JP2009113484A - Base material with fine particle layered thin film, manufacturing method of the same and optical member using the same - Google Patents

Base material with fine particle layered thin film, manufacturing method of the same and optical member using the same Download PDF

Info

Publication number
JP2009113484A
JP2009113484A JP2008266813A JP2008266813A JP2009113484A JP 2009113484 A JP2009113484 A JP 2009113484A JP 2008266813 A JP2008266813 A JP 2008266813A JP 2008266813 A JP2008266813 A JP 2008266813A JP 2009113484 A JP2009113484 A JP 2009113484A
Authority
JP
Japan
Prior art keywords
fine particle
thin film
substrate
laminated thin
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008266813A
Other languages
Japanese (ja)
Other versions
JP5509571B2 (en
Inventor
Nobuaki Takane
信明 高根
Tomomi Kawamura
智巳 川村
Masato Nishimura
正人 西村
Toshishige Uehara
寿茂 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008266813A priority Critical patent/JP5509571B2/en
Publication of JP2009113484A publication Critical patent/JP2009113484A/en
Application granted granted Critical
Publication of JP5509571B2 publication Critical patent/JP5509571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine particle layered thin film which has a high void ratio and is excellent in adhesiveness and scratch resistance, and to provide a manufacturing method of the same. <P>SOLUTION: A base materia with the fine particle layered thin film is disclosed which has the base material and the fine particle layered thin film which is disposed on the base material and has voids, the fine particle layered thin film is prepared by alternately adsorbing electrolyte polymer and fine particles, wherein the base material and the fine particles are connected to each other, and the fine particles are connected together, via alcoholic silica sol product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,微粒子積層薄膜付き基材、その製造方法及びそれを用いた光学部材に関する。   The present invention relates to a substrate with a fine particle laminated thin film, a method for producing the same, and an optical member using the same.

光学部材などの反射防止膜として、単層で反射率0%を達成するためには、次式を満たす屈折率(n)が求められている(非特許文献1参照)。

Figure 2009113484
(nは反射防止膜の屈折率、nは基材の屈折率、nは雰囲気の屈折率) In order to achieve a reflectance of 0% with a single layer as an antireflection film such as an optical member, a refractive index (n c ) that satisfies the following equation is required (see Non-Patent Document 1).
Figure 2009113484
(N c is the refractive index of the antireflection film, n s is the refractive index of the substrate, n 0 is the refractive index of the atmosphere)

例えば、ディスプレイに用いられる透明基材であるガラスやプラスチック基板の可視領域での屈折率は約1.52であり、空気の屈折率1との積の平方根をとった1.25程度の値が最も理想的な値となる。そのような屈折率を持つ膜は、たとえばシリカ膜中に含まれる気孔の濃度によって屈折率を制御した多孔質膜である。しかも、透明であるためには、空隙の孔の径が光を散乱させない100nm以下、好ましくは、40nm以下であることが求められる。   For example, the refractive index in the visible region of a glass or plastic substrate, which is a transparent substrate used in a display, is about 1.52, and a value of about 1.25 taking the square root of the product with the refractive index 1 of air is The most ideal value. A film having such a refractive index is, for example, a porous film whose refractive index is controlled by the concentration of pores contained in the silica film. Moreover, in order to be transparent, it is required that the pore diameter of the gap is 100 nm or less, preferably 40 nm or less, which does not scatter light.

反射防止膜付きガラスの製造方法としては、従来法として例えば析出法によりガラス表面に二酸化ケイ素膜を形成する方法が知られている。ケイフッ化水素酸の水溶液にSiO 粉末を飽和し、その後ホウ酸水溶液を添加した浸漬液にガラス基板を接触すれば、ガラス表面へのSiO 膜の析出が始まる。具体的には、ガラス板の両表面をケイフッ化水素酸のシリカ過飽和水溶液で処理して両表面に反射防止層を形成するにあたり、予め表面の異質ガラス層を除去することを特徴とする反射防止膜付きガラスの製造方法が知られている(特許文献1)。 As a conventional method for producing a glass with an antireflection film, a method of forming a silicon dioxide film on the glass surface by, for example, a precipitation method is known. If the glass substrate is brought into contact with an immersion liquid in which an aqueous solution of silicofluoric acid is saturated with SiO 2 powder and then an aqueous boric acid solution is added, deposition of the SiO 2 film on the glass surface starts. Specifically, the anti-reflective film is characterized by removing the extraneous glass layer on the surface in advance when both surfaces of the glass plate are treated with a silica supersaturated aqueous solution of hydrofluoric acid to form an anti-reflective layer on both surfaces. A manufacturing method of glass with a film is known (Patent Document 1).

また、他の反射防止膜付きガラスとしては、ガラス基板表面の空気側の最上層が、表面に数10〜数100nmの微小な凹凸もしくは径を数10〜数100nmの範囲にした細孔を有し、かつ屈折率を1.40〜1.60、膜厚を70〜130nmの範囲に制御したSiOもしくはSiOと他の酸化物との混合酸化物であり、さらに必要に応じて最上層の表面にポリフルオロアルキル基を含有するシラン化合物を被膜してなる反射防止膜付きガラスがある(特許文献2)。 As another glass with an antireflection film, the uppermost layer on the air side of the glass substrate surface has fine irregularities of several tens to several hundreds of nm or pores having a diameter in the range of several tens to several hundreds of nm. And a mixed oxide of SiO 2 or SiO 2 and other oxides having a refractive index of 1.40 to 1.60 and a film thickness of 70 to 130 nm, and if necessary, an uppermost layer There is a glass with an antireflection film obtained by coating a silane compound containing a polyfluoroalkyl group on the surface (Patent Document 2).

さらにまた、この反射防止膜付きガラスにおいて、酸化物の原料溶液として平均分子量が異なる2種類の前駆体ゾル、例えば、平均分子量が数1000と数10万であるような前駆体ゾルを混合したコーティング溶液を被膜、加熱成形して薄膜とする際に前駆体ゾルの混合割合の制御によって表面に細孔を特異に発現させた反射防止膜付きガラスもある(特許文献3)。   Furthermore, in this glass with an antireflection film, a coating in which two kinds of precursor sols having different average molecular weights as the oxide raw material solution, for example, precursor sols having an average molecular weight of several thousand and several hundred thousand are mixed. There is also a glass with an antireflection film in which pores are specifically expressed on the surface by controlling the mixing ratio of the precursor sol when the solution is coated and thermoformed into a thin film (Patent Document 3).

ナノメータースケールの薄膜を溶液から形成する方法として、交互積層法が提案されている(非特許文献2照)。シリカやチタニア、セリアといった微粒子を交互積層法で積層する方法も報告されている(非特許文献3参照)。この微粒子を積層した膜(微粒子積層膜)は、微粒子の光学特性が反映される。例えば、シリカ微粒子積層膜は低屈折率、チタニア微粒子積層膜は高屈折率を示す。   As a method for forming a nanometer-scale thin film from a solution, an alternate lamination method has been proposed (see Non-Patent Document 2). A method of laminating fine particles such as silica, titania and ceria by an alternate laminating method has also been reported (see Non-Patent Document 3). The film in which the fine particles are laminated (fine particle laminated film) reflects the optical characteristics of the fine particles. For example, the silica fine particle laminated film has a low refractive index, and the titania fine particle laminated film has a high refractive index.

しかし、微粒子積層膜を光学用途の部材の一部として用いる場合、実用的な表面硬度が要求される。最表面に位置する反射防止膜ではさらに高い表面硬度が要求され、内部の光学部材であっても組み立て時に傷が発生しない程度の表面硬度が要求される。   However, when the fine particle laminated film is used as a part of a member for optical use, a practical surface hardness is required. The antireflection film located on the outermost surface is required to have a higher surface hardness, and even the internal optical member is required to have a surface hardness that does not cause scratches during assembly.

ここで、屈折率が1.48のシリカ微粒子を積層して空隙を作り、単層で十分な反射防止膜が得られる屈折率である1.25〜1.30の薄膜を作るために必要なシリカ微粒子の体積密度は、ドルーデの理論から、下記式のように近似的に求められる(非特許文献4参照)。

Figure 2009113484
Here, it is necessary for laminating silica fine particles having a refractive index of 1.48 to form voids, and to form a thin film having a refractive index of 1.25 to 1.30, which can provide a sufficient antireflection film with a single layer. The volume density of the silica fine particles is approximately obtained from the Drude theory by the following formula (see Non-Patent Document 4).
Figure 2009113484

ゆえに、

Figure 2009113484
(nは薄膜の屈折率、nSiO2はシリカ屈折率=1.48、nは空気屈折率=1、ρはシリカ微粒子の体積密度) therefore,
Figure 2009113484
( Nc is the refractive index of the thin film, n SiO2 is the silica refractive index = 1.48, n 0 is the air refractive index = 1, and ρ is the volume density of the silica fine particles)

Figure 2009113484
Figure 2009113484

すなわち、47%〜57%となるようなシリカ微粒子の体積密度、言い換えれば、空隙率43〜53%が必要である。しかし、これまでの多孔質膜では、空隙率を上げる、すなわちシリカの体積密度を下げることによってさらに機械的強度が低下するという課題があった。すなわち、従来の交互積層法で形成された微粒子積層膜は、微粒子同士が主に水酸基の分極による、水素結合のような弱い相互作用や、静電的引力によって吸着されているために、耐スクラッチ性に劣るという課題があった。   That is, the volume density of the silica fine particles to be 47% to 57%, in other words, the porosity of 43% to 53% is necessary. However, conventional porous membranes have a problem that the mechanical strength is further reduced by increasing the porosity, that is, by reducing the volume density of silica. In other words, the fine particle laminated film formed by the conventional alternating lamination method has a scratch resistance because the fine particles are adsorbed by weak interaction such as hydrogen bonding mainly due to polarization of a hydroxyl group or electrostatic attraction. There was a problem of inferiority.

特許文献4には、微粒子積層膜を透明封止材の塗布により封止し、硬化させることにより、強度を確保したり変形を防いだりすることが記載されている。特許文献5には、微粒子積層膜内の空隙に活性照射線反応性モノマーおよび重合開始剤を充填させ、これらを硬化させることにより微粒子積層膜の耐擦傷性を向上させることが記載されている。また、特許文献6には、微粒子積層膜からなる反射防止膜を形成した光電変換素子をトリメトキシメチルシラン溶液に接触し、アンモニア蒸気や塩酸蒸気によってトリメトキシメチルシランを縮合させることにより、反射防止膜の密着性を向上させることが記載されている。また、特許文献7や特許文献8には、極性基を有するグラフトポリマー鎖を表面グラフト重合法により基材上に導入することで、その基材を微粒子分散溶液に1回接触することで形成した微粒子単層膜や微粒子積層膜と基材との吸着が強固になると記載されている。特許文献9には、エステル結合、ウレタン結合、アミド結合、エーテル結合などがおきる官能基を透明基材表面と微粒子表面のそれぞれに導入し、化学的かつ不可逆的な結合を形成させることで微粒子の透明基材上への付着力を向上させると記載されている。
特開昭57−166337号公報 特開平5−330856号公報 特開平5−147976号公報 特開2002−361767号公報 特開2003−205568号公報 特開2003−332604号公報 特開2003−112379号公報 特開2004−114339号公報 特開2002−6108号公報 光学薄膜 H_A_Macleod著 小倉繁太郎ら訳 p85-93 (英書Thin-film optical filters) Thin Solid Films, 210/211, p831(1992) Langmuir、Vol.13、(1997)p6195−6203) 薄膜・光デバイス 著者 吉田貞史、矢嶋弘義 出版社 1994年 東京大学出版会 34−42頁
Patent Document 4 describes that a fine particle laminated film is sealed by application of a transparent sealing material and cured to ensure strength and prevent deformation. Patent Document 5 describes that the scratches of the fine particle laminated film are improved by filling the voids in the fine particle laminated film with an actinic radiation reactive monomer and a polymerization initiator and curing them. Patent Document 6 discloses an antireflection method by contacting a photoelectric conversion element having an antireflection film formed of a fine particle laminated film with a trimethoxymethylsilane solution and condensing trimethoxymethylsilane with ammonia vapor or hydrochloric acid vapor. It describes that the adhesion of the film is improved. In Patent Document 7 and Patent Document 8, a graft polymer chain having a polar group is introduced onto a substrate by a surface graft polymerization method, and the substrate is formed by contacting the substrate once with the fine particle dispersion solution. It is described that the adsorption between the fine particle single layer film or the fine particle laminated film and the base material becomes strong. In Patent Document 9, a functional group in which an ester bond, a urethane bond, an amide bond, an ether bond, or the like is introduced is introduced into each of the transparent substrate surface and the fine particle surface to form a chemical and irreversible bond. It is described that adhesion on a transparent substrate is improved.
JP-A-57-166337 JP-A-5-330856 JP-A-5-147976 JP 2002-361767 A JP 2003-205568 A JP 2003-332604 A JP 2003-112379 A JP 2004-114339 A Japanese Patent Laid-Open No. 2002-6108 Optical thin film H_A_Macleod Translated by Shigetaro Ogura et al. P85-93 (Thin-film optical filters) Thin Solid Films, 210/211, p831 (1992) Langmuir, Vol. 13, (1997) p6195-6203) Thin Film / Optical Devices Authors Sadayoshi Yoshida, Hiroyoshi Yajima Publishers 1994 The University of Tokyo Press 34-42

本発明の課題は、低屈折率、高い密着性、及び優れた耐スクラッチ性を有する微粒子積層薄膜、交互積層法を利用するその製造方法及びそれを用いた実用上有用な光学部材を提供することである。   An object of the present invention is to provide a fine particle laminated thin film having a low refractive index, high adhesion, and excellent scratch resistance, a production method using an alternate lamination method, and a practically useful optical member using the same. It is.

本発明は、基材と、該基材上に設けられた、空隙を有する微粒子積層薄膜であって、微粒子および電解質ポリマーを交互に吸着させ、かつ、アルコール性シリカゾル生成物を介して、基材と微粒子及び、微粒子と微粒子の間が結合していることを特徴とする微粒子積層薄膜付き基材によって、課題を解決するものである。   The present invention relates to a base material and a fine particle laminated thin film provided on the base material having voids, wherein the base material is alternately adsorbed on the base material and the alcoholic silica sol product. And the fine particles and the substrate with the fine particle laminated thin film characterized in that the fine particles and the fine particles are bonded to each other.

本発明は、以下に関する。   The present invention relates to the following.

1. 基材と、該基材上に設けられた、空隙を有する微粒子積層薄膜とを有し、
該微粒子積層薄膜は、電解質ポリマーおよび微粒子が交互に吸着され、かつ、
アルコール性シリカゾル生成物を介して、該基材と該微粒子及び、該微粒子と該微粒子が結合していることを特徴とする微粒子積層薄膜付き基材。
1. A base material, and a fine-particle laminated thin film having voids provided on the base material,
The fine particle laminated thin film alternately adsorbs electrolyte polymer and fine particles, and
A substrate with a fine particle laminated thin film, wherein the substrate and the fine particles, and the fine particles and the fine particles are bonded via an alcoholic silica sol product.

