WO2016088852A1 - Heat-shielding film, production method therefor, and heat shield using said film - Google Patents

Heat-shielding film, production method therefor, and heat shield using said film Download PDF

Info

Publication number
WO2016088852A1
WO2016088852A1 PCT/JP2015/084055 JP2015084055W WO2016088852A1 WO 2016088852 A1 WO2016088852 A1 WO 2016088852A1 JP 2015084055 W JP2015084055 W JP 2015084055W WO 2016088852 A1 WO2016088852 A1 WO 2016088852A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
film
refractive index
hard coat
coat layer
Prior art date
Application number
PCT/JP2015/084055
Other languages
French (fr)
Japanese (ja)
Inventor
明土 川浪
小沼 太朗
聡史 久光
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016088852A1 publication Critical patent/WO2016088852A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a heat shield film, a method for producing the same, and a heat shield using the same. More specifically, the present invention relates to a thermal barrier film having a thermal barrier hard coat layer, the peeling of the hard coat layer at the time of thermoforming at the time of bonding to a substrate such as curved glass, and poor appearance. The present invention relates to a technology for suppressing generation. Furthermore, the present invention relates to a heat shield including such a heat shield film.
  • thermal barrier film that is attached to the window glass of buildings and vehicles and shields the transmission of solar heat rays (infrared rays).
  • the heat shielding film Since the heat shielding film is used by being attached to a window glass of a building or a vehicle, in addition to transparency and heat shielding properties, scratch resistance is required so as not to be damaged at the time of bonding or cleaning. For this reason, the heat-shielding film generally has a hard coat layer for surface protection formed on the film surface.
  • a heat shielding film for example, a hard coat layer forming material containing a heat ray shielding metal oxide which is an infrared absorber and a specific active energy ray curable compound on one surface of a base film.
  • a near-infrared shielding film having a hard coat layer formed from the above and having an adhesive layer on the other surface.
  • the specific active energy ray-curable compound described above is mainly composed of a polyfunctional acrylate monomer having 5 or more functional groups, and with such a configuration, a film with good film curl can be obtained.
  • the present invention provides a thermal barrier film having a thermal barrier hard coat layer, which reduces curling, peels off the hard coat layer during heat molding at the time of bonding to a substrate such as curved glass, and the appearance. It aims at providing the thermal-insulation film which suppressed generation
  • a hard coat layer comprising a cured product of a coating liquid for hard coat layer containing an agent, The thermal insulation film whose change of the visible light transmittance
  • (meth) acrylate and “(meth) acryl” are generic names for acrylate and methacrylate.
  • a compound containing (meth) such as (meth) acryl is a generic term for a compound having “meth” in the name and a compound not having “meta”.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • a base material having a thickness of 10 to 100 ⁇ m and the following (a) to (c) disposed on at least one surface side of the base material: (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization And a hard coat layer comprising a cured product of a hard coat layer coating solution containing an agent, and when the tape peel test is performed after the heat treatment, the change in visible light transmittance of the film before and after the tape peel test is 20 % Relating to a thermal barrier film.
  • the film having such a configuration in addition to reducing curling, the peeling of the hard coat layer at the time of thermoforming at the time of bonding to a substrate such as curved glass and the occurrence of defects in appearance are suppressed. be able to.
  • the present inventors add a polyfunctional (meth) acrylate having 5 or more functional groups to 50 mass% or more of the total mass of the ultraviolet curable component. When used, it has been found that the frequency of occurrence of peeling of the hard coat layer during heat molding and appearance defects increases.
  • the present inventors have found that, in the hard coat layer containing the cesium-containing composite tungsten oxide, the ultraviolet curable component for forming the hard coat layer is 50% of the total mass.
  • the inventors have found the surprising fact that peeling and poor appearance can be improved while maintaining a good curl-inhibiting effect by containing a polyfunctional (meth) acrylate of 4% or less by mass and not less than 4% by mass.
  • the change of visible light transmittance of the film before and after the tape peeling test of the thermal barrier film is found to be 20% or less, and it can be found that peeling and poor appearance during actual thermoforming can be greatly suppressed, and the present invention is completed. It came to do.
  • the present inventors have speculated as follows about the mechanism by which the peeling of the hard coat layer during thermoforming and the appearance defect are suppressed by using the thermal barrier film according to one embodiment of the present invention. .
  • the heat-shielding film is thermoformed at a temperature at which the base material is softened and the shape of the heat-shielding film can be sufficiently changed.
  • the base material of the heat-shielding film contracts greatly, but the hard coat layer hardly contracts as compared with the base material.
  • the hard coat layer formed from the coating liquid for the hard coat layer having a polyfunctional (meth) acrylate having five or more functional groups and a large number of functional groups as the main component of the ultraviolet curable component is reduced in toughness and becomes brittle with curing. For this reason, it cannot follow the deformation of the base material at the time of heat forming, and peeling easily occurs, and the hard coat layer is easily broken.
  • cesium-containing composite tungsten oxide which is one of the heat ray shielding metal oxides that functions as an excellent infrared absorber, has a wide particle size distribution of several nm to several hundred nm depending on the manufacturing method. is doing.
  • a component having a large particle size is likely to become a starting point of a crack because shrinkage stress is easily accumulated when shrinkage of the hard coat layer occurs during heat molding. Such cracks cause destruction, and cause peeling that starts from the location of the destruction.
  • the heat-shielding film according to an embodiment of the present invention has a moderately soft hard coat layer by using a polyfunctional acrylate having a functionality of 4 or less as a main component of an ultraviolet curable component.
  • a hard coat layer is less likely to be peeled off due to improved followability to deformation of the substrate during heat molding.
  • Such a hard coat layer has good toughness. Therefore, with the difference in shrinkage between the hard coat layer and the substrate, breakage due to the shrinkage stress generated at the interface between the hard coat layer and the substrate is less likely to occur.
  • the present inventors presumed that the measurement of the change in the visible light transmittance of the film before and after the tape peeling test functions as a compulsory test for peeling and appearance failure occurring during actual heat forming in the heat shielding film.
  • a compulsory test the present inventors have found that, in a film having a change in visible light transmittance of more than 20%, the hard coat layer is peeled off and the appearance frequency is increased.
  • the upper limit of change in light transmittance was defined as 20% or less.
  • the reason why good results are obtained when the change in visible light transmittance is 20% or less is that the small change in visible light transmittance is a hard coat that may occur during actual heat forming. It is presumed that this means that there is little color change (transmittance change) due to layer abnormality, that is, light scattering due to scratches due to peeling or destruction, and partial defects. Thereby, it is thought that the heat-shielding film satisfying the above-described values suppresses the occurrence of peeling and appearance defects.
  • the above mechanism is based on speculation, and its correctness does not affect the technical scope according to one embodiment of the present invention.
  • the change in visible light transmittance is preferably 18% or less, and more preferably 15% or less. It is more preferably 10% or less, and particularly preferably 5% or less.
  • the lower limit of the change in visible light transmittance is 0%.
  • the tape peeling test can be performed according to the cross-cut method of JIS K 5600-5-6: 1999. Visible light transmittance was measured using a spectrophotometer (using an integrating sphere, Hitachi, Ltd.) using a hard coat layer prepared on a 3 mm thick glass plate and a substrate bonded with an adhesive.
  • the U-4000 type manufactured by Seisakusho can be used in accordance with the visible light transmittance test of JIS S 3107: 2013. A detailed measurement method is described in the examples.
  • the amount of change in the visible light transmittance of the film before and after the tape peel test is the film thickness of the substrate, the film thickness of the hard coat layer, the content of the cesium-containing composite tungsten oxide in the coating liquid for the hard coat layer, the ultraviolet light It can be controlled by the type and ratio of the curable composition, the type and ratio of the photopolymerization initiator, the amount of light when forming the hard coat layer, the ultraviolet curing conditions such as the light source, and the like.
  • the influence of the shrinkage of the base material is larger in the other layers closer to the base material than in the hard coat layer.
  • the shrinkage amount of the other layers is larger than that of the hard coat layer.
  • the above mechanism reduces curl and heats when bonding to a substrate such as curved glass. It is considered that a heat-shielding film can be provided that suppresses peeling of the hard coat layer during molding and occurrence of defects in appearance.
  • the heat shield film according to one embodiment of the present invention can also suppress the occurrence of curling as described above. By suppressing curling, workability during construction work can be further improved.
  • the measurement of curl can be obtained by evaluating the degree when a sample cut to A4 size is deformed in the short side direction. Detailed measurement methods are described in the examples.
  • the total film thickness of the heat shield film according to one embodiment of the present invention is preferably 12 to 120 ⁇ m.
  • the total film thickness is 120 ⁇ m or less, for example, when a heat-shielding film is bonded to a substrate such as glass, followability to a substrate having a curved surface such as curved glass becomes better, and the generation of wrinkles is suppressed. .
  • production of a wrinkle is suppressed during handling as a total film thickness is 12 micrometers or more.
  • the total film thickness of the heat shielding film is more preferably 25 to 90 ⁇ m, and further preferably 25 to 65 ⁇ m.
  • the base material has a function of supporting a hard coat layer and other arbitrarily provided layers (for example, a functional layer typified by a dielectric multilayer film).
  • the substrate various resin films can be used, and the substrate is preferably transparent.
  • polyolefin film polyethylene, polypropylene, etc.
  • polyester film polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride polyvinyl chloride
  • cellulose triacetate polyimide
  • polybutyral film polybutyral film
  • cycloolefin polymer film transparent cellulose nanofiber film, etc.
  • transparent cellulose nanofiber film etc.
  • the polyester forming the film includes dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, ethylene glycol, and 1,
  • a polyester having a film-forming property, having a diol component such as 4-cyclohexanedimethanol as a main constituent component is preferable.
  • the polyesters forming the film include polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymer polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and these polyesters.
  • a polyester having a mixture of two or more of the above as main constituent components is more preferred. More preferably, a polyethylene terephthalate film is used as the substrate.
  • a dielectric multilayer film described later and having a self-supporting property can be used as the base material of the heat-shielding film according to one embodiment of the present invention.
  • a dielectric multilayer film described later and having a self-supporting property can be used as the base material of the heat-shielding film according to one embodiment of the present invention.
  • limit especially as a dielectric multilayer film which has a self-supporting property For example, the dielectric multilayer film etc. which were produced by the coextrusion method or the co-flow method are mentioned.
  • the material and film thickness of the base material are preferably set so that the value obtained by dividing the thermal shrinkage rate of the thermal barrier film by the thermal shrinkage rate of the base material is in the range of 1 to 3.
  • the film thickness of the substrate is 10 to 100 ⁇ m. If the thickness of the substrate is less than 10 ⁇ m, wrinkles are generated during handling. On the other hand, when the thickness of the base material is greater than 100 ⁇ m, when the thermal barrier film is bonded to a substrate such as glass, followability to a substrate having a curved surface such as curved glass is deteriorated, and wrinkles are generated. Thus, when the thickness of the substrate is in the range of 10 to 100 ⁇ m, wrinkles can be reduced in the heat shield film. Further, when the film thickness of the substrate is in the range of 10 to 100 ⁇ m, the change in visible light transmittance of the film before and after the tape peeling test can be further reduced. From the same viewpoint, the thickness of the substrate is preferably 20 to 80 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the substrate is particularly preferably a biaxially oriented polyester film, but a polyester film that has not been stretched or has been stretched in at least one direction can also be used.
  • a stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion.
  • the “hard coat layer” is a layer having a pencil hardness of H or higher according to JIS K 5600-5-4: 1999, preferably a layer of 2H or higher.
  • the hardness of the hard coat layer is preferably in terms of scratch resistance as long as the layer is not damaged or peeled off when an external stress such as bending is applied.
  • the hard coat layer according to one embodiment of the present invention is composed of (a) a cesium-containing composite tungsten oxide and (b) a tetrafunctional or lower polyfunctional (meth) acrylate of 50% by mass or more based on the total mass of the ultraviolet curable component. It is formed by applying a coating liquid for hard coat layer containing an ultraviolet curable component containing (c) a photopolymerization initiator on a substrate, and then irradiating with ultraviolet rays to cure the coating film. preferable.
  • the hard coat layer according to one embodiment of the present invention includes the following (a) to (c): (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization It consists of the hardened
  • the cesium-containing composite tungsten oxide is one kind of heat ray shielding metal oxide having infrared absorptivity (also referred to as [infrared shielding metal oxide]) as described later.
  • the hard coat layer formed from the coating liquid for hard coat layer has a heat shielding function for shielding the transmission of heat rays (infrared rays).
  • the thickness of the hard coat layer is not particularly limited, but is preferably 1 to 20 ⁇ m. By setting the thickness to 1 ⁇ m or more, the hardness of the hard coat layer can be maintained. On the other hand, by setting the thickness to 20 ⁇ m or less, cracking of the hard coat layer due to stress can be prevented. Moreover, the change of the visible light transmittance
  • Cesium-containing composite tungsten oxide is a kind of heat ray shielding metal oxide having infrared absorptivity.
  • the coating liquid for hard coat layer essentially contains cesium-containing composite tungsten oxide (hereinafter also referred to as component (a)) that is a heat ray shielding metal compound.
  • component (a) cesium-containing composite tungsten oxide
  • the composition of the cesium-containing composite tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: Cs x W y O z from the viewpoint of safety.
  • Cs represents cesium
  • W represents tungsten
  • O represents oxygen.
  • x, y, and z generally have a composition of tungsten and Cs (composition of Cs to tungsten, x / y) satisfying 0.001 or more and 1 or less (0.001 ⁇ x / y ⁇ 1).
  • composition of oxygen and oxygen composition of oxygen with respect to tungsten, z / y
  • composition of oxygen with respect to tungsten, z / y composition of oxygen with respect to tungsten, z / y
  • tungsten, z / y composition of oxygen with respect to tungsten, z / y
  • a material in which the composition of oxygen and oxygen (composition of oxygen with respect to tungsten, z / y) satisfies 2.0 or more and 3.5 or less (2.0 ⁇ z / y ⁇ 3.5).
  • composition of tungsten and Cs (composition of Cs to tungsten, x / y) satisfies the relationship of 0.001 ⁇ x / y ⁇ 1
  • composition of tungsten and oxygen (composition of oxygen to tungsten, z / y ) Satisfies the relationship of 2.2 ⁇ z / y ⁇ 3, more preferably satisfies the relationship of 0.01 ⁇ x / y ⁇ 0.8 and 2.3 ⁇ z / y ⁇ 3, It is particularly preferable that the relationship 0.1 ⁇ x / y ⁇ 0.5 and 2.45 ⁇ z / y ⁇ 3 is satisfied.
  • the shape of the cesium-containing composite tungsten oxide is not particularly limited, and may take any structure such as a particulate shape, a spherical shape, a rod shape, a needle shape, a plate shape, a columnar shape, an indefinite shape, a flake shape, and a spindle shape, preferably It is particulate.
  • the size of the cesium-containing composite tungsten oxide is not particularly limited. However, when the cesium-containing composite tungsten oxide or the like is in the form of particles, the average particle size (average primary particle diameter, diameter) of the particles such as the cesium-containing composite tungsten oxide is a heat ray while suppressing reflection of visible light.
  • the thickness is 30 to 60 nm, and most preferably 40 to 50 nm.
  • the average particle size is determined by observing the particle itself or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number Average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the cesium-containing composite tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and the like.
  • the content of the cesium-containing composite tungsten oxide in the hard coat layer is not particularly limited, but the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer (from the mass of the hard coat layer to the cesium-containing composite tungsten oxide)
  • the ratio of the mass of the cesium-containing composite tungsten oxide to the mass excluding the mass of the oxide is preferably 0.05 to 1.0.
  • the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.05 or more, the ultraviolet curable component in the hard coat layer Since the amount of the polymer formed from is relatively reduced, the shrinkage amount of the hard coat layer at the time of heat molding can be further reduced. As a result, the shrinkage of the hard coat layer during heat forming is less likely to occur, and the shrinkage stress generated at the interface between the hard coat layer and the substrate is also reduced. As a result, deformation such as curling due to shrinkage of the hard coat layer at the time of thermoforming is further suppressed, and further improvement in adhesion is possible.
  • the curl generated after the film formation due to the residual stress at the interface can be further suppressed.
  • the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 1.0 or less, the number of cesium-containing composite tungsten oxides in the hard coat layer is Relatively less. As a result, the distance between the particles is increased, so that the film can be more easily formed into a uniform film, and the frequency of occurrence of defects and peeling due to the defective portion can be further suppressed.
  • permeability of the film before and behind a tape peeling test can be made smaller in a heat-shielding film as it is such a range.
  • the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.05 to 1.0. It is a thermal barrier film.
  • the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.08 to 0.6, It is more preferably 0.1 to 0.4, and particularly preferably 0.20 to 0.4.
  • the mass of the cesium-containing composite tungsten oxide contained in the hard coat layer can be calculated from the value obtained by measuring the mass of tungsten contained in the hard coat layer using ICP-AES. Detailed measurement methods are described in the examples.
  • the content of the cesium-containing composite tungsten oxide in the hard coat layer coating solution is not particularly limited, but is preferably 1 to 60% by mass with respect to the total mass of the components excluding the solvent of the hard coat layer coating solution. 5 to 40% by mass is more preferable, 8 to 30% by mass is further preferable, and 18 to 29% by mass is particularly preferable.
  • UV curable component containing a polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more with respect to the total mass of the ultraviolet curable component.
  • the ultraviolet curable component is crosslinked by ultraviolet rays.
  • a compound that cures through a reaction or the like is represented.
  • the term “ultraviolet curable component” is a concept that may include not only monomers but also oligomers and prepolymers that can be cured by ultraviolet irradiation.
  • the coating liquid for hard coat layers comprises (b) an ultraviolet curable component containing a polyfunctional (meth) acrylate having a functionality of 4 or less and 4 functional groups or less based on the total mass of the ultraviolet curable component.
  • component (b) is essential.
  • the tetrafunctional or lower polyfunctional (meth) acrylate represents a bifunctional (meth) acrylate, a trifunctional acrylate or a tetrafunctional acrylate.
  • a hard coat layer using an ultraviolet curable component containing 50% by mass or more of a polyfunctional (meth) acrylate having 5 or more functional groups with respect to the total mass of the ultraviolet curable component is likely to be peeled off, and the hard coat layer may be destroyed. It tends to occur.
  • the reason is that the hard coat layer cannot follow the deformation of the base material at the time of heat forming because the deformation such as curling of the heat shielding film becomes large due to the heat shrinkage at the time of heat forming, and the hard coat layer is peeled off or broken. It is presumed that this is likely to occur.
  • the hard coat layer is likely to be peeled off or broken.
  • the hard coat layer formed using such an ultraviolet curable component is caused to become brittle due to a decrease in toughness as curing proceeds. This tendency becomes more prominent particularly when the hard coat layer contains a cesium-containing composite tungsten oxide having a large particle size component.
  • the ultraviolet curable component used in the present embodiment includes the polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component, thereby solving the above problem.
  • the ratio of the tetrafunctional or lower polyfunctional (meth) acrylate to the total mass of the ultraviolet curable component is preferably 50 to 100% by mass.
  • produces after film formation is suppressed more. This is because the number of functional groups contributing to the curing reaction is smaller than that of a polyfunctional (meth) acrylate having 5 or more functional groups, so that the heat shrinkage of the hard coat layer is considered to be smaller.
  • the ratio of the tetrafunctional or lower polyfunctional (meth) acrylate to the total mass of the ultraviolet curable component is more preferably 60 to 100% by mass, and further preferably 80 to 100% by mass. 100% by mass is particularly preferable.
  • polyfunctional (meth) acrylate below 4 functional used for one form of this invention
  • polyfunctional (meth) acrylate urethane (meth) acrylate, epoxy (meth) acrylate, polyol (meth) ) Acrylate, polyester (meth) acrylate, silicone (meth) acrylate, isocyanuric acid EO-modified (meth) acrylate, and the like.
  • EO refers to “ethylene oxide”
  • PO refers to “propylene oxide”.
  • EO modified means having a block structure of ethylene oxide units (—CH 2 —CH 2 —O—), and “PO modified” means propylene oxide units (—CH 2 —CH (CH 3 )). -O-) having a block structure.
  • Examples of such tetrafunctional or lower polyfunctional (meth) acrylates include bifunctional, trifunctional, and tetrafunctional (meth) acrylate compounds.
  • the bifunctional (meth) acrylate is not particularly limited.
  • trifunctional (meth) acrylate For example, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ( Examples include (meth) acrylate, propylene oxide-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, and isocyanuric acid EO-modified tri (meth) acrylate.
  • pentaerythritol tri (meth) acrylate or isocyanuric acid EO-modified di (meth) acrylate is preferable
  • pentaerythritol triacrylate or isocyanuric acid EO-modified triacrylate is more preferable
  • pentaerythritol triacrylate is more preferable.
  • the tetrafunctional (meth) acrylate is not particularly limited, and examples thereof include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate. Among these, pentaerythritol tetra (meth) acrylate is preferable, and pentaerythritol tetraacrylate is more preferable.
  • polyfunctional (meth) acrylate having 4 or less functional groups for example, commercially available products such as Aronix (registered trademark) M-305 and M-313 manufactured by Toagosei Co., Ltd. may be used as appropriate.
  • Aronix (registered trademark) M-305 is a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate
  • Aronix (registered trademark) M-313 is isocyanuric acid EO-modified diacrylate and isocyanuric acid EO-modified tri A mixture of acrylates.
  • urethane (meth) acrylate and epoxy (meth) are used from the viewpoint of suppressing appearance failure caused by curling of the heat shielding film and peeling and breaking of the hard coat layer. It is preferable to include at least one selected from the group of acrylate, polyol (meth) acrylate, polyester (meth) acrylate, and silicone (meth) acrylate.
  • silicone (meth) acrylate examples include urethane (meth) acrylate and silicone (meth) acrylate, and silicone (meth) acrylate is more preferable.
  • silicone (meth) acrylate commercial items, such as EBECRYL (trademark) 350 by Daicel Ornex Co., Ltd., can be used, for example. Note that details of EBECRYL (registered trademark) 350 will be described in Examples described later.
  • polyfunctional (meth) acrylates having 4 or less functional groups can be used alone or in combination of two or more.
  • a bifunctional to tetrafunctional mixture is preferable from the viewpoint of suppressing appearance failure due to curling of the heat shielding film and peeling and breaking of the hard coat layer.
  • the ratio of the trifunctionality to the total mass of the tetrafunctional or lower polyfunctional (meth) acrylate is preferably 0 to 100% by mass, and more preferably 10 to 90% by mass.
  • the ratio of the bifunctionality to the total mass of the tetrafunctional or lower polyfunctional (meth) acrylate is preferably 0 to 40% by mass, more preferably 0 to 10% by mass, and 0 to 1% by mass. % Is particularly preferred.
  • the number of functional groups of a polyfunctional (meth) acrylate having 4 or less functional groups is trifunctional (meth) acrylate or tetrafunctional (meth) from the viewpoint of appearance failure due to curling of the heat shielding film and peeling and breaking of the hard coat layer. More preferably, the content ratio of the acrylate is higher than that of the bifunctional (meth) acrylate.
  • the use of the above preferred tetrafunctional or lower (meth) acrylate, or the use of tetrafunctional or lower (meth) acrylate in the above preferred ratio means that in the heat shielding film, the visible light of the film before and after the tape peeling test. This is also preferable because the change in transmittance can be further reduced.
  • the compound other than the tetrafunctional or lower polyfunctional (meth) acrylate contained in the ultraviolet curable component is not particularly limited as long as it can be cured by ultraviolet irradiation.
  • examples of such compounds include compounds having an ethylenically unsaturated double bond. Although it does not restrict
  • polyfunctional (meth) acrylate more than 5 functional, urethane (meth) acrylate, epoxy (meth) acrylate, polyol (meth) acrylate, polyester ( A (meth) acrylate etc. can be used.
  • the polyfunctional (meth) acrylate having 5 or more functional groups is not particularly limited.
  • Examples of compounds other than the tetrafunctional or lower polyfunctional (meth) acrylate contained in the ultraviolet curable component include, for example, Aronix (registered trademark) M-402 manufactured by Toagosei Co., Ltd. Commercial products such as registered trademark 7902-1 can be used.
  • Aronix (registered trademark) M-402 is a mixture of dipentaerythritol penta and hexaacrylate
  • Hitaroid (registered trademark) 7902-1 is a hexafunctional urethane acrylate.
  • the ratio of each component in the ultraviolet curable component can be adjusted by weighing each component and mixing them appropriately.
  • a polyfunctional (meth) acrylate is a mixture of a plurality of polyfunctional (meth) acrylates having different functional groups, or a mixture with other ultraviolet curable resin compositions
  • the types and ratios of each (meth) acrylate contained are Py-GC / MS (pyrolysis-gas chromatograph / mass spectrometry) (pyrolysis apparatus: PY-2020iD (frontier lab), GG / MS: QP2010 (stock company) It can be measured by using Shimadzu Corporation)).
  • the content of the ultraviolet curable component in the hard coat layer coating solution is not particularly limited, but from the viewpoint of adjusting the hardness and film elastic modulus to desired values, the total amount of components excluding the solvent of the hard coat layer coating solution is not limited.
  • the amount is preferably 20 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass with respect to the mass.
  • the coating liquid for hard coat layer according to one embodiment of the present invention requires a photopolymerization initiator (hereinafter also referred to as component (c)) in order to accelerate the curing of component (b). Including.
  • the photopolymerization initiator examples include a cationic photopolymerization initiator, an anionic photopolymerization initiator, and a radical photopolymerization initiator. From the viewpoint of curability and productivity, a radical photopolymerization initiator is used. preferable.
  • the radical photopolymerization initiator is not particularly limited, and for example, acylphosphine oxides, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones and azo compounds can be used.
  • Acylphosphine oxides are not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-phenylethoxyphosphine oxide, and bis (2,6 -Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
  • acetophenones are not particularly limited.
  • benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal;
  • acetophenone, 2,2- Examples include dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone.
  • the anthraquinones are not particularly limited, and examples thereof include methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and the like.
  • the thioxanthone is not particularly limited, and examples thereof include thioxanthone, 2,4- diethylthioxanthone, 2,4-diisopropylthioxanthone and the like.
  • Ketals are not particularly limited, and examples thereof include acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • the benzophenones are not particularly limited, and examples thereof include benzophenone and 4,4-bismethylaminobenzophenone.
  • acylphosphine oxides that are excellent in curability of the hard coat layer at the interface between the hard coat layer and the substrate are preferable.
  • photopolymerization proceeds sufficiently when the hard coat layer is formed, and the number of uncured components that are thermally cured during subsequent thermoforming is further reduced.
  • the shrinkage amount of the hard coat layer at the time of heat forming can be further reduced.
  • the shrinkage stress generated at the time of heat molding at the interface between the hard coat layer and the substrate is also reduced, it is considered that the adhesion is improved.
  • acylphosphine oxides bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide are more preferable, and bis ( More preferred is 2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • a preferred embodiment of the present invention is a thermal barrier film in which (c) the photopolymerization initiator includes at least an acyl phosphine oxide photopolymerization initiator.
  • a more preferable embodiment of the present invention is (c) a thermal barrier film in which the photopolymerization initiator contains at least bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • the ratio of the acylphosphine oxides to the total mass of the photopolymerization initiator is preferably 50 to 100% by mass, and most preferably 100% by mass.
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate
  • photopolymerization initiators are preferably used in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable component. It is preferable that the photopolymerization initiator is 0.5 parts by mass or more with respect to 100 parts by mass of the ultraviolet curable component because the curability becomes better. Moreover, when the photopolymerization initiator is 20 parts by mass or less with respect to 100 parts by mass of the ultraviolet curable component, the shrinkage amount of the hard coat layer can be further reduced, and the curling of the heat shield film and the peeling of the hard coat layer are further reduced. it can.
  • the amount of the photopolymerization initiator used is more preferably 1 to 15 parts by mass, and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable component. More preferably, it is ⁇ 8 parts by mass.
  • the hard coat layer coating liquid according to one embodiment of the present invention may contain a solvent in addition to the above essential components.
  • the solvent is not particularly limited.
  • the solvent preferably contains ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), and more preferably contains methyl isobutyl ketone.
  • the content of the solvent in the coating solution for the hard coat layer is not particularly limited, but in general, it is preferably 10 to 80% by mass, and 20 to 80% by mass with respect to the total mass of the coating solution. Is more preferably 50 to 75% by mass, and particularly preferably 60 to 70% by mass.
  • the coating liquid for hard coat layer may contain an optional component such as a heat ray shielding metal compound other than the component (a) and various additives, if necessary.
  • additives include metal soaps, surfactants for imparting leveling properties, water repellency, slipping properties, etc .; dyes, pigments, sensitizers, etc. for improving curability by ultraviolet irradiation.
  • the heat ray shielding metal oxide other than the above (a) is not particularly limited, but zinc oxide, tungsten oxide, antimony doped zinc oxide (AZO), indium doped zinc oxide (IZO), gallium doped zinc oxide ( GZO), aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide (ATO), and indium-doped tin oxide (ITO).
  • metal soap functions as a coating liquid desiccant.
  • a kind of metal soap For example, an octylic acid metal soap, a fatty-acid metal soap, etc. are mentioned. Specific examples of these trade names include 8% hexoate cobalt, 15% hexoate zinc, 12% hexoate zirconium, and 6% hexoate manganese manufactured by Toei Chemical Co., Ltd.
  • the content of the metal soap is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total mass of the components excluding the solvent of the hard coat layer coating solution. It is preferably 0.07 to 2% by mass, more preferably 0.1 to 1.5% by mass.
  • the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used.
  • a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution.
  • the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation.
  • acrylic surfactant examples include Polyflow series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.).
  • silicone-based surfactant examples include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, BYK (registered trademark) -349 (manufactured by BYK Japan).
  • Surfactants may be used alone or in admixture of two or more.
  • the content of the surfactant is preferably 0.01% by mass or more and 1% by mass, and preferably 0.01% by mass or more and 0.1% by mass with respect to the total mass of the components excluding the solvent of the coating liquid for hard coat layer. It is more preferable that the amount is not more than mass%.
  • the thermal barrier film according to an aspect of the present invention is On at least one surface side of the substrate having a thickness of 10 to 100 ⁇ m, The following (a) to (c); (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization Including a step of curing the coating film by irradiating with ultraviolet rays after applying the coating liquid for hard coat layer, When the tape peel test is performed after the heat treatment, the film is preferably produced by a method for producing a thermal barrier film in which the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
  • the film produced by such a production method is A substrate having a thickness of 10 to 100 ⁇ m; A hard coat layer disposed on at least one side of the substrate; Have The hard coat layer is formed by applying a coating liquid for hard coat layer on a substrate and then irradiating ultraviolet rays to cure the coating film.
  • the hard coat layer coating solution comprises the following (a) to (c): (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization Including agents, When the tape peel test is performed after the heat treatment, the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
  • a hard coat layer comprising a cured product of a coating liquid for hard coat layer containing an agent, When the tape peel test is performed after the heat treatment, it is a preferable embodiment of the heat shielding film in which the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
  • the coating liquid for the hard coat layer is adjusted by mixing the above components.
  • the order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
  • the coating liquid for hard-coat layers on a base material (the surface of a base material, or the surface of the outermost layer arrange
  • coating by a wire bar Techniques such as spin coating and dip coating can be employed. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater or a comma coater.
  • the drying conditions after coating are not particularly limited, but for example, the drying temperature is preferably 40 to 100 ° C., and the drying time is preferably 0.5 to 10 minutes.
  • the coating film obtained by applying the coating liquid for hard coat layer on the substrate is irradiated with ultraviolet rays from the side of the coating film that is far from the substrate to cure the coating film.
  • the conditions such as the irradiation wavelength, the illuminance, and the light quantity of the ultraviolet rays vary depending on the type of the ultraviolet curable monomer and the polymerization initiator to be used.
  • the illuminance is preferably 50 to 1500 mW / cm 2
  • the illuminance is 80 More preferred is ⁇ 1000 mW / cm 2 .
  • the amount of irradiation energy is preferably 50 to 1500 mJ / cm 2.
  • the amount of irradiation energy is 100 to 1000 mJ / cm 2 is preferable.
  • the curing atmosphere may be replaced with nitrogen as necessary.
  • the amount of residual oxygen at the time of substitution is preferably 1% or less, and more preferably 1000 ppm or less.
  • the heat-shielding film according to one embodiment of the present invention may have a functional layer in addition to the base material and the hard coat layer.
  • the type of the functional layer is not particularly limited, but will be specifically described below with an example in which the functional layer is a dielectric multilayer film (hereinafter also referred to as a reflective layer).
  • thermo barrier film Another embodiment of the present invention is a thermal barrier film having a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated.
  • the dielectric multilayer film (reflective layer) has a configuration in which low refractive index layers and high refractive index layers are alternately stacked.
  • the high refractive index layer and the low refractive index layer are considered as follows.
  • a component that constitutes a high refractive index layer (hereinafter referred to as a high refractive index layer component) and a component that constitutes a low refractive index layer (hereinafter referred to as a low refractive index layer component) are mixed at the interface between the two layers.
  • a layer (mixed layer) including a refractive index layer component and a low refractive index layer component may be formed.
  • a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer
  • a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer.
  • the low refractive index layer contains, for example, a first metal oxide as a low refractive index component
  • the high refractive index layer contains a second metal oxide as a high refractive index component
  • the metal oxide concentration profile in the film thickness direction in these laminated films is measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition.
  • the metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio.
  • one of the low refractive index layer component and the high refractive index layer component does not contain metal oxide particles, and one of the high refractive index layer or the low refractive index layer is formed only from a water-soluble resin (organic binder).
  • a water-soluble resin organic binder
  • the mixed region exists by measuring the carbon concentration in the film thickness direction, for example, in the water-soluble resin (organic binder) concentration profile.
  • the reflective layer may have a structure having at least one laminate (unit) in which a high refractive index layer and a low refractive index layer containing a polymer are alternately laminated on a substrate.
  • the number of low refractive index layers is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 (that is, 5 to 5). 750 units), more preferably 10 to 1000 (that is, 5 to 500 units), and particularly preferably 10 to 30 (that is, 5 to 15 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
  • the thermal insulation film which concerns on one form of this invention should just be the structure which has at least 1 or more units on the said base material.
  • the high refractive index layer preferably has a higher refractive index, but the refractive index is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, It is preferably 1.90 to 2.20.
  • the low refractive index layer preferably has a lower refractive index, but the refractive index is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1. 30 to 1.50.
  • the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, more preferably 0.25 or more.
  • the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers (high refractive index layer and low refractive index layer) and the number of layers, and the larger the refractive index difference, the same reflectance can be obtained with a smaller number of layers. .
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance (infrared shielding ratio) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, and not only productivity is lowered. , Scattering at the laminated interface increases and transparency decreases. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
  • each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm ⁇ 10 cm, the refractive index is obtained according to the following method.
  • a U-4000 type manufactured by Hitachi, Ltd.
  • the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray.
  • the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result.
  • n ⁇ d wavelength / 4 when viewed as a single layer film
  • the reflected light is controlled to be strengthened by the phase difference.
  • the reflectance can be increased.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
  • the dielectric multilayer film can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area
  • a (near) infrared reflection (shield) film may be used.
  • the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that when each refractive index layer constituting the dielectric multilayer film is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
  • the thickness of the refractive index layer per layer is preferably 20 to 1000 nm, more preferably 50 to 500 nm, still more preferably 100 to 300 nm, and even more preferably 100 to 200 nm. It is particularly preferred that The thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions. In addition, when extending
  • the low refractive index layer and the high refractive index layer preferably contain a polymer material.
  • a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time.
  • membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability.
  • the polymer contained in the refractive index layer is not particularly limited, and specific examples include polyethylene terephthalate (PET), polyethylene terephthalate copolymer (coPET), poly (methyl methacrylate) (PMMA), and poly (methyl methacrylate).
  • Copolymer (coPMMA), cyclohexanedimethanol (PETG), copolymer of cyclohexanedimethanol (coPETG), polyethylene naphthalate (PEN), copolymer of polyethylene naphthalate (coPEN), polyethylene naphthalate, copolymer of polyethylene naphthalate, poly (methyl methacrylate) ), And copolymers of poly (methyl methacrylate) and the like, but are not limited thereto.
  • PEN polyethylene naphthalate
  • coPEN copolymer of polyethylene naphthalate
  • polyethylene naphthalate copolymer of polyethylene naphthalate
  • And copolymers of poly (methyl methacrylate) and the like but are not limited thereto.
  • suitable polymer combinations include those described in US Pat. No. 6,352,761.
  • the polymer contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble polymer that functions as a binder.
  • the high refractive index layer and the low refractive index layer preferably contain a water-soluble polymer, so that environmental problems due to the organic solvent can be solved and the flexibility of the coating film can be achieved.
  • the polymers contained in the high refractive index layer and the low refractive index layer may be the same component or different components, but are preferably different.
  • water-soluble polymer examples include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate- Acrylic resin such as acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer Styrene-acrylate resins such as styrene- ⁇ -methylstyrene-acrylic acid copolymer, or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene- 2-
  • the refractive index layer preferably contains polyvinyl alcohol which is a polyvinyl alcohol or a derivative thereof as a polymer.
  • a polymer may be used independently and may be used in combination of 2 or more type.
  • the polymer may be a synthetic product or a commercially available product.
  • the polymer is not particularly limited, and known polymers used for the high refractive index layer and the low refractive index layer, such as International Publication No. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Can be used in the same way.
  • the polyvinyl alcohols include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • the polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably an average degree of polymerization of 1,500 to 5,000.
  • the degree of saponification is preferably 70 to 100 mol%, more preferably 80 to 99.9 mol%, and still more preferably 85 to 99.9 mol%.
  • the modified polyvinyl alcohol is not particularly limited, and examples thereof include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • polyvinyl acetal resin obtained by reacting aldehyde with polyvinyl alcohol for example, “ESREC (registered trademark)” manufactured by Sekisui Chemical Co., Ltd.
  • silanol-modified polyvinyl alcohol having a silanol group for example, “R manufactured by Kuraray Co., Ltd.) -1130 "
  • modified polyvinyl alcohol-based resins having an acetoacetyl group in the molecule for example
  • Gosefimer (registered trademark) Z / WR series manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • butenediol-vinyl alcohol copolymer Resins for example, “Nichigo G Polymer (registered trademark)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol as described silanol modified polyvinyl alcohol having silanol group, reactivity having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Examples thereof include group-modified polyvinyl alcohol.
  • Examples of the cation-modified polyvinyl alcohol include a primary to tertiary amino group or a quaternary ammonium group as described in JP-A No. 61-10483. Examples thereof include polyvinyl alcohol. Such cation-modified polyvinyl alcohol can be obtained, for example, by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • ethylene-modified polyvinyl alcohol for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used.
  • commercially available products such as EXEVAL (registered trademark) (trade name: manufactured by Kuraray Co., Ltd.), which is a vinyl acetate resin, may be used.
  • polyvinyl alcohols it is preferable to use polyvinyl alcohol or ethylene-modified polyvinyl alcohol.
  • polyvinyl alcohols may be used alone or in combination of two or more.
  • polyvinyl alcohol a synthetic product or a commercially available product may be used.
  • the weight average molecular weight of the polyvinyl alcohols is preferably 1,000 to 1,000,000, more preferably 3,000 to 250,000, and further preferably 60,000 to 250,000. 60,000 to 200,000 is particularly preferable.
  • the value measured by a static light scattering method, gel permeation chromatography (GPC), TOFMASS method or the like is adopted as the value of “weight average molecular weight”.
  • the content of the water-soluble polymer in the refractive index layer is preferably 5 to 75% by mass with respect to the total solid content of the refractive index layer.
  • the refractive index layer is formed by a wet film-forming method when the content of the water-soluble polymer is 5% by mass or more, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. This is preferable because it is possible to prevent the deterioration.
  • the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the metal oxide particles are contained in the refractive index layer, and the refractive index between the low refractive index layer and the high refractive index layer. This is preferable because the rate difference can be increased.
  • the content of the water-soluble polymer is more preferably 10 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 20 to 30% by mass. preferable.
  • content of water-soluble polymer is calculated
  • the water-soluble polymer is polyvinyl alcohol. It can be determined that
  • At least one of the low refractive index layer and the high refractive index layer may contain a metal oxide (particle).
  • a metal oxide particle
  • the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved.
  • both the low refractive index layer and the high refractive index layer contain metal oxide particles
  • the refractive index difference can be further increased.
  • the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
  • the metal which comprises a metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth
  • a metal oxide that is one or two or more metals selected from the group consisting of metals can be used.
  • Metal oxide particles in high refractive index layer Although it does not restrict
  • MgAl 2 O 4 aluminum-magnesium oxide
  • rare earth oxides can be used as the metal oxide particles.
  • specific examples of rare earth oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, Examples include thulium oxide, ytterbium oxide, and lutetium oxide.
  • metal oxide particles used in the high refractive index layer metal oxide particles having a refractive index of 1.90 or more are preferable, and examples thereof include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide. Among these, since it is possible to form a transparent and higher refractive index layer having a higher refractive index, titanium oxide is preferable, and rutile (tetragonal) titanium oxide particles are more preferable.
  • the metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
  • the metal oxide particles used in the high refractive index layer preferably have a volume average particle size of 100 nm or less, more preferably 50 nm or less, further preferably 30 nm or less, and preferably 1 to 30 nm. Even more preferably, it is 1 to 20 nm, particularly preferably 1 to 15 nm. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the titanium oxide particles When titanium oxide particles are used as the metal oxide particles used in the high refractive index layer, the titanium oxide particles should be prepared by modifying the surface of the titanium oxide sol so that it can be dispersed in water or an organic solvent. preferable.
  • the preparation method of the aqueous titanium oxide sol include, for example, JP-A 63-17221, JP-A 7-819, JP-A 9-165218, JP-A 11-43327, JP-A 63-63. Reference can be made to the matters described in Japanese Patent No. 17221.
  • the average particle diameter of the titanium oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 1 to 30 nm from the viewpoint of a low haze value and excellent visible light transmittance. More preferably, it is 20 nm.
  • the average particle diameter means a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer.
  • the particle diameters of 1,000 arbitrary particles are measured by the method of observing the above, and particles having particle diameters of d1, d2,.
  • the average particle size mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇
  • the core-shell particles may be in the form of core-shell particles in which titanium oxide is coated with a silicon-containing hydrated oxide.
  • the core-shell particles have a structure in which the surface of titanium oxide particles as a core is covered with a shell made of silicon-containing hydrated oxide.
  • the intermixing of the low refractive index layer and the high refractive index layer is achieved by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles.
  • the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
  • the “silicon-containing hydrated oxide” in this specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and the effect according to one embodiment of the present invention. It is more preferable to have a silanol group in order to obtain
  • the coating amount of the silicon-containing hydrated oxide is preferably 3 to 30% by mass with respect to the metal oxide particles.
  • the coating amount of the silicon-containing hydrated oxide is more preferably 3 to 10% by mass, and further preferably 3 to 8% by mass.
  • the titanium oxide particles As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
  • titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc.
  • Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
  • the content of metal oxide particles in the high refractive index layer is based on 100% by mass of the solid content of the high refractive index layer. It is preferably 20 to 80% by mass, more preferably 30 to 75% by mass, still more preferably 40 to 70% by mass, and particularly preferably 60 to 70% by mass.
  • Metal oxide particles in the low refractive index layer >> The average primary particle size of the metal oxide particles used in the low refractive index layer is preferably 100 nm or less.
  • the metal oxide particles mainly used for the low refractive index layer it is preferable to use silicon dioxide as the metal oxide particles, and it is particularly preferable to use colloidal silica.
  • the metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle size of the metal oxide in the low refractive index layer is determined by observing the particles themselves or the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. The simple average value (number average) is obtained.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content of the metal oxide particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, and preferably 10 to 75% by mass from the viewpoint of refractive index. More preferably, it is more preferably 50 to 75% by mass, and particularly preferably 65 to 75% by mass.
  • Colloidal silica is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer for example, JP-A-57-14091 and JP-A-60- No.
  • colloidal silica may be a synthetic product or a commercially available product.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include Snowtex (registered trademark) series (Snowtex (registered trademark) OS, OXS, S, OS, 20, 30, 40, O, N, C, sold by Nissan Chemical Industries, Ltd. Etc.).
  • each refractive index layer is composed of, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid , PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents,
  • Various known additives may be contained such Tsu bets agent. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
  • a curing agent can be used to cure the water-soluble polymer.
  • Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc.), aldehyde-based curing agents (formaldehyde, glyoxal, etc.), active halogen-based curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active Examples thereof include vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.
  • each refractive index layer may contain a surfactant for adjusting the surface tension at the time of application.
  • a surfactant for adjusting the surface tension at the time of application.
  • an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant, and an anionic surfactant is more preferable.
  • Preferred compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
  • the content of the surfactant in each refractive index layer is preferably 0.01 to 5% by mass, and more preferably 0.01 to 1% by mass with respect to the solid content of the refractive index layer.
  • the method for producing the dielectric multilayer film is not particularly limited, and examples thereof include a method of forming by coating and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer.
  • the adjustment method of the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is not particularly limited.
  • a polymer, metal oxide particles, other additives added as necessary, and a solvent are added.
  • a method of stirring and mixing is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed all at once while stirring. If necessary, it may be adjusted to an appropriate viscosity using a solvent.
  • the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer it may be prepared while appropriately heating.
  • the solvent for adjusting the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In consideration of environmental aspects due to the scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%.
  • the volume fluctuation due to the volatilization of the solvent can be further reduced by setting it to 80% by mass or more, handling is further improved, and the uniformity at the time of adding the liquid is further improved by setting it to 99.9% by mass or less. This is because more stable liquid physical properties can be obtained.
  • the coating method is not particularly limited, and may be any one of a sequential coating method and a simultaneous multilayer coating, but is preferably a simultaneous multilayer coating from the viewpoint of productivity and the like.
  • a coating method for example, a curtain coating method, a slide bead coating method using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761,791, an extrusion coating method and the like are preferably used. It is done.
  • the temperature of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., and 30 to 45 ° C. when using the slide bead coating method. A temperature range is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method it is preferably in the range of 5 to 100 mPa ⁇ s, more preferably in the range of 10 to 50 mPa ⁇ s, in the preferable temperature range of the coating liquid.
  • the curtain coating method it is preferably in the range of 5 to 1200 mPa ⁇ s, more preferably in the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the coating and drying method is not particularly limited, but when forming a dielectric multilayer film as a reflective layer by a sequential coating method, preferably a low temperature heated to 25 to 60 ° C., more preferably 30 to 45 ° C. Apply either the refractive index layer coating solution or the high refractive index layer coating solution on the substrate and dry it to form a layer, then apply the other coating solution on this layer and dry it. Can be formed. Then, the reflective layer precursor can be obtained by repeating the sequential application so that the number of layers necessary for expressing the desired reflective performance is obtained. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. Preferably, drying is performed in the range of a wet bulb temperature of 5 to 50 ° C.
  • a film surface temperature of 5 to 100 ° C. (more preferably 10 to 50 ° C.).
  • warm air 40 to 85 ° C. is applied for 1 to 5 seconds. Can be sprayed and dried.
  • warm air drying, infrared drying, or microwave drying can be used.
  • the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit.
  • the temperature range of the constant rate drying section is preferably 25 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the coating solution for the low refractive index layer and the coating solution for the high refractive index layer are preferably heated to 25 to 60 ° C. so as to be low on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then dried at 10 ° C. or higher. can do.
  • More preferable drying conditions include a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. As an example of more preferable drying conditions, for example, it is possible to dry by blowing warm air of 80 ° C. for 1 to 5 seconds.
  • a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, and the fluidity of the substances in each layer or in each layer is reduced or gelled. It means a process.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 6 minutes, more preferably within 5 minutes, and even more preferably within 2 minutes. .
  • the lower limit time is not particularly limited, but it is preferably 10 seconds or more, and preferably 45 seconds or more.
  • the set time includes other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can adjust by adding.
  • the temperature of the cold air used is preferably 0 to 25 ° C., more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the configuration of the functional layer is specifically described by taking the case where the functional layer is a dielectric multilayer film as an example.
  • the present invention can be applied to various functional layers other than the dielectric multilayer film.
  • the functional layer other than the dielectric multilayer film include, for example, an antistatic layer, an adhesion-imparting intermediate layer, a color material layer, and the like. Reference can be made.
  • the heat shield film according to one embodiment of the present invention may have an adhesive layer.
  • This pressure-sensitive adhesive layer is usually provided on the outermost surface of the base material of the heat-shielding film on the side opposite to the hard coat layer, and further known release paper may be further provided.
  • the configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • the pressure-sensitive adhesive for example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, or the like is used.
  • the pressure-sensitive adhesive layer may be appropriately added with an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like.
  • the thermal barrier film according to one embodiment of the present invention can be applied to a wide range of fields. For example, it is attached to equipment exposed to sunlight for a long time such as outdoor windows of buildings and automobile windows, and it is mainly used to improve weather resistance as a film for window pasting to provide a heat shielding function, a film for agricultural greenhouses, etc. Used for purposes.
  • the heat shield film according to one embodiment of the present invention can be suitably used as a heat shield.
  • a heat shield means that a heat shield film is bonded directly to a substrate such as glass or a glass substitute resin through an adhesive layer, or when the heat shield film has an adhesive layer, through an adhesive layer. The member which becomes.
  • the material for forming the substrate is not particularly limited, but specific examples include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin. , Epoxy resin, melamine resin, phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin and the like, metal plates, ceramics and the like.
  • any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin can be used.
  • the material forming the substrate is particularly preferably glass.
  • the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
  • the thickness of the substrate is not particularly limited, but is preferably 0.1 mm to 5 cm.
  • the substrate may be flat or curved.
  • the method of thermoforming for laminating with a substrate having a curved surface is not particularly limited, but generally, a hard coat layer of a thermal barrier film is provided on one side of the substrate having a curved surface, that is, with respect to the substrate.
  • the substrate is deformed along the shape of the substrate in the state facing the substrate side, and then the hard coat layer of the heat shielding film is on the opposite side of the substrate having a curved surface, that is, opposite to the substrate with respect to the substrate.
  • a method of bonding to the base body in a state directed to the side is used.
  • the thermoforming is preferably performed at a temperature at which the base material is softened and the shape of the heat shield film can be sufficiently changed.
  • the heating temperature is not particularly limited as long as the shape can be changed, but is preferably 100 to 400 ° C, more preferably 120 to 300 ° C, and more preferably 120 to 250 ° C. Further preferred.
  • the heating time is not particularly limited as long as the shape can be changed, but is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes, and more preferably 1 to 5 minutes. More preferably, it is minutes.
  • the heat-shielding film according to one embodiment of the present invention can be preferably used for the production of a heat-shielding body using a substrate having a curved surface, particularly in applications where it is bonded to a substrate having a curved surface such as curved glass.
  • the reason for this is that it is possible to suitably suppress the peeling of the hard coat layer and the occurrence of defects in appearance when heat-molding into a shape that matches the shape of the substrate.
  • a curved glass is especially preferable from a practical viewpoint.
  • another preferred embodiment of the present invention is a heat shield obtained by bonding a heat shield film to a substrate.
  • Still another preferable embodiment of the present invention is a heat shield, which is formed by bonding a heat shield film to a substrate having a curved surface.
  • the heat-shielding film according to one embodiment of the present invention may be bonded to a substrate via an adhesive layer.
  • the adhesive or pressure-sensitive adhesive forming the adhesive layer is not particularly limited, and examples thereof include an adhesive or pressure-sensitive adhesive mainly composed of a photocurable or thermosetting resin.
  • the adhesive or pressure-sensitive adhesive those having durability against ultraviolet rays are preferable.
  • the adhesive or the pressure-sensitive adhesive is more preferably an acrylic pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive, and more preferably an acrylic pressure-sensitive adhesive from the viewpoint of pressure-sensitive adhesive properties and cost.
  • a solvent type is preferable because it is particularly easy to control the peel strength.
  • polyvinyl butyral resin or ethylene-vinyl acetate copolymer resin may be used as the adhesive or pressure-sensitive adhesive.
  • specific examples of the polyvinyl butyral resin or the ethylene-vinyl acetate copolymer resin include, for example, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Kasei Co., Ltd., etc.), ethylene-vinyl acetate copolymer (DuPont).
  • Examples thereof include: manufactured by Takeda Pharmaceutical Co., Ltd., Dumiran (registered trademark), modified ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, Mersen (registered trademark) G), and the like.
  • the adhesive layer may be appropriately added and blended with an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like.
  • Insulation performance and solar heat shielding performance of a heat shielding film or a heat shield are generally JIS R 3209: 1998 (multi-layer glass), JIS R 3106: 1998 (transmittance, reflectance, emissivity, solar radiation of plate glass). Heat acquisition rate test method), JIS R 3107: 1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • TSER Total Solar Energy Rejection
  • the coating liquid used for preparation of the thermal-insulation film of an Example and a comparative example was prepared as follows.
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK (methyl isobutyl ketone) diluent (1 18% by mass) 18 parts by mass of hexate cobalt 8% (metal soap, manufactured by Toei Kako Co., Ltd.) 3 parts by mass Irgacure (registered trademark) 184 (1-hydroxycyclohexyl phenyl ketone, photopolymerization initiator, BASF Japan Ltd.
  • Aronix registered trademark
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 mass parts Aronix (registered trademark) M-313 (2, 196 parts by mass of EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% by mass Part ⁇ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass ⁇ MIBK 446
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 117 parts by mass Aronix (registered trademark) M-402 (5, 6 functional acrylate, 5-functional component 35% by mass, manufactured by Toagosei Co., Ltd.) 78 Mass parts-EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1 mass%) 18 parts by mass-Hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass Irgacure® 819 (bis (2,4,6-trimethylbenzoyl)
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 117 parts by mass ⁇ Hitaroid (registered trademark) 7902-1 (hexafunctional urethane acrylate, manufactured by Hitachi Chemical Co., Ltd.) 78 parts by mass ⁇ EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18 parts by mass • 6% hexoate manganese (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass • Irgacure (registered trademark) ) 819 (bis (2,4,6
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% Part ⁇ hexoate cobalt 8% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ LUCIRIN (registered trademark) TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% Part ⁇ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 122 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60 mass%, manufactured by Toagosei Co., Ltd.) 247 mass parts EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1 mass%) 23 mass Parts ⁇ hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) 16 parts by mass ⁇ MegaFac (registered trademark) F-552 (surfactant
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 148 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 240 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 22% Part ⁇ Hexoate Manganese 6% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by weight ⁇ Irgacure (registered trademark) 819 (Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) 16 parts by mass ⁇ MegaFac (registered trademark) F-552 (surfact
  • YMF-02A (18% by mass Cs 0.33 WO 3 dispersion, dispersant 10% by mass, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 464 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 156 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 14 mass Part ⁇ Hexoate Cobalt 8% (metal soap, manufactured by Toei Kako Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) Manufactured by) 10 parts by mass-MegaFac (
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 498 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 147 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 14 mass Part ⁇ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 10 parts by mass ⁇ Megafac (registered trademark) F-552 (surfactant,
  • YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% by mass Parts ⁇ hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ⁇ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) Manufactured by) 13 parts by mass ⁇ MegaFac
  • YMF-01 (10 mass% Cs 0.33 WO 3 dispersion, 5 mass% dispersant, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 500 mass parts KAYARAD (registered trademark) DPHA (hexafunctional acrylate, Nippon Kayaku Co., Ltd.) 100 parts by mass • Irgacure (registered trademark) 127 (initiator, manufactured by BASF Japan Ltd.) 5 parts by mass • Toluene 446 parts by mass.
  • Preparation of coating solution for low refractive index layer 380 parts by mass of colloidal silica (concentration: 10% by mass, Snowtex (registered trademark) OXS, average particle size of primary particles: 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (concentration: 3 mass) %), 300 parts by weight of polyvinyl alcohol (concentration: 4% by weight, JP-45, polymerization degree: 4500, saponification degree: 88 mol%, manufactured by Nippon Acetate / Poval) 3 parts by weight of an aqueous surfactant solution ( A concentration of 5% by mass, Softazoline (registered trademark) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 45 ° C.
  • the coating solution for low refractive index layer was prepared by finishing 1000 parts by mass with pure water.
  • titanium dioxide sol having a solid content concentration of 20% by mass and having SiO 2 adhered to the surface.
  • Attached titanium dioxide sol (volume average particle size: 9 nm).
  • a high refractive index layer coating solution was prepared by adding 0.4 parts by weight of a surfactant solid solution having a solid content concentration of 5% by weight (SOFTAZOLINE (registered trademark) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.).
  • SOFTAZOLINE registered trademark
  • thermal barrier film sample 1 Example 1
  • a base material a polyethylene terephthalate film having a thickness of 50 ⁇ m, Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.
  • the hard coat layer coating solution HC1 was applied with a gravure coater and dried at 90 ° C. for 1 minute.
  • the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm.
  • a hard coat layer was formed, and a thermal barrier film sample 1 was produced.
  • the thickness of the hard coat layer was appropriately adjusted so that the visible light transmittance was 70%.
  • Thermal barrier film samples 2 to 10 were produced in the same manner as the thermal barrier film sample 1 except that the hard coat layer coating liquid HC1 was changed to the hard coat layer coating liquids HC2 to HC10, respectively.
  • thermo barrier film sample 11 Example 11
  • a substrate heated to 45 ° C. while keeping the coating solution for the low refractive index layer and the coating solution for the high refractive index layer at 45 ° C. polyethylene terephthalate film having a thickness of 50 ⁇ m, Cosmo Shine ( (Registered Trademark) A4300 (manufactured by Toyobo Co., Ltd.) was applied to 21 layers simultaneously (total film thickness: 2.85 ⁇ m).
  • the lowermost layer and the uppermost layer were low refractive index layers, and other than that, the low refractive index layers and the high refractive index layers were alternately laminated.
  • the coating amount was adjusted so that the film thickness during drying was 150 nm for each low refractive index layer and 120 nm for each high refractive index layer.
  • 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to produce a dielectric multilayer film (reflective layer) composed of 21 layers.
  • a hard coat layer coating solution HC11 was applied to the surface of the substrate opposite to the surface on which the dielectric multilayer film was formed, using a gravure coater, and dried at 90 ° C. for 1 minute.
  • the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm.
  • a hard coat layer was formed, and a thermal barrier film sample 11 was produced.
  • the thickness of the hard coat layer was appropriately adjusted so that the visible light transmittance was 70%.
  • thermal barrier film sample 12 Comparative Example 1
  • a thermal barrier film sample 12 was produced in the same manner as the thermal barrier film sample 1 except that the hard coat layer coating liquid HC1 was changed to the hard coat layer coating liquid HC12.
  • the mass of Cs 0.33 WO 3 was subtracted from the mass of the obtained hard coat layer, and the mass of components other than Cs 0.33 WO 3 contained in the hard coat layer was calculated. Further, the mass of Cs 0.33 WO 3 were divided by the mass of the components other than Cs 0.33 WO 3, calculates a ratio of the mass of Cs 0.33 WO 3 with respect to the mass of the components other than Cs 0.33 WO 3 did. This value was defined as Cs 0.33 WO 3 mass ratio.
  • Heat shielding film samples 1 to 12 were heat-treated at 230 ° C. for 5 minutes, and then a razor blade with a single edge from the hard coat layer side was 90 ° to the surface in accordance with the cross-cut method of JIS K 5600-5-6: 1999. A cross cut was made at intervals of 2 mm at an angle of 10 mm to produce a 10 mm square grid. Cellophane tape No. manufactured by Nitto Denko Corporation 29 was pasted and the tape was peeled off.
  • Heat shielding film samples 1 to 12 were attached to a 3 mm plate glass using the above-mentioned adhesive, and a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4000 type) was used in the region of 300 nm to 2500 nm. The transmittance / reflectance was measured every 5 nm. Next, the heat shielding performance TSER was calculated using the following calculation formula using the solar transmittance T (DS) and the solar reflectance R (DS) obtained by the method described in JIS S 3107: 2013. The hard coat layer was measured toward the detector side of the spectrophotometer. If TSER is 40% or more, it is determined that there is no practical problem.
  • TSER (%) ((100 ⁇ T (DS) ⁇ R (DS)) ⁇ 0.7143) + R (DS)
  • Table 1 The above evaluation results are shown in Table 1.
  • thermal barrier films of the present invention (Examples 1 to 11) had a small change in visible light transmittance before and after heat treatment tape peeling.
  • the heat-shielding film of the present invention hardly peels off the hard coat layer even at the time of heat molding such as bonding to curved glass, etc. This means that it is difficult for defects in appearance to occur.
  • the ratio of the mass of the (a) cesium-containing composite tungsten oxide to the mass of components other than the (a) cesium-containing composite tungsten oxide contained in the hard coat layer is When it is 0.05 to 1.0, it is excellent in terms of both a change in visible light transmittance before and after heat treatment tape peeling and curl reduction, and when it is 0.1 to 0.4, it is further excellent. Was confirmed.
  • Example 11 it was confirmed that the heat shield film had a dielectric multilayer film, thereby having higher heat shield performance.
  • Heat shields 1 to 11 were produced using the above heat shield film samples 1 to 11.
  • the above-mentioned pressure-sensitive adhesive layer is formed with a dry film thickness of 10 ⁇ m on the base material surface of the heat shield film samples 1 to 10 and the dielectric multilayer film surface of the heat shield film sample 11 to form a release film (MRF-25, Mitsubishi Plastics). Bonded).
  • a release film MRF-25, Mitsubishi Plastics. Bonded.
  • These films were temporarily fixed with the hard coat layer surface side facing the convex side of curved glass (with a radius of curvature of 3 m or less), and thermoformed from the release film side using a commercially available heat gun. At this time, the set temperature of the heat gun was 400 ° C. When the film was cleanly along the curved glass, the release film was peeled off, and the adhesive layer and the concave surface of the curved glass were attached.
  • the heat shields 1 to 11 produced above did not easily peel off the hard coat layer from the heat shield film at the time of thermoforming at the time of bonding to the curved glass. Furthermore, it was confirmed that defects in appearance such as scratches on the film and changes in color due to heat forming hardly occur.

