KR101272713B1 - Manufacturing method of 2 Layer Hybrid transparent electrode - Google Patents
Manufacturing method of 2 Layer Hybrid transparent electrode Download PDFInfo
- Publication number
- KR101272713B1 KR101272713B1 KR1020110083538A KR20110083538A KR101272713B1 KR 101272713 B1 KR101272713 B1 KR 101272713B1 KR 1020110083538 A KR1020110083538 A KR 1020110083538A KR 20110083538 A KR20110083538 A KR 20110083538A KR 101272713 B1 KR101272713 B1 KR 101272713B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- nanowire
- nanoparticle
- transparent electrode
- coating
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000002070 nanowire Substances 0.000 claims abstract description 54
- 239000002105 nanoparticle Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 238000007639 printing Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 238000007641 inkjet printing Methods 0.000 claims description 4
- 238000003618 dip coating Methods 0.000 claims description 3
- 238000009503 electrostatic coating Methods 0.000 claims description 3
- 238000007645 offset printing Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 70
- 239000000976 ink Substances 0.000 description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000010949 copper Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000002923 metal particle Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 239000002042 Silver nanowire Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
본 발명은 프린팅 공정을 사용하여 투명 전극을 나노 입자층 및 나노선 층의 2개 층으로 구성된 하이브리드 구조를 갖는 투명 전극 및 그 제조 방법에 관한 것이다.
본 발명에 따르는 2층 구조의 하이브리드 투명 전극 제조 방법은
기판상에 나노선 잉크를 코팅한 후 120 이하의 온도에서 예비 건조시켜 나노선 층을 구성하는 단계;
상기 나노선 층 상부에 나노 입자 잉크를 코팅한 후 120 이하의 온도에서 예비 건조시켜 나노입자 층을 구성하는 단계;
기판상에 구성된 나노선 층 및 나노입자 층을 200 이하의 온도에서 열처리하는 단계를 포함하는 것을 구성적 특징으로 한다.The present invention relates to a transparent electrode having a hybrid structure composed of two layers of a nanoparticle layer and a nanowire layer using a printing process, and a method of manufacturing the same.
The hybrid transparent electrode manufacturing method of the two-layer structure according to the present invention
Coating the nanowire ink on the substrate and then predrying it at a temperature of 120 or less to construct the nanowire layer;
Coating the nanoparticle ink on the nanowire layer and pre-drying at a temperature of 120 or less to form a nanoparticle layer;
And a heat treatment of the nanowire layer and the nanoparticle layer configured on the substrate at a temperature of 200 or less.
Description
본 발명은 2층 구조의 하이브리드 투명 전극 및 그 제조 방법에 관한 것으로, 구체적으로는 프린팅 공정을 사용하여 투명 전극을 나노 입자층 및 나노선 층의 2개 층으로 구성된 하이브리드 구조를 갖는 투명 전극 제조 방법에 관한 것이다.
The present invention relates to a hybrid transparent electrode having a two-layer structure and a method of manufacturing the same, and specifically, to a transparent electrode manufacturing method having a hybrid structure composed of two layers of a nanoparticle layer and a nanowire layer by using a printing process. It is about.
이동성이 강조되는 유비쿼터스 정보화 시대에 진입하면서 평판 디스플레이의 핵심소재인 투명전극 관련 산업의 중요성이 부각되고 있다. As the ubiquitous informatization era, which emphasizes mobility, the importance of the transparent electrode-related industry, which is a key material for flat panel displays, has emerged.
투명전극은 지금까지 대전방지막, 열반사막, 면발열체, 광전변환소자 및 각종 평판디스플레이에 사용되어 왔고, 최근에는 LCD 및 평판디스플레이의 수요가 TV 등 대형기기와 휴대전화, 전자수첩 등의 휴대용 소형기기를 중심으로 확대되면서 공급물량이 급속히 증가하고 있는 추세다.Transparent electrodes have been used in antistatic films, heat reflecting films, surface heating elements, photoelectric conversion elements and various flat panel displays. In recent years, the demand for LCDs and flat panel displays has been largely demanded for large devices such as TVs and portable small devices such as mobile phones and electronic notebooks. As supply centers expand, supply is increasing rapidly.
ITO를 투명 전극으로 사용하기 위해서는 무색/고투과도/고전도도가 필수적으로 요구된다는 문제가 있지만, 현재까지 ITO에 버금가는 물리적/전기적 특성을 갖춘 물질은 개발되지 못하고 있는 실정이나, 대표적인 희금속인 인듐 사용량을 감소시키기 위한 연구가 진행중이다.