2. 微粒子積層薄膜の空隙率が43%から53%である項1記載の微粒子積層薄膜付き基材。   2. Item 5. The substrate with a fine particle laminated thin film according to Item 1, wherein the fine particle laminated thin film has a porosity of 43% to 53%.

3. アルコール性シリカゾル生成物が、一般式(1)で表わされる低級アルキルシリケートをメタノール及び/又はエタノール中で加水分解して調製したアルコール性シリカゾルを含むことを特徴とする、項1または2記載の微粒子積層薄膜付き基材。   3. Item 3. The fine particles according to item 1 or 2, wherein the alcoholic silica sol product comprises an alcoholic silica sol prepared by hydrolyzing a lower alkyl silicate represented by the general formula (1) in methanol and / or ethanol. Base material with laminated thin film.

Si(OR) ・・・(1)
(但し、Rはメチル基またはエチル基を示す。)
4. 微粒子の一次粒子径が2〜100nmである項1から3いずれかに記載の微粒子積層薄膜付き基材。
Si (OR) 4 (1)
(However, R represents a methyl group or an ethyl group.)
4). Item 4. The substrate with a fine particle laminated thin film according to any one of Items 1 to 3, wherein the primary particle size of the fine particles is 2 to 100 nm.

5. 微粒子が、無機酸化物である項1から4いずれかに記載の微粒子積層薄膜付き基材。   5). Item 5. The substrate with fine particle laminated thin film according to any one of Items 1 to 4, wherein the fine particle is an inorganic oxide.

6. 無機酸化物が、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選択される少なくとも一種の元素を含む酸化物からなるものである項5記載の微粒子積層薄膜付き基材。   6). Item 6. The fine particle laminated thin film according to Item 5, wherein the inorganic oxide is an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium. Base material.

7. 微粒子が数珠状の微粒子集合体である項1から6いずれかに記載の微粒子積層薄膜付き基材。   7. Item 7. The substrate with a fine particle laminated thin film according to any one of Items 1 to 6, wherein the fine particle is a bead-like fine particle aggregate.

8. 項1から7いずれかに記載の微粒子積層薄膜付き基材を含む光学部材。   8). Item 8. An optical member comprising the substrate with a fine particle laminated thin film according to any one of Items 1 to 7.

9. 反射防止機能を有する項8記載の光学部材。   9. Item 9. The optical member according to Item 8, which has an antireflection function.

10. 半透過半反射機能を有する項8または9記載の光学部材。   10. Item 10. The optical member according to Item 8 or 9, which has a transflective function.

11. 反射機能を有する項8から10いずれかに記載の光学部材。   11. Item 11. The optical member according to any one of Items 8 to 10, having a reflecting function.

12. 項1〜7いずれかに記載の微粒子積層薄膜付き基材の製造方法であって、基材上に、電解質ポリマーと微粒子とを交互に積層する製造方法であり、
(A)所望する基材面に、電解質ポリマー溶液または微粒子分散液のいずれかを接触または塗布する工程、
(B) 工程Aにおいて用いなかった方の電解質ポリマー溶液または微粒子分散液であって、工程Aにおいて用いた電解質ポリマーまたは微粒子とは反対電荷を有する電解質ポリマー溶液または微粒子分散液を接触または塗布する工程、
さらに(C)アルコール性シリカゾル溶液を接触または塗布する工程を含むことを特徴とする微粒子積層薄膜の製造方法。
12 Item 8. A method for producing a substrate with a fine particle laminated thin film according to any one of items 1 to 7, wherein the electrolyte polymer and the fine particles are alternately laminated on the substrate,
(A) A step of contacting or coating either the electrolyte polymer solution or the fine particle dispersion on the desired substrate surface,
(B) A step of contacting or applying an electrolyte polymer solution or fine particle dispersion which is not used in step A and having an opposite charge to the electrolyte polymer or fine particle dispersion used in step A ,
Furthermore, (C) The manufacturing method of the fine particle laminated thin film characterized by including the process of contacting or apply | coating an alcoholic silica sol solution.

13. 工程Aと工程Bとを交互に一回以上行った後、工程Cを行うことを特徴とする、項12に記載の微粒子積層薄膜の製造方法。   13. Item 13. The method for producing a fine-particle laminated thin film according to Item 12, wherein the step C is performed after alternately performing the step A and the step B one or more times.

14. 工程A及び/または工程Bの後に、リンス工程を含む、項12または13に記載の微粒子積層薄膜の製造方法。   14 Item 14. The method for producing a fine-particle laminated thin film according to Item 12 or 13, comprising a rinsing step after the step A and / or the step B.

15. 工程Cの後に、加熱処理することを特徴とする項12から14いずれかに記載の微粒子積層薄膜の製造方法。   15. Item 15. The method for producing a fine particle laminated thin film according to any one of Items 12 to 14, wherein the heat treatment is performed after the step C.

16. 加熱処理の温度が20℃から140℃であることを特徴とする項15に記載の微粒子積層薄膜の製造方法。   16. Item 16. The method for producing a fine particle laminated thin film according to Item 15, wherein the temperature of the heat treatment is 20 ° C to 140 ° C.

基板表面に、交互積層法により製造した電解質ポリマー/微粒子積層薄膜を形成した後、アルコール性シリカゾルを塗布することにより、低屈折率、高い密着性及び優れた耐スクラッチ性を有する微粒子積層薄膜付き基材、交互積層法を利用するその製造方法及びそれを用いた実用上有用な光学部材を提供するに至った。   After forming the electrolyte polymer / fine particle laminated thin film produced by the alternating lamination method on the substrate surface, the base with the fine particle laminated thin film having low refractive index, high adhesion and excellent scratch resistance by applying alcoholic silica sol The present invention has led to the provision of a material, a production method using an alternate lamination method, and a practically useful optical member using the method.

以下、本発明の製造方法と使用する材料について、詳細に説明する。   Hereinafter, the production method of the present invention and materials used will be described in detail.

本発明の微粒子積層薄膜付き基材は、図1に示すように、基材1と、基材1上に設けられた空隙4を有する微粒子積層薄膜10を含む。微粒子積層薄膜は、電解質ポリマー2および微粒子3を交互に吸着させ、かつ、アルコール性シリカゾル生成物5を介して、基材1と微粒子3及び、微粒子3と微粒子3が結合する様に構成される。   As shown in FIG. 1, the substrate with fine particle laminated thin film of the present invention includes a fine particle laminated thin film 10 having a substrate 1 and voids 4 provided on the substrate 1. The fine particle laminated thin film is configured such that the electrolyte polymer 2 and the fine particles 3 are alternately adsorbed and the base material 1 and the fine particles 3 and the fine particles 3 and the fine particles 3 are bonded via the alcoholic silica sol product 5. .

(微粒子)
本発明に用いる微粒子は、溶液に分散されている状態で平均一次粒子径が2〜100nmであることが微粒子積層薄膜の透明性を得るために好ましく、微粒子積層薄膜の光学機能の確保の観点から2〜40nmがより好ましく、2〜20nmが最も好ましい。平均一次粒子径が2nm未満の微粒子は形成が難しくなる。平均一次粒子径が100nmより大きくなると、可視光を散乱しやすくなり、微粒子積層薄膜の透明性を損ないやすくなる。また、交互積層法で微粒子積層薄膜を形成する場合、交互積層回数1回あたりの微粒子積層薄膜の膜厚変化量は、通常は微粒子の平均一次粒子径と同程度である。そのため、平均一次粒子径が大きすぎると膜厚制御の精度が低くなり、光学機能発現に膜厚を精度良く得ることが困難になる。膜厚制御性を損なわなければ、微粒子は一次粒子であっても一次粒子が凝集したタイプの二次粒子であっても良い。
(Fine particles)
The fine particles used in the present invention preferably have an average primary particle diameter of 2 to 100 nm in a state dispersed in a solution in order to obtain transparency of the fine particle laminated thin film, from the viewpoint of securing the optical function of the fine particle laminated thin film. 2 to 40 nm is more preferable, and 2 to 20 nm is most preferable. Fine particles having an average primary particle diameter of less than 2 nm are difficult to form. When the average primary particle diameter is larger than 100 nm, it becomes easy to scatter visible light, and the transparency of the fine particle laminated thin film tends to be impaired. In addition, when the fine particle laminated thin film is formed by the alternating lamination method, the amount of change in the film thickness of the fine particle laminated thin film per one alternate lamination is usually about the same as the average primary particle diameter of the fine particles. Therefore, if the average primary particle size is too large, the accuracy of film thickness control is lowered, and it is difficult to obtain a film thickness with high accuracy in terms of optical function expression. As long as the film thickness controllability is not impaired, the fine particles may be primary particles or secondary particles of the type in which primary particles are aggregated.

本発明において、微粒子の平均一次粒子径や平均二次粒子径の測定は、公知の方法を用いて行うことができる。一次粒子が凝集せずに微粒子分散液中に分散している場合、平均一次粒子径を動的散乱法により測定することができる。ただし、一次粒子が凝集した二次粒子等の場合、動的散乱法により測定されるのは平均一次粒子ではなく、平均二次粒子径である。二次粒子における平均一次粒子径はBET法や電子顕微鏡法によって測定できる。BET法では、窒素ガスのように占有面積の分かった分子を粒子表面に吸着させ、その吸着量と圧力の関係から比表面積を求め、この比表面積を換算表から粒子径に変換をすることで平均一次粒子径を求めることができる。   In the present invention, the average primary particle size and average secondary particle size of the fine particles can be measured using a known method. When primary particles are not aggregated but are dispersed in the fine particle dispersion, the average primary particle diameter can be measured by a dynamic scattering method. However, in the case of secondary particles or the like in which primary particles are aggregated, what is measured by the dynamic scattering method is not the average primary particles but the average secondary particle diameter. The average primary particle diameter in the secondary particles can be measured by a BET method or an electron microscope method. In the BET method, molecules with an occupied area such as nitrogen gas are adsorbed on the particle surface, the specific surface area is obtained from the relationship between the adsorbed amount and the pressure, and the specific surface area is converted from the conversion table into the particle diameter. The average primary particle size can be determined.

また、電子顕微鏡法では、まず厚さ数十nmのアモルファスカーボン膜が形成された銅製メッシュ上で微粒子を微粒子分散液からすくい取る、もしくはアモルファスカーボン膜上に微粒子を吸着させる。その微粒子を透過型電子顕微鏡により観察し、次いで、撮影画像中の全ての微粒子の長さを測定しその相加平均を平均一次粒子径として求める。なお、長さをはかる微粒子の数は100以上が望ましく、1つの撮影画像中の微粒子の数が100未満の場合は複数の撮影画像を用いて100以上となるようする。柱状粒子のように粒子の軸比が大きく異なる場合は、一般的に短軸の長さを測定し、その相加平均を平均一次粒子径とする。   In electron microscopy, first, fine particles are scooped up from a fine particle dispersion on a copper mesh on which an amorphous carbon film having a thickness of several tens of nm is formed, or fine particles are adsorbed on the amorphous carbon film. The fine particles are observed with a transmission electron microscope, and then the lengths of all the fine particles in the photographed image are measured, and the arithmetic average is obtained as the average primary particle diameter. Note that the number of fine particles for measuring the length is desirably 100 or more, and when the number of fine particles in one photographed image is less than 100, it is set to 100 or more using a plurality of photographed images. When the axial ratios of the particles are greatly different as in the case of columnar particles, the length of the minor axis is generally measured, and the arithmetic average is taken as the average primary particle diameter.

また、前記の粒子径測定における微粒子は、微粒子積層薄膜を作製するための微粒子分散液から得るだけではなく、微粒子積層薄膜から得ても良い。微粒子積層薄膜から得る方法としては、スチールウール(日本スチールウール社製、#0000)やカッター等で基材上の微粒子積層薄膜を研磨することで粉末状の微粒子凝集体を剥離し、その微粒子凝集体を溶媒中で超音波をかける方法が挙げられる。これより、サイズの小さくなった微粒子凝集体や単分散の微粒子が得られる。前記溶媒には水、有機溶媒、又は、水と水溶性の有機溶媒のような混合溶媒を用いることができる。   Further, the fine particles in the above-mentioned particle size measurement may be obtained not only from the fine particle dispersion for preparing the fine particle laminated thin film but also from the fine particle laminated thin film. As a method of obtaining from the fine particle laminated thin film, the fine particle laminated thin film on the substrate is polished by steel wool (manufactured by Nippon Steel Wool Co., Ltd., # 0000) or a cutter to peel off the powdery fine particle aggregate, and the fine particle agglomerated material There is a method of applying ultrasonic waves to the aggregate in a solvent. As a result, fine particle aggregates and monodispersed fine particles having a reduced size can be obtained. As the solvent, water, an organic solvent, or a mixed solvent such as water and a water-soluble organic solvent can be used.

電子顕微鏡法では、微粒子の粒子径と同時に形状も観察できる。粒子が球状であるか、数珠状であるかが区別できる。数珠状につながる微粒子は図2に示すように一次粒子が数珠状につながっており、それぞれの一次粒子は共有結合している。数珠状粒子を用いた微粒子膜では、数珠状の形状がもたらす立体的な障害により、他の数珠状粒子や反対電荷を有する電解質ポリマーが空間を密に占めることができず、その結果、球状粒子を用いた微粒子膜よりも空隙率が高く低屈折率となる。   In electron microscopy, the shape of the fine particles can be observed simultaneously with the particle size. It can be distinguished whether the particles are spherical or beaded. In the fine particles connected in a bead shape, primary particles are connected in a bead shape as shown in FIG. 2, and each primary particle is covalently bonded. In the fine particle film using beaded particles, due to the steric hindrance caused by the beaded shape, other beaded particles and the electrolyte polymer having the opposite charge cannot occupy the space closely, resulting in spherical particles. It has a higher porosity and a lower refractive index than the fine particle film using.

