WO2016208548A1 - Optical film and optical laminate containing same - Google Patents

Optical film and optical laminate containing same Download PDF

Info

Publication number
WO2016208548A1
WO2016208548A1 PCT/JP2016/068305 JP2016068305W WO2016208548A1 WO 2016208548 A1 WO2016208548 A1 WO 2016208548A1 JP 2016068305 W JP2016068305 W JP 2016068305W WO 2016208548 A1 WO2016208548 A1 WO 2016208548A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical film
layer
mass
index layer
Prior art date
Application number
PCT/JP2016/068305
Other languages
French (fr)
Japanese (ja)
Inventor
陽明 森田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017524901A priority Critical patent/JP6729580B2/en
Priority to CN201680036899.XA priority patent/CN107710035B/en
Publication of WO2016208548A1 publication Critical patent/WO2016208548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical film and an optical laminate including the same.
  • this invention relates to the technique for suppressing generation
  • optical films for the purpose of transmitting or reflecting and absorbing light in a specific wavelength range, or bonding to windows of automobiles and buildings, etc., for the purpose of heat insulation, light shielding, and prevention of scattered fragments when damaged Is being used.
  • Such an optical film has, for example, an infrared shielding ability that suppresses intrusion of infrared rays and prevents an excessive increase in temperature in a building or in a vehicle, thereby reducing the use of cooling and achieving energy saving.
  • a dielectric multilayer film in which layers having different refractive indexes are laminated is known.
  • the dielectric multilayer film functions as a reflective layer, and has an advantage that the spectral reflectance can be freely set by using interference of reflected light from the boundary of the layers. From this, as the said optical film, it is bonded and used for the window etc. of a building, and is the said optical film between a pair of glass substrates which is one of the optical laminated bodies using the said optical film. Laminated glass is distributed in the market.
  • the optical film is generally processed by applying heat and load when forming the optical laminate, but in the conventional optical film, wrinkles are generated in this processing step.
  • production of the wrinkle in a process process will cause the fall of the optical performance accompanying film deformation not only to impair the external appearance of an optical laminated body. Therefore, in order to solve such a problem, the thermal shrinkage rate of the optical film is increased, and the optical film is deformed according to the shape of the substrate in the optical laminated body or the glass plate of the laminated glass, thereby removing the excess portion of the optical film.
  • a birefringent dielectric multilayer film is sufficiently provided so as not to substantially generate wrinkles with respect to a substrate having a complex curvature.
  • a method for producing a laminated article including a step of heat setting so that the film can be shrunk, and a birefringent dielectric multilayer film used therefor.
  • Japanese Patent Application Laid-Open No. 2010-265161 (corresponding to WO 2010/119770), a laminated glass having two resin intermediate films and a plastic film with an infrared reflecting film between two curved glass plates.
  • a manufacturing method is disclosed. More specifically, the shape of the plastic film with the infrared reflective film and the size with respect to the glass plate before the two resin intermediate films or between the plastic film with the infrared reflective film and the resin intermediate film are heat-sealed appropriately. The selection is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-265161 discloses that the thermal shrinkage rate of the plastic film with an infrared reflecting film is set to a predetermined value or more.
  • the present inventors paid attention to the fact that in the prior art, the generation of wrinkles in the processing step may not be sufficiently suppressed depending on the optical film.
  • the present inventors have found that the optical film having the base material and the reflective layer, and the high-temperature physical properties of the base material and the reflective layer are greatly different, can be wrinkled only by increasing the thermal shrinkage rate of the optical film. It was found that it cannot be sufficiently suppressed.
  • the present invention has been made in view of the above problems, and means capable of sufficiently suppressing the occurrence of wrinkles in the optical film processing step even when the high-temperature physical properties of the optical film substrate and the reflective layer are greatly different.
  • the purpose is to provide.
  • the present inventors proceeded with intensive studies. As a result, the present inventors have found that the above problem can be solved by setting the loss coefficient (tan ⁇ ) at 150 ° C. of the optical film to a value within a predetermined range, and completed the present invention.
  • the base material and the reflective layer have an absolute value of a difference in storage elastic modulus (E ′) at 150 ° C. (measuring condition: JIS K7244-1: 1998, tensile mode, heating rate 5 ° C./min, frequency 10 Hz). Is 0.05 GPa or more, Loss coefficient at 150 ° C. (tan ⁇ ) (measurement conditions: JIS K7244-1: 1998 compliant, tensile mode, temperature rising rate 5 ° C./min, frequency 10 Hz) is 0.12 to 0.20.
  • Optical film Optical film.
  • FIG. 10 is an optical laminate
  • 11 is a substrate having a curved surface on the outdoor side
  • 12 and 14 are intermediate layers
  • 13 is an optical film according to an embodiment of the present invention
  • 15 is a curved surface on the indoor side.
  • 13a represents the base material of the optical film which concerns on one form of this invention
  • 13b represents the reflection layer of the optical film which concerns on one form of this invention, respectively.
  • It is a schematic sectional drawing which shows another example of the optical laminated body containing the optical film of this invention.
  • 20 represents an optical laminate
  • 21 represents a substrate having a curved surface
  • 22 represents an intermediate layer
  • 23 represents an optical film according to an embodiment of the present invention.
  • 23a represents the base material of the optical film which concerns on one form of this invention
  • 23b represents the reflection layer of the optical film which concerns on one form of this invention, respectively.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the notation “(meth) acryl” in the specific name of the compound means “acryl” and “methacryl”, “(meth) acryloyl” means “acryloyl” and “methacryloyl”, “(meth) acrylate” "Represents” acrylate "and” methacrylate ", respectively.
  • the “acrylic resin” refers to a resin having an acrylic acid ester, a methacrylic acid ester or a derivative thereof as a constituent component of the (co) polymer.
  • the “acrylic resin” includes resins having other monomers as a constituent component of the copolymer in addition to the above monomers.
  • an optical film has a base material and a reflective layer, and the base material and the reflective layer have a storage elastic modulus (E ′) at 150 ° C.
  • E ′ storage elastic modulus
  • the absolute value of the difference in compliance, tension mode, temperature increase rate 5 ° C./min, frequency 10 Hz) is 0.05 GPa or more, and loss factor (tan ⁇ ) at 150 ° C.
  • the mode, the temperature increase rate is 5 ° C./min, and the frequency is 10 Hz
  • the optical film according to the present embodiment even when the high-temperature physical properties of the optical film substrate and the reflective layer are greatly different, generation of wrinkles in the optical film processing step can be sufficiently suppressed.
  • the present inventors presume a mechanism capable of solving the above-described problems by the optical film according to one embodiment of the present invention as follows.
  • the deformation behavior is different, and stress is generated between the base material and the reflective layer, causing wrinkles.
  • the wrinkles are not sufficiently improved only by increasing the deformation of the optical film in the processing step by increasing the thermal shrinkage rate of the optical film as in the prior art and by reducing the remaining portion of the film.
  • the thermal contraction rate of a base material and a reflective layer may become the same value at this time, since a load is added with a heat
  • the storage elastic modulus (E ′) and loss elastic modulus (E ′′) are the strain in the same phase as the strain in the complex elastic modulus generated when a sinusoidal distortion (deformation) is applied to the sample by vibration. This represents the real number component in which energy is stored as stress, and the imaginary number component in which the phase is advanced by 90 ° from the strain and the strain energy is converted into other energy to generate a loss.
  • the coefficient (tan ⁇ ) By setting the coefficient (tan ⁇ ) to a predetermined value or more, plastic deformation of the entire optical film can be more easily generated, and stress generated between the base material and the reflective layer is relieved. In addition, since the plastic deformation of the entire film is facilitated, the effect of reducing the excess portion of the optical film can be obtained. Even in the case of large differences, the wrinkles of the optical film can be sufficiently suppressed, and the loss factor (tan ⁇ ) at a high temperature is not more than a predetermined value, so that the amount of deformation of the film becomes excessive and the reflective layer Thus, the optical film can have high reflection performance.
  • the optical film according to one embodiment of the present invention has a base material and a reflective layer as essential.
  • a functional layer other than those described above or a further base material may be disposed at any position on each outer layer, between the layer and the base material, or on the outermost layer and the base material.
  • the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more.
  • an optical film having an absolute value of a difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer of 0.05 GPa or more is due to a difference in high temperature physical properties between the base material and the reflective layer.
  • the optical film according to one embodiment of the present invention can sufficiently suppress the generation of wrinkles in the processing step of the optical film even when the high-temperature physical properties of the substrate and the reflective layer are greatly different.
  • the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. is larger from the viewpoint that a thin film can be formed when it is necessary to use a high elastic modulus material.
  • the difference in absolute value of the storage elastic modulus (E ′) at 150 ° C. is preferably 13.20 GPa or less from the viewpoint of interfacial peeling between the substrate and the reflective layer. From the same viewpoint, it is more preferably 1.50 to 13.20 GPa, further preferably 1.50 to 13.00 GPa, and further preferably 2.00 to 7.00 GPa.
  • the storage elastic modulus (E ′) at 150 ° C. is increased in a tensile mode using a dynamic viscoelasticity automatic measuring instrument (DDV-01GP manufactured by A & D Corporation) in accordance with JIS K7244-1: 1998. It can be measured at a temperature rate of 5 ° C./min and a frequency of 10 Hz. The measurement is performed in any one direction in the plane and the direction orthogonal thereto, and the average value is taken as the evaluation result.
  • the measurement direction is not particularly limited, but for example, a machine direction and a direction perpendicular to the machine direction are preferable.
  • the “machine direction” means the same direction as the film forming direction of the substrate, the reflective layer or the optical film. In this case, the machine direction coincides with the longitudinal direction of the film. Detailed measurement methods are described in the examples.
  • the optical film according to one embodiment of the present invention has a loss coefficient (tan ⁇ ) value at 150 ° C. of 0.12 to 0.20.
  • a loss coefficient (tan ⁇ ) value at 150 ° C. of 0.12 to 0.20 As described in the above estimation mechanism, when the loss coefficient (tan ⁇ ) at 150 ° C. of the optical film is less than 0.12, the generation of wrinkles cannot be sufficiently suppressed. Further, if the loss coefficient (tan ⁇ ) at 150 ° C. is more than 0.20, sufficient optical characteristics cannot be obtained. From such a viewpoint, the value of the loss coefficient (tan ⁇ ) at 150 ° C. is more preferably 0.12 to 0.19, further preferably 0.13 to 0.18, and more preferably 0.15 to 0.18. Particularly preferred is 0.18.
  • the loss factor (tan ⁇ ) at 150 ° C. can be obtained as follows. First, the storage elastic modulus (E ′) and loss elastic modulus (E ′′) were measured using a dynamic viscoelasticity automatic measuring device (DDV-01GP manufactured by A & D Corporation) in accordance with JIS K7244-1: 1998. Then, in the tensile mode, measurement is performed with a temperature increase rate of 5 ° C./min and a frequency of 10 Hz, and then, from the obtained result, E ′′ / E ′ is calculated to obtain a loss coefficient (tan ⁇ ). The measurement is performed in any one direction in the plane and the direction orthogonal thereto, and the average value is taken as the evaluation result.
  • the measurement direction is not particularly limited, but it is preferable to use, for example, a machine direction and a direction perpendicular to the machine direction and use an average value.
  • the method for controlling the loss factor (tan ⁇ ) of the optical film at 150 ° C. is not particularly limited, and examples thereof include selection of the material and manufacturing method of the base material and the reflective layer.
  • the loss coefficient (tan ⁇ ) at 150 ° C. of the optical film can be increased by reducing the storage elastic modulus (E ′) at 150 ° C. of the substrate or the reflective layer, increasing the thermal shrinkage rate, or the like. it can.
  • E ′ storage elastic modulus
  • the ratio of the base material film thickness to the total film thickness of the base material and the reflective layer is increased.
  • it can be increased by reducing the ratio of the film thickness of the reflective layer.
  • the thickness of the optical film is not particularly limited, but is preferably 20 to 300 ⁇ m, more preferably 25 to 100 ⁇ m, and further preferably 30 to 60 ⁇ m from the viewpoints of prevention of bending, visible light transmittance, handleability, and the like. preferable.
  • the base material used for the optical film according to one embodiment of the present invention serves as a support for the optical film.
  • the base material according to one embodiment of the present invention is such that the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more, and 150 ° C. of the optical film.
  • the manufacturing method, material, thickness, and the like are set so that the loss coefficient (tan ⁇ ) at 0.1 is 0.12 to 0.20.
  • the value of the storage elastic modulus (E ′) of the substrate at 150 ° C. is not particularly limited, but is 0.001 GPa or more and a value smaller than the storage elastic modulus of the reflective layer at 150 ° C. Is preferred.
  • the plastic deformation during the heat processing of the optical film tends to occur more easily when the value of the storage elastic modulus (E ′) at 150 ° C. of the base material or the reflective layer is smaller.
  • the storage elastic modulus (E ′) at 150 ° C. of the substrate is preferably 0.001 GPa or more because the reflection performance after heat processing can be further improved. This is presumed to be because, when the optical film has such a base material, fluctuations in the thickness of the reflective layer caused by excessive deformation of the base material can be further suppressed.
  • the value of the storage elastic modulus (E ′) at 150 ° C. of the substrate is preferably 0.01 GPa to 2.00 GPa, more preferably 0.10 to 1.00 GPa. It is more preferably 20 to 0.80 GPa, particularly preferably 0.30 to 0.50 GPa, and most preferably 0.35 to 0.45 GPa.
  • the storage elastic modulus (E ′) at 150 ° C. As a method for measuring the storage elastic modulus (E ′) at 150 ° C., it can be measured using the same method as the storage elastic modulus (E ′) at 150 ° C. of the optical film. Detailed measurement methods are described in the examples.
  • the value of the loss factor (tan ⁇ ) of the substrate at 150 ° C. is not particularly limited, but is preferably 0.12 to 0.45.
  • the plastic deformability of the substrate can be further improved. This is because the plastic deformation of the base material is further improved, so that plastic deformation of the entire optical film can be more easily generated, and wrinkles of the optical film can be further suppressed. I guess.
  • the reflective performance after heat processing can be made more favorable by making the loss coefficient (tan-delta) in high temperature into 0.45 or less.
  • the film thickness variation of the reflective layer is prevented from being caused by excessive deformation of the substrate, and the optical film can have higher reflection performance. From the same viewpoint, it is more preferably 0.12 to 0.40, further preferably 0.12 to 0.30, and particularly preferably 0.15 to 0.30.
  • the loss factor (tan ⁇ ) at 150 ° C. As a method for measuring the loss factor (tan ⁇ ) at 150 ° C., it can be measured using the same method as the loss factor (tan ⁇ ) at 150 ° C. of the optical film. Detailed measurement methods are described in the examples.
  • the method for controlling the loss factor (tan ⁇ ) of the optical film at 150 ° C. is not particularly limited, and examples thereof include selection of the material and the production method of the base material.
