WO2016199682A1 - Infrared shielding body - Google Patents

Infrared shielding body Download PDF

Info

Publication number
WO2016199682A1
WO2016199682A1 PCT/JP2016/066483 JP2016066483W WO2016199682A1 WO 2016199682 A1 WO2016199682 A1 WO 2016199682A1 JP 2016066483 W JP2016066483 W JP 2016066483W WO 2016199682 A1 WO2016199682 A1 WO 2016199682A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
refractive index
layer
mass
index layer
Prior art date
Application number
PCT/JP2016/066483
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 伊原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016199682A1 publication Critical patent/WO2016199682A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an infrared shielding body.
  • Japanese Patent Application Laid-Open No. 2010-222233 discloses an infrared reflection layer in which a high refractive index layer and a low refractive index layer are alternately laminated, and ITO as an infrared absorber.
  • An infrared shielding laminated glass having an infrared absorption layer containing conductive fine particles such as ATO and ATO is disclosed.
  • JP 2010-222233 A corresponding to US Patent Application Publication No. 2011-300366
  • JP 2010-222233 A has high haze and low heat shielding properties (increased glass surface temperature and solar heat transmittance), It has problems such as low durability (heat cracking and cracking at high temperature).
  • the present invention has been made in view of the above-described problems, and provides an infrared shielding laminated glass (hereinafter also referred to as “infrared shielding body”) excellent in transparency, heat shielding properties, and durability.
  • the purpose is to do.
  • an infrared shielding body having an infrared shielding film, a pair of intermediate films sandwiching the infrared shielding film, and a pair of glass plates sandwiching the infrared shielding film and the pair of intermediate films
  • the infrared shielding film includes a base material, an infrared reflective layer having at least one unit in which a low refractive index layer and a high refractive index layer are alternately laminated, a tungsten oxide, and a composite tungsten oxide.
  • the above-mentioned problem is solved by an infrared shielding body in which the mass proportion of at least one of the tungsten oxide and the composite tungsten oxide is 15 mass% or more and 30 mass% or less.
  • FIG. 1 10 is an infrared shielding body
  • 11 is an infrared shielding film
  • 12 is an intermediate film
  • 13 is a glass plate.
  • FIG. 2 11 is an infrared shielding film
  • 14 is a base material
  • 15 is an infrared reflecting layer
  • 16 is an infrared absorbing layer.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • an infrared ray including an infrared shielding film, a pair of intermediate films that sandwich the infrared shielding film, and a pair of glass plates that sandwich the infrared shielding film and the pair of intermediate films.
  • a shield is provided.
  • the infrared shielding film includes an infrared reflective layer having at least one unit in which a base material, a low refractive index layer and a high refractive index layer are alternately laminated, and an infrared ray
  • the mass ratio of the (composite) tungsten oxide in the infrared absorption layer is 15% by mass or more and 30% by mass or less. There is a feature in a certain point.
  • an infrared shielding body having excellent transparency, heat shielding properties, and durability is provided.
  • the mechanism by which such effects are achieved is not completely clear, but the following mechanism has been estimated. That is, the infrared shielding material according to the present invention has less infrared absorber content than the infrared shielding material disclosed in Japanese Patent Application Laid-Open No. 2010-222233 (corresponding to US Patent Application Publication No. 2011/300356). Therefore, haze can be reduced and it has excellent crack resistance.
  • the thermal conductivity of the infrared absorption layer is lowered, and the heat absorbed in the same layer is difficult to propagate to the glass plate, so that an increase in the surface temperature and thermal cracking of the glass plate can be suppressed. Furthermore, it is considered that a sufficient solar radiation shielding property can be exhibited even at a low content by using (composite) tungsten oxide having a higher infrared absorption capacity than ITO or ATO as an infrared absorber.
  • the infrared shielding body according to the present invention is provided with a different layer between the infrared reflection layer and the infrared absorption layer, the stress generated by the thermal expansion of the infrared absorption layer is relieved and cracks are generated. Resistance can be further improved.
  • FIG. 1 is a schematic cross-sectional view showing an infrared shield according to an embodiment of the present invention.
  • the infrared shielding body 10 according to the present embodiment includes an infrared shielding film 11 sandwiched between a pair of intermediate films 12, and these laminates are further sandwiched between a pair of glass plates 13. It has a configuration.
  • FIG. 2 is a schematic cross-sectional view illustrating an infrared shielding film according to an embodiment of the present invention.
  • the infrared shielding film 11 includes an infrared reflection layer 15 disposed on one surface of a base material 14 and an infrared absorption layer 16 disposed on the other surface. It has a configuration.
  • the infrared reflecting layer 15 has a unit (not shown) in which low refractive index layers and high refractive index layers are alternately stacked.
  • the infrared absorption layer 16 contains, for example, cesium-doped tungsten oxide and a binder as an infrared absorber.
  • the infrared shielding film is composed of a base material, an infrared reflecting layer, an infrared absorbing layer, and other optionally provided layers (such as an ultraviolet shielding layer, an adhesive layer, a heat insulating layer, a refractive index adjusting layer), There is at least one “different layer” between the infrared reflecting layer and the infrared absorbing layer.
  • the “different layer” is the base material 14, but the “different layer” may be an optional layer other than the base material. From the viewpoint of coatability, the “different layer” is preferably a substrate.
  • the base material has a function of supporting an infrared reflection layer, an infrared absorption layer, and other optionally provided layers in the infrared shielding film.
  • the substrate is preferably transparent, and various resin films can be used.
  • polyolefin film polyethylene, polypropylene, etc.
  • polyester film polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride polyvinyl chloride
  • cellulose triacetate polyimide
  • polybutyral film polybutyral film
  • cycloolefin polymer film transparent cellulose nanofiber film, etc.
  • polyester films from the viewpoints of transparency, mechanical strength and dimensional stability, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and diols such as ethylene glycol and 1,4-cyclohexanedimethanol It is preferable that it is polyester which has the film formation property which makes a component a main structural component.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the material and film thickness of the substrate are preferably set so that the value obtained by dividing the thermal shrinkage rate of the infrared shielding film by the thermal shrinkage rate of the substrate is within the range of 0.3 to 3. .
  • the film thickness of the substrate is preferably 30 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and most preferably 35 to 125 ⁇ m. It is preferable that the thickness of the substrate is 30 ⁇ m or more because wrinkles during handling are less likely to occur. On the other hand, when the film thickness of the substrate is 200 ⁇ m or less, when the infrared shielding film is bonded to the glass plate, for example, the followability to the curved glass plate is improved and wrinkles are less likely to occur. .
  • the substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion. In particular, when it is used as a laminated glass for an automobile windshield, a stretched film is more preferable.
  • the infrared reflective layer according to the present invention has at least one unit in which low refractive index layers and high refractive index layers are alternately stacked.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index as “high refractive index layer” when comparing the refractive index difference between two adjacent layers. It means that a refractive index layer having a lower refractive index is a “low refractive index layer”. Therefore, the terms “high refractive index layer” and “low refractive index layer” refer to these refractive index layers when attention is paid to two adjacent refractive index layers in each refractive index layer constituting the infrared reflective layer. Includes all forms other than those having the same refractive index. Note that even an infrared reflection layer using a difference in refractive index may have an infrared absorption ability depending on the selection of a refractive index adjusting agent described later.
  • the total number of layers of the low refractive index layer and the high refractive index layer is preferably 100 layers or less, more preferably 45 layers or less from the viewpoint of productivity.
  • the lower limit of the total number of layers of the low refractive index layer and the high refractive index layer is not particularly limited, but is preferably 5 layers or more.
  • the range of the total number of low refractive index layers and high refractive index layers is more preferably 7 to 28 layers.
  • 12 to 25 layers are even more preferable, and 16 to 21 layers are particularly preferable.
  • the high refractive index layer preferably has a higher refractive index, preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20. It is.
  • the low refractive index layer preferably has a lower refractive index, preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and even more preferably 1.30 to 1. .50.
  • the refractive index difference between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, and more preferably 0.25 or more.
  • the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the infrared reflection layer may have a configuration outside the above preferred range.
  • the upper limit of the film thickness of the infrared reflective layer is preferably 10 ⁇ m or less, and more preferably 9 ⁇ m or less from the viewpoint of flexibility.
  • the lower limit of the thickness of the infrared reflective layer is not particularly limited, but is preferably 2 ⁇ m or more.
  • the thickness is preferably 2.5 to 6.0 ⁇ m, more preferably 3.0 to 5.0 ⁇ m, and particularly preferably 3.5 to 4.0 ⁇ m.
  • the film thickness (film thickness after drying) of the high refractive index layer is preferably 50 to 300 nm, more preferably 100 to 200 nm, and still more preferably 120 to 150 nm.
  • the film thickness per layer of the low refractive index layer (film thickness after drying) is preferably 50 to 300 nm, and more preferably 100 to 200 nm.
  • the film thickness of each refractive index layer can be adjusted by changing the width in the film thickness direction at the extrusion port of the die and / or by stretching conditions.
  • a metal oxide is preferable, silicon oxide is more preferable, and silicon dioxide is particularly preferable.
  • silicon dioxide include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in water.
  • hollow particles having pores inside the particles may be used as the refractive index adjusting agent, and silica (silicon dioxide) hollow particles are particularly preferable.
  • well-known metal oxide particles other than a silica can also be used.
  • the metal oxide preferably silicon dioxide
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is preferably 3 to 50 nm, more preferably 3 to 40 nm, and even more
  • the thickness is preferably 4 to 20 nm, and particularly preferably 5 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the particle size of the metal oxide particles can be obtained from the volume average particle size.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis with an acid of sodium silicate or the like for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807 (US Pat. No.
  • JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142, JP-A-7-179029, JP-A-7-137431, and country are those described in, for example, Publication No. 94/26530.
  • colloidal silica may be a synthetic product or a commercially available product.
  • Snowtex registered trademark, the same applies hereinafter
  • S, OS Nissan Chemical Industries, Ltd.
  • Nissan Chemical Industries, Ltd. are available. Can be mentioned.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can also be used as the metal oxide particles.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles. If the average particle hole diameter of the hollow particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • the content of the metal oxide particles in the low refractive index layer is preferably 20 to 90% by mass, and more preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. 40 to 70% by mass is even more preferable, and 45 to 65% by mass is particularly preferable. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, coating properties are good.
  • a fluorine-containing polymer may be used as a refractive index adjusting agent.
  • the fluorine-containing polymer include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
  • fluorine-containing unsaturated ethylenic monomer examples include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of Japanese Patent Publication. Examples of the monomer that can be copolymerized with the fluorine-containing monomer include monomers described in paragraph “0182” of JP2013-057969A.
  • a metal oxide As a refractive index modifier (high refractive index layer), a metal oxide is preferable.
  • metal oxides include titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, oxidation Examples thereof include magnesium, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • titanium oxide or zirconium oxide is preferable, and titanium oxide is particularly preferable because it has an advantage that light in the ultraviolet region can be absorbed.
  • the metal oxide (preferably titanium oxide) is preferably in the form of particles, and its primary average particle size is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 3 to 15 nm. A thickness of 5 to 10 nm is particularly preferable. If the primary average particle diameter is 30 nm or less, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • titanium oxide particles according to the present invention it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
  • any conventionally known method can be used.
  • titanium oxide particles for example, “Titanium oxide—physical properties and applied technology”, Kiyono Manabu, p. 255-258 (2000), Gihodo Publishing Co., Ltd., or paragraph number of International Publication No. 2007/039953
  • the method of the step (2) described in “0011” to “0023” can be referred to.
  • the titanium oxide particles may be coated with a silicon-containing hydrated oxide.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type.
  • the titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
  • the “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and in order to obtain the effects of the present invention. More preferably has a silanol group.
  • the coating amount of the silicon-containing hydrated oxide is preferably 3 to 30% by mass, more preferably 3 to 10% by mass, further preferably 3 to 8% by mass, and particularly preferably 4 to 7% by mass. . This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
  • the volume particle diameter of the titanium oxide particles coated with the silicon-containing hydrated oxide is preferably 1 to 40 nm, more preferably 2 to 20 nm, and even more preferably 5 to 10 nm. It is particularly preferably 7 nm or more and less than 10 nm. If it is such a range, the effect of this invention will be show
  • the titanium oxide particles As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
  • core-shell particles produced by a known method can be used as the metal oxide of the high refractive index layer.
  • core-shell particles produced by a known method can be used.
  • An aqueous solution containing titanium oxide particles is hydrolyzed by heating, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali, so that the average particle size is
  • the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2.
  • the slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles.
  • a silicon compound for example, an aqueous sodium silicate solution
  • Hydrous titanium oxide wherein a hydrous oxide of silicon is precipitated and surface-treated, and then impurities are removed from the resulting slurry of the surface-treated titanium oxide particles
  • a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide such as monobasic acid or a salt thereof and an alkyl silicate as a dispersion stabilizer by a conventional method.
  • titanium salt for example, titanium tetrachloride
  • a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is maintained at a temperature of 50 to 100 ° C.
  • aqueous sol of composite colloidal particles comprising titanium oxide
  • silicates e.g., sodium silicate
  • a stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing the solution) and removing cations present in the aqueous solution; the resulting composite containing titanium oxide 100 parts by mass of the aqueous sol in terms of metal oxide TiO 2 and 2 to 100 parts by mass of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 were mixed to form an anion.
  • Hydrogen peroxide was added to a hydrous titanic acid gel or sol to dissolve the hydrous titanic acid.
  • a silicon compound or the like is added to a peroxotitanic acid aqueous solution and heated to obtain a dispersion of core particles composed of a complex solid solution oxide having a rutile structure, and then a silicon compound or the like is added to the dispersion of the core particles. And then heating to form a coating layer on the surface of the core particles, obtaining a sol in which the composite oxide particles are dispersed, and further heating (Japanese Unexamined Patent Publication No.
  • an organoalkoxysilane (R 1 n SiX 4-n ) as a stabilizer or a compound selected from hydrogen peroxide and an aliphatic or aromatic hydroxycarboxylic acid is added.
  • a core-shell particle produced by a method of performing desalting after adding and adjusting the pH of the solution to 3 or more and less than 9 for aging Japanese Patent No. 4550753
  • the core-shell particles may be those in which the entire surface of the titanium oxide particles as a core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles as a core is covered with a silicon-containing hydrated oxide. It may be coated with.
  • the metal oxide of the high refractive index layer used in the present invention is preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of the metal oxide in the high refractive index layer is preferably 15 to 90% by mass, more preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer. 30 to 85% by mass is more preferable from the viewpoint of improving the reflectance. In particular, the effect of the present invention becomes more remarkable when the content is 55 to 80% by mass.
  • the low refractive index layer and high refractive index layer of the infrared reflective layer according to the present invention preferably contain a binder resin in addition to the refractive index adjusting agent.
  • the binder resin used in both layers may be the same or different.
  • the binder resin may be water-soluble or water-insoluble.
  • Examples of the water-insoluble binder resin include polyesters.
  • Examples of water-soluble binder resins include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or acrylic.
  • Acrylic resin such as acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene-acrylic Styrene acrylic acid resins such as acid copolymers or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymers, styrene-sodium styrenesulfonate copolymers, styrene-2-hydroxyethyl acrylate copolymers, styrene -2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl n
  • particularly preferable examples include polyvinyl alcohols, polyvinylpyrrolidones and copolymers containing the same, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility.
  • the binder resin of the low refractive index layer and the high refractive index layer are both polyvinyl alcohol. These binder resins may be used alone or in combination of two or more.
  • polyvinyl alcohol used in the present invention a synthetic product or a commercially available product may be used.
  • commercially available products used as polyvinyl alcohol include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP- 03, JP-04JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
  • the polyvinyl alcohol preferably used in the present invention includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • the polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000.
  • the average degree of polymerization is preferably 2,000 to 3,000, and when used in the high refractive index layer, it is 1,000 to 2,000. It is preferable. That is, the average degree of polymerization of polyvinyl alcohol used for the low refractive index layer is preferably higher than the average degree of polymerization of polyvinyl alcohol used for the high refractive index layer.
  • the average saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%.
  • the average saponification degree is preferably 80 to 90 mol%, and when used in a high refractive index layer, the average saponification degree is 90 to 99.5 mol%. It is preferable that That is, the average saponification degree of polyvinyl alcohol used in the low refractive index layer is preferably lower than the saponification degree of polyvinyl alcohol used in the high refractive index layer.
  • the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS K6726: 1994. After re-saponification and purification of PVA, the intrinsic viscosity [ ⁇ ] (dl / G) is obtained by the following equation.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in, for example, JP-A-61-110483. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Block copolymer of vinyl compound having a hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Polyvinyl alcohol etc. are mentioned.
  • vinyl alcohol polymer examples include EXEVAL (registered trademark) (manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark) (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
  • acid-processed gelatin may be used in addition to lime-processed gelatin, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
  • thickening polysaccharides examples include generally known natural polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides.
  • natural polysaccharides natural complex polysaccharides
  • synthetic simple polysaccharides synthetic simple polysaccharides
  • synthetic complex polysaccharides synthetic complex polysaccharides.
  • the weight average molecular weight of the binder resin is preferably 1,000 or more and 200,000 or less, more preferably 10,000 or more and 200,000 or less, and even more preferably 40,000 or more and 150,000 or less.
  • a weight average molecular weight can be measured on the following measurement conditions using a gel permeation chromatography (GPC), for example.
  • Solvent 0.2M NaNO 3 , NaH 2 PO 4 , pH 7
  • Flow rate 1 ml / min
  • Calibration curve Standard for Shodex standard GFC (aqueous GPC) columns Calibration curve using P-82 reference material pullulan is used.
  • the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer may be different.
  • Water-based coating is possible with water-soluble binder resins such as polyvinyl alcohol.
  • each coating solution that can form a low-refractive index layer and a high-refractive index layer is usually used, and each of the coating liquids is applied by sequential coating or simultaneous multilayer coating to form a high refractive index layer and a low refractive index layer.
  • the coating film obtained by multilayer coating tends to cause mixing between adjacent layers and interface disturbance (unevenness).
  • sequential multilayer coating when the upper layer coating solution is applied, the lower layer formed is redissolved, the upper layer and lower layer liquids are mixed together, and mixing between adjacent layers and interface disturbance (unevenness) occur. May occur.
  • the coating film obtained by simultaneous multilayer coating is stacked in an undried liquid state, mixing between adjacent layers and interface disturbance (unevenness) are more likely to occur.
  • the reflection characteristics are further improved. Such an effect is considered to be a result of suppression of interlayer mixing.
  • polyvinyl alcohol resins having different degrees of saponification even when the high refractive index layer and the low refractive index layer are stacked in an undried liquid state, even if each layer is mixed somewhat, water that is a solvent in the drying process is used.
  • the volatilizes and concentrates polyvinyl alcohol resins with different degrees of saponification undergo phase separation, and the force to minimize the area of the interface between each layer works. Is also estimated to be smaller. If interlayer mixing is suppressed, it will be excellent in the light reflectivity of a desired wavelength, and it is thought that the haze of a film also falls.
  • the above mechanism is an estimation, and the present invention is not limited to the above mechanism.
  • the content of the water-soluble binder resin in the low refractive index layer and the high refractive index layer is not particularly limited, but is preferably 1 to 50% by mass with respect to the total mass (solid content) of each refractive index layer. More preferably, it is 10 to 50% by mass, and still more preferably 20 to 45% by mass. From the viewpoint of further achieving the effects of the present invention, the content of the low refractive index layer is preferably 35 to 45% by mass, and the content of the high refractive index layer is 20 to 30% by mass. It is preferable.
  • a curing agent may be used to cure the water-soluble binder resin.
  • the curing agent applicable to the present invention is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin.
  • the curing agent that can be used is not particularly limited as long as it causes a curing reaction with polyvinyl alcohol, but is made of boric acid, borate, and borax. Preferably it is selected from the group.
  • boric acid, borate, and borax can be used, and generally compounds having a group capable of reacting with polyvinyl alcohol or compounds that promote the reaction between different groups possessed by polyvinyl alcohol These are appropriately selected and used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
  • Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
  • Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more.
  • An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred.
  • the aqueous solutions of boric acid and borax can be added only as relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, the pH of the aqueous solution to be added can be controlled relatively freely.
  • boric acid and a salt thereof and / or borax it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention.
  • boric acid and its salts and / or borax preferred infrared shielding properties can be achieved more.
  • the film surface temperature of the coating film is once cooled to about 15 ° C. or lower (for example, 5 ° C. or lower), and then the film surface is dried.
  • the effect can be expressed more preferably.
  • the total amount of the curing agent used is preferably 1 to 600 mg, more preferably 20 to 200 mg, and even more preferably 20 to 100 mg per 1 g of polyvinyl alcohol resin.
  • the low refractive index layer and the high refractive index layer may contain a polymer dispersant from the viewpoint of dispersion stability of the coating liquid.
  • the polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more.
  • the polymer has a hydroxyl group substituted at the side chain or terminal.
  • examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like.
  • polymer dispersants may be used, and examples of such polymer dispersants include Marialim (registered trademark) AKM-0531 (manufactured by NOF Corporation).
  • the content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
  • the low refractive index layer and the high refractive index layer may further contain an emulsion resin.
  • the emulsion resin By including the emulsion resin, the flexibility of the film becomes higher and the workability such as sticking to glass is improved.
  • emulsion resin materials described in paragraphs “0121” to “0124” of JP2013-148849A can be used.
  • the low refractive index layer and the high refractive index layer according to the present invention can contain various additives as necessary.
  • the infrared absorption layer according to the present invention is a layer containing at least one of tungsten oxide and composite tungsten oxide ((composite) tungsten oxide) and a binder as an infrared absorber. Since the (composite) tungsten oxide has an infrared absorption capability, the infrared absorption layer formed from the coating solution has a function of blocking the transmission of infrared rays.
  • the thickness of the infrared absorbing layer is not particularly limited, but is preferably 1 to 10 ⁇ m, more preferably 1.5 to 8 ⁇ m. By setting the thickness to 1 ⁇ m or more, the infrared absorption layer can exhibit sufficient infrared shielding properties. On the other hand, when the thickness is 10 ⁇ m or less, cracks in the infrared absorption layer due to stress can be prevented. Among these, the thickness is particularly preferably 3 to 5 ⁇ m from the viewpoint of further achieving the effects of the present invention.
  • the (composite) tungsten oxide used in the infrared absorption layer of the present invention is represented by the general formula: W y O z and is described in JP2013-64042A and JP2010-215451A. Similar ones can be used.
  • W represents tungsten.
  • O represents oxygen.
  • y and z are compositions of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y), and those satisfying the relationship of less than 3 (z / y ⁇ 3) are generally used.
  • the composition of tungsten and oxygen preferably satisfies the relationship of more than 2 and less than 3 (2 ⁇ z / y ⁇ 3), and 2.2 to 2.999 (2.2 ⁇ z / y ⁇ 2.999). It is more preferable to satisfy the relationship of With such a z / y ratio, the material is chemically stable and can exhibit a high infrared absorption ability, and a necessary amount of free electrons can be generated to provide an efficient infrared absorption material.
  • composition of the (composite) tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: M x W y O z from the viewpoint of stability.
  • M x W y O z from the viewpoint of stability.
  • JP-A-664042 and JP-A-2010-215451 can be used.
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I represent one or more elements selected from I.
  • W represents tungsten.
  • O represents oxygen.
  • x, y, and z are generally compositions of tungsten and M (composition of M with respect to tungsten, x / y) satisfying 0 ⁇ x / y ⁇ 1, and a composition of tungsten and oxygen (of oxygen with respect to tungsten).
  • a composition whose z / y) satisfies 2 ⁇ z / y ⁇ 3 is used.
  • composition of tungsten and M (composition of M with respect to tungsten, x / y) satisfies the relationship of 0.001 ⁇ x / y ⁇ 1, and the composition of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y) )
  • Preferably satisfies the relationship of 2.2 ⁇ z / y ⁇ 3, more preferably satisfies the relationship of 0.2 ⁇ x / y ⁇ 0.5 and 2.45 ⁇ z / y ⁇ 3, and 0 More preferably, the relationship of .31 ⁇ x / y ⁇ 0.35 and 0.27 ⁇ z / y ⁇ 3 is satisfied.
  • the alkali metal is a periodic table group 1 element excluding hydrogen, and is lithium, sodium, potassium, rubidium, cesium, or frangium.
  • Alkaline earth metals are Group 2 elements of the periodic table and are calcium, strontium, barium, and radium.
  • the rare earth elements are Sc, Y and lanthanoid elements (elements from 57th lanthanum to 71st lutetium).
  • M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. It is preferable that the element M is Cs or Rb, and it is particularly preferable that the element is a cesium-containing composite tungsten oxide represented by Cs x W y O z in which the element M is Cs.
  • the (composite) tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and Rb 0.33 WO 3 . Among these, it is particularly preferable to use Cs 0.33 WO 3 which is a cesium-containing composite tungsten oxide. That is, in the present invention, the (composite) tungsten oxide is preferably cesium-doped tungsten oxide.
  • the shape of (composite) tungsten oxide and the like is not particularly limited, and may take any structure such as a particulate shape, a spherical shape, a rod shape, a needle shape, a plate shape, a columnar shape, an indefinite shape, a flake shape, and a spindle shape, but preferably Is particulate.
  • the size of the (composite) tungsten oxide is not particularly limited, but when the (composite) tungsten oxide or the like is in the form of particles, the average particle diameter (average primary particle diameter) of the (composite) tungsten oxide etc.
  • Diameter is preferably 5 to 200 nm, from the viewpoint that heat ray absorption effect can be secured while suppressing reflection of visible light, and haze deterioration due to scattering does not occur and transparency can be secured. More preferably, the thickness is 20 to 50 nm.
  • the average particle size is determined by observing particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number average). As required.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content ratio of the (composite) tungsten oxide in the infrared absorption layer is preferably 15 to 30% by mass.
  • the infrared absorption layer according to the present invention contains a binder, but preferably contains an ultraviolet curable binder.
  • the ultraviolet curable binder include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin.
  • an ultraviolet curable urethane acrylate resin and an ultraviolet curable polyol acrylate resin are preferable.
  • the UV curable urethane acrylate resin is generally a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further containing 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter, acrylate includes methacrylate).
  • acrylate includes methacrylate.
  • UV curable urethane acrylate resin examples include Beamset (registered trademark) 575 and 577 (manufactured by Arakawa Chemical Co., Ltd.), Shikou (registered trademark) UV series (Nippon Gosei). Chemical Industry Co., Ltd.).
  • UV curable polyester acrylate resin examples include those generally formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, as disclosed in JP-A-59-151112. Those described can be used.
  • an epoxy acrylate is used as an oligomer, and a reactive diluent and a photopolymerization initiator are added to the oligomer and reacted with the oligomer.
  • JP-A-1-105738 discloses Those described can be used.
  • ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • examples thereof include tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and alkyl-modified dipentaerythritol penta (meth) acrylate.
  • UV curable polyol acrylate resin Commercially available products may be used as the UV curable polyol acrylate resin, and commercially available products include Sartomer SR295, SR399 (manufactured by Sartomer Japan Co., Ltd.), Aronix (registered trademark, hereinafter the same) series (Toagosei Co., Ltd. Manufactured).
  • a (meth) acryl-modified silicone compound may be included as an ultraviolet curable monomer.
  • the “(meth) acryl-modified silicone compound” means a (meth) acryl group at an arbitrary position (preferably terminal (one terminal or both terminals), more preferably both terminals) such as a side chain or terminal of the silicone skeleton.
  • a conventionally known compound can be appropriately used.
  • the (meth) acryl-modified silicone compound examples include TEGORad2010 / Rad2011 (manufactured by Daicel-Evonik Co., Ltd.), SQ100 / SQ200 (manufactured by Tokushi Co., Ltd.), CN990 / CN9800 (manufactured by Sartomer), and EBECRYL (registered trademark) 350.
  • (meth) acryloxypropyl-terminated polydimethylsiloxane, [(meth) acryloxypropyl] methylsiloxane, a copolymer of [(meth) acryloxypropyl] methylsiloxane and dimethylsiloxane, and the like can also be used.
  • those in which a methyl group is introduced at the terminal of the (meth) acryl group of these compounds can also be used.
  • the number of functional groups in one molecule is preferably 2 or more, but one having 1 functional group may be used.
  • the functional group equivalent is preferably in the range of 100 to 1000, and within this range, the tackiness of the obtained infrared absorption layer and the heat resistance of the cured product are improved.
  • the content of the (meth) acryl-modified silicone compound in the infrared absorption layer is, for example, 0.001 to 3% by mass.
  • the content of the (meth) acryl-modified silicone compound is 0.001% by mass or more, the occurrence of cracks and a decrease in scratch resistance due to coating defects such as repellency and dents can be sufficiently suppressed.
  • the content of the (meth) acryl-modified silicone compound is 3% by mass or less, the infrared absorption layer is hardly broken and the occurrence of cracks can be suppressed.
  • the content of the (meth) acryl-modified silicone compound contained in the infrared absorption layer is more preferably 0.01 to 1% by mass, and further preferably 0.03 to 0.5% by mass.
  • a binder other than the ultraviolet curable type for example, a thermosetting type, a moisture curable type, a self-curing type binder, etc. It may be contained in the infrared absorption layer.
  • the curing reaction of the coating film can be performed in a short time by using a photopolymerization initiator.
  • photopolymerization initiator examples include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, benzyl dimethyl ketal, 2 , 2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropanone-1,1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (cyclopentadienyl) ) -Bis (2,6-diflu) B-3- (Pyl
  • the curing reaction of the coating film can be performed in a short time by using a thermal polymerization initiator.
  • the thermal polymerization initiator is not particularly limited, and includes those that decompose by heat and generate active radicals that initiate polymerization and curing.
  • active radicals that initiate polymerization and curing.
  • dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoyl, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide Di-t-butyl peroxide and the like can be used.
  • thermal polymerization initiators for example, perbutyl D, perbutyl H, perbutyl P, permenta H (all manufactured by NOF Corporation) and the like are preferably used. These thermal polymerization initiators may be used individually by 1 type, and 2 or more types may be used together.
  • the above photopolymerization initiator and thermal polymerization initiator may be used in combination. In this case, it can be expected to further accelerate the curing of the infrared absorption layer by heating after photocuring.
  • the content of the polymerization initiator is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.3 to 10% by mass, and still more preferably based on the total amount of the curable component. 0.4-3 mass%. When the content is 0.1% by mass or more and 30% by mass or less, an infrared absorption layer having an appropriate hardness can be formed.
  • the infrared absorbing layer coating liquid may contain an optional component such as an infrared shielding metal compound other than the (composite) tungsten oxide and various additives, if necessary.
  • Additives include hydrogen ion scavengers, metal soaps, leveling properties, water repellency, surfactants for imparting slipperiness, etc., dyes, pigments, sensitizers for improving curability by UV irradiation, Examples include a dispersant for stabilizing the (composite) tungsten oxide.
  • Infrared shielding metal oxides other than (composite) tungsten oxide are not particularly limited, but include zinc oxide, antimony-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), Examples thereof include aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide (ATO), and indium-doped tin oxide (ITO).
  • the hydrogen ion scavenger captures hydrogen ions generated by hydrolysis of carboxylic acid or carboxylate present in the binder, thereby suppressing the rise of hydrogen ions in the infrared absorption layer and passing through the haze of the infrared shielding body. Suppresses persistent rise.
  • the type of hydrogen ion scavenger is not particularly limited, but is preferably a basic nitrogen-containing compound.
  • the basic nitrogen-containing compound is not particularly limited, and examples thereof include heterocyclic compounds such as 2,4,6-trimethylpyridine and pyridine, amine compounds, oxime compounds, and imine compounds. Of these, amine compounds, oxime compounds, and imine compounds are preferred.
  • the basic nitrogen-containing compound is preferably at least one compound selected from the group consisting of amine compounds, oxime compounds, and imine compounds.
  • the said basic nitrogen-containing compound may be used individually or may be used in combination of 2 or more types as appropriate.
  • metal soap functions as a coating liquid desiccant.
  • a kind of metal soap For example, an octylic acid metal soap, a fatty-acid metal soap, etc. are mentioned.
  • specific trade names of these include, for example, 8% hexoate cobalt, 15% hexoate zinc, 12% hexoate zirconium, 6% hexoate manganese, hexoate cobalt 8 manufactured by Toei Chemical Co., Ltd. % Etc. are mentioned.
  • the metal soap is preferably contained in an amount of 0.1% by mass or more and 10% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the infrared absorption layer.
  • the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used.
  • a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution.
  • the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation.
  • acrylic surfactant examples include Polyflow Series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal Series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK 354 (manufactured by Big Chemie Japan Co., Ltd.).
  • silicone surfactant examples include BYK345, 347, 348, and 349 (manufactured by Big Chemie Japan Co., Ltd.).
  • Surfactants may be used alone or in admixture of two or more.
  • the surfactant is preferably contained in an amount of 0.01% by mass or more and 1% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the infrared absorption layer.
  • any film can be used as long as it has a bonding performance for bonding the infrared shielding film and the glass plate. It is preferable to contain.
  • the pair of intermediate films may be the same type or different types.
  • the thermoplastic resin include ethylene-vinyl acetate copolymer (EVA) and polyvinyl butyral (PVB), and PVB is preferable from the viewpoint of improving transparency and suppressing the rise in surface temperature and thermal cracking.
  • each intermediate film in the range that does not inhibit the visible light transmittance, various kinds of infrared absorbing fine particles or ultraviolet absorbers are included, or coloring is performed by mixing pigments, so that the solar transmittance is 75. % Or more is more preferable.
  • the fine particles that absorb infrared rays include fine metal particles such as Ag, Al, and Ti, fine metal nitride, and fine metal oxide particles, ITO, ATO, aluminum zinc composite oxide (AZO), and gallium-doped zinc oxide ( There are conductive transparent metal oxide fine particles such as GZO) and indium zinc composite oxide (IZO), and one or more of them can be selected and contained in the intermediate film to improve the heat insulation performance.
  • conductive transparent metal oxide fine particles such as ITO, ATO, AZO, GZO, and IZO are preferable.
  • the kind of the pair of glass plates sandwiching the infrared shielding film and the pair of intermediate films is not particularly limited, and may be selected depending on the light transmission performance and heat insulation performance required for the application. Any of a board, an organic glass board, and an organic-inorganic hybrid glass board may be sufficient.
  • the inorganic glass plate is not particularly limited, and various inorganic glass plates such as a float glass plate, a polished glass plate, a mold glass plate, a netted glass plate, a lined glass plate, a heat ray absorbing glass plate and a colored glass plate Is mentioned.
  • the organic glass plate include glass plates made of polycarbonate resin, polystyrene resin, polymethyl methacrylate resin, and the like.
  • These organic glass plates may be a laminate formed by laminating a plurality of sheet-shaped ones made of the resin.
  • Examples of the organic / inorganic hybrid glass plate include a hybrid glass plate in which silica is dispersed in a resin such as an epoxy resin.
  • the color of the glass plate is not limited to a transparent glass plate, and various color glass plates such as general-purpose green, brown, and blue used in vehicles can be used.
  • the glass plate may be of the same type or in combination of two or more.
  • the thickness of the glass plate is preferably about 1 to 10 mm in consideration of the strength and the transmittance of infrared light in the visible light region.
  • the curved glass plate preferably has a radius of curvature of 0.5 to 2.0 m. When the radius of curvature of the glass plate is within this range, the infrared shielding film can follow the curved shape of the glass.
  • an infrared reflective layer is produced by directly applying and drying an infrared reflective layer coating solution on one surface of a substrate, and then the other surface of the substrate.
  • the method for producing the infrared absorbing layer by directly applying and curing the coating solution for the infrared absorbing layer is shown below, but is not particularly limited thereto.
  • the infrared reflective layer may be prepared by any of a wet method, a dry method (such as sputtering and vapor deposition), and a combination thereof, but is preferably prepared by a wet method from the viewpoint of manufacturing cost and area increase. .
  • the coating method is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, or US Pat. No. 2,761,419 And a slide hopper coating method and an extrusion coating method described in U.S. Pat. No. 2,761,791.
  • sequential multilayer coating or simultaneous multilayer coating may be used, but simultaneous multilayer coating is preferable because productivity is improved.
  • the solvent for preparing the coating solution for the low refractive index layer and the coating solution for the high refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
  • the solvent for the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
  • the concentration of the binder resin in the coating solution for the high refractive index layer is preferably 1 to 10% by mass.
  • concentration of the refractive index adjusting agent in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
  • the concentration of the binder resin in the coating solution for the low refractive index layer is preferably 1 to 10% by mass.
  • concentration of the refractive index adjusting agent in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
  • the method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited.
  • a binder resin, a refractive index adjusting agent, and other additives that are added as necessary are added.
  • a method of stirring and mixing is not particularly limited, and each component may be added and mixed sequentially while stirring, or while stirring. They may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably in the range of 5 to 150 mPa ⁇ s, and 10 to 100 mPa ⁇ s. The range of s is more preferable. Further, the viscosity at 40 to 45 ° C.
  • the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably in the range of 5 to 1200 mPa ⁇ s, 25 A range of ⁇ 500 mPa ⁇ s is more preferable.
  • the viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, and more preferably 3,000 to 30,000 mPa ⁇ s. s is more preferable, and 10,000 to 30,000 mPa ⁇ s is particularly preferable.
  • the coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher.
  • the wet bulb temperature is in the range of 5 to 50 ° C.
  • the film surface temperature is in the range of 10 to 50 ° C.
  • hot air of 40 to 85 ° C. is blown to dry.
  • the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of the substances in each layer and in each layer by means such as applying cold air to the coating film to lower the temperature.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from application of cold air to completion of setting is within 5 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more.
  • the set time is in the above range, the components in the layer are sufficiently mixed, and the refractive index difference between the high refractive index layer and the low refractive index layer is sufficient.
  • the concentration of the binder resin and the refractive index adjuster or add other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the infrared absorbing layer is formed by applying an infrared absorbing layer coating liquid containing the above-described constituent components to the surface of a substrate or the like.
  • the binder contained in the coating solution contains a curable resin that is cured by light or heat
  • the coating film is formed by irradiation with active energy rays such as ultraviolet rays and electron beams, heating, catalyst, etc., preferably by ultraviolet rays.
  • active energy rays such as ultraviolet rays and electron beams, heating, catalyst, etc.
  • an infrared absorption layer is formed.
  • a method for producing an infrared absorption layer will be described by taking as an example a case where a coating film is cured by ultraviolet irradiation.
  • the solvent for preparing the coating solution for the infrared absorbing layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • organic solvent examples include hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, 2-propanol, 1-butanol and cyclohexanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and methyl acetate. , Esters such as ethyl acetate and butyl acetate, and glycol ethers. These organic solvents may be used alone or in combination of two or more.
  • the content of the solvent in the coating solution for the infrared absorbing layer is not particularly limited, but is generally about 10 to 80% by mass, more preferably 15 to 60% by mass with respect to the total mass of the coating solution. More preferably, it is 20 to 40% by mass.
  • the coating liquid for infrared absorption layers is adjusted by mixing each said component.
  • the order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
  • the compounding ratio (mass ratio) of the (composite) tungsten oxide solids and the solids of the other components in the infrared absorbing layer after curing
  • the content ratio (mass%) of the (composite) tungsten oxide in can be easily controlled.
  • the solid content of the (composite) tungsten oxide and the other solid content Each component is preferably blended so that the mass ratio is 1: 6.0 to 1: 2.6.
  • the drying conditions after application are not particularly limited.
  • the drying temperature is preferably 70 to 110 ° C., more preferably 80 to 90 ° C.
  • the drying time is preferably 30 seconds to 5 minutes, more preferably 1 to 2 minutes.
  • the coating film obtained by applying the coating solution for the infrared absorption layer on the substrate is irradiated with ultraviolet rays from the side of the coating film far from the substrate to cure the coating film.
  • the conditions such as the irradiation wavelength of ultraviolet rays, the illuminance, and the amount of light vary depending on the type of the binder resin monomer and the polymerization initiator to be used.
  • the illuminance is preferably 50 to 1500 mW / cm 2 , more preferably 50 to 1000 mW / cm 2 , and even more preferably 100 to 500 mW / cm 2 .
  • the amount of irradiation energy is preferably 50 ⁇ 1500mJ / cm 2, more preferably 100 ⁇ 1000mJ / cm 2, still more preferably 200 ⁇ 500mJ / cm 2.
  • the manufacturing method of the conventional laminated glass can be used.
  • an intermediate film, an infrared shielding film, and an intermediate film are sandwiched between a pair of glass plates in this order, and the stacked ones are passed through a pressing roll, or preferably placed in a rubber bag and sucked under reduced pressure, and glass
  • the air remaining between the plate and the intermediate film is deaerated, and if necessary, pre-adhered at 70 to 110 ° C. to form a laminated body.
  • the deaerated laminated body is put in an autoclave or pressed, and 120 to It can be produced by performing the main bonding at 150 ° C. and a pressure of 0.5 to 1.5 MPa.
  • the infrared shielding body according to this embodiment can be applied to a wide range of fields. For example, it is used for the purpose of reducing indoor temperature rise due to the transmission of sunlight (infrared rays) as laminated glass installed in buildings and vehicles.
  • Example 1 ⁇ Preparation of infrared shielding film> [Preparation of infrared reflection layer] (Preparation of coating solution for low refractive index layer) A 10% by mass acidic colloidal silica aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and 3% by mass of a 3% by mass boric acid aqueous solution is added.
  • Snowtex OXS primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • TiO 2 titanium dioxide sol
  • Silica-attached titanium dioxide sol (volume average particle size: 9 nm) was obtained.
  • Preparation of infrared absorption layer 200 parts by mass of Aronix M-305 (pentaerythritol triacrylate, manufactured by Toagosei Co., Ltd.), cesium-doped tungsten oxide (CWO) dispersion (YMF-02A, total solid concentration of 28.5% by mass) as (composite) tungsten oxide (Cesium-doped tungsten oxide 18.5 mass%, dispersant 10 mass%), composition: Cs 0.33 WO 3 , average primary particle size: 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 mass parts, methyl ethyl ketone 150 mass as solvent Part was added. Furthermore, 3 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) was added as a polymerization initiator to prepare a coating solution for an infrared absorption layer
  • the infrared absorbing layer coating solution was applied with a gravure coater under the condition that the dry film thickness was 5 ⁇ m, and dried at 90 ° C. for 1 minute. .
  • the coating film is cured by irradiating with UV light from the side of the coating film that is far from the substrate under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2.
  • An absorption layer was formed to produce an infrared shielding film.
  • Infrared absorption layer mass measurement >> The film before and after application of the infrared absorption layer was cut into 10 cm ⁇ 10 cm, mass measurement was performed, and the mass of the infrared absorption layer was calculated from the mass difference between the two films.
  • a 3 mm thick green glass (visible light transmittance Tv: 81%, solar radiation transmittance Te: 63%) serving as an indoor side glass, a film made of polyvinyl butyral having a thickness of 380 ⁇ m serving as an indoor intermediate film,
  • the infrared shielding film produced above, a film made of polyvinyl butyral having a thickness of 380 ⁇ m serving as an intermediate film on the outdoor side, a clear glass having a thickness of 3 mm serving as the outdoor glass (visible light transmittance Tv: 91%, solar radiation transmittance) (Te: 86%) are laminated in this order, and after removing the excess portion protruding from the edge portion of the glass, heating is performed for 30 minutes, pressure deaeration is performed at a temperature of 140 ° C. and a pressure of 1 MPa, and a combination treatment is performed.
  • a shield 1 was produced.
  • Example 2 An infrared shielding body 2 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 180 parts by mass of Aronix M-305 and 222 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 16.7 mass%.
  • Example 3 An infrared shielding body 3 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 160 parts by mass of Aronix M-305 and 380 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 28.6 mass%.
  • Example 1 An infrared shielding body 4 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 190 parts by mass of Aronix M-305 and 122 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 9.09 mass%.
  • Example 2 An infrared shielding body 5 was produced in the same manner as in Example 1 except that the coating liquid for infrared absorbing layer was changed to 160 parts by mass of Aronix M-305 and 444 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 33.3 mass%.
  • Example 4 An infrared shielding body 6 was produced in the same manner as in Example 1 except that the intermediate film was changed to ethylene vinyl alcohol (EVA).
  • EVA ethylene vinyl alcohol
  • Example 3 The infrared shielding layer 7 was coated in the same manner as in Example 1 except that the coating liquid for infrared absorbing layer was replaced with ITO fine particles (ultrafine particle tin-doped indium oxide, manufactured by Sakai Seisakusho Co., Ltd.) instead of CWO fine particles. Produced.
  • a 15 cm square infrared shield is set on an artificial solar lighting device (XC-100AFSS, manufactured by Celic Co., Ltd.) with the surface provided with an infrared reflective layer facing upward, and is 3 hours from a height of 30 cm. After the irradiation, the glass surface temperature of the surface of the infrared shield not provided with the infrared reflection layer was measured using a thermocouple.
  • No crack ⁇ : Level that can be confirmed with a loupe is 10% or less ⁇ : Level that can be visually confirmed is 10% or less ⁇ : Level that can be visually confirmed is 10% or more.
  • the infrared shielding body of the present invention has high transparency, good heat shielding properties (solar heat acquisition rate and glass surface temperature), and durability (crack resistance at high temperatures). It was confirmed that it was excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Provided is an infrared shielding body that exhibits excellent transparency, thermal shielding properties, and durability. In the infrared shielding body, which comprises an infrared shielding film, a pair of intermediate films that sandwich the infrared shielding film, and a pair of glass plate that sandwich the pair of intermediate films and the infrared shielding film, the infrared shielding film comprises a base material, an infrared reflecting layer having at least one unit in which a low refractive index layer and a high refractive index layer are alternately laminated, and an infrared absorption layer containing a binder and a tungsten oxide and/or a composite tungsten oxide. At least one different layer is present between the infrared reflecting layer and the infrared absorption layer. In the infrared absorption layer, the mass ratio of the tungsten oxide and/or the composite tungsten oxide is 15-30 mass%.

