxide gel film obtained by firing by heating and contains a network structure composed of metal fine particles, wherein the metal fine particles are made of a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In and Sn or an alloy containing two or more of the metals. The substrate in which the transparent conductive film is laid is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属微粒子で構成される網目状構造物を内包する酸化ケイ素を主成分とした酸化物膜が積層した透明導電性膜および透明導電性膜積層基板と製造方法を提供する。 The present invention provides a transparent conductive film, a transparent conductive film laminated substrate, and a manufacturing method thereof, in which an oxide film mainly composed of silicon oxide containing a network structure composed of metal fine particles is laminated.

プラズマディスプレイや有機ELなどの表示デバイス、タッチパネルなどの入力センサー、薄膜型アモルファスSi太陽電池や色素増感太陽電池などの太陽光を利用した太陽電池などの電極には透明性を有した導電性膜が使用されている。   Transparent conductive films for electrodes such as display devices such as plasma displays and organic EL, input sensors such as touch panels, solar cells such as thin-film amorphous Si solar cells and dye-sensitized solar cells Is used.

中でも透明酸化物であるITO(InとSnの酸化物)やZnOを主成分とした薄膜が主に用いられており、微粒子分散溶液の塗布法により作製される場合もあるが、高い透明性と高い導電性を得るために一般的にはスパッタ装置や蒸着装置により気相法により作製されている。 In particular, thin films mainly composed of ITO (In and Sn oxides) and ZnO, which are transparent oxides, are mainly used and may be produced by a coating method of a fine particle dispersion solution. In order to obtain high conductivity, it is generally produced by a vapor phase method using a sputtering apparatus or a vapor deposition apparatus.

一方、前記のような気相法による連続膜の透明導電性膜のかわりに、金属膜を格子状や網目状に形成し、金属膜部が導電性を担い、空孔部が光透過性を担う形の透明導電性膜が開示されている。例えば、Cu膜の連続膜を製膜した後に格子状にCu膜をエッチングしたプラズマディスプレイ用のEMIシールド膜は実際に採用されており、また、同目的のために金属微粒子分散溶液を塗布あるいは印刷することで網目状構造を持つ導電性部を形成させ、さらにめっきを施す方法が検討されている。いずれの手法も気相法に必要な真空装置が不要であり、透明酸化物に比べ透明性を維持したまま導電性を向上させることが可能な方法である。   On the other hand, instead of the continuous transparent conductive film by the vapor phase method as described above, the metal film is formed in a lattice shape or a mesh shape, the metal film portion is responsible for conductivity, and the pore portion is light transmissive. A transparent conductive film in a form to bear is disclosed. For example, an EMI shield film for plasma displays in which a Cu film is etched after being formed into a lattice after forming a continuous film of Cu film is actually employed, and a metal fine particle dispersion solution is applied or printed for the same purpose. Thus, a method of forming a conductive portion having a network structure and performing plating has been studied. Any of these methods does not require a vacuum apparatus necessary for the vapor phase method, and can improve conductivity while maintaining transparency as compared with a transparent oxide.

従来より、金属微粒子ペーストを基板上に網目状にスクリーン印刷し、加熱焼成することで網目状構造物を有する透明導電性膜積層基板とその製造法が知られている(特許文献1)。また金属微粒子分散溶液よりW/O型エマルジョンを調製し、基板上に塗布・乾燥させることで金属微粒子が網目状構造を形成し、透明導電性膜を基板上に形成する方法が知られている(特許文献2及び3)。 2. Description of the Related Art Conventionally, a transparent conductive film laminated substrate having a network structure by screen printing a metal fine particle paste on a substrate in a mesh shape and heating and firing is known (Patent Document 1). Also known is a method in which a W / O type emulsion is prepared from a metal fine particle dispersion solution, and the fine metal particles form a network structure by coating and drying on the substrate, thereby forming a transparent conductive film on the substrate. (Patent Documents 2 and 3).

特開2007−227906号公報JP 2007-227906 A 特表2005−530005号公報JP 2005-530005 Gazette 特開2007−234299号公報JP 2007-234299 A

高透過率、高導電性であり、しかも平坦性を有し、且つ、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板は、現在最も要求されているところであるが、未だ得られていない。 Transparent conductive films and transparent conductive film laminated substrates composed of materials having high transmittance, high conductivity, flatness, and excellent heat resistance and weather resistance are currently most demanded. Although it is, it has not been obtained yet.

即ち、上述したいずれの方法も透明導電性膜として重要な高透過率と高導電性を有した透明導電性膜積層基板を得ることができるが、これらの透明導電性膜積層基板では、その製法から必然的に透明導電性膜の上面は導電性部が凸状になってしまい、平坦性が十分ではない。そのため上部に別の機能性薄膜を積層させる場合、例えば有機EL用の電極や薄膜型太陽電池の電極に用いた場合には発光効率や発電効率の低下が懸念される。   That is, any of the above-described methods can obtain a transparent conductive film laminated substrate having high transmittance and high conductivity which are important as a transparent conductive film. Therefore, the upper surface of the transparent conductive film inevitably has a convex conductive portion, and the flatness is not sufficient. Therefore, when another functional thin film is laminated on the upper part, for example, when used for an electrode for organic EL or an electrode of a thin film type solar cell, there is a concern that the light emission efficiency and the power generation efficiency are lowered.

また、機能性薄膜を積層する場合には、現在のところ気相法プロセスに頼らざるを得ないところが多く、製膜時あるいは製膜前後に基板あるいは機能性薄膜積層基板を加熱する必要があるなど透明導電性膜積層基板に十分な耐熱性が要求される。   In addition, when laminating functional thin films, there are many places where it is currently necessary to rely on a vapor phase process, and it is necessary to heat a substrate or a functional thin film laminated substrate before or after film formation. Sufficient heat resistance is required for the transparent conductive film laminated substrate.

さらに、室外での長期間の使用に対して十分な耐候性と性能維持が要求される太陽電池に用いられる透明導電性膜積層基板では、時間の経過とともに内部に含まれる有機物などが分解析出すると発電効率の低下を招く恐れがあるため、長期間安定した材料で構成された透明導電性膜が望まれる。   Furthermore, in transparent conductive film laminated substrates used in solar cells that require sufficient weather resistance and performance maintenance for long-term outdoor use, organic substances contained inside decompose and precipitate over time. Then, since there exists a possibility of causing the fall of electric power generation efficiency, the transparent conductive film comprised with the material stable for a long period of time is desired.