Abstract

The present invention provides a means with which it is possible to, in a heat-shielding film that includes a hard coat layer having heat-shielding properties, suppress appearance defects and separation of the hard coat layer during hot forming when adhering said film to a substrate such as curved glass. The present invention provides a heat-shielding film comprising: a substrate having a thickness of 10-100 μm; and a hard coat layer formed from the cured product of a hard-coat-layer coating fluid that is disposed on at least one surface of the substrate, and that includes (a) a cesium-containing composite tungsten oxide, (b) an ultraviolet-curable component including a tetrafunctional or lower multifunctional (meth)acrylate in the amount of 50 mass% or less with respect to the total mass of the ultraviolet-curable component, and (c) a photopolymerization initiator. The change in visible light transmittance of the film before and after a tape peeling test when said tape peeling test is performed following a heat treatment is 20% or less.

Description

遮熱フィルムおよびその製造方法、ならびにこれを用いた遮熱体Heat shield film, method for producing the same, and heat shield using the same
 本発明は、遮熱フィルムおよびその製造方法、ならびにこれを用いた遮熱体に関する。より詳細には、本発明は、遮熱性を有するハードコート層を有する遮熱フィルムにおいて、曲面ガラス等の基体への貼合時における加熱成形時のハードコート層の剥離、および外観上の不良の発生を抑制する技術に関する。さらに、本発明はかかる遮熱フィルムを含む遮熱体に関する。 The present invention relates to a heat shield film, a method for producing the same, and a heat shield using the same. More specifically, the present invention relates to a thermal barrier film having a thermal barrier hard coat layer, the peeling of the hard coat layer at the time of thermoforming at the time of bonding to a substrate such as curved glass, and poor appearance. The present invention relates to a technology for suppressing generation. Furthermore, the present invention relates to a heat shield including such a heat shield film.
 省エネルギー対策の一環として、冷房設備にかかる負荷を減らす観点から、建物や車両の窓ガラスに装着させて、太陽光の熱線(赤外線)の透過を遮蔽する遮熱フィルムへの要望が高まってきている。 As part of energy-saving measures, from the viewpoint of reducing the load on cooling equipment, there is an increasing demand for a thermal barrier film that is attached to the window glass of buildings and vehicles and shields the transmission of solar heat rays (infrared rays). .
 遮熱フィルムは、建物や車両の窓ガラスに貼り付けられて用いられるため、透明性および遮熱性に加え、貼合時や清掃時に傷が入らないような耐傷性も必要とされる。そのため、遮熱フィルムは、一般的にはフィルム表面に表面保護を目的としたハードコート層が形成される。 Since the heat shielding film is used by being attached to a window glass of a building or a vehicle, in addition to transparency and heat shielding properties, scratch resistance is required so as not to be damaged at the time of bonding or cleaning. For this reason, the heat-shielding film generally has a hard coat layer for surface protection formed on the film surface.
 かような遮熱フィルムとしては、たとえば、基材フィルム上の一方の面に、赤外吸収剤である熱線遮蔽性金属酸化物と特定の活性エネルギー線硬化型化合物とを含むハードコート層形成材料から形成されたハードコート層を有し、他方の面に粘着層を有する近赤外線遮蔽フィルムが提案されている。ここで、前記の特定の活性エネルギー線硬化型化合物は、5官能以上の多官能アクリレート系モノマーを主体とすることを特徴としており、かような構成により、フィルムのカールが良好なフィルムが得られることが開示されている(たとえば、特開2008-200983号公報(米国特許出願公開第2010/015379号明細書に相当)参照)。 As such a heat shielding film, for example, a hard coat layer forming material containing a heat ray shielding metal oxide which is an infrared absorber and a specific active energy ray curable compound on one surface of a base film. There has been proposed a near-infrared shielding film having a hard coat layer formed from the above and having an adhesive layer on the other surface. Here, the specific active energy ray-curable compound described above is mainly composed of a polyfunctional acrylate monomer having 5 or more functional groups, and with such a configuration, a film with good film curl can be obtained. (See, for example, Japanese Patent Application Laid-Open No. 2008-200383 (corresponding to US Patent Application Publication No. 2010/015379)).
 特開2008-200983号公報(米国特許出願公開第2010/015379号明細書に相当)の発明に係るフィルムにおいては、一定のカールの改善効果は認められる。しかしながら、かかるフィルムは、ハードコート層を形成する材料によっては、曲面ガラス等の基体への貼合時における加熱成形時にハードコート層の剥離が生じるという問題が生じており、改善が望まれていた。また、かかるフィルムは、曲面ガラス等の基体への貼合時における加熱成形時に遮熱フィルムの傷、および色味の変化等、外観上の不良が発生することからも改善が望まれていた。 In the film according to the invention of JP 2008-200903 A (corresponding to US Patent Application Publication No. 2010/015379), a certain curling improvement effect is recognized. However, such a film has a problem that, depending on the material forming the hard coat layer, the hard coat layer may be peeled off during heat molding when bonded to a substrate such as curved glass, and an improvement has been desired. . In addition, such a film has been desired to be improved because defects in its appearance such as scratches on the heat-shielding film and changes in color tone during heat molding at the time of bonding to a substrate such as curved glass.
 そこで、本発明は、遮熱性を有するハードコート層を有する遮熱フィルムにおいて、カールを低減するとともに、曲面ガラス等の基体への貼合時における加熱成形時のハードコート層の剥離、および外観上の不良の発生を抑制した遮熱フィルムを提供することを目的としている。 Therefore, the present invention provides a thermal barrier film having a thermal barrier hard coat layer, which reduces curling, peels off the hard coat layer during heat molding at the time of bonding to a substrate such as curved glass, and the appearance. It aims at providing the thermal-insulation film which suppressed generation | occurrence | production of the defect of this.
 本発明の上記課題は、以下の手段により解決される。 The above-mentioned problem of the present invention is solved by the following means.
 厚さ10~100μmである基材と、
 基材の少なくとも一方の面側に配置された、下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、ハードコート層用塗布液の硬化物からなるハードコート層と、を有し、
 熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルム。
A substrate having a thickness of 10 to 100 μm;
The following (a) to (c) arranged on at least one surface side of the substrate:
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization A hard coat layer comprising a cured product of a coating liquid for hard coat layer containing an agent,
The thermal insulation film whose change of the visible light transmittance | permeability of the film before and behind a tape peeling test is 20% or less when a tape peeling test is performed after heat processing.
 以下、本発明の実施形態を説明する。ただし、本発明は以下の形態のみに制限されない。 Hereinafter, embodiments of the present invention will be described. However, this invention is not restrict | limited only to the following forms.
 なお、本明細書において「(メタ)アクリレート」や「(メタ)アクリル」とは、アクリレートおよびメタアクリレートの総称である。(メタ)アクリル等の(メタ)を含む化合物等も同様に、名称中に「メタ」を有する化合物と「メタ」を有さない化合物の総称である。 In this specification, “(meth) acrylate” and “(meth) acryl” are generic names for acrylate and methacrylate. Similarly, a compound containing (meth) such as (meth) acryl is a generic term for a compound having “meth” in the name and a compound not having “meta”.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 〈遮熱フィルム〉
 本発明の一形態は、厚さ10~100μmである基材と、基材の少なくとも一方の面側に配置された、下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、ハードコート層用塗布液の硬化物からなるハードコート層と、を有し、熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルムに関する。かような構成を有するフィルムによれば、カールを低減することに加え、曲面ガラス等の基体への貼合時における加熱成形時のハードコート層の剥離、および外観上の不良の発生を抑制することができる。
<Heat shield film>
In one embodiment of the present invention, a base material having a thickness of 10 to 100 μm and the following (a) to (c) disposed on at least one surface side of the base material:
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization And a hard coat layer comprising a cured product of a hard coat layer coating solution containing an agent, and when the tape peel test is performed after the heat treatment, the change in visible light transmittance of the film before and after the tape peel test is 20 % Relating to a thermal barrier film. According to the film having such a configuration, in addition to reducing curling, the peeling of the hard coat layer at the time of thermoforming at the time of bonding to a substrate such as curved glass and the occurrence of defects in appearance are suppressed. be able to.
 本発明者らは、熱線遮蔽性金属酸化物であるセシウム含有複合タングステン酸化物を含むハードコート層において、5官能以上の多官能(メタ)アクリレートを紫外線硬化型成分の総質量の50質量%以上用いた場合、加熱成形時のハードコート層の剥離、および外観上の不良が発生する頻度が高くなることを発見した。 In the hard coat layer containing the cesium-containing composite tungsten oxide that is a heat ray shielding metal oxide, the present inventors add a polyfunctional (meth) acrylate having 5 or more functional groups to 50 mass% or more of the total mass of the ultraviolet curable component. When used, it has been found that the frequency of occurrence of peeling of the hard coat layer during heat molding and appearance defects increases.
 その上で、本発明者らは、検討を進めた結果、セシウム含有複合タングステン酸化物を含むハードコート層において、ハードコート層を形成するための紫外線硬化型成分が、その総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含むことで、良好なカール抑制効果を維持しつつ、剥離および外観不良が改善できるという驚くべき事実を見出した。そして、遮熱フィルムのテープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下とすることで、実際の加熱成形時における剥離および外観不良を大幅に抑制できることを見出し、本発明を完成するに至った。 Then, as a result of investigations, the present inventors have found that, in the hard coat layer containing the cesium-containing composite tungsten oxide, the ultraviolet curable component for forming the hard coat layer is 50% of the total mass. The inventors have found the surprising fact that peeling and poor appearance can be improved while maintaining a good curl-inhibiting effect by containing a polyfunctional (meth) acrylate of 4% or less by mass and not less than 4% by mass. And the change of visible light transmittance of the film before and after the tape peeling test of the thermal barrier film is found to be 20% or less, and it can be found that peeling and poor appearance during actual thermoforming can be greatly suppressed, and the present invention is completed. It came to do.
 本発明者らは、本発明の一形態に係る遮熱フィルムを用いることで加熱成形中のハードコート層の剥離、および外観上の不良が抑制されるメカニズムについて、以下のように推測している。 The present inventors have speculated as follows about the mechanism by which the peeling of the hard coat layer during thermoforming and the appearance defect are suppressed by using the thermal barrier film according to one embodiment of the present invention. .
 遮熱フィルムの加熱成形は、基材が軟化して遮熱フィルムの形状変化が十分に可能となる温度において行われる。このとき遮熱フィルムの基材は大きく収縮するが、ハードコート層は基材と比較して収縮が生じ難い。ここで、5官能以上と官能基数が多い多官能(メタ)アクリレートを紫外線硬化型成分の主成分として有するハードコート層用塗布液より形成されたハードコート層は、硬化と共に靱性が低下し脆くなるため、加熱成形時の基材の変形に追随できず、剥離が生じ易くなり、ハードコート層の破壊も生じ易くなる。 The heat-shielding film is thermoformed at a temperature at which the base material is softened and the shape of the heat-shielding film can be sufficiently changed. At this time, the base material of the heat-shielding film contracts greatly, but the hard coat layer hardly contracts as compared with the base material. Here, the hard coat layer formed from the coating liquid for the hard coat layer having a polyfunctional (meth) acrylate having five or more functional groups and a large number of functional groups as the main component of the ultraviolet curable component is reduced in toughness and becomes brittle with curing. For this reason, it cannot follow the deformation of the base material at the time of heat forming, and peeling easily occurs, and the hard coat layer is easily broken.
 さらに、優れた赤外吸収剤として機能する、熱線遮蔽性金属酸化物の1つであるセシウム含有複合タングステン酸化物は、製造方法の都合により、数nm~数百nmと幅広い粒径分布を有している。この中で、粒径が大きい成分は、加熱成形時にハードコート層の収縮が発生した際に、収縮応力が蓄積しやすいためクラックの起点となりやすい。そして、かかるクラックが破壊の原因となり、破壊箇所を起点とする剥離の原因となる。 Furthermore, cesium-containing composite tungsten oxide, which is one of the heat ray shielding metal oxides that functions as an excellent infrared absorber, has a wide particle size distribution of several nm to several hundred nm depending on the manufacturing method. is doing. Among these, a component having a large particle size is likely to become a starting point of a crack because shrinkage stress is easily accumulated when shrinkage of the hard coat layer occurs during heat molding. Such cracks cause destruction, and cause peeling that starts from the location of the destruction.
 そして、かような剥離や破壊はハードコート層自身の傷となり、またハードコート層自身の部分的な欠損が生じることにより色味変化が生じる。 Further, such peeling or destruction results in scratches on the hard coat layer itself, and color changes occur due to partial defects in the hard coat layer itself.
 一方、本発明の一形態に係る遮熱フィルムは、4官能以下の多価アクリレートを紫外線硬化型成分の主成分とすることで、ハードコート層が適度なしなやかさを有する。かようなハードコート層は、加熱成形時の基材の変形に対する追随性が向上するため、剥離が発生し難くなる。 On the other hand, the heat-shielding film according to an embodiment of the present invention has a moderately soft hard coat layer by using a polyfunctional acrylate having a functionality of 4 or less as a main component of an ultraviolet curable component. Such a hard coat layer is less likely to be peeled off due to improved followability to deformation of the substrate during heat molding.
 さらに、かようなハードコート層は、靱性が良好となる。そのため、ハードコート層と基材との収縮差に伴い、ハードコート層と基材との界面で発生する収縮応力に起因する破壊も生じ難くなる。 Furthermore, such a hard coat layer has good toughness. Therefore, with the difference in shrinkage between the hard coat layer and the substrate, breakage due to the shrinkage stress generated at the interface between the hard coat layer and the substrate is less likely to occur.
 なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の一形態に係る技術的範囲に影響を及ぼすものではない。 The above mechanism is based on speculation, and its correctness does not affect the technical scope according to one embodiment of the present invention.
 さらに、本発明者らは、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化の測定は、実際の加熱成形時において生じる剥離や外観故障に対する強制試験として機能すると推測した。そして、本発明者らは、かような強制試験の結果、可視光線透過率の変化が20%を超えるフィルムにおいては、ハードコート層の剥離、および外観故障の発生頻度が高まることを見出し、可視光線透過率の変化の上限値を20%以下と規定した。 Furthermore, the present inventors presumed that the measurement of the change in the visible light transmittance of the film before and after the tape peeling test functions as a compulsory test for peeling and appearance failure occurring during actual heat forming in the heat shielding film. As a result of such a compulsory test, the present inventors have found that, in a film having a change in visible light transmittance of more than 20%, the hard coat layer is peeled off and the appearance frequency is increased. The upper limit of change in light transmittance was defined as 20% or less.
 ここで、可視光線透過率の変化が20%以下の範囲で良好な結果が得られる理由は、可視光線透過率の変化が小さいことは、実際の加熱成形時において発生する可能性のあるハードコート層の異常、すなわち剥離や破壊による傷による光の散乱、部分的な欠損による色味変化(透過率変化)が少ないことを意味するからであると推測している。これにより、上記の値を満たす遮熱フィルムは、剥離、および外観上の不良の発生が抑制されると考えられる。ただし、上記メカニズムは推測に基づくものであり、その正誤が本発明の一形態に係る技術的範囲に影響を及ぼすものではない。ここで、さらなる剥離、および外観上の不良の発生の頻度を低下されるとの観点から、可視光線透過率の変化は、18%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましく、5%以下であることが特に好ましい。なお、可視光線透過率の変化の下限は0%である。 Here, the reason why good results are obtained when the change in visible light transmittance is 20% or less is that the small change in visible light transmittance is a hard coat that may occur during actual heat forming. It is presumed that this means that there is little color change (transmittance change) due to layer abnormality, that is, light scattering due to scratches due to peeling or destruction, and partial defects. Thereby, it is thought that the heat-shielding film satisfying the above-described values suppresses the occurrence of peeling and appearance defects. However, the above mechanism is based on speculation, and its correctness does not affect the technical scope according to one embodiment of the present invention. Here, from the viewpoint of further reducing the frequency of occurrence of peeling and appearance defects, the change in visible light transmittance is preferably 18% or less, and more preferably 15% or less. It is more preferably 10% or less, and particularly preferably 5% or less. The lower limit of the change in visible light transmittance is 0%.
 テープ剥離試験は、JIS K 5600-5-6:1999のクロスカット法に沿って行うことができる。また、可視光線透過率の測定は、厚さ3mmのガラス板上に作製したハードコート層と基材とを粘着剤で貼り合せたものを用いて、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて、JIS S 3107:2013の可視光線透過率試験に沿って行うことができる、なお、詳細な測定方法は実施例に記載する。 The tape peeling test can be performed according to the cross-cut method of JIS K 5600-5-6: 1999. Visible light transmittance was measured using a spectrophotometer (using an integrating sphere, Hitachi, Ltd.) using a hard coat layer prepared on a 3 mm thick glass plate and a substrate bonded with an adhesive. The U-4000 type manufactured by Seisakusho can be used in accordance with the visible light transmittance test of JIS S 3107: 2013. A detailed measurement method is described in the examples.
 そして、テープ剥離試験前後のフィルムの可視光線透過率の変化量は、基材の膜厚、ハードコート層の膜厚、ハードコート層用塗布液中のセシウム含有複合タングステン酸化物の含有量、紫外線硬化組成物の種類や比率、光重合開始剤の種類や比率、ハードコート層形成時の光量および光源等の紫外線硬化条件等によって制御することができる。
 また、ハードコート層と基材との間にその他の任意で設けられる層を有する場合についても、基材の収縮の影響は、ハードコート層よりも基材に近い他の層の方がより大きく受けることから、ハードコート層と比較して他の層の収縮量が大きくなると考えられる。これより、ハードコート層と基材との間にその他の任意で設けられる層を有する場合であっても、上記メカニズムにより、カールを低減するとともに、曲面ガラス等の基体への貼合時における加熱成形時のハードコート層の剥離、および外観上の不良の発生を抑制した遮熱フィルムを提供することができると考えられる。
And the amount of change in the visible light transmittance of the film before and after the tape peel test is the film thickness of the substrate, the film thickness of the hard coat layer, the content of the cesium-containing composite tungsten oxide in the coating liquid for the hard coat layer, the ultraviolet light It can be controlled by the type and ratio of the curable composition, the type and ratio of the photopolymerization initiator, the amount of light when forming the hard coat layer, the ultraviolet curing conditions such as the light source, and the like.
In addition, in the case of having other optional layers provided between the hard coat layer and the base material, the influence of the shrinkage of the base material is larger in the other layers closer to the base material than in the hard coat layer. Therefore, it is considered that the shrinkage amount of the other layers is larger than that of the hard coat layer. As a result, even when it has other optional layers provided between the hard coat layer and the substrate, the above mechanism reduces curl and heats when bonding to a substrate such as curved glass. It is considered that a heat-shielding film can be provided that suppresses peeling of the hard coat layer during molding and occurrence of defects in appearance.
 本発明の一形態に係る遮熱フィルムは、前述のようにカールの発生も抑制することができる。カールが抑制されることで、施工作業時における作業性をさらに良好なものとすることができる。 The heat shield film according to one embodiment of the present invention can also suppress the occurrence of curling as described above. By suppressing curling, workability during construction work can be further improved.
 カールの測定は、A4サイズにカットしたサンプルが短辺方向に変形した際の度合いを評価することで求めることができる。なお、詳細な測定方法は実施例に記載する。 The measurement of curl can be obtained by evaluating the degree when a sample cut to A4 size is deformed in the short side direction. Detailed measurement methods are described in the examples.
 また、本発明の一形態に係る遮熱フィルムの総膜厚は、12~120μmであることが好ましい。総膜厚が120μm以下であると、遮熱フィルムをガラス等の基体と貼り合わせる際に、たとえば、曲面ガラス等の曲面を有する基体への追従性がより良好となり、シワの発生が抑制される。また、総膜厚が12μm以上であると、取扱い中にシワの発生が抑制される。同様の観点から、遮熱フィルムの総膜厚は、25~90μmであることがより好ましく、25~65μmであることがさらに好ましい。 The total film thickness of the heat shield film according to one embodiment of the present invention is preferably 12 to 120 μm. When the total film thickness is 120 μm or less, for example, when a heat-shielding film is bonded to a substrate such as glass, followability to a substrate having a curved surface such as curved glass becomes better, and the generation of wrinkles is suppressed. . Moreover, generation | occurrence | production of a wrinkle is suppressed during handling as a total film thickness is 12 micrometers or more. From the same viewpoint, the total film thickness of the heat shielding film is more preferably 25 to 90 μm, and further preferably 25 to 65 μm.
 [基材]
 基材は、ハードコート層や、その他の任意で設けられる層(たとえば、誘電体多層膜などに代表される機能層)を支持する機能を有する。
[Base material]
The base material has a function of supporting a hard coat layer and other arbitrarily provided layers (for example, a functional layer typified by a dielectric multilayer film).
 基材は、種々の樹脂フィルムを用いることができ、透明であることが好ましい。たとえば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等を用いることができる。これらのうち、ポリエステルフィルムを用いることが好ましい。 As the substrate, various resin films can be used, and the substrate is preferably transparent. For example, polyolefin film (polyethylene, polypropylene, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent cellulose nanofiber film, etc. Can be used. Among these, it is preferable to use a polyester film.
 当該ポリエステルフィルムの中でも透明性、機械的強度、寸法安定性などの観点から、フィルムを形成するポリエステルとしては、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分と、を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。なかでも、フィルムを形成するポリエステルとしては、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルがより好ましい。基材としては、ポリエチレンテレフタレートフィルムをもちいることがさらに好ましい。 Among the polyester films, from the viewpoint of transparency, mechanical strength, dimensional stability, the polyester forming the film includes dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, ethylene glycol, and 1, A polyester having a film-forming property, having a diol component such as 4-cyclohexanedimethanol as a main constituent component is preferable. Among them, the polyesters forming the film include polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymer polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and these polyesters. A polyester having a mixture of two or more of the above as main constituent components is more preferred. More preferably, a polyethylene terephthalate film is used as the substrate.
 また、本発明の一形態に係る遮熱フィルムの基材としては、上記に挙げたもののほか、後述の誘電体多層膜であって、自己支持性を有するものを使用することができる。自己支持性を有する誘電体多層膜としては、特に制限されないが、たとえば共押出法や共流涎法にて作製された誘電体多層膜等が挙げられる。 Further, as the base material of the heat-shielding film according to one embodiment of the present invention, in addition to those mentioned above, a dielectric multilayer film described later and having a self-supporting property can be used. Although it does not restrict | limit especially as a dielectric multilayer film which has a self-supporting property, For example, the dielectric multilayer film etc. which were produced by the coextrusion method or the co-flow method are mentioned.
 基材の材料および膜厚は、遮熱フィルムの熱収縮率を基材の熱収縮率で除した値が1~3の範囲内となるように設定されたものであることが好ましい。 The material and film thickness of the base material are preferably set so that the value obtained by dividing the thermal shrinkage rate of the thermal barrier film by the thermal shrinkage rate of the base material is in the range of 1 to 3.
 基材の膜厚は、10~100μmである。基材の膜厚が10μmより薄いと、取扱い中にシワが発生する。一方、基材の膜厚が100μmより厚いと、遮熱フィルムをガラス等の基体と貼り合わせる際に、たとえば、曲面ガラス等の曲面を有する基体への追従性が悪くなり、シワが発生する。これにより、基材の膜厚が10~100μmの範囲であると、遮熱フィルムにおいて、シワを低減することができる。また、基材の膜厚が10~100μmの範囲であると、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくすることができる。同様の観点より、基材の膜厚は、20~80μmであることが好ましく、20~60μmであることがさらに好ましい。 The film thickness of the substrate is 10 to 100 μm. If the thickness of the substrate is less than 10 μm, wrinkles are generated during handling. On the other hand, when the thickness of the base material is greater than 100 μm, when the thermal barrier film is bonded to a substrate such as glass, followability to a substrate having a curved surface such as curved glass is deteriorated, and wrinkles are generated. Thus, when the thickness of the substrate is in the range of 10 to 100 μm, wrinkles can be reduced in the heat shield film. Further, when the film thickness of the substrate is in the range of 10 to 100 μm, the change in visible light transmittance of the film before and after the tape peeling test can be further reduced. From the same viewpoint, the thickness of the substrate is preferably 20 to 80 μm, and more preferably 20 to 60 μm.
 基材は、二軸配向ポリエステルフィルムであることが特に好ましいが、未延伸または少なくとも一方向に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の観点から延伸フィルムであることが好ましい。 The substrate is particularly preferably a biaxially oriented polyester film, but a polyester film that has not been stretched or has been stretched in at least one direction can also be used. A stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion.
 [ハードコート層]
 本発明の一形態において、「ハードコート層」とは、JIS K 5600-5-4:1999に準じた鉛筆硬度がH以上の層であり、好ましくは2H以上の層である。ハードコート層の硬さは、折り曲げ等の外部応力がかかった際に層の破壊や剥がれなどが発生しない範囲で硬い方が耐傷性の点で好ましい。
[Hard coat layer]
In one embodiment of the present invention, the “hard coat layer” is a layer having a pencil hardness of H or higher according to JIS K 5600-5-4: 1999, preferably a layer of 2H or higher. The hardness of the hard coat layer is preferably in terms of scratch resistance as long as the layer is not damaged or peeled off when an external stress such as bending is applied.
 本発明の一形態に係るハードコート層は、(a)セシウム含有複合タングステン酸化物、(b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分、および(c)光重合開始剤、を含むハードコート層用塗布液を基材上に塗布後、紫外線を照射して塗膜を硬化させることによって形成されることが好ましい。すなわち、本発明の一形態に係るハードコート層は、下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、ハードコート層用塗布液の硬化物からなる。
The hard coat layer according to one embodiment of the present invention is composed of (a) a cesium-containing composite tungsten oxide and (b) a tetrafunctional or lower polyfunctional (meth) acrylate of 50% by mass or more based on the total mass of the ultraviolet curable component. It is formed by applying a coating liquid for hard coat layer containing an ultraviolet curable component containing (c) a photopolymerization initiator on a substrate, and then irradiating with ultraviolet rays to cure the coating film. preferable. That is, the hard coat layer according to one embodiment of the present invention includes the following (a) to (c):
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization It consists of the hardened | cured material of the coating liquid for hard-coat layers containing an agent.
 ここで、(a)セシウム含有複合タングステン酸化物は、後述のように赤外吸収性を有する熱線遮蔽性金属酸化物([赤外線遮蔽性金属酸化物]とも称される)の1種であることから、前記ハードコート層用塗布液から形成されたハードコート層は、熱線(赤外線)の透過を遮蔽する遮熱機能を有する。 Here, (a) the cesium-containing composite tungsten oxide is one kind of heat ray shielding metal oxide having infrared absorptivity (also referred to as [infrared shielding metal oxide]) as described later. Thus, the hard coat layer formed from the coating liquid for hard coat layer has a heat shielding function for shielding the transmission of heat rays (infrared rays).
 ハードコート層の厚さは、特に制限されないが、1~20μmであることが好ましい。厚さを1μm以上とすることによって、ハードコート層の硬度を維持することができる。一方、厚さを20μm以下とすることによって、応力によるハードコート層の割れを防ぐことができる。また、かような範囲であると、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくすることができる。同様の観点から、ハードコート層の厚さは、1.5~15μmであることがより好ましい。 The thickness of the hard coat layer is not particularly limited, but is preferably 1 to 20 μm. By setting the thickness to 1 μm or more, the hardness of the hard coat layer can be maintained. On the other hand, by setting the thickness to 20 μm or less, cracking of the hard coat layer due to stress can be prevented. Moreover, the change of the visible light transmittance | permeability of the film before and behind a tape peeling test can be made smaller in a heat-shielding film as it is such a range. From the same viewpoint, the thickness of the hard coat layer is more preferably 1.5 to 15 μm.
 (ハードコート層の形成方法)
 まず、ハードコート層用塗布液に含まれる各成分について説明する。
(Method for forming hard coat layer)
First, each component contained in the hard coat layer coating solution will be described.
 (a)セシウム含有複合タングステン酸化物
 セシウム含有複合タングステン酸化物は、赤外吸収性を有する熱線遮蔽性金属酸化物の1種である。
(A) Cesium-containing composite tungsten oxide Cesium-containing composite tungsten oxide is a kind of heat ray shielding metal oxide having infrared absorptivity.
 本発明の一形態に係るハードコート層用塗布液は、熱線遮蔽性金属化合物であるセシウム含有複合タングステン酸化物(以下(a)成分とも称される)を必須に含む。 The coating liquid for hard coat layer according to one embodiment of the present invention essentially contains cesium-containing composite tungsten oxide (hereinafter also referred to as component (a)) that is a heat ray shielding metal compound.
 セシウム含有複合タングステン酸化物の組成は、特に制限されないが、安全性の観点から、一般式:Csで表される酸化物であることが好ましく、たとえば、特開2013-64042号公報や特開2010-215451号公報に記載されるものと同様のものを使用することができる。ここで、Csはセシウムを表し、Wはタングステンを表し、Oは酸素を表す。x、y及びzは、一般的にタングステンとCsとの組成(タングステンに対するCsの組成、x/y)が、0.001以上1以下(0.001≦x/y≦1)を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が、2.0以上3.5以下(2.0≦z/y≦3.5)を満たすものを用いることが好ましい。また、タングステンとCsとの組成(タングステンに対するCsの組成、x/y)が0.001≦x/y≦1の関係を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が2.2≦z/y≦3の関係を満たすことがより好ましく、0.01≦x/y≦0.8かつ2.3≦z/y≦3の関係を満たすことがさらに好ましく、0.1≦x/y≦0.5かつ2.45≦z/y≦3の関係を満たすことが特に好ましい。 The composition of the cesium-containing composite tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: Cs x W y O z from the viewpoint of safety. For example, JP2013-64042A The same ones as described in Japanese Patent Laid-Open No. 2010-215451 can be used. Here, Cs represents cesium, W represents tungsten, and O represents oxygen. x, y, and z generally have a composition of tungsten and Cs (composition of Cs to tungsten, x / y) satisfying 0.001 or more and 1 or less (0.001 ≦ x / y ≦ 1). It is preferable to use a material in which the composition of oxygen and oxygen (composition of oxygen with respect to tungsten, z / y) satisfies 2.0 or more and 3.5 or less (2.0 ≦ z / y ≦ 3.5). Further, the composition of tungsten and Cs (composition of Cs to tungsten, x / y) satisfies the relationship of 0.001 ≦ x / y ≦ 1, and the composition of tungsten and oxygen (composition of oxygen to tungsten, z / y ) Satisfies the relationship of 2.2 ≦ z / y ≦ 3, more preferably satisfies the relationship of 0.01 ≦ x / y ≦ 0.8 and 2.3 ≦ z / y ≦ 3, It is particularly preferable that the relationship 0.1 ≦ x / y ≦ 0.5 and 2.45 ≦ z / y ≦ 3 is satisfied.
 セシウム含有複合タングステン酸化物の形状は、特に制限されず、粒子状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうるが、好ましくは粒子状である。また、セシウム含有複合タングステン酸化物等の大きさは、特に制限されない。ただし、セシウム含有複合タングステン酸化物等が粒子状である場合には、セシウム含有複合タングステン酸化物等粒子の平均粒径(平均一次粒子径、直径)は、可視光の反射を抑制しつつ、熱線吸収効果を確保できること、また散乱によるヘイズの劣化が生じず、透明性を確保できることから、5~150nmであることが好ましく、5~100nmであることがより好ましく、10~80nmであることがさらに好ましく、30~60nmであることが特に好ましく、40~50nmであることが最も好ましい。なお、上記平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The shape of the cesium-containing composite tungsten oxide is not particularly limited, and may take any structure such as a particulate shape, a spherical shape, a rod shape, a needle shape, a plate shape, a columnar shape, an indefinite shape, a flake shape, and a spindle shape, preferably It is particulate. The size of the cesium-containing composite tungsten oxide is not particularly limited. However, when the cesium-containing composite tungsten oxide or the like is in the form of particles, the average particle size (average primary particle diameter, diameter) of the particles such as the cesium-containing composite tungsten oxide is a heat ray while suppressing reflection of visible light. It is preferably 5 to 150 nm, more preferably 5 to 100 nm, and even more preferably 10 to 80 nm, because the absorption effect can be secured, and haze deterioration due to scattering does not occur and transparency can be secured. Preferably, the thickness is 30 to 60 nm, and most preferably 40 to 50 nm. The average particle size is determined by observing the particle itself or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number Average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明の一形態において用いることができるセシウム含有複合タングステン酸化物としては、特に制限されないが、たとえば、Cs0.33WO等が挙げられる。 The cesium-containing composite tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and the like.