本発明における微粒子としては、無機微粒子があるが、具体的には、リチウム、ナトリウム、マグネシウム、アルミニウム、亜鉛、インジウム、シリコン、錫、チタン、ジルコニウム、イットリウム、ビスマス、ニオブ、セリウム、コバルト、銅、鉄、ホルミウム、マンガン等のハロゲン化物や酸化物などが使用されるが、さらに具体的には、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、シリカ(SiO)、酸化スズ(SnO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化イットリウム(Y)、酸化ビスマス(Bi)、酸化ニオブ(Nb)、セリア(CeO)、酸化コバルト(CoO)、銅(CuO)、鉄(Fe)、ホルミウム(Ho)、マンガン(Mn)等が挙げられ、これらは単独で又は二種類以上を混合して使用することができる。 The fine particles in the present invention include inorganic fine particles. Specifically, lithium, sodium, magnesium, aluminum, zinc, indium, silicon, tin, titanium, zirconium, yttrium, bismuth, niobium, cerium, cobalt, copper, Halides and oxides such as iron, holmium, and manganese are used, and more specifically, lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), indium tin oxide (ITO), silica (SiO 2 ), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2), yttrium oxide (Y 2 O 3), bismuth oxide (B 2 O 3), niobium oxide (Nb 2 O 5), ceria (CeO 2), cobalt oxide (CoO), copper (CuO), iron (Fe 2 O 3), holmium (Ho 2 O 3), manganese (Mn 3 O 4 ) and the like, and these can be used alone or in admixture of two or more.

さらに好ましくは、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選択される少なくとも一種の元素を含む酸化物が、透明性の観点から好適に選ばれる。   More preferably, an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium is preferably selected from the viewpoint of transparency.

微粒子は不定型であっても良いし、取り得る結晶型に特に制限はない。例えば、TiO2は、ルチル型でもアナターゼ型でも良い。このような無機微粒子の市販品としては、例えば、多木化学株式会社製のチタニア微粒子水分散液(タイノックM−6)、住友大阪セメント株式会社製の酸化亜鉛微粒子水分散液(ZnO−350)、多木化学株式会社製のセリア微粒子水分散液(ニードラールP10)、多木化学株式会社製の酸化錫微粒子水分散液(セラメースS−8)、多木化学株式会社製の酸化二オブ微粒子水分散液(バイラールNB−X10)、日産化学工業株式会社製のアルミナ微粒子水分散液(アルミナゾル−5)、日産化学工業株式会社製のシリカ微粒子水分散液(スノーテックス20)等が利用できる。   The fine particles may be indeterminate, and there are no particular limitations on the crystal form that can be obtained. For example, TiO2 may be rutile or anatase. Commercially available products of such inorganic fine particles include, for example, titania fine particle aqueous dispersion (Tynoch M-6) manufactured by Taki Chemical Co., Ltd., and zinc oxide fine particle aqueous dispersion (ZnO-350) manufactured by Sumitomo Osaka Cement Co., Ltd. Ceria fine particle aqueous dispersion (Nydral P10) manufactured by Taki Chemical Co., Ltd., tin oxide fine particle aqueous dispersion (Cerames S-8) manufactured by Taki Chemical Co., Ltd., and niobium oxide fine particle water manufactured by Taki Chemical Co., Ltd. A dispersion liquid (Bilar NB-X10), an alumina fine particle water dispersion liquid (Alumina Sol-5) manufactured by Nissan Chemical Industries, Ltd., a silica fine particle water dispersion liquid (Snowtex 20) manufactured by Nissan Chemical Industries, Ltd., and the like can be used.

上記の無機微粒子の中でも反射防止膜に必要とされる低屈折率の薄膜が得られる点でシリカ(SiO)が好ましく、平均一次粒子径を1nmから23nmのように制御した水分散コロイダルシリカ(SiO)が最も好ましい。このような無機微粒子の市販品としては、例えば、スノーテックス(日産化学工業社製)等が挙げられる。より低い屈折率を得るためには、基本となる微粒子が、図1に示されるように数珠状に連なった粒子形状を含有するものがより好ましい。市販されているものとしては、スノーテックスUPないしスノーテックスOUPシリーズ(日産化学工業社製)や、ファインカタロイドF120(触媒化成工業社製)で、パールネックレス状シリカゾルがある。 Among the above inorganic fine particles, silica (SiO 2 ) is preferable in that a thin film having a low refractive index required for an antireflection film can be obtained, and water-dispersed colloidal silica (average primary particle diameter controlled from 1 nm to 23 nm) ( Most preferred is SiO 2 ). Examples of such commercially available inorganic fine particles include Snowtex (manufactured by Nissan Chemical Industries). In order to obtain a lower refractive index, it is more preferable that the basic fine particles contain a bead-shaped particle shape as shown in FIG. Examples of commercially available products include Snowtex UP or Snowtex OUP series (Nissan Chemical Industry Co., Ltd.) and Fine Cataloid F120 (Catalyst Kasei Kogyo Co., Ltd.), and pearl necklace silica sol.

いずれの微粒子を用いるとしても、微粒子を基材に吸着させる際は、微粒子を分散液の形態で塗布または接触させて基板に吸着させるのが好ましい。   Regardless of which fine particles are used, when the fine particles are adsorbed on the substrate, it is preferable that the fine particles are applied or contacted in the form of a dispersion to be adsorbed on the substrate.

(微粒子分散液)
本発明で用いる微粒子分散液は、上述した微粒子が、水、有機溶媒、又は、水と水溶性の有機溶媒のような混合溶媒である媒体(液)に分散されたものである。水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどがあげられる。微粒子分散液中に占める微粒子の割合は、通常0.01〜30%(重量)程度が好ましく、微粒子の分散は公知の方法によって行うことができる。
(Fine particle dispersion)
The fine particle dispersion used in the present invention is obtained by dispersing the above-mentioned fine particles in a medium (liquid) which is a mixed solvent such as water, an organic solvent, or water and a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile and the like. The proportion of fine particles in the fine particle dispersion is usually preferably about 0.01 to 30% (weight), and the fine particles can be dispersed by a known method.

微粒子の分散性が低い場合は、分散性を改善するために、微粒子分散液を調製する際にいわゆる分散剤を用いることができる。このような分散剤としては、界面活性剤や電解質ポリマーあるいは非イオン性のポリマーなどを用いることができる。これらの分散剤の使用量は、用いる分散剤の種類によって異なるものであるが、一般に微粒子分散液中0.001〜0.1%(重量)程度であることが好ましく、多すぎるとゲル化・分離を起こしたり、分散液中で微粒子が電気的に中性となり、微粒子積層薄膜が得られなくなる。   When the dispersibility of the fine particles is low, a so-called dispersant can be used when preparing the fine particle dispersion in order to improve the dispersibility. As such a dispersant, a surfactant, an electrolyte polymer, a nonionic polymer, or the like can be used. The amount of these dispersants to be used varies depending on the type of the dispersant to be used, but generally it is preferably about 0.001 to 0.1% (weight) in the fine particle dispersion. Separation occurs, or the fine particles become electrically neutral in the dispersion, and the fine particle laminated thin film cannot be obtained.

また、微粒子分散液のpHは、水酸化ナトリウム、水酸化カリウムなどのアルカリ性水溶液または塩酸、硫酸などの酸性水溶液により1〜13の範囲で調整することができ、分散剤によってもpHの調整はできる。微粒子分散液のpHが等電位点からずれるほど、基材や電解質ポリマーとの静電的引力が強くなる傾向がある。なお、等電位点とは微粒子の表面電位が0となり、静電反発力がなくなるために粒子が凝集を起こすpH値であるが、等電位点は表面水酸基の数や結晶構造により異なるため、微粒子の材料によって異なる。   The pH of the fine particle dispersion can be adjusted in the range of 1 to 13 with an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide or an acidic aqueous solution such as hydrochloric acid or sulfuric acid, and the pH can also be adjusted with a dispersant. . As the pH of the fine particle dispersion deviates from the equipotential point, the electrostatic attractive force with the substrate or the electrolyte polymer tends to increase. The equipotential point is a pH value at which the surface potential of the fine particles becomes 0 and the electrostatic repulsion force disappears, so that the particles aggregate. However, the equipotential point varies depending on the number of surface hydroxyl groups and the crystal structure. It depends on the material.

微粒子積層薄膜に含まれる微粒子の種類は一種類に限らない。例えば、微粒子分散液の一回の接触において吸着される微粒子は二種類以上でも良く、また、微粒子分散液の接触毎に微粒子の種類が異なっていても良い。   The kind of fine particles contained in the fine particle laminated thin film is not limited to one. For example, two or more kinds of fine particles adsorbed in one contact of the fine particle dispersion may be used, and the kind of fine particles may be different for each contact of the fine particle dispersion.

微粒子の電荷は、ゼータ電位の測定によって決定される溶液中の電荷(電圧)を指す。ナノサイズの微粒子を水性媒体中に分散した系では、固体、液体界面が相互運動を行い、その界面に電位差(ゼータ電位)が生じる。即ち固体と液体の界面には固定相(または吸着相)があり、固体表面と反対の荷電を帯びたイオンが吸着している。固体と液体とが相対運動をするとき、この固定相と液体の電位差がゼータ電位である。表面電位、ζ電位は電気二重層による電場に起因したエネルギーである。ゼータ電位は、粒子表面の電荷、吸着種によって影響を受ける。水溶液中では、pHによってこの電位が変化し、表面状態や吸着種の変化を示唆する。例えば、酸化物微粒子の多くは、表面水酸基に由来するアニオン性を示し、pHが高い状態(アルカリ性)では、より水酸基−OHの、O−H間の解離が進み、ゼータ電位のマイナスの電荷が大きくなり、pHが低い状態(酸性)では、その逆に、ゼータ電位の電荷が小さくなる。またイオン性分散剤によって分散されている微粒子では、その分散剤が微粒子に吸着していることから、分散剤に含まれるものが、アミノ基やアンモニウムイオンなどのカチオン性であれば、プラスのゼータ電位を示し、カルボキシル基やスルホニウムイオンなどのアニオン性であれば、マイナスのゼータ電位を示す。   The charge of the fine particles refers to the charge (voltage) in the solution determined by measuring the zeta potential. In a system in which nano-sized fine particles are dispersed in an aqueous medium, a solid-liquid interface moves with each other, and a potential difference (zeta potential) is generated at the interface. That is, there is a stationary phase (or adsorption phase) at the interface between the solid and the liquid, and ions having a charge opposite to that of the solid surface are adsorbed. When the solid and the liquid are in relative motion, the potential difference between the stationary phase and the liquid is the zeta potential. The surface potential and ζ potential are energy resulting from the electric field generated by the electric double layer. The zeta potential is affected by the charge on the particle surface and adsorbed species. In aqueous solution, this potential changes with pH, suggesting changes in surface conditions and adsorbed species. For example, many oxide fine particles exhibit anionic properties derived from surface hydroxyl groups, and in a high pH state (alkaline), dissociation between hydroxyl groups-OH and OH progresses more, and the negative charge of the zeta potential is increased. On the contrary, when the pH is increased and the pH is low (acidic), the charge of the zeta potential is decreased. In addition, in the fine particles dispersed by the ionic dispersant, the dispersant is adsorbed on the fine particles, so that if the dispersant contains a cationic such as an amino group or an ammonium ion, a positive zeta If it is anionic such as a carboxyl group or a sulfonium ion, it shows a negative zeta potential.

(電解質性ポリマー)
この発明で使用する電解質ポリマーとしては、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。この官能基により、電解質ポリマーはアニオン性及びカチオン性のポリマーに分けられる。
(Electrolytic polymer)
As the electrolyte polymer used in the present invention, a polymer having a charged functional group in the main chain or side chain can be used. This functional group separates the electrolyte polymer into anionic and cationic polymers.

ポリアニオンとしては、一般的に、スルホン酸、硫酸、カルボン酸など負電荷を帯びることのできる官能基を有するものであり、たとえば、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、デキストラン硫酸、コンドロイチン硫酸、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリフマル酸などが用いられる。   The polyanion generally has a negatively charged functional group such as sulfonic acid, sulfuric acid, and carboxylic acid. For example, polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), dextran sulfate, chondroitin Sulfuric acid, polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyfumaric acid and the like are used.

また、ポリカチオンとしては、一般に、4級アンモニウム基、アミノ基などの正荷電を帯びることのできる官能基を有するもの、たとえば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジンなどを用いることができる。これらの有機高分子イオンは、いずれも水溶性あるいは水と有機溶媒との混合液に可溶なものである。   The polycation generally has a positively charged functional group such as a quaternary ammonium group or amino group, such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethyl. Ammonium chloride (PDDA), polyvinyl pyridine (PVP), polylysine and the like can be used. Any of these organic polymer ions is water-soluble or soluble in a mixed solution of water and an organic solvent.

(アルコール系シリカゾル)
アルコール系シリカゾルとしては、4、3、2官能のアルコキシシラン、およびこれらアルコキシシラン類の縮合物、加水分解物、シリコーンワニス等が使用できる。具体的に例示すると4官能アルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、3官能のアルコキシシランとしてはメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、グリシドプロポキシトリメトキシシラン、グリシロプロピルメチルジエトキシシラン、アミノプロピルトリエトキシシラン、アミノエチルアミノプロピルトリメトキシシラン、メルカプトプロピルトリメトキシシラン、2官能のアルコキシシランとしてはジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどが挙げられる。縮合物としては、コルコート株式会社製のエチルシリケート40、エチルシリケート48、メチルシリケート51等の4官能アルコキシシランの縮合物が挙げられるがこれらに限定されるものではない。また加水分解物としてはアルコキシシラン類を有機溶媒と水及び触媒を使用して加水分解させたものが使用できる。
(Alcohol-based silica sol)
As the alcohol-based silica sol, 4, 3, and bifunctional alkoxysilanes, and condensates, hydrolysates, silicone varnishes, and the like of these alkoxysilanes can be used. Specifically, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane as tetrafunctional alkoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, methacryloxypropyltrimethoxysilane, glycidpropoxytrimethoxysilane, glycylpropylpropyldiethoxysilane, aminopropyltriethoxysilane, aminoethylaminopropyltrimethoxysilane, mercaptopropyltrimethoxy Silanes, bifunctional alkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyl Such as diethoxy silane. Examples of the condensate include, but are not limited to, condensates of tetrafunctional alkoxysilanes such as ethyl silicate 40, ethyl silicate 48, and methyl silicate 51 manufactured by Colcoat Co., Ltd. Moreover, as a hydrolyzate, what hydrolyzed the alkoxysilane using the organic solvent, water, and the catalyst can be used.

これらのシリカ化合物の内、本発明に適用されるアルコール性シリカゾルは、前記一般式(1)の低級アルキルシリケートとして、Rがメチル基またはエチル基である。特にテトラメトキシシラン、テトラエトキシシラン、エチルシリケート40、エチルシリケート48、メチルシリケート51及びそれらの加水分解生成物であるアルコール性シリカゾルは膜を強固に固定でき、かつ比較的安価であることから特に好適である。アルコール性シリカゾルは、それらの混合物であってもよい。   Among these silica compounds, in the alcoholic silica sol applied to the present invention, R is a methyl group or an ethyl group as the lower alkyl silicate of the general formula (1). In particular, tetramethoxysilane, tetraethoxysilane, ethyl silicate 40, ethyl silicate 48, methyl silicate 51, and alcoholic silica sol which is a hydrolysis product thereof are particularly preferable because they can firmly fix the film and are relatively inexpensive. It is. The alcoholic silica sol may be a mixture thereof.