In order to use ITO as a transparent electrode, there is a problem that colorless / high transmittance / high conductivity is indispensable.However, materials with physical and electrical properties comparable to those of ITO have not been developed until now, but the amount of indium, which is a representative rare metal, is used. Research is underway to reduce this risk.
일반적으로 투명전극을 구성하는 방법 중 하나인 ITO 기상 증착 후 포토리소그래피(Photolithography)/에칭(Etching) 공정은 스퍼터링 공정에서 다량의 인듐을 소모하는 대표적인 공정으로, 챔버 내벽에 인듐이 필요없이 코팅되어 낭비되고, 스퍼터링시 타겟 사용율이 30% 정도에 불과하고 이를 재활용함에 따라 효율이 저하되며, 오염물이 발생한다는 단점을 갖는다.
In general, the photolithography / etching process after ITO vapor deposition, which is a method of forming a transparent electrode, is a representative process that consumes a large amount of indium in a sputtering process. In addition, the target use rate of sputtering is only about 30%, and the efficiency is reduced by recycling it, and has the disadvantage of generating contaminants.
투명전극을 구성하는 또 다른 방법인 잉크젯 프린팅(Inkjet printing)은 나노급 ITO 분말 또는 졸(sol)/겔(gel) 형태로 존재하는 ITO 잉크/페이스트를 제조하여 이를 직접 패턴의 형상으로 기판에 도포하는 기술로써, 포토리소그래피 및 에칭 공정 없이 직접 패턴을 형성하므로 공정이 간단해지고 비용이 적게 들어가며, 에칭되어 소모되는 ITO의 양을 줄일 수 있다는 장점을 가지나, 투명 전극이 ITO 입자만으로 구성되기 때문에 전기 저항을 낮추는데 한계가 있다. 또한, 잉크/페이스트의 직접 패터닝 이후 약 300~500의 불활성/환원 분위기에서 후열처리 공정이 필요하기 때문에, 기판의 열적 손상을 피할 수 없게 된다.
Inkjet printing, another method of constructing a transparent electrode, prepares ITO ink / paste in the form of nano-grade ITO powder or sol / gel and directly applies it to the substrate in the form of a pattern. As a technology to directly form a pattern without photolithography and etching process, the process is simpler, less expensive, and the amount of ITO consumed by etching is reduced, but since the transparent electrode is composed of only ITO particles, electrical resistance There is a limit to lowering. In addition, since the post-heating process is required in an inert / reducing atmosphere of about 300 to 500 after the direct patterning of the ink / paste, thermal damage of the substrate cannot be avoided.
이러한 문제를 해결하기 위해 안출된 방법이, 기판상에 금속선을 코팅하여 금속선층을 형성한 후 금속선 층 내에 금속 입자를 함침함으로써 도1에 도시된 바와 같이, 금속선 층 내에 금속 입자를 혼합하는 방법으로, 이는 이종 물질이 한 층 내에 섞여 있어 금속 입자 분포의 균일성이 저하될 수 있고, 금속 입자의 이동 등으로 인해 투명전극의 장기적인 신뢰성이 저하되는 문제점이 있다.
The method devised to solve this problem is to coat the metal wire on the substrate to form a metal wire layer, and then impregnate the metal particles in the metal wire layer, as shown in FIG. 1, to mix the metal particles in the metal wire layer. This is because heterogeneous materials are mixed in one layer, thereby decreasing the uniformity of distribution of metal particles, and deteriorating long-term reliability of the transparent electrode due to movement of metal particles.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 투명 전극의 구조를 나노 입자층 및 나노선 층을 갖는 2층 구조의 하이브리드 구조로 구성하여, 기존의 광학적 투과 특성을 유지하면서 전기적 저항 특성을 획기적으로 개선한 투명 전극 제조 방법을 제공하는 것이다.
The present invention has been made to solve the above problems, an object of the present invention consists of a hybrid structure of a two-layer structure having a nanoparticle layer and a nanowire layer, maintaining the conventional optical transmission characteristics In the meantime, to provide a method for manufacturing a transparent electrode that significantly improved the electrical resistance characteristics.