 また、これらの具体的な商品名としては、特に制限されないが、たとえばCWO分散液(YMF-02A 住友金属鉱山株式会社製)等が挙げられる。 Further, these specific trade names are not particularly limited, and examples thereof include CWO dispersion (YMF-02A, manufactured by Sumitomo Metal Mining Co., Ltd.).
 ハードコート層中のセシウム含有複合タングステン酸化物の含有量は、特に制限されないが、ハードコート層に含まれる、セシウム含有複合タングステン酸化物以外の成分の質量(ハードコート層の質量からセシウム含有複合タングステン酸化物の質量を除いた質量)に対するセシウム含有複合タングステン酸化物の質量の比が0.05~1.0であることが好ましい。ここで、ハードコート層中に含まれる、セシウム含有複合タングステン酸化物以外の成分の質量に対するセシウム含有複合タングステン酸化物の質量の比が0.05以上であると、ハードコート層における紫外線硬化型成分から形成される重合体の量が相対的に減少することで、加熱成形時におけるハードコート層の収縮量をより減少させることができる。これより、加熱成形時におけるハードコート層の収縮がより発生し難く、ハードコート層と基材の界面において発生する収縮応力もより小さくなる。これより、加熱成形時におけるハードコート層の収縮に起因するカール等の変形がより抑制され、さらなる密着性の改善が可能となる。また、かかる界面における残留応力に起因してフィルム形成後に発生するカールの発生についても、さらなる抑制が可能となる。ハードコート層中に含まれる、セシウム含有複合タングステン酸化物以外の成分の質量に対するセシウム含有複合タングステン酸化物の質量の比が1.0以下であると、ハードコート層におけるセシウム含有複合タングステン酸化物の数が相対的に少なくなる。その結果、粒子間の距離が大きくなることで膜がより均一に製膜しやすくなり、欠陥や、欠陥部位に起因する剥離の発生頻度のさらなる抑制が可能となる。また、かような範囲であると、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくすることができる。これより、本発明の好ましい一形態は、ハードコート層中に含まれる、セシウム含有複合タングステン酸化物以外の成分の質量に対するセシウム含有複合タングステン酸化物の質量の比が0.05~1.0である遮熱フィルムである。同様の観点から、ハードコート層中に含まれる、セシウム含有複合タングステン酸化物以外の成分の質量に対するセシウム含有複合タングステン酸化物の質量の比が0.08~0.6であることがより好ましく、0.1~0.4であることがさらに好ましく、0.20~0.4であることが特に好ましい。 The content of the cesium-containing composite tungsten oxide in the hard coat layer is not particularly limited, but the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer (from the mass of the hard coat layer to the cesium-containing composite tungsten oxide) The ratio of the mass of the cesium-containing composite tungsten oxide to the mass excluding the mass of the oxide is preferably 0.05 to 1.0. Here, when the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.05 or more, the ultraviolet curable component in the hard coat layer Since the amount of the polymer formed from is relatively reduced, the shrinkage amount of the hard coat layer at the time of heat molding can be further reduced. As a result, the shrinkage of the hard coat layer during heat forming is less likely to occur, and the shrinkage stress generated at the interface between the hard coat layer and the substrate is also reduced. As a result, deformation such as curling due to shrinkage of the hard coat layer at the time of thermoforming is further suppressed, and further improvement in adhesion is possible. Further, the curl generated after the film formation due to the residual stress at the interface can be further suppressed. When the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 1.0 or less, the number of cesium-containing composite tungsten oxides in the hard coat layer is Relatively less. As a result, the distance between the particles is increased, so that the film can be more easily formed into a uniform film, and the frequency of occurrence of defects and peeling due to the defective portion can be further suppressed. Moreover, the change of the visible light transmittance | permeability of the film before and behind a tape peeling test can be made smaller in a heat-shielding film as it is such a range. Thus, in a preferred embodiment of the present invention, the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.05 to 1.0. It is a thermal barrier film. From the same viewpoint, it is more preferable that the ratio of the mass of the cesium-containing composite tungsten oxide to the mass of components other than the cesium-containing composite tungsten oxide contained in the hard coat layer is 0.08 to 0.6, It is more preferably 0.1 to 0.4, and particularly preferably 0.20 to 0.4.
 なお、ハードコート層中に含まれるセシウム含有複合タングステン酸化物の質量は、ICP-AESを用いてハードコート層に含まれるタングステンの質量を測定し、得られた値より算出することができる。なお、詳細な測定方法は実施例に記載する。 The mass of the cesium-containing composite tungsten oxide contained in the hard coat layer can be calculated from the value obtained by measuring the mass of tungsten contained in the hard coat layer using ICP-AES. Detailed measurement methods are described in the examples.
 ハードコート層用塗布液中におけるセシウム含有複合タングステン酸化物の含有量は、特に制限されないが、ハードコート層用塗布液の溶媒を除いた成分の総質量に対して、1~60質量%が好ましく、5~40質量%がより好ましく、8~30質量%であることがさらに好ましく、18~29質量%であることが特に好ましい。 The content of the cesium-containing composite tungsten oxide in the hard coat layer coating solution is not particularly limited, but is preferably 1 to 60% by mass with respect to the total mass of the components excluding the solvent of the hard coat layer coating solution. 5 to 40% by mass is more preferable, 8 to 30% by mass is further preferable, and 18 to 29% by mass is particularly preferable.
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 本明細書において、紫外線硬化型成分とは、紫外線により架橋反応等を経て硬化する化合物を表す。なお、本明細書では、紫外線硬化型成分との用語は、単量体のみならず、紫外線照射により硬化可能なオリゴマーやプレポリマ-をも含みうる概念である。
(B) Ultraviolet curable component containing a polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more with respect to the total mass of the ultraviolet curable component. In the present specification, the ultraviolet curable component is crosslinked by ultraviolet rays. A compound that cures through a reaction or the like is represented. In the present specification, the term “ultraviolet curable component” is a concept that may include not only monomers but also oligomers and prepolymers that can be cured by ultraviolet irradiation.
 本発明の一形態に係るハードコート層用塗布液は、(b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分(以下(b)成分とも称される)を必須に含む。ここで、4官能以下の多官能(メタ)アクリレートとは、2官能(メタ)アクリレート、3官能アクリレートまたは4官能アクリレートを表す。 The coating liquid for hard coat layers according to one embodiment of the present invention comprises (b) an ultraviolet curable component containing a polyfunctional (meth) acrylate having a functionality of 4 or less and 4 functional groups or less based on the total mass of the ultraviolet curable component. (Hereinafter also referred to as component (b)) is essential. Here, the tetrafunctional or lower polyfunctional (meth) acrylate represents a bifunctional (meth) acrylate, a trifunctional acrylate or a tetrafunctional acrylate.
 5官能以上の多官能(メタ)アクリレートを紫外線硬化型成分の総質量に対して50質量%以上含む紫外線硬化型成分を用いたハードコート層は、剥離が生じ易くなり、ハードコート層の破壊も生じ易くなる。かかる理由は、加熱成形時における加熱収縮によって遮熱フィルムのカール等の変形が大きくなることより、ハードコート層が、加熱成形時の基材の変形に追随できなくなり、ハードコート層の剥離や破壊が生じやすくなるからであると推測される。ここで、5官能以上の多官能(メタ)アクリレートを紫外線硬化型成分の総質量に対して50質量%以上含む紫外線硬化型成分を用いた際に、ハードコート層の剥離や破壊が生じ易いことは、前述のように、かような紫外線硬化型成分を用いて形成されたハードコート層は、硬化が進むとともに靱性が低下し脆くなることが原因と考えられる。特にハードコート層が大粒径成分を有するセシウム含有複合タングステン酸化物を含むとき、この傾向はより顕著となる。本形態で用いる紫外線硬化型成分としては、紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含むことで、前記問題を解決する。 A hard coat layer using an ultraviolet curable component containing 50% by mass or more of a polyfunctional (meth) acrylate having 5 or more functional groups with respect to the total mass of the ultraviolet curable component is likely to be peeled off, and the hard coat layer may be destroyed. It tends to occur. The reason is that the hard coat layer cannot follow the deformation of the base material at the time of heat forming because the deformation such as curling of the heat shielding film becomes large due to the heat shrinkage at the time of heat forming, and the hard coat layer is peeled off or broken. It is presumed that this is likely to occur. Here, when an ultraviolet curable component containing 50% by mass or more of a polyfunctional (meth) acrylate having 5 or more functional groups is used with respect to the total mass of the ultraviolet curable component, the hard coat layer is likely to be peeled off or broken. As described above, it is considered that the hard coat layer formed using such an ultraviolet curable component is caused to become brittle due to a decrease in toughness as curing proceeds. This tendency becomes more prominent particularly when the hard coat layer contains a cesium-containing composite tungsten oxide having a large particle size component. The ultraviolet curable component used in the present embodiment includes the polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component, thereby solving the above problem.
 前記の効果をさらに高めるため、紫外線硬化型成分の総質量に対する4官能以下の多官能(メタ)アクリレートの割合は、50~100質量%であることが好ましい。また、4官能以下の多官能(メタ)アクリレートの含有量がより多い場合は、フィルム形成後に発生するカールの発生がより抑制される。かかる理由は、硬化反応に寄与する官能基数が5官能以上の多官能(メタ)アクリレートと比較して少ないことから、ハードコート層の加熱収縮量はより小さくなると考えられるからである。これにより、4官能以下の多官能(メタ)アクリレートの割合が多い方が、ハードコート層と基材との界面の残留応力はより小さくなるからであると推測している。これらの観点から、紫外線硬化型成分の総質量に対する4官能以下の多官能(メタ)アクリレートの割合は、60~100質量%であることがより好ましく、80~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。 In order to further enhance the above effect, the ratio of the tetrafunctional or lower polyfunctional (meth) acrylate to the total mass of the ultraviolet curable component is preferably 50 to 100% by mass. Moreover, when there is more content of polyfunctional (meth) acrylate of 4 or less functions, generation | occurrence | production of the curl which generate | occur | produces after film formation is suppressed more. This is because the number of functional groups contributing to the curing reaction is smaller than that of a polyfunctional (meth) acrylate having 5 or more functional groups, so that the heat shrinkage of the hard coat layer is considered to be smaller. Accordingly, it is presumed that the residual stress at the interface between the hard coat layer and the substrate becomes smaller when the ratio of the tetrafunctional or lower polyfunctional (meth) acrylate is larger. From these viewpoints, the ratio of the tetrafunctional or lower polyfunctional (meth) acrylate to the total mass of the ultraviolet curable component is more preferably 60 to 100% by mass, and further preferably 80 to 100% by mass. 100% by mass is particularly preferable.
 本発明の一形態に用いられる4官能以下の多官能(メタ)アクリレートとしては、特に制限されないが、たとえば、多官能(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリオール(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、イソシアヌル酸EO変性(メタ)アクリレート等をあげることができる。 Although it does not restrict | limit especially as polyfunctional (meth) acrylate below 4 functional used for one form of this invention, For example, polyfunctional (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyol (meth) ) Acrylate, polyester (meth) acrylate, silicone (meth) acrylate, isocyanuric acid EO-modified (meth) acrylate, and the like.
 なお、「EO」とは「エチレンオキシド」のことをいい、「PO」とは「プロピレンオキシド」のことをいう。また、「EO変性」とはエチレンオキシドユニット(-CH-CH-O-)のブロック構造を有することを意味し、「PO変性」とはプロピレンオキシドユニット(-CH-CH(CH)-O-)のブロック構造を有することを意味する。 “EO” refers to “ethylene oxide”, and “PO” refers to “propylene oxide”. “EO modified” means having a block structure of ethylene oxide units (—CH 2 —CH 2 —O—), and “PO modified” means propylene oxide units (—CH 2 —CH (CH 3 )). -O-) having a block structure.
 かような4官能以下の多官能(メタ)アクリレートは、2官能、3官能および4官能の(メタ)アクリレート系化合物が挙げられる。 Examples of such tetrafunctional or lower polyfunctional (meth) acrylates include bifunctional, trifunctional, and tetrafunctional (meth) acrylate compounds.
 2官能(メタ)アクリレートとしては、特に制限されないが、たとえば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート等が挙げられる。これらの中でも、イソシアヌル酸EO変性ジ(メタ)アクリレートが好ましく、イソシアヌル酸EO変性ジアクリレートがより好ましい。 The bifunctional (meth) acrylate is not particularly limited. For example, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate , Neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, caprolactone modified dicyclo Examples include pentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, isocyanurate di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, and isocyanuric acid EO-modified di (meth) acrylate. Among these, isocyanuric acid EO-modified di (meth) acrylate is preferable, and isocyanuric acid EO-modified diacrylate is more preferable.
 3官能(メタ)アクリレートとしては、特に制限されないが、たとえば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。これらの中でも、ペンタエリストールトリ(メタ)アクリレートまたはイソシアヌル酸EO変性ジ(メタ)アクリレートが好ましく、ペンタエリストールトリアクリレートまたはイソシアヌル酸EO変性トリアクリレートがより好ましく、ペンタエリストールトリアクリレートがさらに好ましい。 Although it does not restrict | limit especially as trifunctional (meth) acrylate, For example, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ( Examples include (meth) acrylate, propylene oxide-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, and isocyanuric acid EO-modified tri (meth) acrylate. Among these, pentaerythritol tri (meth) acrylate or isocyanuric acid EO-modified di (meth) acrylate is preferable, pentaerythritol triacrylate or isocyanuric acid EO-modified triacrylate is more preferable, and pentaerythritol triacrylate is more preferable.
 4官能(メタ)アクリレートとしては、特に制限されないが、たとえば、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。これらの中でも、ペンタエリスリトールテトラ(メタ)アクリレートが好ましく、ペンタエリスリトールテトラアクリレートがより好ましい。 The tetrafunctional (meth) acrylate is not particularly limited, and examples thereof include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate. Among these, pentaerythritol tetra (meth) acrylate is preferable, and pentaerythritol tetraacrylate is more preferable.
 また、4官能以下の多官能(メタ)アクリレートとしては、たとえば東亞合成株式会社製のアロニックス(登録商標) M-305、M-313等の市販品も適宜用いられる。ここで、アロニックス(登録商標) M-305は、ペンタエリストールトリアクリレートおよびペンタエリスリトールテトラアクリレートの混合物であり、アロニックス(登録商標) M-313は、イソシアヌル酸EO変性ジアクリレートおよびイソシアヌル酸EO変性トリアクリレートの混合物である。なお、これらの詳細は、後述の実施例に記載する。 As the polyfunctional (meth) acrylate having 4 or less functional groups, for example, commercially available products such as Aronix (registered trademark) M-305 and M-313 manufactured by Toagosei Co., Ltd. may be used as appropriate. Here, Aronix (registered trademark) M-305 is a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate, and Aronix (registered trademark) M-313 is isocyanuric acid EO-modified diacrylate and isocyanuric acid EO-modified tri A mixture of acrylates. These details will be described in the examples described later.
 また、4官能以下の多官能(メタ)アクリレートとしては、遮熱フィルムのカールおよびハードコート層の剥離および破壊に起因する外観故障を抑制するという観点から、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリオール(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレートの群から選択される少なくとも1つを含むことが好ましい。 In addition, as a polyfunctional (meth) acrylate having 4 or less functional groups, urethane (meth) acrylate and epoxy (meth) are used from the viewpoint of suppressing appearance failure caused by curling of the heat shielding film and peeling and breaking of the hard coat layer. It is preferable to include at least one selected from the group of acrylate, polyol (meth) acrylate, polyester (meth) acrylate, and silicone (meth) acrylate.
 これらの中でも、ウレタン(メタ)アクリレート、シリコーン(メタ)アクリレートがより好ましく、シリコーン(メタ)アクリレートがさらに好ましい。また、シリコーン(メタ)アクリレートとしては、たとえば、ダイセル・オルネクス株式会社製のEBECRYL(登録商標)350等の市販品を用いることができる。なお、EBECRYL(登録商標)350の詳細は、後述の実施例に記載する。 Among these, urethane (meth) acrylate and silicone (meth) acrylate are more preferable, and silicone (meth) acrylate is more preferable. Moreover, as silicone (meth) acrylate, commercial items, such as EBECRYL (trademark) 350 by Daicel Ornex Co., Ltd., can be used, for example. Note that details of EBECRYL (registered trademark) 350 will be described in Examples described later.
 これらの4官能以下の多官能(メタ)アクリレートは、は単独でもまたは2種以上組み合わせても使用することができる。このとき、遮熱フィルムのカールおよびハードコート層の剥離および破壊に起因する外観故障を抑制するという観点から、2官能~4官能の混合が好ましい。
また、4官能以下の多官能(メタ)アクリレートの総質量に対し、3官能の割合が、0~100質量%であることが好ましく、10~90質量%であることがより好ましい。また、4官能以下の多官能(メタ)アクリレートの総質量に対し、2官能の割合が0~40質量%であることが好ましく、0~10質量%であることがより好ましく、0~1質量%であることが特に好ましい。
These polyfunctional (meth) acrylates having 4 or less functional groups can be used alone or in combination of two or more. At this time, a bifunctional to tetrafunctional mixture is preferable from the viewpoint of suppressing appearance failure due to curling of the heat shielding film and peeling and breaking of the hard coat layer.
In addition, the ratio of the trifunctionality to the total mass of the tetrafunctional or lower polyfunctional (meth) acrylate is preferably 0 to 100% by mass, and more preferably 10 to 90% by mass. Further, the ratio of the bifunctionality to the total mass of the tetrafunctional or lower polyfunctional (meth) acrylate is preferably 0 to 40% by mass, more preferably 0 to 10% by mass, and 0 to 1% by mass. % Is particularly preferred.
 4官能以下の多官能(メタ)アクリレートの官能基数としては、遮熱フィルムのカールおよびハードコート層の剥離および破壊に起因する外観故障の観点から、3官能(メタ)アクリレートまたは4官能(メタ)アクリレートの含有比率が2官能(メタ)アクリレートよりも多いことがさらに好ましい。 The number of functional groups of a polyfunctional (meth) acrylate having 4 or less functional groups is trifunctional (meth) acrylate or tetrafunctional (meth) from the viewpoint of appearance failure due to curling of the heat shielding film and peeling and breaking of the hard coat layer. More preferably, the content ratio of the acrylate is higher than that of the bifunctional (meth) acrylate.
 また、上記の好ましい4官能以下の(メタ)アクリレートを用いること、または4官能以下の(メタ)アクリレートを上記の好ましい割合で用いることは、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくすることができることからも好ましい。 In addition, the use of the above preferred tetrafunctional or lower (meth) acrylate, or the use of tetrafunctional or lower (meth) acrylate in the above preferred ratio means that in the heat shielding film, the visible light of the film before and after the tape peeling test. This is also preferable because the change in transmittance can be further reduced.
 紫外線硬化型成分に含まれる4官能以下の多官能(メタ)アクリレート以外の化合物としては、紫外線照射によって硬化することができるものであれば特に制限されない。かかる化合物としては、たとえば、エチレン性不飽和二重結合を有する化合物等が挙げられる。エチレン性不飽和二重結合を有する化合物としては、特に制限されないが、たとえば5官能以上の多官能(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリオール(メタ)アクリレート、ポリエステル(メタ)アクリレート等を使用することができる。 The compound other than the tetrafunctional or lower polyfunctional (meth) acrylate contained in the ultraviolet curable component is not particularly limited as long as it can be cured by ultraviolet irradiation. Examples of such compounds include compounds having an ethylenically unsaturated double bond. Although it does not restrict | limit especially as a compound which has an ethylenically unsaturated double bond, For example, polyfunctional (meth) acrylate more than 5 functional, urethane (meth) acrylate, epoxy (meth) acrylate, polyol (meth) acrylate, polyester ( A (meth) acrylate etc. can be used.
 5官能以上の多官能(メタ)アクリレートとしては、特に制限されないが、たとえば、ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 The polyfunctional (meth) acrylate having 5 or more functional groups is not particularly limited. For example, dipentaerythritol penta (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) An acrylate etc. are mentioned.
 また、紫外線硬化型成分に含まれる4官能以下の多官能(メタ)アクリレート以外の化合物としては、たとえば、東亞合成株式会社製のアロニックス(登録商標) M-402、日立化成株式会社製のヒタロイド(登録商標)7902-1等の市販品を用いることができる。ここで、アロニックス(登録商標) M-402は、ジペンタエリスリトールペンタおよびヘキサアクリレートの混合物であり、ヒタロイド(登録商標)7902-1は、6官能ウレタンアクリレートである。なお、これらの詳細は、後述の実施例に記載する。 Examples of compounds other than the tetrafunctional or lower polyfunctional (meth) acrylate contained in the ultraviolet curable component include, for example, Aronix (registered trademark) M-402 manufactured by Toagosei Co., Ltd. Commercial products such as registered trademark 7902-1 can be used. Here, Aronix (registered trademark) M-402 is a mixture of dipentaerythritol penta and hexaacrylate, and Hitaroid (registered trademark) 7902-1 is a hexafunctional urethane acrylate. These details will be described in the examples described later.
 紫外線硬化型成分中の各成分の割合は、各成分を秤量し、適宜混合して調整することができる。 The ratio of each component in the ultraviolet curable component can be adjusted by weighing each component and mixing them appropriately.
 紫外線硬化型成分中の各成分、たとえば多官能(メタ)アクリレートが、官能基が異なる複数の多官能(メタ)アクリレートの混合物や、他の紫外線硬化型樹脂組成物との混合物である場合は、含有される各(メタ)アクリレートの種類および割合は、Py-GC/MS(熱分解-ガスクロマトグラフ/質量分析)(熱分解装置:PY-2020iD(フロンティアラボ)、GG/MS:QP2010(株式会社島津製作所製))を用いることで測定することができる。 When each component in the ultraviolet curable component, for example, a polyfunctional (meth) acrylate is a mixture of a plurality of polyfunctional (meth) acrylates having different functional groups, or a mixture with other ultraviolet curable resin compositions, The types and ratios of each (meth) acrylate contained are Py-GC / MS (pyrolysis-gas chromatograph / mass spectrometry) (pyrolysis apparatus: PY-2020iD (frontier lab), GG / MS: QP2010 (stock company) It can be measured by using Shimadzu Corporation)).
 ハードコート層用塗布液における紫外線硬化型成分の含有量は、特に制限されないが、硬度や膜弾性率を所望の値に調整する観点から、ハードコート層用塗布液の溶媒を除いた成分の総質量に対して、好ましくは20~90質量%、より好ましくは20~80質量%であり、さらに好ましくは40~80質量%であり、特に好ましくは50~70質量%である。 The content of the ultraviolet curable component in the hard coat layer coating solution is not particularly limited, but from the viewpoint of adjusting the hardness and film elastic modulus to desired values, the total amount of components excluding the solvent of the hard coat layer coating solution is not limited. The amount is preferably 20 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass with respect to the mass.
 (c)光重合開始剤
 本発明の一形態に係るハードコート層用塗布液は、(b)成分の硬化促進の為、光重合開始剤(以下(c)成分とも称される)を必須に含む。
(C) Photopolymerization initiator The coating liquid for hard coat layer according to one embodiment of the present invention requires a photopolymerization initiator (hereinafter also referred to as component (c)) in order to accelerate the curing of component (b). Including.
 光重合開始剤は、たとえば、カチオン性光重合開始剤、アニオン性光重合性開始剤、ラジカル性光重合開始剤が挙げられるが、硬化性および生産性の観点から、ラジカル性光重合開始剤が好ましい。 Examples of the photopolymerization initiator include a cationic photopolymerization initiator, an anionic photopolymerization initiator, and a radical photopolymerization initiator. From the viewpoint of curability and productivity, a radical photopolymerization initiator is used. preferable.
 ラジカル性光重合開始剤としては、特に制限されないが、たとえば、アシルフォスフィンオキサイド類、アセトフェノン類、アントラキノン類、チオキサントン類、ケタール類、およびベンゾフェノン類およびアゾ化合物等を用いることができる。 The radical photopolymerization initiator is not particularly limited, and for example, acylphosphine oxides, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones and azo compounds can be used.
 アシルフォスフィンオキサイド類としては、特に制限されないが、たとえば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニルエトキシフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。 Acylphosphine oxides are not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-phenylethoxyphosphine oxide, and bis (2,6 -Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
 アセトフェノン類としては、特に制限されないが、たとえばべンゾイン、ベンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。 The acetophenones are not particularly limited. For example, benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal; acetophenone, 2,2- Examples include dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone.
 アントラキノン類としては、特に制限されないが、たとえばメチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノン等が挙げられる。 The anthraquinones are not particularly limited, and examples thereof include methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and the like.
 チオキサントン類としては、特に制限されないが、たとえばチオキサントン、2,4― ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等が挙げられる。 The thioxanthone is not particularly limited, and examples thereof include thioxanthone, 2,4- diethylthioxanthone, 2,4-diisopropylthioxanthone and the like.
 ケタール類としては、特に制限されないが、たとえばアセトフェノンジメチルケタール、ベンジルジメチルケタール等が挙げられる。 Ketals are not particularly limited, and examples thereof include acetophenone dimethyl ketal and benzyl dimethyl ketal.
 ベンゾフェノン類としては、特に限定されないが、ベンゾフェノン、4,4-ビスメチルアミノベンゾフェノン等が挙げられる。 The benzophenones are not particularly limited, and examples thereof include benzophenone and 4,4-bismethylaminobenzophenone.
 また、たとえば、BASFジャパン株式会社製のIrgacure(登録商標)184、651、1173、819、LUCIRIN(登録商標) TPO等の市販品も適宜用いられる。 Also, for example, commercially available products such as Irgacure (registered trademark) 184, 651, 1173, 819, LUCIRIN (registered trademark) TPO manufactured by BASF Japan Ltd. are also used as appropriate.
 これらの中でも、ハードコート層と基材との界面におけるハードコート層の硬化性に優れるアシルフォスフィンオキサイド類であることが好ましい。ハードコート層と基材との界面におけるハードコート層の硬化性を向上させることで、ハードコート層形成時に光重合が十分に進み、後の加熱成形時で熱硬化される未硬化成分をより減少することができ、その結果、加熱成形時のハードコート層の収縮量をより減少させることができると考えられる。さらにハードコート層と基材との界面において加熱成型時に発生する収縮応力もより小さくなるため、密着性が改善されると考えられる。 Among these, acylphosphine oxides that are excellent in curability of the hard coat layer at the interface between the hard coat layer and the substrate are preferable. By improving the curability of the hard coat layer at the interface between the hard coat layer and the base material, photopolymerization proceeds sufficiently when the hard coat layer is formed, and the number of uncured components that are thermally cured during subsequent thermoforming is further reduced. As a result, it is considered that the shrinkage amount of the hard coat layer at the time of heat forming can be further reduced. Furthermore, since the shrinkage stress generated at the time of heat molding at the interface between the hard coat layer and the substrate is also reduced, it is considered that the adhesion is improved.
 上記の観点より、アシルフォスフィンオキサイド類の中でも、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドがより好ましく、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドがさらに好ましい。 From the above viewpoint, among acylphosphine oxides, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide are more preferable, and bis ( More preferred is 2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
 これより、本発明の好ましい一形態は、(c)光重合開始剤が、少なくともアシルフォスフィンオキサイド系光重合開始剤を含む遮熱フィルムである。 Thus, a preferred embodiment of the present invention is a thermal barrier film in which (c) the photopolymerization initiator includes at least an acyl phosphine oxide photopolymerization initiator.
 また、本発明のより好ましい一形態は(c)光重合開始剤が、少なくともビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドを含む遮熱フィルムである。 Further, a more preferable embodiment of the present invention is (c) a thermal barrier film in which the photopolymerization initiator contains at least bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
 これらの光重合開始剤は単独でもまたは2種以上組み合わせても使用することができる。このとき、光重合開始剤の総質量に対し、アシルフォスフィンオキサイド類の割合が、50~100質量%であることが好ましく、100質量%であることが最も好ましい。 These photopolymerization initiators can be used alone or in combination of two or more. At this time, the ratio of the acylphosphine oxides to the total mass of the photopolymerization initiator is preferably 50 to 100% by mass, and most preferably 100% by mass.
 加えて、トリエタノールアミン、メチルジエタノールアミンなどの第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体等の光開始助剤などと組み合わせて使用することができる。 In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate can be used in combination. it can.
 これら光重合開始剤の使用量は、紫外線硬化型成分100質量部に対して0.5~20質量部であることが好ましい。光重合開始剤が紫外線硬化型成分100質量部に対して0.5質量部以上であると、硬化性がより良好となるため好ましい。また、光重合開始剤が紫外線硬化型成分100質量部に対して20質量部以下であると、ハードコート層の収縮量をより低減でき、遮熱フィルムのカールおよびハードコート層の剥離をより低減できる。同様の観点から、光重合開始剤の使用量は、紫外線硬化型成分100質量部に対して、1~15質量部であることがより好ましく、3~10質量部であることがより好ましく、4~8質量部であることがさらに好ましい。 These photopolymerization initiators are preferably used in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable component. It is preferable that the photopolymerization initiator is 0.5 parts by mass or more with respect to 100 parts by mass of the ultraviolet curable component because the curability becomes better. Moreover, when the photopolymerization initiator is 20 parts by mass or less with respect to 100 parts by mass of the ultraviolet curable component, the shrinkage amount of the hard coat layer can be further reduced, and the curling of the heat shield film and the peeling of the hard coat layer are further reduced. it can. From the same viewpoint, the amount of the photopolymerization initiator used is more preferably 1 to 15 parts by mass, and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable component. More preferably, it is ˜8 parts by mass.
 また、上記の好ましい光重合開始剤を用いること、または光重合開始剤を上記の好ましい範囲で用いることは、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくすることができることからも好ましい。 In addition, using the above preferable photopolymerization initiator or using the photopolymerization initiator in the above preferable range makes the change in visible light transmittance of the film before and after the tape peeling test smaller in the heat shielding film. This is also preferable.
 本発明の一形態に係るハードコート層用塗布液は、上記の必須成分の他、溶媒を含んでもよい。溶媒は、特に制限されないが、たとえば水、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒等の中から適宜選択し、またはこれらを混合し利用できる。これらの中でも、溶媒がケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)を含むことが好ましく、メチルイソブチルケトンを含むことがさらに好ましい。 The hard coat layer coating liquid according to one embodiment of the present invention may contain a solvent in addition to the above essential components. The solvent is not particularly limited. For example, water, hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters ( (Methyl acetate, ethyl acetate, methyl lactate), glycol ethers, other organic solvents and the like can be appropriately selected or used by mixing them. Among these, the solvent preferably contains ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), and more preferably contains methyl isobutyl ketone.
 ハードコート層用塗布液における溶媒の含有量は、特に制限されないが、一般的には、塗布液の総質量に対して10~80質量%であることが好ましく、20~80質量%であることがより好ましく、50~75質量%であることがさらに好ましく、60~70質量%であることが特に好ましい。 The content of the solvent in the coating solution for the hard coat layer is not particularly limited, but in general, it is preferably 10 to 80% by mass, and 20 to 80% by mass with respect to the total mass of the coating solution. Is more preferably 50 to 75% by mass, and particularly preferably 60 to 70% by mass.
 ハードコート層用塗布液は、必要に応じて、(a)成分以外の熱線遮蔽性金属化合物、および各種添加剤等の任意成分を含んでもよい。添加剤としては、金属石鹸、レベリング性、撥水性、滑り性等を付与するための界面活性剤;紫外線照射による硬化性を向上させるための、染料、顔料、増感剤等が挙げられる。 The coating liquid for hard coat layer may contain an optional component such as a heat ray shielding metal compound other than the component (a) and various additives, if necessary. Examples of additives include metal soaps, surfactants for imparting leveling properties, water repellency, slipping properties, etc .; dyes, pigments, sensitizers, etc. for improving curability by ultraviolet irradiation.