(アルコール性シリカゾル生成物)
アルコール性シリカゾル生成物は、(1)アルコール性シリカゾル自体と、(2)アルコールシリカゾルの-SiOMeが-SiOHに変化したものと、(3)シリカゾルの重合体と、(4)アルコール性シリカゾルを微粒子積層膜に接触した後に、アルコール性シリカゾルの分子内に含まれるシラノール基(-Si-OH)が、微粒子積層膜に含まれる水酸基(-OH)と脱水縮合して、-Si-O-結合に変化したシリカゾルとを含む。
(Alcoholic silica sol product)
The alcoholic silica sol product consists of (1) the alcoholic silica sol itself, (2) -SiOMe of the alcohol silica sol changed to -SiOH, (3) a polymer of silica sol, and (4) fine particles of the alcoholic silica sol. After contacting the laminated film, silanol groups (-Si-OH) contained in the molecules of the alcoholic silica sol undergo dehydration condensation with hydroxyl groups (-OH) contained in the fine particle laminated film, resulting in -Si-O- bonds. Modified silica sol.

アルコール系シリカゾルの製造方法の例としては、公知の方法を用いることができる(特開平6-52796号参照)。具体的には、テトラメトキシシランまたはテトラエトキシシランのモル数の10倍〜20倍程度の水と前記触媒を使用して、室温〜50℃(好ましくは室温〜30℃)の温度で1時間以上(好ましくは2〜5時間)攪拌下で加水分解反応を行なう。SiO濃度として20重量%以下、好ましくは1〜10重量%の固形分濃度のアルコール性シリカゾルを調製する。 As an example of a method for producing an alcohol-based silica sol, a known method can be used (see JP-A-6-52796). Specifically, tetramethoxysilane or tetraethoxysilane is used in an amount of about 10 to 20 times the number of moles of water and the catalyst, and at room temperature to 50 ° C (preferably room temperature to 30 ° C) for 1 hour or more. (Preferably 2 to 5 hours) The hydrolysis reaction is carried out with stirring. An alcoholic silica sol having a solid content concentration of 20 wt% or less, preferably 1 to 10 wt%, as the SiO 2 concentration is prepared.

このようにして調製したアルコール性シリカゾルを、塗布し易いように、希釈媒体で希釈することができる。この種の希釈液としてはメタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、2−ブタノールなどのアルコール類、酢酸エチル、酢酸ブチルなどのエステル類、メチルエチルケトンなどのケトン類、及びこれらの混合溶媒などか挙げられる。なお、これら希釈液を前記アルコール性シリカゾルに加えて希釈し、SiO濃度として、0.1重量%以上0.5重量%未満の固形分濃度としてもよい。前記したアルコール性シリカゾル溶液を基材に塗布するには、スプレー法、ディップ法、ロールコート法、スピンコート法などいずれでも可能である。塗布した後に、20℃から140℃のいずれかの温度で加熱することで、希釈媒体を蒸発させると同時に、アルコール性シリカゾルに生成した、シラノール基が、微粒子及び基板と結合することで、橋架け剤となり、微粒子積層薄膜の基板との密着性が得られる。 The alcoholic silica sol thus prepared can be diluted with a dilution medium so that it can be easily applied. Examples of this type of diluent include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol and 2-butanol, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone, and the like. Examples thereof include a mixed solvent. These diluted solutions may be diluted by adding to the alcoholic silica sol, and the SiO 2 concentration may be a solid content concentration of 0.1 wt% or more and less than 0.5 wt%. In order to apply the alcoholic silica sol solution to the substrate, any of a spray method, a dip method, a roll coat method, a spin coat method and the like can be used. After coating, the diluting medium is evaporated by heating at a temperature of 20 ° C. to 140 ° C., and at the same time, the silanol groups formed in the alcoholic silica sol are bonded to the fine particles and the substrate to form a bridge. It becomes an agent, and adhesion with the substrate of the fine particle laminated thin film is obtained.

(基材)
基材の材質としては樹脂、シリコンなどの半導体、金属、無機化合物等が挙げられる。また、その形状はフィルム、シート、板、曲面を有する形状など任意である。基材の一部もしくは全体が筒状、糸状、繊維、発泡体など浸漬して溶液が入り込むことができるものであれば微粒子積層薄膜がその表面に形成されるので使用することができる。また、基材の断面が凹凸形状を有していても、表面の構造に追従して微粒子積層薄膜を形成することができる。また、基材表面がナノメートルスケールやサブミクロンスケールの構造を有していても、その構造に追従して微粒子積層薄膜は形成することができる。
(Base material)
Examples of the material for the substrate include resins, semiconductors such as silicon, metals, and inorganic compounds. Moreover, the shape is arbitrary, such as a shape which has a film, a sheet | seat, a board, and a curved surface. If a part or the whole of the substrate can be immersed in a solution such as a cylinder, thread, fiber, or foam, the fine particle laminated thin film is formed on the surface, and can be used. Moreover, even if the cross section of the substrate has an uneven shape, the fine particle laminated thin film can be formed following the surface structure. Even if the substrate surface has a nanometer-scale or submicron-scale structure, the fine particle multilayer thin film can be formed following the structure.

上記金属としては、鉄、銅、白銅、チタン等があり、表面に電荷が存在するように酸化皮膜を形成させる等の処理を施したものである。上記無機化合物としてはガラス、セラミックス等があり、表面に極性基を有するものである。   Examples of the metal include iron, copper, white copper, titanium, and the like, which are subjected to a treatment such as forming an oxide film so that electric charges exist on the surface. Examples of the inorganic compound include glass and ceramics, and have a polar group on the surface.

上記の樹脂としては、その材料は特に限定されるものではないが、例えば、ポリエステル、ポリスチレン、セルロースアセテート、ポリプロピレン、ポリエチレン、ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリビニルアセタール、ポリエーテルケトン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン等の延伸又は未延伸の透明プラスチックフィルム等が挙げられる。   The material of the resin is not particularly limited. For example, polyester, polystyrene, cellulose acetate, polypropylene, polyethylene, polyamide, polyimide, polyethersulfone, polysulfone, polyvinyl acetal, polyetherketone, polychlorinated Examples thereof include stretched or unstretched transparent plastic films such as vinyl, polyvinylidene chloride, polymethyl acrylate, polymethyl methacrylate, polycarbonate, and polyurethane.

これらの基材表面をコロナ放電処理、グロー放電処理、プラズマ処理、紫外線照射、オゾン処理、アルカリや酸などによる化学的エッチング処理等して極性基を導入してもよい。このような処理により極性基を導入した樹脂を使用してもよい。   Polar surfaces may be introduced by subjecting these substrate surfaces to corona discharge treatment, glow discharge treatment, plasma treatment, ultraviolet irradiation, ozone treatment, chemical etching treatment with alkali, acid, or the like. You may use resin which introduce | transduced the polar group by such a process.

微粒子積層薄膜を透明性が求めれる光学部材として利用する場合には、基材も透明であることが望ましい。それ自身透明性を有する基材としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース、ポリエーテルサルフォン、ポリアミド、ポリイミド、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルアセタール、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタンなどの熱可塑性樹脂や、ガラス基板などが用いられる。また、微粒子積層薄膜を反射率のみが重要になる光学部材として利用する場合には、基材に透明性は必ずしも必要ではなく、半導体や金属等を用いることができる。
微粒子積層薄膜の形成を望まない基材の一部の表面部分には、粘着フィルム等を貼り付ける等の微粒子分散液と基材との接触防止を施すことで、微粒子積層薄膜の基材上への形成を防ぐことができる。
When the fine particle laminated thin film is used as an optical member that requires transparency, it is desirable that the substrate is also transparent. As a base material having transparency itself, for example, polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polystyrene, triacetyl cellulose, diacetyl cellulose, acetate butyrate cellulose, polyethersulfone, A thermoplastic resin such as polyamide, polyimide, polymethylpentene, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetal, polymethyl methacrylate, polycarbonate, polyurethane, or a glass substrate is used. Moreover, when using the fine particle laminated thin film as an optical member in which only reflectance is important, transparency is not necessarily required for the base material, and a semiconductor, metal, or the like can be used.
To prevent contact between the fine particle dispersion and the substrate, such as by sticking an adhesive film, on the surface of a part of the base material where formation of the fine particle laminated thin film is not desired, onto the substrate of the fine particle laminated thin film Can be prevented.

基材に形成された反射防止膜の反対側の基材面に粘着剤層が形成されており、被着体としてのディスプレイ表面のガラス基板などに貼り付けて、反射防止膜が空気と面するよう用いることもできる。   An adhesive layer is formed on the surface of the base material opposite to the antireflection film formed on the base material, and is attached to a glass substrate on the display surface as the adherend, so that the antireflection film faces the air It can also be used.

本発明の微粒子積層薄膜10は、以下の工程により製造することができる(図1参照):
(A) 基材面1に、電解質ポリマー溶液または微粒子分散液のいずれかを接触または塗布する工程により、電解質ポリマー2又は微粒子3の層を形成し;
(B) 前記工程Aにおいて用いなかった方の電解質ポリマー溶液または微粒子であって、前記工程Aにおいて用いた電解質ポリマーまたは微粒子の電荷と反対電荷を有する電解質ポリマー溶液または微粒子分散液を接触または塗布する工程により、微粒子3又は電解質ポリマー2の層を形成し;及び
(C)アルコール性シリカゾル溶液を接触または塗布する工程により、アルコール性シリカゾル生成物5を介して基材1と微粒子3、及び微粒子3と微粒子3とを結合させる。
The fine particle laminated thin film 10 of the present invention can be manufactured by the following steps (see FIG. 1):
(A) Forming a layer of electrolyte polymer 2 or fine particles 3 on the substrate surface 1 by a step of contacting or applying either an electrolyte polymer solution or a fine particle dispersion;
(B) Contact or apply an electrolyte polymer solution or fine particle dispersion that has not been used in the step A and has a charge opposite to that of the electrolyte polymer or fine particle used in the step A A layer of fine particles 3 or an electrolyte polymer 2 is formed by the step; and (C) the substrate 1, the fine particles 3, and the fine particles 3 through the alcoholic silica sol product 5 by the step of contacting or applying the alcoholic silica sol solution. And fine particles 3 are combined.

(基材の前処理方法)
基材は、そのまま用いるか、またはそれらの表面にコロナ放電処理、グロー放電処理、プラズマ処理、紫外線照射、オゾン処理、アルカリや酸などによる化学的エッチング処理、シランカップリング処理などによって極性を有する官能基を導入して基材の表面電荷をマイナスもしくはプラスする。または、基材表面へ電荷を効率よく導入する方法としては、強電解質ポリマーであるPDDA(ポリジアリルジメチルアンモニウムクロライド)やPEI(ポリエチレンイミン)とPSS(ポリスチレンスルホン酸)の水溶液に交互に接触して交互積層膜を形成することによっても可能である(Advanced Material. 13, 51−54 (2001)参照)。
(Pretreatment method of substrate)
The substrates can be used as they are, or the surfaces thereof have a polarity by corona discharge treatment, glow discharge treatment, plasma treatment, ultraviolet irradiation, ozone treatment, chemical etching treatment with alkali or acid, silane coupling treatment, etc. Introduce groups to make the surface charge of the substrate negative or positive. Alternatively, as a method for efficiently introducing charges onto the substrate surface, PDDA (polydiallyldimethylammonium chloride) or PEI (polyethyleneimine), which is a strong electrolyte polymer, and an aqueous solution of PSS (polystyrene sulfonic acid) are alternately contacted. It is also possible to form alternating laminated films (see Advanced Material. 13, 51-54 (2001)).

(微粒子積層薄膜の形成方法)
本発明において、空隙を有する微粒子積層薄膜を生成するためには、交互積層法を用いることが好ましい。この方法によると、次に示す文献に開示の既知の値から、所望の空隙率を有する微粒子積層膜を得ることができる。そのため、この微粒子積層膜にアルコール性シリカゾルを塗布して溶媒が揮発した後の屈折率は、アルコール系シリカゾルの濃度により制御可能となる。
(Formation method of fine particle laminated thin film)
In the present invention, it is preferable to use an alternating lamination method in order to produce a fine particle laminated thin film having voids. According to this method, a fine particle laminated film having a desired porosity can be obtained from known values disclosed in the following documents. Therefore, the refractive index after the alcoholic silica sol is applied to the fine particle laminated film and the solvent is volatilized can be controlled by the concentration of the alcoholic silica sol.

空隙率の調整は、微粒子積層薄膜の作製時に使用する微粒子分散液のpHを調整する方法(pHを3〜9に調整すると空隙率は比較的高く、それ以外の範囲では空隙率が比較的低くなるように制御される)等、微粒子の表面電位を調整することにより行うことができる。空隙率は、十分な反射防止膜が得られる屈折率を考慮すると、43〜53%が好ましい。微粒子の表面電位の制御方法は、特開2006−301125号公報、特開2006−297680号公報、特開2006−301124号公報に記載の方法を用いることができる。例えば、空隙率を63%としておき、0.4%の重量濃度のアルコール性シリカゾル溶液を塗布した後、所望の空隙率、53%にすることができる。   The porosity can be adjusted by adjusting the pH of the fine particle dispersion used in the production of the fine particle laminated thin film (the porosity is relatively high when the pH is adjusted to 3 to 9, and the porosity is relatively low in other ranges). And so on) by adjusting the surface potential of the fine particles. The porosity is preferably 43 to 53% in consideration of the refractive index that provides a sufficient antireflection film. As a method for controlling the surface potential of the fine particles, the methods described in JP-A-2006-301125, JP-A-2006-297680, and JP-A-2006-301124 can be used. For example, after setting the porosity to 63% and applying an alcoholic silica sol solution having a weight concentration of 0.4%, the desired porosity can be set to 53%.

(微粒子積層薄膜の形成装置)
微粒子積層薄膜の形成装置としては、基材を固定したアームが自動的に動き、プログラムに従って基材を微粒子分散液中に接触させるディッパーと呼ばれる装置(J.Appl.Phys.,Vol.79,pp.7501−7509,(1996)、特願2000−568599号参照)を用いても良い。また、ロール状に巻き取ってあるフィルムからフィルムを取り出し、そのまま微粒子分散液中に接触させ、乾燥させた後にロール状にフィルムを巻き取る連続膜形成プロセスを用いても良い。
(Formation equipment for fine particle laminated thin film)
As an apparatus for forming a fine particle laminated thin film, an arm called a dipper that automatically moves an arm on which a base material is fixed and contacts the base material in a fine particle dispersion according to a program (J. Appl. Phys., Vol. 79, pp. 7501-7509, (1996), Japanese Patent Application No. 2000-568599). Moreover, you may use the continuous film formation process which takes out a film from the film wound up in roll shape, makes it contact in fine particle dispersion liquid as it is, and winds up a film in roll shape after making it dry.