본 발명의 목적은 잉크 프린팅 막의 열처리 온도를 낮춰 유리 기판, 플라스틱 기판 등 다양한 기판에 적용할 수 있는 2층 구조의 하이브리드 투명 전극 제조 방법을 제공하는 것이다.
An object of the present invention is to provide a hybrid transparent electrode manufacturing method of a two-layer structure that can be applied to various substrates, such as glass substrates, plastic substrates by lowering the heat treatment temperature of the ink printing film.
본 발명의 목적은 기판에 프린팅되는 막의 두께를 얇게 하여 ITO 사용량을 절감하고 제작 단가를 낮출 수 있는 2층 구조의 하이브리드 투명 전극 제조 방법을 제공하는 것이다.
An object of the present invention is to provide a method for manufacturing a hybrid transparent electrode of a two-layer structure that can reduce the amount of ITO and lower the manufacturing cost by reducing the thickness of the film printed on the substrate.
본 발명에 따르는 2층 구조의 하이브리드 투명 전극은, 기판상에 나노선 층 및 나노입자 층을 포함하는 하이브리드 투명 전극에 있어서, 나노선 층은 코팅된 나노선 잉크가 열처리되어 구성되고, 나노입자 층은 코팅된 나노입자 잉크가 열처리되어 구성되는 것을 특징으로 한다.
In the hybrid transparent electrode having a two-layer structure according to the present invention, in the hybrid transparent electrode including a nanowire layer and a nanoparticle layer on a substrate, the nanowire layer is formed by heat treatment of the coated nanowire ink, and the nanoparticle layer It is characterized in that the silver coated nanoparticle ink is configured by heat treatment.
바람직하게는 상기 나노 입자 잉크는 ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT:PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene 중 하나 이상을 포함한다.
Preferably, the nanoparticle ink is at least one of ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT: PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene It includes.
바람직하게는 상기 나노선 잉크는 ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT:PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene 중 하나 이상을 포함한다.
Preferably, the nanowire ink is at least one of ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT: PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene It includes.
본 발명에 따르는 2층 구조의 하이브리드 투명 전극 제조 방법은The hybrid transparent electrode manufacturing method of the two-layer structure according to the present invention
기판상에 나노선 잉크를 코팅한 후 120 이하의 온도에서 예비 건조시켜 나노선 층을 구성하는 단계;Coating the nanowire ink on the substrate and then predrying it at a temperature of 120 or less to construct the nanowire layer;
상기 나노선 층 상부에 나노 입자 잉크를 코팅한 후 120 이하의 온도에서 예비 건조시켜 나노입자 층을 구성하는 단계;Coating the nanoparticle ink on the nanowire layer and pre-drying at a temperature of 120 or less to form a nanoparticle layer;
기판상에 구성된 나노선 층 및 나노입자 층을 200 이하의 온도에서 열처리하는 단계를 포함하는 것을 구성적 특징으로 한다.
And a heat treatment of the nanowire layer and the nanoparticle layer configured on the substrate at a temperature of 200 or less.
바람직하게는, 나노선 층 및 나노 입자층, 또는 나노선 및 나노입자가 혼합된 혼합층을 구성하기 위한 코팅 방법으로는 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 오프셋 프린팅, 롤투롤 프린팅, 막대 코팅, 스프레이 코팅, 정전기력 코팅 및 기타 프린팅 코팅 방법 중 하나 이상을 사용한다.
Preferably, the coating method for forming a nanowire layer and nanoparticle layer, or a mixed layer of nanowires and nanoparticles is spin coating, dip coating, inkjet printing, gravure offset printing, roll-to-roll printing, rod coating, spray Coatings, electrostatic coatings, and other printing coating methods.
본 발명에 따라 제조되는 2층 구조의 하이브리드 구조의 투명 전극은 전기적 저항 특성이 개선되고, 잉크 프린팅 막을 낮은 온도에서 처리할 수 있어 다양한 기판을 이용하여 투명 전극을 제조할 수 있고, 기판에 프린팅되는 막의 두께가 얇아 ITO 사용량을 절감할 수 있다.
The transparent electrode of the hybrid structure of the two-layer structure manufactured according to the present invention has improved electrical resistance characteristics, and can process the ink printing film at a low temperature to produce a transparent electrode using a variety of substrates, and is printed on the substrate The thin film can reduce ITO usage.
도1은 종래 발명에 따라 금속선 및 금속 입자가 혼합되어 단일층으로 형성되는 하이브리드 투명 전극의 구조를 개략적으로 나타내는 도면이다.