Description

赤外遮蔽体Infrared shield
 本発明は、赤外遮蔽体に関する。 The present invention relates to an infrared shielding body.
 省エネルギー対策の一環として、建物内や車両内の冷房設備にかかる負荷を減らす観点から、太陽光の赤外線の透過を遮蔽する合わせガラスへの需要が高まっている。特開2010-222233号公報(米国特許出願公開第2011/300356号明細書に相当)には、高屈折率層と低屈折率層が交互積層した赤外反射層と、赤外吸収剤としてITOやATOなどの導電性微粒子を含有する赤外吸収層とを有する赤外遮蔽合わせガラスが開示されている。 As part of energy conservation measures, there is an increasing demand for laminated glass that shields infrared rays from sunlight from the viewpoint of reducing the load on cooling equipment in buildings and vehicles. Japanese Patent Application Laid-Open No. 2010-222233 (corresponding to US Patent Application Publication No. 2011/300356) discloses an infrared reflection layer in which a high refractive index layer and a low refractive index layer are alternately laminated, and ITO as an infrared absorber. An infrared shielding laminated glass having an infrared absorption layer containing conductive fine particles such as ATO and ATO is disclosed.
 しかしながら、特開2010-222233号公報(米国特許出願公開第2011/300356号明細書に相当)に記載の合わせガラスは、高ヘイズ、低遮熱性(ガラス表面温度や日射熱透過率の上昇)、低耐久性(熱割れや高温下でのクラック発生)といった問題点を有していた。 However, the laminated glass described in JP 2010-222233 A (corresponding to US Patent Application Publication No. 2011-300366) has high haze and low heat shielding properties (increased glass surface temperature and solar heat transmittance), It has problems such as low durability (heat cracking and cracking at high temperature).
 したがって、本発明は、上記の問題点を鑑みてなされたものであり、透明性、遮熱性、および耐久性に優れた赤外遮蔽合わせガラス(以下、「赤外遮蔽体」とも称する)を提供することを目的とする。 Accordingly, the present invention has been made in view of the above-described problems, and provides an infrared shielding laminated glass (hereinafter also referred to as “infrared shielding body”) excellent in transparency, heat shielding properties, and durability. The purpose is to do.
 本発明者は、上記の問題点を解決すべく鋭意研究を行った。その結果、赤外遮蔽フィルムと、前記赤外遮蔽フィルムを挟持する一対の中間膜と、前記赤外遮蔽フィルムおよび前記一対の中間膜を挟持する一対のガラス板と、を有する赤外遮蔽体であって、前記赤外遮蔽フィルムが、基材と、低屈折率層と高屈折率層とが交互に積層したユニットを少なくとも一つ以上有する赤外反射層と、タングステン酸化物および複合タングステン酸化物のうち少なくとも一種ならびにバインダーを含有する赤外吸収層と、を有し、前記赤外反射層と前記赤外吸収層との間に異なる層が少なくとも1つ存在し、前記赤外吸収層中において、前記タングステン酸化物および複合タングステン酸化物のうち少なくとも一種の占める質量割合が15質量%以上30質量%以下である、赤外遮蔽体により上記課題が解決することを見出し、本発明を完成させるに至った。 The present inventor has intensively studied to solve the above problems. As a result, an infrared shielding body having an infrared shielding film, a pair of intermediate films sandwiching the infrared shielding film, and a pair of glass plates sandwiching the infrared shielding film and the pair of intermediate films The infrared shielding film includes a base material, an infrared reflective layer having at least one unit in which a low refractive index layer and a high refractive index layer are alternately laminated, a tungsten oxide, and a composite tungsten oxide. An infrared absorption layer containing at least one kind and a binder, and there is at least one different layer between the infrared reflection layer and the infrared absorption layer, and in the infrared absorption layer, The above-mentioned problem is solved by an infrared shielding body in which the mass proportion of at least one of the tungsten oxide and the composite tungsten oxide is 15 mass% or more and 30 mass% or less. The heading, has led to the completion of the present invention.
本発明の一実施形態による赤外遮蔽体を表す断面概略図である。図1において、10は赤外遮蔽体、11は赤外遮蔽フィルム、12は中間膜、13はガラス板を示す。It is a section schematic diagram showing the infrared shielding object by one embodiment of the present invention. In FIG. 1, 10 is an infrared shielding body, 11 is an infrared shielding film, 12 is an intermediate film, and 13 is a glass plate. 本発明の一実施形態による赤外遮蔽フィルムを表す断面概略図である。図2において、11は赤外遮蔽フィルム、14は基材、15は赤外反射層、16は赤外吸収層を示す。It is a section schematic diagram showing the infrared shielding film by one embodiment of the present invention. In FIG. 2, 11 is an infrared shielding film, 14 is a base material, 15 is an infrared reflecting layer, and 16 is an infrared absorbing layer.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で行う。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 本発明の一形態によれば、赤外遮蔽フィルムと、赤外遮蔽フィルムを挟持する一対の中間膜と、赤外遮蔽フィルムおよび一対の中間膜を挟持する一対のガラス板と、を有する赤外遮蔽体が提供される。そして、当該赤外遮蔽体においては、赤外遮蔽フィルムが、基材と、低屈折率層と高屈折率層とが交互に積層したユニットを少なくとも一つ以上有する赤外反射層と、赤外吸収剤としてタングステン酸化物および複合タングステン酸化物のうち少なくとも一種(以下、「(複合)タングステン酸化物」または単に「タングステン酸化物」とも称する)ならびにバインダーを含有する赤外吸収層と、を有し、赤外反射層と赤外吸収層との間に異なる層が少なくとも1つ存在し、赤外吸収層中において、(複合)タングステン酸化物の占める質量割合が15質量%以上30質量%以下である点に特徴がある。 According to one embodiment of the present invention, an infrared ray including an infrared shielding film, a pair of intermediate films that sandwich the infrared shielding film, and a pair of glass plates that sandwich the infrared shielding film and the pair of intermediate films. A shield is provided. In the infrared shielding body, the infrared shielding film includes an infrared reflective layer having at least one unit in which a base material, a low refractive index layer and a high refractive index layer are alternately laminated, and an infrared ray An infrared absorption layer containing at least one of tungsten oxide and composite tungsten oxide (hereinafter also referred to as “(composite) tungsten oxide” or simply “tungsten oxide”) and a binder as an absorber. In addition, there is at least one different layer between the infrared reflection layer and the infrared absorption layer, and the mass ratio of the (composite) tungsten oxide in the infrared absorption layer is 15% by mass or more and 30% by mass or less. There is a feature in a certain point.
 本発明によれば、透明性、遮熱性、および耐久性に優れた赤外遮蔽体が提供される。かような効果が奏されるメカニズムについては完全には明らかではないが、以下のメカニズムが推定されている。すなわち、本発明に係る赤外遮蔽体は、特開2010-222233号公報(米国特許出願公開第2011/300356号明細書に相当)の赤外遮蔽体に比べて赤外吸収剤の含量が少ないため、ヘイズを低減でき、優れたクラック耐性を有する。また同様の理由から、赤外吸収層の熱伝導率が低下し、同層で吸収された熱がガラス板に伝播しにくくなるため、ガラス板の表面温度の上昇や熱割れを抑制できる。さらに、ITOやATOより赤外吸収能の高い(複合)タングステン酸化物を赤外吸収剤として使用することにより、低含量でも十分な日射熱遮断性を発揮できるものと考えられる。また、本発明に係る赤外遮蔽体は、赤外反射層と赤外吸収層との間に異なる層が設けられているため、赤外吸収層の熱膨張によって発生する応力が緩和され、クラック耐性をさらに向上できる。 According to the present invention, an infrared shielding body having excellent transparency, heat shielding properties, and durability is provided. The mechanism by which such effects are achieved is not completely clear, but the following mechanism has been estimated. That is, the infrared shielding material according to the present invention has less infrared absorber content than the infrared shielding material disclosed in Japanese Patent Application Laid-Open No. 2010-222233 (corresponding to US Patent Application Publication No. 2011/300356). Therefore, haze can be reduced and it has excellent crack resistance. For the same reason, the thermal conductivity of the infrared absorption layer is lowered, and the heat absorbed in the same layer is difficult to propagate to the glass plate, so that an increase in the surface temperature and thermal cracking of the glass plate can be suppressed. Furthermore, it is considered that a sufficient solar radiation shielding property can be exhibited even at a low content by using (composite) tungsten oxide having a higher infrared absorption capacity than ITO or ATO as an infrared absorber. In addition, since the infrared shielding body according to the present invention is provided with a different layer between the infrared reflection layer and the infrared absorption layer, the stress generated by the thermal expansion of the infrared absorption layer is relieved and cracks are generated. Resistance can be further improved.
 図1は、本発明の一実施形態による赤外遮蔽体を表す断面概略図である。図1に示すように、本実施形態に係る赤外遮蔽体10は、赤外遮蔽フィルム11が一対の中間膜12によって挟持され、これらの積層体がさらに一対のガラス板13によって挟持されてなる構成を有する。 FIG. 1 is a schematic cross-sectional view showing an infrared shield according to an embodiment of the present invention. As shown in FIG. 1, the infrared shielding body 10 according to the present embodiment includes an infrared shielding film 11 sandwiched between a pair of intermediate films 12, and these laminates are further sandwiched between a pair of glass plates 13. It has a configuration.
 以下、本発明に係る赤外遮蔽体の構成要素について、詳細に説明する。 Hereinafter, the components of the infrared shielding body according to the present invention will be described in detail.
 <赤外遮蔽フィルム>
 図2は、本発明の一実施形態による赤外遮蔽フィルムを表す断面概略図である。図2に示すように、本実施形態に係る赤外遮蔽フィルム11は、基材14の一方の面に赤外反射層15が配置され、他方の面に赤外吸収層16が配置されてなる構成を有する。そして、赤外反射層15は、低屈折率層と高屈折率層とが交互に積層したユニット(図示せず)を有している。また、赤外吸収層16は、赤外吸収剤として例えばセシウムドープ酸化タングステンと、バインダーとを含有している。ここで、赤外遮蔽フィルムは、基材、赤外反射層、赤外吸収層、およびその他の任意で設けられる層(紫外線遮蔽層、粘着層、断熱層、屈折率調整層など)からなり、赤外反射層と赤外吸収層との間には、「異なる層」が少なくとも1つ存在する。図2において、当該「異なる層」は基材14であるが、この「異なる層」は、上記の基材以外の任意で設けられる層であっても良い。塗工性の観点から、当該「異なる層」は、基材であることが好ましい。
<Infrared shielding film>
FIG. 2 is a schematic cross-sectional view illustrating an infrared shielding film according to an embodiment of the present invention. As shown in FIG. 2, the infrared shielding film 11 according to this embodiment includes an infrared reflection layer 15 disposed on one surface of a base material 14 and an infrared absorption layer 16 disposed on the other surface. It has a configuration. The infrared reflecting layer 15 has a unit (not shown) in which low refractive index layers and high refractive index layers are alternately stacked. The infrared absorption layer 16 contains, for example, cesium-doped tungsten oxide and a binder as an infrared absorber. Here, the infrared shielding film is composed of a base material, an infrared reflecting layer, an infrared absorbing layer, and other optionally provided layers (such as an ultraviolet shielding layer, an adhesive layer, a heat insulating layer, a refractive index adjusting layer), There is at least one “different layer” between the infrared reflecting layer and the infrared absorbing layer. In FIG. 2, the “different layer” is the base material 14, but the “different layer” may be an optional layer other than the base material. From the viewpoint of coatability, the “different layer” is preferably a substrate.
 [基材]
 基材は、赤外遮蔽フィルムにおいて赤外反射層、赤外吸収層、およびその他の任意で設けられる層を支持する機能を有する。
[Base material]
The base material has a function of supporting an infrared reflection layer, an infrared absorption layer, and other optionally provided layers in the infrared shielding film.
 基材は、透明であることが好ましく、種々の樹脂フィルムを用いることができる。例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等を用いることができる。これらのうち、ポリエステルフィルムを用いることが好ましい。 The substrate is preferably transparent, and various resin films can be used. For example, polyolefin film (polyethylene, polypropylene, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent cellulose nanofiber film, etc. Can be used. Among these, it is preferable to use a polyester film.
 ポリエステルフィルムの中でも、透明性、機械的強度、寸法安定性などの観点から、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分と、を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 Among polyester films, from the viewpoints of transparency, mechanical strength and dimensional stability, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and diols such as ethylene glycol and 1,4-cyclohexanedimethanol It is preferable that it is polyester which has the film formation property which makes a component a main structural component. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 基材の材料および膜厚は、赤外遮蔽フィルムの熱収縮率を基材の熱収縮率で除した値が0.3~3の範囲内となるように設定されたものであることが好ましい。 The material and film thickness of the substrate are preferably set so that the value obtained by dividing the thermal shrinkage rate of the infrared shielding film by the thermal shrinkage rate of the substrate is within the range of 0.3 to 3. .
 基材の膜厚は、30~200μmであることが好ましく、30~150μmであることがより好ましく、35~125μmであることが最も好ましい。基材の膜厚が30μm以上であると、取扱い中のシワが発生しにくくなることから好ましい。一方、基材の膜厚が200μm以下であると、赤外遮蔽フィルムをガラス板と貼り合わせる際に、例えば、曲面のガラス板への追従性が良くなり、シワが発生しにくくなることから好ましい。 The film thickness of the substrate is preferably 30 to 200 μm, more preferably 30 to 150 μm, and most preferably 35 to 125 μm. It is preferable that the thickness of the substrate is 30 μm or more because wrinkles during handling are less likely to occur. On the other hand, when the film thickness of the substrate is 200 μm or less, when the infrared shielding film is bonded to the glass plate, for example, the followability to the curved glass plate is improved and wrinkles are less likely to occur. .
 基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸または少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の観点から延伸フィルムであることが好ましい。特に自動車のフロントガラスの合わせガラスに用いられる際には、延伸フィルムであることがより好ましい。 The substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion. In particular, when it is used as a laminated glass for an automobile windshield, a stretched film is more preferable.
 [赤外反射層]
 本発明に係る赤外反射層は、低屈折率層と高屈折率層とが交互に積層したユニットを少なくとも一つ以上有する。
[Infrared reflective layer]
The infrared reflective layer according to the present invention has at least one unit in which low refractive index layers and high refractive index layers are alternately stacked.
 本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高いほうの屈折率層を「高屈折率層」とし、屈折率が低いほうの屈折率層を「低屈折率層」とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、赤外反射層を構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、これらの屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。なお、屈折率差を利用した赤外反射層であっても、後述の屈折率調整剤の選択によっては、赤外吸収能を有することもある。 In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index as “high refractive index layer” when comparing the refractive index difference between two adjacent layers. It means that a refractive index layer having a lower refractive index is a “low refractive index layer”. Therefore, the terms “high refractive index layer” and “low refractive index layer” refer to these refractive index layers when attention is paid to two adjacent refractive index layers in each refractive index layer constituting the infrared reflective layer. Includes all forms other than those having the same refractive index. Note that even an infrared reflection layer using a difference in refractive index may have an infrared absorption ability depending on the selection of a refractive index adjusting agent described later.
 低屈折率層および高屈折率層の総層数の範囲は、生産性の観点から、好ましくは100層以下、より好ましくは45層以下である。低屈折率層および高屈折率層の総層数の範囲の下限は特に制限されるものではないが、5層以上であることが好ましい。光散乱および反射強度を考慮すると、低屈折率層および高屈折率層の総層数の範囲は、7~28層であることがより好ましい。さらに、本発明の効果を一層奏する観点から、12~25層であることがさらにより好ましく、16~21層であることが特に好ましい。 The total number of layers of the low refractive index layer and the high refractive index layer is preferably 100 layers or less, more preferably 45 layers or less from the viewpoint of productivity. The lower limit of the total number of layers of the low refractive index layer and the high refractive index layer is not particularly limited, but is preferably 5 layers or more. In consideration of light scattering and reflection intensity, the range of the total number of low refractive index layers and high refractive index layers is more preferably 7 to 28 layers. Furthermore, from the viewpoint of further achieving the effects of the present invention, 12 to 25 layers are even more preferable, and 16 to 21 layers are particularly preferable.
 高屈折率層は、より高い屈折率が好ましいが、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらにより好ましくは1.90~2.20である。また、低屈折率層は、より低い屈折率が好ましいが、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらにより好ましくは1.30~1.50である。 The high refractive index layer preferably has a higher refractive index, preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20. It is. In addition, the low refractive index layer preferably has a lower refractive index, preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and even more preferably 1.30 to 1. .50.
 赤外反射層においては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができる観点から好ましい。低屈折率層および高屈折率層から構成されるユニットの少なくとも1つにおいて、隣接する該高屈折率層と低屈折率層との屈折率差は、好ましくは0.1以上であり、より好ましくは0.2以上であり、さらにより好ましくは0.25以上である。赤外反射層が低屈折率層および高屈折率層のユニットを複数有する場合には、全てのユニットにおける低屈折率層と高屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、赤外反射層の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In the infrared reflection layer, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint of increasing the infrared reflectance with a small number of layers. In at least one of the units composed of the low refractive index layer and the high refractive index layer, the refractive index difference between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, and more preferably 0.25 or more. When the infrared reflective layer has a plurality of units of a low refractive index layer and a high refractive index layer, the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the infrared reflection layer may have a configuration outside the above preferred range.
 赤外反射層の膜厚の上限は、屈曲性の観点から、10μm以下であることが好ましく、9μm以下であることがより好ましい。また、赤外反射層の膜厚の下限は特に制限されるものではないが、2μm以上であることが好ましい。さらに、本発明の効果を一層奏する観点から、好ましくは2.5~6.0μmであり、より好ましくは3.0~5.0μmであり、特に好ましくは3.5~4.0μmである。 The upper limit of the film thickness of the infrared reflective layer is preferably 10 μm or less, and more preferably 9 μm or less from the viewpoint of flexibility. The lower limit of the thickness of the infrared reflective layer is not particularly limited, but is preferably 2 μm or more. Furthermore, from the viewpoint of further achieving the effects of the present invention, the thickness is preferably 2.5 to 6.0 μm, more preferably 3.0 to 5.0 μm, and particularly preferably 3.5 to 4.0 μm.
 高屈折率層の1層あたりの膜厚(乾燥後の膜厚)は、50~300nmであることが好ましく、100~200nmであることがより好ましく、120~150nmであることがさらにより好ましい。また、低屈折率層の1層あたりの膜厚(乾燥後の膜厚)は、50~300nmであることが好ましく、100~200nmであることがより好ましい。屈折率層の1層あたりの膜厚は、ダイスの押出口におけるフィルム厚さ方向の幅を変更すること、および/または延伸条件により、調節することができる。 The film thickness (film thickness after drying) of the high refractive index layer is preferably 50 to 300 nm, more preferably 100 to 200 nm, and still more preferably 120 to 150 nm. The film thickness per layer of the low refractive index layer (film thickness after drying) is preferably 50 to 300 nm, and more preferably 100 to 200 nm. The film thickness of each refractive index layer can be adjusted by changing the width in the film thickness direction at the extrusion port of the die and / or by stretching conditions.
 (屈折率調整剤(低屈折率層))
 低屈折率層に用いられる屈折率調整剤としては、金属酸化物が好ましく、酸化ケイ素がより好ましく、二酸化ケイ素が特に好ましい。二酸化ケイ素の具体的な例として、合成非晶質シリカ、コロイダルシリカなどが挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、水に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、屈折率調整剤として、粒子の内部に空孔を有する中空粒子を用いてもよく、特にシリカ(二酸化ケイ素)の中空粒子が好ましい。また、シリカ以外の公知の金属酸化物粒子も使用することができる。
(Refractive index modifier (low refractive index layer))
As the refractive index adjusting agent used in the low refractive index layer, a metal oxide is preferable, silicon oxide is more preferable, and silicon dioxide is particularly preferable. Specific examples of silicon dioxide include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in water. In order to further reduce the refractive index, hollow particles having pores inside the particles may be used as the refractive index adjusting agent, and silica (silicon dioxide) hollow particles are particularly preferable. Moreover, well-known metal oxide particles other than a silica can also be used.
 該金属酸化物(好ましくは二酸化ケイ素)は、粒子状が好ましく、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、好ましくは3~50nmであり、より好ましくは3~40nmであり、さらにより好ましくは4~20nmであり、特に好ましくは5~10nmである。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The metal oxide (preferably silicon dioxide) is preferably in the form of particles, and the average particle size is preferably 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is preferably 3 to 50 nm, more preferably 3 to 40 nm, and even more The thickness is preferably 4 to 20 nm, and particularly preferably 5 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 また、金属酸化物粒子の粒径は、体積平均粒径によって求めることもできる。 Also, the particle size of the metal oxide particles can be obtained from the volume average particle size.
 本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報(米国特許第4,877,447号明細書に相当)、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807 (US Pat. No. 877,447), JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142, JP-A-7-179029, JP-A-7-137431, and country Are those described in, for example, Publication No. 94/26530.
 このようなコロイダルシリカは、合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業株式会社から販売されているスノーテックス(登録商標、以下同じ)シリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. As a commercially available product, Snowtex (registered trademark, the same applies hereinafter) series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries, Ltd. are available. Can be mentioned.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、金属酸化物粒子として、中空粒子を用いることもできる。中空粒子を用いる場合には、平均粒子空孔径は、3~70nmが好ましく、5~50nmがより好ましく、5~45nmがさらにより好ましい。なお、中空粒子の平均粒子空孔径とは、中空粒子の内径の平均値である。中空粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低下する。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Moreover, hollow particles can also be used as the metal oxide particles. When hollow particles are used, the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles. If the average particle hole diameter of the hollow particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. The average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
 低屈折率層における金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、20~90質量%であることが好ましく、30~85質量%であることがより好ましく、40~70質量%であることがさらにより好ましく、45~65質量%が特に好ましい。20質量%以上であると、所望の屈折率が得られ、90質量%以下であると塗布性が良好となる。 The content of the metal oxide particles in the low refractive index layer is preferably 20 to 90% by mass, and more preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. 40 to 70% by mass is even more preferable, and 45 to 65% by mass is particularly preferable. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, coating properties are good.