基材を電解質ポリマー溶液(ポリカチオンまたはポリアニオン)と微粒子分散液に交互に浸し、微粒子積層薄膜を固体基板上に作成する。基材の表面電荷がマイナスであれば、はじめにカチオン性の溶液(電解質ポリマーまたは微粒子分散液の一方)に接触し、次にアニオン性の溶液(電解質ポリマーまたは微粒子分散液の他方)に接触させる。接触時間はポリマーや微粒子、積層したい膜厚によって適宜調整する。基材をカチオン性またはアニオン性の溶液を接触させた後、反対電荷を有する溶液に接触する前に溶媒のみのリンスによって余剰の溶液を洗い流すこともできる。静電的に吸着しているために、この工程で剥離することはない。また、反対電荷の溶液に、吸着していないポリマー電解質または微粒子を持ち込むことを防ぐために行ってもよい。これをしない場合は、持ち込みによって溶液内でカチオン、アニオンが混ざり、沈殿を起こすことがある。   A base material is alternately immersed in an electrolyte polymer solution (polycation or polyanion) and a fine particle dispersion to form a fine particle laminated thin film on a solid substrate. If the surface charge of the substrate is negative, it is first contacted with a cationic solution (one of the electrolyte polymer or fine particle dispersion) and then contacted with an anionic solution (the other of the electrolyte polymer or fine particle dispersion). The contact time is appropriately adjusted depending on the polymer, fine particles, and film thickness to be laminated. After contacting the substrate with a cationic or anionic solution, the excess solution can be washed away with a solvent-only rinse before contacting the oppositely charged solution. Since it is adsorbed electrostatically, it does not peel off in this step. Further, it may be carried out in order to prevent a polymer electrolyte or fine particles not adsorbed from being brought into a solution having an opposite charge. If this is not done, cation and anion may be mixed in the solution by bringing it in, and precipitation may occur.

装置としてはディッパーと呼ばれる交互積層装置を用いても良い。上下左右に動作するロボットアームに基材を取り付け、プログラムされた時間に、基材をカチオン性溶液に漬け、続いてリンス液に漬け、続いてアニオン性溶液に漬け、またリンス液に漬ける。この工程を1サイクルとして、積層したい回数分を連続的に自動的に行うことができる。そのプログラムは2種類以上のカチオン性物質、アニオン性物質を用いた組み合わせをしてもよい。例えば、最初の2層分はポリジメチルジアリルアンモニウム塩化物とポリスチレンスルホン酸ナトリウムの組み合わせ、続く10層はポリジメチルジアリルアンモニウム塩化物とアニオン性シリカゾルの組み合わせを用いることができる。   As an apparatus, an alternate lamination apparatus called a dipper may be used. A substrate is attached to a robot arm that moves vertically and horizontally, and at a programmed time, the substrate is immersed in a cationic solution, subsequently immersed in a rinse solution, subsequently immersed in an anionic solution, and then immersed in a rinse solution. This process is one cycle, and the number of times of lamination can be continuously and automatically performed. The program may be a combination of two or more kinds of cationic substances and anionic substances. For example, the first two layers can use a combination of polydimethyldiallylammonium chloride and sodium polystyrene sulfonate, and the next 10 layers can use a combination of polydimethyldiallylammonium chloride and anionic silica sol.

ロール状に巻き取ったフィルムを巻き出し部から取り出し、途中にカチオン性溶液水槽、リンス水槽、アニオン性水槽、リンス水槽を並べて配置し、この配置を積層したい回数分並べて最後に乾燥する工程などを配置して、巻取り部を設けたフィルム状基材への連続膜形成プロセスも用いることができる。   Take out the film wound up in roll form from the unwinding part, arrange the cationic solution water tank, rinse water tank, anionic water tank, rinse water tank in the middle, arrange the number of times you want to stack this arrangement and finally dry the process etc. It is also possible to use a continuous film forming process on a film-like substrate which is arranged and provided with a winding part.

得られた微粒子積層薄膜には、防汚性をもたせるためにフッ素系ポリマ溶液またはフッ素系カップリング剤溶液を塗布してもよい。溶液の濃度は0.1〜5重量%が好ましい。0.1重量%未満では、十分な防汚性が得られない場合がある。微粒子積層膜の表面に内部に染み込んで、表面に防汚成分が残りにくいためである。また、5重量%を超えると、所望の空隙率を得ることができない場合がある。防汚成分の占める体積が、空隙を埋めてしまうためである。また、微細な形状の谷の部分を埋めてしまうために、形状が変わってしまい、レンズなどの光を曲げる機能を持たせた基材の場合、その特性を劣化させる場合がある。   The obtained fine particle laminated thin film may be coated with a fluorine polymer solution or a fluorine coupling agent solution in order to impart antifouling properties. The concentration of the solution is preferably 0.1 to 5% by weight. If it is less than 0.1% by weight, sufficient antifouling properties may not be obtained. This is because the surface of the fine particle laminated film soaks into the interior and the antifouling component hardly remains on the surface. Moreover, when it exceeds 5 weight%, a desired porosity may not be obtained. This is because the volume occupied by the antifouling component fills the gap. In addition, since the valley portion of the fine shape is filled, the shape changes, and in the case of a base material having a function of bending light such as a lens, the characteristics may be deteriorated.

(微粒子積層薄膜の屈折率と膜厚の決定)
反射率分光法及びカーブフィット法を組み合わせた瞬間測光分光光度計(フィルメトリクス株式会社製、F20)の解析プログラムにより、表面反射率のスペクトルから微粒子積層膜の屈折率と膜厚を求めることができる。
(Determination of refractive index and film thickness of fine particle laminated thin film)
The refractive index and film thickness of the fine particle laminate film can be obtained from the surface reflectance spectrum by an analysis program of an instantaneous photometric spectrophotometer (Filmetrics Co., Ltd., F20) that combines reflectance spectroscopy and curve fitting. .

(微粒子積層薄膜の空隙率の決定)
本発明の微粒子積層薄膜では微粒子の間の隙間は、空気である。すなわち、走査型電子顕微鏡による表面及び、断面観察によって、孔が観測できることから、シリカ微粒子積層薄膜の見かけの屈折率がシリカより低い場合、屈折率を下げているのは、孔に存在する空気であることが分かる。この仮定から、微粒子積層薄膜中の空隙率ρは次式より求めることができる。

Figure 2009113484
(ただし、式中、nは微粒子を構成する物質の屈折率、nは空気の屈折率=1.0を示す。) (Determination of porosity of fine particle laminated thin film)
In the fine particle laminated thin film of the present invention, the gap between the fine particles is air. That is, since holes can be observed by surface and cross-sectional observation with a scanning electron microscope, when the apparent refractive index of the silica fine particle laminated thin film is lower than that of silica, the refractive index is lowered by the air present in the holes. I understand that there is. From this assumption, the porosity ρ 0 in the fine particle laminated thin film can be obtained from the following equation.
Figure 2009113484
(In the formula, n P represents the refractive index of the substance constituting the fine particles, and n 0 represents the refractive index of air = 1.0.)

以下、本発明の低屈折率膜の実施例を説明する。以下、「部」は、「重量部」を意味にする。     Examples of the low refractive index film of the present invention will be described below. Hereinafter, “part” means “part by weight”.

(基材への電解質ポリマー及び微粒子の吸着)
微粒子として、BET法で測定した平均一次粒子径が8nmの数珠状シリカ微粒子を用いた。シリカ水分散液1.0重量%(スノーテックス(ST)OUP、日産化学工業株式会社製、シリカゾル、アニオン性)を微粒子分散液として用い、ポリジアリルジメチルアンモニウムクロライド(PDDA、平均分子量100000、アルドリッチ製、カチオン性)を電解質ポリマーとして用いた。溶液としては0.3重量%のPDDA水溶液と1.0重量%の微粒子分散液を調製した。微粒子分散液のpHは未調整で4であり、PDDA水溶液のpHは9に調製した。シリコン基板(150mmφ、0.7mm厚)を、PDDA水溶液に1分間浸漬し、リンス用の超純水に3分間浸漬する工程(ア)、微粒子分散液に1分間浸漬した後、リンス用の超純水に3分間浸漬する工程(イ)をこの順に施した。この工程(ア)1回と工程(イ)1回を順に行うのを1サイクルとし、このサイクルを3回(微粒子交互積層回数)行い、電解質ポリマー及び微粒子が吸着された基材を形成した。
(Adsorption of electrolyte polymer and fine particles to substrate)
As fine particles, beaded silica fine particles having an average primary particle diameter of 8 nm measured by the BET method were used. Silica water dispersion 1.0% by weight (Snowtex (ST) OUP, manufactured by Nissan Chemical Industries, Ltd., silica sol, anionic) is used as a fine particle dispersion, and polydiallyldimethylammonium chloride (PDDA, average molecular weight 100000, manufactured by Aldrich) , Cationic) was used as the electrolyte polymer. As a solution, a 0.3 wt% PDDA aqueous solution and a 1.0 wt% fine particle dispersion were prepared. The pH of the fine particle dispersion was adjusted to 4 and the pH of the aqueous PDDA solution was adjusted to 9. A silicon substrate (150 mmφ, 0.7 mm thickness) is immersed in an aqueous PDDA solution for 1 minute, immersed in ultrapure water for rinsing for 3 minutes (a), immersed in a fine particle dispersion for 1 minute, The step (a) of immersing in pure water for 3 minutes was performed in this order. This step (a) once and step (b) once were sequentially performed as one cycle, and this cycle was repeated three times (the number of times of alternating fine particle lamination) to form a substrate on which the electrolyte polymer and fine particles were adsorbed.

(アルコール性シリカゾルの合成)
<メチルシリケート系アルコール性シリカゾル>
テトラメトキシシラン61.5gを4つ口丸底フラスコ1l(リットル)に入れ、MeOH 463.9gを加え、液温を30℃に一定に維持しながら攪拌し液を均一にした。次に、水71.6gにHNO;3.0gを加えた水溶液を加え、30℃にて5時間攪拌した。このメチルシリケート系アルコール性シリカゾル(50部)とイソプロピルアルコール(50部)を混合し、n-ブチルアルコールを加えて、固形分濃度が所定の濃度となるように調整した。
(Synthesis of alcoholic silica sol)
<Methyl silicate alcoholic silica sol>
61.5 g of tetramethoxysilane was placed in 1 l (liter) of a four-necked round bottom flask, 463.9 g of MeOH was added, and the liquid temperature was kept constant at 30 ° C. to make the liquid uniform. Next, an aqueous solution in which 3.0 g of HNO 3 ; 3.0 g was added to 71.6 g of water, and the mixture was stirred at 30 ° C. for 5 hours. This methyl silicate alcoholic silica sol (50 parts) and isopropyl alcohol (50 parts) were mixed, and n-butyl alcohol was added to adjust the solid content concentration to a predetermined concentration.

<エチルシリケート系アルコール性シリカゾル>
テトラエトキシシラン85.7gを4つ口丸底フラスコ1lに入れ、MeOH 356.7gを加え、液温を30℃に一定に維持しながら攪拌し液を均一にした。次に、水154.6gにHNO;3.0gを加えた水溶液を加え、30℃にて5時間攪拌した。このエチルシリケート系アルコール性シリカゾル(50部)とイソプロピルアルコール(50部)を混合し、n−ブチルアルコールを加えて、固形分濃度が所定の濃度となるように調整した。
<Ethyl silicate alcoholic silica sol>
85.7 g of tetraethoxysilane was placed in 1 l of a four-necked round bottom flask, 356.7 g of MeOH was added, and the mixture was stirred while maintaining the liquid temperature constant at 30 ° C. to make the liquid uniform. Next, an aqueous solution obtained by adding 3.0 g of HNO 3 ; to 154.6 g of water was added and stirred at 30 ° C. for 5 hours. This ethylsilicate alcoholic silica sol (50 parts) and isopropyl alcohol (50 parts) were mixed, and n-butyl alcohol was added to adjust the solid content concentration to a predetermined concentration.

(実施例1)
前記の電解質ポリマー及び微粒子が吸着された基材を、スピンコータにセットし、前記のメチルシリケート系アルコール性シリカゾル(0.4%固形分濃度)20mlを基板全体に展開した後、回転数1000rpmで、30秒間、回転させた。その後、80℃に加熱したホットプレートで、60秒間加熱し、微粒子とシリカゾル、及び微粒子と基板を結合させた微粒子積層薄膜付き基材を作製した。
Example 1
The substrate on which the electrolyte polymer and fine particles are adsorbed is set on a spin coater, and 20 ml of the methyl silicate-based alcoholic silica sol (0.4% solid content concentration) is developed on the entire substrate, and then the rotational speed is 1000 rpm. Rotated for 30 seconds. Then, it heated for 60 second with the hotplate heated at 80 degreeC, and produced the base material with a fine particle laminated thin film which couple | bonded the microparticles | fine-particles and silica sol, and microparticles | fine-particles and a board | substrate.

(実施例2)
メチルシリケート系アルコール性シリカゾルの代わりに、前記のエチルシリケート系アルコール性シリカゾル(0.4重量%固形分濃度)とした以外は、実施例1と同様にして、微粒子積層薄膜付き基材を作製した。
(Example 2)
A substrate with a fine particle laminated thin film was prepared in the same manner as in Example 1 except that the ethyl silicate alcoholic silica sol (0.4 wt% solid content concentration) was used instead of the methyl silicate alcoholic silica sol. .

(実施例3)
メチルシリケート系アルコール性シリカゾル(0.2重量%固形分濃度)とエチルシリケート系アルコール性シリカゾル(0.2重量%固形分濃度)を50部ずつ混合したもの、20mlを基板全体に展開した後、回転数1000rpmで、30秒間、回転させた。その後、80℃に加熱したホットプレートで、60秒間加熱し、微粒子とシリカゾル、及び微粒子と基板を結合させた微粒子積層薄膜付き基材を作製した。
(Example 3)
A mixture of 50 parts each of methyl silicate-based alcoholic silica sol (0.2 wt% solid content concentration) and ethyl silicate-based alcoholic silica sol (0.2 wt% solid content concentration), and 20 ml developed over the entire substrate, Rotation was performed at 1000 rpm for 30 seconds. Then, it heated for 60 second with the hotplate heated at 80 degreeC, and produced the base material with a fine particle laminated thin film which couple | bonded the microparticles | fine-particles and silica sol, and microparticles | fine-particles and a board | substrate.

(実施例4)
シリコン基板の代わりに、アクリル樹脂板(住友化学社製、スミペックス、100mm×150mm×1mm厚)を用いた以外は同一の微粒子積層薄膜を用いて、実施例1と同様にして、微粒子積層薄膜付き基材を作製した。
Example 4
In the same manner as in Example 1, except that an acrylic resin plate (Sumitex, 100 mm × 150 mm × 1 mm thickness) was used instead of a silicon substrate, a fine particle laminated thin film was attached in the same manner as in Example 1. A substrate was prepared.