 上記(a)以外の熱線遮蔽性金属酸化物としては、特に制限されないが、酸化亜鉛、酸化タングステン、アンチモンドープト酸化亜鉛(AZO)、インジウムドープト酸化亜鉛(IZO)、ガリウムドープト酸化亜鉛(GZO)、アルミニウムドープト酸化亜鉛、酸化錫、アンチモンドープト酸化錫(ATO)、インジウムドープト酸化錫(ITO)が挙げられる。また、これらの具体的な商品名としては、たとえば、酸化亜鉛系として、セルナックス(登録商標)シリーズ(日産化学工業株式会社製)、パゼットシリーズ(ハクスイテック株式会社製);酸化錫系として、ATO分散液(SR35M Advanced Nano Products社製)、ITO分散液(三菱マテリアル電子化成株式会社製)、KHシリーズ(住友金属鉱山株式会社製)等が挙げられる。 The heat ray shielding metal oxide other than the above (a) is not particularly limited, but zinc oxide, tungsten oxide, antimony doped zinc oxide (AZO), indium doped zinc oxide (IZO), gallium doped zinc oxide ( GZO), aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide (ATO), and indium-doped tin oxide (ITO). Moreover, as these specific brand names, for example, as a zinc oxide system, the Celnax (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.), the passette series (manufactured by Hakusui Tech Co., Ltd.); ATO dispersion liquid (SR35M Advanced Nano Products, Inc.), ITO dispersion liquid (Mitsubishi Materials Electronics Kasei Co., Ltd.), KH series (Sumitomo Metal Mining Co., Ltd.), etc. are mentioned.
 また、金属石鹸は塗布液乾燥剤として機能する。金属石鹸の種類として、特に制限はなく、たとえばオクチル酸金属石鹸、および脂肪酸金属石鹸等が挙げられる。また、これらの具体的な商品名としては、たとえば東栄化工株式会社製のヘキソエートコバルト8%、ヘキソエート亜鉛15%、ヘキソエートジルコニウム12%、ヘキソエートマンガン6%等が挙げられる。金属石鹸の含有量は、ハードコート層用塗布液の溶媒を除いた成分の総質量に対して0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましく、0.07~2質量%であることがさらに好ましく、0.1~1.5質量%であることが特に好ましい。 Also, metal soap functions as a coating liquid desiccant. There is no restriction | limiting in particular as a kind of metal soap, For example, an octylic acid metal soap, a fatty-acid metal soap, etc. are mentioned. Specific examples of these trade names include 8% hexoate cobalt, 15% hexoate zinc, 12% hexoate zirconium, and 6% hexoate manganese manufactured by Toei Chemical Co., Ltd. The content of the metal soap is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total mass of the components excluding the solvent of the hard coat layer coating solution. It is preferably 0.07 to 2% by mass, more preferably 0.1 to 1.5% by mass.
 また、前記の界面活性剤の種類として、特に制限はなく、フッ素系界面活性剤、アクリル系界面活性剤、シリコーン系界面活性剤等を用いることができる。特に塗布液のレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。フッ素系界面活性剤の例としては、たとえば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツール(登録商標)シリーズ、株式会社ネオス製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用することができる。アクリル系界面活性剤としては、ポリフローシリーズ(共栄社化学株式会社製)、ニューコールシリーズ(日本乳化剤株式会社製)、BYK(登録商標)-354(ビックケミー・ジャパン社製)が挙げられる。シリコーン系界面活性剤としては、BYK(登録商標)-345、BYK(登録商標)-347、BYK(登録商標)-348、BYK(登録商標)-349(ビックケミー・ジャパン株式会社製)が挙げられる。界面活性剤は、単独でもまたは2種以上混合して用いてもよい。界面活性剤の含有量は、ハードコート層用塗布液の溶媒を除いた成分の総質量に対して0.01質量%以上1質量%であることが好ましく、0.01質量%以上0.1質量%以下であることがより好ましい。 Further, the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution. Examples of the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation Commercially available products such as ZX series, Optool (registered trademark) series manufactured by Daikin Industries, Ltd., and Footgent (registered trademark) series (602A, 650A, etc.) manufactured by Neos Corporation can be used. Examples of the acrylic surfactant include Polyflow series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.). Examples of the silicone-based surfactant include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, BYK (registered trademark) -349 (manufactured by BYK Japan). . Surfactants may be used alone or in admixture of two or more. The content of the surfactant is preferably 0.01% by mass or more and 1% by mass, and preferably 0.01% by mass or more and 0.1% by mass with respect to the total mass of the components excluding the solvent of the coating liquid for hard coat layer. It is more preferable that the amount is not more than mass%.
 本発明の一形態に係る遮熱フィルムは、
 厚さ10~100μmである基材の少なくとも一方の面側に、
 下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、ハードコート層用塗布液を塗布後、紫外線を照射して塗膜を硬化させる工程を含む、
 熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルムの製造方法により製造することが好ましい。
The thermal barrier film according to an aspect of the present invention is
On at least one surface side of the substrate having a thickness of 10 to 100 μm,
The following (a) to (c);
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization Including a step of curing the coating film by irradiating with ultraviolet rays after applying the coating liquid for hard coat layer,
When the tape peel test is performed after the heat treatment, the film is preferably produced by a method for producing a thermal barrier film in which the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
 かかる製造方法により製造されたフィルムは、
 厚さ10~100μmである基材と、
 基材の少なくとも一方の面側に配置されたハードコート層と、
を有し、
 前記ハードコート層は、ハードコート層用塗布液を基材上に塗布後、紫外線を照射して塗膜を硬化させることによって形成されてなり、
 前記ハードコート層用塗布液は、下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、
 熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルムであり、かかるフィルムは、
 厚さ10~100μmである基材と、
 基材の少なくとも一方の面側に配置された、下記(a)~(c);
 (a)セシウム含有複合タングステン酸化物
 (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
 (c)光重合開始剤
を含む、ハードコート層用塗布液の硬化物からなるハードコート層と、を有し、
 熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルムの好ましい一形態である。
The film produced by such a production method is
A substrate having a thickness of 10 to 100 μm;
A hard coat layer disposed on at least one side of the substrate;
Have
The hard coat layer is formed by applying a coating liquid for hard coat layer on a substrate and then irradiating ultraviolet rays to cure the coating film.
The hard coat layer coating solution comprises the following (a) to (c):
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization Including agents,
When the tape peel test is performed after the heat treatment, the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
A substrate having a thickness of 10 to 100 μm;
The following (a) to (c) arranged on at least one surface side of the substrate:
(A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization A hard coat layer comprising a cured product of a coating liquid for hard coat layer containing an agent,
When the tape peel test is performed after the heat treatment, it is a preferable embodiment of the heat shielding film in which the change in visible light transmittance of the film before and after the tape peel test is 20% or less.
 ハードコート層用塗布液は、上記の各成分を混合することによって調整される。添加順序、添加方法は特に限定されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。 The coating liquid for the hard coat layer is adjusted by mixing the above components. The order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
 また、基材上(基材の表面または基材上配置された最表層の表面)にハードコート層用塗布液を塗布する方法についても特に制限はなく、公知の手法、たとえば、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティングなどの手法が採用されうる。また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布することが可能である。 Moreover, there is no restriction | limiting in particular also about the method of apply | coating the coating liquid for hard-coat layers on a base material (the surface of a base material, or the surface of the outermost layer arrange | positioned on a base material), For example, coating by a wire bar Techniques such as spin coating and dip coating can be employed. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater or a comma coater.
 塗布後の乾燥条件としては、特に制限されないが、たとえば乾燥温度は40~100℃であることが好ましく、乾燥時間は0.5~10分であることが好ましい。 The drying conditions after coating are not particularly limited, but for example, the drying temperature is preferably 40 to 100 ° C., and the drying time is preferably 0.5 to 10 minutes.
 その後、基材上にハードコート層用塗布液を塗布して得られた塗膜に、当該塗膜の基材から遠い面側から紫外線を照射し、塗膜を硬化させる。この際の紫外線の照射波長、照度、光量などの条件は、使用する紫外線硬化性モノマーや重合開始剤の種類によって異なるため、当業者によって適宜条件が調整されうる。たとえば、紫外線ランプを用いる場合、その照度は50~1500mW/cmが好ましく、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくするためには、照度としては80~1000mW/cmがより好ましい。紫外線ランプを用いる場合、照射エネルギー量は50~1500mJ/cmが好ましく、遮熱フィルムにおいて、テープ剥離試験前後のフィルムの可視光線透過率の変化をより小さくするためには、照射エネルギー量としては100~1000mJ/cmが好ましい。さらに、必要に応じて硬化雰囲気を窒素に置換してもよい。置換する際の残存酸素量は1%以下が好ましく、1000ppm以下であることがより好ましい。 Thereafter, the coating film obtained by applying the coating liquid for hard coat layer on the substrate is irradiated with ultraviolet rays from the side of the coating film that is far from the substrate to cure the coating film. In this case, the conditions such as the irradiation wavelength, the illuminance, and the light quantity of the ultraviolet rays vary depending on the type of the ultraviolet curable monomer and the polymerization initiator to be used. For example, when an ultraviolet lamp is used, the illuminance is preferably 50 to 1500 mW / cm 2 , and in order to reduce the change in visible light transmittance of the film before and after the tape peeling test in the heat shielding film, the illuminance is 80 More preferred is ~ 1000 mW / cm 2 . In the case of using an ultraviolet lamp, the amount of irradiation energy is preferably 50 to 1500 mJ / cm 2. In order to reduce the change in visible light transmittance of the film before and after the tape peeling test in the heat shielding film, the amount of irradiation energy is 100 to 1000 mJ / cm 2 is preferable. Further, the curing atmosphere may be replaced with nitrogen as necessary. The amount of residual oxygen at the time of substitution is preferably 1% or less, and more preferably 1000 ppm or less.
 [機能層]
 本発明の一形態に係る遮熱フィルムは、上記の基材およびハードコート層以外にも、機能層を有していてもよい。機能層の種類は、特に制限されないが、以下では機能層が誘電体多層膜(以下、反射層とも称される)である場合を例に挙げて具体的に説明する。
[Functional layer]
The heat-shielding film according to one embodiment of the present invention may have a functional layer in addition to the base material and the hard coat layer. The type of the functional layer is not particularly limited, but will be specifically described below with an example in which the functional layer is a dielectric multilayer film (hereinafter also referred to as a reflective layer).
 (誘電体多層膜)
 本発明の他の一形態は、高屈折率層と低屈折率層とが交互に積層されてなる誘電体多層膜を有する遮熱フィルムである。
(Dielectric multilayer film)
Another embodiment of the present invention is a thermal barrier film having a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated.
 誘電体多層膜(反射層)は、低屈折率層と高屈折率層とが交互に積層されてなる構成を有する。前記高屈折率層と前記低屈折率層とは、以下のように考える。 The dielectric multilayer film (reflective layer) has a configuration in which low refractive index layers and high refractive index layers are alternately stacked. The high refractive index layer and the low refractive index layer are considered as follows.
 たとえば、高屈折率層を構成する成分(以下、高屈折率層成分)と低屈折率層を構成する成分(以下、低屈折率層成分)とが、ふたつの層の界面で混合され、高屈折率層成分と低屈折率層成分とを含む層(混合層)が形成される場合がある。この場合、混合層において、高屈折率層成分が50質量%以上である部位の集合を高屈折率層とし、低屈折率層成分が50質量%を超える部位の集合を低屈折率層とする。具体的には、低屈折率層が、たとえば、低屈折率成分として第1の金属酸化物を、また、高屈折率層は高屈折率成分として第2の金属酸化物を含有している場合、これらの積層膜における膜厚方向での金属酸化物濃度プロファイルを測定し、その組成によって、高屈折率層または低屈折率層とみなすことができる。積層膜の金属酸化物濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで観測することができる。また、低屈折率層成分および高屈折率層成分の一方に金属酸化物粒子が含有されておらず、高屈折率層または低屈折率層の一方が水溶性樹脂(有機バインダー)のみから形成されている積層体においても、同様にして、水溶性樹脂(有機バインダー)濃度プロファイルにて、たとえば、膜厚方向での炭素濃度を測定することにより混合領域が存在していることを確認し、さらにその組成をEDXにより測定することで、スパッタでエッチングされた各層が、高屈折率層および低屈折率層とみなすことができる。 For example, a component that constitutes a high refractive index layer (hereinafter referred to as a high refractive index layer component) and a component that constitutes a low refractive index layer (hereinafter referred to as a low refractive index layer component) are mixed at the interface between the two layers. A layer (mixed layer) including a refractive index layer component and a low refractive index layer component may be formed. In this case, in the mixed layer, a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer, and a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer. . Specifically, when the low refractive index layer contains, for example, a first metal oxide as a low refractive index component, and the high refractive index layer contains a second metal oxide as a high refractive index component The metal oxide concentration profile in the film thickness direction in these laminated films is measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition. The metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio. In addition, one of the low refractive index layer component and the high refractive index layer component does not contain metal oxide particles, and one of the high refractive index layer or the low refractive index layer is formed only from a water-soluble resin (organic binder). Similarly, in the laminated body, it is confirmed that the mixed region exists by measuring the carbon concentration in the film thickness direction, for example, in the water-soluble resin (organic binder) concentration profile. By measuring the composition by EDX, each layer etched by sputtering can be regarded as a high refractive index layer and a low refractive index layer.
 前記反射層は、基材上に、ポリマーを含む高屈折率層および低屈折率層が交互に積層された積層体(ユニット)を少なくとも1つ以上有する構成であればよいが、高屈折率層および低屈折率層の層数(屈折率層の総数)は、特に制限はないが、好ましくは6~2000(すなわち、3~1000ユニット)であり、より好ましくは10~1500(すなわち、5~750ユニット)であり、さらに好ましくは10~1000(すなわち、5~500ユニット)であり、特に好ましくは10~30(すなわち、5~15ユニット)である。層数が2000を超えるとヘイズが発生しやすく、6未満であると所望の反射率に達しないことがある。また、本発明の一形態に係る遮熱フィルムは、上記基材上にユニットを少なくとも1つ以上有する構成であればよい。 The reflective layer may have a structure having at least one laminate (unit) in which a high refractive index layer and a low refractive index layer containing a polymer are alternately laminated on a substrate. The number of low refractive index layers (total number of refractive index layers) is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 (that is, 5 to 5). 750 units), more preferably 10 to 1000 (that is, 5 to 500 units), and particularly preferably 10 to 30 (that is, 5 to 15 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved. Moreover, the thermal insulation film which concerns on one form of this invention should just be the structure which has at least 1 or more units on the said base material.
 誘電体多層膜において、高屈折率層は、より高い屈折率が好ましいが、屈折率が、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらに好ましくは1.90~2.20である。また、低屈折率層は、より低い屈折率が好ましいが、屈折率が、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらに好ましくは1.30~1.50である。 In the dielectric multilayer film, the high refractive index layer preferably has a higher refractive index, but the refractive index is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, It is preferably 1.90 to 2.20. The low refractive index layer preferably has a lower refractive index, but the refractive index is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1. 30 to 1.50.
 誘電体多層膜においては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができる観点から好ましい。高屈折率層および低屈折率層から構成されるユニットの少なくとも1つにおいて、隣接する該高屈折率層と低屈折率層との屈折率差が0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.25以上である。誘電体多層膜が低屈折率層および高屈折率層のユニットを複数有する場合には、全てのユニットにおける低屈折率層と高屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、誘電体多層膜の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In the dielectric multilayer film, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint of increasing the infrared reflectance with a small number of layers. In at least one of the units composed of the high refractive index layer and the low refractive index layer, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, more preferably 0.25 or more. When the dielectric multilayer film has a plurality of units of a low refractive index layer and a high refractive index layer, the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
 特定波長領域の反射率は、隣接する2層(高屈折率層と低屈折率層)の屈折率差および積層数で決まり、屈折率差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差および必要な層数については、市販の光学設計ソフトを用いて計算することができる。たとえば、赤外反射率(赤外遮蔽率)90%以上を得るためには、屈折率差が0.1より小さいと、100層を超える積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下する。反射率の向上と層数を少なくするとの観点からは、屈折率差に上限はないが、実質的には1.4程度である。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers (high refractive index layer and low refractive index layer) and the number of layers, and the larger the refractive index difference, the same reflectance can be obtained with a smaller number of layers. . The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance (infrared shielding ratio) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, and not only productivity is lowered. , Scattering at the laminated interface increases and transparency decreases. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
 上記屈折率差は、高屈折率層、低屈折率層の屈折率を下記の方法に従って求め、両者の差分として求める。すなわち、(必要により基材を用いて)各屈折率層を単層で作製し、このサンプルを10cm×10cmに断裁した後、下記の方法に従って屈折率を求める。分光光度計として、U-4000型(日立製作所社製)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 The above refractive index difference is obtained as a difference between the high refractive index layer and the low refractive index layer obtained by the following method. That is, each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm × 10 cm, the refractive index is obtained according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray. Then, the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result. Ask.
 隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と膜厚とを制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。 Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. The reflectance can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By utilizing this optical path difference, reflection can be controlled. By utilizing this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
 誘電体多層膜は反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外線反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光線反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。また、反射率をアップさせる特定波長領域を紫外光領域に設定すれば、紫外線反射フィルムとなる。本発明の一形態に係る遮熱フィルムにおいて誘電体多層膜を用いる場合は、(近)赤外反射(遮蔽)フィルムとすればよい。赤外反射フィルムの場合、JIS R3106:1998で示される可視光領域の550nmでの透過率が50%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。また、1200nmでの透過率が35%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。かような好適な範囲となるように光学膜厚とユニットとを設計することが好ましい。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 The dielectric multilayer film can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area | region which raises a reflectance is set to an ultraviolet light area | region, it will become an ultraviolet reflective film. In the case of using a dielectric multilayer film in the heat shield film according to one embodiment of the present invention, a (near) infrared reflection (shield) film may be used. In the case of an infrared reflective film, the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 [低屈折率層と高屈折率層]
 本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、誘電体多層膜を構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。
[Low refractive index layer and high refractive index layer]
In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that when each refractive index layer constituting the dielectric multilayer film is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
 屈折率層の1層あたりの厚み(乾燥後の厚み)は、20~1000nmであることが好ましく、50~500nmであることがより好ましく、100~300nmであることがさらにより好ましく、100~200nmであることが特に好ましい。屈折率層の1層あたりの厚みは、ダイスの押出口におけるフィルム厚さ方向の幅を変更すること、および/または延伸条件により、調節することができる。なお、積層体を延伸する場合は、上記膜厚は延伸後の厚さを示す。 The thickness of the refractive index layer per layer (thickness after drying) is preferably 20 to 1000 nm, more preferably 50 to 500 nm, still more preferably 100 to 300 nm, and even more preferably 100 to 200 nm. It is particularly preferred that The thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions. In addition, when extending | stretching a laminated body, the said film thickness shows the thickness after extending | stretching.
 [ポリマー材料]
 低屈折率層および高屈折率層はポリマー材料を含むことが好ましい。屈折率層を形成するのがポリマー材料であれば、塗布やスピンコートなどの成膜方法が選択可能となる。これらの方法は簡便であり、基材の耐熱性を問わないので選択肢が広く、特に樹脂基材に対して有効な成膜方法といえる。たとえば塗布型ならばロール・ツー・ロール法などの大量生産方式が採用でき、コスト面でもプロセス時間面でも有利になる。また、ポリマー材料を含む膜はフレキシブル性が高いため、生産時や運搬時に巻き取りを行っても、これらの欠陥が発生しづらく、取扱性に優れているという長所がある。
[Polymer material]
The low refractive index layer and the high refractive index layer preferably contain a polymer material. If the refractive index layer is formed of a polymer material, a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time. Moreover, since the film | membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability.
 屈折率層に含まれるポリマーは、特に制限されず、具体的な例としては、ポリエチレンテレフタレート(PET)、ポリエチレンテレフタレートのコポリマー(coPET)、ポリ(メチルメタクリレート)(PMMA)、ポリ(メチルメタクリレート)のコポリマー(coPMMA)、シクロヘキサンジメタノール(PETG)、シクロヘキサンジメタノールのコポリマー(coPETG)、ポリエチレンナフタレート(PEN)ポリエチレンナフタレートのコポリマー(coPEN)、ポリエチレンナフタレート、ポリエチレンナフタレートのコポリマー、ポリ(メチルメタクリレート)、およびポリ(メチルメタクリレート)のコポリマー等が挙げられるが、これらに限定されない。各高屈折率層および低屈折率層には、これらのポリマーを1種、または2種以上の組み合わせを用いることができる。また、好適なポリマーの組み合わせの例として、米国特許第6,352,761号明細書に記載のものが挙げられる。また、上記ポリマーを用いて、たとえば共押出法または共流延法等により連続フラットフィルム製造ラインにより、反射層を形成することも可能である。 The polymer contained in the refractive index layer is not particularly limited, and specific examples include polyethylene terephthalate (PET), polyethylene terephthalate copolymer (coPET), poly (methyl methacrylate) (PMMA), and poly (methyl methacrylate). Copolymer (coPMMA), cyclohexanedimethanol (PETG), copolymer of cyclohexanedimethanol (coPETG), polyethylene naphthalate (PEN), copolymer of polyethylene naphthalate (coPEN), polyethylene naphthalate, copolymer of polyethylene naphthalate, poly (methyl methacrylate) ), And copolymers of poly (methyl methacrylate) and the like, but are not limited thereto. For each high refractive index layer and low refractive index layer, one or a combination of two or more of these polymers can be used. Examples of suitable polymer combinations include those described in US Pat. No. 6,352,761. Moreover, it is also possible to form a reflective layer using the above polymer by a continuous flat film production line, for example, by a coextrusion method or a co-casting method.
 また、前記高屈折率層および前記低屈折率層に含まれるポリマーは、バインダーとして機能する水溶性高分子であることが好ましい。高屈折率層および低屈折率層は、水溶性高分子を含むことで、有機溶剤による環境上の問題を解決することができ、また塗膜の柔軟性も達成することができるから好ましい。なお、高屈折率層および低屈折率層に含有されるポリマーは、同じ構成成分であってもよく、異なる構成成分であってもよいが、異なることが好ましい。水溶性高分子としては、たとえば、ゼラチン、増粘多糖類、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α -メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体などが挙げられる。これらのなかでも、塗布ムラや膜厚均一性(ヘイズ)などの向上効果の観点から、屈折率層はポリマーとしてポリビニルアルコール類であるポリビニルアルコールまたはその誘導体を含むことが好ましい。ポリマーは、単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、ポリマーは、合成品を用いてもよいし、市販品を用いてもよい。 The polymer contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble polymer that functions as a binder. The high refractive index layer and the low refractive index layer preferably contain a water-soluble polymer, so that environmental problems due to the organic solvent can be solved and the flexibility of the coating film can be achieved. The polymers contained in the high refractive index layer and the low refractive index layer may be the same component or different components, but are preferably different. Examples of the water-soluble polymer include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate- Acrylic resin such as acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer Styrene-acrylate resins such as styrene-α-methylstyrene-acrylic acid copolymer, or styrene-α -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene- 2-hydroxyethyl acrylate Copolymer, styrene-2-hydroxyethylacrylate-potassium styrenesulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinylnaphthalene-acrylic acid copolymer, vinylnaphthalene- Mention may be made of maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate copolymers such as vinyl acetate-acrylic acid copolymers, and the like. Among these, from the viewpoint of improving effects such as coating unevenness and film thickness uniformity (haze), the refractive index layer preferably contains polyvinyl alcohol which is a polyvinyl alcohol or a derivative thereof as a polymer. A polymer may be used independently and may be used in combination of 2 or more type. The polymer may be a synthetic product or a commercially available product.
 ポリマーは特に制限されず、国際公開第2012/128109号、特開2013-121567号公報、特開2013-148849号公報等の、高屈折率層および前記低屈折率層に使用される公知のポリマーが同様にして使用できる。具体的には、ポリビニルアルコール類としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他、各種の変性ポリビニルアルコールも含まれる。 The polymer is not particularly limited, and known polymers used for the high refractive index layer and the low refractive index layer, such as International Publication No. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Can be used in the same way. Specifically, the polyvinyl alcohols include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1,000以上であることが好ましく、平均重合度が1,500~5,000であることが特に好ましい。また、ケン化度は、70~100モル%であることが好ましく、80~99.9モル%であることがより好ましく、85~99.9モル%であることがさらに好ましい。 The polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably an average degree of polymerization of 1,500 to 5,000. The degree of saponification is preferably 70 to 100 mol%, more preferably 80 to 99.9 mol%, and still more preferably 85 to 99.9 mol%.
 変性ポリビニルアルコールとしては、特に制限されないが、たとえば、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、ビニルアルコール系ポリマー等が挙げられる。また、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(たとえば、積水化学工業株式会社製「エスレック(登録商標)」)、シラノール基を有するシラノール変性ポリビニルアルコール(たとえば、株式会社クラレ製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(たとえば、日本合成化学工業株式会社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)、ブテンジオール・ビニルアルコール共重合樹脂(たとえば、日本合成化学工業株式会社製「ニチゴーGポリマー(登録商標)」)等も変性ポリビニルアルコールに含まれる。 The modified polyvinyl alcohol is not particularly limited, and examples thereof include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers. In addition, polyvinyl acetal resin obtained by reacting aldehyde with polyvinyl alcohol (for example, “ESREC (registered trademark)” manufactured by Sekisui Chemical Co., Ltd.), silanol-modified polyvinyl alcohol having a silanol group (for example, “R manufactured by Kuraray Co., Ltd.) -1130 "), modified polyvinyl alcohol-based resins having an acetoacetyl group in the molecule (for example," Gosefimer (registered trademark) Z / WR series "manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), butenediol-vinyl alcohol copolymer Resins (for example, “Nichigo G Polymer (registered trademark)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) are also included in the modified polyvinyl alcohol.
 アニオン変性ポリビニルアルコールは、たとえば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているようなビニルアルコールと水溶性基を有するビニル化合物との共重合体、および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコール等が挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、たとえば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されているような疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol as described, silanol modified polyvinyl alcohol having silanol group, reactivity having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Examples thereof include group-modified polyvinyl alcohol.
 カチオン変性ポリビニルアルコールとしては、たとえば、特開昭61-10483号公報に記載されているような、第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコール等が挙げられる。かかるカチオン変性ポリビニルアルコールは、たとえば、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include a primary to tertiary amino group or a quaternary ammonium group as described in JP-A No. 61-10483. Examples thereof include polyvinyl alcohol. Such cation-modified polyvinyl alcohol can be obtained, for example, by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 エチレン変性ポリビニルアルコールとしては、たとえば、特開2009-107324号公報、特開2003-248123号公報、特開2003-342322号公報などに記載されるもの等が使用できる。または、酢酸ビニル系樹脂であるエクセバール(登録商標)(商品名:株式会社クラレ製)等の市販品を使用してもよい。 As the ethylene-modified polyvinyl alcohol, for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used. Alternatively, commercially available products such as EXEVAL (registered trademark) (trade name: manufactured by Kuraray Co., Ltd.), which is a vinyl acetate resin, may be used.
 これらのポリビニルアルコール類の中でも、ポリビニルアルコールまたはエチレン変性ポリビニルアルコールを用いることが好ましい。 Among these polyvinyl alcohols, it is preferable to use polyvinyl alcohol or ethylene-modified polyvinyl alcohol.
 なお、上述のポリビニルアルコール類は、単独で用いても、2種以上を組み合わせて用いてもよい。また、ポリビニルアルコール類は合成品を用いてもよいし、市販品を用いてもよい。 In addition, the above-mentioned polyvinyl alcohols may be used alone or in combination of two or more. In addition, as the polyvinyl alcohol, a synthetic product or a commercially available product may be used.
 ポリビニルアルコール類の重量平均分子量は、1,000~1,000,000であることが好ましく、3,000~250,000であることがより好ましく、60,000~250,000であることがさらに好ましく、60,000~200,000であることが特に好ましい。なお、本明細書において、「重量平均分子量」の値は、静的光散乱法、ゲルパーミエーションクロマトグラフ法(GPC)、TOFMASS法などによって測定した値を採用するものとする。水溶性高分子の重量平均分子量が上記範囲にあると、湿式製膜法における塗布が可能となり、生産性を向上させることができることから好ましい。 The weight average molecular weight of the polyvinyl alcohols is preferably 1,000 to 1,000,000, more preferably 3,000 to 250,000, and further preferably 60,000 to 250,000. 60,000 to 200,000 is particularly preferable. In the present specification, the value measured by a static light scattering method, gel permeation chromatography (GPC), TOFMASS method or the like is adopted as the value of “weight average molecular weight”. When the weight average molecular weight of the water-soluble polymer is in the above range, it is preferable because application in a wet film forming method is possible and productivity can be improved.
 屈折率層における水溶性高分子の含有量は、屈折率層の全固形分に対して、5~75質量%であることが好ましい。水溶性高分子の含有量が5質量%以上であると、湿式製膜法で屈折率層を形成する場合に、塗布して得られた塗膜の乾燥時に、膜面が乱れることによる透明性の劣化を防止できることから好ましい。一方、水溶性高分子の含有量が75質量%以下であると、屈折率層中に金属酸化物粒子を含有する場合に好適な含有量となり、低屈折率層と高屈折率層との屈折率差を大きくできることから好ましい。同様の観点から、水溶性高分子の含有量は、10~70質量%であることがより好ましく、15~50質量%であることがさらに好ましく、20質量%~30質量%であることが特に好ましい。なお、本明細書において、水溶性高分子の含有量は、蒸発乾固法の残固形分より求められる。具体的には、遮熱フィルムを95℃の熱水に2時間浸し、残ったフィルムを除去した後、熱水を蒸発させ、得られた固形物の量を水溶性高分子量とする。この際、IR(赤外分光)スペクトルにおいて1700~1800cm-1、900~1000cm-1、および800~900cm-1の領域にそれぞれ1つずつピークが見られる場合、その水溶性高分子はポリビニルアルコールであると断定することができる。 The content of the water-soluble polymer in the refractive index layer is preferably 5 to 75% by mass with respect to the total solid content of the refractive index layer. When the refractive index layer is formed by a wet film-forming method when the content of the water-soluble polymer is 5% by mass or more, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. This is preferable because it is possible to prevent the deterioration. On the other hand, when the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the metal oxide particles are contained in the refractive index layer, and the refractive index between the low refractive index layer and the high refractive index layer. This is preferable because the rate difference can be increased. From the same viewpoint, the content of the water-soluble polymer is more preferably 10 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 20 to 30% by mass. preferable. In addition, in this specification, content of water-soluble polymer is calculated | required from the residual solid content of the evaporation-drying method. Specifically, the thermal barrier film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight. At this time, when one peak is observed in each of the regions of 1700 to 1800 cm −1 , 900 to 1000 cm −1 , and 800 to 900 cm −1 in the IR (infrared spectroscopy) spectrum, the water-soluble polymer is polyvinyl alcohol. It can be determined that
 [金属酸化物粒子]
 低屈折率層および高屈折率層の少なくとも一方は、金属酸化物(粒子)を含有してもよい。金属酸化物粒子を含有することで各屈折率層間の屈折率差を大きくすることができ、反射特性が向上する。低屈折率層および高屈折率層の双方が金属酸化物粒子を含有することにより、屈折率差をより大きくすることができる。金属酸化物粒子を含むことにより、積層数を低減することができ、薄膜とすることができる。層数を減らすことで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。