  • a base material is a general resin film which is illustrated in description of the below-mentioned base material, heat processing conditions, extending conditions, etc. are mentioned, for example.
  • the loss coefficient (tan ⁇ ) of the substrate at 150 ° C. can be increased by increasing the heat treatment temperature or shortening the heat treatment time, for example. Further, the loss coefficient (tan ⁇ ) of the substrate at 150 ° C. can be increased by decreasing the storage elastic modulus (E ′) of the substrate at 150 ° C., increasing the thermal shrinkage rate, or the like.
  • the value of the heat shrinkage rate of the substrate at 30 ° C. for 30 minutes is not particularly limited, but is preferably 2.0 to 10.0%.
  • the value of the heat shrinkage ratio of the reflective layer at 150 ° C. for 30 minutes is 2.0% or more, the effect of suppressing wrinkles becomes higher.
  • the base material having such a value can increase the deformation of the optical film, reduce the surplus portion of the film, and further improve the plastic deformability of the optical film.
  • the reflective performance after heat processing can be made more favorable in the value of the thermal contraction rate in 150 degreeC 30-minute time-lapse
  • the value of the heat shrinkage rate of the reflective layer after 30 minutes at 150 ° C. is more preferably 2.0 to 8.0%, and more preferably 2.0 to 7.0%. 2.0 to 5.0% is more preferable, 2.5 to 5.0% is particularly preferable, and 3.0 to 5.0% is most preferable.
  • the following method can be used as a method for measuring the thermal shrinkage rate at 150 ° C. for 30 minutes.
  • two marks are made at intervals of 100 mm in the width direction, and a distance L1 between the two marks in an unloaded state. Is measured using a microscope or the like.
  • the sample is hung in an oven at 150 ° C. and left for 30 minutes. After 30 minutes, the sample is removed from the oven and stored again in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH for 24 hours.
  • the measurement direction is not particularly limited, but it is preferable to use, for example, a machine direction and a direction perpendicular to the machine direction and use an average value.
  • the thickness of the substrate according to one embodiment of the present invention is not particularly limited, but is preferably in the range of 10 to 300 ⁇ m, more preferably in the range of 20 to 100 ⁇ m, and more preferably 30 to 60 ⁇ m. More preferably. If the thickness is 10 ⁇ m or more, wrinkles during handling are less likely to occur, and if the thickness is 300 ⁇ m or less, the ability to follow a curved glass surface when bonded to glass is improved and wrinkles are less likely to occur. Become.
  • the thickness of the substrate is from the viewpoint of increasing the loss factor (tan ⁇ ), with respect to the total thickness of the substrate and the reflective layer, It is preferable to occupy a ratio of 86.5% or more. Moreover, it is preferable to occupy a ratio of 97.5% or less from the viewpoint of reflection performance. From the same viewpoint, when the substrate is a resin film, the thickness of the substrate preferably occupies a ratio of 86.7 to 97.3%, and occupies a ratio of 86.9 to 97.2%. It is preferable.
  • the base material according to one embodiment of the present invention is preferably transparent.
  • the visible light transmittance measured by JIS R 3106: 1998 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the substrate according to one embodiment of the present invention is preferably a resin film.
  • the resin for forming the resin film is not particularly limited.
  • polyolefin for example, polyethylene, polypropylene, etc.
  • polyester for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride cellulose triacetate, polyimide, poly Butyral, cycloolefin polymer, cellulose nanofiber, etc.
  • polyester is preferable.
  • the polyester is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • dicarboxylic acid component these acid anhydrides, acid halides or esters may be used.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters comprising these as main components, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or acid anhydrides or acids thereof are used as dicarboxylic acid components from the viewpoint of transparency, mechanical strength, dimensional stability, and the like.
  • a polyester having a halide or ester as a diol component and ethylene glycol or 1,4-cyclohexanedimethanol as a main component is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used.
  • Polyester as a constituent component is more preferable.
  • polyethylene terephthalate is particularly preferable.
  • the resin film may contain particles under conditions that do not impair transparency in order to facilitate handling.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in the resin material as a raw material and a method of adding them directly to an extruder. One of these methods is adopted. Alternatively, two methods may be used in combination. In this invention, you may add an additive other than the said particle
  • the resin film can be produced by a conventionally known general method.
  • an unstretched resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched resin film is uniaxially stretched, the tenter-type sequential biaxial stretch, the tenter-type simultaneous biaxial stretch, the tubular-type simultaneous biaxial stretch, and the like by a known method such as the resin film flow (MD) direction or the resin.
  • a stretched resin film can be produced by stretching in a direction perpendicular to the film flow direction (TD).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material for the resin film, but is preferably 2 to 10 times in the MD direction and TD direction, respectively.
  • the resin film is more preferably a stretched film from the viewpoint of improving strength and suppressing thermal expansion.
  • a biaxially oriented polyester film is particularly preferable, but an unstretched or at least one stretched polyester film can be used as long as the obtained film does not depart from the gist of the present invention.
  • the stretched film can be preferably used particularly for an automotive windshield.
  • the resin film may be subjected to relaxation treatment or offline heat treatment from the viewpoint of controlling the loss factor (tan ⁇ ) at 150 ° C.
  • the relaxation treatment is preferably carried out in the process from the heat setting during the stretching film forming process of the polyester film to the winding process after exiting the tenter.
  • the treatment temperature is preferably from 80 to 200 ° C., more preferably from 100 to 180 ° C., and even more preferably from 110 to 170.
  • the loss coefficient (tan ⁇ ) of the substrate at 150 ° C. can be further increased.
  • the loss coefficient (tan-delta) at 150 degreeC of a base material can be made smaller by making processing temperature (heat processing temperature) 200 degrees C or less.
  • the treatment time (heat treatment time) is preferably 1 to 60 seconds. By setting the treatment time (heat treatment time) to 1 second or longer, the loss coefficient (tan ⁇ ) of the substrate at 150 ° C. can be further reduced. Further, by setting the treatment time (heat treatment time) to 60 seconds or less, the loss coefficient (tan ⁇ ) of the substrate at 150 ° C. can be further increased. From the same viewpoint, the treatment time is more preferably 1 to 50 seconds, and further preferably 2 to 40 seconds.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the resin film may have an undercoat layer.
  • the undercoat layer is a water-based easy-adhesive resin coating layer formed in a form directly adjacent to one side or both sides, and is a layer different from the reflective layer or the layer forming the reflective layer in the present application.
  • the aqueous easy-adhesive resin coating layer is a layer obtained by applying an aqueous easy-adhesive coating liquid (undercoat layer coating liquid) containing a water-soluble resin having an easy-adhesion effect and water as a solvent.
  • a resin film having a subbing layer (a laminate comprising the undercoat layer and the resin film) is used as a base material. It shall be handled.
  • the undercoat layer coating solution in-line on one or both surfaces of the resin film during the film formation process.
  • the undercoating during the film forming process is referred to as in-line undercoating.
  • the resin used in the useful undercoat layer coating liquid according to one embodiment of the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, and polyethyleneimine resins.
  • Polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 5 g / m 2 (dry state), more preferably about 0.01 to 2 g / m 2 (dry state).
  • the reflective layer is a layer having a function of reflecting part of incident light.
  • the reflective layer according to one embodiment of the present invention is such that the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more, and The manufacturing method, material, thickness, etc. are set so that the loss coefficient (tan ⁇ ) at 150 ° C. is 0.12 to 0.20.
  • the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is not particularly limited, but is preferably 2.00 to 13.50 GPa.
  • the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is 2.00 GPa or more, the reflective performance after heat processing can be further improved. This is presumed to be because by having such a reflective layer, it is possible to further suppress the film thickness variation of the reflective layer caused by excessive deformation of the reflective layer.
  • the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is 13.50 GPa or less, the effect of suppressing wrinkles becomes higher.
  • the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is more preferably 2.20 to 13.20 GPa, further preferably 2.50 to 8.00 GPa, It is particularly preferably 2.60 to 7.00 GPa.
  • the same method as the storage elastic modulus (E ′) of the optical film at 150 ° C. is used except that the measurement is performed using the sample for measuring the reflective layer. Can be measured. Detailed measurement methods are described in the examples.
  • the value of the heat shrinkage rate of the reflective layer after 30 minutes at 150 ° C. is not particularly limited, but is preferably 0.5% to 5.0%.
  • the value of the heat shrinkage rate at 150 ° C. for 30 minutes of the reflective layer is 0.5% or more, the effect of suppressing wrinkles becomes higher. This is presumed that the reflection layer having such a value can increase the deformation of the optical film, reduce the excess portion of the film, and further improve the plastic deformability of the optical film. .
  • the reflective performance after heat processing can be made more favorable in the value of the thermal contraction rate in 150 degreeC 30-minute time-lapse
  • the value of the heat shrinkage ratio of the reflective layer after 30 minutes at 150 ° C. is more preferably 0.5 to 4.0%, and further preferably 1.0 to 3.0%. .
  • the measurement is performed using the same method as the heat shrinkage rate at 150 ° C. for 30 minutes, except that measurement is performed using a sample for measuring a reflective layer. can do. Detailed measurement methods are described in the examples.
  • the thickness of the reflective layer is not particularly limited, but is preferably 1.2 ⁇ m to 7.8 ⁇ m.
  • the thickness of the reflective layer is 1.2 ⁇ m or more, the reflection performance can be further improved. Further, when the thickness of the reflective layer is 7.8 ⁇ m or less, the effect of suppressing wrinkles becomes higher. This is presumed to be because the reflective layer having such a value can further improve the plastic deformability of the optical film.
  • the thickness of the reflective layer is more preferably 1.2 to 7.6 ⁇ m or less, and further preferably 1.4 to 4.5 ⁇ m.
  • the method for measuring the thickness of the reflective layer is obtained by cutting a slice of the optical film and observing the cross section with an electron microscope (FE-SEM, S-5000H, manufactured by Hitachi, Ltd.). Can do. Detailed measurement methods are described in the examples.
  • the reflective layer is preferably a reflective layer that selectively transmits light having a specific wavelength, and more preferably an infrared reflective film that transmits light having a wavelength in the visible region to the infrared region.
  • the reflective layer that selectively transmits light of a specific wavelength is not particularly limited.
  • a multilayer film etc. can be mentioned.
  • the reflective layer used in the optical film according to the present invention is preferably a dielectric multilayer film configured by alternately laminating low refractive index layers and high refractive index layers.
  • high refractive index layer and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” are the same when each refractive index layer constituting the light reflecting film is focused on two adjacent refractive index layers. All forms other than those having a refractive index are included.
  • the transmittance in the visible light region measured according to JIS R 3106: 1998 is 60% or more, and the light is reflected in a wavelength region of 800 to 1400 nm. It is preferable to have a region where the rate exceeds 50%.
  • the reflective layer is at least the surface roughness of the refractive index layer in contact with the other adjacent members is the arithmetic average surface
  • the roughness (Ra) is preferably 10 to 100 nm, more preferably 10 to 50 nm, and even more preferably 12 to 20 nm.
  • the arithmetic average surface roughness (Ra) of the refractive index layer is 10 nm or more, the adhesion between the reflective layer and the adjacent member can be increased due to the anchor effect.
  • the haze and visible light transmittance can be prevented from decreasing without disturbing the interface between the reflective layer and the adjacent member.
  • limit especially as an adjacent member
  • the optical film which concerns on one form of this invention is used for a laminated glass use, the below-mentioned intermediate
  • the thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm. Further, the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
  • the high refractive index layer and the low refractive index layer may have a clear interface between them or may change gradually.
  • the metal oxide concentration profile of the reflective layer formed by alternately laminating the high refractive index layer and the low refractive index layer is etched from the surface to the depth direction using a sputtering method, and an XPS surface analyzer is used. Then, the outermost surface can be set to 0 nm, sputtered at a rate of 0.5 nm / min, and the atomic composition ratio can be measured. It is also possible to view the cut surface by cutting the laminated film and measuring the atomic composition ratio with an XPS surface analyzer. In the mixed region, when the concentration of the metal oxide changes discontinuously, the boundary can be confirmed by a tomographic photograph using an electron microscope (TEM).
  • TEM electron microscope
  • the XPS surface analyzer is not particularly limited and any model can be used.
  • ESCALAB-200R manufactured by VG Scientific, Inc. can be used.
  • Mg can be used for the X-ray anode, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the reflective layer preferably has a total number of high refractive index layers and low refractive index layers in the range of 6 to 100 layers, more preferably 7 to 60 layers, and still more preferably 8 layers. Is 55 layers, particularly preferably 8 to 40 layers, and most preferably 9 to 30 layers.
  • the reflective layer is preferably designed so that the difference in refractive index between the high refractive index layer and the low refractive index layer is large, so that the reflectance can be increased with a small number of layers.
  • the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably 0.3 or more, and further preferably 0.35 or more. Yes, more preferably 0.4 or more.
  • the outermost layer and the lowermost layer a configuration outside the above preferred range may be used.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain a near-infrared reflectance of 90% or more, if the difference in refractive index is smaller than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also at the lamination interface. Scattering increases, transparency decreases, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
  • the low refractive index layer and the high refractive index layer preferably contain a resin component.
  • a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time.
  • a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time.
  • membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability.
  • the polymer material contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble binder resin that functions as a binder.
  • the first and second water-soluble binder resins contained in the high refractive index layer or the low refractive index layer are preferably polyvinyl alcohol.
  • the saponification degree of the polyvinyl alcohol contained in the high refractive index layer is different from the saponification degree of the polyvinyl alcohol contained in the low refractive index layer.
  • the high refractive index layer preferably includes first metal oxide particles
  • the low refractive index layer preferably includes second metal oxide particles.
  • the first metal oxide particles contained in the high refractive index layer are preferably titanium oxide particles surface-treated with a silicon-containing hydrated oxide.
  • At least one refractive index layer of the reflective layer includes a resin component having a glass transition temperature (Tg) of 40 ° C. to 70 ° C.
  • Tg glass transition temperature
  • a conventionally well-known thing can be used with a resin component, for example, water-soluble binder resin independent or the mixture of water-soluble binder resin and latex is mentioned.
  • the ratio of the resin component having a specific Tg is preferably 20 to 70% by mass, more preferably 25 to 65% by mass, and further preferably 30 to 65% by mass with respect to the total mass of one refractive index layer. % By mass.
  • the refractive index layer includes, on at least one surface on the transparent substrate, a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles having different refractive indexes, and a second water-soluble layer. It is preferable that the layer is formed by laminating at least one low refractive index layer containing a conductive binder resin and second metal oxide particles.
  • the reflective layer preferably contains a resin component having a glass transition temperature (Tg) of 40 to 70 ° C. of the refractive index layer in contact with at least another adjacent member.