(実施例5)
シリコン基板の代わりに、PETフィルム(東洋紡社製、A4100、100mm×150mm×125μm厚)を用いた以外は同一の微粒子積層薄膜を用いて、実施例1と同様にして、微粒子積層薄膜付き基材を作製した。
(Example 5)
Substrate with fine particle laminated thin film in the same manner as in Example 1 except that a PET film (A4100, 100 mm × 150 mm × 125 μm thickness) was used instead of the silicon substrate, and the same fine particle laminated thin film was used. Was made.

(実施例6)
シリコン基板の代わりに、ガラス板(BK−5ガラス基板、マツナミ社製、25mm×75mm×0.7mm厚)を用いた以外は同一の微粒子積層薄膜を用いて、実施例1と同様にして、微粒子積層薄膜付き基材を作製した。
(Example 6)
In the same manner as in Example 1, except that a glass plate (BK-5 glass substrate, manufactured by Matsunami Co., Ltd., 25 mm × 75 mm × 0.7 mm thickness) was used instead of the silicon substrate, A substrate with a fine particle laminated thin film was prepared.

(実施例7)
シリコン基板の代わりに、シリコン基板上に、感光性樹脂(シプレイ・ファーイー. スト社製、UV6、ポジ型レジスト)によって、直径10μm、高さ4μmの半球状のレンズ形状が形成された基板を用いた以外は同一の微粒子積層薄膜を用いて、実施例1と同様にして、微粒子積層薄膜付き基材を作製した。微粒子積層薄膜の屈折率と膜厚、空隙率を測定したところ、それぞれ1.26、100nm、51%であった。
(Example 7)
Instead of a silicon substrate, a substrate in which a hemispherical lens shape having a diameter of 10 μm and a height of 4 μm is formed on a silicon substrate by a photosensitive resin (UV6, positive resist manufactured by Shipley Far East Co., Ltd.) is used. A substrate with a fine particle laminated thin film was produced in the same manner as in Example 1 except that the same fine fine particle laminated thin film was used. When the refractive index, the film thickness, and the porosity of the fine particle laminated thin film were measured, they were 1.26, 100 nm, and 51%, respectively.

(比較例1〜7)
比較例として、アルコール性シリカゾルをスピンコートしないこと以外、実施例1から実施例7と同様の、微粒子積層薄膜付き基材を作製し、それぞれ、比較例1から7とした。
(Comparative Examples 1-7)
As a comparative example, a substrate with a fine particle laminated thin film was prepared in the same manner as in Examples 1 to 7, except that the alcoholic silica sol was not spin-coated.

実施例1〜7及び比較例1〜7による微粒子積層薄膜付き基材について、以下の通り、屈折率、膜厚、空隙率、密着性及び耐スクラッチ性を測定し評価を行った。   About the base material with a fine particle laminated thin film by Examples 1-7 and Comparative Examples 1-7, the refractive index, the film thickness, the porosity, adhesiveness, and scratch resistance were measured and evaluated as follows.

(微粒子積層薄膜の屈折率と膜厚の決定)
反射率分光法及びカーブフィット法を組み合わせた瞬間測光分光光度計(フィルメトリクス株式会社製、F20)の解析プログラムにより、表面反射率のスペクトルから微粒子積層膜の屈折率と膜厚を求めた。
(Determination of refractive index and film thickness of fine particle laminated thin film)
The refractive index and film thickness of the fine particle multilayer film were determined from the spectrum of the surface reflectance by an analysis program of an instantaneous photometric spectrophotometer (manufactured by Filmetrics Co., Ltd., F20) combining reflectance spectroscopy and curve fitting.

(微粒子積層薄膜の空隙率の決定)
本発明の微粒子積層薄膜では微粒子の間の隙間は、空気である。すなわち、走査型電子顕微鏡による表面及び、断面観察によって、孔が観測できることから、シリカ微粒子積層薄膜の見かけの屈折率がシリカより低い場合、屈折率を下げているのは、孔に存在する空気であることが分かる。この仮定から、微粒子積層薄膜中の空隙率ρは次式より求めた。

Figure 2009113484
(ただし、式中、nは微粒子を構成する物質の屈折率、nは空気の屈折率=1.0を示す。) (Determination of porosity of fine particle laminated thin film)
In the fine particle laminated thin film of the present invention, the gap between the fine particles is air. That is, since holes can be observed by surface and cross-sectional observation with a scanning electron microscope, when the apparent refractive index of the silica fine particle laminated thin film is lower than that of silica, the refractive index is lowered by the air present in the holes. I understand that there is. From this assumption, the porosity ρ 0 in the fine particle laminated thin film was obtained from the following equation.
Figure 2009113484
(In the formula, n P represents the refractive index of the substance constituting the fine particles, and n 0 represents the refractive index of air = 1.0.)

(密着力の評価方法)
この微粒子積層薄膜の密着力を測るため、粘着テープ(NO.31B、ポリエステル粘着テープ、日東電工製)を貼り付けて、引き剥がし、微粒子積層薄膜が、容易に基材から剥離し、粘着テープ側に移った場合は密着力が不十分と判定した。この粘着テープのPETフィルムに対するピール強度は6N/19mm(3N/10mm)であった。ピール強度の測定方法は、テンシロン(定速伸張型引張試験機、オリエンテック社製、RTM−10、温度:室温、試験方法:T型剥離、剥離速度:0.2m/min)を用いて、剥離した時の荷重を剥離強度として、密着性を評価した。密着性は、前記の粘着テープを貼合したのち、はがした場合、変化のない膜は○、膜がまったく残らない場合は×とした。
(Evaluation method for adhesion)
Adhesive tape (NO.31B, polyester adhesive tape, manufactured by Nitto Denko) is attached and peeled off in order to measure the adhesion strength of the fine particle laminated thin film, and the fine particle laminated thin film is easily peeled off from the base material. When it moved to, it was determined that the adhesion was insufficient. The peel strength of the adhesive tape with respect to the PET film was 6 N / 19 mm (3 N / 10 mm). The peel strength is measured using Tensilon (constant speed extension type tensile tester, manufactured by Orientec, RTM-10, temperature: room temperature, test method: T-type peeling, peeling speed: 0.2 m / min), Adhesion was evaluated using the load at the time of peeling as the peel strength. The adhesiveness was evaluated as ◯ for a film having no change when it was peeled off after pasting the adhesive tape, and x when no film was left.

(耐スクラッチ性の評価方法)
耐スクラッチ性の評価は、鉛筆硬度で行った。測定方法は、JIS規格(JIS-K-5400-1990)に準拠して次のように測定した。まず、試料に対して45°の角度で固定された鉛筆に、試料を押し付けた。鉛筆が試料に加える荷重は1.00±0.05kgとした。試料に付着した鉛筆の粉をエアーブローし、残った鉛筆の粉はプラスチック消しゴム(PE01、トンボ鉛筆製)を押し付けて取り除いた。膜表面にわずかに食い込むような傷が見えたときに、「擦り傷が付いた」と判別した。5回の試験で2回以上膜に擦り傷が認められた時の鉛筆の濃度記号を、その試料の鉛筆硬度とした。例えば、2Hの鉛筆で擦り傷が2回つき、Hの鉛筆で擦り傷が1回つく試料の鉛筆硬度はHである。
(Scratch resistance evaluation method)
The scratch resistance was evaluated by pencil hardness. The measuring method was measured as follows based on JIS standard (JIS-K-5400-1990). First, the sample was pressed against a pencil fixed at an angle of 45 ° with respect to the sample. The load applied by the pencil to the sample was 1.00 ± 0.05 kg. The pencil powder adhering to the sample was blown with air, and the remaining pencil powder was removed by pressing a plastic eraser (PE01, made by dragonfly pencil). When scratches that slightly bite on the surface of the film were seen, it was determined that “scratched”. The pencil hardness symbol of the sample when the film was scratched twice or more in five tests was defined as the pencil hardness of the sample. For example, a pencil hardness of a sample in which a 2H pencil scratches twice and an H pencil scratches once is H.

得られた微粒子積層薄膜の評価結果を表1に示す。

Figure 2009113484
The evaluation results of the obtained fine particle laminated thin film are shown in Table 1.
Figure 2009113484

(実施例8)
<基材への電解質ポリマー及び微粒子の吸着>
BET法で測定した平均一次粒子径が8nmの数珠状シリカ微粒子が分散したシリカ水分散液(日産化学工業(株)製、商品名:スノーテックス(ST)OUP、シリカゾル)をpHは調整せずに濃度を1重量%に調整した微粒子分散液として用い、ポリジアリルジメチルアンモニウムクロリド(PDDA、アルドリッチ社製)を0.1重量%、pH10に調整した水溶液を電解質ポリマー水溶液として用いた。
(Example 8)
<Adsorption of electrolyte polymer and fine particles to substrate>
The pH of the silica aqueous dispersion (manufactured by Nissan Chemical Industries, Ltd., trade name: SNOWTEX (ST) OUP, silica sol) in which bead-like silica fine particles having an average primary particle diameter of 8 nm measured by the BET method are dispersed is not adjusted. As an electrolyte polymer aqueous solution, an aqueous solution in which polydiallyldimethylammonium chloride (PDDA, manufactured by Aldrich) was adjusted to 0.1% by weight and pH 10 was used as a fine particle dispersion having a concentration adjusted to 1% by weight.

基材であるシリコンウエハ(SUMCO社製、6PW−A1、6インチΦ、625μm厚)、ガラス基材(松浪硝子社製、商品名:S1111、25mm×75mm×0.7mm厚、波長550nmでの屈折率は1.54)、低圧水銀ランプ(10mW)にて紫外線を2分照射したポリスチレン板(光社製、透明、1mm厚)のそれぞれに、PDDA水溶液を滴下して1分間経過後にリンス用の超純水を1分間シャワーする工程(ア)、微粒子分散液を滴下して1分間経過後にリンス用の超純水を1分間シャワーする工程(イ)をこの順に施した。工程(ア)1回と工程(イ)1回を順に行うことを1サイクルとし、このサイクル数を微粒子交互積層回数とした。微粒子交互積層回数を4回行い、電解質ポリマー及び微粒子を吸着させた基材を形成した。   Silicon substrate (SUMCO CO., 6PW-A1, 6 inch Φ, 625 μm thickness), glass substrate (manufactured by Matsunami Glass Co., Ltd., trade name: S1111, 25 mm × 75 mm × 0.7 mm thickness, wavelength 550 nm) Refractive index is 1.54), PDDA aqueous solution is dropped onto each polystyrene plate (manufactured by Hikari Co., Ltd., transparent, 1 mm thickness) irradiated with UV light for 2 minutes with a low-pressure mercury lamp (10 mW) and rinsed after 1 minute A step (a) of showering the ultrapure water for 1 minute and a step (a) of dropping the fine particle dispersion and showering the ultrapure water for rinsing for 1 minute after the elapse of 1 minute were performed in this order. Performing the step (a) once and the step (b) once in order was defined as one cycle, and this cycle number was defined as the number of fine particle alternating laminations. The base material on which the electrolyte polymer and the fine particles were adsorbed was formed by performing the fine particle alternating lamination four times.

<アルコール性シリカゾル生成物の合成及びこれを用いた処理>
エトキシシランオリゴマー(コルコート社製、エチルシリケート40)50gを3つ口丸底フラスコ300mlに入れ、MeOH42gを加え、25℃にて攪拌し液を均一にした後に、HPO0.05重量%水溶液を7.4g加え、25℃にて72時間攪拌し、シラン濃度50%の珪素化合物溶液を得た。前記珪素化合物溶液に1−ブタノールを加えて、シラン濃度を1重量%に調整した珪素化合物処理液を得た。前記の電解質ポリマー及び微粒子を吸着させた基材を、スピンコータにセットし、前記の珪素化合物処理液20mlを基板全体に展開した後、回転数1000min−1で展開及び乾燥した。その後、25℃で24時間乾燥し、微粒子積層薄膜付き基材を作製した。
<Synthesis of alcoholic silica sol product and treatment using the same>
50 g of an ethoxysilane oligomer (Colcoat Co., ethyl silicate 40) was placed in a 300 ml three-necked round bottom flask, 42 g of MeOH was added, and the mixture was stirred at 25 ° C. to make the solution uniform, and then H 3 PO 4 0.05 wt% 7.4 g of an aqueous solution was added and stirred at 25 ° C. for 72 hours to obtain a silicon compound solution having a silane concentration of 50%. 1-butanol was added to the silicon compound solution to obtain a silicon compound treatment liquid in which the silane concentration was adjusted to 1% by weight. The substrate on which the electrolyte polymer and fine particles were adsorbed was set on a spin coater, and 20 ml of the silicon compound treatment solution was spread on the entire substrate, and then spread and dried at a rotation speed of 1000 min −1 . Then, it dried at 25 degreeC for 24 hours, and produced the base material with a fine particle laminated thin film.

<屈折率の評価>
シリコンウエハ上の低屈折率膜(微粒子積層薄膜)の屈折率と膜厚を自動エリプソメータ(ファイブラボ(株)製、商品名:MARY−102、レーザー波長632.8nm)で評価した結果、低屈折率膜の屈折率は1.25、厚さは110nmであった。
<Evaluation of refractive index>
As a result of evaluating the refractive index and film thickness of a low refractive index film (fine particle laminated thin film) on a silicon wafer with an automatic ellipsometer (manufactured by Fibrabo Co., Ltd., trade name: MARY-102, laser wavelength 632.8 nm) The refractive index of the refractive index film was 1.25, and the thickness was 110 nm.

<透明性の評価>
前記で得た低屈折率膜が形成されたガラス基板のヘイズ値を、濁度計(日本電色工業社製)でJIS K 7361−1−1997に準拠して測定した結果、0.4%であった。ガラス基板のみのヘイズ値を同様に測定した結果、0.1%であった。低屈折率膜が形成された固体基材のヘイズ値から、固体基材のみのヘイズ値を差し引くことで低屈折率膜の濁度を求めた。その結果、低屈折率膜の濁度は0.3%であり、低屈折率膜の透明性が非常に高いことがわかった。
<Evaluation of transparency>
As a result of measuring the haze value of the glass substrate on which the low refractive index film obtained above was formed in accordance with JIS K 7361-1-1997 with a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd.), 0.4% Met. The haze value of the glass substrate alone was measured in the same manner and was found to be 0.1%. The turbidity of the low refractive index film was determined by subtracting the haze value of only the solid substrate from the haze value of the solid substrate on which the low refractive index film was formed. As a result, it was found that the turbidity of the low refractive index film was 0.3%, and the transparency of the low refractive index film was very high.