そこで、本発明では、高透過率、高導電性であり、平坦性が改善され、耐熱性と耐候性に優れた材料で構成された透明導電性膜および透明導電性膜積層基板を提供することとする。   Accordingly, the present invention provides a transparent conductive film and a transparent conductive film laminated substrate that are made of a material having high transmittance, high conductivity, improved flatness, and excellent heat resistance and weather resistance. And

前記技術課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、金属微粒子で構成される網目状構造物を内包し、ポリシラザンを主成分とする酸化ケイ素ゲル体膜である(本発明1)。   That is, the present invention is a silicon oxide gel film containing a network structure composed of metal fine particles and containing polysilazane as a main component (Invention 1).

また、本発明は、前記酸化ケイ素ゲル体膜の金属微粒子において、Au、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snから選ばれた金属あるいは前記金属の2種類以上を含む合金である酸化ケイ素ゲル体膜である(本発明2)。   Further, the present invention provides a metal fine particle of the silicon oxide gel body film, a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, Sn, or two or more of the above metals. It is a silicon oxide gel body film which is an alloy containing (Invention 2).

また、本発明は、前記酸化ケイ素ゲル体膜において、主成分のポリシラザンにペルヒドロポリシラザンを用いて生成した酸化ケイ素ゲル体膜である(本発明3)。   Moreover, this invention is a silicon oxide gel body film | membrane produced | generated using the perhydro polysilazane for the polysilazane of a main component in the said silicon oxide gel body film | membrane (this invention 3).

また、本発明は、前記いずれかに記載の酸化ケイ素ゲル体膜を加熱及び/又は加湿処理して得られる透明導電性膜であって、該透明導電性膜は酸化ケイ素を主成分とする酸化物中に金属微粒子で構成される網目状構造物が内包されていることを特徴とする透明導電性膜である(本発明4)。   Further, the present invention is a transparent conductive film obtained by heating and / or humidifying the silicon oxide gel body film according to any one of the above, wherein the transparent conductive film is an oxide mainly composed of silicon oxide. A transparent conductive film characterized in that a network structure composed of metal fine particles is encapsulated therein (Invention 4).

また、本発明は、前記透明導電性膜をガラス基板に積層した透明導電性膜積層基板である(本発明5)。   Moreover, this invention is a transparent conductive film laminated substrate which laminated | stacked the said transparent conductive film on the glass substrate (this invention 5).

また、本発明は、前記いずれかに記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を調製することを特徴とする酸化ケイ素ゲル体膜の製造方法である(本発明6)。   Further, in the present invention, after a network structure composed of the metal fine particles described above is formed on a substrate, a solution containing polysilazane as a main component is applied to the network structure, A method for producing a silicon oxide gel film, comprising drying to prepare a silicon oxide gel film (Invention 6).

また、本発明は、前記いずれかに記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を加熱及び/又は加湿処理することを特徴とする透明導電性膜の製造方法である(本発明7)。   Further, in the present invention, after a network structure composed of the metal fine particles described above is formed on a substrate, a solution containing polysilazane as a main component is applied to the network structure, A method for producing a transparent conductive film, wherein the silicon oxide gel body film is dried and heated and / or humidified (Invention 7).

また、本発明は、前記いずれかに記載の金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を調製した後、当該酸化ケイ素ゲル体膜を接着層としてガラス基板に接着した後、前記基板を取り除き、続いて加熱及び/又は加湿処理することを特徴とする透明導電性膜の製造方法である(本発明8)。   Further, in the present invention, after a network structure composed of the metal fine particles described above is formed on a substrate, a solution containing polysilazane as a main component is applied to the network structure, After preparing a silicon oxide gel body film by drying, the silicon oxide gel body film is adhered to a glass substrate as an adhesive layer, and then the substrate is removed, followed by heating and / or humidification treatment. This is a method for producing a conductive film (Invention 8).

本発明に係る金属微粒子で構成される網目状構造物を内包する酸化ケイ素を主成分とした酸化物膜が積層した透明導電性基板は、高透過率、高導電性であり、表面の平坦性が改善され、耐熱性と耐候性に優れるため、有機ELや薄膜型太陽電池などの透明導電性膜積層基板として用いることが出来る。   The transparent conductive substrate in which the oxide film mainly composed of silicon oxide containing the network structure composed of the metal fine particles according to the present invention is laminated has high transmittance, high conductivity, and flatness of the surface. Can be used as a transparent conductive film laminated substrate such as an organic EL or a thin film solar cell.

本発明の構成を図1に示す製造工程に従って、より詳しく説明すれば次の通りである。   The configuration of the present invention will be described in detail according to the manufacturing process shown in FIG.

最初に基板(10)上に金属微粒子分散溶液あるいは金属微粒子を含有するインキを塗布あるいは印刷し、その後に加熱及び/又は化学処理により網目状構造を有する導電性部を形成させる(図1の(A))。   First, a metal fine particle dispersion solution or ink containing metal fine particles is applied or printed on a substrate (10), and then a conductive portion having a network structure is formed by heating and / or chemical treatment ((( A)).

次に、ポリシラザンを主成分とする溶液(2)を、最終的に生成する酸化ケイ素を主成分とする酸化物が前記網目状構造を有する導電性部を覆う膜厚になるように調整するよう塗布する(図1の(B))。その後、乾燥させ金属微粒子で構成された網目状構造を有する導電性部を含む酸化ケイ素ゲル体膜(3)を基板上に作製する(図1の(C))。   Next, the solution (2) containing polysilazane as a main component is adjusted so that the oxide finally formed as a main component has a film thickness covering the conductive portion having the network structure. It is applied ((B) in FIG. 1). Thereafter, a silicon oxide gel body film (3) including a conductive portion having a network structure composed of fine metal particles is produced on a substrate ((C) in FIG. 1).

次に、ガラス基板(11)上面あるいは前記酸化ケイ素ゲル体膜の上面に上述したポリシラザンを主成分とする溶液(2)を塗布した後、ガラス基板上面と前記酸化ケイ素ゲル体上面を向かい合わせるように貼り合わせ、加圧しながら乾燥させ、ガラス基板と酸化ケイ素ゲル体膜を接着する(図1の(D))。   Next, after applying the above-mentioned solution (2) containing polysilazane as a main component to the upper surface of the glass substrate (11) or the upper surface of the silicon oxide gel body film, the upper surface of the glass substrate and the upper surface of the silicon oxide gel body are made to face each other. The glass substrate and the silicon oxide gel body film are adhered to each other (FIG. 1D).