  • the refractive index layer in contact with other adjacent members may be either a high refractive index layer or a low refractive index layer, but is preferably a low refractive index layer from the viewpoint of adhesion to other adjacent members.
  • the resin component is a water-soluble binder resin alone
  • the glass transition temperature (Tg) of the refractive index layer can be controlled by adjusting the composition and degree of polymerization of the water-soluble binder resin, and the resin component is a water-soluble binder resin. In the case of a mixture of latex and latex, it can be controlled by the content of latex with respect to the total resin component.
  • the high refractive index layer can contain a first water-soluble binder resin and first metal oxide particles. If necessary, in order to control the glass transition temperature (Tg) of the resin component, latex may be included as the resin component contained in the high refractive index layer.
  • the high refractive index layer may further include at least one selected from the group consisting of a curing agent, other binder resin, a surfactant, and other additives.
  • the refractive index of the high refractive index layer is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
  • first water-soluble binder resin latex, other binder resin, first metal oxide particles, curing agent, surfactant, and other additives will be described.
  • the first water-soluble binder resin according to an embodiment of the present invention is a G2 glass filter (maximum pore size) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble binder resin is most dissolved. 40 to 50 ⁇ m) means that the mass of the insoluble matter separated by filtration is within 50 mass% of the added water-soluble binder resin.
  • the weight average molecular weight of the first water-soluble binder resin is preferably 1,000 or more and 200,000 or less, and more preferably 3,000 or more and 40,000 or less.
  • the weight average molecular weight can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. Can do.
  • the weight average molecular weight is a value measured by a gel permeation chromatography method which is a generally known method.
  • the content of the first water-soluble binder resin in the high refractive index layer is preferably 5 to 50% by mass and preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Is more preferable.
  • the first water-soluble binder resin is not particularly limited, but is preferably polyvinyl alcohol. Moreover, it is preferable that the 2nd water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, hereinafter, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
  • polyvinyl alcohol in one form of this invention, it is preferable that a high refractive index layer and a low refractive index layer contain 2 or more types of polyvinyl alcohol from which saponification degree differs, respectively.
  • polyvinyl alcohol as the first water-soluble binder resin
  • polyvinyl alcohol as the second water-soluble binder resin
  • polyvinyl alcohol B
  • each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees
  • the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ), And polyvinyl alcohol (B) in the low refractive index layer.
  • degree of saponification refers to the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in polyvinyl alcohol.
  • the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. .
  • a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol).
  • polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively.
  • These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B).
  • the “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” means that it is within 3 mol% when attention is paid to any polyvinyl alcohol.
  • polyvinyl alcohol having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are calculated for each.
  • PVA203 5% by mass
  • PVA117 25% by mass
  • PVA217 10% by mass
  • PVA220 10% by mass
  • PVA224 10% by mass
  • PVA235 20% by mass
  • PVA245 20% by mass
  • most contained A large amount of PVA (polyvinyl alcohol) is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, and is the same polyvinyl alcohol), and this mixture is polyvinyl alcohol (A) or ( B).
  • the difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
  • the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, between polyvinyl alcohol (A) and polyvinyl alcohol (B), one of them has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol%, Preferably it is 99.9 mol% or less.
  • the polymerization degree of two kinds of polyvinyl alcohols having different saponification degrees is preferably 1,000 or more. This is because when the polymerization degree of polyvinyl alcohol is 1,000 or more, the frequency of occurrence of cracks in the coating film becomes lower.
  • the polymerization degree of two kinds of polyvinyl alcohols having different saponification degrees is preferably 5,000 or less. This is because the coating solution is more stable when the polymerization degree of polyvinyl alcohol is 5,000 or less. In the present specification, “the coating solution is stable” means that the coating solution is stable over time. From the same viewpoint, those having a polymerization degree of 1,500 to 5,000 are more preferable, and those having a polymerization degree of 2,000 to 5,000 are more preferable.
  • the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2,000 to 5,000, the frequency of occurrence of cracks in the coating film is remarkably reduced, and the reflectance at a specific wavelength is improved. Because it does.
  • both of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2,000 to 5,000, since the above-described effect can be more remarkably exhibited.
  • “Degree of polymerization” as used herein refers to a viscosity average degree of polymerization, which is measured according to JIS K 6726: 1994, and is the limit measured in water at 30 ° C. after completely re-saponifying and purifying PVA. It is obtained from the viscosity [ ⁇ ] (dl / g) by the following formula.
  • the polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree of 75 mol% or more and 90 mol% or less and a polymerization degree of 2,000 or more and 5,000 or less.
  • interfacial mixing is further suppressed, which is preferable. This is considered to be because there are few cracks of a coating film and set property improves.
  • the polyvinyl alcohol (A) and (B) used in one embodiment of the present invention may be a synthetic product or a commercially available product.
  • Examples of commercially available products used as polyvinyl alcohol (A) and (B) include PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, and PVA-203.
  • the first water-soluble binder resin according to an embodiment of the present invention is partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate unless the effects of the present invention are impaired.
  • Modified polyvinyl alcohol may be included. When such modified polyvinyl alcohol is contained, the adhesion, water resistance, and flexibility of the film may be improved. Examples of such modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383 in the main chain or side chain of the polyvinyl alcohol. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Polyvinyl alcohol etc. are mentioned.
  • examples of the vinyl alcohol polymer include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
  • the content of the modified polyvinyl alcohol is not particularly limited, but is preferably 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is such a range, the said effect will be exhibited more.
  • two types of polyvinyl alcohol having different saponification degrees are used between layers having different refractive indexes.
  • the polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass
  • the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable.
  • the polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer
  • the polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the low refractive index layer.
  • the content of the polyvinyl alcohol (B) in the low refractive index layer is 40% by mass or more, interlayer mixing is suppressed, and the effect that the disturbance of the interface becomes smaller appears remarkably.
  • the content of the polyvinyl alcohol (B) in the low refractive index layer is 100% by mass or less, the stability of the coating solution is further improved.
  • the content of the polyvinyl alcohol (B) in the low refractive index layer is more preferably 60% by mass or more and 95% by mass or less.
  • the high refractive index layer may contain latex as a resin component in addition to the water-soluble binder resin.
  • Latex is a resin that is stably dispersed in an aqueous medium.
  • emulsion resin is mentioned, for example.
  • the glass transition temperature (Tg) of the resin component can be controlled by the content of the latex with respect to the total of the resin components, and the heat resistance of the produced laminated glass is improved by including the latex as the resin component.
  • the content of the latex is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and less than 50% by mass with respect to the total (100% by mass) of the water-soluble binder resin and latex. More preferably, it is 5% by mass to 20% by mass.
  • the emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 ⁇ m, for example, are dispersed in an emulsion state in an aqueous medium. It can be obtained, for example, by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used.
  • dispersant used in the polymerization of the emulsion examples include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkyl sulfonate, alkylbenzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salts.
  • Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • the polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted on the side chain or terminal.
  • an acrylic polymer such as sodium polyacrylate or polyacrylamide is used.
  • examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
  • Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group may be contained. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when the ink absorption layer is formed when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle.
  • the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
  • Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene. A polymer is mentioned. More specifically, examples of the resin that is emulsion-polymerized with the polymer dispersant include acrylic resins (acrylic resins), styrene-butadiene resins, ethylene-vinyl acetate resins, and the like.
  • the acrylic resin is not particularly limited, but an acrylic resin or methacrylic acid ester having a proportion of 50 mol% or more is preferable when the total amount of the constituent monomers is 100 mol%.
  • acrylic resin commercially available ones may be used.
  • AE120A manufactured by Etec Co., Ltd.
  • Viniblanc registered trademark
  • 2680 manufactured by Nissin Chemical Industry Co., Ltd.
  • EK108 manufactured by Siden Chemical Co., Ltd.
  • VONCOAT registered trademark
  • CE-6400 manufactured by DIC Corporation.
  • the high refractive index layer can use other water-soluble binder resins in addition to the first water-soluble binder resin component as long as the effects of the present invention are not impaired.
  • Other water-soluble binder resins are not particularly limited, but water-soluble polymers are preferable in consideration of environmental problems and coating film flexibility.
  • the content of the other binder resin used together with the first water-soluble binder resin component is 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. You can also.
  • a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired.
  • the water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 ⁇ m) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most dissolved.
  • the mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer.
  • gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the resin component contained in the high refractive index layer is not particularly limited.
  • PET polyethylene terephthalate
  • coPET polyethylene terephthalate Copolymer
  • PMMA poly (methyl methacrylate)
  • coPMMA copolymer of poly (methyl methacrylate)
  • coPETG cyclohexanedimethanol
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • a resin component contained in a low refractive index layer the thing similar to the resin component contained in a high refractive index layer can be mentioned.
  • a resin component contained in a low refractive index layer the thing similar to the resin component contained in a high refractive index layer can be mentioned.
  • one or a combination of two or more of these polymers can be used. Examples of suitable polymer combinations include those described in US Pat. No. 6,352,761.
  • metal oxide particles having a refractive index of 2.0 or more and 3.0 or less are preferable. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, second oxide Examples include iron, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Also, composite oxide particles composed of a plurality of metals, core-shell particles whose metal structure changes into a core-shell shape, or the like may be used.
  • the high refractive index layer contains metal oxide fine particles having a high refractive index such as titanium and zirconium. It is more preferable that titanium oxide fine particles or zirconia oxide fine particles are contained. Among these, titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer.
  • the rutile type tetragonal type
  • the rutile type has lower catalytic activity than the anatase type, so that the weather resistance of the high refractive index layer and the adjacent layer is higher, and the refractive index is higher. Is particularly preferred.
  • the titanium oxide may be in the form of core-shell particles coated with a silicon-containing hydrated oxide.
  • the core-shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on a titanium oxide serving as a core.
  • the volume average particle size of the titanium oxide particles serving as the core portion is preferably more than 1 nm and less than 30 nm, more preferably 4 nm or more and less than 30 nm, and more preferably 4 nm or more and less than 15 nm.
  • the first metal oxide particles described above may be used alone or in combination of two or more.
  • the content of the first metal oxide particles is 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, from the viewpoint of providing a refractive index difference from the low refractive index layer. preferable. Furthermore, it is more preferably 20 to 77% by mass, and further preferably 30 to 75% by mass.
  • the volume average particle diameter of the first metal oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm.
  • the volume average particle diameter of the first metal oxide particles is 1 nm or more and 30 nm or less, a high refractive index layer with less haze and better visible light transmittance can be formed.
  • the volume average particle size of the first metal oxide particles is more preferably 5 to 15 nm.
  • the volume average particle diameter of the first metal oxide particles refers to a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a cross section or surface of the refractive index layer.
  • the average particle diameter is weighted by the volume represented by ⁇ (vi) ⁇ .
  • the first metal oxide particles are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • a curing agent can be used to cure the first water-soluble binder resin.
  • the curing agent that can be used together with the first water-soluble binder resin is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin.
  • boric acid or a salt thereof is preferable as the curing agent.
  • boric acid or a salt thereof known ones can be used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • Boric acid or a salt thereof refers to an oxygen acid having a boron atom as a central atom and a salt thereof, specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaboron. Examples include acids and their salts.
  • Boric acid having a boron atom or a salt thereof as a curing agent may be used alone or as a mixture of two or more. Particularly preferred is a mixed aqueous solution of boric acid and borax.
  • boric acid and borax can each be added only at a content that forms a relatively dilute aqueous solution, but by mixing both, a concentrated aqueous solution can be obtained.
  • the coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
  • boric acid or a salt thereof, or borax it is more preferable to use boric acid or a salt thereof, or borax as the curing agent.
  • boric acid or a salt thereof, or borax is used, the metal oxide particles and the water-soluble binder resin polyvinyl alcohol OH group and hydrogen bond network are more easily formed, and as a result, a high refractive index layer and It is considered that interlayer mixing with the low refractive index layer is suppressed, and preferable near-infrared blocking characteristics are achieved.
  • the content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
  • At least one of the high refractive index layers may further contain a surfactant.
  • a surfactant any of zwitterionic, cationic, anionic, and nonionic types can be used. More preferably, a betaine zwitterionic surfactant, a quaternary ammonium salt cationic surfactant, a dialkylsulfosuccinate anionic surfactant, an acetylene glycol nonionic surfactant, or a fluorine cationic interface Activators are preferred.
  • surfactant for example, commercially available products such as Softazoline (registered trademark) LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) can be used.
  • Softazoline registered trademark
  • LSB-R manufactured by Kawaken Fine Chemical Co., Ltd.
  • the addition amount of the surfactant is preferably 0.005 to 0.30% by mass, and 0.01 to 0.10% by mass when the total mass of the coating solution for the high refractive index layer is 100% by mass. % Is more preferable.
  • additives Various additives applicable to the high refractive index layer according to an embodiment of the present invention are listed below.
  • ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476; JP-A-57-74192, JP-A-57-87989 No. 5, JP-A-60-72785, JP-A 61-146591, JP-A-1-95091, JP-A-3-13376, and the like; Fluorescent whitening described in JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771, JP-A-4-219266, etc.
  • pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate; antifoaming agents; lubricants such as diethylene glycol; antiseptics; Antistatic agent; Matting agent; Thermal stabilizer; Antioxidant; Flame retardant; Crystal nucleating agent; Inorganic particle; Organic particle; Thickening agent; Lubricant; Infrared absorber; Dye; Etc.
  • pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate
  • antifoaming agents such as diethylene glycol; antiseptics; Antistatic agent; Matting agent; Thermal stabilizer; Antioxidant; Flame retardant; Crystal nucleating agent; Inorganic particle; Organic particle; Thickening agent; Lubricant; Infrared absorber; Dye; Etc.
  • the total mass of the coating solution for the high refractive index layer is 100% by mass, it is preferably 0.5 to 5.0% by mass, and 1.0 to 4. More preferably, it is 0% by mass.
  • the low refractive index layer can contain a second water-soluble binder resin and second metal oxide particles as a resin component. If necessary, as a resin component contained in the low refractive index layer, latex can be contained in addition to the water-soluble binder resin, similarly to the high refractive index layer. Moreover, you may include at least 1 sort (s) selected from the group which consists of another binder resin, a hardening
  • the refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.50.
  • the second water-soluble binder resin, the other binder resin, and the second metal oxide particles will be described.
  • a high refractive index layer can be used as a 2nd water-soluble binder resin, latex, a hardening
  • the second water-soluble binder resin may be the same as the first water-soluble binder resin.
  • the content of the second water-soluble binder resin in the low refractive index layer is preferably 20 to 99.9% by mass, and 25 to 80% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 21.5 to 25.0% by mass, and particularly preferably 22.5 to 24.5% by mass.
  • the low refractive index layer may contain latex as a resin component in addition to the water-soluble binder resin.
  • Latex is a resin that is stably dispersed in an aqueous medium.
  • the preferable latex the same latexes as those mentioned for the high refractive index layer can be used.