 低屈折率層には、金属酸化物以外に、屈折率調整剤として含フッ素ポリマーを用いてもよい。含フッ素ポリマーとしては、フッ素含有不飽和エチレン性単量体成分を主として含有する重合物を挙げることが出来る。 In the low refractive index layer, besides the metal oxide, a fluorine-containing polymer may be used as a refractive index adjusting agent. Examples of the fluorine-containing polymer include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
 フッ素含有不飽和エチレン性単量体としては、含フッ素アルケン、含フッ素アクリル酸エステル、含フッ素メタクリル酸エステル、含フッ素ビニルエステル、含フッ素ビニルエーテル等を挙げることができ、例えば、特開2013-057969号公報の段落「0181」に記載のフッ素含有不飽和エチレン性単量体を挙げることができる。フッ素含有単量体と共重合し得る単量体としては、例えば、特開2013-057969号公報の段落「0182」に記載の単量体を挙げることができる。 Examples of the fluorine-containing unsaturated ethylenic monomer include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of Japanese Patent Publication. Examples of the monomer that can be copolymerized with the fluorine-containing monomer include monomers described in paragraph “0182” of JP2013-057969A.
 (屈折率調整剤(高屈折率層))
 高屈折率層に用いられる屈折率調整剤としては、金属酸化物が好ましい。金属酸化物の例としては、酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。中でも、紫外線領域の光を吸収することができるという利点も有することから、酸化チタンまたは酸化ジルコニウムが好ましく、酸化チタンが特に好ましい。
(Refractive index modifier (high refractive index layer))
As a refractive index adjusting agent used for the high refractive index layer, a metal oxide is preferable. Examples of metal oxides include titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, oxidation Examples thereof include magnesium, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Among these, titanium oxide or zirconium oxide is preferable, and titanium oxide is particularly preferable because it has an advantage that light in the ultraviolet region can be absorbed.
 金属酸化物(好ましくは酸化チタン)は、粒子状が好ましく、その一次平均粒径は30nm以下であることが好ましく、1~30nmであることがより好ましく、3~15nmであることがさらにより好ましく、5~10nmであることが特に好ましい。一次平均粒径が30nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The metal oxide (preferably titanium oxide) is preferably in the form of particles, and its primary average particle size is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 3 to 15 nm. A thickness of 5 to 10 nm is particularly preferable. If the primary average particle diameter is 30 nm or less, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
 本発明に係る酸化チタン粒子としては、水系の酸化チタンゾルの表面を変性して分散状態を安定にしたものを用いることが好ましい。 As the titanium oxide particles according to the present invention, it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
 水系の酸化チタンゾルの調製方法としては、従来公知のいずれの方法も用いることができ、例えば、特開昭63-17221号公報、特開平7-819号公報(米国特許第4,786,467号明細書に相当)、特開平9-165218号公報(米国特許第5,840,111号明細書に相当)、特開平11-43327号公報、特開昭63-17221号公報、に記載された事項を参照にすることができる。 As a method for preparing an aqueous titanium oxide sol, any conventionally known method can be used. For example, JP-A-63-17221, JP-A-7-819 (US Pat. No. 4,786,467). Equivalent to the specification), JP-A-9-165218 (corresponding to US Pat. No. 5,840,111), JP-A-11-43327, and JP-A-63-17221. You can refer to the matter.
 また、酸化チタン粒子のその他の製造方法については、例えば、「酸化チタン-物性と応用技術」清野学 p255~258(2000年)技報堂出版株式会社、または国際公開第2007/039953号の段落番号「0011」~「0023」に記載の工程(2)の方法を参考にすることができる。 As for other production methods of titanium oxide particles, for example, “Titanium oxide—physical properties and applied technology”, Kiyono Manabu, p. 255-258 (2000), Gihodo Publishing Co., Ltd., or paragraph number of International Publication No. 2007/039953 The method of the step (2) described in “0011” to “0023” can be referred to.
 さらに、酸化チタン粒子を含めた金属酸化物粒子のその他の製造方法としては、特開2000-053421号公報、特開2000-063119号公報等に記載された事項を参照にすることができる。 Furthermore, as other methods for producing metal oxide particles including titanium oxide particles, reference can be made to the matters described in JP 2000-053421 A, JP 2000-063119 A, and the like.
 さらに、酸化チタン粒子を含ケイ素の水和酸化物で被覆してもよい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。 Further, the titanium oxide particles may be coated with a silicon-containing hydrated oxide. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよい。含ケイ素の水和酸化物で被覆された酸化チタン粒子は、含ケイ素の水和酸化物で被覆されたルチル型の酸化チタン粒子がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるという理由からである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type. The titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本発明の効果を得るためにはシラノール基を有することがより好ましい。 The “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and in order to obtain the effects of the present invention. More preferably has a silanol group.
 含ケイ素の水和酸化物の被覆量は、好ましくは3~30質量%、より好ましくは3~10質量%、さらに好ましくは3~8質量%であり、特に好ましくは4~7質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率が得られ、被覆量が3質量%以上であると粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated oxide is preferably 3 to 30% by mass, more preferably 3 to 10% by mass, further preferably 3 to 8% by mass, and particularly preferably 4 to 7% by mass. . This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の体積粒径は、1~40nmであることが好ましく、2~20nmであることがより好ましく、5~10nmであることがさらにより好ましく、7nm以上10nm未満であることが特に好ましい。かような範囲であれば、本発明の効果が一層顕著に奏される。 The volume particle diameter of the titanium oxide particles coated with the silicon-containing hydrated oxide is preferably 1 to 40 nm, more preferably 2 to 20 nm, and even more preferably 5 to 10 nm. It is particularly preferably 7 nm or more and less than 10 nm. If it is such a range, the effect of this invention will be show | played more notably.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された事項を参照することができる。 As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
 また、高屈折率層の金属酸化物としては、公知の方法で製造されたコアシェル粒子を用いることもできる。例えば、以下の(i)~(v);(i)酸化チタン粒子を含有する水溶液を加熱加水分解し、または酸化チタン粒子を含有する水溶液にアルカリを添加し中和して、平均粒径が1~30nmの酸化チタンを得た後、モル比で表して酸化チタン粒子/鉱酸が1/0.5~1/2の範囲になるように、前記酸化チタン粒子と鉱酸とを混合したスラリーを、50℃以上該スラリーの沸点以下の温度で加熱処理し、その後得られた酸化チタン粒子を含むスラリーに、ケイ素の化合物(例えば、ケイ酸ナトリウム水溶液)を添加し、酸化チタン粒子の表面にケイ素の含水酸化物を析出させて表面処理し、次いで、得られた表面処理された酸化チタン粒子のスラリーから不純物を除去する方法(特開平10-158015号公報);(ii)含水酸化チタンなどの酸化チタンを一塩基酸またはその塩で解膠処理して得られる酸性域のpHで安定した酸化チタンゾルと、分散安定化剤としてのアルキルシリケートを常法により混合し、中性化する方法(特開2000-053421号公報);(iii)過酸化水素および金属スズを、2~3のH/Snモル比に保持しつつ同時にまたは交互にチタン塩(例えば、四塩化チタン)等の混合物水溶液に添加し、チタンを含む塩基性塩水溶液を生成し、該塩基性塩水溶液を0.1~100時間かけて50~100℃の温度で保持して酸化チタンを含む複合体コロイドの凝集体を生成させ、次いで、該凝集体スラリー中の電解質を除去し、酸化チタンを含む複合体コロイド粒子の安定な水性ゾルを製造する;ケイ酸塩(例えば、ケイ酸ナトリウム水溶液)等を含有する水溶液を調製し、水溶液中に存在する陽イオンを除去することで、二酸化ケイ素を含む複合体コロイド粒子の安定な水性ゾルが製造する;得られた酸化チタンを含む複合体水性ゾルを金属酸化物TiOに換算して100質量部と、得られた二酸化ケイ素を含む複合体水性ゾルを金属酸化物SiOに換算して2~100質量部とを混合し、陰イオンを除去後、80℃で1時間加熱熟成する方法(特開2000-063119号公報);(iv)含水チタン酸のゲルまたはゾルに過酸化水素を加えて含水チタン酸を溶解し、得られたペルオキソチタン酸水溶液に、ケイ素化合物等を添加し加熱し、ルチル型構造をとる複合固溶体酸化物からなるコア粒子の分散液が得られ、次いで、該コア粒子の分散液にケイ素化合物等を添加した後、加熱しコア粒子表面に被覆層を形成し、複合酸化物粒子が分散されたゾルを得て、さらに、加熱する方法(特開2000-204301号公報);(v)含水酸化チタンを解膠して得られた酸化チタンのヒドロゾルに、安定剤としてのオルガノアルコキシシラン(R SiX4-n)または過酸化水素および脂肪族もしくは芳香族ヒドロキシカルボン酸から選ばれた化合物を添加し、溶液のpHを3以上9未満に調節し熟成させた後に脱塩処理を行う方法(特許第4550753号公報);で製造されたコアシェル粒子が挙げられる。 In addition, as the metal oxide of the high refractive index layer, core-shell particles produced by a known method can be used. For example, the following (i) to (v): (i) An aqueous solution containing titanium oxide particles is hydrolyzed by heating, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali, so that the average particle size is After obtaining 1 to 30 nm of titanium oxide, the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2. The slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles. (Ii) Hydrous titanium oxide, wherein a hydrous oxide of silicon is precipitated and surface-treated, and then impurities are removed from the resulting slurry of the surface-treated titanium oxide particles (Japanese Patent Laid-Open No. 10-158015); A method of neutralizing a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide such as monobasic acid or a salt thereof and an alkyl silicate as a dispersion stabilizer by a conventional method. (Japanese Laid-Open Patent Publication No. 2000-053421); (iii) Titanium salt (for example, titanium tetrachloride) simultaneously or alternately while maintaining hydrogen peroxide and metallic tin at a H 2 O 2 / Sn molar ratio of 2 to 3 A basic salt aqueous solution containing titanium, and the basic salt aqueous solution is maintained at a temperature of 50 to 100 ° C. for 0.1 to 100 hours to form a composite colloid containing titanium oxide And then removing the electrolyte in the aggregate slurry to produce a stable aqueous sol of composite colloidal particles comprising titanium oxide; silicates (e.g., sodium silicate A stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing the solution) and removing cations present in the aqueous solution; the resulting composite containing titanium oxide 100 parts by mass of the aqueous sol in terms of metal oxide TiO 2 and 2 to 100 parts by mass of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 were mixed to form an anion. (Iv) Hydrogen peroxide was added to a hydrous titanic acid gel or sol to dissolve the hydrous titanic acid. A silicon compound or the like is added to a peroxotitanic acid aqueous solution and heated to obtain a dispersion of core particles composed of a complex solid solution oxide having a rutile structure, and then a silicon compound or the like is added to the dispersion of the core particles. And then heating to form a coating layer on the surface of the core particles, obtaining a sol in which the composite oxide particles are dispersed, and further heating (Japanese Unexamined Patent Publication No. 2000-204301); To a titanium oxide hydrosol obtained by peptizing titanium, an organoalkoxysilane (R 1 n SiX 4-n ) as a stabilizer or a compound selected from hydrogen peroxide and an aliphatic or aromatic hydroxycarboxylic acid is added. And a core-shell particle produced by a method of performing desalting after adding and adjusting the pH of the solution to 3 or more and less than 9 for aging (Japanese Patent No. 4550753).
 上記コアシェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。 The core-shell particles may be those in which the entire surface of the titanium oxide particles as a core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles as a core is covered with a silicon-containing hydrated oxide. It may be coated with.
 さらに、本発明で用いられる高屈折率層の金属酸化物は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。 Furthermore, the metal oxide of the high refractive index layer used in the present invention is preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 高屈折率層における金属酸化物の含有量としては、高屈折率層の固形分100質量%に対して、15~90質量%であることが好ましく、20~85質量%であることがより好ましく、30~85質量%であることが反射率向上の観点からさらに好ましい。なかでも、55~80質量%であれば、本発明の効果が一層顕著となる。 The content of the metal oxide in the high refractive index layer is preferably 15 to 90% by mass, more preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer. 30 to 85% by mass is more preferable from the viewpoint of improving the reflectance. In particular, the effect of the present invention becomes more remarkable when the content is 55 to 80% by mass.
 (バインダー樹脂)
 本発明に係る赤外反射層の低屈折率層および高屈折率層は、屈折率調整剤以外に好ましくはバインダー樹脂を含む。両層で用いるバインダー樹脂は、同一の種類でも異なる種類でもよい。バインダー樹脂は、水溶性、非水溶性のいずれでもよい。非水溶性バインダー樹脂の例としては、ポリエステル類などが挙げられる。水溶性バインダー樹脂の例としては、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、もしくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体およびそれらの塩などの合成水溶性樹脂;ゼラチン、増粘多糖類などの天然水溶性樹脂などが挙げられる。これらの中で、特に好ましい例としては、製造時のハンドリングおよび膜の柔軟性の観点から、ポリビニルアルコール類、ポリビニルピロリドン類およびそれを含有する共重合体、ゼラチン、増粘多糖類(特にセルロース類)が挙げられ、中でも、光学特性の観点から、低屈折率層および高屈折率層のバインダー樹脂がともにポリビニルアルコールであることがより好ましい。これらのバインダー樹脂は、1種単独で用いてもよいし、2種以上併用して用いてもよい。
(Binder resin)
The low refractive index layer and high refractive index layer of the infrared reflective layer according to the present invention preferably contain a binder resin in addition to the refractive index adjusting agent. The binder resin used in both layers may be the same or different. The binder resin may be water-soluble or water-insoluble. Examples of the water-insoluble binder resin include polyesters. Examples of water-soluble binder resins include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or acrylic. Acrylic resin such as acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene-acrylic Styrene acrylic acid resins such as acid copolymers or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymers, styrene-sodium styrenesulfonate copolymers, styrene-2-hydroxyethyl acrylate copolymers, styrene -2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, Synthetic water-soluble resins such as vinyl acetate copolymers such as vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-acrylic acid copolymer, and salts thereof; gelatin, thickening Examples thereof include natural water-soluble resins such as polysaccharides. Among these, particularly preferable examples include polyvinyl alcohols, polyvinylpyrrolidones and copolymers containing the same, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Among these, from the viewpoint of optical properties, it is more preferable that the binder resin of the low refractive index layer and the high refractive index layer are both polyvinyl alcohol. These binder resins may be used alone or in combination of two or more.
 本発明で用いられるポリビニルアルコールは、合成品を用いてもよいし市販品を用いてもよい。ポリビニルアルコールとして用いられる市販品の例としては、例えば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 As the polyvinyl alcohol used in the present invention, a synthetic product or a commercially available product may be used. Examples of commercially available products used as polyvinyl alcohol include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP- 03, JP-04JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
 本発明で好ましく用いられるポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、変性ポリビニルアルコールも含まれる。変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 The polyvinyl alcohol preferably used in the present invention includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1,000以上のものが好ましく用いられ、特に平均重合度が1,500~5,000のものが好ましく用いられる。中でも、低屈折率層に用いられる場合には、平均重合度は2,000~3,000であることが好ましく、高屈折率層に用いられる場合には、1,000~2,000であることが好ましい。すなわち、低屈折率層に用いられるポリビニルアルコールの平均重合度は、高屈折率層に用いられるポリビニルアルコールの平均重合度に比べて高いことが好ましい。 The polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000. In particular, when used in the low refractive index layer, the average degree of polymerization is preferably 2,000 to 3,000, and when used in the high refractive index layer, it is 1,000 to 2,000. It is preferable. That is, the average degree of polymerization of polyvinyl alcohol used for the low refractive index layer is preferably higher than the average degree of polymerization of polyvinyl alcohol used for the high refractive index layer.
 また、ポリビニルアルコールの平均ケン化度は、70~100mol%のものが好ましく、80~99.5mol%のものが特に好ましい。中でも、低屈折率層に用いられる場合には、平均ケン化度は80~90mol%であることが好ましく、高屈折率層に用いられる場合には、平均ケン化度は90~99.5mol%であることが好ましい。すなわち、低屈折率層に用いられるポリビニルアルコールの平均ケン化度は、高屈折率層に用いられるポリビニルアルコールのケン化度に比べて低いことが好ましい。 The average saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%. In particular, when used in a low refractive index layer, the average saponification degree is preferably 80 to 90 mol%, and when used in a high refractive index layer, the average saponification degree is 90 to 99.5 mol%. It is preferable that That is, the average saponification degree of polyvinyl alcohol used in the low refractive index layer is preferably lower than the saponification degree of polyvinyl alcohol used in the high refractive index layer.
 ここで、重合度とは粘度平均重合度を指し、JIS K6726:1994に準じて測定され、PVAを完全に再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められるものである。 Here, the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS K6726: 1994. After re-saponification and purification of PVA, the intrinsic viscosity [η] (dl / G) is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in, for example, JP-A-61-110483. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。またビニルアルコール系ポリマーとして、エクセバール(登録商標)(株式会社クラレ製)やニチゴーGポリマー(登録商標)(日本合成化学工業株式会社製)などが挙げられる。ポリビニルアルコールは、重合度や変性の種類違いなど2種類以上を併用することもできる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. Block copolymer of vinyl compound having a hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Polyvinyl alcohol etc. are mentioned. Examples of the vinyl alcohol polymer include EXEVAL (registered trademark) (manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark) (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
 本発明に適用可能なゼラチンとしては、石灰処理ゼラチンのほか、酸処理ゼラチンを使用してもよく、さらにゼラチンの加水分解物、ゼラチンの酵素分解物を用いることもできる。 As the gelatin applicable to the present invention, acid-processed gelatin may be used in addition to lime-processed gelatin, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
 本発明で用いることのできる増粘多糖類としては、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類に挙げることができ、これら多糖類の詳細については、「生化学辞典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。 Examples of thickening polysaccharides that can be used in the present invention include generally known natural polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides. For details, reference can be made to “Biochemical Dictionary (2nd edition), Tokyo Chemical Doujin Publishing”, “Food Industry”, Vol. 31 (1988), p. 21.
 水溶性バインダー樹脂の場合、バインダー樹脂の重量平均分子量は、1,000以上200,000以下が好ましく、10,000以上200,000以下がさらに好ましく、40,000以上150,000以下がさらにより好ましい。本明細書において、重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)を用いて下記測定条件下で測定することができる。 In the case of a water-soluble binder resin, the weight average molecular weight of the binder resin is preferably 1,000 or more and 200,000 or less, more preferably 10,000 or more and 200,000 or less, and even more preferably 40,000 or more and 150,000 or less. . In this specification, a weight average molecular weight can be measured on the following measurement conditions using a gel permeation chromatography (GPC), for example.
 溶媒:0.2M NaNO、NaHPO、pH7
 カラム:Shodex Column Ohpak SB-802.5 HQ、8×300mmとShodex Column Ohpak SB-805 HQ、8×300mmの組み合わせ
 カラム温度:45℃
 試料濃度:0.1質量%
 検出器:RID-10A(株式会社島津製作所製)
 ポンプ:LC-20AD(株式会社島津製作所製)
 流量:1ml/min
 校正曲線:ShodexスタンダードGFC(水系GPC)カラム用Standard
 P-82 標準物質プルランによる校正曲線を使用。
Solvent: 0.2M NaNO 3 , NaH 2 PO 4 , pH 7
Column: Combination of Shodex Column Ohpak SB-802.5 HQ, 8 × 300 mm and Shodex Column Ohpak SB-805 HQ, 8 × 300 mm Column temperature: 45 ° C.
Sample concentration: 0.1% by mass
Detector: RID-10A (manufactured by Shimadzu Corporation)
Pump: LC-20AD (manufactured by Shimadzu Corporation)
Flow rate: 1 ml / min
Calibration curve: Standard for Shodex standard GFC (aqueous GPC) columns
Calibration curve using P-82 reference material pullulan is used.
 また、高屈折率層に含まれるポリビニルアルコールの平均ケン化度と、低屈折率層に含まれるポリビニルアルコールの平均ケン化度とが、異なっていてもよい。 The average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer may be different.
 ポリビニルアルコールなどの水溶性バインダー樹脂では、水系塗布が可能となる。水系塗布の場合、通常、低屈折率層および高屈折率層を形成し得るそれぞれの塗布液を用い、前記各塗布液を逐次塗布または同時重層塗布によって高屈折率層と低屈折率層とを積層することによって製造される。しかしながら、重層塗布で得られる塗膜は、隣接する層間での混合や界面の乱れ(凹凸)が発生しがちである。逐次重層塗布の場合は、上層の塗布液を塗布した際に、形成された下層が再溶解し、上層および下層の液同士が混合し、隣接する層間での混合や界面の乱れ(凹凸)が発生する場合がある。また、同時重層塗布で得られる塗膜は、未乾燥の液状態で重ねられるために、隣接する層間での混合や界面の乱れ(凹凸)がより発生してしまう。 Water-based coating is possible with water-soluble binder resins such as polyvinyl alcohol. In the case of aqueous coating, each coating solution that can form a low-refractive index layer and a high-refractive index layer is usually used, and each of the coating liquids is applied by sequential coating or simultaneous multilayer coating to form a high refractive index layer and a low refractive index layer. Manufactured by stacking. However, the coating film obtained by multilayer coating tends to cause mixing between adjacent layers and interface disturbance (unevenness). In the case of sequential multilayer coating, when the upper layer coating solution is applied, the lower layer formed is redissolved, the upper layer and lower layer liquids are mixed together, and mixing between adjacent layers and interface disturbance (unevenness) occur. May occur. Moreover, since the coating film obtained by simultaneous multilayer coating is stacked in an undried liquid state, mixing between adjacent layers and interface disturbance (unevenness) are more likely to occur.
 高屈折率層に含まれるポリビニルアルコールの平均ケン化度と、低屈折率層に含まれるポリビニルアルコールの平均ケン化度とを異なる構成とすることにより、反射特性がさらに向上する。このような効果は、層間混合が抑制された結果であると考えられる。ケン化度の異なるポリビニルアルコール樹脂を用いることによって、高屈折率層と低屈折率層とが未乾燥の液状態で重ねられた際に各層が多少混合したとしても、乾燥過程で溶媒である水が揮発して濃縮されるとケン化度の異なるポリビニルアルコール樹脂同士が相分離を起こし、各層の界面の面積を最小にしようとする力が働くようになるため、層間混合が抑制され界面の乱れも小さくなると推定される。層間混合が抑制されれば、所望の波長の光反射性に優れたものとなり、また、フィルムのヘイズも低下すると考えられる。 By making the average saponification degree of polyvinyl alcohol contained in the high refractive index layer different from the average saponification degree of polyvinyl alcohol contained in the low refractive index layer, the reflection characteristics are further improved. Such an effect is considered to be a result of suppression of interlayer mixing. By using polyvinyl alcohol resins having different degrees of saponification, even when the high refractive index layer and the low refractive index layer are stacked in an undried liquid state, even if each layer is mixed somewhat, water that is a solvent in the drying process is used. When the volatilizes and concentrates, polyvinyl alcohol resins with different degrees of saponification undergo phase separation, and the force to minimize the area of the interface between each layer works. Is also estimated to be smaller. If interlayer mixing is suppressed, it will be excellent in the light reflectivity of a desired wavelength, and it is thought that the haze of a film also falls.
 ただし、上記メカニズムは推定であり、本発明は上記メカニズムに何ら制限されるものではない。 However, the above mechanism is an estimation, and the present invention is not limited to the above mechanism.