金属微粒子で構成される網目状構造を有する導電性部を含む酸化ケイ素ゲル体膜(3)とガラス基板を接着させる(図1の(E))。その後に、基板を取り除く(図1の(F))。さらに、加熱及び/又は加湿処理を行い、酸化ケイ素ゲル体膜をガラス化へと転換することで、本発明の金属微粒子で構成された網目状構造を有する透明導電性膜積層基板(5)を得ることができる(図1の(G))。   A silicon oxide gel body film (3) including a conductive portion having a network structure composed of metal fine particles is adhered to a glass substrate ((E) of FIG. 1). After that, the substrate is removed ((F) in FIG. 1). Furthermore, the transparent conductive film laminated substrate (5) having a network structure composed of the metal fine particles of the present invention is obtained by performing heating and / or humidification treatment to convert the silicon oxide gel body film into vitrification. (G in FIG. 1).

金属微粒子で構成される網目状構造を有する導電性部を含有する酸化ケイ素ゲル体膜とガラス基板とを接着する方法は、上述した方法以外でも良い。例えば、金属微粒子で構成された網目状構造を有する導電性部を含有する酸化ケイ素ゲル体膜の生成とガラス基板への接着を同時に進行させる場合には、基板上に金属微粒子で構成された網目状構造を有する導電性部を形成させた後、ガラス基板と対面させ、基板とガラス基板の間にポリシラザンを主成分とする溶液を挿入した後、乾燥させ酸化ケイ素ゲル体膜を生成させた後に基板を取り除いても良い。   The method of adhering the silicon oxide gel body film containing a conductive portion having a network structure composed of metal fine particles and the glass substrate may be other than the method described above. For example, in the case of simultaneously generating a silicon oxide gel body film containing a conductive portion having a network structure composed of metal fine particles and adhering to a glass substrate, a mesh composed of metal fine particles on the substrate is used. After forming a conductive portion having a shape structure, facing a glass substrate, inserting a solution containing polysilazane as a main component between the substrate and the glass substrate, and then drying to produce a silicon oxide gel film The substrate may be removed.

上述した手法により得られる透明導電性基板は、金属微粒子で構成される網目状構造を有する導電性部により高導電性を有し、さらに酸化ケイ素を主成分とする酸化物が導電性部の網目部分を充填した構造であるので、上面の平坦性が改善されるとともに高透過率であり、さらに耐熱性・耐候性に優れる透明導電性膜積層基板である。   The transparent conductive substrate obtained by the above-described method has high conductivity due to the conductive part having a network structure composed of metal fine particles, and an oxide mainly composed of silicon oxide is a network of the conductive part. Since the structure is filled with a portion, the transparent conductive film laminated substrate is improved in flatness on the upper surface, has high transmittance, and is excellent in heat resistance and weather resistance.

金属微粒子で構成される網目状構造を有する導電性部の金属微粒子は、従来開示されているガス中蒸発法などの気相法あるいは金属塩を溶液中で還元する液相還元法、または金属錯体の加熱分解による金属微粒子の調製法などを用いて調製することができる。   The metal fine particles of the conductive part having a network structure composed of metal fine particles may be a gas phase method such as a gas evaporation method or a liquid phase reduction method in which a metal salt is reduced in a solution, or a metal complex. It can be prepared using a method of preparing metal fine particles by thermal decomposition of

金属微粒子の金属原料としてはAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snなどを用いることが出来る。あるいは前記金属を2種類以上含む合金であっても良い。近年、電子回路の微細配線形成用に用いられているAu、Ag、Cu、Pt、PdあるいはAu、Ag、Cu、Pt、Pdを2種類以上含む合金を用いるのがより好ましい。   Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, Sn, etc. can be used as the metal raw material for the metal fine particles. Alternatively, an alloy containing two or more kinds of the metals may be used. In recent years, it is more preferable to use Au, Ag, Cu, Pt, Pd, or an alloy containing two or more kinds of Au, Ag, Cu, Pt, Pd, which has been used for forming fine wiring in electronic circuits.

金属微粒子は分散溶液あるいは印刷用インキなどに調製し、基板上に塗布あるいは印刷される。そのため、金属微粒子の表面は適当な表面処理剤あるいは分散剤などで処理されていることが好ましい。表面処理剤あるいは分散剤は各分散溶液や各印刷用インキに最適に分散する表面処理剤あるいは分散剤を用いるのが好ましい。   The metal fine particles are prepared in a dispersion solution or printing ink and applied or printed on the substrate. Therefore, the surface of the metal fine particles is preferably treated with an appropriate surface treatment agent or dispersant. As the surface treating agent or dispersing agent, it is preferable to use a surface treating agent or dispersing agent that is optimally dispersed in each dispersion solution or each printing ink.

金属微粒子分散溶液あるいは金属微粒子を含む印刷インキを塗布または印刷する基板(10)は、ポリシラザンを主成分とする溶液に対する耐薬品性が有り、金属微粒子分散溶液あるいは金属微粒子を含む印刷インキによる網目状構造を有する導電性部を形成させるのに耐えうる、耐薬品性および耐熱性を有する必要がある。上記条件に合う基板としてはポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂や、ポリイミド樹脂、ポリアミド樹脂などが好ましい。
また、ポリシラザンから酸化ケイ素ゲル体膜を形成した後、基板を剥離しやすいように、予め基板表面に酸化ケイ素との親和性を弱めるコーティングを施したものでも良い。
The substrate (10) for applying or printing the metal fine particle dispersion solution or the printing ink containing the metal fine particles has chemical resistance to the solution containing polysilazane as a main component, and has a mesh shape with the metal fine particle dispersion solution or the printing ink containing the metal fine particles. It is necessary to have chemical resistance and heat resistance that can withstand the formation of a conductive portion having a structure. As the substrate meeting the above conditions, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyimide resins, polyamide resins and the like are preferable.
Moreover, after forming a silicon oxide gel body film from polysilazane, the substrate surface may be coated with a coating that weakens the affinity with silicon oxide so that the substrate can be easily peeled off.

次に、金属微粒子で構成される網目状構造を有する導電性部を形成する場合には、特許文献2記載の金属微粒子分散溶液の塗布する方法や特許文献1記載の金属微粒子分散インクをスクリーン印刷する方法を用いても良い。   Next, when forming a conductive portion having a network structure composed of metal fine particles, a method of applying a metal fine particle dispersion solution described in Patent Document 2 or a screen printing of a metal fine particle dispersed ink described in Patent Document 1 You may use the method to do.

金属微粒子で構成される網目状構造を有する導電性部を形成した後、導電性の向上を目的に基板が耐えうる範囲で加熱及び/又は化学処理を行うことが好ましい。   After forming a conductive portion having a network structure composed of metal fine particles, it is preferable to perform heating and / or chemical treatment within a range that the substrate can withstand for the purpose of improving conductivity.