도2의 (a) 내지 (b)는 본 발명에 따르는 2층 구조의 하이브리드 투명 전극의 구조를 개략적으로 나타낸 도면이다.
도3은 본 발명에 따르는 2층 구조의 하이브리드 투명 전극의 상부면을 나타내는 사진이다.
도4는 본 발명에 따라 구성된 2층 구조의 하이브리드 투명 전극의 일 실시예의 광학 투과율 및 면 저항 특성을 나타낸 것이다.1 is a view schematically showing the structure of a hybrid transparent electrode in which a metal wire and metal particles are mixed to form a single layer according to the related art.
2 (a) to 2 (b) schematically show the structure of a hybrid transparent electrode having a two-layer structure according to the present invention.
3 is a photograph showing an upper surface of a hybrid transparent electrode of a two-layer structure according to the present invention.
Figure 4 shows the optical transmittance and surface resistance characteristics of one embodiment of a hybrid transparent electrode of a two-layer structure constructed in accordance with the present invention.
이하 본 발명에 따르는 2층 구조의 하이브리드 투명 전극의 제조 방법을 도면을 참고로 하여 설명한다.
Hereinafter, a method of manufacturing a hybrid transparent electrode having a two-layer structure according to the present invention will be described with reference to the drawings.
도2는 본 발명에 따르는 2층 구조의 하이브리드 투명 전극의 구조를 개략적으로 나타낸 도면이다.2 is a two-layer structure according to the present invention. It is a figure which shows the structure of a hybrid transparent electrode schematically.
본 발명에 따르는 2층 구조의 하이브리드 투명 전극은 도2의 (a) 내지 (b)와 같은 구조로 구성될 수 있다.The hybrid transparent electrode of the two-layer structure according to the present invention may be configured as shown in Figure 2 (a) to (b).
즉, 도2의 (a)는 기판상에 나노선 층을 구성하고, 나노선 층 상부에 나노 입자 층을 구성한 하이브리드 투명 전극의 구조를 나타낸다.That is, FIG. 2A illustrates a structure of a hybrid transparent electrode having a nanowire layer on a substrate and a nanoparticle layer on the nanowire layer.
도2의 (a)의 구조를 갖는 2층 구조의 하이브리드 투명전극을 구성하는 방법은 다음과 같다.A method of constructing a hybrid transparent electrode having a two-layer structure having the structure of Fig. 2A is as follows.
일 실시예에 따르면, 기판상에 나노선 잉크를 코팅한 후 약 120 이하의 온도에서 예비 건조시켜 나노선 층을 구성하고, 나노선 층 상부에 나노 입자 잉크를 코팅한 후 약 120 이하의 온도에서 예비건조하여 나노입자 층을 구성한다. 다음으로, 기판상에 구성된 나노선 층 및 나노입자 층을 200 이하의 온도에서 열처리하여 하이브리드 투명전극을 구성한다.
According to an embodiment, the nanowire ink is coated on a substrate and then pre-dried at a temperature of about 120 or less to form a nanowire layer, and the nanoparticle ink is coated on the nanowire layer, and then at a temperature of about 120 or less. Predrying constitutes a nanoparticle layer. Next, the nanowire layer and the nanoparticle layer formed on the substrate are heat-treated at a temperature of 200 or less to form a hybrid transparent electrode.
다른 실시예에 따르면, 기판상에 나노선 잉크를 코팅한 후 150 이상의 온도에서 열처리하여 나노선 층을 구성하고, 나노선 층 상부에 나노 입자 잉크를 코팅한 후 약 150 이상의 온도에서 열처리하여 나노입자 층을 구성함으로써 하이브리드 투명전극을 구성한다.
According to another embodiment, the nanowire ink is coated on a substrate and then heat treated at a temperature of 150 or more to form a nanowire layer, and the nanoparticle ink is coated on the nanowire layer and then heat-treated at a temperature of about 150 or more. By constructing a layer, a hybrid transparent electrode is formed.
도2의 (b)는 기판상에 나노입자 층을 구성하고, 나노입자 층 상부에 나노선 층을 구성한 하이브리드 투명 전극의 구조를 나타낸다.FIG. 2 (b) shows the structure of the hybrid transparent electrode having the nanoparticle layer formed on the substrate and the nanowire layer formed on the nanoparticle layer.