[Metal oxide particles]
At least one of the low refractive index layer and the high refractive index layer may contain a metal oxide (particle). By containing metal oxide particles, the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved. When both the low refractive index layer and the high refractive index layer contain metal oxide particles, the refractive index difference can be further increased. By including metal oxide particles, the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
 金属酸化物粒子としては、特に制限されないが、たとえば、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができる。 Although it does not restrict | limit especially as a metal oxide particle, For example, the metal which comprises a metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth A metal oxide that is one or two or more metals selected from the group consisting of metals can be used.
 《高屈折率層中の金属酸化物粒子》
 高屈折率層に用いる金属酸化物粒子としては、特に制限されないが、たとえば、酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化バリウム、酸化インジウム、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、酸化鉛、ならびにこれら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等が挙げられる。
《Metal oxide particles in high refractive index layer》
Although it does not restrict | limit especially as a metal oxide particle used for a high-refractive-index layer, For example, a titanium oxide, a zirconium oxide, a zinc oxide, an alumina, a colloidal alumina, a lead titanate, a lead titan, a yellow lead, zinc yellow, a chromium oxide, Ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide Lead oxide, and double oxides composed of these oxides, such as lithium niobate, potassium niobate, lithium tantalate, and aluminum-magnesium oxide (MgAl 2 O 4 ).
 また、金属酸化物粒子として、希土類酸化物を用いることもできる。希土類酸化物の具体的な例としては、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等が挙げられる。 Also, rare earth oxides can be used as the metal oxide particles. Specific examples of rare earth oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, Examples include thulium oxide, ytterbium oxide, and lutetium oxide.
 高屈折率層に用いられる金属酸化物粒子としては、屈折率が1.90以上の金属酸化物粒子が好ましく、たとえば、酸化ジルコニウム、酸化セリウム、酸化チタン、酸化亜鉛等を挙げることができる。中でも、透明でより屈折率の高い高屈折率層を形成することのできることから、酸化チタンが好ましく、ルチル型(正方晶形)酸化チタン粒子を用いることがより好ましい。高屈折率層に用いられる金属酸化物粒子は、1種単独であってもよいし、2種以上併用してもよい。 As the metal oxide particles used in the high refractive index layer, metal oxide particles having a refractive index of 1.90 or more are preferable, and examples thereof include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide. Among these, since it is possible to form a transparent and higher refractive index layer having a higher refractive index, titanium oxide is preferable, and rutile (tetragonal) titanium oxide particles are more preferable. The metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
 高屈折率層で用いられる金属酸化物粒子の体積平均粒径は100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましく、1~30nmであることがよりさらに好ましく、1~20nmであることが特に好ましく、1~15nmであることが最も好ましい。体積平均粒径が上記範囲であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The metal oxide particles used in the high refractive index layer preferably have a volume average particle size of 100 nm or less, more preferably 50 nm or less, further preferably 30 nm or less, and preferably 1 to 30 nm. Even more preferably, it is 1 to 20 nm, particularly preferably 1 to 15 nm. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
 高屈折率層で用いられる金属酸化物粒子として酸化チタン粒子を用いる場合は、酸化チタン粒子は、酸化チタンゾルの表面を変性して水または有機溶剤等に分散可能な状態にしたものを用いることが好ましい。水系の酸化チタンゾルの調製方法としては、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報等に記載された事項を参照にすることができる。酸化チタン粒子の平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、ヘイズ値が低く可視光線透過率に優れる観点から1~30nmであることがさらに好ましく、1~20nmであることがより好ましい。なお、ここで平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子状の金属酸化物の集団において、粒子1個当りの体積をviとした場合に、平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた体積平均粒径である。 When titanium oxide particles are used as the metal oxide particles used in the high refractive index layer, the titanium oxide particles should be prepared by modifying the surface of the titanium oxide sol so that it can be dispersed in water or an organic solvent. preferable. Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A 63-17221, JP-A 7-819, JP-A 9-165218, JP-A 11-43327, JP-A 63-63. Reference can be made to the matters described in Japanese Patent No. 17221. The average particle diameter of the titanium oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 1 to 30 nm from the viewpoint of a low haze value and excellent visible light transmittance. More preferably, it is 20 nm. Here, the average particle diameter means a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer. The particle diameters of 1,000 arbitrary particles are measured by the method of observing the above, and particles having particle diameters of d1, d2,. In a group of nk particulate metal oxides, when the volume per particle is vi, the average particle size mv = {Σ (vi · di)} / {Σ (vi)} The volume average particle size weighted by the volume to be measured.
 また、酸化チタンが含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態であってもよい。当該コアシェル粒子は、コアとなる酸化チタン粒子の表面に含ケイ素の水和酸化物からなるシェルが被覆してなる構造を有する。かようなコアシェル粒子を高屈折率層に含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、低屈折率層と高屈折率層との層間混合が抑制されうる。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。以下ではこのような被覆された酸化チタン粒子を「シリカ付着二酸化チタンゾル」とも称する。 Alternatively, it may be in the form of core-shell particles in which titanium oxide is coated with a silicon-containing hydrated oxide. The core-shell particles have a structure in which the surface of titanium oxide particles as a core is covered with a shell made of silicon-containing hydrated oxide. By including such core-shell particles in the high refractive index layer, the intermixing of the low refractive index layer and the high refractive index layer is achieved by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. Can be suppressed. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . Hereinafter, such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよいが、ルチル型がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるためである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本発明の一形態に係る効果を得るためにはシラノール基を有することがより好ましい。 The “silicon-containing hydrated oxide” in this specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and the effect according to one embodiment of the present invention. It is more preferable to have a silanol group in order to obtain
 含ケイ素の水和酸化物の被覆量は、金属酸化物粒子に対して、3~30質量%であることが好ましい。被覆量が30質量%以下であると、高屈折率層の高屈折率化がより容易となり、被覆量が3質量%以上であると、被覆した粒子をより安定に形成することができるからである。同様の観点から、含ケイ素の水和酸化物の被覆量は、3~10質量%であることがより好ましく、3~8質量%であることがさらに好ましい。 The coating amount of the silicon-containing hydrated oxide is preferably 3 to 30% by mass with respect to the metal oxide particles. When the coating amount is 30% by mass or less, it is easier to increase the refractive index of the high refractive index layer, and when the coating amount is 3% by mass or more, the coated particles can be formed more stably. is there. From the same viewpoint, the coating amount of the silicon-containing hydrated oxide is more preferably 3 to 10% by mass, and further preferably 3 to 8% by mass.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、たとえば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された事項を参照することができる。 As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
 一般的に、酸化チタン粒子は、粒子表面の光触媒活性の抑制や、溶媒等への分散性を向上する目的で、表面処理が施された状態で使用されることが多く、表面処理としては、シリカ、アルミナ、水酸化アルミニウム、ジルコニア等、1種またその2種類以上で処理されているものが好ましい。より具体的には、酸化チタン粒子表面をシリカからなる被覆層で覆われ、粒子表面が負電荷を帯びたものや、アルミニウム酸化物からなる被覆層が形成されたpH8~10で表面が正電荷を帯びたものが知られている。 In general, titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc. Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
 赤外遮蔽の観点および曲面形状のガラスにフィルムを適用した場合の色ムラ低減の観点から、高屈折率層における金属酸化物粒子の含有量は、高屈折率層の固形分100質量%に対して、20~80質量%であることが好ましく、30~75質量%であることがより好ましく、40~70質量%であることがさらに好ましく、60~70質量%であることが特に好ましい。 From the viewpoint of infrared shielding and from the viewpoint of reducing color unevenness when a film is applied to curved glass, the content of metal oxide particles in the high refractive index layer is based on 100% by mass of the solid content of the high refractive index layer. It is preferably 20 to 80% by mass, more preferably 30 to 75% by mass, still more preferably 40 to 70% by mass, and particularly preferably 60 to 70% by mass.
 《低屈折率層中の金属酸化物粒子》
 低屈折率層で用いられる金属酸化物粒子の平均一次粒径は100nm以下であることが好ましい。
<< Metal oxide particles in the low refractive index layer >>
The average primary particle size of the metal oxide particles used in the low refractive index layer is preferably 100 nm or less.
 主に低屈折率層に用いられる金属酸化物粒子としては、金属酸化物粒子として二酸化ケイ素を用いることが好ましく、コロイダルシリカを用いることが特に好ましい。低屈折率層に含まれる金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。低屈折率層中の金属酸化物の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 As the metal oxide particles mainly used for the low refractive index layer, it is preferable to use silicon dioxide as the metal oxide particles, and it is particularly preferable to use colloidal silica. The metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less. The average particle size of the metal oxide in the low refractive index layer is determined by observing the particles themselves or the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. The simple average value (number average) is obtained. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 低屈折率層における金属酸化物粒子の含有量としては、低屈折率層の固形分に対して、屈折率の観点から、5~80質量%であることが好ましく、10~75質量%であることがより好ましく、50~75質量%であることがさらに好ましく、65~75質量%であることが特に好ましい。 The content of the metal oxide particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, and preferably 10 to 75% by mass from the viewpoint of refractive index. More preferably, it is more preferably 50 to 75% by mass, and particularly preferably 65 to 75% by mass.
 コロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号パンフレットなどに記載されているものである。この様なコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 Colloidal silica is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer. For example, JP-A-57-14091 and JP-A-60- No. 219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142, JP-A-7- 179029, JP-A-7-137431, and WO94 / 26530 pamphlet A. Such colloidal silica may be a synthetic product or a commercially available product. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、たとえば、日産化学工業株式会社から販売されているスノーテックス(登録商標)シリーズ(スノーテックス(登録商標)OS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include Snowtex (registered trademark) series (Snowtex (registered trademark) OS, OXS, S, OS, 20, 30, 40, O, N, C, sold by Nissan Chemical Industries, Ltd. Etc.).
 (その他の添加物)
 各屈折率層は、上記以外にも、たとえば、特開昭57-74193号公報、同57-87988号公報および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。これらの添加物の含有量は、屈折率層の固形分に対して、0.1~10質量%であることが好ましい。
(Other additives)
In addition to the above, each refractive index layer is composed of, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No. 42993, 59-52689, 62-280069, 61-242871, and JP-A 4-219266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid , PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents, Various known additives may be contained such Tsu bets agent. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
 または、各屈折率層が水溶性高分子を含む場合には、水溶性高分子を硬化させるために、硬化剤を使用することもできる。硬化剤としては、ホウ酸およびその塩、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬、ホウ砂等が挙げられる。屈折率層における硬化剤の含有量は、屈折率層の固形分に対して、1~10質量%であることが好ましく、1~5質量%であることがさらに好ましい。 Alternatively, when each refractive index layer contains a water-soluble polymer, a curing agent can be used to cure the water-soluble polymer. Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc.), aldehyde-based curing agents (formaldehyde, glyoxal, etc.), active halogen-based curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active Examples thereof include vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum, borax and the like. The content of the curing agent in the refractive index layer is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass with respect to the solid content of the refractive index layer.
 または、各屈折率層は、塗布時の表面張力調整のために、界面活性剤を含んでもよい。ここで、界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、アニオン系界面活性剤がより好ましい。好ましい化合物としては、1分子中に炭素数8~30の疎水性基とスルホン酸基またはその塩を含有するものが挙げられる。各屈折率層における界面活性剤の含有量は、屈折率層の固形分に対して、0.01~5質量%であることが好ましく、0.01~1質量%であることがさらに好ましい。 Alternatively, each refractive index layer may contain a surfactant for adjusting the surface tension at the time of application. Here, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant, and an anionic surfactant is more preferable. Preferred compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule. The content of the surfactant in each refractive index layer is preferably 0.01 to 5% by mass, and more preferably 0.01 to 1% by mass with respect to the solid content of the refractive index layer.
 誘電体多層膜の製造方法は、特に限定されないが、たとえば、高屈折率層用塗布液および低屈折率層用塗布液を塗布、乾燥させることによって形成する方法が挙げられる。 The method for producing the dielectric multilayer film is not particularly limited, and examples thereof include a method of forming by coating and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer.
 高屈折率層用塗布液および低屈折率層用塗布液の調整方法は、特に制限されず、たとえば、ポリマー、金属酸化物粒子、必要に応じて添加されるその他の添加物、および溶媒を添加し、攪拌混合する方法等が挙げられる。この際、各成分の添加順も特に限定されず、攪拌しながら各成分を順次添加して混合してもよいし、攪拌しながら一度に添加して混合してもよい。必要に応じて、さらに溶媒を用いて適当な粘度に調整してもよい。 The adjustment method of the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is not particularly limited. For example, a polymer, metal oxide particles, other additives added as necessary, and a solvent are added. And a method of stirring and mixing. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed all at once while stirring. If necessary, it may be adjusted to an appropriate viscosity using a solvent.
 また、高屈折率層用塗布液および低屈折率層形成用塗布液を調整する際に、適宜加熱しながら調製してもよい。 Further, when adjusting the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer, it may be prepared while appropriately heating.
 ここで、高屈折率層用塗布液および低屈折率層用塗布液を調整するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、または水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。前記有機溶媒としては、たとえば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Here, the solvent for adjusting the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In consideration of environmental aspects due to the scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable. Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動がより低減でき、ハンドリングがより向上し、また、99.9質量%以下にすることで、液添加時の均質性がより増し、より安定した液物性を得ることができるからである。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%. Here, the volume fluctuation due to the volatilization of the solvent can be further reduced by setting it to 80% by mass or more, handling is further improved, and the uniformity at the time of adding the liquid is further improved by setting it to 99.9% by mass or less. This is because more stable liquid physical properties can be obtained.
 次に、上記で調製した高屈折率層用塗布液および低屈折率層用塗布液を用いて、基材上に塗布し、乾燥させて、誘電体多層膜を形成する方法を説明する。 Next, a method for forming a dielectric multilayer film by coating on a substrate using the coating solution for a high refractive index layer and the coating solution for a low refractive index layer prepared as described above and drying it will be described.
 前記塗布方法としては、特に限定されず、逐次塗布法、同時重層塗布のいずれであってもよいが、生産性等の観点から同時重層塗布であることが好ましい。 The coating method is not particularly limited, and may be any one of a sequential coating method and a simultaneous multilayer coating, but is preferably a simultaneous multilayer coating from the viewpoint of productivity and the like.
 塗布方式としては、たとえば、カーテン塗布方法、米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 As a coating method, for example, a curtain coating method, a slide bead coating method using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761,791, an extrusion coating method and the like are preferably used. It is done.
 同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 The temperature of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., and 30 to 45 ° C. when using the slide bead coating method. A temperature range is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~100mPa・sの範囲であることが好ましく、10~50mPa・sの範囲であることがより好ましい。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲であることが好ましく、25~500mPa・sの範囲であることがより好ましい。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, more preferably in the range of 10 to 50 mPa · s, in the preferable temperature range of the coating liquid. When the curtain coating method is used, it is preferably in the range of 5 to 1200 mPa · s, more preferably in the range of 25 to 500 mPa · s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法としては、特に制限されないが、逐次塗布法で反射層である誘電体多層膜を形成する場合は、好ましくは25~60℃、より好ましくは30℃~45℃に加温した低屈折率層用塗布液および高屈折率層用塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して層を形成することができる。そして、これを所望の反射性能を発現するために必要な層数となるように逐次塗布を繰り返して、反射層前駆体を得ることができる。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。好ましくは、湿球温度5~50℃、膜面温度5~100℃(より好ましくは10~50℃)の範囲で乾燥することが好ましく、たとえば、40~85℃の温風を1~5秒吹き付けて乾燥することができる。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥を用いることができる。また単一プロセスでの乾燥よりも多段プロセスの乾燥をすることが好ましく、恒率乾燥部の温度<減率乾燥部の温度にすることがより好ましい。この場合の恒率乾燥部の温度範囲は25~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。 The coating and drying method is not particularly limited, but when forming a dielectric multilayer film as a reflective layer by a sequential coating method, preferably a low temperature heated to 25 to 60 ° C., more preferably 30 to 45 ° C. Apply either the refractive index layer coating solution or the high refractive index layer coating solution on the substrate and dry it to form a layer, then apply the other coating solution on this layer and dry it. Can be formed. Then, the reflective layer precursor can be obtained by repeating the sequential application so that the number of layers necessary for expressing the desired reflective performance is obtained. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. Preferably, drying is performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (more preferably 10 to 50 ° C.). For example, warm air of 40 to 85 ° C. is applied for 1 to 5 seconds. Can be sprayed and dried. As a drying method, warm air drying, infrared drying, or microwave drying can be used. In addition, it is preferable to perform a multi-stage process rather than a single process, and it is more preferable that the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit. In this case, the temperature range of the constant rate drying section is preferably 25 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布で反射層を形成する場合には、たとえば、低屈折率層用塗布液および高屈折率層用塗布液を好ましくは25~60℃に加温して、基材上に低屈折率層用塗布液および高屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することができる。より好ましい乾燥条件としては、湿球温度5~50℃、膜面温度10~50℃の範囲の条件が挙げられる。より好ましい乾燥条件の一例としては、たとえば、80℃の温風を1~5秒吹き付けて乾燥することができる。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 When the reflective layer is formed by simultaneous multilayer coating, for example, the coating solution for the low refractive index layer and the coating solution for the high refractive index layer are preferably heated to 25 to 60 ° C. so as to be low on the substrate. After simultaneous multilayer coating of the refractive index layer coating liquid and the high refractive index layer coating liquid, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then dried at 10 ° C. or higher. can do. More preferable drying conditions include a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. As an example of more preferable drying conditions, for example, it is possible to dry by blowing warm air of 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性の低下またはゲル化を行う工程を意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, and the fluidity of the substances in each layer or in each layer is reduced or gelled. It means a process. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、6分以内であることが好ましく、5分以内であることがより好ましく、2分以内であることがさらに好ましい。また、下限の時間は特に制限されないが、10秒以上の時間をとることが好ましく、45秒以上の時間をとることが好ましい。セット時間を一定以上とることで、層中の成分がより十分に混合しうる。一方、セット時間を短時間とすることにより、金属酸化物ナノ粒子の層間拡散をより防止し、高屈折率層と低屈折率層との屈折率差を所望のものとすることができる。なお、高屈折率層と低屈折率層との間の境界面において高弾性化が素早く起こる場合には、セット工程を設けなくとも好適な界面を形成することができる。 The time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 6 minutes, more preferably within 5 minutes, and even more preferably within 2 minutes. . Further, the lower limit time is not particularly limited, but it is preferably 10 seconds or more, and preferably 45 seconds or more. By setting the set time to a certain value or more, the components in the layer can be mixed more sufficiently. On the other hand, by setting the set time short, the interlayer diffusion of the metal oxide nanoparticles can be further prevented, and the difference in refractive index between the high refractive index layer and the low refractive index layer can be made desirable. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
 なお、セット時間は、水溶性樹脂の濃度や金属酸化物ナノ粒子の濃度を変更することの他、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など他の成分を添加することにより調整することができる。 In addition to changing the concentration of the water-soluble resin and the concentration of the metal oxide nanoparticles, the set time includes other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can adjust by adding.
 より詳細には、セット工程においては、使用される冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 More specifically, in the setting step, the temperature of the cold air used is preferably 0 to 25 ° C., more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 以上、機能層が誘電体多層膜である場合を例に挙げて、その構成を具体的に説明したが、機能層は誘電体多層膜以外の種々の機能性層であっても本発明は適用可能である。機能層としての、誘電体多層膜以外の機能性層としては、たとえば、帯電防止層、密着付与中間層、色材層などが挙げられ、これらの具体的な構成については従来公知の知見が適宜参照されうる。 The configuration of the functional layer is specifically described by taking the case where the functional layer is a dielectric multilayer film as an example. However, the present invention can be applied to various functional layers other than the dielectric multilayer film. Is possible. Examples of the functional layer other than the dielectric multilayer film include, for example, an antistatic layer, an adhesion-imparting intermediate layer, a color material layer, and the like. Reference can be made.
 [粘着層]
 また、本発明の一形態に係る遮熱フィルムは、粘着層を有していてもよい。この粘着層は通常、遮熱フィルムの基材におけるハードコート層とは反対側の最表面に設けられ、さらに公知の剥離紙がさらに設けられていてもよい。粘着層の構成としては、特に制限されず、たとえば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、たとえば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。
[Adhesive layer]
Moreover, the heat shield film according to one embodiment of the present invention may have an adhesive layer. This pressure-sensitive adhesive layer is usually provided on the outermost surface of the base material of the heat-shielding film on the side opposite to the hard coat layer, and further known release paper may be further provided. The configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used. As the pressure-sensitive adhesive, for example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, or the like is used.
 なお、粘着層は、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加してもよい。 The pressure-sensitive adhesive layer may be appropriately added with an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like.
 (用途)
 本発明の一形態に係る遮熱フィルムは、幅広い分野に応用することができる。たとえば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備に貼り合せ、遮熱機能を付与する窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。
(Use)
The thermal barrier film according to one embodiment of the present invention can be applied to a wide range of fields. For example, it is attached to equipment exposed to sunlight for a long time such as outdoor windows of buildings and automobile windows, and it is mainly used to improve weather resistance as a film for window pasting to provide a heat shielding function, a film for agricultural greenhouses, etc. Used for purposes.
 [遮熱体]
 本発明の一形態に係る遮熱フィルムは、遮熱体として好適に用いることができる。遮熱体とは、遮熱フィルムを、直接もしくは接着層を介して、または遮熱フィルムが粘着層を有する場合は粘着層を介して、ガラスまたはガラス代替の樹脂等の基体に貼合されてなる部材をいう。
[Heat shield]
The heat shield film according to one embodiment of the present invention can be suitably used as a heat shield. A heat shield means that a heat shield film is bonded directly to a substrate such as glass or a glass substitute resin through an adhesive layer, or when the heat shield film has an adhesive layer, through an adhesive layer. The member which becomes.
 基体を形成する材料は、特に制限されないが、具体例としては、たとえば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂などの各種樹脂、金属板、セラミック等が挙げられる。基体を形成するための樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれも用いることができる。また、異なる種類の樹脂を2種以上組み合わせて用いてもよい。実用性の観点から、基体を形成する材料はガラスであることが特に好ましい。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、0.1mm~5cmであることが好ましい。 The material for forming the substrate is not particularly limited, but specific examples include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin. , Epoxy resin, melamine resin, phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin and the like, metal plates, ceramics and the like. As the type of resin for forming the substrate, any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin can be used. Two or more different types of resins may be used in combination. From the viewpoint of practicality, the material forming the substrate is particularly preferably glass. The substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like. The thickness of the substrate is not particularly limited, but is preferably 0.1 mm to 5 cm.
 基体は平面であっても曲面であってもよい。曲面を有する基体と貼合するための加熱成形の方法は、特に制限されないが、一般的には、曲面を有する基体の一面に、遮熱フィルムのハードコート層を内側、すなわち基材に対して基体側へ向けた状態で、基体の形状に沿って変形させ、その後、曲面を有する基体の反対側の面に、遮熱フィルムのハードコート層が外側、すなわち基材に対して基体とは反対側へ向けた状態で基体と貼合する方法が用いられる。 The substrate may be flat or curved. The method of thermoforming for laminating with a substrate having a curved surface is not particularly limited, but generally, a hard coat layer of a thermal barrier film is provided on one side of the substrate having a curved surface, that is, with respect to the substrate. The substrate is deformed along the shape of the substrate in the state facing the substrate side, and then the hard coat layer of the heat shielding film is on the opposite side of the substrate having a curved surface, that is, opposite to the substrate with respect to the substrate. A method of bonding to the base body in a state directed to the side is used.
 加熱成形は、基材が軟化して遮熱フィルムの形状変化が十分に可能となる温度で行うことが好ましい。加熱温度は、かような形状変化が可能な温度であれば特に制限されないが、100~400℃で行うことが好ましく、120~300℃であることがより好ましく、120~250℃であることがさらに好ましい。また、加熱時間についても、前記形状変化が可能な時間であれば特に制限されないが、0.1~30分で行うことが好ましく、0.5~10分であることがより好ましく、1~5分であることがさらに好ましい。 The thermoforming is preferably performed at a temperature at which the base material is softened and the shape of the heat shield film can be sufficiently changed. The heating temperature is not particularly limited as long as the shape can be changed, but is preferably 100 to 400 ° C, more preferably 120 to 300 ° C, and more preferably 120 to 250 ° C. Further preferred. Further, the heating time is not particularly limited as long as the shape can be changed, but is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes, and more preferably 1 to 5 minutes. More preferably, it is minutes.
 本発明の一形態に係る遮熱フィルムは、曲面ガラス等の曲面を有する基体へ貼合する用途において、特に、曲面を有する基体を用いた遮熱体の作製に対して好ましく用いることができる。かかる理由は、基体の形状に合わせた形状へと加熱成形する際のハードコート層の剥離、および外観上の不良の発生を好適に抑制できるからである。なお、曲面を有する基体としては、実用性の観点から、曲面ガラスが特に好ましい。 The heat-shielding film according to one embodiment of the present invention can be preferably used for the production of a heat-shielding body using a substrate having a curved surface, particularly in applications where it is bonded to a substrate having a curved surface such as curved glass. The reason for this is that it is possible to suitably suppress the peeling of the hard coat layer and the occurrence of defects in appearance when heat-molding into a shape that matches the shape of the substrate. In addition, as a base | substrate which has a curved surface, a curved glass is especially preferable from a practical viewpoint.
 したがって、本発明の他の好ましい一形態は、遮熱フィルムを基体に貼合してなる、遮熱体である。 Therefore, another preferred embodiment of the present invention is a heat shield obtained by bonding a heat shield film to a substrate.
 さらに、本発明のさらなる他の好ましい一形態は、遮熱フィルムを、曲面を有する基体に貼合してなり、遮熱体である。 Furthermore, still another preferable embodiment of the present invention is a heat shield, which is formed by bonding a heat shield film to a substrate having a curved surface.
 前述のように、本発明の一形態に係る遮熱フィルムは、接着層を介して、基体と貼合してもよい。接着層を形成する接着剤または粘着剤は、特に制限されないが、たとえば、光硬化性または熱硬化性の樹脂を主成分とする接着剤または粘着剤が挙げられる。接着剤または粘着剤としては、紫外線に対して耐久性を有するものが好ましい。接着剤または粘着剤としては、具体的には、アクリル系粘着剤またはシリコーン系粘着剤がより好ましく、粘着特性やコストの観点から、アクリル系粘着剤がさらに好ましい。アクリル系粘着剤としては、特に剥離強さの制御が容易なことから、溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。また、接着剤または粘着剤としては、ポリビニルブチラール系樹脂またはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。ポリビニルブチラール系樹脂またはエチレン-酢酸ビニル共重合体系樹脂の具体例としては、たとえば、可塑性ポリビニルブチラール(積水化学工業株式会社製、三菱モンサント化成株式会社製等)、エチレン-酢酸ビニル共重合体(デュポン株式会社製、武田薬品工業株式会社製、デュミラン(登録商標))、変性エチレン-酢酸ビニル共重合体(東ソー株式会社製、メルセン(登録商標)G)等が挙げられる。 As described above, the heat-shielding film according to one embodiment of the present invention may be bonded to a substrate via an adhesive layer. The adhesive or pressure-sensitive adhesive forming the adhesive layer is not particularly limited, and examples thereof include an adhesive or pressure-sensitive adhesive mainly composed of a photocurable or thermosetting resin. As the adhesive or pressure-sensitive adhesive, those having durability against ultraviolet rays are preferable. Specifically, the adhesive or the pressure-sensitive adhesive is more preferably an acrylic pressure-sensitive adhesive or a silicone-based pressure-sensitive adhesive, and more preferably an acrylic pressure-sensitive adhesive from the viewpoint of pressure-sensitive adhesive properties and cost. As the acrylic pressure-sensitive adhesive, a solvent type is preferable because it is particularly easy to control the peel strength. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer. As the adhesive or pressure-sensitive adhesive, polyvinyl butyral resin or ethylene-vinyl acetate copolymer resin may be used. Specific examples of the polyvinyl butyral resin or the ethylene-vinyl acetate copolymer resin include, for example, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Kasei Co., Ltd., etc.), ethylene-vinyl acetate copolymer (DuPont). Examples thereof include: manufactured by Takeda Pharmaceutical Co., Ltd., Dumiran (registered trademark), modified ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, Mersen (registered trademark) G), and the like.