  • the content of the latex is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and less than 50% by mass with respect to the total (100% by mass) of the water-soluble binder resin and latex. More preferably, it is 22.0 mass% or more and 49 mass% or less, More preferably, it is 30.0 mass% or more and 49 mass% or less, Most preferably, it is 30 mass% or more and 45.0 mass% or less, Most preferably, it is 30.0 mass% or more and 40.0 mass% or less, Most preferably, it is 30.0 mass% or more and 35.0 mass% or less.
  • the same binder resin as that in the high refractive index layer can be used as the other binder resin that can be included in the low refractive index layer.
  • the content of the other binder resin used together with the second water-soluble binder resin component is 0.1 to 10% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It can also be used.
  • silica (silicon dioxide) is preferably used as the second metal oxide particles according to one embodiment of the present invention.
  • silica include synthetic amorphous silica and colloidal silica.
  • colloidal silica sol colloidal silica sol dispersed in an organic solvent.
  • hollow fine particles having pores inside the particles can be used as the second metal oxide particles, and hollow fine particles of silica (silicon dioxide) are particularly preferable.
  • the second metal oxide particles preferably silicon dioxide
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle diameter of the second metal oxide fine particles was determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle diameter of 1,000 arbitrary particles, It is obtained as a simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the colloidal silica used in one embodiment of the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis with an acid of sodium silicate or the like for example, JP-A-57-14091. JP, 60-219083, JP 60-219084, JP 61-20792, JP 61-188183, JP 63-17807, JP JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7- No. 101142, JP-A-7-179029, JP-A-7-137431, International Publication No. 94/26530, etc. Those listed.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include Snowtex (registered trademark) OXS (manufactured by Nissan Chemical Industries, Ltd.).
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can be used as the second metal oxide particles.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles.
  • the refractive index of the low refractive index layer is sufficiently lowered if the average particle pore diameter of the hollow particles is in the above range.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle pore diameter is the minimum distance among the distances between the outer edges of the pore diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines. Means.
  • the second metal oxide particles may be surface-coated with a surface coating component.
  • a surface coating component such as polyaluminum chloride. It becomes difficult to aggregate with the metal oxide particles.
  • the content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass, still more preferably 55 to 65% by mass, particularly preferably 58 to 64% by mass, and 60 to 63% by mass. Most preferred.
  • the above-mentioned second metal oxide particles may be used alone or in combination of two or more from the viewpoint of adjusting the refractive index.
  • a curing agent can be used to cure the second water-soluble binder resin.
  • the same ones as mentioned for the high refractive index layer can be used.
  • the content of the curing agent in the low refractive index layer is preferably 1.0 to 10.0% by mass, and 1.62 to 1.88% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 1.70 to 1.85% by mass.
  • the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
  • At least one of the low refractive index layers may further contain a surfactant.
  • a surfactant the same surfactants as those mentioned for the high refractive index layer can be used.
  • the addition amount of the surfactant is preferably 0.01 to 2.00% by mass, preferably 0.01 to 1.00% by mass, when the total mass of the coating solution for the low refractive index layer is 100% by mass. % Is more preferable, and 0.01 to 0.10% by mass is even more preferable.
  • additives In one embodiment of the present invention, other additives may be the same as those mentioned for the high refractive index layer.
  • the method for forming the reflective layer according to one embodiment of the present invention is not particularly limited.
  • a coating solution for a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles on a substrate, a second water-soluble binder resin, and a second metal oxide The manufacturing method including the process of apply
  • grains can be implemented.
  • the coating method is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, or U.S. Pat. No. 2,761,419, U.S. Pat. Examples thereof include a slide hopper coating method and an extrusion coating method described in Japanese Patent No. 2,761,791.
  • a method of applying a plurality of layers in a multilayer manner sequential multilayer coating or simultaneous multilayer coating may be used, but simultaneous multilayer coating is preferable.
  • the solvent for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • the organic solvent is not particularly limited, and an appropriate solvent can be used.
  • alcohols such as methanol, ethanol, 2-propanol and 1-butanol
  • esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene
  • examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone.
  • These organic solvents may be used alone or in combination of two or more.
  • water is particularly preferable as the solvent for the coating solution.
  • the concentration of the first water-soluble binder resin in the coating solution for the high refractive index layer is preferably 1 to 10% by mass.
  • the concentration of the first metal oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
  • the concentration of the second water-soluble binder resin in the coating solution for the low refractive index layer is preferably 1 to 10% by mass.
  • the concentration of the second metal oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
  • the method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited.
  • a water-soluble binder resin, metal oxide particles, and other additives added as necessary The method of adding and stirring and mixing is mentioned.
  • the order of addition of the water-soluble binder resin, metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring, or stirring. However, they may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the high refractive index layer may be formed using an aqueous coating solution for a high refractive index layer prepared by adding and dispersing core-shell particles.
  • the core-shell particles are preferably prepared by adding to the coating solution for the high refractive index layer as a sol having a pH of 5.0 or more and 7.5 or less and a negative zeta potential of the particles.
  • the viscosity at 30 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably in the range of 5 to 500 mPa ⁇ s, and 10 to 450 mPa ⁇ s. The range of s is more preferable.
  • the viscosity at 30 to 45 ° C. of the coating solution for high refractive index layer and the coating solution for low refractive index layer when simultaneous multilayer coating is performed by the slide curtain coating method is preferably in the range of 5 to 1200 mPa ⁇ s, 25 A range of ⁇ 500 mPa ⁇ s is more preferable.
  • the viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, and more preferably 3,000 to 30,000 mPa ⁇ s. s is more preferable, and 10,000 to 30,000 mPa ⁇ s is particularly preferable.
  • the slide hopper coating method is a method of performing coating using a slide hopper coating apparatus.
  • the coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C.
  • the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of the substances in each layer and in each layer by means such as applying cold air to the coating film to lower the temperature.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from application of cold air to completion of setting is preferably within 7 minutes, and preferably within 5 minutes.
  • the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is 45 seconds or more, the components in the layer are more thoroughly mixed. On the other hand, if the set time is within 7 minutes, the difference in refractive index between the high refractive index layer and the low refractive index layer can be further prevented. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
  • the set time is such that the concentration of the water-soluble binder resin, the concentration of the metal oxide particles, etc., the addition of other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • a light absorbing layer, a heat insulating layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a droplet layer are provided on the substrate for the purpose of adding further functions. Further, it may have functional layers such as an easy-sliding layer, a hard coat layer, an abrasion-resistant layer, and an antireflection layer.
  • the light absorption layer which is one of the other layers, will be described in detail.
  • the optical film according to one embodiment of the present invention may further have a light absorption layer on the substrate.
  • a light absorption layer for example, an infrared rays absorption layer etc. are mentioned.
  • the light absorption layer may be a layer that absorbs a specific wavelength by a dye or a pigment.
  • an infrared absorption layer will be described as an example, but a light absorption layer that can be used in the present invention is not limited to this.
  • Examples of materials contained in the infrared absorbing layer include polymers such as ultraviolet curable resins, photopolymerization initiators, and infrared absorbers. It is preferable that the polymer component contained in the infrared absorbing layer is cured. Here, the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
  • UV curable resins are superior in hardness and smoothness to other resins, and are also advantageous from the viewpoint of dispersibility of ITO (tin-doped indium oxide), ATO (antimony-doped tin oxide) and heat conductive metal oxides. is there.
  • the ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. Among these, acrylic resins are preferable from the viewpoints of hardness, smoothness, and transparency.
  • Acrylic resin is a reactive silica particle in which a photosensitive group having photopolymerization reactivity is introduced on its surface as described in International Publication No. 2008/035669 from the viewpoint of hardness, smoothness, and transparency ( In the following, it is preferable to simply include “reactive silica particles”.
  • the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group.
  • the ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be.
  • a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group.
  • the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
  • the acrylic resin preferably contains fluorine from the viewpoint of adjusting the refractive index. That is, the infrared absorption layer preferably contains fluorine.
  • examples of such an acrylic resin include an acrylic resin containing a structural unit derived from a fluorine-containing vinyl monomer.
  • fluorine-containing vinyl monomer examples include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), partial (meth) acrylic acid or fully fluorinated alkyl ester derivatives (for example, Osaka Organic Chemical Industry) Biscoat 6FM manufactured by Daikin Industries, Ltd., R-2020 manufactured by Daikin Industries, Ltd.), and fully or partially fluorinated vinyl ethers.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.
  • partial (meth) acrylic acid or fully fluorinated alkyl ester derivatives for example, Osaka Organic Chemical Industry
  • photopolymerization initiator known ones can be used, either alone or in combination of two or more.
  • Inorganic infrared absorbers that can be contained in the infrared absorbing layer include ITO, ATO, zinc antimonate, lanthanum hexaboride (LaB 6 ) from the viewpoints of visible light transmittance, infrared absorptivity, dispersibility in the resin, and the like.
  • Cesium-containing tungsten oxide for example, Cs 0.33 WO 3 etc. is preferable.
  • the average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm. When it is 5 nm or more, dispersibility in the resin and infrared absorptivity become better. On the other hand, when it is 100 nm or less, the visible light transmittance is further improved.
  • the average particle size is measured by taking an image with a transmission electron microscope, extracting, for example, 50 particles at random, measuring the particle size, and averaging the results. Moreover, when the shape of particle
  • the content of the inorganic infrared absorber in the infrared absorbing layer is preferably 1 to 80% by mass with respect to the total mass of the infrared absorbing layer. If the content of the inorganic infrared absorber is 1% or more, a higher infrared absorption effect appears, and if it is 80% or less, visible light can be transmitted more. From the same viewpoint, the content of the inorganic infrared absorber is more preferably 5 to 50% by mass.
  • Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds.
  • metal complex compounds aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives) Etc. are particularly preferably used.
  • the infrared absorption layer may contain other infrared absorbers such as metal oxides other than those described above, organic infrared absorbers, metal complexes, and the like within the scope of the effects of the present invention.
  • specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
  • the thickness of the infrared absorbing layer is preferably in the range of 0.1 to 50 ⁇ m. If the thickness of the infrared absorbing layer is 0.1 ⁇ m or more, the infrared absorbing ability tends to be improved, while if it is 50 ⁇ m or less, the crack resistance of the coating film is further improved. From the same viewpoint, the thickness of the infrared absorption layer is more preferably in the range of 1 to 20 ⁇ m.
  • the method for forming the infrared absorbing layer is not particularly limited.
  • the light absorption layer can also serve as a hard coat layer when the pencil hardness according to JIS K 5600-5-4: 1999 is H or higher.
  • the form having a light absorption layer that also serves as a hard coat layer is used in an optical laminate in which an optical film and a single substrate are bonded, and the light absorption layer is preferably disposed in the outermost layer of the optical laminate.
  • the optical film according to a particularly preferred embodiment of the present invention is an optical film for bonding to a substrate having a curved surface.
  • substrate which has a curved surface, it describes in detail in description of the optical laminated body mentioned later.
  • the substrate used for the optical layered body according to another embodiment of the present invention will be described.
  • the optical laminate includes an optical film according to one embodiment of the present invention and a substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated glass that is an optical laminate including the optical film of the present invention.
  • the optical laminated body 10 is a laminated glass, and a base body 11 having a curved surface on the outdoor side, an intermediate layer 12, an optical film 13, an intermediate layer 14, and a base body 15 having a curved surface on the indoor side are laminated in this order. It becomes.
  • the optical film 13 is arranged so that the base material 13a is on the base 15 side having a curved surface on the indoor side, and the reflective layer 13b is on the base 11 side having a curved surface on the outdoor side.
  • the optical film according to the present invention is not limited to this structure.
  • FIG. 2 is a schematic sectional view showing another example of an optical laminate including the optical film of the present invention.
  • the optical layered body 20 is formed by arranging a base 21 having a curved surface, an intermediate layer 22 and an optical film 23 in this order.
  • the optical film 23 is disposed such that the base material 23a is on the side of the base 21 having a curved surface, and the reflection layer 23b is on the side opposite to the side of the base 21 having a curved surface.
  • the optical film according to the present invention is not limited to this structure.
  • the laminated optical glass according to one embodiment of the present invention is preferably laminated with an intermediate layer of an optical film in a laminated glass as shown in FIG. At this time, after laminating the intermediate layer on both surfaces of the optical film to form a laminate composed of the optical film and the intermediate layer, the laminate may be pressure-bonded with two sheets of glass to produce a laminated glass. .
  • the intermediate layer is interposed between the glass and the optical film and serves to bond and fix the glass and the optical film.
  • the laminated glass has a configuration in which an infrared shielding film is sandwiched between two sets of intermediate layers and glass so that the intermediate layers face each other.
  • the constituent materials of the two intermediate layers may be the same or different.
  • the intermediate layer is preferably a sheet made of a resin such as polyvinyl butyral or ethylene-vinyl acetate.
  • a resin such as polyvinyl butyral or ethylene-vinyl acetate.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Kasei Co., Ltd.
  • ethylene-vinyl acetate copolymer manufactured by DuPont Co., Ltd., duramin by Takeda Pharmaceutical Co., Ltd.
  • modified ethylene-acetic acid A vinyl copolymer (Mersen (registered trademark) G manufactured by Tosoh Corporation) or the like can be used.
  • This intermediate layer contains, for example, stabilizers, surfactants, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, and the like as additives. It can also be made. In particular, when used for window sticking, the addition of an ultraviolet absorber is effective for suppressing deterioration of the optical film due to ultraviolet rays.
  • the film thickness of the interlayer film used for the laminated glass is not particularly limited, but is preferably 100 to 1000 ⁇ m, more preferably from the viewpoint of the minimum penetration resistance and economy required for the laminated glass.
  • the thickness is 100 to 750 ⁇ m, more preferably 200 to 500 ⁇ m, particularly preferably 300 to 400 ⁇ m, and most preferably 350 to 450 ⁇ m.
  • the intermediate layer according to the present invention can be previously provided as an adhesive layer on the optical film.
  • the optical film and the substrate are interposed via the adhesive layer. It is preferable to form an optical layered body by bonding.
  • the method for forming the adhesive layer on the optical film is not particularly limited. For example, after preparing a pressure-sensitive adhesive coating solution containing the above pressure-sensitive adhesive, it is coated on the optical film using a wire bar or the like, dried and bonded. For example, a method for producing an optical film with a layer can be used.
  • the optical film is preferably installed on the incident surface side of the light beam (for example, sunlight, heat rays, etc.).
  • the light beam for example, sunlight, heat rays, etc.
  • an infrared shielding film which is an optical film according to an embodiment of the present invention, outdoors or on the outside of a vehicle (for external application) because good environmental durability can be obtained.
  • a known adhesive can be used as the applicable adhesive layer forming material.
  • the adhesive is not particularly limited, and for example, an adhesive mainly composed of a photocurable resin or a thermosetting resin can be used.
  • an adhesive can also be used.