도2의 (b)의 구조를 갖는 하이브리드 투명전극을 구성하는 방법은 다음과 같다.A method of constructing a hybrid transparent electrode having the structure of FIG. 2B is as follows.
일 실시예에 따르면, 기판상에 나노 입자 잉크를 코팅한 후 약 120 이하의 온도에서 예비 건조시켜 나노입자 층을 구성하고, 나노입자 층 상부에 나노선 잉크를 코팅한 후 약 120 이하의 온도에서 예비건조하여 나노선 층을 구성한다. 다음으로, 기판상에 구성된 나노입자 층 및 나노선 층을 200 이하의 온도에서 열처리하여 하이브리드 투명전극을 구성한다.
According to one embodiment, the nanoparticle ink is coated on a substrate and then pre-dried at a temperature of about 120 or less to form a nanoparticle layer, and the nanowire ink is coated on the nanoparticle layer and then at a temperature of about 120 or less. Predrying constitutes a nanowire layer. Next, the nanoparticle layer and the nanowire layer formed on the substrate are heat-treated at a temperature of 200 or less to form a hybrid transparent electrode.
다른 실시예에 따르면, 기판상에 나노 입자 잉크를 코팅한 후 약 150 이상의 온도에서 열처리하여 나노입자 층을 구성하고, 나노입자 층 상부에 나노선 잉크를 코팅한 후 약 150 이상의 온도에서 열처리하여 나노선 층을 구성함으로써 하이브리드 투명전극을 구성한다.
According to another embodiment, the nanoparticle ink is coated on a substrate and then heat treated at a temperature of about 150 or more to form a nanoparticle layer, and the nanowire ink is coated on the nanoparticle layer and then heat treated at a temperature of about 150 or more. By constructing a route layer, a hybrid transparent electrode is constructed.
본 발명에 따라 구성된 도2의 (a) 또는 (b)의 2개 층 구조를 갖는 하이브리드 투명 전극 중 나노입자 층을 구성하는 나노입자 잉크에는 ITO(Indium Tin Oxide), IZTO(Indium Zinc Tin Oxide), IZO(Indium Zinc Oxide), AZO(Al-doped Zinc Oxide), GZO(Ga-doped Zinc Oxide), FTO(fluorine-doped tin oxide), NTO(Nb-doped TiO2), PEDOT:PSS(poly (3,4-ethylenedioxythiophene) : poly (stylenesulfonate)), 은(Ag), 금(Au), 구리(Cu), 알루미늄(Al), 이리듐(Ir), 로듐(Rh), 코발트(Co), 아연(Zn), 철(Fe), 탄소나노튜브(CNT), 그래핀(Graphene) 중 하나 이상이 포함될 수 있다.
The nanoparticle ink constituting the nanoparticle layer of the hybrid transparent electrode having the two-layer structure of FIG. 2 (a) or (b) constructed in accordance with the present invention includes indium tin oxide (ITO) and indium zinc tin oxide (IZTO). , IZO (Indium Zinc Oxide), AZO (Al-doped Zinc Oxide), GZO (Ga-doped Zinc Oxide), FTO (fluorine-doped tin oxide), NTO (Nb-doped TiO 2 ), PEDOT: PSS (poly ( 3,4-ethylenedioxythiophene): poly (stylenesulfonate)), silver (Ag), gold (Au), copper (Cu), aluminum (Al), iridium (Ir), rhodium (Rh), cobalt (Co), zinc ( Zn), iron (Fe), carbon nanotubes (CNT), may include one or more of graphene (Graphene).
또한, 나노선 층을 구성하는 나노선 잉크에는 ITO(Indium Tin Oxide), IZTO(Indium Zinc Tin Oxide), IZO(Indium Zinc Oxide), AZO(Al-doped Zinc Oxide), GZO(Ga-doped Zinc Oxide), FTO(fluorine-doped tin oxide), NTO(Nb-doped TiO2), PEDOT:PSS(poly (3,4-ethylenedioxythiophene) : poly (stylenesulfonate)), 은(Ag), 금(Au), 구리(Cu), 알루미늄(Al), Ir(이리듐), Rh(로듐), Co(코발트), Zn(아연), Fe(철), 탄소나노튜브(CNT), 그래핀(Graphene) 중 하나 이상이 포함될 수 있다.