 なお、接着層は紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。 Note that the adhesive layer may be appropriately added and blended with an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion adjusting agent, and the like.
 [遮熱性能]
 遮熱フィルムまたは遮熱体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209:1998(複層ガラス)、JIS R 3106:1998(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107:1998(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。また、遮熱フィルムまたは遮熱体の遮熱性能(TSER、Total Solar Energy Rejection))は、後述の実施例に記載の測定方法によって求めることができる。
[Heat insulation performance]
Insulation performance and solar heat shielding performance of a heat shielding film or a heat shield are generally JIS R 3209: 1998 (multi-layer glass), JIS R 3106: 1998 (transmittance, reflectance, emissivity, solar radiation of plate glass). Heat acquisition rate test method), JIS R 3107: 1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture). Moreover, the thermal insulation performance (TSER, Total Solar Energy Rejection) of a thermal insulation film or a thermal insulation body can be calculated | required by the measuring method as described in the below-mentioned Example.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例および比較例では、基材および熱線遮蔽性金属酸化物を含有するハードコート層を有する遮熱フィルムを作製し、各種評価を行った。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following Examples and Comparative Examples, a heat shielding film having a hard coat layer containing a base material and a heat ray shielding metal oxide was produced and subjected to various evaluations.
 《遮熱フィルムの作製》
 〈塗布液の調製〉
 実施例および比較例の遮熱フィルムの作製に使用する塗布液を下記のように調製した。
<< Production of thermal barrier film >>
<Preparation of coating solution>
The coating liquid used for preparation of the thermal-insulation film of an Example and a comparative example was prepared as follows.
 (ハードコート層用塗布液HC1の調製)
 各成分を混合して、下記の組成を有する塗布液HC1を調製した。
(Preparation of hard coat layer coating solution HC1)
Each component was mixed to prepare a coating liquid HC1 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 196質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK(メチルイソブチルケトン)希釈液(1質量%) 18質量部
 ・ヘキソエートコバルト8%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)184(1-ヒドロキシシクロヘキシルフェニルケトン、光重合開始剤、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK(メチルイソブチルケトン)希釈液(1質量%) 9質量部
 ・MIBK(メチルイソブチルケトン) 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK (methyl isobutyl ketone) diluent (1 18% by mass) 18 parts by mass of hexate cobalt 8% (metal soap, manufactured by Toei Kako Co., Ltd.) 3 parts by mass Irgacure (registered trademark) 184 (1-hydroxycyclohexyl phenyl ketone, photopolymerization initiator, BASF Japan Ltd. Manufactured by) 13 parts by mass ・ MegaFac (registered trademark) F-552 (surfactant, DI) Co.) MIBK (methyl isobutyl ketone) diluent (1%) 9 parts by mass · MIBK (methyl isobutyl ketone) 446 parts by weight.
 (ハードコート層用塗布液HC2の調製)
 各成分を混合して、下記の組成を有する塗布液HC2を調製した。
(Preparation of coating liquid HC2 for hard coat layer)
Each component was mixed to prepare a coating liquid HC2 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-313(2、3官能アクリレート、2官能成分35質量%、東亞合成株式会社製) 196質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 18質量部
 ・ヘキソエート亜鉛15%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 mass parts Aronix (registered trademark) M-313 (2, 196 parts by mass of EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% by mass Part ・ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass · MIBK 446 parts by mass.
 (ハードコート層用塗布液HC3の調製)
 各成分を混合して、下記の組成を有する塗布液HC3を調製した。
(Preparation of coating liquid HC3 for hard coat layer)
Each component was mixed to prepare a coating liquid HC3 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 117質量部
 ・アロニックス(登録商標)M-402(5、6官能アクリレート、5官能成分35質量%、東亞合成株式会社製) 78質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 18質量部
 ・ヘキソエートジルコニウム12%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 117 parts by mass Aronix (registered trademark) M-402 (5, 6 functional acrylate, 5-functional component 35% by mass, manufactured by Toagosei Co., Ltd.) 78 Mass parts-EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1 mass%) 18 parts by mass-Hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass Irgacure® 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine In'okisaido, manufactured by BASF Japan Ltd.) 13 parts by weight Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass MIBK 446 parts by mass.
 (ハードコート層用塗布液HC4の調製)
 各成分を混合して、下記の組成を有する塗布液HC4を調製した。
(Preparation of coating liquid HC4 for hard coat layer)
Each component was mixed to prepare a coating liquid HC4 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 117質量部
 ・ヒタロイド(登録商標)7902-1(6官能ウレタンアクリレート、日立化成株式会社製) 78質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 18質量部
 ・ヘキソエートマンガン6%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 117 parts by mass ・ Hitaroid (registered trademark) 7902-1 (hexafunctional urethane acrylate, manufactured by Hitachi Chemical Co., Ltd.) 78 parts by mass ・ EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18 parts by mass • 6% hexoate manganese (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass • Irgacure (registered trademark) ) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BAS Japan Ltd.) 13 parts by weight Megafac (registered trademark) F-552 (surfactant manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass MIBK 446 parts by mass.
 (ハードコート層用塗布液HC5の調製)
 各成分を混合して、下記の組成を有する塗布液HC5を調製した。
(Preparation of hard coat layer coating solution HC5)
Each component was mixed to prepare a coating liquid HC5 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 196質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 18質量部
 ・ヘキソエートコバルト8%(金属石鹸、東栄化工株式会社製) 3質量部
 ・LUCIRIN(登録商標) TPO(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% Part ・ hexoate cobalt 8% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ LUCIRIN (registered trademark) TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) M IBK diluent (1% by mass) 9 parts by mass-446 parts by mass of MIBK.
 (ハードコート層用塗布液HC6の調製)
 各成分を混合して、下記の組成を有する塗布液HC6を調製した。
(Preparation of coating liquid HC6 for hard coat layer)
Each component was mixed to prepare a coating liquid HC6 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 196質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 18質量部
 ・ヘキソエート亜鉛15%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% Part ・ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 13 parts by mass Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass · MIBK 446 parts by mass.
 (ハードコート層用塗布液HC7の調製)
 各成分を混合して、下記の組成を有する塗布液HC7を調製した。
(Preparation of coating liquid HC7 for hard coat layer)
Each component was mixed to prepare a coating liquid HC7 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 122質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 247質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 23質量部
 ・ヘキソエートジルコニウム12%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 16質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 580質量部
 (ハードコート層用塗布液HC8の調製)
 各成分を混合して、下記の組成を有する塗布液HC8を調製した。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 122 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60 mass%, manufactured by Toagosei Co., Ltd.) 247 mass parts EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1 mass%) 23 mass Parts ・ hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) 16 parts by mass ・ MegaFac (registered trademark) F-552 (surfactant, DIC strain) Company Ltd.) MIBK diluent (1%) 9 parts by mass · MIBK 580 parts by weight (Preparation of coating solution for hard coat layer HC8)
Each component was mixed to prepare a coating liquid HC8 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 148質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 240質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 22質量部
 ・ヘキソエートマンガン6%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 16質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 562質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 148 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 240 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 22% Part ・ Hexoate Manganese 6% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by weight ・ Irgacure (registered trademark) 819 (Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) 16 parts by mass ・ MegaFac (registered trademark) F-552 (surfactant, DIC Corporation) ) MIBK diluent (1%) 9 parts by mass · MIBK 562 parts by mass.
 (ハードコート層用塗布液HC9の調製)
 各成分を混合して、下記の組成を有する塗布液HC9を調製した。
(Preparation of coating liquid HC9 for hard coat layer)
Each component was mixed to prepare a coating liquid HC9 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 464質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 156質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 14質量部
 ・ヘキソエートコバルト8%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 10質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 344質量部。
YMF-02A (18% by mass Cs 0.33 WO 3 dispersion, dispersant 10% by mass, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 464 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 156 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 14 mass Part ・ Hexoate Cobalt 8% (metal soap, manufactured by Toei Kako Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) Manufactured by) 10 parts by mass-MegaFac (registered trademark) F-552 (surfactant, DIC Corporation) ) MIBK diluent (1%) 9 parts by mass · MIBK 344 parts by mass.
 (ハードコート層用塗布液HC10の調製)
 各成分を混合して、下記の組成を有する塗布液HC10を調製した。
(Preparation of coating liquid HC10 for hard coat layer)
Each component was mixed to prepare a coating liquid HC10 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 498質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 147質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製) MIBK希釈液(1質量%) 14質量部
 ・ヘキソエート亜鉛15%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 10質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 320質量部。
(ハードコート層用塗布液HC11の調製)
 各成分を混合して、下記の組成を有する塗布液HC11を調製した。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 498 mass parts Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 147 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 14 mass Part ・ Hexoate zinc 15% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by BASF Japan Ltd.) 10 parts by mass ・ Megafac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK diluent (1%) 9 parts by mass · MIBK 320 parts by mass.
(Preparation of hard coat layer coating solution HC11)
Each component was mixed to prepare a coating liquid HC11 having the following composition.
 ・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 315質量部
 ・アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製) 196質量部
 ・EBECRYL(登録商標)350(2官能シリコーンアクリレート、ダイセル・オルネクス株式会社製)MIBK希釈液(1質量%) 18質量部
 ・ヘキソエートジルコニウム12%(金属石鹸、東栄化工株式会社製) 3質量部
 ・Irgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、BASFジャパン株式会社製) 13質量部
 ・メガファック(登録商標)F-552(界面活性剤、DIC株式会社製) MIBK希釈液(1質量%) 9質量部
 ・MIBK 446質量部。
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 315 parts by mass Aronix (registered trademark) M-305 (3, Tetrafunctional acrylate, trifunctional component 60% by mass, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicone acrylate, manufactured by Daicel Ornex Co., Ltd.) MIBK diluent (1% by mass) 18% by mass Parts ・ hexoate zirconium 12% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass ・ Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, BASF Japan Ltd.) Manufactured by) 13 parts by mass ・ MegaFac (registered trademark) F-552 (surfactant, DIC stock) (Manufactured by the company) MIBK diluted solution (1% by mass) 9 parts by mass MIBK 446 parts by mass.
 (ハードコート層用塗布液HC12の調製)
 各成分を混合して、下記の組成を有する塗布液HC12を調製した。
(Preparation of coating liquid HC12 for hard coat layer)
Each component was mixed to prepare a coating liquid HC12 having the following composition.
 ・YMF-01(10質量%Cs0.33WO分散液、分散剤5質量%、平均粒径50nm、住友金属鉱山株式会社製) 500質量部
 ・KAYARAD(登録商標) DPHA(6官能アクリレート、日本化薬株式会社製) 100質量部
 ・Irgacure(登録商標)127(開始剤、BASFジャパン株式会社製) 5質量部
 ・トルエン 446質量部。
YMF-01 (10 mass% Cs 0.33 WO 3 dispersion, 5 mass% dispersant, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 500 mass parts KAYARAD (registered trademark) DPHA (hexafunctional acrylate, Nippon Kayaku Co., Ltd.) 100 parts by mass • Irgacure (registered trademark) 127 (initiator, manufactured by BASF Japan Ltd.) 5 parts by mass • Toluene 446 parts by mass.
 (低屈折率層用塗布液の調製)
 380質量部のコロイダルシリカ(濃度10質量%、スノーテックス(登録商標)OXS、1次粒子の平均粒径4~6nm、日産化学工業株式会社製)、50質量部のホウ酸水溶液(濃度3質量%)、300質量部のポリビニルアルコール(濃度4質量%、JP-45、重合度:4500、ケン化度:88mol%、日本酢ビ・ポバール株式会社製)、3質量部の界面活性剤水溶液(濃度5質量%、ソフタゾリン(登録商標)LSB-R、川研ファインケミカル株式会社製)を45℃でこの順に添加した。純水で1000質量部に仕上げ、低屈折率層用塗布液を調製した。
(Preparation of coating solution for low refractive index layer)
380 parts by mass of colloidal silica (concentration: 10% by mass, Snowtex (registered trademark) OXS, average particle size of primary particles: 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (concentration: 3 mass) %), 300 parts by weight of polyvinyl alcohol (concentration: 4% by weight, JP-45, polymerization degree: 4500, saponification degree: 88 mol%, manufactured by Nippon Acetate / Poval) 3 parts by weight of an aqueous surfactant solution ( A concentration of 5% by mass, Softazoline (registered trademark) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 45 ° C. The coating solution for low refractive index layer was prepared by finishing 1000 parts by mass with pure water.
 (高屈折率層用塗布液の調製)
 (シリカ付着二酸化チタンゾルの調製)
 二酸化チタンゾル(濃度15.0質量%、SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号、日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度20質量%の、SiOを表面に付着させた二酸化チタンゾル(「シリカ付着二酸化チタンゾル」とも称する)(体積平均粒径:9nm)を得た。
(Preparation of coating solution for high refractive index layer)
(Preparation of silica-attached titanium dioxide sol)
After adding 2 parts by mass of pure water to 0.5 parts by mass of titanium dioxide sol (concentration 15.0% by mass, SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.) Heated to 90 ° C. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate No. 4, manufactured by Nippon Chemical Industry Co., Ltd. diluted with pure water so that the SiO 2 concentration becomes 0.5% by mass) was gradually added. Then, heat treatment was carried out at 175 ° C. for 18 hours in an autoclave, and after cooling, the solution was concentrated with an ultrafiltration membrane to obtain a titanium dioxide sol (“silica”) having a solid content concentration of 20% by mass and having SiO 2 adhered to the surface. (Also referred to as “attached titanium dioxide sol”) (volume average particle size: 9 nm).
 (塗布液の調製)
 このようにして得られたシリカ付着二酸化チタンゾル(固形分20質量%)113質量部に対して、クエン酸水溶液(濃度1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(濃度8質量%、エクセバール(登録商標)RS-2117、エチレン変性度3.0mol%、鹸化度:97.5~99モル%、重合度1700、株式会社クラレ製)113質量部を加えて撹拌し、最後に界面活性剤の固形分濃度5質量%水溶液(ソフタゾリン(登録商標)LSB-R、川研ファインケミカル株式会社製)0.4質量部を加えて、高屈折率層用塗布液を調製した。
(Preparation of coating solution)
48 parts by mass of an aqueous citric acid solution (concentration 1.92% by mass) is added to 113 parts by mass of the silica-attached titanium dioxide sol thus obtained (solid content 20% by mass), and further ethylene-modified polyvinyl alcohol (concentration 8). (Mass%, EXEVAL® RS-2117, ethylene modification degree 3.0 mol%, saponification degree: 97.5 to 99 mol%, polymerization degree 1700, manufactured by Kuraray Co., Ltd.) A high refractive index layer coating solution was prepared by adding 0.4 parts by weight of a surfactant solid solution having a solid content concentration of 5% by weight (SOFTAZOLINE (registered trademark) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.).
 (遮熱フィルム試料1の作製:実施例1)
 基材(厚さ50μmのポリエチレンテレフタレートフィルム、コスモシャイン(登録商標)A4300、東洋紡株式会社製)上に、ハードコート層用塗布液HC1を、グラビアコーターで塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させてハードコート層を形成し、遮熱フィルム試料1を作製した。ハードコート層の厚みは可視光透過率が70%になるよう適宜調整した。
(Preparation of thermal barrier film sample 1: Example 1)
On a base material (a polyethylene terephthalate film having a thickness of 50 μm, Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.), the hard coat layer coating solution HC1 was applied with a gravure coater and dried at 90 ° C. for 1 minute. . Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. Thus, a hard coat layer was formed, and a thermal barrier film sample 1 was produced. The thickness of the hard coat layer was appropriately adjusted so that the visible light transmittance was 70%.
 (遮熱フィルム試料2~10の作製:実施例2~10)
 ハードコート層用塗布液HC1を、それぞれハードコート層用塗布液HC2~10に変更した以外は、遮熱フィルム試料1と同様にして遮熱フィルム試料2~10を作製した。
(Preparation of thermal barrier film samples 2 to 10: Examples 2 to 10)
Thermal barrier film samples 2 to 10 were produced in the same manner as the thermal barrier film sample 1 except that the hard coat layer coating liquid HC1 was changed to the hard coat layer coating liquids HC2 to HC10, respectively.
 (遮熱フィルム試料11の作製:実施例11)
 スライドホッパー塗布装置を用い、低屈折率層用塗布液および高屈折率層用塗布液を45℃に保温しながら、45℃に加温した基材(厚さ50μmのポリエチレンテレフタレートフィルム、コスモシャイン(登録商標)A4300、東洋紡株式会社製)上に、21層同時重層塗布(総膜厚;2.85μm)を行った。この際、最下層および最上層は低屈折率層とし、それ以外は低屈折率層および高屈折率層がそれぞれ交互に積層されるように設定した。塗布量については、乾燥時の膜厚が低屈折率層は各層150nm、高屈折率層は各層120nmになるように調節した。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる誘電体多層膜(反射層)を作製した。
(Preparation of thermal barrier film sample 11: Example 11)
Using a slide hopper coating apparatus, a substrate heated to 45 ° C. while keeping the coating solution for the low refractive index layer and the coating solution for the high refractive index layer at 45 ° C. (polyethylene terephthalate film having a thickness of 50 μm, Cosmo Shine ( (Registered Trademark) A4300 (manufactured by Toyobo Co., Ltd.) was applied to 21 layers simultaneously (total film thickness: 2.85 μm). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and other than that, the low refractive index layers and the high refractive index layers were alternately laminated. The coating amount was adjusted so that the film thickness during drying was 150 nm for each low refractive index layer and 120 nm for each high refractive index layer. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to produce a dielectric multilayer film (reflective layer) composed of 21 layers.
 次いで、基材の誘電体多層膜を形成した側の面とは反対側の面に、ハードコート層用塗布液HC11を、グラビアコーターで塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させてハードコート層を形成し、遮熱フィルム試料11を作製した。ハードコート層の厚みは可視光透過率が70%になるよう適宜調整した。 Next, a hard coat layer coating solution HC11 was applied to the surface of the substrate opposite to the surface on which the dielectric multilayer film was formed, using a gravure coater, and dried at 90 ° C. for 1 minute. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. Thus, a hard coat layer was formed, and a thermal barrier film sample 11 was produced. The thickness of the hard coat layer was appropriately adjusted so that the visible light transmittance was 70%.
 (遮熱フィルム試料12の作製:比較例1)
 ハードコート層用塗布液HC1を、ハードコート層用塗布液HC12に変更した以外は、遮熱フィルム試料1と同様にして遮熱フィルム試料12を作製した。
(Preparation of thermal barrier film sample 12: Comparative Example 1)
A thermal barrier film sample 12 was produced in the same manner as the thermal barrier film sample 1 except that the hard coat layer coating liquid HC1 was changed to the hard coat layer coating liquid HC12.
 《遮熱フィルムの評価》
 (ハードコート層用塗布液中における溶媒以外の成分中における(a)セシウム含有複合タングステン酸化物の含有量)
 (ハードコート層の質量)
 遮熱フィルム試料1~12および基材を10cm×10cmにカットし、質量測定を行い、遮熱フィルムおよび基材の質量差をハードコート層の質量とした。
<Evaluation of thermal barrier film>
(Content of (a) cesium-containing composite tungsten oxide in components other than solvent in hard coat layer coating solution)
(Mass of hard coat layer)
The heat shielding film samples 1 to 12 and the substrate were cut into 10 cm × 10 cm, and mass measurement was performed. The mass difference between the heat shielding film and the substrate was taken as the mass of the hard coat layer.
 (ハードコート層中に含有される(a)セシウム含有複合タングステン酸化物の質量)
 遮熱フィルム試料1~12を800℃で3時間加熱後、残分を水酸化ナトリウム水溶液に溶解し、ICP-AES(装置名SPS3520UV、株式会社日立ハイテクサイエンス製)を用いてタングステンの質量を測定した。得られたタングステンの質量の1.5倍(タングステンの質量×1.5)をCs0.33WOの質量とした。なお、ここで1.5倍としたのは、タングステンに対するCs0.33WOの質量比が1.5倍であるからである。なお、セシウム含有複合タングステン酸化物以外の他のセシウム含有複合タングステン酸化物を用いた場合ついても、同様にタングステンに対する質量比からセシウム含有複合タングステン酸化物の質量を算出することができる。
(Mass of (a) cesium-containing composite tungsten oxide contained in hard coat layer)
Heat insulation film samples 1 to 12 were heated at 800 ° C. for 3 hours, and the residue was dissolved in an aqueous sodium hydroxide solution. The mass of tungsten was measured using ICP-AES (device name: SPS3520UV, manufactured by Hitachi High-Tech Science Corporation). did. 1.5 times the mass of the obtained tungsten (the mass of tungsten × 1.5) was defined as the mass of Cs 0.33 WO 3 . The reason why the ratio is 1.5 times is that the mass ratio of Cs 0.33 WO 3 to tungsten is 1.5 times. In addition, also when using other cesium containing composite tungsten oxides other than a cesium containing composite tungsten oxide, the mass of a cesium containing composite tungsten oxide is computable from mass ratio with respect to tungsten similarly.
 得られたハードコート層の質量からCs0.33WOの質量を差し引き、ハードコート層中に含まれる、Cs0.33WO以外の成分の質量を算出した。さらに、Cs0.33WOの質量をCs0.33WO以外の成分の質量で除し、Cs0.33WO以外の成分の質量に対するCs0.33WOの質量の比を算出した。この値をCs0.33WO質量比とした。 The mass of Cs 0.33 WO 3 was subtracted from the mass of the obtained hard coat layer, and the mass of components other than Cs 0.33 WO 3 contained in the hard coat layer was calculated. Further, the mass of Cs 0.33 WO 3 were divided by the mass of the components other than Cs 0.33 WO 3, calculates a ratio of the mass of Cs 0.33 WO 3 with respect to the mass of the components other than Cs 0.33 WO 3 did. This value was defined as Cs 0.33 WO 3 mass ratio.
 (熱処理テープ剥離試験前後の可視光透過率変化)
 (熱処理テープ剥離試験)
 遮熱フィルム試料1~12を230℃で5分間熱処理し、その後JIS K 5600-5-6:1999のクロスカット法に沿ってハードコート層側から片刃のカミソリの刃を面に対して90°の角度で2mm間隔でクロスカットし、10mm角の碁盤目を作製した。日東電工株式会社製のセロハンテープNo.29を貼り付けて、テープをはがした。
(Change in visible light transmittance before and after heat treatment tape peel test)
(Heat treatment tape peel test)
Heat shielding film samples 1 to 12 were heat-treated at 230 ° C. for 5 minutes, and then a razor blade with a single edge from the hard coat layer side was 90 ° to the surface in accordance with the cross-cut method of JIS K 5600-5-6: 1999. A cross cut was made at intervals of 2 mm at an angle of 10 mm to produce a 10 mm square grid. Cellophane tape No. manufactured by Nitto Denko Corporation 29 was pasted and the tape was peeled off.
 (熱処理テープ剥離試験前後の可視光線透過率の変化ΔT%)
 遮熱フィルム試料1~12について、熱処理テープ剥離試験前後のサンプルを下記の組成を有する粘着剤を用いて3mmの板ガラスに貼り付け、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて、JIS S 3107:2013の可視光線透過率試験に沿って可視光線透過率を測定し、変化量をΔT(%)とした。なお、ΔTは20%以下であれば実用上問題はないものと判断する。
(Change in visible light transmittance ΔT% before and after heat treatment tape peel test)
For the thermal barrier film samples 1 to 12, the samples before and after the heat treatment tape peeling test were attached to a 3 mm plate glass using an adhesive having the following composition, and a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-) 4000 type), the visible light transmittance was measured according to the visible light transmittance test of JIS S 3107: 2013, and the amount of change was defined as ΔT (%). If ΔT is 20% or less, it is determined that there is no practical problem.
 <粘着剤>
 ・N-2147(アクリル系粘着剤、日本合成化学工業株式会社製) 100質量部
 ・Tinuvin(登録商標)477(紫外線吸収剤、BASFジャパン株式会社製)
 2.1質量部
 ・コロネート(登録商標)HL(硬化剤、東ソー株式会社製) 5質量部
 (カール)
 遮熱フィルム試料1~12をA4サイズにカットし、短辺で吊るした際に、短辺方向が円筒の円周になるよう変形させた際の円筒の形状を下記の指標に基づきランク評価した。なお、ランク2以上であれば実用上問題はないものと判断する。
<Adhesive>
-N-2147 (acrylic adhesive, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 100 parts by mass-Tinuvin (registered trademark) 477 (ultraviolet absorber, manufactured by BASF Japan)
2.1 parts by mass Coronate (registered trademark) HL (curing agent, manufactured by Tosoh Corporation) 5 parts by mass (curl)
When the heat shielding film samples 1 to 12 were cut to A4 size and hung on the short side, the shape of the cylinder when deformed so that the direction of the short side became the circumference of the cylinder was ranked based on the following indices. . If rank 2 or higher, it is determined that there is no practical problem.
 5:円筒にならない
 4:半円筒形を有する(円直径は10cm以上)
 3:円筒形を有する(円直径は5cm以上10cm未満)
 2:円筒形を二重に有する(円直径は3cm以上5cm未満)
 1:円筒形を三重以上有する(円直径は3cm未満)。
5: Does not become a cylinder 4: Has a semi-cylindrical shape (circle diameter is 10 cm or more)
3: Has a cylindrical shape (circle diameter is 5 cm or more and less than 10 cm)
2: Has a double cylindrical shape (circle diameter is 3 cm or more and less than 5 cm)
1: It has three or more cylindrical shapes (circle diameter is less than 3 cm).
 (遮熱性能(TSER、Total Solar Energy Rejection))
 遮熱フィルム試料1~12を上述の粘着剤を用いて3mmの板ガラスに貼り付け、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて300nm~2500nmの領域における5nmおきの透過率・反射率を測定した。次にJIS S 3107:2013に記載の方法で求められる日射透過率T(DS)および日射反射率R(DS)を用いて、下記計算式を用いて遮熱性能TSERを算出した。なお、ハードコート層を分光光度計の検出器側に向けて測定した。なお、TSERは40%以上であれば実用上問題はないものと判断する。
(Heat insulation performance (TSER, Total Solar Energy Rejection))
Heat shielding film samples 1 to 12 were attached to a 3 mm plate glass using the above-mentioned adhesive, and a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4000 type) was used in the region of 300 nm to 2500 nm. The transmittance / reflectance was measured every 5 nm. Next, the heat shielding performance TSER was calculated using the following calculation formula using the solar transmittance T (DS) and the solar reflectance R (DS) obtained by the method described in JIS S 3107: 2013. The hard coat layer was measured toward the detector side of the spectrophotometer. If TSER is 40% or more, it is determined that there is no practical problem.
  TSER(%)=((100-T(DS)-R(DS))×0.7143)+R(DS)
 以上の評価結果を表1に示す。
TSER (%) = ((100−T (DS) −R (DS)) × 0.7143) + R (DS)
The above evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、本発明の遮熱フィルム(実施例1~11)は、熱処理テープ剥離前後の可視光線透過率の変化が小さいことが示された。この結果は、本発明の遮熱フィルムは、曲面ガラス等への貼合時のような加熱成形時においても、ハードコート層の剥離が生じ難く、加熱成形によるフィルムの傷や色味の変化等の外観上の不良も生じ難いことを表している。 From the results of Table 1, it was shown that the thermal barrier films of the present invention (Examples 1 to 11) had a small change in visible light transmittance before and after heat treatment tape peeling. As a result, the heat-shielding film of the present invention hardly peels off the hard coat layer even at the time of heat molding such as bonding to curved glass, etc. This means that it is difficult for defects in appearance to occur.
 また、実施例1、5、6の比較から、光重合開始剤がアシルフォスフィンオキサイド系光重合開始剤を含む場合には熱処理テープ剥離前後の可視光線透過率の変化が小さいことが確認された。中でも、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドを含むものは、熱処理テープ剥離前後の可視光線透過率の変化が特に小さいことが確認された。 Also, from the comparison of Examples 1, 5, and 6, it was confirmed that when the photopolymerization initiator contains an acylphosphine oxide photopolymerization initiator, the change in visible light transmittance before and after heat treatment tape peeling is small. . Among them, it was confirmed that the one containing bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide had a particularly small change in visible light transmittance before and after the heat treatment tape peeling.
 さらに、実施例6~10の比較より、ハードコート層中に含まれる、前記(a)セシウム含有複合タングステン酸化物以外の成分の質量に対する前記(a)セシウム含有複合タングステン酸化物の質量の比が、0.05~1.0であるときは熱処理テープ剥離前後の可視光線透過率の変化、およびカール低減の両立の観点で優れており、0.1~0.4であるときはさらに優れることが確認された。 Further, from the comparison of Examples 6 to 10, the ratio of the mass of the (a) cesium-containing composite tungsten oxide to the mass of components other than the (a) cesium-containing composite tungsten oxide contained in the hard coat layer is When it is 0.05 to 1.0, it is excellent in terms of both a change in visible light transmittance before and after heat treatment tape peeling and curl reduction, and when it is 0.1 to 0.4, it is further excellent. Was confirmed.
 また、実施例11より、遮熱フィルムが誘電体多層膜を備えることで、より高い遮熱性能を有することが確認された。 Further, from Example 11, it was confirmed that the heat shield film had a dielectric multilayer film, thereby having higher heat shield performance.
 《遮熱体の作製と評価》
 上記遮熱フィルム試料1~11を用いて遮熱体1~11を作製した。
<Production and evaluation of heat shield>
Heat shields 1 to 11 were produced using the above heat shield film samples 1 to 11.
 上記遮熱フィルム試料1~10の基材面、および上記遮熱フィルム試料11の誘電多層膜面に上述した粘着剤層を乾燥膜厚10μmで形成し、離型フィルム(MRF-25、三菱樹脂株式会社製)を貼り合せた。これらのフィルムを曲面ガラス(曲率半径3m以下)の凸側にハードコート層面側を向けて仮固定し、離型フィルム側から市販のヒートガンを用いて熱成形した。このとき、ヒートガンの設定温度は400℃とした。フィルムが曲面ガラスにきれいに沿ったところで、離型フィルムを剥がし、粘着層と曲面ガラスの凹面とを貼り付けた。このとき、粘着層と曲面ガラスの凹面とには施工液(界面活性剤入りの水)を噴霧し、ハードコート層側からスキージを使って貼り合せ、遮熱体1~11とした。遮熱体1~11は熱成形してもハードコート層の剥離が起こらず、可視光透過率変化が良好であることが確認できた。 The above-mentioned pressure-sensitive adhesive layer is formed with a dry film thickness of 10 μm on the base material surface of the heat shield film samples 1 to 10 and the dielectric multilayer film surface of the heat shield film sample 11 to form a release film (MRF-25, Mitsubishi Plastics). Bonded). These films were temporarily fixed with the hard coat layer surface side facing the convex side of curved glass (with a radius of curvature of 3 m or less), and thermoformed from the release film side using a commercially available heat gun. At this time, the set temperature of the heat gun was 400 ° C. When the film was cleanly along the curved glass, the release film was peeled off, and the adhesive layer and the concave surface of the curved glass were attached. At this time, a construction liquid (water containing a surfactant) was sprayed on the adhesive layer and the concave surface of the curved glass, and bonded to each other with a squeegee from the hard coat layer side to obtain heat shields 1 to 11. It was confirmed that the heat shields 1 to 11 did not peel off the hard coat layer even when thermoformed, and the visible light transmittance change was good.
 上記作製した遮熱体1~11は、曲面ガラスへの貼合時における加熱成形時において、遮熱フィルムからのハードコート層の剥離が生じ難いことが確認された。さらに加熱成形によるフィルムの傷や色味の変化等の外観上の不良も生じ難いことを確認することができた。 It was confirmed that the heat shields 1 to 11 produced above did not easily peel off the hard coat layer from the heat shield film at the time of thermoforming at the time of bonding to the curved glass. Furthermore, it was confirmed that defects in appearance such as scratches on the film and changes in color due to heat forming hardly occur.
 本出願は、2014年12月5日に出願された日本特許出願番号2014-247439号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2014-247439 filed on December 5, 2014, the disclosure of which is incorporated by reference in its entirety.