  • an adhesive what has durability with respect to an ultraviolet-ray is preferable, and an acrylic adhesive or a silicone adhesive is more preferable.
  • an acrylic pressure-sensitive adhesive is more preferable from the viewpoint of pressure-sensitive adhesive properties and cost.
  • the acrylic pressure-sensitive adhesive is preferably a solvent-based acrylic pressure-sensitive adhesive (acrylic solvent-based pressure-sensitive adhesive) because the peel strength can be easily controlled.
  • a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made. In particular, when used for window sticking, the addition of an ultraviolet absorber is effective for suppressing deterioration of the optical film due to ultraviolet rays.
  • the substrate is not particularly limited, but is preferably a glass substrate.
  • the glass used for the glass substrate include inorganic glass and organic glass.
  • the inorganic glass is not particularly limited, and examples thereof include various types of inorganic glass such as float plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, heat ray absorbing plate glass, and colored plate glass.
  • the organic glass is not particularly limited, and examples thereof include glass plates made of resins such as polycarbonates, polystyrenes, polymethyl methacrylates, and the like. These organic glass plates may be a laminate formed by laminating a plurality of sheet-shaped ones made of the resin.
  • the glass substrate can be used as the glass substrate.
  • the kind of glass is not specifically limited, Usually, soda-lime silica glass is used suitably. In this case, it may be a colorless transparent glass or a colored transparent glass.
  • the configuration of the optical laminate is not particularly limited, but may be a configuration in which, for example, an optical film according to an embodiment of the present invention is disposed on a single substrate.
  • the laminated glass which consists of a structure by which the optical film which concerns on one form of this invention is arrange
  • an optical laminated body which concerns on one form of this invention it is preferable that it is a laminated glass.
  • the glass substrate on the outdoor side close to the incident light among the two substrates is preferably a colorless transparent glass.
  • the glass substrate on the indoor side far from the incident light side is preferably green colored transparent glass, dark transparent glass, or colorless transparent glass.
  • the green colored transparent glass preferably has ultraviolet absorption performance and infrared absorption performance.
  • the green colored transparent glass is not particularly limited, for example, soda lime silica glass containing iron is preferable.
  • An example of the green colored transparent glass is soda lime silica glass containing 0.3 to 1% by mass of total iron in terms of Fe 2 O 3 in a soda lime silica base glass.
  • the mass of FeO (divalent iron) is all in terms of Fe 2 O 3. It is preferably 20 to 40% by mass of iron.
  • soda lime silica glass having substantially the following composition; SiO 2 : 65 to 75% by mass, Al 2 O 3 : 0.1 to 5% by mass, Na 2 O + K 2 O: 10 to 18% by mass, CaO: 5 to 15% by mass, MgO: 1 to 6% by mass, Fe 2 O 3 converted total iron: 0.3 to 1% by mass, CeO 2 converted total cerium and TiO 2 : 0.5 to 2% by mass.
  • the dark transparent glass is not particularly limited, and for example, soda lime silica glass containing iron at a high concentration is preferably used.
  • the thickness of the substrate is preferably 1.5 to 3.0 mm.
  • an optical laminated body becomes a more suitable thing for windows, such as a vehicle.
  • the indoor substrate and the outdoor substrate can have the same thickness or different thicknesses.
  • both the indoor substrate and the outdoor substrate may be 2.0 mm thick or 2.1 mm thick. Is possible.
  • the thickness of the indoor substrate is less than 2 mm and the thickness of the outdoor substrate is slightly more than 2 mm. The thickness can be reduced and the external force from the outside of the vehicle can be resisted.
  • the substrate may be flat or have a curved surface.
  • an optical laminated body contains the base
  • the optical film according to one embodiment of the present invention has a great suppression effect, so the optical film includes an optical laminate including a substrate having a curved surface. It can be preferably applied to the body.
  • a curved surface refers to a surface whose curvature radius R is not infinite.
  • the laminated glass having a curved surface means that at least a part of the laminated glass has a curved surface.
  • the shape of the base is often curved.
  • An example of a substrate having a curved surface is a curved glass plate.
  • the curved glass plate is obtained by bending soda-lime glass heated to a temperature equal to or higher than the softening point by a float method, and the use of a three-dimensional curved glass plate is simple.
  • Examples of the shape of the three-dimensionally curved base include a spherical base, an elliptical spherical base, and a base having a different radius of curvature depending on the location, such as a front glass of an automobile.
  • the circular diameter ⁇ of the substrate having a curved surface is not particularly limited, but is preferably 100 to 500 mm.
  • a circular diameter ⁇ of 100 to 500 mm is more preferable because wrinkle evaluation corresponding to curved glass with a curvature such as an automobile window can be performed.
  • the thickness is more preferably 100 to 300 mm.
  • the radius of curvature R of the substrate having a curved surface is not particularly limited, but is preferably 0.1 to 3.0 m. If the radius of curvature R is greater than 0.1 m, the wrinkles of the optical film are generally less likely to occur in the mating process. From the same viewpoint, it is more preferably 0.9 to 3 m.
  • the optical film included in the laminated glass having two substrates is preferably provided on the concave surface side of the outdoor glass substrate.
  • three or more glass substrates can be used as necessary.
  • Method for producing optical laminate As an example of the method for producing an optical laminate of the present invention, a method for producing a laminated glass having two substrates is described, but the present invention is not limited to this.
  • the optical film may be laminated glass between two substrates.
  • the method for producing the laminated glass is not particularly limited.
  • a laminated body obtained by laminating an optical film on both sides with an intermediate layer for example, a sheet made of polyvinyl butyral, etc.
  • an intermediate layer for example, a sheet made of polyvinyl butyral, etc.
  • a step of manufacturing a laminated body sandwiched between and a step of joining the laminated body sandwiched between the substrates while heating As a detailed manufacturing method, a known laminated glass manufacturing method can be appropriately used.
  • heat treatment and pressure treatment are repeated several times, and finally, under pressure conditions using an autoclave or the like.
  • the method of joining by performing the heat treatment of is taken.
  • the laminate sandwiched between the substrates that are not in contact with the optical film while heating.
  • Joining of the laminate sandwiched between the base and the expectation is performed by, for example, pre-pressing in a vacuum bag or the like under reduced pressure at a temperature of 80 to 120 ° C. for 30 to 60 minutes, and then in an autoclave for 1.0 to 1
  • the laminated glass can be obtained by bonding at a temperature of 100 to 150 ° C., preferably 120 to 150 ° C. under a pressure of 5 MPa, and a laminate is sandwiched between two substrates. Moreover, you may stick together using an adhesive. At this time, the time for thermocompression bonding at a temperature of 100 to 150 ° C., preferably 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa is preferably 20 to 90 minutes.
  • the laminated glass may be obtained by cooling while releasing the pressure as appropriate.
  • the temperature while maintaining the pressure from the viewpoint of further improving wrinkles and cracks of the obtained laminated glass.
  • decreasing the temperature while maintaining the pressure means decreasing the temperature from the internal pressure of the apparatus at the time of thermocompression bonding (preferably 150 ° C.) so that the internal pressure of the apparatus at 40 ° C. is 75 to 100% of that at the thermocompression bonding. It means to do.
  • the method of lowering the temperature while maintaining the pressure is not particularly limited as long as the pressure when the temperature is lowered to 40 ° C. is within the above range, but the pressure inside the pressure device naturally decreases as the temperature decreases.
  • a mode in which the temperature is lowered without leaking pressure from the inside of the apparatus or a mode in which the temperature is lowered while further pressurizing from the outside so that the internal pressure of the apparatus does not decrease as the temperature decreases is preferable.
  • the method for producing the laminated glass includes a step of laminating the constituent layers of the laminated glass, a step of bonding by thermocompression bonding at a temperature of 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa, It is preferable to include a step of lowering the temperature while holding the pressure and a step of releasing the pressure.
  • an optical laminate having another configuration for example, an optical laminate having a configuration in which an optical film according to an embodiment of the present invention is disposed on a single substrate, the substrate and the optical film are subjected to thermocompression bonding. It is common. From this, also about the optical laminated body of another structure, by using the optical film which concerns on one form of this invention, generation
  • Example 1 (Production of polyester chip) Take 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.07 part of calcium acetate monohydrate in a reactor, heat up and evaporate methanol to conduct transesterification, and take about 4 and a half hours after starting the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, 0.04 part of phosphoric acid and 0.035 part of antimony trioxide were added and polymerized in accordance with a conventional method. That is, the reaction temperature was gradually raised to finally 280 ° C., while the pressure was gradually reduced to finally 0.05 mmHg. After 4 hours, the reaction was completed, and chips were obtained according to a conventional method to obtain polyester chips. This polyester chip was a polyethylene terephthalate chip.
  • polyester chip was used as a raw material and melt-extruded by a melt extruder to obtain an amorphous sheet. Subsequently, the sheet was coextruded on a cooled casting drum and solidified by cooling to obtain a non-oriented sheet. Next, the obtained non-oriented sheet was stretched 3.6 times in the longitudinal direction at 90 ° C. Furthermore, a water-based easy-adhesion coating solution (undercoat layer coating solution) was applied to both surfaces of the sheet after longitudinal stretching at a coating amount of 5 g / m 2 on each surface.
  • undercoat layer coating solution undercoat layer coating solution
  • the sheet after application of the water-based easy-adhesion coating solution is subjected to a preheating step in the tenter and is stretched 4 times in the transverse direction at 90 ° C., and then subjected to heat treatment at 190 ° C. for 10 seconds, with a total thickness of 50 ⁇ m
  • a polyester film substrate having an aqueous easy-adhesive resin coating layer (undercoat layer) on both sides was obtained.
  • the water-based easy-adhesion resin used for the water-based easy-adhesion coating solution was a water-soluble polyester resin.
  • TiO 2 titanium dioxide sol
  • Silica-attached titanium dioxide sol (volume average particle size: 9 nm).
  • a high refractive index layer coating liquid 1 and a low refractive index layer coating liquid 2 are kept at 40 ° C. and heated to 40 ° C., and a polyester film base having a width of 160 mm
  • the lowermost layer and the uppermost layer are low refractive index layers, and the low refractive index layer and the low refractive index layer are alternately disposed so that the low refractive index layer and the lower refractive index layer are alternately arranged.
  • a total of 53 layers were simultaneously applied so that the low refractive index layer was 150 nm and the high refractive index layer was 130 nm.
  • Examples 2 to 7, Comparative Examples 1 and 2 Each substrate was prepared in the same manner as in Example 1 except that the thickness of the polyester film and the heat treatment temperature were appropriately changed as each substrate. Also, low refractive index layer coating solutions 2 to 9 prepared in the same manner as the low refractive index layer coating solution 1 except that the amount of the water-dispersible acrylic resin dispersion was changed were prepared. Then, Example 1 is used except that the low refractive index layer coating liquids 2 to 9 are used in place of the low refractive index layer coating liquid 1 on each substrate, and that the number of reflection layers laminated is appropriately changed. Similarly, each reflective layer was formed, and optical films 2 to 7 according to Examples 2 to 7 and optical films 8 and 9 according to Comparative Examples 1 and 2 were produced.
  • the storage elastic modulus (E ′) at a high temperature of the reflective layer can be changed by the addition amount of the water-dispersible acrylic resin dispersion, and the storage elastic modulus (E ′) at a high temperature can be reduced by reducing the addition amount. Can be increased. Moreover, the storage elastic modulus (E ') in high temperature can be reduced by increasing the addition amount. Table 1 below shows the amount of the water-dispersible acrylic resin dispersion 1, the characteristics of each optical film, and the performance evaluation results.
  • a curved circular lens glass (circular lens diameter ⁇ 150 mm, glass curvature radius R200 mm) serving as the indoor side glass, a sheet of polyvinyl butyral having a thickness of 380 ⁇ m serving as the intermediate layer on the indoor side, the optical film 1, and the intermediate layer on the outdoor side
  • a sheet made of polyvinyl butyral having a thickness of 380 ⁇ m and a curved circular lens glass (circular lens diameter ⁇ 150 mm, glass radius of curvature R200 mm) as an outdoor glass in this order, and removing an excess portion protruding from the edge portion of the glass
  • the laminated glass 1 was produced as an optical laminate using the optical film of Example 1 by heating at 150 ° C.
  • the lamination is performed by pressing a sheet made of polyvinyl butyral serving as an intermediate layer on the indoor side, an optical film, and a sheet consisting of polyvinyl butyral serving as the intermediate layer on the outdoor side with a laminator to form a laminate.
  • the laminate was sandwiched between a curved circular lens glass serving as an indoor glass and a curved circular lens glass serving as an outdoor glass.
  • the optical film was arranged so that the base material was on the indoor side.
  • the optical films 2 to 7 according to Examples 2 to 7 and the optical films 8 and 9 according to Comparative Examples 1 and 2 were used. 2 to 9 were produced.
  • the thickness of the reflective layer was determined by cutting a tom of the produced optical film, and using an electron microscope (FE-SEM, S-5000H type, manufactured by Hitachi, Ltd.) for the cross section. The number of fields was selected and observed so that a 1 cm length could be observed under the conditions. Next, the obtained image was digitized and subjected to image processing for adjusting the contrast. Then, the film thickness was measured for each layer, and the film thickness of the reflective layer was obtained. In addition, the film thickness was made into the average value of the measurement result of 1000 places.
  • the reflective layer measurement samples for all the optical films were prepared with a film thickness of 4 ⁇ m.
  • the measurement results using the reflection layer measurement sample were handled as the measurement results of the reflection layer.
  • the storage elastic modulus (E ′) and loss elastic modulus (E ′′) of the optical film and substrate are measured based on a dynamic viscoelasticity automatic measuring instrument (DDV-01GP manufactured by A & D Corporation). ), Measuring from 25 ° C. to 250 ° C. in tension mode, frequency 10 Hz, heating rate 5 ° C./min, minimum tension / compression ratio 49 mN, tension / compression force gain 1.0, and force amplitude initial value 49 mN.
  • the loss factor (tan ⁇ ) was obtained by calculating E ′′ / E ′ from the obtained results.
  • Table 1 shows the value of the loss factor (tan ⁇ ) at 150 ° C. in each example and comparative example.
  • the storage elastic modulus (E ′) of the substrate and the reflection layer measurement sample was evaluated using the same method as the method for evaluating the storage elastic modulus (E ′) in the measurement of the loss factor (tan ⁇ ).
  • the measurement of the substrate was performed in the machine direction of the film, that is, the longitudinal direction of the substrate and the direction orthogonal thereto, and the average value was used as the evaluation result.
  • the reflective layer measurement sample was measured in two arbitrary directions orthogonal to each other, and the average value was taken as the evaluation result. From the obtained value, the absolute value of the difference in storage elastic modulus (E ′) between the substrate and the reflective layer was calculated.