 各屈折率層中のポリビニルアルコールの平均ケン化度は、屈折率層中の含有質量比を考慮して求められる。すなわち、平均ケン化度=Σ(各ポリビニルアルコールのケン化度(mol%)×各ポリビニルアルコールの各屈折率層中の含有質量(%)/100質量(%))となる。例えば、屈折率層がポリビニルアルコールA(屈折率層中の含有質量比(各ポリビニルアルコールの各屈折率層中の含有質量(%)/100質量(%)):Wa、ケン化度:Sa(mol%))、ポリビニルアルコールB(屈折率層中の含有質量比:Wb、ケン化度:Sb(mol%))、ポリビニルアルコールC(屈折率層中の含有質量比:Wc、ケン化度:Sc(mol%))を含む場合、平均ケン化度=(Wa×Sa+Wb×Sb+Wc×Sc/(Wa+Wb+Wc)となる。 The average degree of saponification of polyvinyl alcohol in each refractive index layer is determined in consideration of the content ratio in the refractive index layer. That is, the average degree of saponification = Σ (degree of saponification of each polyvinyl alcohol (mol%) × content of each polyvinyl alcohol in each refractive index layer (%) / 100 mass (%)). For example, the refractive index layer is polyvinyl alcohol A (content mass ratio in the refractive index layer (content mass (%) of each polyvinyl alcohol in each refractive index layer / 100 mass (%)): Wa, saponification degree: Sa ( mol%)), polyvinyl alcohol B (mass ratio in the refractive index layer: Wb, saponification degree: Sb (mol%)), polyvinyl alcohol C (mass ratio in the refractive index layer: Wc, saponification degree: When Sc (mol%) is included, the average degree of saponification = (Wa × Sa + Wb × Sb + Wc × Sc / (Wa + Wb + Wc)).
 低屈折率層および高屈折率層中の水溶性バインダー樹脂の含有量は、特に限定されるものではないが、各屈折率層の全質量(固形分)に対し、好ましくは1~50質量%であり、より好ましくは10~50質量%であり、さらにより好ましくは20~45質量%である。本発明の効果を一層奏する観点から、低屈折率層については、当該含有量は35~45質量%であることが好ましく、高屈折率層については、当該含有量は20~30質量%であることが好ましい。 The content of the water-soluble binder resin in the low refractive index layer and the high refractive index layer is not particularly limited, but is preferably 1 to 50% by mass with respect to the total mass (solid content) of each refractive index layer. More preferably, it is 10 to 50% by mass, and still more preferably 20 to 45% by mass. From the viewpoint of further achieving the effects of the present invention, the content of the low refractive index layer is preferably 35 to 45% by mass, and the content of the high refractive index layer is 20 to 30% by mass. It is preferable.
 (硬化剤)
 本発明に係る赤外反射層に水溶性バインダー樹脂を使用する場合、水溶性バインダー樹脂を硬化させるため、硬化剤を使用してもよい。本発明に適用可能な硬化剤としては、水溶性バインダー樹脂と硬化反応を起こすものであれば特に制限はない。
(Curing agent)
When using a water-soluble binder resin for the infrared reflective layer according to the present invention, a curing agent may be used to cure the water-soluble binder resin. The curing agent applicable to the present invention is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin.
 水溶性バインダー樹脂がポリビニルアルコールの場合には、用いることのできる硬化剤としては、ポリビニルアルコールと硬化反応を起こすものであれば特に制限はないが、ホウ酸、ホウ酸塩、およびホウ砂からなる群から選択されることが好ましい。ホウ酸、ホウ酸塩、およびホウ砂以外にも公知のものが使用でき、一般的にはポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。 When the water-soluble binder resin is polyvinyl alcohol, the curing agent that can be used is not particularly limited as long as it causes a curing reaction with polyvinyl alcohol, but is made of boric acid, borate, and borax. Preferably it is selected from the group. Known compounds other than boric acid, borate, and borax can be used, and generally compounds having a group capable of reacting with polyvinyl alcohol or compounds that promote the reaction between different groups possessed by polyvinyl alcohol These are appropriately selected and used. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 ホウ酸またはホウ酸塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。 Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
 ホウ砂とは、Na(OH)・8HO(四ホウ酸ナトリウム Naの十水和物)で表される鉱物である。 Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
 硬化剤としてのホウ素原子を有するホウ酸、ホウ酸塩、およびホウ砂は、単独の水溶液でも、また、2種以上を混合して使用しても良い。ホウ酸の水溶液またはホウ酸とホウ砂の混合水溶液が好ましい。ホウ酸とホウ砂の水溶液は、それぞれ比較的希薄水溶液でしか添加することができないが、両者を混合することで濃厚な水溶液にすることができ、塗布液を濃縮化することができる。また、添加する水溶液のpHを比較的自由にコントロールすることができる。 Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more. An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred. The aqueous solutions of boric acid and borax can be added only as relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, the pH of the aqueous solution to be added can be controlled relatively freely.
 本発明では、ホウ酸およびその塩ならびに/またはホウ砂を用いることが本発明の効果を得るためには好ましい。ホウ酸およびその塩ならびに/またはホウ砂を用いた場合には、好ましい赤外遮蔽特性がより達成されうる。特に、高屈折率層と低屈折率層の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度またはそれ以下(例えば、5℃以下)に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 In the present invention, it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention. When using boric acid and its salts and / or borax, preferred infrared shielding properties can be achieved more. In particular, after a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a coater, the film surface temperature of the coating film is once cooled to about 15 ° C. or lower (for example, 5 ° C. or lower), and then the film surface is dried. In the case of using the set coating process to be performed, the effect can be expressed more preferably.
 上記硬化剤の総使用量は、ポリビニルアルコール系樹脂1gあたり1~600mgが好ましく、20~200mgがより好ましく、20~100mgがさらにより好ましい。 The total amount of the curing agent used is preferably 1 to 600 mg, more preferably 20 to 200 mg, and even more preferably 20 to 100 mg per 1 g of polyvinyl alcohol resin.
 (高分子分散剤)
 低屈折率層および高屈折率層は、塗布液の分散安定性の観点から高分子分散剤を含有してもよい。高分子分散剤とは、重量平均分子量が10,000以上の高分子の分散剤を指す。好適には、側鎖または末端に水酸基が置換された高分子であり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコールなどが挙げられる。高分子分散剤は市販品を用いてもよく、かような高分子分散剤としては、マリアリム(登録商標)AKM-0531(日油株式会社製)などが挙げられる。高分子分散剤の含有量は、屈折率層に対して固形分換算で0.1~10質量%であることが好ましい。
(Polymer dispersant)
The low refractive index layer and the high refractive index layer may contain a polymer dispersant from the viewpoint of dispersion stability of the coating liquid. The polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more. Preferably, the polymer has a hydroxyl group substituted at the side chain or terminal. For example, a polymer obtained by copolymerizing 2-ethylhexyl acrylate with an acrylic polymer such as sodium polyacrylate or polyacrylamide, polyethylene glycol or the like. Examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like. Commercially available polymer dispersants may be used, and examples of such polymer dispersants include Marialim (registered trademark) AKM-0531 (manufactured by NOF Corporation). The content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
 (エマルジョン樹脂)
 低屈折率層および高屈折率層は、エマルジョン樹脂をさらに含有していてもよい。エマルジョン樹脂を含むことにより、膜の柔軟性がより高くなりガラスへの貼りつけ等の加工性がよくなる。
(Emulsion resin)
The low refractive index layer and the high refractive index layer may further contain an emulsion resin. By including the emulsion resin, the flexibility of the film becomes higher and the workability such as sticking to glass is improved.
 具体的には、エマルジョン樹脂としては、特開2013-148849号公報の段落「0121」~「0124」に記載の材料を用いることができる。 Specifically, as the emulsion resin, materials described in paragraphs “0121” to “0124” of JP2013-148849A can be used.
 (その他の添加剤)
 本発明に係る低屈折率層および高屈折率層は、必要に応じて各種の添加剤を含有させることが出来る。例えば、特開昭57-74193号公報、同57-87988号公報、および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、アニオン、カチオンまたはノニオンの各種界面活性剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。
(Other additives)
The low refractive index layer and the high refractive index layer according to the present invention can contain various additives as necessary. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57-87989, JP-A-60. -72785, 61-146591, JP-A-1-95091, and 3-13376, etc., various anionic, cationic or nonionic surfactants, 59-22993, 59-52689, 62-280069, 61-242871, and JP-A-4-219266, etc., and optical brighteners, sulfuric acid, phosphoric acid, PH adjusters such as acetic acid, citric acid, sodium hydroxide, potassium hydroxide and potassium carbonate, antifoaming agents, lubricants such as diethylene glycol Preservatives, anti-static agents may also contain various known additives such as a matting agent.
 [赤外吸収層]
 本発明に係る赤外吸収層は、赤外吸収剤としてタングステン酸化物および複合タングステン酸化物のうち少なくとも一種((複合)タングステン酸化物)ならびにバインダーを含有する層である。(複合)タングステン酸化物は赤外吸収能を有することから、前記塗布液から形成された赤外吸収層は、赤外線の透過を遮断する機能を有する。
[Infrared absorbing layer]
The infrared absorption layer according to the present invention is a layer containing at least one of tungsten oxide and composite tungsten oxide ((composite) tungsten oxide) and a binder as an infrared absorber. Since the (composite) tungsten oxide has an infrared absorption capability, the infrared absorption layer formed from the coating solution has a function of blocking the transmission of infrared rays.
 赤外吸収層の厚さは特に制限されないが、好ましくは1~10μmであり、より好ましくは1.5~8μmである。厚さを1μm以上とすることによって、赤外吸収層は十分な赤外遮蔽性を発現できる。一方、厚さを10μm以下とすることによって、応力による赤外吸収層のクラック発生を防ぐことができる。中でも、本発明の効果を一層奏する観点から、3~5μmであることが特に好ましい。 The thickness of the infrared absorbing layer is not particularly limited, but is preferably 1 to 10 μm, more preferably 1.5 to 8 μm. By setting the thickness to 1 μm or more, the infrared absorption layer can exhibit sufficient infrared shielding properties. On the other hand, when the thickness is 10 μm or less, cracks in the infrared absorption layer due to stress can be prevented. Among these, the thickness is particularly preferably 3 to 5 μm from the viewpoint of further achieving the effects of the present invention.
 ((複合)タングステン酸化物)
 本発明の赤外吸収層に用いられる(複合)タングステン酸化物は、一般式:Wで示され、特開2013-64042号公報や特開2010-215451号公報に記載されるのと同様のものが使用できる。上記一般式中、Wは、タングステンを表す。Oは、酸素を表す。y及びzは、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)であり、一般的に3未満(z/y<3)の関係を満たすものを用いる。また、タングステンと酸素との組成は2超過3未満(2<z/y<3)の関係を満たことがより好ましく、2.2~2.999(2.2≦z/y≦2.999)の関係を満たすことがさらに好ましい。このようなz/y比であれば、材料として化学的に安定であり、高い赤外吸収能を発揮できる上、必要量の自由電子が生成され効率よい赤外吸収材料となり得る。
((Composite) tungsten oxide)
The (composite) tungsten oxide used in the infrared absorption layer of the present invention is represented by the general formula: W y O z and is described in JP2013-64042A and JP2010-215451A. Similar ones can be used. In the above general formula, W represents tungsten. O represents oxygen. y and z are compositions of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y), and those satisfying the relationship of less than 3 (z / y <3) are generally used. Further, the composition of tungsten and oxygen preferably satisfies the relationship of more than 2 and less than 3 (2 <z / y <3), and 2.2 to 2.999 (2.2 ≦ z / y ≦ 2.999). It is more preferable to satisfy the relationship of With such a z / y ratio, the material is chemically stable and can exhibit a high infrared absorption ability, and a necessary amount of free electrons can be generated to provide an efficient infrared absorption material.
 また、(複合)タングステン酸化物の組成は、特に制限されないが、安定性の観点から、一般式:一般に、Mで表される酸化物であることが好ましく、特開2013-64042号公報や特開2010-215451号公報に記載されるのと同様のものが使用できる。上記一般式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素を表す。Wは、タングステンを表す。Oは、酸素を表す。x、y及びzは、一般的にタングステンとMとの組成(タングステンに対するMの組成、x/y)が、0<x/y≦1を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が、2<z/y≦3を満たすものを用いる。また、タングステンとMとの組成(タングステンに対するMの組成、x/y)が0.001≦x/y≦1の関係を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が2.2≦z/y≦3の関係を満たすことが好ましく、0.2≦x/y≦0.5かつ2.45≦z/y≦3の関係を満たすことがより好ましく、0.31≦x/y≦0.35かつ0.27≦z/y≦3の関係を満たすことがさらに好ましい。ここで、アルカリ金属は、水素を除く周期表第1族元素であり、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランジウムである。アルカリ土類金属は、周期表第2族元素であり、カルシウム、ストロンチウム、バリウム、ラジウムである。希土類元素は、Sc、Y及びランタノイド元素(57番のランタンから71番のルテチウムまでの元素)である。特に、赤外吸収材料としての光学特性、耐候性向上効果の観点から、M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちの1種以上であることが好ましく、M元素がCsまたはRbであることがさらに好ましく、M元素がCsであるCsで表されるセシウム含有複合タングステン酸化物であることが特に好ましい。 Further, the composition of the (composite) tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: M x W y O z from the viewpoint of stability. The same ones described in JP-A-664042 and JP-A-2010-215451 can be used. In the above general formula, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I represent one or more elements selected from I. W represents tungsten. O represents oxygen. x, y, and z are generally compositions of tungsten and M (composition of M with respect to tungsten, x / y) satisfying 0 <x / y ≦ 1, and a composition of tungsten and oxygen (of oxygen with respect to tungsten). A composition whose z / y) satisfies 2 <z / y ≦ 3 is used. Further, the composition of tungsten and M (composition of M with respect to tungsten, x / y) satisfies the relationship of 0.001 ≦ x / y ≦ 1, and the composition of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y) ) Preferably satisfies the relationship of 2.2 ≦ z / y ≦ 3, more preferably satisfies the relationship of 0.2 ≦ x / y ≦ 0.5 and 2.45 ≦ z / y ≦ 3, and 0 More preferably, the relationship of .31 ≦ x / y ≦ 0.35 and 0.27 ≦ z / y ≦ 3 is satisfied. Here, the alkali metal is a periodic table group 1 element excluding hydrogen, and is lithium, sodium, potassium, rubidium, cesium, or frangium. Alkaline earth metals are Group 2 elements of the periodic table and are calcium, strontium, barium, and radium. The rare earth elements are Sc, Y and lanthanoid elements (elements from 57th lanthanum to 71st lutetium). In particular, from the viewpoint of optical characteristics and an effect of improving weather resistance as an infrared absorbing material, M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. It is preferable that the element M is Cs or Rb, and it is particularly preferable that the element is a cesium-containing composite tungsten oxide represented by Cs x W y O z in which the element M is Cs.
 本発明の一形態において用いることができる(複合)タングステン酸化物としては、特に制限されないが、例えば、Cs0.33WO、Rb0.33WO等が挙げられる。なかでも、セシウム含有複合タングステン酸化物であるCs0.33WOを用いることが特に好ましい。すなわち、本発明では、(複合)タングステン酸化物がセシウムドープ酸化タングステンであることが好ましい。 The (composite) tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and Rb 0.33 WO 3 . Among these, it is particularly preferable to use Cs 0.33 WO 3 which is a cesium-containing composite tungsten oxide. That is, in the present invention, the (composite) tungsten oxide is preferably cesium-doped tungsten oxide.
 (複合)タングステン酸化物等の形状は、特に制限されず、粒子状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうるが、好ましくは粒子状である。また、(複合)タングステン酸化物等の大きさも特に制限されないが、(複合)タングステン酸化物等が粒子状である場合には、(複合)タングステン酸化物等粒子の平均粒径(平均一次粒子径、直径)は、可視光の反射を抑制しつつ、熱線吸収効果を確保できること、また散乱によるヘイズの劣化が生じず、透明性を確保できることから、5~200nmであることが好ましく、10~100nmであることがより好ましく、20~50nmであることがさらにより好ましい。上記平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The shape of (composite) tungsten oxide and the like is not particularly limited, and may take any structure such as a particulate shape, a spherical shape, a rod shape, a needle shape, a plate shape, a columnar shape, an indefinite shape, a flake shape, and a spindle shape, but preferably Is particulate. The size of the (composite) tungsten oxide is not particularly limited, but when the (composite) tungsten oxide or the like is in the form of particles, the average particle diameter (average primary particle diameter) of the (composite) tungsten oxide etc. , Diameter) is preferably 5 to 200 nm, from the viewpoint that heat ray absorption effect can be secured while suppressing reflection of visible light, and haze deterioration due to scattering does not occur and transparency can be secured. More preferably, the thickness is 20 to 50 nm. The average particle size is determined by observing particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number average). As required. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 また、これらの具体的な商品名としては、セシウムドープ酸化タングステン系としてCWO分散液(YMF-02A、住友金属鉱山株式会社製)等が挙げられる。 Specific examples of these trade names include CWO-dispersed tungsten oxide based CWO dispersion (YMF-02A, manufactured by Sumitomo Metal Mining Co., Ltd.).
 赤外遮蔽体の透明性、耐久性および遮熱性を両立する観点から、赤外吸収層中における(複合)タングステン酸化物の含有割合は、15~30質量%であることが好ましい。 From the viewpoint of achieving both transparency, durability and heat shielding properties of the infrared shielding body, the content ratio of the (composite) tungsten oxide in the infrared absorption layer is preferably 15 to 30% by mass.
 (バインダー)
 本発明に係る赤外吸収層はバインダーを含むが、好ましくは紫外線硬化型のバインダーを含む。紫外線硬化型のバインダーの例としては、紫外線硬化型ウレタンアクリレート樹脂、紫外線硬化型ポリエステルアクリレート樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、または紫外線硬化型エポキシ樹脂などが挙げられる。中でも、紫外線硬化型ウレタンアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂が好ましい。
(binder)
The infrared absorption layer according to the present invention contains a binder, but preferably contains an ultraviolet curable binder. Examples of the ultraviolet curable binder include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. Among these, an ultraviolet curable urethane acrylate resin and an ultraviolet curable polyol acrylate resin are preferable.
 紫外線硬化型ウレタンアクリレート樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載の、ユニディック(登録商標)17-806(DIC株式会社製)100部とコロネート(登録商標)L(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。紫外線硬化型ウレタンアクリレート樹脂としては、市販品を用いてもよく、市販品としては、ビームセット(登録商標)575、577(荒川化学工業株式会社製)、紫光(登録商標)UVシリーズ(日本合成化学工業株式会社製)などを挙げることができる。 The UV curable urethane acrylate resin is generally a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further containing 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter, acrylate includes methacrylate). Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Unidic (registered trademark) 17-806 (manufactured by DIC Corporation) and 1 part of Coronate (registered trademark) L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 Etc. are preferably used. Commercially available products may be used as the ultraviolet curable urethane acrylate resin, and commercially available products include Beamset (registered trademark) 575 and 577 (manufactured by Arakawa Chemical Co., Ltd.), Shikou (registered trademark) UV series (Nippon Gosei). Chemical Industry Co., Ltd.).
 紫外線硬化型ポリエステルアクリレート樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることにより形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。 Examples of the UV curable polyester acrylate resin include those generally formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, as disclosed in JP-A-59-151112. Those described can be used.
 紫外線硬化型エポキシアクリレート樹脂としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号公報に記載のものを用いることができる。 As the ultraviolet curable epoxy acrylate resin, an epoxy acrylate is used as an oligomer, and a reactive diluent and a photopolymerization initiator are added to the oligomer and reacted with the oligomer. JP-A-1-105738 discloses Those described can be used.
 紫外線硬化型ポリオールアクリレート樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート等を挙げることができる。紫外線硬化型ポリオールアクリレート樹脂としては、市販品を用いてもよく、市販品としては、サートマーSR295、SR399(サートマー・ジャパン株式会社製)、アロニックス(登録商標、以下同じ)シリーズ(東亞合成化学工業社製)などを挙げることができる。 Examples of ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples thereof include tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and alkyl-modified dipentaerythritol penta (meth) acrylate. Commercially available products may be used as the UV curable polyol acrylate resin, and commercially available products include Sartomer SR295, SR399 (manufactured by Sartomer Japan Co., Ltd.), Aronix (registered trademark, hereinafter the same) series (Toagosei Co., Ltd. Manufactured).
 また、上記紫外線硬化性樹脂に加えて、紫外線硬化性モノマーとして、(メタ)アクリル変性シリコーン化合物を含んでもよい。ここで「(メタ)アクリル変性シリコーン化合物」とは、シリコーン骨格の側鎖や末端などの任意(好ましくは末端(片末端または両末端)、より好ましくは両末端)の位置に(メタ)アクリル基が導入されてなる化合物であり、この化合物自体としては従来公知のものが適宜用いられうる。(メタ)アクリル変性シリコーン化合物の具体例としては、TEGORad2010/Rad2011(ダイセル・エボニック株式会社製)、SQ100/SQ200(株式会社トクシキ製)、CN990/CN9800(サートマー社製)、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)、X-22-2445/X-22-1602(両末端アクリレートシリコン)、X-22-164/X-22-164AS/X-22-164A/X-22-164B/X-22-164C/X-22-164E(両末端メタクリレートシリコン)、X-22-174ASX/X-22-174BX/KF-2012/X-22-2426/X-22-2475(片末端メタクリレートシリコン)(以上、信越化学工業株式会社製)、BYK(登録商標、以下同じ)UV-3500、UV-3570(ビックケミー・ジャパン株式会社製)などが挙げられる。また、(メタ)アクリルオキシプロピル末端ポリジメチルシロキサン、[(メタ)アクリルオキシプロピル]メチルシロキサン、[(メタ)アクリルオキシプロピル]メチルシロキサンとジメチルシロキサンの共重合体等も用いられうる。なお、これらの化合物の(メタ)アクリル基の末端にメチル基が導入されているものも使用できる。1分子中の官能基数は2つ以上が好ましいが官能基数が1つのものでもかまわない。官能基当量は100~1000が好ましい範囲であり、この範囲であれば、得られた赤外吸収層のタック性および硬化物の耐熱性が良好になる。 In addition to the ultraviolet curable resin, a (meth) acryl-modified silicone compound may be included as an ultraviolet curable monomer. Here, the “(meth) acryl-modified silicone compound” means a (meth) acryl group at an arbitrary position (preferably terminal (one terminal or both terminals), more preferably both terminals) such as a side chain or terminal of the silicone skeleton. As a compound itself, a conventionally known compound can be appropriately used. Specific examples of the (meth) acryl-modified silicone compound include TEGORad2010 / Rad2011 (manufactured by Daicel-Evonik Co., Ltd.), SQ100 / SQ200 (manufactured by Tokushi Co., Ltd.), CN990 / CN9800 (manufactured by Sartomer), and EBECRYL (registered trademark) 350. (Daicel Ornex Co., Ltd.), X-22-2445 / X-22-1602 (both ends acrylate silicon), X-22-164 / X-22-164AS / X-22-164A / X-22-164B / X-22-164C / X-22-164E (both ends methacrylate silicon), X-22-174ASX / X-22-174BX / KF-2012 / X-22-2426 / X-22-2475 (single end methacrylate) Silicon) (Shin-Etsu Chemical Co., Ltd.) Ltd.), BYK (registered trademark, hereinafter the same) UV-3500, UV-3570 (manufactured by BYK Japan KK), and the like. Further, (meth) acryloxypropyl-terminated polydimethylsiloxane, [(meth) acryloxypropyl] methylsiloxane, a copolymer of [(meth) acryloxypropyl] methylsiloxane and dimethylsiloxane, and the like can also be used. In addition, those in which a methyl group is introduced at the terminal of the (meth) acryl group of these compounds can also be used. The number of functional groups in one molecule is preferably 2 or more, but one having 1 functional group may be used. The functional group equivalent is preferably in the range of 100 to 1000, and within this range, the tackiness of the obtained infrared absorption layer and the heat resistance of the cured product are improved.
 (メタ)アクリル変性シリコーン化合物が赤外吸収層に含まれる場合、赤外吸収層中の(メタ)アクリル変性シリコーン化合物の含有量は、例えば、0.001~3質量%である。(メタ)アクリル変性シリコーン化合物の含有量が0.001質量%以上であれば、はじき・凹みなどの塗布欠陥に起因するクラックの発生や耐擦傷性の低下を十分に抑制することができる。一方、(メタ)アクリル変性シリコーン化合物の含有量が3質量%以下であれば、やはり赤外吸収層が割れにくく、クラックの発生も抑えられる。なお、赤外吸収層に含まれる(メタ)アクリル変性シリコーン化合物の含有量は、より好ましくは0.01~1質量%であり、さらに好ましくは0.03~0.5質量%である。 When the (meth) acryl-modified silicone compound is contained in the infrared absorption layer, the content of the (meth) acryl-modified silicone compound in the infrared absorption layer is, for example, 0.001 to 3% by mass. When the content of the (meth) acryl-modified silicone compound is 0.001% by mass or more, the occurrence of cracks and a decrease in scratch resistance due to coating defects such as repellency and dents can be sufficiently suppressed. On the other hand, if the content of the (meth) acryl-modified silicone compound is 3% by mass or less, the infrared absorption layer is hardly broken and the occurrence of cracks can be suppressed. The content of the (meth) acryl-modified silicone compound contained in the infrared absorption layer is more preferably 0.01 to 1% by mass, and further preferably 0.03 to 0.5% by mass.