In addition, nanowire inks constituting the nanowire layer include indium tin oxide (ITO), indium zinc tin oxide (IZTO), indium zinc oxide (IZO), al-doped zinc oxide (AZO), and Ga-doped zinc oxide (GZO). ), FTO (fluorine-doped tin oxide), NTO (Nb-doped TiO 2 ), PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (stylenesulfonate)), silver (Ag), gold (Au), copper One or more of (Cu), aluminum (Al), Ir (iridium), Rh (rhodium), Co (cobalt), Zn (zinc), Fe (iron), carbon nanotubes (CNT), and graphene (Graphene) May be included.
본 발명에 따르는 하이브리드 투명 전극 중 나노선 층 및 나노입자 층을 구성하기 위한 코팅 방법으로는 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 오프셋 프린팅, 롤투롤 프린팅, 막대 코팅, 스프레이 코팅, 정전기력 코팅 및 기타 프린팅 코팅 방법 중 하나 이상을 사용할 수 있다.
Coating methods for constructing the nanowire layer and the nanoparticle layer of the hybrid transparent electrode according to the present invention include spin coating, dip coating, inkjet printing, gravure offset printing, roll-to-roll printing, rod coating, spray coating, electrostatic coating and the like. One or more of the printing coating methods can be used.
이하, 본 발명에 따라 구성되는 2개 층의 하이브리드 투명 전극을 구성하는 방법을 실시예를 이용하여 설명한다.Hereinafter, the method of constructing the hybrid transparent electrode of the two layers comprised by this invention is demonstrated using an Example.
먼저, 유리 기판상에 ITO 잉크를 코팅한 후, 120의 온도에서 예비 건조시켜 나노입자 층을 구성한다.First, ITO ink is coated on a glass substrate, and then pre-dried at a temperature of 120 to form a nanoparticle layer.
다음으로, 상기 나노입자 층에 은 나노선 잉크를 코팅한 후, 120의 온도에서 예비 건조시켜 나노선 층을 구성한다.Next, after coating the silver nanowire ink on the nanoparticle layer, and pre-drying at a temperature of 120 to form a nanowire layer.
다음으로, 기판상에 구성된 나노입자 층 및 나노선 층을 150의 온도에서 약 20분간 열처리하여 하이브리드 투명전극을 구성한다.Next, the nanoparticle layer and the nanowire layer formed on the substrate are heat-treated at a temperature of 150 for about 20 minutes to form a hybrid transparent electrode.
이와 같이 기판상에 구성된 나노입자 층 및 나노선 층을 150의 온도에서 약 20분간 열처리하여 구성된 투명전극은 도3에 도시된 바와 같이, 광 투과율이 90%이상의 우수한 광투과율을 나타내며, 도4에 도시된 바와 같이, 면 저항은 40 ~ 120/□로 종래의 기술에 의해 제조되는 투명전극의 면 저항보다 현저하게 감소되어, 전기전도도가 증가하는 것을 알 수 있다.
As described above, the transparent electrode configured by heat-treating the nanoparticle layer and the nanowire layer formed on the substrate at a temperature of 150 for about 20 minutes shows an excellent light transmittance of 90% or more, as shown in FIG. As shown, the surface resistance is 40 ~ 120 / / significantly reduced than the surface resistance of the transparent electrode manufactured by the prior art, it can be seen that the electrical conductivity increases.
이상의 설명은 본 발명의 기술 사항을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical details of the present invention, and those skilled in the art to which the present invention pertains may various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.
Claims (8)
상기 나노선 층은 코팅된 나노선 잉크가 열처리되어 구성되고,
상기 나노입자 층은 코팅된 나노입자 잉크가 열처리되어 구성되는 것을 특징으로 하는
2층 구조의 하이브리드 투명 전극.
In the hybrid transparent electrode of a two-layer structure comprising a nanowire layer and a nanoparticle layer on a substrate,
The nanowire layer is composed of a heat treatment of the coated nanowire ink,
The nanoparticle layer is characterized in that the coated nanoparticle ink is configured by heat treatment
Hybrid transparent electrode of two-layer structure.
상기 나노 입자 잉크는 나노 크기를 가진 전도성 분말을 포함하고, 상기 전도성 분말은 ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT:PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene 중 하나 이상을 포함하는 것을 특징으로 하는
2층 구조의 하이브리드 투명 전극.
The method of claim 1,
The nanoparticle ink comprises a conductive powder having a nano size, the conductive powder is ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT: PSS, Ag, Au, Cu, Al, Ir, Rh, Co , Zn, Fe, CNT, characterized in that it comprises one or more of Graphene
Hybrid transparent electrode of two-layer structure.