  • Table 1 shows the value of the storage elastic modulus (E ′) at 150 ° C. of each Example and Comparative Example, and the absolute value of the difference in the storage elastic modulus (E ′) between the substrate and the reflective layer.
  • the substrate and the reflective layer measurement sample are stored for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, two marks are made at intervals of 100 mm in the width direction, and between the two marks in an unloaded state
  • the distance L1 was measured using a microscope or the like.
  • the sample was hung in an oven at 150 ° C. and left for 30 minutes.
  • the sample was taken out of the oven and stored again for 24 hours in an environment at a temperature of 23 ° C. and a relative humidity of 55%.
  • the distance L2 between the two marks on the unloaded sample was measured using a microscope or the like.
  • Thermal contraction rate (%) ((L1-L2) / L1) ⁇ 100
  • the measurement of the substrate was performed in the machine direction of the film, that is, the longitudinal direction of the substrate and the direction orthogonal thereto, and the average value was used as the evaluation result.
  • the reflective layer measurement sample was measured in two arbitrary directions orthogonal to each other, and the average value was taken as the evaluation result.
  • Table 1 shows the values of the heat shrinkage rate of each example and comparative example over time at 150 ° C. for 30 minutes.
  • each optical laminate was prepared in the same manner 100 times, and the frequency and generation position of wrinkles generated during heating at 150 ° C. for 30 minutes were visually evaluated according to the following criteria. In addition, the evaluation judged that ⁇ or more is a practical characteristic. The results are shown in Table 1; A: Wrinkles are not generated at all. ⁇ : Occurrence frequency is 5 times or less, and all occurrence positions are present at positions less than 10 mm at the end.
  • Occurrence frequency is 5 times or less, and there is an occurrence position where the occurrence position reaches a position of 10 mm or more at the end,
  • X Occurrence frequency exceeds 5 times, and the occurrence position reaches a position where the end portion is 10 mm or more.
  • A Heat ray (infrared) reflectance difference between the center and the end is 1% or less
  • Heat ray (infrared) reflectance difference between the center and the end is more than 1% and 2% or less
  • Heat ray (infrared) reflectance difference between the center and the end is more than 2% and not more than 3%
  • X The heat ray (infrared ray) reflectance difference between the center portion and the end portion exceeds 3%.
  • the favorable infrared reflection performance of the optical laminate means that the infrared reflection performance of the optical film is good.

Abstract

The present invention provides a means for suppressing the occurrence of wrinkles in the processing step of an optical film, even if there is a significant difference in the high-temperature properties of the substrate and reflective layer of the optical film. The present invention pertains to an optical film having a substrate and a reflective layer, wherein the substrate and the reflective layer have an absolute value for the difference in storage modulus (E') at 150°C (measurement conditions: conforming with JIS K7244 - 1:1998, tensile mode, heating rate 5°C/min, frequency 10Hz) is at least 0.05GPa, and the loss tangent (tanδ) at 150°C) (measurement conditions: conforming with JIS K7244-1:1998, tensile mode, heating rate 5°C/min, frequency 10Hz) is 0.12-0.20.

Description

光学フィルム、およびこれを含む光学積層体Optical film and optical laminate including the same
 本発明は、光学フィルム、およびこれを含む光学積層体に関する。より詳細には、本発明は、光学積層体形成のために光学フィルムを加工する際の、光学フィルムのシワの発生を抑制するための技術に関する。 The present invention relates to an optical film and an optical laminate including the same. In more detail, this invention relates to the technique for suppressing generation | occurrence | production of the wrinkle of an optical film at the time of processing an optical film for optical laminated body formation.
 近年、特定の波長域の光線を透過する、もしくは反射吸収することを目的として、または自動車や建物などの窓に貼合し、断熱や遮光、破損時の破片飛散防止などを目的として、光学フィルムが利用されている。かような光学フィルムは、たとえば、赤外線の侵入を抑え、建物室内または車内の温度が過剰に上昇するのを防ぐ赤外遮蔽能を有しており、冷房の使用を低減し省エネルギー化を達成することに有用である。このような光学遮蔽特性を有する膜として、屈折率の異なる層を積層させた誘電多層膜が知られている。当該誘電多層膜は、反射層として機能し、層の境界からの反射光の干渉を利用することで、分光反射率を自由に設定できるという利点がある。これより、当該光学フィルムとしては、建築物の窓などに貼合して用いられており、また当該光学フィルムを用いた光学積層体の一つである、一対のガラス基板の間に当該光学フィルムが配置されてなる、合わせガラスが市場に流通している。 In recent years, optical films for the purpose of transmitting or reflecting and absorbing light in a specific wavelength range, or bonding to windows of automobiles and buildings, etc., for the purpose of heat insulation, light shielding, and prevention of scattered fragments when damaged Is being used. Such an optical film has, for example, an infrared shielding ability that suppresses intrusion of infrared rays and prevents an excessive increase in temperature in a building or in a vehicle, thereby reducing the use of cooling and achieving energy saving. Especially useful. As a film having such optical shielding characteristics, a dielectric multilayer film in which layers having different refractive indexes are laminated is known. The dielectric multilayer film functions as a reflective layer, and has an advantage that the spectral reflectance can be freely set by using interference of reflected light from the boundary of the layers. From this, as the said optical film, it is bonded and used for the window etc. of a building, and is the said optical film between a pair of glass substrates which is one of the optical laminated bodies using the said optical film. Laminated glass is distributed in the market.
 ここで、光学フィルムは、光学積層体の形成に際して、一般的には熱と荷重とを加えることによって加工が行われることとなるが、従来の光学フィルムでは、この加工工程においてシワが発生することが問題となっていた。加工工程におけるシワの発生は、光学積層体の外観を損なうだけでなく、フィルム変形に伴う光学性能の低下を生じさせることとなる。そこで、かような問題を解決するため、光学フィルムの熱収縮率を大きくし、光学積層体における基体や合わせガラスのガラス板の形状に合わせて光学フィルムを変形させることで光学フィルムの余り部分を減少させて、加工工程におけるシワの発生を抑制する技術が提案されている。 Here, the optical film is generally processed by applying heat and load when forming the optical laminate, but in the conventional optical film, wrinkles are generated in this processing step. Was a problem. Generation | occurrence | production of the wrinkle in a process process will cause the fall of the optical performance accompanying film deformation not only to impair the external appearance of an optical laminated body. Therefore, in order to solve such a problem, the thermal shrinkage rate of the optical film is increased, and the optical film is deformed according to the shape of the substrate in the optical laminated body or the glass plate of the laminated glass, thereby removing the excess portion of the optical film. There has been proposed a technique for reducing wrinkles in the machining process.
 たとえば特表2004-503402号公報(WO2001/096107号に相当)には、複合的な湾曲を有する基材に対して、実質的にシワが発生しないよう、複屈折性誘電性多層フィルムが十分に収縮できるようヒートセットを行う工程を含む、積層物品の製造方法、およびこれに用いられる複屈折性誘電性多層フィルムが開示されている。 For example, in Japanese translations of PCT publication No. 2004-503402 (corresponding to WO 2001/096107), a birefringent dielectric multilayer film is sufficiently provided so as not to substantially generate wrinkles with respect to a substrate having a complex curvature. Disclosed is a method for producing a laminated article, including a step of heat setting so that the film can be shrunk, and a birefringent dielectric multilayer film used therefor.
 また、たとえば特開2010-265161号公報(WO2010/119770号に相当)には、湾曲形状を有する2枚のガラス板の間に、2枚の樹脂中間膜と赤外線反射膜付きプラスチックフィルムを有する合わせガラスの製造方法が開示されている。より詳細には、2枚の樹脂中間膜同士、または当該赤外線反射膜付きプラスチックフィルムと樹脂中間膜とを熱融着する前の、当該赤外線反射膜付きプラスチックフィルムの形状およびガラス板に対するサイズを適切に選択することが開示されている。さらに、特開2010-265161号公報には、当該赤外線反射膜付きプラスチックフィルムの熱収縮率を所定の値以上とすることが開示されている。 Further, for example, in Japanese Patent Application Laid-Open No. 2010-265161 (corresponding to WO 2010/119770), a laminated glass having two resin intermediate films and a plastic film with an infrared reflecting film between two curved glass plates. A manufacturing method is disclosed. More specifically, the shape of the plastic film with the infrared reflective film and the size with respect to the glass plate before the two resin intermediate films or between the plastic film with the infrared reflective film and the resin intermediate film are heat-sealed appropriately. The selection is disclosed. Furthermore, Japanese Patent Application Laid-Open No. 2010-265161 discloses that the thermal shrinkage rate of the plastic film with an infrared reflecting film is set to a predetermined value or more.
 ここで、本発明者らは、従来技術においては、光学フィルムによっては、加工工程におけるシワの発生が十分に抑制できない場合があることに着目した。そして、本発明者らは、基材および反射層を有し、かつ基材および反射層の高温物性が大きく異なる光学フィルムでは、単に光学フィルムの熱収縮率を大きくすることのみによっては、シワを十分に抑制することができないことを見出した。 Here, the present inventors paid attention to the fact that in the prior art, the generation of wrinkles in the processing step may not be sufficiently suppressed depending on the optical film. The present inventors have found that the optical film having the base material and the reflective layer, and the high-temperature physical properties of the base material and the reflective layer are greatly different, can be wrinkled only by increasing the thermal shrinkage rate of the optical film. It was found that it cannot be sufficiently suppressed.
 そこで、本発明は上記課題に鑑みてなされたものであり、光学フィルムの基材および反射層の高温物性が大きく異なる場合においても、光学フィルムの加工工程におけるシワの発生を十分に抑制しうる手段を提供することを目的としている。 Therefore, the present invention has been made in view of the above problems, and means capable of sufficiently suppressing the occurrence of wrinkles in the optical film processing step even when the high-temperature physical properties of the optical film substrate and the reflective layer are greatly different. The purpose is to provide.
 本発明者らは、上記課題に鑑み、鋭意検討を進めた。その結果、光学フィルムの150℃における損失係数(tanδ)を所定の範囲内の値とすることで、上記課題が解決できることを見出し、本発明を完成させた。 In view of the above-mentioned problems, the present inventors proceeded with intensive studies. As a result, the present inventors have found that the above problem can be solved by setting the loss coefficient (tan δ) at 150 ° C. of the optical film to a value within a predetermined range, and completed the present invention.
 すなわち、本発明の上記課題は、以下の手段によって解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 基材、および反射層を有し、
 前記基材および前記反射層は、150℃における貯蔵弾性率(E’) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の差の絶対値が0.05GPa以上であり、
 150℃における損失係数(tanδ) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が0.12~0.20である、
光学フィルム。
A substrate, and a reflective layer;
The base material and the reflective layer have an absolute value of a difference in storage elastic modulus (E ′) at 150 ° C. (measuring condition: JIS K7244-1: 1998, tensile mode, heating rate 5 ° C./min, frequency 10 Hz). Is 0.05 GPa or more,
Loss coefficient at 150 ° C. (tan δ) (measurement conditions: JIS K7244-1: 1998 compliant, tensile mode, temperature rising rate 5 ° C./min, frequency 10 Hz) is 0.12 to 0.20.
Optical film.
本発明の一形態に係る光学フィルムを含む光学積層体の一例を示す概略断面図である。ここで、10は光学積層体を、11は屋外側の曲面を有する基体を、12および14は中間層を、13は本発明の一形態に係る光学フィルムを、15は屋内側の曲面を有する基体を、それぞれ表す。また、13aは本発明の一形態に係る光学フィルムの基材を、13bは本発明の一形態に係る光学フィルムの反射層を、それぞれ表す。It is a schematic sectional drawing which shows an example of the optical laminated body containing the optical film which concerns on one form of this invention. Here, 10 is an optical laminate, 11 is a substrate having a curved surface on the outdoor side, 12 and 14 are intermediate layers, 13 is an optical film according to an embodiment of the present invention, and 15 is a curved surface on the indoor side. Each substrate is represented. Moreover, 13a represents the base material of the optical film which concerns on one form of this invention, 13b represents the reflection layer of the optical film which concerns on one form of this invention, respectively. 本発明の光学フィルムを含む光学積層体の他の一例を示す概略断面図である。ここで、20は光学積層体を、21は曲面を有する基体を、22は中間層を、23は本発明の一形態に係る光学フィルムを、それぞれ表す。また、23aは本発明の一形態に係る光学フィルムの基材を、23bは本発明の一形態に係る光学フィルムの反射層を、それぞれ表す。It is a schematic sectional drawing which shows another example of the optical laminated body containing the optical film of this invention. Here, 20 represents an optical laminate, 21 represents a substrate having a curved surface, 22 represents an intermediate layer, and 23 represents an optical film according to an embodiment of the present invention. Moreover, 23a represents the base material of the optical film which concerns on one form of this invention, and 23b represents the reflection layer of the optical film which concerns on one form of this invention, respectively.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 さらに、本明細書において、化合物の具体名における表記「(メタ)アクリル」は「アクリル」および「メタクリル」を、「(メタ)アクリロイル」は「アクリロイル」および「メタクリロイル」を、「(メタ)アクリレート」は「アクリレート」および「メタクリレート」を、それぞれ表す。また、「アクリル樹脂」とは、アクリル酸エステル、メタクリル酸エステルまたはこれらの誘導体を(共)重合体の構成成分とする樹脂を表す。なお、「アクリル系樹脂」には、上記単量体以外に、さらに他の単量体を共重合体の構成成分として有する樹脂も含まれる。 Further, in the present specification, the notation “(meth) acryl” in the specific name of the compound means “acryl” and “methacryl”, “(meth) acryloyl” means “acryloyl” and “methacryloyl”, “(meth) acrylate” "Represents" acrylate "and" methacrylate ", respectively. The “acrylic resin” refers to a resin having an acrylic acid ester, a methacrylic acid ester or a derivative thereof as a constituent component of the (co) polymer. The “acrylic resin” includes resins having other monomers as a constituent component of the copolymer in addition to the above monomers.
 <光学フィルム>
 本発明の一形態は、光学フィルムが、基材、および反射層を有し、前記基材および前記反射層は、150℃における貯蔵弾性率(E’) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の差の絶対値が0.05GPa以上であり、150℃における損失係数(tanδ) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が0.12~0.20であることを特徴とする。本形態に係る光学フィルムによれば、光学フィルムの基材および反射層の高温物性が大きく異なる場合においても、光学フィルムの加工工程におけるシワの発生を十分に抑制することができる。
<Optical film>
In one embodiment of the present invention, an optical film has a base material and a reflective layer, and the base material and the reflective layer have a storage elastic modulus (E ′) at 150 ° C. (Measurement condition: JIS K7244-1: 1998) The absolute value of the difference in compliance, tension mode, temperature increase rate 5 ° C./min, frequency 10 Hz) is 0.05 GPa or more, and loss factor (tan δ) at 150 ° C. (Measurement conditions: JIS K7244-1: 1998 compliant, tension The mode, the temperature increase rate is 5 ° C./min, and the frequency is 10 Hz) is 0.12 to 0.20. According to the optical film according to the present embodiment, even when the high-temperature physical properties of the optical film substrate and the reflective layer are greatly different, generation of wrinkles in the optical film processing step can be sufficiently suppressed.