金属微粒子で構成される網目状構造を有する導電性部の厚みは0.4μm以上が好ましい。0.4μmより薄い場合には、十分な導電性が得られない。その上限の膜厚は10μmが好ましい。10μmを超える場合には同時に網部分の線幅が広がり易く、結果的に透過率の低下をもたらすためである。   The thickness of the conductive portion having a network structure composed of metal fine particles is preferably 0.4 μm or more. When it is thinner than 0.4 μm, sufficient conductivity cannot be obtained. The upper limit film thickness is preferably 10 μm. This is because when the thickness exceeds 10 μm, the line width of the net portion tends to be widened at the same time, resulting in a decrease in transmittance.

次に金属微粒子で構成される網目状構造を有する導電性部を内包するようにポリシラザンを主成分とする溶液を塗布する(図1の(B))。   Next, a solution containing polysilazane as a main component is applied so as to enclose a conductive portion having a network structure composed of metal fine particles ((B) of FIG. 1).

ポリシラザンは、−SiR −NR−SiR −(RおよびRは、それぞれ独立に、水素原子または炭化水素基を示す)で示されるシラザン結合を有する線状または環状の化合物の総称であり、加熱あるいは水分との反応によってSi−NR−Si結合が分解してSi−O−Siネットワークを形成する材料である。
本発明においては、上記一般式のR、Rが水素であるペルヒドロポリシラザン、又はRがメチル基である、部分的に有機化されたポリシラザンが好ましく用いられる。
Polysilazane is a linear or cyclic compound having a silazane bond represented by —SiR 1 2 —NR 2 —SiR 1 2 — (wherein R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group). is a generic term, Si-NR 2 -Si bond by reaction with heating or water is a material that form Si-O-Si network by decomposition.
In the present invention, perhydropolysilazane in which R 1 and R 2 in the above general formula are hydrogen, or partially organicized polysilazane in which R 2 is a methyl group is preferably used.

ポリシラザンを主成分として調製する溶液中には、ポリシラザンのシラザン結合の反応性を向上させるために、金属微粒子触媒(Pdなど)あるいはアミン触媒などが含まれていても良い。
あるいは、ガラス化させる場合に酸化ケイ素中のクラックを防止する目的のために、有機チタン化合物が含まれていても良い。例えば特開2006−265344号公報に記載されている有機チタン化合物としてはテトラアルコキシチタン化合物、チタンキレート化合物、チタンアシレート化合物、チタネート系カップリング剤などがある。
The solution prepared with polysilazane as a main component may contain a metal fine particle catalyst (such as Pd) or an amine catalyst in order to improve the reactivity of the silazane bond of polysilazane.
Alternatively, an organic titanium compound may be included for the purpose of preventing cracks in silicon oxide when vitrifying. For example, as an organic titanium compound described in JP-A-2006-265344, there are a tetraalkoxytitanium compound, a titanium chelate compound, a titanium acylate compound, a titanate coupling agent, and the like.

特開2006−265344JP 2006-265344 A

ポリシラザンを主成分とする溶液中におけるポリシラザンの含有量は40wt%以下が好ましい。より好ましくは20wt%以下である。40wt%より濃い場合は、塗布する場合に粘度が上昇する場合や、保存安定性に問題があり好ましくない。濃度の下限値は特に制限はないが1wt%以下であると、所望の厚みを得るために何度も重ね塗りする必要があるため生産性が悪く好ましくない。   The content of polysilazane in the solution containing polysilazane as a main component is preferably 40 wt% or less. More preferably, it is 20 wt% or less. If it is thicker than 40 wt%, it is not preferable because the viscosity increases when it is applied or there is a problem in storage stability. The lower limit of the concentration is not particularly limited, but if it is 1 wt% or less, it is not preferable because the productivity is poor because it is necessary to repeatedly apply the coating several times in order to obtain a desired thickness.

ポリシラザンを主成分とする溶液に用いる溶媒としては、ポリシラザンを溶解して急激にポリシラザンと反応しない溶媒であれば特に限定されない。具体的には脂肪族炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類、などが挙げられる。これらの溶媒を単独に用いても混合して用いても良い。
ポリシラザンの溶解性とポリシラザンとの低反応性から、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素が好ましい。
The solvent used in the solution containing polysilazane as a main component is not particularly limited as long as it dissolves polysilazane and does not react rapidly with polysilazane. Specific examples include aliphatic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and halogenated hydrocarbons. These solvents may be used alone or in combination.
In view of the solubility of polysilazane and low reactivity with polysilazane, aliphatic hydrocarbons such as octane, nonane, decane, undecane, dodecane, tridecane and tetradecane, and aromatic hydrocarbons such as benzene, toluene and xylene are preferred.

ポリシラザンを主成分とする溶液を塗布する方法は、特に限定されず、例えば、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷、ロールコート法、メニスカスコート法、ダイコート法などが挙げられる。 The method for applying a solution containing polysilazane as a main component is not particularly limited. For example, dip coating, spin coating, spray coating, flexographic printing, screen printing, gravure printing, roll coating, meniscus coating And die coating method.

上述したポリシラザンを主成分とする溶液を塗布する場合には、酸化ケイ素ゲル体膜が前記金属微粒子で構成される網目状構造物を十分覆うだけの膜厚になる様に調製することが好ましい。金属微粒子で構成される網目状構造物の膜厚によって厚みは異なるが、0.5μm〜10μmになるよう調製することが好ましい。0.5μm以下であると十分に導電性部を覆うことが出来ず、10μm以上であると、酸化ケイ素ゲル体膜をさらに加熱及び/又は加湿処理してガラス化していく過程でクラックやボイドが発生しやすく好ましくない。クラックやボイドは透過率低下の原因となるため好ましくない。 In the case of applying the above-described solution containing polysilazane as a main component, it is preferable that the silicon oxide gel film be prepared so as to have a film thickness sufficient to cover the network structure composed of the metal fine particles. Although the thickness varies depending on the film thickness of the network structure composed of metal fine particles, it is preferably prepared to be 0.5 μm to 10 μm. If the thickness is 0.5 μm or less, the conductive part cannot be sufficiently covered, and if it is 10 μm or more, cracks and voids are generated in the process of further vitrification by heating and / or humidifying the silicon oxide gel body film. It is easy to generate and is not preferable. Cracks and voids are not preferable because they cause a decrease in transmittance.

酸化ケイ素ゲル体膜の所望の厚みを得るために、塗布する回数を数回に分けて行っても良い。また、塗布する毎に塗布厚みを変えて行なっても良い。 In order to obtain a desired thickness of the silicon oxide gel body film, the number of times of coating may be divided into several times. Alternatively, the coating thickness may be changed each time coating is performed.