<反射防止性能の評価>
低屈折率膜が形成されたガラス基板の透過スペクトルを可視紫外分光光度計(日本分光(株)製、商品名:V−570)で測定したところ、波長400〜800nmでの最大の透過率は95%であった。
<Evaluation of antireflection performance>
When the transmission spectrum of the glass substrate on which the low refractive index film is formed is measured with a visible ultraviolet spectrophotometer (trade name: V-570, manufactured by JASCO Corporation), the maximum transmittance at a wavelength of 400 to 800 nm is 95%.

また、低屈折率膜が形成されたガラス基板の反対面に黒い粘着テープ(ニチバン(株)製、商品名:VT−196)を気泡が残らないように貼り付け、低屈折率膜が形成された片面の表面反射率のスペクトルを可視紫外分光光度計(日本分光(株)製、商品名:V−570)で測定した。低屈折率膜が形成されたガラス基板の波長400〜800nmでの最小の表面反射率は0.1%であった。   In addition, a black adhesive tape (manufactured by Nichiban Co., Ltd., trade name: VT-196) is attached to the opposite surface of the glass substrate on which the low refractive index film is formed so that no bubbles remain, and the low refractive index film is formed. The spectrum of the surface reflectance of one side was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, trade name: V-570). The minimum surface reflectance at a wavelength of 400 to 800 nm of the glass substrate on which the low refractive index film was formed was 0.1%.

ガラス基板の透過率は91%、表面反射率は4.5%であることから、優れた特性の反射防止膜が形成され、透過率も向上させることがわかった。   Since the transmittance of the glass substrate was 91% and the surface reflectance was 4.5%, it was found that an antireflection film having excellent characteristics was formed and the transmittance was also improved.

<密着性の評価>
粘着テープとして粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)を使用し、ロールラミネータ(ラミーコーポレーション社製LMP−350EX)を用いて、ロール荷重0.3MPa、送り速度0.3m/min、温度20℃の条件で、粘着テープを低屈折率膜へ貼り付けた。テープを密着させてから1分後に、テープの一方の端を基材面に直角に持ち上げ、瞬間的に引き剥がした。低屈折率膜を目視観察した結果、基材表面が見えず、低屈折率膜が可視光を散乱していないことから、低屈折率膜が基材に密着していることがわかった。シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材上に密着していた。
<Evaluation of adhesion>
An adhesive tape of 320 cN / 25 mm and a width of 25 mm is used as the adhesive tape (Hitalex L-7330, manufactured by Hitachi Chemical Co., Ltd.), and a roll laminator (LMP-350EX, manufactured by Lamy Corporation) is used. An adhesive tape was attached to the low refractive index film under conditions of a speed of 0.3 m / min and a temperature of 20 ° C. One minute after the tape was brought into close contact, one end of the tape was lifted at a right angle to the substrate surface and peeled off instantaneously. As a result of visual observation of the low refractive index film, it was found that the low refractive index film was in close contact with the base material because the surface of the base material was not visible and the low refractive index film did not scatter visible light. The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

また、粘着テープとして粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)を使用し、ロールラミネータ(ラミーコーポレーション社製LMP−350EX)を用いて、ロール荷重0.3MPa、送り速度0.3m/min、温度20℃の条件で、粘着テープを低屈折率膜へ貼り付けた。テープを密着させてから1分後に、紫外線露光装置(オーク(株)製、HMW−6N−4)を用いて200mJ/cm2の紫外線を照射し、テープの一方の端を基材面に直角に持ち上げ、瞬間的に引き剥がした。シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材上に密着していた。   In addition, an adhesive tape of 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and 25 mm wide adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.) was used as the adhesive tape, and a roll laminator (LMP-350EX manufactured by Lamy Corporation) was used. The pressure-sensitive adhesive tape was attached to the low refractive index film under the conditions of a roll load of 0.3 MPa, a feed rate of 0.3 m / min, and a temperature of 20 ° C. One minute after the tape was adhered, 200 mJ / cm 2 of ultraviolet light was irradiated using an ultraviolet exposure device (OMW Co., Ltd., HMW-6N-4), and one end of the tape was perpendicular to the substrate surface. Lifted and peeled off momentarily. The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

(実施例9)
実施例8に準じて電解質ポリマー及び微粒子を吸着させた基材を作製した。
Example 9
In accordance with Example 8, a base material on which an electrolyte polymer and fine particles were adsorbed was produced.

エトキシシランオリゴマー(コルコート社製、エチルシリケート48)50gを3つ口丸底フラスコ300mlに入れ、MeOH46gを加え、25℃にて攪拌し液を均一にした後に、HPO10.0重量%水溶液を3.6g加え、25℃にて24時間攪拌し、シラン濃度50%の珪素化合物溶液を得たこと、シラン濃度を1重量%に調整して珪素化合物処理液を得たこと以外は、実施例8に準じて低屈折率膜を作製した。 50 g of ethoxysilane oligomer (Colcoat Co., ethyl silicate 48) was placed in a 300 ml three-necked round bottom flask, 46 g of MeOH was added, and the mixture was stirred at 25 ° C. to make the solution uniform, and then H 3 PO 4 10.0 wt%. 3.6 g of an aqueous solution was added and stirred at 25 ° C. for 24 hours to obtain a silicon compound solution having a silane concentration of 50%, and a silicon compound treatment solution was obtained by adjusting the silane concentration to 1% by weight. A low refractive index film was prepared according to Example 8.

実施例8と同様に評価した低屈折率膜の屈折率は1.25、厚さは110nmであり、実施例8と同様に評価した低屈折率膜の濁度は0.3%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の透過スペクトルを測定したところ、波長400〜800nmでの最大の透過率は95%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。   The refractive index of the low refractive index film evaluated in the same manner as in Example 8 was 1.25, the thickness was 110 nm, and the turbidity of the low refractive index film evaluated in the same manner as in Example 8 was 0.3%. . When the transmission spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the maximum transmittance at a wavelength of 400 to 800 nm was 95%. When the surface reflection spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.

実施例8と同様に密着性を評価したところ、粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着しており、粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着していた。   When the adhesion was evaluated in the same manner as in Example 8, the adhesive strength of 320 cN / 25 mm and the width of 25 mm adhesive tape (Hitalex L-7330 manufactured by Hitachi Chemical Co., Ltd.) was used on a silicon substrate, on a glass substrate, on polystyrene. The low refractive index films are all in close contact with the base material, and the adhesive strength is 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and the width of 25 mm is used for the adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.). The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

(実施例10)
実施例8に準じて電解質ポリマー及び微粒子を吸着させた基材を作製した。
(Example 10)
In accordance with Example 8, a base material on which an electrolyte polymer and fine particles were adsorbed was produced.

メトキシシランオリゴマー(コルコート社製、メチルシリケート51)50gを3つ口丸底フラスコ300mlに入れ、MeOH40gを加え、25℃にて攪拌し液を均一にした後に、HPO4.3重量%水溶液を9.7g加え、25℃にて4時間攪拌し、シラン濃度50%の珪素化合物溶液を得たこと、シラン濃度を5重量%に調整して珪素化合物処理液を得たこと以外は、実施例8に準じて低屈折率膜を作製した。 50 g of a methoxysilane oligomer (manufactured by Colcoat Co., Ltd., methyl silicate 51) was placed in a 300 ml three-necked round bottom flask, 40 g of MeOH was added, and the mixture was stirred at 25 ° C. to make the solution uniform, and then H 3 PO 4 4.3 wt%. 9.7 g of an aqueous solution was added and stirred at 25 ° C. for 4 hours to obtain a silicon compound solution having a silane concentration of 50%, and a silicon compound treatment solution was obtained by adjusting the silane concentration to 5% by weight. A low refractive index film was prepared according to Example 8.

実施例8と同様に評価した低屈折率膜の屈折率は1.25、厚さは110nmであり、実施例8と同様に評価した低屈折率膜の濁度は0.3%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の透過スペクトルを測定したところ、波長400〜800nmでの最大の透過率は95%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。   The refractive index of the low refractive index film evaluated in the same manner as in Example 8 was 1.25, the thickness was 110 nm, and the turbidity of the low refractive index film evaluated in the same manner as in Example 8 was 0.3%. . When the transmission spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the maximum transmittance at a wavelength of 400 to 800 nm was 95%. When the surface reflection spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.

実施例8と同様に密着性を評価したところ、粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着しており、粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着していた。   When the adhesion was evaluated in the same manner as in Example 8, the adhesive strength of 320 cN / 25 mm and the width of 25 mm adhesive tape (Hitalex L-7330 manufactured by Hitachi Chemical Co., Ltd.) was used on a silicon substrate, on a glass substrate, on polystyrene. The low refractive index films are all in close contact with the base material, and the adhesive strength is 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and the width of 25 mm is used for the adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.). The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

(実施例11)
実施例8に準じて電解質ポリマー及び微粒子を吸着させた基材を作製した。
(Example 11)
In accordance with Example 8, a base material on which an electrolyte polymer and fine particles were adsorbed was produced.

エトキシシランオリゴマー(コルコート社製、エチルシリケート48)をシラン濃度100%の珪素化合物溶液とし、シラン濃度を1重量%に調整して珪素化合物処理液を得たこと以外は、実施例8に準じて低屈折率膜を作製した。   Except that an ethoxysilane oligomer (manufactured by Colcoat Co., ethyl silicate 48) was used as a silicon compound solution with a silane concentration of 100% and the silane concentration was adjusted to 1% by weight to obtain a silicon compound treatment solution, the same as in Example 8. A low refractive index film was prepared.

実施例8と同様に評価した低屈折率膜の屈折率は1.25、厚さは110nmであり、実施例8と同様に評価した低屈折率膜の濁度は0.3%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の透過スペクトルを測定したところ、波長400〜800nmでの最大の透過率は95%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。   The refractive index of the low refractive index film evaluated in the same manner as in Example 8 was 1.25, the thickness was 110 nm, and the turbidity of the low refractive index film evaluated in the same manner as in Example 8 was 0.3%. . When the transmission spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the maximum transmittance at a wavelength of 400 to 800 nm was 95%. When the surface reflection spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.

実施例8と同様に密着性を評価したところ、粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着しており、粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着していた。   When the adhesion was evaluated in the same manner as in Example 8, the adhesive strength of 320 cN / 25 mm and the width of 25 mm adhesive tape (Hitalex L-7330 manufactured by Hitachi Chemical Co., Ltd.) was used on a silicon substrate, on a glass substrate, on polystyrene. The low refractive index films are all in close contact with the base material, and the adhesive strength is 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and the width of 25 mm is used for the adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.). The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

(実施例12)
実施例8に準じて電解質ポリマー及び微粒子を吸着させた基材を作製した。
Example 12
In accordance with Example 8, a base material on which an electrolyte polymer and fine particles were adsorbed was produced.

メトキシシランオリゴマー(コルコート社製、メチルシリケート51)をシラン濃度100%の珪素化合物溶液とし、シラン濃度を5重量%に調整して珪素化合物処理液を得たこと以外は、実施例8に準じて低屈折率膜を作製した。   Except that a methoxysilane oligomer (manufactured by Colcoat Co., Ltd., methyl silicate 51) was used as a silicon compound solution with a silane concentration of 100%, and the silane concentration was adjusted to 5% by weight to obtain a silicon compound treatment solution A low refractive index film was prepared.

実施例8と同様に評価した低屈折率膜の屈折率は1.25、厚さは110nmであり、実施例8と同様に評価した低屈折率膜の濁度は0.3%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の透過スペクトルを測定したところ、波長400〜800nmでの最大の透過率は95%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。   The refractive index of the low refractive index film evaluated in the same manner as in Example 8 was 1.25, the thickness was 110 nm, and the turbidity of the low refractive index film evaluated in the same manner as in Example 8 was 0.3%. . When the transmission spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the maximum transmittance at a wavelength of 400 to 800 nm was 95%. When the surface reflection spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.

実施例8と同様に密着性を評価したところ、粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着しており、粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着していた。   When the adhesion was evaluated in the same manner as in Example 8, the adhesive strength of 320 cN / 25 mm and the width of 25 mm adhesive tape (Hitalex L-7330 manufactured by Hitachi Chemical Co., Ltd.) was used on a silicon substrate, on a glass substrate, on polystyrene. The low refractive index films are all in close contact with the base material, and the adhesive strength is 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and the width of 25 mm is used for the adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.). The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

(実施例13)
実施例8に準じて電解質ポリマー及び微粒子を吸着させた基材を作製した。
(Example 13)
In accordance with Example 8, a base material on which an electrolyte polymer and fine particles were adsorbed was produced.

テトラエトキシシラン(和光純薬社製、オルトケイ酸テトラエチル)50gを3つ口丸底フラスコ300mlに入れ、MeOH75gを加え、25℃にて攪拌し液を均一にした後に、HPO1.3重量%水溶液を17.7g加え、25℃にて24時間攪拌した後に、エトキシシランオリゴマー(コルコート社製、エチルシリケート48)50gを加え、25℃にて5分攪拌し、シラン濃度70%の珪素化合物溶液を得た。 After putting 50 g of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd., tetraethyl orthosilicate) into a 300 ml three-necked round bottom flask, adding 75 g of MeOH and stirring at 25 ° C. to make the solution uniform, H 3 PO 4 1.3 After adding 17.7 g of a weight% aqueous solution and stirring at 25 ° C. for 24 hours, 50 g of an ethoxysilane oligomer (Colcoat Co., ethyl silicate 48) was added, stirred at 25 ° C. for 5 minutes, and silicon having a silane concentration of 70%. A compound solution was obtained.

シラン濃度を1重量%に調整して珪素化合物処理液を得たこと以外は、実施例8に準じて低屈折率膜を作製した。   A low refractive index film was prepared in the same manner as in Example 8 except that the silicon compound treatment liquid was obtained by adjusting the silane concentration to 1% by weight.

実施例8と同様に評価した低屈折率膜の屈折率は1.25、厚さは110nmであり、実施例8と同様に評価した低屈折率膜の濁度は0.3%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の透過スペクトルを測定したところ、波長400〜800nmでの最大の透過率は95%であった。実施例8と同様に低屈折率膜が形成されたガラス基板の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。   The refractive index of the low refractive index film evaluated in the same manner as in Example 8 was 1.25, the thickness was 110 nm, and the turbidity of the low refractive index film evaluated in the same manner as in Example 8 was 0.3%. . When the transmission spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the maximum transmittance at a wavelength of 400 to 800 nm was 95%. When the surface reflection spectrum of the glass substrate on which the low refractive index film was formed was measured in the same manner as in Example 8, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.