 ここでまず、本発明者らは、本発明の一形態に係る光学フィルムによって、上記課題を解決しうるメカニズムを以下のように推測している。 Here, first, the present inventors presume a mechanism capable of solving the above-described problems by the optical film according to one embodiment of the present invention as follows.
 基材および反射層の高温物性が大きく異なる場合は、これらの変形挙動が異なることから、基材および反射層の層間に応力が発生し、シワの原因となる。これより、従来技術のように光学フィルムの熱収縮率を大きくすることで加工工程における光学フィルムの変形を大きくし、フィルムの余り部分を減少させることのみでは、十分にシワは改善されない。また、このとき仮に基材および反射層の熱収縮率を同じ値となるよう制御したとしても、加工工程において熱と共に荷重が加えられることから、各層の高温における貯蔵弾性率(E’)等が異なることからその変形挙動の違いは解消されず、上記課題は解決されない。 When the high-temperature physical properties of the base material and the reflective layer are greatly different from each other, the deformation behavior is different, and stress is generated between the base material and the reflective layer, causing wrinkles. Thus, the wrinkles are not sufficiently improved only by increasing the deformation of the optical film in the processing step by increasing the thermal shrinkage rate of the optical film as in the prior art and by reducing the remaining portion of the film. Moreover, even if it controls so that the thermal contraction rate of a base material and a reflective layer may become the same value at this time, since a load is added with a heat | fever in a process, the storage elastic modulus (E ') etc. in the high temperature of each layer etc. Since they are different, the difference in deformation behavior is not eliminated, and the above problem is not solved.
 ここで、光学フィルム全体の塑性変形のし易さに注目する。塑性変形のし易さを表す指標としては、損失係数(tanδ)が挙げられる。損失係数(tanδ)は、tanδ=E”/E’ (E’:貯蔵弾性率、E”:損失弾性率)として定義される値である。貯蔵弾性率(E’)および損失弾性率(E”)とは、試料に対し振動により正弦波形のひずみ(変形)を与えたときに生ずる複素弾性率の中の、ひずみと同位相でひずみのエネルギーが応力として貯蔵される実数成分、ひずみより90°位相が進んでおりひずみエネルギーが他のエネルギーに変換されるなどして損失を発生させる虚数成分をそれぞれ表している。光学フィルムの高温における損失係数(tanδ)を所定の値以上とすることで、光学フィルム全体の塑性変形をより容易に生じさせることができるようになり、基材と反射層との間に発生する応力が緩和される。また、フィルム全体としての塑性変形も容易になることから、光学フィルムの余り部分を減少する効果も得ることができる。これより、基材および反射層の高温物性が大きく異なる場合においても、光学フィルムのシワを十分に抑制することができる。また、高温における損失係数(tanδ)を所定の値以下とすることで、フィルムの変形量が過剰となることによって反射層の膜厚変動が生じることを防ぎ、光学フィルムは高い反射性能を有することができる。 Note here the ease of plastic deformation of the entire optical film. As an index representing the ease of plastic deformation, loss factor (tan δ) can be mentioned. The loss coefficient (tan δ) is a value defined as tan δ = E ″ / E ′ (E ′: storage elastic modulus, E ″: loss elastic modulus). The storage elastic modulus (E ′) and loss elastic modulus (E ″) are the strain in the same phase as the strain in the complex elastic modulus generated when a sinusoidal distortion (deformation) is applied to the sample by vibration. This represents the real number component in which energy is stored as stress, and the imaginary number component in which the phase is advanced by 90 ° from the strain and the strain energy is converted into other energy to generate a loss. By setting the coefficient (tan δ) to a predetermined value or more, plastic deformation of the entire optical film can be more easily generated, and stress generated between the base material and the reflective layer is relieved. In addition, since the plastic deformation of the entire film is facilitated, the effect of reducing the excess portion of the optical film can be obtained. Even in the case of large differences, the wrinkles of the optical film can be sufficiently suppressed, and the loss factor (tan δ) at a high temperature is not more than a predetermined value, so that the amount of deformation of the film becomes excessive and the reflective layer Thus, the optical film can have high reflection performance.
 なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。 Note that the above mechanism is based on speculation, and its correctness does not affect the technical scope of the present invention.
 本発明の一形態に係る光学フィルムは、基材および反射層を必須として有する。なお、各層間、層および基材の間、最外の層および基材上の任意の位置に、上記以外の機能層やさらなる基材が配置されたものであってもよい。 The optical film according to one embodiment of the present invention has a base material and a reflective layer as essential. In addition, a functional layer other than those described above or a further base material may be disposed at any position on each outer layer, between the layer and the base material, or on the outermost layer and the base material.
 ここで、本発明の一形態に係る光学フィルムは、基材および反射層の、150℃における貯蔵弾性率(E’)の差の絶対値が0.05GPa以上である。従来の光学フィルムにおいて、基材および反射層の、150℃における貯蔵弾性率(E’)の差の絶対値が0.05GPa以上である光学フィルムは、基材および反射層の高温物性の違いから、熱収縮率を制御する公知のシワ抑制手段ではシワを十分に抑制することが困難であった。一方、本発明の一形態に係る光学フィルムは、かように基材および反射層の高温物性が大きく異なる場合においても、光学フィルムの加工工程におけるシワの発生を十分に抑制しうるものである。ここで、150℃における貯蔵弾性率(E’)の差の絶対値が大きい方が、高弾性率材料を用いる必要がある場合に薄膜化できるという観点から好ましい。また、150℃における貯蔵弾性率(E’)の値の絶対値の差は、13.20GPa以下であることが、基材と反射層との界面剥離の観点から好ましい。同様の観点から、1.50~13.20GPaであることがより好ましく、1.50~13.00GPaであることがさらに好ましく、2.00~7.00GPaであることがさらに好ましい。 Here, in the optical film according to one embodiment of the present invention, the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more. In a conventional optical film, an optical film having an absolute value of a difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer of 0.05 GPa or more is due to a difference in high temperature physical properties between the base material and the reflective layer. In addition, it is difficult to sufficiently suppress wrinkles with a known wrinkle suppressing means for controlling the heat shrinkage rate. On the other hand, the optical film according to one embodiment of the present invention can sufficiently suppress the generation of wrinkles in the processing step of the optical film even when the high-temperature physical properties of the substrate and the reflective layer are greatly different. Here, it is preferable that the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. is larger from the viewpoint that a thin film can be formed when it is necessary to use a high elastic modulus material. The difference in absolute value of the storage elastic modulus (E ′) at 150 ° C. is preferably 13.20 GPa or less from the viewpoint of interfacial peeling between the substrate and the reflective layer. From the same viewpoint, it is more preferably 1.50 to 13.20 GPa, further preferably 1.50 to 13.00 GPa, and further preferably 2.00 to 7.00 GPa.
 150℃における貯蔵弾性率(E’)は、JIS K7244-1:1998に準拠して、動的粘弾性自動測定器(エーアンドディー株式会社製 DDV-01GP)を用いて、引張モードで、昇温速度5℃/min、周波数10Hzとして、測定することができる。測定は面内の任意の一方向とそれに直交する方向について行い、その平均値を評価結果とする。ここで、測定方向は、特に制限されないが、たとえば機械方向および機械方向に垂直な方向とすることが好ましい。本願明細書において、「機械方向」とは、基材、反射層または光学フィルムの製膜方向と同じ方向を意味する。この場合、機械方向はフィルムの長手方向に一致する。なお、詳細な測定方法は実施例に記載する。 The storage elastic modulus (E ′) at 150 ° C. is increased in a tensile mode using a dynamic viscoelasticity automatic measuring instrument (DDV-01GP manufactured by A & D Corporation) in accordance with JIS K7244-1: 1998. It can be measured at a temperature rate of 5 ° C./min and a frequency of 10 Hz. The measurement is performed in any one direction in the plane and the direction orthogonal thereto, and the average value is taken as the evaluation result. Here, the measurement direction is not particularly limited, but for example, a machine direction and a direction perpendicular to the machine direction are preferable. In the present specification, the “machine direction” means the same direction as the film forming direction of the substrate, the reflective layer or the optical film. In this case, the machine direction coincides with the longitudinal direction of the film. Detailed measurement methods are described in the examples.
 また、本発明の一形態に係る光学フィルムは、150℃における損失係数(tanδ)の値が0.12~0.20である。前述の推定メカニズムで述べたように、光学フィルムの150℃における損失係数(tanδ)が0.12未満であると、シワの発生を十分に抑制することができない。また、150℃における損失係数(tanδ)が0.20超であると、十分な光学特性を有することができない。かような観点から、150℃における損失係数(tanδ)の値は、0.12~0.19であることがより好ましく、0.13~0.18であることがさらに好ましく、0.15~0.18であることが特に好ましい。 The optical film according to one embodiment of the present invention has a loss coefficient (tan δ) value at 150 ° C. of 0.12 to 0.20. As described in the above estimation mechanism, when the loss coefficient (tan δ) at 150 ° C. of the optical film is less than 0.12, the generation of wrinkles cannot be sufficiently suppressed. Further, if the loss coefficient (tan δ) at 150 ° C. is more than 0.20, sufficient optical characteristics cannot be obtained. From such a viewpoint, the value of the loss coefficient (tan δ) at 150 ° C. is more preferably 0.12 to 0.19, further preferably 0.13 to 0.18, and more preferably 0.15 to 0.18. Particularly preferred is 0.18.
 150℃における損失係数(tanδ)は以下のように求めることができる。まず、貯蔵弾性率(E’)および損失弾性率(E”)を、JIS K7244-1:1998に準拠して、動的粘弾性自動測定器(エーアンドディー株式会社製 DDV-01GP)を用いて、引張モードで、昇温速度5℃/min、周波数10Hzとして測定する。次いで、得られた結果より、E”/E’を算出することにより損失係数(tanδ)を求める。測定は面内の任意の一方向とそれに直交する方向について行い、その平均値を評価結果とする。ここで、測定方向は、特に制限されないが、たとえば機械方向および機械方向に垂直な方向とし、平均値を用いることが好ましい。 The loss factor (tan δ) at 150 ° C. can be obtained as follows. First, the storage elastic modulus (E ′) and loss elastic modulus (E ″) were measured using a dynamic viscoelasticity automatic measuring device (DDV-01GP manufactured by A & D Corporation) in accordance with JIS K7244-1: 1998. Then, in the tensile mode, measurement is performed with a temperature increase rate of 5 ° C./min and a frequency of 10 Hz, and then, from the obtained result, E ″ / E ′ is calculated to obtain a loss coefficient (tan δ). The measurement is performed in any one direction in the plane and the direction orthogonal thereto, and the average value is taken as the evaluation result. Here, the measurement direction is not particularly limited, but it is preferable to use, for example, a machine direction and a direction perpendicular to the machine direction and use an average value.
 ここで、光学フィルムの150℃における損失係数(tanδ)の制御方法は、特に制限されないが、たとえば基材や反射層の材料および製法の選択が挙げられる。また、光学フィルムの150℃における損失係数(tanδ)は、基材や反射層の150℃における貯蔵弾性率(E’)を小さくすること、熱収縮率を大きくすること等で、大きくすることができる。また、基材が後述の基材の説明中に例示するような一般的な樹脂フィルムである場合は、基材および反射層の膜厚の合計に対する基材の膜厚の占める割合を大きくすることや、反射層の膜厚の占める割合を小さくすること等で、大きくすることができる。 Here, the method for controlling the loss factor (tan δ) of the optical film at 150 ° C. is not particularly limited, and examples thereof include selection of the material and manufacturing method of the base material and the reflective layer. Further, the loss coefficient (tan δ) at 150 ° C. of the optical film can be increased by reducing the storage elastic modulus (E ′) at 150 ° C. of the substrate or the reflective layer, increasing the thermal shrinkage rate, or the like. it can. Moreover, when a base material is a general resin film which is illustrated in the description of the base material described later, the ratio of the base material film thickness to the total film thickness of the base material and the reflective layer is increased. Alternatively, it can be increased by reducing the ratio of the film thickness of the reflective layer.
 光学フィルムの厚さは、特に制限されないが、撓み防止、可視光透過率、取り扱い性等の観点から20~300μmが好ましく、25~100μmであることがより好ましく、30~60μmであることがさらに好ましい。 The thickness of the optical film is not particularly limited, but is preferably 20 to 300 μm, more preferably 25 to 100 μm, and further preferably 30 to 60 μm from the viewpoints of prevention of bending, visible light transmittance, handleability, and the like. preferable.
 以下、光学フィルムの各構成要素について、詳細に説明する。 Hereinafter, each component of the optical film will be described in detail.
 [基材]
 本発明の一形態に係る光学フィルムに用いられる基材は、光学フィルムの支持体としての役割を果たす。
[Base material]
The base material used for the optical film according to one embodiment of the present invention serves as a support for the optical film.
 本発明の一形態に係る基材は、基材および反射層の、150℃における貯蔵弾性率(E’)の差の絶対値が0.05GPa以上であるように、また、光学フィルムの150℃における損失係数(tanδ)が0.12~0.20となるように製法、材料や厚さ等が設定されているものである。 The base material according to one embodiment of the present invention is such that the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more, and 150 ° C. of the optical film. The manufacturing method, material, thickness, and the like are set so that the loss coefficient (tan δ) at 0.1 is 0.12 to 0.20.