 以上、バインダーが紫外線硬化型のバインダーを含む場合について詳細に説明したが、本発明においては、紫外線硬化型以外のバインダー(例えば、熱硬化型、湿気硬化型、自硬化型のバインダーなど)が、赤外吸収層に含まれてもよい。 As described above, the case where the binder includes an ultraviolet curable binder has been described in detail. In the present invention, a binder other than the ultraviolet curable type (for example, a thermosetting type, a moisture curable type, a self-curing type binder, etc.) It may be contained in the infrared absorption layer.
 (重合開始剤)
 本発明に係る赤外吸収層を活性エネルギー線照射(好ましくは紫外線照射)により硬化して作製する場合、光重合開始剤を用いることによって、塗膜の硬化反応を短時間で行うことができる。
(Polymerization initiator)
When the infrared absorption layer according to the present invention is prepared by curing by active energy ray irradiation (preferably ultraviolet irradiation), the curing reaction of the coating film can be performed in a short time by using a photopolymerization initiator.
 光重合開始剤としては、ベンゾフェノン、ベンジル、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピル-1-イル)チタニウム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。また、これらの化合物は、1種単独で用いてもよく、複数混合して用いてもよい。 Examples of the photopolymerization initiator include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, benzyl dimethyl ketal, 2 , 2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropanone-1,1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (cyclopentadienyl) ) -Bis (2,6-diflu) B-3- (Pyr-1-yl) titanium, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, etc. These compounds may be used alone or in combination.
 光重合開始剤を用いる場合、光硬化性を向上させるために公知の各種染料や増感剤を添加することも可能である。 When a photopolymerization initiator is used, various known dyes and sensitizers can be added to improve photocurability.
 また、本発明に係る赤外吸収層を加熱により硬化して作製する場合、熱重合開始剤を用いることによって、塗膜の硬化反応を短時間で行うことができる。 Further, when the infrared absorption layer according to the present invention is cured by heating, the curing reaction of the coating film can be performed in a short time by using a thermal polymerization initiator.
 上記熱重合開始剤としては、特に限定されず、熱により分解し、重合硬化を開始する活性ラジカルを発生するものが挙げられる。例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等を使用することができる。また、熱重合開始剤のうち市販されているものとしては、例えば、パーブチルD、パーブチルH、パーブチルP、パーメンタH(いずれも日油株式会社製)等が好適に用いられる。これらの熱重合開始剤は、1種単独で用いられてもよいし、2種以上が併用されてもよい。 The thermal polymerization initiator is not particularly limited, and includes those that decompose by heat and generate active radicals that initiate polymerization and curing. For example, dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoyl, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide Di-t-butyl peroxide and the like can be used. As commercially available thermal polymerization initiators, for example, perbutyl D, perbutyl H, perbutyl P, permenta H (all manufactured by NOF Corporation) and the like are preferably used. These thermal polymerization initiators may be used individually by 1 type, and 2 or more types may be used together.
 さらに、硬化促進のため、上記の光重合開始剤と熱重合開始剤は併用されても良い。この場合、光硬化の後に加熱することにより赤外吸収層の硬化をさらに促進することが期待できる。 Furthermore, in order to accelerate curing, the above photopolymerization initiator and thermal polymerization initiator may be used in combination. In this case, it can be expected to further accelerate the curing of the infrared absorption layer by heating after photocuring.
 重合開始剤の含有量は、特に制限されないが、硬化性成分の総量に対し、好ましくは0.1~30質量%であり、より好ましくは0.3~10質量%であり、さらにより好ましくは0.4~3質量%である。当該含有量が0.1質量%以上、30質量%以下であると、適度な硬度を持つ赤外吸収層を形成できる。 The content of the polymerization initiator is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.3 to 10% by mass, and still more preferably based on the total amount of the curable component. 0.4-3 mass%. When the content is 0.1% by mass or more and 30% by mass or less, an infrared absorption layer having an appropriate hardness can be formed.
 (その他の添加剤)
 赤外吸収層用塗布液は、必要に応じて、(複合)タングステン酸化物以外の赤外遮蔽性金属化合物、および各種添加剤等の任意成分を含んでもよい。添加剤としては、水素イオン捕捉剤、金属石鹸、レベリング性、撥水性、滑り性等を付与するための界面活性剤、紫外線照射による硬化性を向上させるための、染料、顔料、増感剤、(複合)タングステン酸化物を安定化させるための分散剤等が挙げられる。
(Other additives)
The infrared absorbing layer coating liquid may contain an optional component such as an infrared shielding metal compound other than the (composite) tungsten oxide and various additives, if necessary. Additives include hydrogen ion scavengers, metal soaps, leveling properties, water repellency, surfactants for imparting slipperiness, etc., dyes, pigments, sensitizers for improving curability by UV irradiation, Examples include a dispersant for stabilizing the (composite) tungsten oxide.
 (複合)タングステン酸化物以外の赤外遮蔽性金属酸化物としては、特に制限されないが、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、インジウムドープ酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛、酸化錫、アンチモンドープ酸化錫(ATO)、インジウムドープ酸化錫(ITO)が挙げられる。また、これらの具体的な商品名としては、たとえば、酸化亜鉛系として、セルナックス(登録商標)シリーズ(日産化学工業株式会社製)、パゼットシリーズ(ハクスイテック株式会社製);酸化錫系として、ATO分散液(SR35M Advanced Nano Products社製)、ITO分散液(三菱マテリアル電子化成株式会社製)、KHシリーズ(住友金属鉱山株式会社製)等が挙げられる。 Infrared shielding metal oxides other than (composite) tungsten oxide are not particularly limited, but include zinc oxide, antimony-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), Examples thereof include aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide (ATO), and indium-doped tin oxide (ITO). Moreover, as these specific brand names, for example, as a zinc oxide system, the Celnax (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.), the passette series (manufactured by Hakusui Tech Co., Ltd.); ATO dispersion liquid (SR35M Advanced Nano Products, Inc.), ITO dispersion liquid (Mitsubishi Materials Electronics Kasei Co., Ltd.), KH series (Sumitomo Metal Mining Co., Ltd.), etc. are mentioned.
 水素イオン捕捉剤は、バインダーに存在するカルボン酸またはカルボキシラートの加水分解によって生じる水素イオンを捕捉することで、赤外吸収層中の水素イオンの上昇を抑制し、赤外遮蔽体のヘイズの経持的な上昇を抑制する。水素イオン捕捉剤の種類としては、特に制限されないが、好ましくは塩基性含窒素化合物である。塩基性含窒素化合物としては、特に制限されないが、2,4,6-トリメチルピリジン、ピリジン等の複素環化合物、アミン化合物、オキシム化合物、およびイミン化合物などが挙げられる。これらのうち、アミン化合物、オキシム化合物、およびイミン化合物が好ましい。すなわち、塩基性含窒素化合物が、アミン化合物、オキシム化合物、およびイミン化合物からなる群より選択される少なくとも一種の化合物であることが好ましい。なお、上記塩基性含窒素化合物は、単独で使用されても、2種以上を適宜組み合わせて使用してもよい。 The hydrogen ion scavenger captures hydrogen ions generated by hydrolysis of carboxylic acid or carboxylate present in the binder, thereby suppressing the rise of hydrogen ions in the infrared absorption layer and passing through the haze of the infrared shielding body. Suppresses persistent rise. The type of hydrogen ion scavenger is not particularly limited, but is preferably a basic nitrogen-containing compound. The basic nitrogen-containing compound is not particularly limited, and examples thereof include heterocyclic compounds such as 2,4,6-trimethylpyridine and pyridine, amine compounds, oxime compounds, and imine compounds. Of these, amine compounds, oxime compounds, and imine compounds are preferred. That is, the basic nitrogen-containing compound is preferably at least one compound selected from the group consisting of amine compounds, oxime compounds, and imine compounds. In addition, the said basic nitrogen-containing compound may be used individually or may be used in combination of 2 or more types as appropriate.
 また、金属石鹸は塗布液乾燥剤として機能する。金属石鹸の種類として、特に制限はなく、たとえばオクチル酸金属石鹸、および脂肪酸金属石鹸等が挙げられる。また、これらの具体的な商品名としては、たとえば東栄化工株式会社製のヘキソエートコバルト8%、ヘキソエート亜鉛15%、ヘキソエートジルコニウム12%、ヘキソエートマンガン6%、ヘキソエートコバルト8%等が挙げられる。金属石鹸は、赤外吸収層用塗布液の溶媒を除いた成分の総質量に対して0.1質量%以上10質量%以下含むことが好ましい。 Also, metal soap functions as a coating liquid desiccant. There is no restriction | limiting in particular as a kind of metal soap, For example, an octylic acid metal soap, a fatty-acid metal soap, etc. are mentioned. In addition, specific trade names of these include, for example, 8% hexoate cobalt, 15% hexoate zinc, 12% hexoate zirconium, 6% hexoate manganese, hexoate cobalt 8 manufactured by Toei Chemical Co., Ltd. % Etc. are mentioned. The metal soap is preferably contained in an amount of 0.1% by mass or more and 10% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the infrared absorption layer.
 また、前記の界面活性剤の種類として、特に制限はなく、フッ素系界面活性剤、アクリル系界面活性剤、シリコーン系界面活性剤等を用いることができる。特に塗布液のレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。フッ素系界面活性剤の例としては、例えば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツール(登録商標)シリーズ、株式会社ネオス製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用することができる。アクリル系界面活性剤としては、ポリフローシリーズ(共栄社化学株式会社製)、ニューコールシリーズ(日本乳化剤株式会社製)、BYK 354(ビックケミー・ジャパン株式会社製)が挙げられる。シリコーン系界面活性剤としては、BYK345、347、348、349(ビックケミー・ジャパン株式会社製)が挙げられる。界面活性剤は、単独でもまたは2種以上混合して用いてもよい。界面活性剤は、赤外吸収層用塗布液の溶媒を除いた成分の総質量に対して0.01質量%以上1質量%以下含むことが好ましい。 Further, the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution. Examples of the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation Commercially available products such as ZX series, Optool (registered trademark) series manufactured by Daikin Industries, Ltd., and Footgent (registered trademark) series (602A, 650A, etc.) manufactured by Neos Corporation can be used. Examples of the acrylic surfactant include Polyflow Series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal Series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK 354 (manufactured by Big Chemie Japan Co., Ltd.). Examples of the silicone surfactant include BYK345, 347, 348, and 349 (manufactured by Big Chemie Japan Co., Ltd.). Surfactants may be used alone or in admixture of two or more. The surfactant is preferably contained in an amount of 0.01% by mass or more and 1% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the infrared absorption layer.
 <中間膜>
 本発明において、赤外遮蔽フィルムを挟持する一対の中間膜は、赤外遮蔽フィルムとガラス板とを張り合わせる接着性能を有する膜であればいずれの膜も用いることができるが、熱可塑性樹脂を含有することが好ましい。一対の中間膜は、同じ種類であっても異なる種類であってもよい。熱可塑性樹脂の例としては、エチレン-ビニルアセテート共重合体(EVA)やポリビニルブチラール(PVB)が挙げられ、透明性向上の観点ならびに表面温度上昇および熱割れを抑制する観点から、PVBが好ましい。また、各中間膜において、可視光透過率を阻害しない範囲で、各種の赤外線を吸収する微粒子または紫外線吸収剤などを含ませたり、色素を混入して着色したりして、日射透過率を75%以上とすることがより好ましい。
<Intermediate film>
In the present invention, as the pair of intermediate films sandwiching the infrared shielding film, any film can be used as long as it has a bonding performance for bonding the infrared shielding film and the glass plate. It is preferable to contain. The pair of intermediate films may be the same type or different types. Examples of the thermoplastic resin include ethylene-vinyl acetate copolymer (EVA) and polyvinyl butyral (PVB), and PVB is preferable from the viewpoint of improving transparency and suppressing the rise in surface temperature and thermal cracking. Further, in each intermediate film, in the range that does not inhibit the visible light transmittance, various kinds of infrared absorbing fine particles or ultraviolet absorbers are included, or coloring is performed by mixing pigments, so that the solar transmittance is 75. % Or more is more preferable.
 赤外線を吸収する微粒子としては、例えば、Ag、Al、Tiなどの金属微粒子、金属窒化物、金属酸化物の微粒子、また、ITO、ATO、アルミニウム亜鉛複合酸化物(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウム亜鉛複合酸化物(IZO)などの導電性透明金属酸化物微粒子があり、これらの中から1種以上を選択して、中間膜に含有させ、断熱性能を向上させることができる。特に、ITO、ATO、AZO、GZO、IZOなどの導電性透明金属酸化物微粒子が好ましい。 Examples of the fine particles that absorb infrared rays include fine metal particles such as Ag, Al, and Ti, fine metal nitride, and fine metal oxide particles, ITO, ATO, aluminum zinc composite oxide (AZO), and gallium-doped zinc oxide ( There are conductive transparent metal oxide fine particles such as GZO) and indium zinc composite oxide (IZO), and one or more of them can be selected and contained in the intermediate film to improve the heat insulation performance. In particular, conductive transparent metal oxide fine particles such as ITO, ATO, AZO, GZO, and IZO are preferable.
 <ガラス板>
 本発明において、赤外遮蔽フィルムおよび一対の中間膜を挟持する一対のガラス板の種類は特に限定されるものではなく、用途に要求される光透過性能や断熱性能によって選択すればよく、無機ガラス板、有機ガラス板、有機無機ハイブリッドガラス板のいずれであってもよい。無機ガラス板としては特に限定されるものではなく、フロートガラス板、磨きガラス板、型ガラス板、網入りガラス板、線入りガラス板、熱線吸収ガラス板、着色ガラス板などの各種無機ガラス板などが挙げられる。有機ガラス板としては、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、などからなるガラス板などが挙げられる。これらの有機ガラス板は、上記樹脂からなるシート形状のものを複数積層してなる積層体であってもよい。有機無機ハイブリッドガラス板としては、エポキシ樹脂などの樹脂中にシリカを分散させたハイブリッドガラス板などが挙げられる。ガラス板の色についても、透明ガラス板に限らず車両等に用いられる汎用の緑色、茶色、青色等の様々な色のガラス板を用いることができる。ガラス板は同一の種類であってもよく、2種以上併用してもよい。
<Glass plate>
In the present invention, the kind of the pair of glass plates sandwiching the infrared shielding film and the pair of intermediate films is not particularly limited, and may be selected depending on the light transmission performance and heat insulation performance required for the application. Any of a board, an organic glass board, and an organic-inorganic hybrid glass board may be sufficient. The inorganic glass plate is not particularly limited, and various inorganic glass plates such as a float glass plate, a polished glass plate, a mold glass plate, a netted glass plate, a lined glass plate, a heat ray absorbing glass plate and a colored glass plate Is mentioned. Examples of the organic glass plate include glass plates made of polycarbonate resin, polystyrene resin, polymethyl methacrylate resin, and the like. These organic glass plates may be a laminate formed by laminating a plurality of sheet-shaped ones made of the resin. Examples of the organic / inorganic hybrid glass plate include a hybrid glass plate in which silica is dispersed in a resin such as an epoxy resin. The color of the glass plate is not limited to a transparent glass plate, and various color glass plates such as general-purpose green, brown, and blue used in vehicles can be used. The glass plate may be of the same type or in combination of two or more.
 ガラス板の厚さは、強度および可視光域の赤外光の透過性を考慮して、1~10mm程度であることが好ましい。曲面形状のガラス板は、ガラス板の曲率半径が0.5~2.0mであることが好ましい。ガラス板の曲率半径がこの範囲であれば、赤外遮蔽フィルムがガラスの曲面形状に追従することができる。 The thickness of the glass plate is preferably about 1 to 10 mm in consideration of the strength and the transmittance of infrared light in the visible light region. The curved glass plate preferably has a radius of curvature of 0.5 to 2.0 m. When the radius of curvature of the glass plate is within this range, the infrared shielding film can follow the curved shape of the glass.
 <赤外遮蔽フィルムの製造方法>
 本発明に係る赤外遮蔽フィルムの製造方法の一例として、基材の一方の面に赤外反射層用塗布液を直接塗布・乾燥して赤外反射層を作製し、基材の他方の面に赤外吸収層用塗布液を直接塗布・硬化して赤外吸収層を作製する方法を以下に示すが、特にこれに制限されない。
<Method for producing infrared shielding film>
As an example of the method for producing an infrared shielding film according to the present invention, an infrared reflective layer is produced by directly applying and drying an infrared reflective layer coating solution on one surface of a substrate, and then the other surface of the substrate. The method for producing the infrared absorbing layer by directly applying and curing the coating solution for the infrared absorbing layer is shown below, but is not particularly limited thereto.
 [赤外反射層の製造方法]
 赤外反射層は、湿式法、乾式法(スパッタリングや蒸着など)、およびそれらの併用のいずれで作製してもよいが、製造コストや大面積化の観点から、湿式法で作製することが好ましい。
[Infrared reflective layer manufacturing method]
The infrared reflective layer may be prepared by any of a wet method, a dry method (such as sputtering and vapor deposition), and a combination thereof, but is preferably prepared by a wet method from the viewpoint of manufacturing cost and area increase. .
 湿式法の場合、塗布方法は、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、または米国特許第2,761,419号明細書、米国特許第2,761,791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。また、複数の層を重層塗布する方式としては、逐次重層塗布でもよいし同時重層塗布でもよいが、生産性が向上することから、同時重層塗布であることが好ましい。 In the case of the wet method, the coating method is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, or US Pat. No. 2,761,419 And a slide hopper coating method and an extrusion coating method described in U.S. Pat. No. 2,761,791. In addition, as a method of applying a plurality of layers in layers, sequential multilayer coating or simultaneous multilayer coating may be used, but simultaneous multilayer coating is preferable because productivity is improved.
 以下、本発明の好ましい製造方法(塗布方法)であるスライドホッパー塗布法による同時重層塗布について詳細に説明する。 Hereinafter, the simultaneous multilayer coating by the slide hopper coating method, which is a preferable manufacturing method (coating method) of the present invention, will be described in detail.
 (溶媒)
 低屈折率層用塗布液および高屈折率層用塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。
(solvent)
The solvent for preparing the coating solution for the low refractive index layer and the coating solution for the high refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
 環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましい。 From the viewpoint of environment and ease of operation, the solvent for the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
 (塗布液の濃度)
 高屈折率層用塗布液中のバインダー樹脂の濃度は、1~10質量%であることが好ましい。また、高屈折率層用塗布液中の屈折率調整剤の濃度は、1~50質量%であることが好ましい。
(Concentration of coating solution)
The concentration of the binder resin in the coating solution for the high refractive index layer is preferably 1 to 10% by mass. The concentration of the refractive index adjusting agent in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
 低屈折率層用塗布液中のバインダー樹脂の濃度は、1~10質量%であることが好ましい。また、低屈折率層用塗布液中の屈折率調整剤の濃度は、1~50質量%であることが好ましい。 The concentration of the binder resin in the coating solution for the low refractive index layer is preferably 1 to 10% by mass. The concentration of the refractive index adjusting agent in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
 (塗布液の調製方法)
 高屈折率層用塗布液および低屈折率層用塗布液の調製方法は、特に制限されず、例えば、バインダー樹脂、屈折率調整剤、および必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、バインダー樹脂、屈折率調整剤、および必要に応じて用いられるその他の添加剤の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。
(Method for preparing coating solution)
The method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited. For example, a binder resin, a refractive index adjusting agent, and other additives that are added as necessary are added. And a method of stirring and mixing. At this time, the order of addition of the binder resin, the refractive index adjuster, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring, or while stirring. They may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 (塗布液の粘度)
 スライドホッパー塗布法により同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の40~45℃における粘度は、5~150mPa・sの範囲が好ましく、10~100mPa・sの範囲がより好ましい。また、スライド型カーテン塗布法により同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の40~45℃における粘度は、5~1200mPa・sの範囲が好ましく、25~500mPa・sの範囲がより好ましい。
(Viscosity of coating solution)
The viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably in the range of 5 to 150 mPa · s, and 10 to 100 mPa · s. The range of s is more preferable. Further, the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably in the range of 5 to 1200 mPa · s, 25 A range of ˜500 mPa · s is more preferable.
 また、高屈折率層用塗布液および低屈折率層用塗布液の15℃における粘度は、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、3,000~30,000mPa・sがさらに好ましく、10,000~30,000mPa・sが特に好ましい。 The viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, and more preferably 3,000 to 30,000 mPa · s. s is more preferable, and 10,000 to 30,000 mPa · s is particularly preferable.
 (塗布および乾燥方法)
 塗布および乾燥方法は、特に制限されないが、高屈折率層用塗布液および低屈折率層用塗布液を30℃以上に加温して、基材上に高屈折率層用塗布液および低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃に一旦冷却し(セット)、その後10℃以上で乾燥することが好ましい。好ましくは、湿球温度が5~50℃、膜面温度が10~50℃の範囲であり、たとえば40~85℃の温風を吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
(Coating and drying method)
The coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate. After the simultaneous application of the rate layer coating solution, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. Preferably, the wet bulb temperature is in the range of 5 to 50 ° C. and the film surface temperature is in the range of 10 to 50 ° C. For example, hot air of 40 to 85 ° C. is blown to dry. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記赤外反射層の項で示したような好ましい乾燥時の膜厚となるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the film thickness at the time of preferable drying shown by the term of the said infrared reflection layer.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め各層間および各層内の物質の流動性を低下させる工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of the substances in each layer and in each layer by means such as applying cold air to the coating film to lower the temperature. To do. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した後、冷風を当ててからセットが完了するまでの時間(セット時間)は、5分以内であることが好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が上記の範囲であれば、層中の成分の混合が十分となり、高屈折率層と低屈折率層との屈折率差が十分となる。 After applying, it is preferable that the time (setting time) from application of cold air to completion of setting is within 5 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. When the set time is in the above range, the components in the layer are sufficiently mixed, and the refractive index difference between the high refractive index layer and the low refractive index layer is sufficient.
 セット時間の調整は、バインダー樹脂の濃度や屈折率調整剤の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギーナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加したりすることにより調整することができる。 To adjust the set time, adjust the concentration of the binder resin and the refractive index adjuster, or add other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、10~120秒であることが好ましい。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 [赤外吸収層の製造方法]
 赤外吸収層は、上述した構成成分を含む赤外吸収層用塗布液を、基材などの表面に塗布することによって形成される。また、上記塗布液に含まれるバインダーが光や熱によって硬化する硬化性樹脂を含む場合には、紫外線、電子線などの活性エネルギー線照射、加熱、触媒などにより、好ましくは紫外線照射により塗膜を硬化させることによって、赤外吸収層が形成される。以下、紫外線照射によって塗膜を硬化させる場合を例に挙げて、赤外吸収層の製造方法を説明する。
[Production method of infrared absorption layer]