ポリシラザンを主成分とする溶液を塗布した後、200℃以下で塗膜を乾燥させる。乾燥時間は30秒〜2時間程度が好ましい。この乾燥工程によって、ポリシラザンのシラザン結合の一部が反応し、金属微粒子で構成される網目状構造物を内包する酸化ケイ素ゲル体膜が生成する(図1の(C))。
乾燥温度および乾燥時間は、ポリシラザンを主成分とする溶液の濃度や触媒の種類などによって最適な条件を選ぶことが好ましい。
After applying a solution containing polysilazane as a main component, the coating film is dried at 200 ° C. or lower. The drying time is preferably about 30 seconds to 2 hours. By this drying step, a part of the silazane bond of polysilazane reacts to produce a silicon oxide gel film containing a network structure composed of metal fine particles ((C) in FIG. 1).
It is preferable to select optimum conditions for the drying temperature and drying time depending on the concentration of the solution containing polysilazane as a main component, the type of catalyst, and the like.

次に、ガラス基板上面あるいは上述した酸化ケイ素ゲル体膜の表面に、ポリシラザンを主成分とする溶液を塗布した後、乾燥させることで酸化ケイ素ゲルを形成させ、ガラス基板と酸化ケイ素ゲル体膜を接着させる(図1の(D))。
接着層である酸化ケイ素ゲルの膜厚は特に限定されないが、金属微粒子で構成される網目状構造物を内包する酸化ケイ素ゲル体膜とガラス基板との接着力が十分得られるように適宜選択すれば良い。
好ましくは10μm以下である。より好ましくは5μm以下であり、さらに好ましくは1μm以下である。10μmより厚い場合は、ガラス化したときにクラックやボイドが入る可能性が高く好ましくない。
Next, a solution containing polysilazane as a main component is applied to the upper surface of the glass substrate or the surface of the silicon oxide gel body film described above, and then dried to form a silicon oxide gel. It is made to adhere ((D) of FIG. 1).
The film thickness of the silicon oxide gel, which is the adhesive layer, is not particularly limited, but may be appropriately selected so that sufficient adhesion can be obtained between the silicon oxide gel body film containing the network structure composed of metal fine particles and the glass substrate. It ’s fine.
Preferably it is 10 micrometers or less. More preferably, it is 5 micrometers or less, More preferably, it is 1 micrometer or less. When it is thicker than 10 μm, there is a high possibility of cracks and voids when vitrified, which is not preferable.

十分に接着されていることを確認した後に基板(10)を取り除くことで、金属微粒子で構成される網目状構造物を内包する酸化ケイ素ゲル体膜がガラス基板に積層された透明導電性膜基板を得ることができる。 A transparent conductive film substrate in which a silicon oxide gel film containing a network structure composed of metal fine particles is laminated on a glass substrate by removing the substrate (10) after confirming that it is sufficiently adhered Can be obtained.

次に、大気中、100〜500℃で前記酸化ケイ素ゲル体膜が積層したガラス基板を、10分〜24時間加熱させることでガラス化し、金属微粒子で構成された網目状構造物を内包する酸化ケイ素ゲルがガラス基板上に積層した透明導電性膜積層基板(5)を得ることができる(図1の(G))。 Next, the glass substrate on which the silicon oxide gel body film has been laminated at 100 to 500 ° C. in the atmosphere is vitrified by heating for 10 minutes to 24 hours to oxidize the network structure composed of metal fine particles. A transparent conductive film laminated substrate (5) in which silicon gel is laminated on a glass substrate can be obtained ((G) in FIG. 1).

あるいは、大気中、室温下で前記酸化ケイ素ゲル体膜が積層したガラス基板を1週間〜4週間静置させることでガラス化し、金属微粒子で構成される網目状構造物を内包する酸化ケイ素がガラス基板上に積層した透明導電性膜積層基板を得ることができる。 Alternatively, the glass substrate on which the silicon oxide gel body film is laminated at room temperature in the atmosphere is vitrified by standing for 1 to 4 weeks, and the silicon oxide containing the network structure composed of metal fine particles is glass. A transparent conductive film laminated substrate laminated on the substrate can be obtained.

大気中において100℃以下で加熱する場合には、加湿することが好ましい。加湿することによりシラザン結合の反応が促進され、ガラス化のための静置時間を短縮させることが出来る。   When heating at 100 ° C. or lower in the air, it is preferable to humidify. By humidifying, the reaction of the silazane bond is promoted, and the standing time for vitrification can be shortened.

本発明に係る透明導電性積層基板における表面抵抗値は、100Ω/□以下が好ましく、より好ましくは50Ω/□以下であり、更により好ましくは、20Ω/□以下である。100Ω/□以上の場合は、高導電性膜とは言い難く好ましくない。     The surface resistance value in the transparent conductive laminated substrate according to the present invention is preferably 100Ω / □ or less, more preferably 50Ω / □ or less, and still more preferably 20Ω / □ or less. When it is 100Ω / □ or more, it is difficult to say that it is a highly conductive film, which is not preferable.

本発明に係る透明導電性積層基板における中心線表面粗さ(Ra)は、1.0μm以下が好ましく、より好ましくは0.2μm以下であり、更により好ましくは0.1μm以下である。1.0μm以上の場合は、機能性薄膜を積層した場合に機能を低下させるため好ましくない。   The centerline surface roughness (Ra) in the transparent conductive laminated substrate according to the present invention is preferably 1.0 μm or less, more preferably 0.2 μm or less, and even more preferably 0.1 μm or less. When the thickness is 1.0 μm or more, the function is lowered when a functional thin film is laminated, which is not preferable.

本発明に係る透明導電性積層基板における全光線透過率は、60%以上が好ましく、より好ましくは70%以上であり、更により好ましくは80%以上である。60%以下の場合は、高透明性とは言い難く好ましくない。   The total light transmittance in the transparent conductive laminated substrate according to the present invention is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. If it is 60% or less, it is difficult to say that it is highly transparent, which is not preferable.

本発明の代表的な実施例は、次のとおりである。   A typical embodiment of the present invention is as follows.

透明導電性膜の酸化ケイ素ゲル体膜の厚みは、基板上にマスキングを施し(ポリイミド製のマスキング用テープを使用)、酸化ケイ素ゲル体膜を作製した後、マスキング用テープを除去して出来る段差を触針式表面粗さ計(DEKTAK製)で測定し酸化ケイ素ゲル体膜の膜厚として測定した。   The thickness of the silicon oxide gel body film of the transparent conductive film can be determined by masking the substrate (using a polyimide masking tape) and forming the silicon oxide gel body film, and then removing the masking tape. Was measured with a stylus type surface roughness meter (manufactured by DEKTAK) and measured as the film thickness of the silicon oxide gel body film.