Claims (8)

  1.  厚さ10~100μmである基材と、
     前記基材の少なくとも一方の面側に配置された、下記(a)~(c);
     (a)セシウム含有複合タングステン酸化物
     (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
     (c)光重合開始剤
    を含む、ハードコート層用塗布液の硬化物からなるハードコート層と、を有し、
     熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルム。
    A substrate having a thickness of 10 to 100 μm;
    The following (a) to (c) arranged on at least one surface side of the substrate:
    (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization A hard coat layer comprising a cured product of a coating liquid for hard coat layer containing an agent,
    The thermal insulation film whose change of the visible light transmittance | permeability of the film before and behind a tape peeling test is 20% or less when a tape peeling test is performed after heat processing.
  2.  前記(c)光重合開始剤が、少なくともアシルフォスフィンオキサイド系光重合開始剤を含む、請求項1に記載の遮熱フィルム。 The heat-shielding film according to claim 1, wherein the (c) photopolymerization initiator includes at least an acyl phosphine oxide photopolymerization initiator.
  3.  前記(c)光重合開始剤が、少なくともビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドを含む、請求項1または2に記載の遮熱フィルム。 The thermal barrier film according to claim 1 or 2, wherein the (c) photopolymerization initiator contains at least bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  4.  前記ハードコート層中に含まれる、前記(a)セシウム含有複合タングステン酸化物以外の成分の質量に対する前記(a)セシウム含有複合タングステン酸化物の質量の比が0.05~1.0である、請求項1~3のいずれか1項に記載の遮熱フィルム。 The ratio of the mass of the (a) cesium-containing composite tungsten oxide to the mass of components other than the (a) cesium-containing composite tungsten oxide contained in the hard coat layer is 0.05 to 1.0. The thermal barrier film according to any one of claims 1 to 3.
  5.  高屈折率層と低屈折率層とが交互に積層されてなる誘電体多層膜を有する、請求項1~4のいずれか1項に記載の遮熱フィルム。 The thermal barrier film according to any one of claims 1 to 4, comprising a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately laminated.
  6.  請求項1~5のいずれか1項に記載の遮熱フィルムを基体に貼合してなる、遮熱体。 A heat shield obtained by bonding the heat shield film according to any one of claims 1 to 5 to a substrate.
  7.  前記基体が曲面を有する、請求項6に記載の遮熱体。 The heat shield according to claim 6, wherein the base has a curved surface.
  8.  厚さ10~100μmである基材の少なくとも一方の面側に、
     下記(a)~(c);
     (a)セシウム含有複合タングステン酸化物
     (b)紫外線硬化型成分の総質量に対して50質量%以上の4官能以下の多官能(メタ)アクリレートを含む、紫外線硬化型成分
     (c)光重合開始剤
    を含む、ハードコート層用塗布液を塗布後、紫外線を照射して塗膜を硬化させる工程を含む、
     熱処理後にテープ剥離試験を行った場合における、テープ剥離試験前後のフィルムの可視光線透過率の変化が20%以下である、遮熱フィルムの製造方法。
    On at least one surface side of the substrate having a thickness of 10 to 100 μm,
    The following (a) to (c);
    (A) Cesium-containing composite tungsten oxide (b) Ultraviolet curable component containing polyfunctional (meth) acrylate having a tetrafunctional or lower functionality of 50% by mass or more based on the total mass of the ultraviolet curable component (c) Initiating photopolymerization Including a step of curing the coating film by irradiating with ultraviolet rays after applying the coating liquid for hard coat layer,
    The manufacturing method of the thermal insulation film whose change of the visible light transmittance | permeability of the film before and behind a tape peeling test is 20% or less when a tape peeling test is performed after heat processing.
PCT/JP2015/084055 2014-12-05 2015-12-03 Heat-shielding film, production method therefor, and heat shield using said film WO2016088852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247439A JP2018015898A (en) 2014-12-05 2014-12-05 Heat-shielding film
JP2014-247439 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088852A1 true WO2016088852A1 (en) 2016-06-09