The infrared absorbing layer is formed by applying an infrared absorbing layer coating liquid containing the above-described constituent components to the surface of a substrate or the like. In addition, when the binder contained in the coating solution contains a curable resin that is cured by light or heat, the coating film is formed by irradiation with active energy rays such as ultraviolet rays and electron beams, heating, catalyst, etc., preferably by ultraviolet rays. By curing, an infrared absorption layer is formed. Hereinafter, a method for producing an infrared absorption layer will be described by taking as an example a case where a coating film is cured by ultraviolet irradiation.
 (溶媒)
 赤外吸収層用塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。
(solvent)
The solvent for preparing the coating solution for the infrared absorbing layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 前記有機溶媒としては、例えば、トルエン、キシレンなどの炭化水素類、メタノール、エタノール、2-プロパノール、1-ブタノール、シクロヘキサノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類、グリコールエーテル類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。 Examples of the organic solvent include hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, 2-propanol, 1-butanol and cyclohexanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and methyl acetate. , Esters such as ethyl acetate and butyl acetate, and glycol ethers. These organic solvents may be used alone or in combination of two or more.
 赤外吸収層用塗布液における溶媒の含有量は、特に制限されないが、一般的には、塗布液の総質量に対して10~80質量%程度であり、より好ましくは15~60質量%であり、さらに好ましくは20~40質量%である。 The content of the solvent in the coating solution for the infrared absorbing layer is not particularly limited, but is generally about 10 to 80% by mass, more preferably 15 to 60% by mass with respect to the total mass of the coating solution. More preferably, it is 20 to 40% by mass.
 (塗布液の調製方法)
 赤外吸収層用塗布液は、上記の各成分を混合することによって調整される。添加順序、添加方法は特に限定されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。
(Method for preparing coating solution)
The coating liquid for infrared absorption layers is adjusted by mixing each said component. The order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
 赤外吸収層用塗布液を調製する際、(複合)タングステン酸化物固形分とそれ以外の成分の固形分との配合比(質量比)を調節することによって、硬化後の赤外吸収層中における(複合)タングステン酸化物の含有割合(質量%)を容易に制御することができる。たとえば、硬化後の赤外吸収層中における(複合)タングステン酸化物含量を15~30質量%の範囲に制御するためには、(複合)タングステン酸化物の固形分とそれ以外の固形分との質量比率が1:6.0~1:2.6となるよう各成分を配合することが好ましい。 In preparing the infrared absorbing layer coating solution, by adjusting the compounding ratio (mass ratio) of the (composite) tungsten oxide solids and the solids of the other components, in the infrared absorbing layer after curing The content ratio (mass%) of the (composite) tungsten oxide in can be easily controlled. For example, in order to control the (composite) tungsten oxide content in the infrared absorption layer after curing to a range of 15 to 30% by mass, the solid content of the (composite) tungsten oxide and the other solid content Each component is preferably blended so that the mass ratio is 1: 6.0 to 1: 2.6.
 (塗布および硬化方法)
 赤外吸収層用塗布液を塗布する方法については、特に制限はなく、公知の手法、例えば、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティングなどの手法が採用されうる。また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布することが可能である。
(Coating and curing method)
There is no restriction | limiting in particular about the method of apply | coating the coating liquid for infrared rays absorption layers, Well-known methods, for example, methods, such as coating by a wire bar, spin coating, dip coating, can be employ | adopted. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
 塗布後の乾燥条件としては、特に制限されない。例えば、乾燥温度は、70~110℃であることが好ましく、80~90℃であることがより好ましい。また、乾燥時間は、30秒~5分であることが好ましく、1~2分であることがより好ましい。 The drying conditions after application are not particularly limited. For example, the drying temperature is preferably 70 to 110 ° C., more preferably 80 to 90 ° C. The drying time is preferably 30 seconds to 5 minutes, more preferably 1 to 2 minutes.
 その後、基材上に赤外吸収層用塗布液を塗布して得られた塗膜に、当該塗膜の基材から遠い面側から紫外線を照射し、塗膜を硬化させる。この際の紫外線の照射波長、照度、光量などの条件は、使用するバインダー樹脂モノマーや重合開始剤の種類によって異なるため、当業者によって適宜条件が調整されうる。例えば、紫外線ランプを用いる場合、その照度は、好ましくは50~1500mW/cmであり、より好ましくは50~1000mW/cmであり、さらにより好ましくは100~500mW/cmである。また、照射エネルギー量は、好ましくは50~1500mJ/cmであり、より好ましくは100~1000mJ/cmであり、さらにより好ましくは200~500mJ/cmである。 Thereafter, the coating film obtained by applying the coating solution for the infrared absorption layer on the substrate is irradiated with ultraviolet rays from the side of the coating film far from the substrate to cure the coating film. In this case, the conditions such as the irradiation wavelength of ultraviolet rays, the illuminance, and the amount of light vary depending on the type of the binder resin monomer and the polymerization initiator to be used. For example, when an ultraviolet lamp is used, the illuminance is preferably 50 to 1500 mW / cm 2 , more preferably 50 to 1000 mW / cm 2 , and even more preferably 100 to 500 mW / cm 2 . Further, the amount of irradiation energy is preferably 50 ~ 1500mJ / cm 2, more preferably 100 ~ 1000mJ / cm 2, still more preferably 200 ~ 500mJ / cm 2.
 <赤外遮蔽体の製造方法>
 本発明に係る赤外遮蔽体の製造方法は、特に制限はなく、従来の合わせガラスの製造方法を用いることができる。例えば、一対のガラス板の間に、中間膜、赤外遮蔽フィルム、中間膜の順にこれらを挟み、重ねたものを押圧ロールに通して扱くか、好ましくは、ゴムバッグに入れて減圧吸引し、ガラス板と中間膜との間に残留する空気を脱気し、必要により70~110℃で予備接着して積層体とし、次いでこの脱気された積層体をオートクレーブに入れるかプレスを行い、120~150℃で、0.5~1.5MPaの圧力で本接着を行うことにより製造することができる。
<Infrared shield manufacturing method>
There is no restriction | limiting in particular in the manufacturing method of the infrared shielding body which concerns on this invention, The manufacturing method of the conventional laminated glass can be used. For example, an intermediate film, an infrared shielding film, and an intermediate film are sandwiched between a pair of glass plates in this order, and the stacked ones are passed through a pressing roll, or preferably placed in a rubber bag and sucked under reduced pressure, and glass The air remaining between the plate and the intermediate film is deaerated, and if necessary, pre-adhered at 70 to 110 ° C. to form a laminated body. Then, the deaerated laminated body is put in an autoclave or pressed, and 120 to It can be produced by performing the main bonding at 150 ° C. and a pressure of 0.5 to 1.5 MPa.
 <用途>
 本形態に係る赤外遮蔽体は、幅広い分野に応用することができる。例えば、建物や車両に設置する合わせガラスなどとして、太陽光(赤外線)の透過による屋内の温度上昇を低減する目的で用いられる。
<Application>
The infrared shielding body according to this embodiment can be applied to a wide range of fields. For example, it is used for the purpose of reducing indoor temperature rise due to the transmission of sunlight (infrared rays) as laminated glass installed in buildings and vehicles.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 〔実施例1〕
 <赤外遮蔽フィルムの作製>
 [赤外反射層の作製]
 (低屈折率層用塗布液の調製)
 10質量%の酸性コロイダルシリカ水溶液(スノーテックスOXS、一次粒径:5.4nm、日産化学工業株式会社製)31質量部を40℃に加熱し、3質量%のホウ酸水溶液を3質量部加え、さらに6質量%のポリビニルアルコール水溶液(PVA-224、重合度:2400、平均ケン化度:87mol%、株式会社クラレ製)39質量部と、界面活性剤の5質量%水溶液(ソフタゾリン(登録商標)LSB-R、川研ファインケミカル株式会社製)1質量部とを40℃でこの順に添加し、低屈折率層用塗布液を調製した。
[Example 1]
<Preparation of infrared shielding film>
[Preparation of infrared reflection layer]
(Preparation of coating solution for low refractive index layer)
A 10% by mass acidic colloidal silica aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and 3% by mass of a 3% by mass boric acid aqueous solution is added. Further, 39 parts by mass of a 6% by mass aqueous polyvinyl alcohol solution (PVA-224, polymerization degree: 2400, average saponification degree: 87 mol%, manufactured by Kuraray Co., Ltd.), and 5% by mass aqueous solution of surfactant (SOFTAZOLINE (registered trademark)) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) 1 part by mass was added in this order at 40 ° C. to prepare a coating solution for a low refractive index layer.
 (高屈折率層用塗布液の調製)
 15.0質量%の酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
(Preparation of coating solution for high refractive index layer)
After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass of titanium oxide sol (SRD-W, volume average particle diameter: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), 90 Heated to ° C. Next, 0.5 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 0.5 mass%) was gradually added. Then, heat treatment was performed at 175 ° C. for 18 hours in an autoclave, and after cooling, the resultant was concentrated with an ultrafiltration membrane, whereby a titanium dioxide sol (hereinafter referred to as “SiO 2”) having a solid content concentration of 6 mass% adhered to the surface. Silica-attached titanium dioxide sol) (volume average particle size: 9 nm) was obtained.
 このようにして得られた20質量%のシリカ付着二酸化チタンゾル113質量部に対して、クエン酸水溶液(1.92質量%)を48質量部加え、8質量%のポリビニルアルコール水溶液(株式会社クラレ製、PVA-117、重合度1700、平均ケン化度:97.5~99mol%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル株式会社製)0.4質量部を加えて、高屈折率層用塗布液を調製した。 48 parts by mass of an aqueous citric acid solution (1.92% by mass) is added to 113 parts by mass of the 20 mass% silica-attached titanium dioxide sol thus obtained, and an 8% by mass polyvinyl alcohol aqueous solution (manufactured by Kuraray Co., Ltd.). , PVA-117, polymerization degree 1700, average degree of saponification: 97.5 to 99 mol%) was added and stirred, and finally a 5% by weight aqueous solution of surfactant (SOFTAZOLINE LSB-R, Kawaken Fine Chemical Co., Ltd.) 0.4 parts by mass (made by company) was added to prepare a coating solution for a high refractive index layer.
 (赤外反射層の作製)
 重層塗布可能なスライドホッパー塗布装置(スライドコーター)を用い、上記の低屈折率層用塗布液および高屈折率層用塗布液を45℃に保温しながら、45℃に加温した膜厚50μmのポリエチレンテレフタレートフィルム(三菱樹脂株式会社製、ダイアホイル(登録商標)T900E50)上に、高屈折率層および低屈折率層の乾燥時の膜厚がそれぞれ150nmおよび200nmになるように、低屈折率層11層および高屈折率層10層を交互に計21層の同時重層塗布を行った。
(Preparation of infrared reflection layer)
Using a slide hopper coating apparatus (slide coater) capable of multi-layer coating, the above-mentioned coating solution for low refractive index layer and coating solution for high refractive index layer are kept at 45 ° C. and heated to 45 ° C. A low refractive index layer on a polyethylene terephthalate film (Diafoil (registered trademark) T900E50, manufactured by Mitsubishi Plastics, Inc.) so that the high refractive index layer and the low refractive index layer have a dry film thickness of 150 nm and 200 nm, respectively. Eleven layers and 10 high refractive index layers were alternately applied in a total of 21 layers simultaneously.
 塗布直後、5℃の冷風を吹き付けてセットさせた。このとき、表面を指でふれても指に何もつかなくなるまでの時間(セット時間)は5分であった。 Immediately after application, 5 ° C. cold air was blown to set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes.
 セット完了後、80℃の温風を吹き付けて乾燥させて、21層からなる赤外反射層(21層合計の膜厚:3.65μm)を有する重層塗布品を作製した。 After completion of the setting, hot air of 80 ° C. was blown and dried to prepare a multilayer coating product having an infrared reflective layer composed of 21 layers (total thickness of 21 layers: 3.65 μm).
 [赤外吸収層の作製]
 (赤外吸収層用塗布液の調製)
 アロニックスM-305(ペンタエリスリトールトリアクリレート、東亞合成株式会社製)200質量部、(複合)タングステン酸化物としてセシウムドープ酸化タングステン(CWO)分散液(YMF-02A、全固形分濃度28.5質量%(セシウムドープ酸化タングステン18.5質量%、分散剤10質量%)、組成:Cs0.33WO、平均一次粒子径:50nm、住友金属鉱山株式会社製)315質量部、溶媒としてメチルエチルケトン150質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)3質量部を添加し、赤外吸収層用塗布液を調製した。
[Preparation of infrared absorption layer]
(Preparation of coating solution for infrared absorption layer)
200 parts by mass of Aronix M-305 (pentaerythritol triacrylate, manufactured by Toagosei Co., Ltd.), cesium-doped tungsten oxide (CWO) dispersion (YMF-02A, total solid concentration of 28.5% by mass) as (composite) tungsten oxide (Cesium-doped tungsten oxide 18.5 mass%, dispersant 10 mass%), composition: Cs 0.33 WO 3 , average primary particle size: 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 mass parts, methyl ethyl ketone 150 mass as solvent Part was added. Furthermore, 3 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) was added as a polymerization initiator to prepare a coating solution for an infrared absorption layer.
 (赤外吸収層の作製)
 赤外反射層を塗布した基材の反対側の面上に、赤外吸収層用塗布液を、グラビアコーターにて乾燥膜厚が5μmとなる条件で塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.5J/cmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させて赤外吸収層を形成し、赤外遮蔽フィルムを作製した。
(Preparation of infrared absorption layer)
On the opposite surface of the substrate on which the infrared reflective layer was applied, the infrared absorbing layer coating solution was applied with a gravure coater under the condition that the dry film thickness was 5 μm, and dried at 90 ° C. for 1 minute. . Next, using a UV lamp, the coating film is cured by irradiating with UV light from the side of the coating film that is far from the substrate under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2. An absorption layer was formed to produce an infrared shielding film.
 (赤外吸収層中におけるCWOの質量割合の算出)
 下記a.~c.に示す方法により、上記で得られた赤外吸収層中においてCWOが占める質量割合を算出した。
(Calculation of mass ratio of CWO in infrared absorption layer)
A. To c. In the infrared absorption layer obtained above, the mass ratio occupied by CWO was calculated by the method shown in FIG.
 《a.赤外吸収層の質量測定》
 赤外吸収層塗布前および塗布後のフィルムを10cm×10cmにカットし、質量測定を行い、両フィルムの質量差から赤外吸収層の質量を算出した。
<< a. Infrared absorption layer mass measurement >>
The film before and after application of the infrared absorption layer was cut into 10 cm × 10 cm, mass measurement was performed, and the mass of the infrared absorption layer was calculated from the mass difference between the two films.
 《b.赤外吸収層中のCWOの質量測定》
 赤外吸収層塗布後のフィルムを800℃で3時間加熱後、残分を水酸化ナトリウム水溶液に溶解し、ICP-AES(株式会社日立ハイテクサイエンス製、SPS3520UV)を用いてタングステンの質量を測定した。得られたタングステンの質量×1.5をCWOの質量とした。なお、ここで1.5倍としたのは、タングステンに対するCWOの質量比による。他のセシウム含有(複合)タングステン酸化物やセシウム以外の元素を含有する(複合)タングステン酸化物に対しても、同様にタングステンに対する質量比から(複合)タングステン酸化物の質量を算出することができる。
<< b. Mass measurement of CWO in infrared absorbing layer >>
The film after application of the infrared absorption layer was heated at 800 ° C. for 3 hours, and the residue was dissolved in an aqueous sodium hydroxide solution, and the mass of tungsten was measured using ICP-AES (manufactured by Hitachi High-Tech Science Co., Ltd., SPS3520UV). . The mass of obtained tungsten × 1.5 was defined as the mass of CWO. Here, 1.5 times is based on the mass ratio of CWO to tungsten. For other cesium-containing (composite) tungsten oxides and (composite) tungsten oxides containing elements other than cesium, the mass of the (composite) tungsten oxide can be calculated from the mass ratio to tungsten. .
 《c.赤外吸収層中におけるCWOの質量割合の算出》
 上記a.およびb.から算出した結果、上記作製した赤外吸収層中におけるCWOの含有割合は23.1質量%であった。
<< c. Calculation of mass ratio of CWO in infrared absorbing layer >>
A. And b. As a result of calculation from the above, the content ratio of CWO in the infrared absorption layer produced was 23.1% by mass.
 <赤外遮蔽体の作製>
 次に、室内側ガラスとなる厚さ3mmのグリーンガラス(可視光透過率Tv:81%、日射透過率Te:63%)、室内側の中間膜となる厚さ380μmのポリビニルブチラールからなる膜、上記で作製した赤外遮蔽フィルム、室外側の中間膜となる厚さ380μmのポリビニルブチラールからなる膜、室外側ガラスとなる厚さ3mmのクリアガラス(可視光透過率Tv:91%、日射透過率Te:86%)をこの順に積層し、ガラスのエッジ部からはみ出した余剰部分を除去した後、30分間加熱し、温度140℃、圧力1MPaで加圧脱気して合わせ処理を行い、赤外遮蔽体1を作製した。
<Production of infrared shielding body>
Next, a 3 mm thick green glass (visible light transmittance Tv: 81%, solar radiation transmittance Te: 63%) serving as an indoor side glass, a film made of polyvinyl butyral having a thickness of 380 μm serving as an indoor intermediate film, The infrared shielding film produced above, a film made of polyvinyl butyral having a thickness of 380 μm serving as an intermediate film on the outdoor side, a clear glass having a thickness of 3 mm serving as the outdoor glass (visible light transmittance Tv: 91%, solar radiation transmittance) (Te: 86%) are laminated in this order, and after removing the excess portion protruding from the edge portion of the glass, heating is performed for 30 minutes, pressure deaeration is performed at a temperature of 140 ° C. and a pressure of 1 MPa, and a combination treatment is performed. A shield 1 was produced.
 〔実施例2〕
 赤外吸収層用塗布液について、アロニックスM-305を180質量部、CWO分散液を222質量部に変更した以外は、実施例1と同様の方法により、赤外遮蔽体2を作製した。なお、得られた赤外吸収層中におけるCWOの含有割合は16.7質量%であった。
[Example 2]
An infrared shielding body 2 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 180 parts by mass of Aronix M-305 and 222 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 16.7 mass%.
 〔実施例3〕
 赤外吸収層用塗布液について、アロニックスM-305を160質量部、CWO分散液を380質量部に変更した以外は、実施例1と同様の方法により、赤外遮蔽体3を作製した。なお、得られた赤外吸収層中におけるCWOの含有割合は28.6質量%であった。
Example 3
An infrared shielding body 3 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 160 parts by mass of Aronix M-305 and 380 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 28.6 mass%.
 〔比較例1〕
 赤外吸収層用塗布液について、アロニックスM-305を190質量部、CWO分散液を122質量部に変更した以外は、実施例1と同様の方法により、赤外遮蔽体4を作製した。なお、得られた赤外吸収層中におけるCWOの含有割合は9.09質量%であった。
[Comparative Example 1]
An infrared shielding body 4 was produced in the same manner as in Example 1 except that the coating liquid for the infrared absorbing layer was changed to 190 parts by mass of Aronix M-305 and 122 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 9.09 mass%.
 〔比較例2〕
 赤外吸収層用塗布液について、アロニックスM-305を160質量部、CWO分散液を444質量部に変更した以外は、実施例1と同様の方法により、赤外遮蔽体5を作製した。なお、得られた赤外吸収層中におけるCWOの含有割合は33.3質量%であった。
[Comparative Example 2]
An infrared shielding body 5 was produced in the same manner as in Example 1 except that the coating liquid for infrared absorbing layer was changed to 160 parts by mass of Aronix M-305 and 444 parts by mass of the CWO dispersion. In addition, the content rate of CWO in the obtained infrared absorption layer was 33.3 mass%.
 〔実施例4〕
 中間膜をエチレンビニルアルコール(EVA)に変更した以外は、実施例1と同様の方法により、赤外遮蔽体6を作製した。
Example 4
An infrared shielding body 6 was produced in the same manner as in Example 1 except that the intermediate film was changed to ethylene vinyl alcohol (EVA).
 〔比較例3〕
 赤外吸収層用塗布液について、CWO微粒子に代えて、ITO微粒子(超微粒子スズドープ酸化インジウム、株式会社巴製作所製)に置き換えた以外は、実施例1と同様の方法で赤外遮蔽体7を作製した。
[Comparative Example 3]
The infrared shielding layer 7 was coated in the same manner as in Example 1 except that the coating liquid for infrared absorbing layer was replaced with ITO fine particles (ultrafine particle tin-doped indium oxide, manufactured by Sakai Seisakusho Co., Ltd.) instead of CWO fine particles. Produced.
 <赤外遮蔽体の性能評価>
 上記で作製した赤外遮蔽体1~7について、以下の性能評価を行った。
<Performance evaluation of infrared shield>
The following performance evaluation was performed on the infrared shielding bodies 1 to 7 manufactured as described above.
 [ヘイズの測定]
 JIS K7136:2000に準拠し、ヘイズメーター(日本電色工業株式会社製、NDH7000)を用いて、上記で作製した赤外遮蔽体のヘイズを測定した。
[Measurement of haze]
Based on JIS K7136: 2000, the haze of the infrared shielding body produced above was measured using a haze meter (Nippon Denshoku Industries Co., Ltd., NDH7000).
 [可視光透過率の測定]
 JIS S3107:2013に準拠し、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて、赤外遮蔽体の380~780nmの領域における透過率を測定し、その平均値を求め、これを可視光透過率(%)とした。
[Measurement of visible light transmittance]
In accordance with JIS S3107: 2013, the transmittance in the region of 380 to 780 nm of the infrared shielding body was measured using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4000 type), and the average was measured. The value was determined and this was taken as the visible light transmittance (%).
 [日射熱取得率の測定]
 JIS S3107:2013に準拠し、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて、赤外遮蔽体の300~2500nmの領域における5nmおきの透過率・反射率を測定した。次に、JIS R3106:1998に記載の方法に準拠し、該測定値と日射反射重価係数との演算処理を行い、日射熱取得率(TTS)を算出した。この値が低いほど、赤外遮蔽性が高いことを表す。
[Measurement of solar heat gain rate]
In accordance with JIS S3107: 2013, using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4000 type), transmittance / reflectance every 5 nm in the region of 300 to 2500 nm of the infrared shield. Was measured. Next, in accordance with the method described in JIS R3106: 1998, calculation processing of the measured value and the solar reflection weight coefficient was performed to calculate the solar heat gain rate (TTS). It represents that infrared shielding property is so high that this value is low.
 [ガラス表面温度の測定]
 15cm角の赤外遮蔽体を、赤外反射層が付与されている面を上にして、人工太陽照明灯装置(セリック株式会社製、XC-100AFSS)にセットし、30cmの高さから3時間照射後、熱電対を用いて赤外遮蔽体の赤外反射層が付与されていない面のガラス表面温度を測定した。
[Measurement of glass surface temperature]
A 15 cm square infrared shield is set on an artificial solar lighting device (XC-100AFSS, manufactured by Celic Co., Ltd.) with the surface provided with an infrared reflective layer facing upward, and is 3 hours from a height of 30 cm. After the irradiation, the glass surface temperature of the surface of the infrared shield not provided with the infrared reflection layer was measured using a thermocouple.
 [耐久性試験(熱水試験)]
 JIS R3212:1998に準拠し、30cm×30cmの赤外遮蔽体を100℃沸騰水に2時間浸漬後、目視およびルーペでクラックの有無を確認した。なお、下記のパーセンテージは、赤外遮蔽体全体の面積を100%としたときのクラックが認められた面積の割合を表す。
[Durability test (hot water test)]
In accordance with JIS R3212: 1998, a 30 cm × 30 cm infrared shielding body was immersed in boiling water at 100 ° C. for 2 hours, and the presence or absence of cracks was confirmed visually and with a loupe. In addition, the following percentage represents the ratio of the area by which the crack was recognized when the area of the whole infrared shielding body is 100%.
 ◎:クラックなし
 ○:ルーペで確認できるレベルが10%以下
 △:目視で確認できるレベルが10%以下
 ×:目視で確認できるレベルが10%以上。
◎: No crack ○: Level that can be confirmed with a loupe is 10% or less Δ: Level that can be visually confirmed is 10% or less ×: Level that can be visually confirmed is 10% or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、本発明の赤外遮蔽体は、透明性が高く、遮熱性(日射熱取得率およびガラス表面温度)が良好であり、かつ耐久性(高温下でのクラック耐性)にも優れることを確認できた。 From the results of Table 1, the infrared shielding body of the present invention has high transparency, good heat shielding properties (solar heat acquisition rate and glass surface temperature), and durability (crack resistance at high temperatures). It was confirmed that it was excellent.
 本出願は、2015年6月12日に出願された日本特許出願番号2015-119659号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-119659 filed on June 12, 2015, the disclosure of which is incorporated by reference as a whole.