透明導電性膜積層基板の表面粗さは、触針式表面粗さ計(DEKTAK製)を用いて、中心線表面粗さ(Ra)を測定した。     For the surface roughness of the transparent conductive film laminated substrate, the centerline surface roughness (Ra) was measured using a stylus type surface roughness meter (manufactured by DEKTAK).

表面抵抗は、MCP−T600(三菱化学株式会社製)を用いて、試料の3点を測定し、その平均値を表面抵抗値とした。     For the surface resistance, three points of the sample were measured using MCP-T600 (manufactured by Mitsubishi Chemical Corporation), and the average value was defined as the surface resistance value.

全光線透過率は、ヘイズメーターNDH2000(日本電色工業株式会社製)を用いて、試料の全光線透過率を3点測定し、その平均値を透過率とした。     The total light transmittance was measured at three points using the haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and the average value was defined as the transmittance.

<銀微粒子1の調製法>
硝酸銀40g、ブチルアミン37.9g、メタノール200mLを加え、1時間攪拌し、A液を調製した。別にイソアスコルビン酸62.2gを取り、水400mLを加え攪拌して溶解し、続いてメタノール200mLを加えB液を調製した。B液をよく攪拌しA液をB液に1時間20分かけて滴下した。滴下終了後、3時間30分攪拌を継続した。攪拌終了後、30分間静置し固形物を沈降させた。上澄みをデカンテーションにより取り除いた後、新たに水500mLを加え、攪拌、静置、デカンテーションにより上澄み液を取り除いた。この精製操作を3回繰り返した。沈降した固形物を40℃の乾燥機中で乾燥し、水分を除去した。さらに、得られた銀微粒子20gとDisperbyk−106(ビッグケミージャパン社製)0.2gをメタノール100mLと純水5mLの混合溶液中に混合し、1時間混合した後に、純水100mLを加えて、スラリーをろ過した後、40℃の乾燥機中で乾燥させて、銀微粒子1を得た。銀微粒子1は電子顕微鏡による観察から一次粒子の平均粒子径が60nmであった。
<Preparation method of silver fine particles 1>
40 g of silver nitrate, 37.9 g of butylamine, and 200 mL of methanol were added and stirred for 1 hour to prepare solution A. Separately, 62.2 g of isoascorbic acid was taken, 400 mL of water was added and dissolved by stirring, and then 200 mL of methanol was added to prepare solution B. B liquid was stirred well and A liquid was dripped at B liquid over 1 hour and 20 minutes. After completion of the dropwise addition, stirring was continued for 3 hours and 30 minutes. After completion of stirring, the mixture was allowed to stand for 30 minutes to precipitate the solid. After removing the supernatant by decantation, 500 mL of water was newly added, and the supernatant was removed by stirring, standing, and decantation. This purification operation was repeated three times. The settled solid was dried in a dryer at 40 ° C. to remove moisture. Further, 20 g of the obtained silver fine particles and 0.2 g of Disperbyk-106 (manufactured by Big Chemie Japan) were mixed in a mixed solution of 100 mL of methanol and 5 mL of pure water, mixed for 1 hour, and then 100 mL of pure water was added, After filtering the slurry, the slurry was dried in a dryer at 40 ° C. to obtain silver fine particles 1. Silver fine particles 1 had an average primary particle diameter of 60 nm as observed with an electron microscope.

<銀微粒子分散溶液2の調製法>(特表2005−530005を参考に調製)
銀微粒子1を4g、トルエン30g、BYK−410(ビッグケミージャパン社製)0.2gを混合し、出力180Wの超音波分散機で1.5分間分散化処理を行い、純水15gを添加し、得られた乳濁液を出力180Wの超音波分散機で30秒間分散処理を行い、金属微粒子分散溶液2を調製した。
<Preparation method of silver fine particle dispersion solution 2>
4 g of silver fine particles 1, 30 g of toluene and 0.2 g of BYK-410 (manufactured by Big Chemie Japan) are mixed, dispersed for 1.5 minutes with an ultrasonic disperser with an output of 180 W, and 15 g of pure water is added. The obtained emulsion was subjected to a dispersion treatment for 30 seconds with an ultrasonic disperser with an output of 180 W to prepare a metal fine particle dispersion 2.

<銀微粒子を含む網目状構造物の作製法>
ポリエチレンテレフタレート樹脂基板(以下PET基板)上に、銀微粒子分散溶液2をバーコーターにより塗布した後、乾燥させることでPET基板上に金属微粒子が網目状に繋がった透明導電性膜を作製した。さらに、導電性部位の導電性を向上させるため、大気中70℃で30秒の間熱処理を施し、さらにギ酸蒸気を含む雰囲気中で、70℃で30分熱処理し、銀微粒子で構成される網目状構造物を有した透明導電性膜積層基板を作製した。
<Method for producing network structure containing silver fine particles>
A silver fine particle dispersion solution 2 was applied on a polyethylene terephthalate resin substrate (hereinafter referred to as a PET substrate) by a bar coater and then dried to prepare a transparent conductive film in which metal fine particles were connected in a network form on the PET substrate. Further, in order to improve the conductivity of the conductive portion, heat treatment is performed at 70 ° C. in the atmosphere for 30 seconds, and further heat treatment is performed at 70 ° C. for 30 minutes in an atmosphere containing formic acid vapor, thereby forming a network composed of silver fine particles A transparent conductive film laminated substrate having a cylindrical structure was produced.