상기 나노선 잉크는 나노 크기를 가진 전도성 분말을 포함하고, 상기 전도성 분말은 ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT:PSS, Ag, Au, Cu, Al, Ir, Rh, Co, Zn, Fe, CNT, Graphene 중 하나 이상을 포함하는 것을 특징으로 하는
2층 구조의 하이브리드 투명 전극.
The method of claim 1,
The nanowire ink includes a conductive powder having a nano size, and the conductive powder is ITO, IZTO, IZO, AZO, GZO, FTO, NTO, PEDOT: PSS, Ag, Au, Cu, Al, Ir, Rh, Co , Zn, Fe, CNT, characterized in that it comprises one or more of Graphene
Hybrid transparent electrode of two-layer structure.
상기 나노선 층 상부에 나노 입자 잉크를 코팅한 후 120 이하의 온도에서 예비 건조시켜 나노입자 층을 구성하는 단계;
기판상에 구성된 나노선 층 및 나노입자 층을 200 이하의 온도에서 열처리하는 단계를 포함하는
2층 구조의 하이브리드 투명 전극 제조 방법.
Coating the nanowire ink on the substrate and then predrying it at a temperature of 120 or less to construct the nanowire layer;
Coating the nanoparticle ink on the nanowire layer and pre-drying at a temperature of 120 or less to form a nanoparticle layer;
Heat-treating the nanowire layer and nanoparticle layer constructed on the substrate at a temperature of 200 or less;
A hybrid transparent electrode manufacturing method of a two-layer structure.
상기 나노선 층 상부에 나노 입자 잉크를 코팅한 후 150 이상의 온도에서 열처리하여 나노입자 층을 구성하는 단계를 포함하는
2층 구조의 하이브리드 투명 전극 제조 방법.
Coating the nanowire ink on the substrate and then performing heat treatment at a temperature of at least 150 to form a nanowire layer;
Coating the nanoparticle ink on the nanowire layer and then heat-treating at a temperature of 150 or more to form a nanoparticle layer.
A hybrid transparent electrode manufacturing method of a two-layer structure.
상기 나노 입자 층 상부에 나노선 잉크를 코팅한 후 120 이하의 온도에서 예비건조시켜 나노선 층을 구성하는 단계;
기판상에 구성된 나노입자 층 및 나노선자 층을 200 이하의 온도에서 열처리하는 단계를 포함하는
2층 구조의 하이브리드 투명 전극 제조 방법.
Coating the nanoparticle ink on the substrate and then predrying at a temperature of 120 or less to construct the nanoparticle layer;
Coating the nanowire ink on the nanoparticle layer and predrying the same at a temperature of 120 or less to form a nanowire layer;
Heat treating the nanoparticle layer and nanowire layer constructed on the substrate at a temperature of 200 or less;
A hybrid transparent electrode manufacturing method of a two-layer structure.
상기 나노입자 층 상부에 나노선 잉크를 코팅한 후 150 이상의 온도에서 열처리하여 나노선 층을 구성하는 단계를 포함하는
2층 구조의 하이브리드 투명 전극 제조 방법.
Coating the nanoparticle ink on the substrate and then performing heat treatment at a temperature of 150 or more to construct the nanoparticle layer;
Coating a nanowire ink on the nanoparticle layer and then heat-treating at a temperature of 150 or more to form a nanowire layer.
A hybrid transparent electrode manufacturing method of a two-layer structure.
나노선 층 및 나노입자 층을 구성하기 위한 코팅 방법으로는 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 오프셋 프린팅, 롤투롤 프린팅, 막대 코팅, 스프레이 코팅, 정전기력 코팅 및 기타 프린팅 코팅 방법 중 하나 이상을 사용하는 것을 특징으로 하는
2층 구조의 하이브리드 투명 전극 제조 방법.