Family

ID=56091792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084055 WO2016088852A1 (en) 2014-12-05 2015-12-03 Heat-shielding film, production method therefor, and heat shield using said film

Country Status (2)

Country Link
JP (1) JP2018015898A (en)
WO (1) WO2016088852A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171093A1 (en) * 2015-04-23 2016-10-27 コニカミノルタ株式会社 Coating liquid for heat-blocking film, method for producing coating liquid for heat-blocking film, and infrared radiation-blocking body
CN111944440A (en) * 2020-06-29 2020-11-17 浙江欣麟新材料技术有限公司 Bactericidal explosion-proof heat-insulation film for automobile, building glass and high-speed rail
EP3732141A4 (en) * 2017-12-29 2021-09-22 Saint-Gobain Glass France Thermal insulating glass, method for preparing the same and thermal insulating glass product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242069B1 (en) * 2019-10-21 2021-04-21 경북대학교 산학협력단 Preparation method of composite and fiber which emitting near-infrared
KR102167106B1 (en) * 2020-04-10 2020-10-16 경북대학교 산학협력단 Polymer composite emitting near infrared ray, fiber with the same, non-woven fabric with the same and eyeglass frame with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200983A (en) * 2007-02-20 2008-09-04 Lintec Corp Near-infrared shielding film
JP2008238646A (en) * 2007-03-28 2008-10-09 Toray Ind Inc Hard coat film and anti-reflection film
JP2009227938A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Near-infrared ray absorbing material
JP2014194446A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Heat-ray shielding material, intermediate film for laminated glass, and laminated glass
JP2014199925A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Solid-state imaging element, method of manufacturing the same, curable composition for forming infrared light cut filter, and camera module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200983A (en) * 2007-02-20 2008-09-04 Lintec Corp Near-infrared shielding film
JP2008238646A (en) * 2007-03-28 2008-10-09 Toray Ind Inc Hard coat film and anti-reflection film
JP2009227938A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Near-infrared ray absorbing material
JP2014199925A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Solid-state imaging element, method of manufacturing the same, curable composition for forming infrared light cut filter, and camera module
JP2014194446A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Heat-ray shielding material, intermediate film for laminated glass, and laminated glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171093A1 (en) * 2015-04-23 2016-10-27 コニカミノルタ株式会社 Coating liquid for heat-blocking film, method for producing coating liquid for heat-blocking film, and infrared radiation-blocking body
EP3732141A4 (en) * 2017-12-29 2021-09-22 Saint-Gobain Glass France Thermal insulating glass, method for preparing the same and thermal insulating glass product
CN111944440A (en) * 2020-06-29 2020-11-17 浙江欣麟新材料技术有限公司 Bactericidal explosion-proof heat-insulation film for automobile, building glass and high-speed rail

Also Published As

Publication number Publication date
JP2018015898A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6443341B2 (en) Light reflecting film and light reflector using the same
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
JP6044638B2 (en) Infrared shield
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2016199682A1 (en) Infrared shielding body
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2014010562A1 (en) Infrared-shielding film
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2017010280A1 (en) Heat ray shielding film
WO2016006388A1 (en) Optical film
WO2016194560A1 (en) Infrared-shielding film
JP2020115157A (en) Light reflection film and manufacturing method for light reflection film
JP6834984B2 (en) Optical reflective film
WO2016133022A1 (en) Heat shielding film
WO2013183544A1 (en) Infrared-shielding film and infrared-shielding body
JPWO2014188831A1 (en) UV shielding film
JP2016133520A (en) Thermal barrier film
JP2016155256A (en) Heat shielding film, and method for producing the same
JP2015150851A (en) Method of producing functional film
JP2015125168A (en) Dielectric multilayer film
WO2016152458A1 (en) Optical film and method for manufacturing optical film
JP6759697B2 (en) Roll-shaped optical reflective film
JP2016109872A (en) Light shield film
WO2017077810A1 (en) Light reflecting film
JP6326780B2 (en) Window pasting film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15865902

Country of ref document: EP

Kind code of ref document: A1