Claims (5)

  1.  赤外遮蔽フィルムと、
     前記赤外遮蔽フィルムを挟持する一対の中間膜と、
     前記赤外遮蔽フィルムおよび前記一対の中間膜を挟持する一対のガラス板と、
    を有する赤外遮蔽体であって、
     前記赤外遮蔽フィルムが、
     基材と、
     低屈折率層と高屈折率層とが交互に積層したユニットを少なくとも一つ以上有する赤外反射層と、
     タングステン酸化物および複合タングステン酸化物のうち少なくとも一種ならびにバインダーを含有する赤外吸収層と、を有し、
     前記赤外反射層と前記赤外吸収層との間に異なる層が少なくとも1つ存在し、
     前記赤外吸収層中において、前記タングステン酸化物および複合タングステン酸化物のうち少なくとも一種の占める質量割合が15質量%以上30質量%以下である、赤外遮蔽体。
    An infrared shielding film;
    A pair of intermediate films sandwiching the infrared shielding film;
    A pair of glass plates sandwiching the infrared shielding film and the pair of intermediate films;
    An infrared shield having
    The infrared shielding film is
    A substrate;
    An infrared reflective layer having at least one unit in which low refractive index layers and high refractive index layers are alternately laminated; and
    An infrared absorption layer containing at least one of tungsten oxide and composite tungsten oxide and a binder,
    There is at least one different layer between the infrared reflective layer and the infrared absorbing layer;
    The infrared shielding body whose mass ratio which at least 1 type occupies among the said tungsten oxide and composite tungsten oxide in the said infrared absorption layer is 15 mass% or more and 30 mass% or less.
  2.  前記異なる層が前記基材である、請求項1に記載の赤外遮蔽体。 The infrared shielding body according to claim 1, wherein the different layer is the base material.
  3.  前記赤外反射層がバインダー樹脂を含有する、請求項1または2に記載の赤外遮蔽体。 The infrared shielding body according to claim 1 or 2, wherein the infrared reflection layer contains a binder resin.
  4.  前記中間膜がポリビニルブチラールを含む、請求項1~3のいずれかに記載の赤外遮蔽体。 The infrared shielding body according to any one of claims 1 to 3, wherein the intermediate film contains polyvinyl butyral.
  5.  前記低屈折率層および高屈折率層が金属酸化物を含有する、請求項1~4のいずれかに記載の赤外遮蔽体。 The infrared shielding body according to any one of claims 1 to 4, wherein the low refractive index layer and the high refractive index layer contain a metal oxide.
PCT/JP2016/066483 2015-06-12 2016-06-02 Infrared shielding body WO2016199682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-119659 2015-06-12
JP2015119659A JP2018124300A (en) 2015-06-12 2015-06-12 Infrared shielding body