実施例1
上述した方法により作製した銀微粒子を含む網目状構造物が積層したPET基板上に、ペルヒドロポリシラザン溶液(AZ−エレクトロニックマテリアルズ社製、商品名:アクアミカNP−110)を乾燥後の酸化ケイ素ゲル体膜の厚みが2.0μmになるように塗布した。次に、30℃で1時静置し、酸化ケイ素ゲル体膜を得た。
次に前記ペルヒドロポリシラザン溶液を酸化ケイ素ゲル体膜の厚みが0.5μmになるように、ガラス基板上に塗布した後、前述の酸化ケイ素ゲル体膜側と向かい合う位置で貼り合わせ、30℃で1時間乾燥させることによりガラス基板と酸化ケイ素ゲル体膜を接着させた。
次にPET基板を取り除き、250℃で3時間焼成することで、銀微粒子を含む網目状構造物を有した透明導電性膜積層基板を得た。中心線平均粗さ(Ra)は0.08μmであり、従来の透明導電性膜に比較して表面平坦性に優れていた。表面抵抗値は10Ω/□であり、全光線透過率は81%であった。耐熱性試験として耐熱性テストとして250℃で1時間加熱したが、加熱前と同様の表面抵抗と全光線透過率であった。
Example 1
A silicon oxide gel after drying a perhydropolysilazane solution (manufactured by AZ-Electronic Materials, trade name: Aquamica NP-110) on a PET substrate on which a network structure containing silver fine particles produced by the method described above is laminated. It applied so that the thickness of a body film might be set to 2.0 micrometers. Next, it left still at 30 degreeC for 1 hour, and obtained the silicon oxide gel body film | membrane.
Next, the perhydropolysilazane solution was applied on a glass substrate so that the thickness of the silicon oxide gel body film was 0.5 μm, and then bonded at a position facing the silicon oxide gel body film side, at 30 ° C. The glass substrate and the silicon oxide gel body film were bonded by drying for 1 hour.
Next, the PET substrate was removed and baked at 250 ° C. for 3 hours to obtain a transparent conductive film laminated substrate having a network structure containing silver fine particles. The center line average roughness (Ra) was 0.08 μm, and the surface flatness was excellent as compared with the conventional transparent conductive film. The surface resistance value was 10Ω / □, and the total light transmittance was 81%. As a heat resistance test, the sample was heated at 250 ° C. for 1 hour as a heat resistance test, and had the same surface resistance and total light transmittance as before the heating.

実施例2
上述した方法により作製した銀微粒子を含む網目状構造物が積層したPET基板上に、ペルヒドロポリシラザン溶液(AZ−エレクトロニックマテリアルズ社製、商品名:アクアミカNP−110)を乾燥後の酸化ケイ素ゲル体膜の厚みが1.5μmになるように塗布した。次に、30℃で1時静置し、酸化ケイ素ゲル体膜を得た。
次に前記ペルヒドロポリシラザン溶液を酸化ケイ素ゲル体膜の厚みが1.0μmになるように、ガラス基板上に塗布した後、前述の酸化ケイ素ゲル体膜側と向かい合う位置で貼り合わせ、30℃で1時間乾燥させることによりガラス基板と酸化ケイ素ゲル体膜を接着させた。
中心線平均粗さ(Ra)は0.09μmであり、表面平坦性が改善されていた。表面抵抗値は15Ω/□であり、全光線透過率は80%であった。
Example 2
A silicon oxide gel after drying a perhydropolysilazane solution (manufactured by AZ-Electronic Materials, trade name: Aquamica NP-110) on a PET substrate on which a network structure containing silver fine particles produced by the method described above is laminated. It applied so that the thickness of a body film might be set to 1.5 micrometers. Next, it left still at 30 degreeC for 1 hour, and obtained the silicon oxide gel body film | membrane.
Next, the perhydropolysilazane solution was applied on a glass substrate so that the thickness of the silicon oxide gel body film was 1.0 μm, and then bonded at a position facing the silicon oxide gel body film side, at 30 ° C. The glass substrate and the silicon oxide gel body film were bonded by drying for 1 hour.
The center line average roughness (Ra) was 0.09 μm, and the surface flatness was improved. The surface resistance value was 15Ω / □, and the total light transmittance was 80%.

比較例1
上述した方法により銀微粒子分散溶液をPET基板上に塗布・乾燥させ、熱処理及び化学処理を施し、銀微粒子を含む網目状構造物を積層した。表面抵抗値は6Ω/□、全光線透過率は86%であった。
表面粗さ計で測定した中心線平均粗さ(Ra)は1.2μmであり、平坦性の乏しい表面であった。耐熱性テストとして250℃で1時間加熱したところ、PETフィルムが収縮してしまうと同時に黄色に変色し透明導電性膜としての機能を失ってしまった。
Comparative Example 1
The silver fine particle dispersion solution was applied and dried on the PET substrate by the above-described method, heat treatment and chemical treatment were performed, and a network structure containing silver fine particles was laminated. The surface resistance value was 6Ω / □, and the total light transmittance was 86%.
The center line average roughness (Ra) measured by a surface roughness meter was 1.2 μm, and the surface was poor in flatness. As a heat resistance test, when heated at 250 ° C. for 1 hour, the PET film shrunk, and at the same time it turned yellow and lost its function as a transparent conductive film.

本発明に係る透明導電性膜および透明導電性膜積基板は、高導電性(低抵抗)で高透過率であり、耐熱性および平坦性に優れ、本発明に係る透明導電性膜及び透明導電性膜積層基板の製造方法は、特別な装置を用いることなく容易に作製することが可能であるので、薄膜型太陽電池あるいは有機EL用の透明電極に好適である。 The transparent conductive film and the transparent conductive film substrate according to the present invention have high conductivity (low resistance), high transmittance, excellent heat resistance and flatness, and the transparent conductive film and the transparent conductive according to the present invention. Since the manufacturing method of the conductive film laminated substrate can be easily manufactured without using a special apparatus, it is suitable for a thin-film solar cell or a transparent electrode for organic EL.

本発明に係る透明導電性膜積層基板の製造方法を示したフローチャートである。It is the flowchart which showed the manufacturing method of the transparent conductive film laminated substrate which concerns on this invention.

符号の説明Explanation of symbols

1 金属微粒子で構成させる網目状構造物
2 ポリシラザン溶液
3 酸化ケイ素ゲル(ポリシラザンとシリカの中間状態)
4 透明導電性膜
5 透明導電性膜積層基板
10 基板
11 ガラス基板
1 Network structure composed of fine metal particles
2 Polysilazane solution
3 Silicon oxide gel (intermediate state between polysilazane and silica)
4 Transparent conductive film 5 Transparent conductive film laminated substrate
10 Substrate
11 Glass substrate

Claims (8)