8. The method according to any one of claims 4 to 7,
Coating methods for constructing the nanowire layer and nanoparticle layer use one or more of spin coating, dip coating, inkjet printing, gravure offset printing, roll-to-roll printing, rod coating, spray coating, electrostatic coating and other printing coating methods. Characterized by
A hybrid transparent electrode manufacturing method of a two-layer structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110083538A KR101272713B1 (en) | 2011-08-22 | 2011-08-22 | Manufacturing method of 2 Layer Hybrid transparent electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110083538A KR101272713B1 (en) | 2011-08-22 | 2011-08-22 | Manufacturing method of 2 Layer Hybrid transparent electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130021170A KR20130021170A (en) | 2013-03-05 |
KR101272713B1 true KR101272713B1 (en) | 2013-06-10 |
Family
ID=48174184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110083538A KR101272713B1 (en) | 2011-08-22 | 2011-08-22 | Manufacturing method of 2 Layer Hybrid transparent electrode |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101272713B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104134484A (en) * | 2014-07-31 | 2014-11-05 | 中国电子科技集团公司第五十五研究所 | Flexible transparent conductive film based on silver nanowires and preparation method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014185756A1 (en) * | 2013-05-16 | 2014-11-20 | 주식회사 잉크테크 | Method for manufacturing hybrid transparent electrode and hybrid transparent electrode |
KR102225511B1 (en) | 2014-08-26 | 2021-03-08 | 삼성전자주식회사 | Aqueous compositions, methods of producing conductive thin films using the same and conductive thin films produced thereby, and electronic devices including the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080008022A (en) * | 2006-07-19 | 2008-01-23 | 주식회사 엘지화학 | Preparation method of electrode pattern for plasma display panel using inkjet printing and electroless plating |
KR20090043265A (en) * | 2007-10-29 | 2009-05-06 | 엘지전자 주식회사 | Manufacturing method of solar cell thin film using nanoparticle ink and solar cell using the said method |
-
2011
- 2011-08-22 KR KR1020110083538A patent/KR101272713B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080008022A (en) * | 2006-07-19 | 2008-01-23 | 주식회사 엘지화학 | Preparation method of electrode pattern for plasma display panel using inkjet printing and electroless plating |
KR20090043265A (en) * | 2007-10-29 | 2009-05-06 | 엘지전자 주식회사 | Manufacturing method of solar cell thin film using nanoparticle ink and solar cell using the said method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104134484A (en) * | 2014-07-31 | 2014-11-05 | 中国电子科技集团公司第五十五研究所 | Flexible transparent conductive film based on silver nanowires and preparation method |
Also Published As
Publication number | Publication date |
---|---|
KR20130021170A (en) | 2013-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels | |
Yang et al. | Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater | |
Lian et al. | Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode | |
Hecht et al. | Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures | |
Kang et al. | Epitaxial-growth-induced junction welding of silver nanowire network electrodes | |
Scheideler et al. | Gravure-printed sol–gels on flexible glass: A scalable route to additively patterned transparent conductors | |
US9253890B2 (en) | Patterned conductive film, method of fabricating the same, and application thereof | |
Ghosh et al. | Ultrathin transparent conductive polyimide foil embedding silver nanowires | |
CN102938262A (en) | Transparent conducting thin film and preparation method thereof | |
CN103996457B (en) | Silver nanowires film and preparation method thereof, array substrate, display device | |
Yang et al. | Facile fabrication of large-scale silver nanowire-PEDOT: PSS composite flexible transparent electrodes for flexible touch panels | |
KR20180124405A (en) | Flexible transparent electrode and manufacturing method thereof | |
Li et al. | High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure | |
Kumar et al. | Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications | |
Shin et al. | Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability | |
KR101272713B1 (en) | Manufacturing method of 2 Layer Hybrid transparent electrode | |
Sim et al. | Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications | |
Zhang et al. | Controllable assembly of a hierarchical multiscale architecture based on silver nanoparticle grids/nanowires for flexible organic solar cells | |
Yu et al. | Use of solution-processed zinc oxide to prevent the breakdown in silver nanowire networks | |
Valasma et al. | Grid-type transparent conductive thin films of carbon nanotubes as capacitive touch sensors | |
Zhang et al. | High-performance flexible transparent conductive films enabled by a commonly used antireflection layer | |
Ohsawa et al. | Bending reliability of transparent electrode of printed invisible silver-grid/PEDOT: PSS on flexible epoxy film substrate for powder electroluminescent device | |
CN214012530U (en) | Conductive structure and electronic equipment | |
Zhang et al. | Preparation of large-area, high-performance single-walled carbon nanotube (SWCNT)-based heater films by roll-to-roll gravure printing | |
KR20140133317A (en) | Transparent conductor comprising silver nanowire and silver grid complex pattern and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151224 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170512 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180406 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190313 Year of fee payment: 7 |