実施例8と同様に密着性を評価したところ、粘着力320cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスL−7330)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着しており、粘着力360cN/25mm(紫外線照射後は25cN/25mm)、幅25mmの粘着テープ(電気化学社製BGP−101B)の使用に対して、シリコン基板上、ガラス基板上、ポリスチレン上の低屈折率膜はいずれも基材に密着していた。   When the adhesion was evaluated in the same manner as in Example 8, the adhesive strength of 320 cN / 25 mm and the width of 25 mm adhesive tape (Hitalex L-7330 manufactured by Hitachi Chemical Co., Ltd.) was used on a silicon substrate, on a glass substrate, on polystyrene. The low refractive index films are all in close contact with the base material, and the adhesive strength is 360 cN / 25 mm (25 cN / 25 mm after UV irradiation) and the width of 25 mm is used for the adhesive tape (BGP-101B manufactured by Electrochemical Co., Ltd.). The low refractive index films on the silicon substrate, glass substrate, and polystyrene were all in close contact with the base material.

以上の実施例8〜13の測定結果を表2に示す。

Figure 2009113484
The measurement results of Examples 8 to 13 are shown in Table 2.
Figure 2009113484

以上より、アルコキシシラン、または、アルコキシシランの加水分解物およびその加水分解物の縮合反応物、またはそれらの混合物のいずれかを微粒子積層膜と接触させることで、低屈折率膜に基材密着性を付与できることがわかる。   As described above, adhesion of the substrate to the low refractive index film can be achieved by bringing either the alkoxysilane, the hydrolysis product of the alkoxysilane, the condensation reaction product of the hydrolysis product, or a mixture thereof into contact with the fine particle laminated film. It can be seen that

本発明の反射防止膜付きガラスの製造方法においては、交互積層法で形成した微粒子積層薄膜を、オーブン等を用いてシリケート処理するだけで、耐スクラッチ性に優れた多孔質膜付き基板を製造できるため、量産性に優れる反射防止膜の製造方法である。   In the method for producing a glass with an antireflection film of the present invention, a substrate with a porous film having excellent scratch resistance can be produced simply by subjecting a fine particle laminated thin film formed by an alternating lamination method to a silicate treatment using an oven or the like. Therefore, it is a manufacturing method of an antireflection film excellent in mass productivity.

シリカゾルの塗布に伴う微粒子間の結合の様子を示した概念図である。It is the conceptual diagram which showed the mode of the coupling | bonding between microparticles | fine-particles accompanying application | coating of a silica sol. 数珠状に連なった微粒子の状態と、一次粒子の粒子径を示す模式図である。It is a schematic diagram which shows the state of the microparticles which continued in the shape of a bead, and the particle diameter of a primary particle. 反射防止膜の屈折率と反射防止膜付き固体基材(屈折率1.54)の表面反射率との関係を示すグラフである。It is a graph which shows the relationship between the refractive index of an antireflection film, and the surface reflectance of a solid base material (refractive index 1.54) with an antireflection film.

符号の説明Explanation of symbols

1 基材
2 電解質ポリマー
3 微粒子
4 空隙
5 アルコール性シリカゾル生成物
10 微粒子積層薄膜
DESCRIPTION OF SYMBOLS 1 Base material 2 Electrolyte polymer 3 Fine particle 4 Void 5 Alcoholic silica sol product 10 Fine particle laminated thin film

Claims (16)

基材と、該基材上に設けられた、空隙を有する微粒子積層薄膜とを有し、
該微粒子積層薄膜は、電解質ポリマーおよび微粒子が交互に吸着され、かつ、
アルコール性シリカゾル生成物を介して、該基材と該微粒子及び、該微粒子と該微粒子が結合していることを特徴とする微粒子積層薄膜付き基材。
A base material, and a fine-particle laminated thin film having voids provided on the base material,
The fine particle laminated thin film alternately adsorbs electrolyte polymer and fine particles, and
A substrate with a fine particle laminated thin film, wherein the substrate and the fine particles, and the fine particles and the fine particles are bonded via an alcoholic silica sol product.
前記微粒子積層薄膜の空隙率が、43%から53%である請求項1記載の微粒子積層薄膜付き基材。   2. The substrate with a fine particle laminated thin film according to claim 1, wherein the fine particle laminated thin film has a porosity of 43% to 53%. 前記アルコール性シリカゾル生成物は、一般式(1)で表わされる低級アルキルシリケートをメタノール及びエタノールから選択されるアルコール中で加水分解して調製したアルコール性シリカゾルを含むことを特徴とする、請求項1または2記載の微粒子積層薄膜付き基材。
Si(OR) ・・・(1)
(但し、Rはメチル基またはエチル基を示す。)
The alcoholic silica sol product includes an alcoholic silica sol prepared by hydrolyzing a lower alkyl silicate represented by the general formula (1) in an alcohol selected from methanol and ethanol. Or the base material with a fine particle laminated thin film of 2.
Si (OR) 4 (1)
(However, R represents a methyl group or an ethyl group.)
前記微粒子の一次粒子径が2〜100nmである請求項1から3いずれかに記載の微粒子積層薄膜付き基材。   The base material with a fine particle laminated thin film according to any one of claims 1 to 3, wherein a primary particle diameter of the fine particles is 2 to 100 nm. 前記微粒子が、無機酸化物である請求項1から4いずれかに記載の微粒子積層薄膜付き基材。   The substrate with fine particle laminated thin film according to any one of claims 1 to 4, wherein the fine particle is an inorganic oxide. 前記無機酸化物が、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選択される少なくとも一種の元素を含む酸化物からなるものである請求項5記載の微粒子積層薄膜付き基材。   6. The fine particle laminate according to claim 5, wherein the inorganic oxide comprises an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium and magnesium. Substrate with thin film. 前記微粒子が数珠状の微粒子集合体である請求項1から6いずれかに記載の微粒子積層薄膜付き基材。   The substrate with a fine particle laminated thin film according to any one of claims 1 to 6, wherein the fine particle is a bead-like fine particle aggregate. 請求項1から7いずれかに記載の微粒子積層薄膜付き基材を含む光学部材。   The optical member containing the base material with a fine particle laminated thin film in any one of Claim 1 to 7. 反射防止機能を有する請求項8記載の光学部材。   The optical member according to claim 8, which has an antireflection function. 半透過半反射機能を有する請求項8または9記載の光学部材。   The optical member according to claim 8 or 9, which has a transflective function. 反射機能を有する請求項8から10いずれかに記載の光学部材。   The optical member according to claim 8, which has a reflection function. 請求項1〜7いずれかに記載の微粒子積層薄膜付き基材の製造方法であって、基材上に、電解質ポリマーと微粒子とを交互に積層する製造方法であり、
(A)基材面に、電解質ポリマー溶液または微粒子分散液のいずれかを接触または塗布する工程、
(B)前記工程Aにおいて用いなかった方の電解質ポリマー溶液または微粒子分散液であって、前記工程Aにおいて用いた電解質ポリマーまたは微粒子とは反対電荷を有する電解質ポリマー溶液または微粒子分散液を接触または塗布する工程、及び
(C)さらにアルコール性シリカゾル溶液を接触または塗布する工程を含む工程を備える微粒子積層薄膜付き基材の製造方法。
It is a manufacturing method of the base material with a fine particle lamination thin film according to any one of claims 1 to 7, wherein the electrolytic polymer and the fine particles are alternately laminated on the base material,
(A) a step of contacting or coating either the electrolyte polymer solution or the fine particle dispersion on the substrate surface;
(B) The electrolyte polymer solution or fine particle dispersion not used in the step A, which is in contact with or applied to the electrolyte polymer solution or fine particle dispersion having the opposite charge to the electrolyte polymer or fine particles used in the step A And (C) a method for producing a substrate with a fine particle laminated thin film, further comprising a step of contacting or applying an alcoholic silica sol solution.
前記工程Aと工程Bとを交互に一回以上行った後、前記工程Cを行うことを特徴とする、請求項12に記載の微粒子積層薄膜付き基材の製造方法。   The method for producing a substrate with a fine-particle laminated thin film according to claim 12, wherein the step C is performed after the step A and the step B are alternately performed once or more alternately. 前記工程A及び工程Bから選択される工程の後にリンス工程を含む、請求項12または13に記載の微粒子積層薄膜付き基材の製造方法。   The manufacturing method of the base material with a fine particle laminated thin film of Claim 12 or 13 including the rinse process after the process selected from the said process A and the process B. 前記(工程C)の後に、加熱処理することを特徴とする請求項12から14いずれかに記載の微粒子積層薄膜付き基材の製造方法。   The method for producing a substrate with a fine particle laminated thin film according to any one of claims 12 to 14, wherein heat treatment is performed after the (step C). 前記加熱処理の温度が20℃から140℃であることを特徴とする請求項15に記載の微粒子積層薄膜付き基材の製造方法。   The method for producing a substrate with a fine particle laminated thin film according to claim 15, wherein the temperature of the heat treatment is 20 ° C to 140 ° C.
JP2008266813A 2007-10-17 2008-10-15 Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same Active JP5509571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266813A JP5509571B2 (en) 2007-10-17 2008-10-15 Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007270079 2007-10-17
JP2007270079 2007-10-17
JP2008266813A JP5509571B2 (en) 2007-10-17 2008-10-15 Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same

Publications (2)

Publication Number Publication Date
JP2009113484A true JP2009113484A (en) 2009-05-28
JP5509571B2 JP5509571B2 (en) 2014-06-04

Family

ID=40781144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266813A Active JP5509571B2 (en) 2007-10-17 2008-10-15 Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same

Country Status (1)

Country Link
JP (1) JP5509571B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110195239A1 (en) * 2008-10-17 2011-08-11 Nobuaki Takane Film having low refractive index film and method for producing the same, anti-relection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
JP2011255625A (en) * 2010-06-11 2011-12-22 National Institute For Materials Science Transparent material and production method thereof
US8999497B2 (en) 2011-12-13 2015-04-07 Samsung Electronics Co., Ltd. Barrier film for electronic device and method of manufacturing the same
JP2016033684A (en) * 2015-11-24 2016-03-10 日立化成株式会社 Low refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
EP2491440A4 (en) * 2009-10-24 2018-05-02 3M Innovative Properties Company Voided diffuser
JP2020122912A (en) * 2019-01-31 2020-08-13 マクセル株式会社 Lens with film, lens unit and camera module
CN111618963A (en) * 2020-05-24 2020-09-04 安信伟光(上海)木材有限公司 Production process of water-based inorganic modification liquid for solid wood geothermal floor
CN115477900A (en) * 2022-10-18 2022-12-16 深圳市高仁电子新材料有限公司 Acrylic optical adhesive with three-layer structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2006301125A (en) * 2005-04-18 2006-11-02 Hitachi Chem Co Ltd Low refractive index thin film and its manufacturing method
JP2006297680A (en) * 2005-04-18 2006-11-02 Hitachi Chem Co Ltd Thin film low in refractive index and its manufacturing method
JP2006341475A (en) * 2005-06-08 2006-12-21 Hitachi Chem Co Ltd Porous film and its production method
JP2007199702A (en) * 2005-12-28 2007-08-09 Hitachi Chem Co Ltd Laminated body of fine particle-layered film, method for manufacturing same, and optical member using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2006301125A (en) * 2005-04-18 2006-11-02 Hitachi Chem Co Ltd Low refractive index thin film and its manufacturing method
JP2006297680A (en) * 2005-04-18 2006-11-02 Hitachi Chem Co Ltd Thin film low in refractive index and its manufacturing method
JP2006341475A (en) * 2005-06-08 2006-12-21 Hitachi Chem Co Ltd Porous film and its production method
JP2007199702A (en) * 2005-12-28 2007-08-09 Hitachi Chem Co Ltd Laminated body of fine particle-layered film, method for manufacturing same, and optical member using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110195239A1 (en) * 2008-10-17 2011-08-11 Nobuaki Takane Film having low refractive index film and method for producing the same, anti-relection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
US9188708B2 (en) * 2008-10-17 2015-11-17 Hitachi Chemical Company, Ltd. Film having low refractive index film and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
EP2491440A4 (en) * 2009-10-24 2018-05-02 3M Innovative Properties Company Voided diffuser
JP2011255625A (en) * 2010-06-11 2011-12-22 National Institute For Materials Science Transparent material and production method thereof
US8999497B2 (en) 2011-12-13 2015-04-07 Samsung Electronics Co., Ltd. Barrier film for electronic device and method of manufacturing the same
JP2016033684A (en) * 2015-11-24 2016-03-10 日立化成株式会社 Low refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
JP2020122912A (en) * 2019-01-31 2020-08-13 マクセル株式会社 Lens with film, lens unit and camera module
CN111618963A (en) * 2020-05-24 2020-09-04 安信伟光(上海)木材有限公司 Production process of water-based inorganic modification liquid for solid wood geothermal floor
CN115477900A (en) * 2022-10-18 2022-12-16 深圳市高仁电子新材料有限公司 Acrylic optical adhesive with three-layer structure and preparation method thereof
CN115477900B (en) * 2022-10-18 2023-06-30 深圳市高仁电子新材料有限公司 Acrylic optical adhesive with three-layer structure and preparation method thereof

Also Published As

Publication number Publication date
JP5509571B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509571B2 (en) Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same
JP5720247B2 (en) Low refractive index film and method for producing the same, antireflection film and method for producing the same, coating liquid set for low refractive index film, substrate with fine particle laminated thin film and method for producing the same, and optical member
JP5011653B2 (en) Low refractive index thin film and manufacturing method thereof
TWI238894B (en) Laminate containing silica and application composition for forming porous silica layer
TWI506103B (en) Curable resin composition for hard coat layer and hard coat film
WO2001079894A1 (en) Antireflection film and method for manufacturing the same
JP2007199702A (en) Laminated body of fine particle-layered film, method for manufacturing same, and optical member using same
JP2013007831A (en) Low-refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
KR20100019959A (en) A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition
JP6307830B2 (en) Low refractive index film and manufacturing method thereof, antireflection film and manufacturing method thereof, and coating liquid set for low refractive index film
WO2016199682A1 (en) Infrared shielding body
JP5286632B2 (en) Porous membrane and method for producing the same
JP4747653B2 (en) Low refractive index thin film and manufacturing method thereof
JP2007086774A (en) Sheet-like optical member and manufacturing method thereof
JP2006301126A (en) Low refractive index film
CN101770042A (en) Low-reflection optical interface layer and preparation method thereof
JP2010253687A (en) Inorganic thin-film transfer material, method for producing the transfer material, molded product having inorganic thin film, and method for manufacturing the molded product
JP2009175671A (en) Antireflection film for microstructure and method for manufacturing the film
JP2008114413A (en) Particle laminated film laminate, method for producing the laminate, and optical member using the laminate
JP2012086475A (en) Thin-film transfer material, method for manufacturing the same, molding with thin film, and method for manufacturing the same
JP5082201B2 (en) Low refractive index thin film and manufacturing method thereof
JP2012086477A (en) Thin-film transfer material, method for manufacturing the same, molding with thin film, and method for manufacturing the same
WO2019208483A1 (en) Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member
JP2017181693A (en) Antireflection film
JP6672683B2 (en) Manufacturing method of laminated glass and laminated glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310