Publications (1)

Publication Number Publication Date
WO2016199682A1 true WO2016199682A1 (en) 2016-12-15

Family

ID=57504084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066483 WO2016199682A1 (en) 2015-06-12 2016-06-02 Infrared shielding body

Country Status (2)

Country Link
JP (1) JP2018124300A (en)
WO (1) WO2016199682A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395924A4 (en) * 2015-12-18 2019-08-07 Sumitomo Metal Mining Co., Ltd. Near infrared shielding ultrafine particle dispersion, interlayer for solar shading, infrared shielding laminated structure, and method for producing near infrared shielding ultrafine particle dispersion
JP2020132452A (en) * 2019-02-15 2020-08-31 日本化薬株式会社 Heat ray-shielding structure, heat ray-shielding sheet, heat ray-shielding interlayer, and laminated glass
JP2020132454A (en) * 2019-02-15 2020-08-31 日本化薬株式会社 Heat ray-shielding structure, heat ray-shielding sheet, heat ray-shielding interlayer, and laminated glass
CN113195410A (en) * 2018-12-18 2021-07-30 住友金属矿山株式会社 Method for producing organic-inorganic hybrid infrared absorbing particles, and organic-inorganic hybrid infrared absorbing particles
EP4105284A4 (en) * 2020-02-12 2023-11-08 Kyodo Printing Co., Ltd. Infrared-absorbing uv ink and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122920B2 (en) * 2018-09-21 2022-08-22 共同印刷株式会社 Infrared absorbing UV ink and its manufacturing method
WO2020203989A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Laminated glass and vehicle system
WO2020203991A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Laminated glass and vehicle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026492A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
JP2012118295A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Polymerizable composition, as well as photosensitive layer, permanent pattern, wafer level lens, solid state imaging element and patterning method using the same
WO2014010532A1 (en) * 2012-07-10 2014-01-16 コニカミノルタ株式会社 Infrared shielding film having dielectric multilayer film structure
JP2014199925A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Solid-state imaging element, method of manufacturing the same, curable composition for forming infrared light cut filter, and camera module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026492A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
JP2012118295A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Polymerizable composition, as well as photosensitive layer, permanent pattern, wafer level lens, solid state imaging element and patterning method using the same
WO2014010532A1 (en) * 2012-07-10 2014-01-16 コニカミノルタ株式会社 Infrared shielding film having dielectric multilayer film structure
JP2014199925A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Solid-state imaging element, method of manufacturing the same, curable composition for forming infrared light cut filter, and camera module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395924A4 (en) * 2015-12-18 2019-08-07 Sumitomo Metal Mining Co., Ltd. Near infrared shielding ultrafine particle dispersion, interlayer for solar shading, infrared shielding laminated structure, and method for producing near infrared shielding ultrafine particle dispersion
US11091655B2 (en) 2015-12-18 2021-08-17 Sumitomo Metal Mining Co., Ltd. Infrared-shielding ultrafine particle dispersion body, interlayer for shielding solar radiation, infrared-shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion body
CN113195410A (en) * 2018-12-18 2021-07-30 住友金属矿山株式会社 Method for producing organic-inorganic hybrid infrared absorbing particles, and organic-inorganic hybrid infrared absorbing particles
EP3901098A4 (en) * 2018-12-18 2022-03-16 Sumitomo Metal Mining Co., Ltd. Organic-inorganic hybrid infrared beam absorbing particle production method and organic-inorganic hybrid infrared beam absorbing particle
CN113195410B (en) * 2018-12-18 2023-11-24 住友金属矿山株式会社 Method for producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles
US11912878B2 (en) 2018-12-18 2024-02-27 Sumitomo Metal Mining Co., Ltd. Method of producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles
JP2020132452A (en) * 2019-02-15 2020-08-31 日本化薬株式会社 Heat ray-shielding structure, heat ray-shielding sheet, heat ray-shielding interlayer, and laminated glass
JP2020132454A (en) * 2019-02-15 2020-08-31 日本化薬株式会社 Heat ray-shielding structure, heat ray-shielding sheet, heat ray-shielding interlayer, and laminated glass
JP7188859B2 (en) 2019-02-15 2022-12-13 日本化薬株式会社 Heat ray shielding structure, heat ray shielding sheet, heat ray shielding interlayer film, and laminated glass
EP4105284A4 (en) * 2020-02-12 2023-11-08 Kyodo Printing Co., Ltd. Infrared-absorbing uv ink and method for producing same

Also Published As

Publication number Publication date
JP2018124300A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2016199682A1 (en) Infrared shielding body
JP6044638B2 (en) Infrared shield
JP6083386B2 (en) Optical laminated film, infrared shielding film and infrared shielding body
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2013111735A1 (en) Optical film
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
JP6834984B2 (en) Optical reflective film
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2014171494A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
WO2016133022A1 (en) Heat shielding film
WO2013183544A1 (en) Infrared-shielding film and infrared-shielding body
JP6743806B2 (en) Optical film and method of manufacturing optical film
JP2016155256A (en) Heat shielding film, and method for producing the same
JP2016109872A (en) Light shield film
JP6759697B2 (en) Roll-shaped optical reflective film
WO2017077810A1 (en) Light reflecting film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP6326780B2 (en) Window pasting film
JP2017096990A (en) Method for producing light reflection film
JP6683249B2 (en) Optical reflective film
JP2017109892A (en) Laminated glass
JP2015212736A (en) Laminated reflective film, manufacturing method therefor, and optical reflector having the same
JP2016083903A (en) Laminated film
WO2016136503A1 (en) Heat barrier film and heat barrier body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16807389

Country of ref document: EP

Kind code of ref document: A1