金属微粒子で構成される網目状構造物を内包し、ポリシラザンを主成分とすることを特徴とする酸化ケイ素ゲル体膜。 A silicon oxide gel body film containing a network structure composed of metal fine particles and containing polysilazane as a main component. 請求項1記載の金属微粒子がAu、Ag、Cu、Pt、Pd、Fe、Co、Ni、Al、In、Snから選ばれた金属あるいは前記金属の2種類以上を含む合金である酸化ケイ素ゲル体膜。 2. A silicon oxide gel body in which the metal fine particles according to claim 1 are a metal selected from Au, Ag, Cu, Pt, Pd, Fe, Co, Ni, Al, In, and Sn, or an alloy containing two or more of the above metals. film. 請求項1及び2記載の酸化ケイ素ゲル体膜において、主成分のポリシラザンにペルヒドロポリシラザンを用いて生成した酸化ケイ素ゲル体膜。 3. The silicon oxide gel film according to claim 1, wherein the silicon oxide gel film is formed by using perhydropolysilazane as a main component polysilazane. 請求項1乃至3のいずれかに記載の酸化ケイ素ゲル体膜を加熱及び/又は加湿処理して得られる透明導電性膜であって、該透明導電性膜は酸化ケイ素を主成分とする酸化物中に金属微粒子で構成される網目状構造物が内包されていることを特徴とする透明導電性膜。 A transparent conductive film obtained by heating and / or humidifying the silicon oxide gel body film according to any one of claims 1 to 3, wherein the transparent conductive film is an oxide mainly composed of silicon oxide. A transparent conductive film characterized in that a network structure composed of fine metal particles is contained therein. 請求項4記載の透明導電性膜をガラス基板に積層した透明導電性膜積層基板。 A transparent conductive film laminated substrate obtained by laminating the transparent conductive film according to claim 4 on a glass substrate. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を調製することを特徴とする請求項1乃至3のいずれかに記載の酸化ケイ素ゲル体膜の製造方法。 After forming a network structure composed of metal fine particles on a substrate, a solution containing polysilazane as a main component is applied to the network structure, and then dried to prepare a silicon oxide gel film The method for producing a silicon oxide gel body film according to any one of claims 1 to 3. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を調製した後、当該酸化ケイ素ゲル体膜を加熱及び/又は加湿処理することを特徴とする請求項4記載の透明導電性膜の製造方法。 After forming a network structure composed of metal fine particles on a substrate, applying a solution containing polysilazane as a main component to the network structure, and then drying to prepare a silicon oxide gel film The method for producing a transparent conductive film according to claim 4, wherein the silicon oxide gel body film is heated and / or humidified. 金属微粒子で構成される網目状構造物を基板上に形成させた後、該網目状構造物にポリシラザンを主成分とする溶液を塗布し、次いで、乾燥して酸化ケイ素ゲル体膜を調製した後、当該酸化ケイ素ゲル体膜を接着層としてガラス基板に接着した後、前記基板を取り除き、続いて加熱及び/又は加湿処理することを特徴とする請求項5記載の透明導電性膜の製造方法。 After forming a network structure composed of metal fine particles on a substrate, applying a solution containing polysilazane as a main component to the network structure, and then drying to prepare a silicon oxide gel film 6. The method for producing a transparent conductive film according to claim 5, wherein after the silicon oxide gel body film is adhered to a glass substrate as an adhesive layer, the substrate is removed, followed by heating and / or humidification treatment.
JP2008324354A 2008-12-19 2008-12-19 Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those Pending JP2010143802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324354A JP2010143802A (en) 2008-12-19 2008-12-19 Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324354A JP2010143802A (en) 2008-12-19 2008-12-19 Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those

Publications (1)

Publication Number Publication Date
JP2010143802A true JP2010143802A (en) 2010-07-01

Family

ID=42564619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324354A Pending JP2010143802A (en) 2008-12-19 2008-12-19 Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those

Country Status (1)

Country Link
JP (1) JP2010143802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067789A3 (en) * 2010-11-17 2012-07-26 3M Innovative Properties Company Method of reducing electromigration of silver and article made thereby
JP2013196949A (en) * 2012-03-21 2013-09-30 Fujimori Kogyo Co Ltd Infrared transmission type transparent conductive laminate
JP2015532669A (en) * 2012-08-16 2015-11-12 シーマ ナノテック イスラエル リミテッド Emulsions for preparing transparent conductive coatings
CN110108392A (en) * 2019-04-08 2019-08-09 西安交通大学 A kind of application of multi-functional organogel in the sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067789A3 (en) * 2010-11-17 2012-07-26 3M Innovative Properties Company Method of reducing electromigration of silver and article made thereby
CN103180257A (en) * 2010-11-17 2013-06-26 3M创新有限公司 Method of reducing electromigration of silver and article made thereby
JP2013544222A (en) * 2010-11-17 2013-12-12 スリーエム イノベイティブ プロパティズ カンパニー Method for reducing electromigration of silver and article produced thereby
JP2013196949A (en) * 2012-03-21 2013-09-30 Fujimori Kogyo Co Ltd Infrared transmission type transparent conductive laminate
JP2015532669A (en) * 2012-08-16 2015-11-12 シーマ ナノテック イスラエル リミテッド Emulsions for preparing transparent conductive coatings
CN110108392A (en) * 2019-04-08 2019-08-09 西安交通大学 A kind of application of multi-functional organogel in the sensor

Similar Documents

Publication Publication Date Title
ES2294554T3 (en) FUNCTIONAL PASTE
JP2013189637A (en) Composition for reinforcing film
KR20170021277A (en) Method for preparing transparent electrode film
US10622115B2 (en) Flexible conductive film and process for producing the same
CN113223748B (en) Low-temperature sintered conductive silver paste, and preparation method and application thereof
TWI364402B (en)
JP5363125B2 (en) Transparent conductive film laminated substrate and manufacturing method thereof
JP6866104B2 (en) Conductors, their manufacturing methods, and devices containing them
EP2715741B1 (en) Solderable polymer thick film conductive electrode composition for use in thin-film photovoltaic cells and other applications
JP2010143802A (en) Silicon oxide gel film, transparent conductive film and substrate in which transparent conductive film is laid and method for producing those
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
KR20240060767A (en) Electrical conductors, production methods thereof, electronic devices including the same
Chen et al. Facile preparation of high conductive silver electrodes by dip-coating followed by quick sintering
JP2010129379A (en) Wetting gel film, transparent and conductive film, transparent and conductive film laminated substrate, and method for manufacturing the same
JP2011159392A (en) Composition containing silver ultrafine particles and conductive pattern manufacturing method
CN110267406A (en) A kind of ultrathin flexible EL sheet and preparation method thereof
JP5366071B2 (en) Primer composition
KR20150075173A (en) Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof
Lee et al. Slot-die processed perovskite solar cells: Effects of solvent and temperature on device performances
JP2011108637A (en) Method for forming low-refractive-index transparent conductive film, low-refractive-index transparent conductive film, low-refractive-index transparent conductive substrate, and device using the low-refractive-index transparent conductive substrate
JP2010182640A (en) Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
KR101359913B1 (en) The manufacturing method of low-resistance, high transmittance, flexible FTO(F-doped Tin Oxide) transparent conductive film including carbon nanotubes
KR101272713B1 (en) Manufacturing method of 2 Layer Hybrid transparent electrode
JP2003249132A (en) Manufacturing method of low resistance transparent conductive film
JP5531394B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate obtained by the method