 ここで、基材の150℃における貯蔵弾性率(E’)の値は、特に制限されないが、0.001GPa以上であって、かつ反射層の150℃における貯蔵弾性率よりも小さい値であることが好ましい。光学フィルムの加熱加工時における塑性変形は、基材や反射層の150℃における貯蔵弾性率(E’)の値が小さい方がより生じ易くなる傾向がある。ここで、高い反射性能が要求される反射層に対して、さらに低い貯蔵弾性率を要求することよりも、低い貯蔵弾性率を有する基材を選択する方が、より容易に塑性変形を生じさせることができる。これは、貯蔵弾性率(E’)の値が小さな基材を選択することによって、より容易に塑性変形を生じさせることができ、より容易にシワを抑制することができるからであると推測している。また、基材の150℃における貯蔵弾性率(E’)は、0.001GPa以上であると、加熱加工後の反射性能をさらに良好なものとすることができるため好ましい。これは、光学フィルムがかような基材を有することで、基材の変形量が過剰となることによって生じる反射層の膜厚変動をより抑制することができるからであると推測している。同様の観点から、基材の150℃における貯蔵弾性率(E’)の値は0.01GPa~2.00GPaであることが好ましく、0.10~1.00GPaであることがより好ましく、0.20~0.80GPaであることがさらに好ましく、0.30~0.50GPaであることが特に好ましく、0.35~0.45GPaであることが最も好ましい。 Here, the value of the storage elastic modulus (E ′) of the substrate at 150 ° C. is not particularly limited, but is 0.001 GPa or more and a value smaller than the storage elastic modulus of the reflective layer at 150 ° C. Is preferred. The plastic deformation during the heat processing of the optical film tends to occur more easily when the value of the storage elastic modulus (E ′) at 150 ° C. of the base material or the reflective layer is smaller. Here, it is easier to select a base material having a low storage elastic modulus than to require a lower storage elastic modulus for a reflective layer that requires high reflection performance, thereby causing plastic deformation more easily. be able to. This is presumed that by selecting a substrate having a small storage elastic modulus (E ′), plastic deformation can be caused more easily and wrinkles can be more easily suppressed. ing. Further, the storage elastic modulus (E ′) at 150 ° C. of the substrate is preferably 0.001 GPa or more because the reflection performance after heat processing can be further improved. This is presumed to be because, when the optical film has such a base material, fluctuations in the thickness of the reflective layer caused by excessive deformation of the base material can be further suppressed. From the same viewpoint, the value of the storage elastic modulus (E ′) at 150 ° C. of the substrate is preferably 0.01 GPa to 2.00 GPa, more preferably 0.10 to 1.00 GPa. It is more preferably 20 to 0.80 GPa, particularly preferably 0.30 to 0.50 GPa, and most preferably 0.35 to 0.45 GPa.
 150℃における貯蔵弾性率(E’)の測定方法としては、光学フィルムの150℃における貯蔵弾性率(E’)と同様の方法を用いて測定することができる。なお、詳細な測定方法は実施例に記載する。 As a method for measuring the storage elastic modulus (E ′) at 150 ° C., it can be measured using the same method as the storage elastic modulus (E ′) at 150 ° C. of the optical film. Detailed measurement methods are described in the examples.
 また、基材の150℃における損失係数(tanδ)の値は、特に制限されないが、0.12~0.45であることが好ましい。基材の150℃における損失係数(tanδ)を0.12以上とすることで、基材の塑性変形性をより高めることができる。これは、基材の塑性変形性がより向上することで、光学フィルム全体の塑性変形をより容易に生じさせることができるようになり、光学フィルムのシワをさらに抑制することができるからであると推測している。また、高温における損失係数(tanδ)を0.45以下とすることで、加熱加工後の反射性能をさらに良好なものとすることができる。これは、基材の変形量が過剰となることによって反射層の膜厚変動が生じることを防ぎ、光学フィルムはより高い反射性能を有することができるからであると推測している。同様の観点から、0.12~0.40であることがより好ましく、0.12~0.30であることがさらに好ましく、0.15~0.30であることが特に好ましい。 The value of the loss factor (tan δ) of the substrate at 150 ° C. is not particularly limited, but is preferably 0.12 to 0.45. By setting the loss coefficient (tan δ) at 150 ° C. of the substrate to 0.12 or more, the plastic deformability of the substrate can be further improved. This is because the plastic deformation of the base material is further improved, so that plastic deformation of the entire optical film can be more easily generated, and wrinkles of the optical film can be further suppressed. I guess. Moreover, the reflective performance after heat processing can be made more favorable by making the loss coefficient (tan-delta) in high temperature into 0.45 or less. This is presumed to be because the film thickness variation of the reflective layer is prevented from being caused by excessive deformation of the substrate, and the optical film can have higher reflection performance. From the same viewpoint, it is more preferably 0.12 to 0.40, further preferably 0.12 to 0.30, and particularly preferably 0.15 to 0.30.
 150℃における損失係数(tanδ)の測定方法としては、光学フィルムの150℃における損失係数(tanδ)と同様の方法を用いて測定することができる。なお、詳細な測定方法は実施例に記載する。 As a method for measuring the loss factor (tan δ) at 150 ° C., it can be measured using the same method as the loss factor (tan δ) at 150 ° C. of the optical film. Detailed measurement methods are described in the examples.
 ここで、光学フィルムの150℃における損失係数(tanδ)の制御方法は、特に制限されないが、たとえば基材の材料および製法の選択が挙げられる。製法としては、基材が後述の基材の説明中に例示するような一般的な樹脂フィルムである場合は、たとえば熱処理条件や、延伸条件等が挙げられる。基材の150℃における損失係数(tanδ)は、たとえば、熱処理温度を高くすることや、熱処理時間を短くすること等で、大きくすることができる。また、基材の150℃における損失係数(tanδ)は、基材の150℃における貯蔵弾性率(E’)を小さくすることや、熱収縮率を大きくすること等で、大きくすることができる。 Here, the method for controlling the loss factor (tan δ) of the optical film at 150 ° C. is not particularly limited, and examples thereof include selection of the material and the production method of the base material. As a manufacturing method, when a base material is a general resin film which is illustrated in description of the below-mentioned base material, heat processing conditions, extending conditions, etc. are mentioned, for example. The loss coefficient (tan δ) of the substrate at 150 ° C. can be increased by increasing the heat treatment temperature or shortening the heat treatment time, for example. Further, the loss coefficient (tan δ) of the substrate at 150 ° C. can be increased by decreasing the storage elastic modulus (E ′) of the substrate at 150 ° C., increasing the thermal shrinkage rate, or the like.
 また、基材の150℃30分経時における熱収縮率の値は、特に制限されないが、2.0~10.0%であることが好ましい。反射層の150℃30分経時における熱収縮率の値が2.0%以上であると、シワの抑制効果がより高くなる。これは、かような値を有する基材は、光学フィルムの変形を大きくし、フィルムの余り部分を減少させるとともに、光学フィルムの塑性変形性をより高めることができるからであると推測している。また、反射層の150℃30分経時における熱収縮率の値が10.0%以下であると、加熱加工後の反射性能をさらに良好なものとすることができる。これは、基材の変形量が過剰となることによって反射層の膜厚変動が生じることを防ぎ、光学フィルムはより高い反射性能を有することができるからであると推測している。同様の観点から、反射層の150℃30分経時における熱収縮率の値は、2.0~8.0%であることがより好ましく、2.0~7.0%であることがより好ましく、2.0~5.0%であることがさらに好ましく、2.5~5.0%であることが特に好ましく、3.0~5.0%であることが最も好ましい。 Further, the value of the heat shrinkage rate of the substrate at 30 ° C. for 30 minutes is not particularly limited, but is preferably 2.0 to 10.0%. When the value of the heat shrinkage ratio of the reflective layer at 150 ° C. for 30 minutes is 2.0% or more, the effect of suppressing wrinkles becomes higher. This is presumed that the base material having such a value can increase the deformation of the optical film, reduce the surplus portion of the film, and further improve the plastic deformability of the optical film. . Moreover, the reflective performance after heat processing can be made more favorable in the value of the thermal contraction rate in 150 degreeC 30-minute time-lapse | temporal of a reflection layer being 10.0% or less. This is presumed to be because the film thickness variation of the reflective layer is prevented from being caused by excessive deformation of the substrate, and the optical film can have higher reflection performance. From the same viewpoint, the value of the heat shrinkage rate of the reflective layer after 30 minutes at 150 ° C. is more preferably 2.0 to 8.0%, and more preferably 2.0 to 7.0%. 2.0 to 5.0% is more preferable, 2.5 to 5.0% is particularly preferable, and 3.0 to 5.0% is most preferable.
 150℃30分経時における熱収縮率の測定方法としては、以下の方法を用いることができる。基材および反射層を温度23℃、相対湿度55%RHの環境にて、24時間保存した後、幅方向に100mm間隔で二つの印を付け、無荷重状態で二つの印の間の距離L1を、顕微鏡等を用いて測定する。続いて、150℃の環境のオーブン内に試料を吊るし、30分間放置する。30分間経過後、オーブンから当該試料を取り出し、再び温度23℃、相対湿度55%RHの環境で24時間保存する。次いで、無荷重状態の試料の二つの印の間の距離L2を、顕微鏡等を用いて測定する。そして、測定した距離L1およびL2から、下記式により試料の熱収縮率を算出する;
  熱収縮率(%)=((L1-L2)/L1)×100
ここで、測定方向は、特に制限されないが、たとえば機械方向および機械方向に垂直な方向とし、平均値を用いることが好ましい。
The following method can be used as a method for measuring the thermal shrinkage rate at 150 ° C. for 30 minutes. After storing the base material and the reflective layer in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH for 24 hours, two marks are made at intervals of 100 mm in the width direction, and a distance L1 between the two marks in an unloaded state. Is measured using a microscope or the like. Subsequently, the sample is hung in an oven at 150 ° C. and left for 30 minutes. After 30 minutes, the sample is removed from the oven and stored again in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH for 24 hours. Next, the distance L2 between the two marks of the unloaded sample is measured using a microscope or the like. Then, from the measured distances L1 and L2, the thermal contraction rate of the sample is calculated by the following formula;
Thermal contraction rate (%) = ((L1-L2) / L1) × 100
Here, the measurement direction is not particularly limited, but it is preferable to use, for example, a machine direction and a direction perpendicular to the machine direction and use an average value.
 本発明の一形態に係る基材の厚さは、特に制限されないが、たとえば10~300μmの範囲内であることが好ましく、20~100μmの範囲内であることがより好ましく、30~60μmであることがさらに好ましい。厚さが10μm以上であれば、取扱い中のしわが発生しにくくなり、また厚さが300μm以下であれば、ガラスと貼り合わせる際にガラス曲面への追従性が良くなり、しわが発生しにくくなる。 The thickness of the substrate according to one embodiment of the present invention is not particularly limited, but is preferably in the range of 10 to 300 μm, more preferably in the range of 20 to 100 μm, and more preferably 30 to 60 μm. More preferably. If the thickness is 10 μm or more, wrinkles during handling are less likely to occur, and if the thickness is 300 μm or less, the ability to follow a curved glass surface when bonded to glass is improved and wrinkles are less likely to occur. Become.
 基材が後述するような一般的な樹脂フィルムである場合は、基材の膜厚は、損失係数(tanδ)を大きくするとの観点から、基材および反射層の膜厚の合計に対して、86.5%以上の割合を占めることが好ましい。また、反射性能の観点から、97.5%以下の割合を占めることが好ましい。同様の観点から、基材が樹脂フィルムである場合は、基材の膜厚は86.7~97.3%の割合を占めることがより好ましく、86.9~97.2%の割合を占めることが好ましい。 When the substrate is a general resin film as described later, the thickness of the substrate is from the viewpoint of increasing the loss factor (tan δ), with respect to the total thickness of the substrate and the reflective layer, It is preferable to occupy a ratio of 86.5% or more. Moreover, it is preferable to occupy a ratio of 97.5% or less from the viewpoint of reflection performance. From the same viewpoint, when the substrate is a resin film, the thickness of the substrate preferably occupies a ratio of 86.7 to 97.3%, and occupies a ratio of 86.9 to 97.2%. It is preferable.
 また、本発明の一形態に係る基材としては、透明であることが好ましい。合わせガラス用フィルムの光学特性として、JIS R 3106:1998で測定される可視光透過率は好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上である。 The base material according to one embodiment of the present invention is preferably transparent. As an optical characteristic of the film for laminated glass, the visible light transmittance measured by JIS R 3106: 1998 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
 (樹脂フィルム)
 本発明の一形態に係る基材は、樹脂フィルムであることが好ましい。樹脂フィルムを形成する樹脂としては、特に制限されないが、たとえば、ポリオレフィン(たとえば、ポリエチレン、ポリプロピレン等)、ポリエステル(たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラール、シクロオレフィンポリマー、セルロースナノファイバー等を用いることができる。これらの中でも、好ましくはポリエステルである。
(Resin film)
The substrate according to one embodiment of the present invention is preferably a resin film. The resin for forming the resin film is not particularly limited. For example, polyolefin (for example, polyethylene, polypropylene, etc.), polyester (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, poly Butyral, cycloolefin polymer, cellulose nanofiber, etc. can be used. Among these, polyester is preferable.
 ポリエステルとしては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。ジカルボン酸成分としては、これらの酸無水物、酸ハロゲン化物またはエステルの形で用いられてもよい。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、またはこれらの酸無水物、酸ハロゲン化物もしくはエステルを、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルがより好ましい。これらの中でも、ポリエチレンテレフタレートが特に好ましい。 The polyester is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components. The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. As the dicarboxylic acid component, these acid anhydrides, acid halides or esters may be used. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters comprising these as main components, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or acid anhydrides or acids thereof are used as dicarboxylic acid components from the viewpoint of transparency, mechanical strength, dimensional stability, and the like. A polyester having a halide or ester as a diol component and ethylene glycol or 1,4-cyclohexanedimethanol as a main component is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is more preferable. Among these, polyethylene terephthalate is particularly preferable.
 樹脂フィルムは、取扱いを容易にするために透明性を損なわない条件で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また、粒子を添加する方法としては、原料とする上記樹脂材料中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用しても良く、二つの方法を併用してもよい。本発明では、必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、たとえば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 The resin film may contain particles under conditions that do not impair transparency in order to facilitate handling. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in the resin material as a raw material and a method of adding them directly to an extruder. One of these methods is adopted. Alternatively, two methods may be used in combination. In this invention, you may add an additive other than the said particle | grain as needed. Examples of such additives include stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, ultraviolet absorbers and the like.
 樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。たとえば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂フィルムを製造することができる。また、未延伸の樹脂フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、樹脂フィルムの流れ(MD)方向、または樹脂フィルムの流れ方向と直角(TD)方向に延伸することにより延伸樹脂フィルムを製造することができる。この場合の延伸倍率は、樹脂フィルムの原料となる樹脂に合わせて適宜選択することできるが、MD方向およびTD方向にそれぞれ2~10倍が好ましい。 The resin film can be produced by a conventionally known general method. For example, an unstretched resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched resin film is uniaxially stretched, the tenter-type sequential biaxial stretch, the tenter-type simultaneous biaxial stretch, the tubular-type simultaneous biaxial stretch, and the like by a known method such as the resin film flow (MD) direction or the resin. A stretched resin film can be produced by stretching in a direction perpendicular to the film flow direction (TD). The draw ratio in this case can be appropriately selected according to the resin as the raw material for the resin film, but is preferably 2 to 10 times in the MD direction and TD direction, respectively.
 樹脂フィルムとしては、強度向上、熱膨張抑制の点から、延伸フィルムであることがより好ましい。かようなフィルムとしては、二軸配向ポリエステルフィルムであることが特に好ましいが、得られたフィルムが本発明の要旨を逸脱しない限り、未延伸または少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。なお、上記観点から、延伸フィルムは特に自動車のフロントガラス用途として好ましく用いることができる。 The resin film is more preferably a stretched film from the viewpoint of improving strength and suppressing thermal expansion. As such a film, a biaxially oriented polyester film is particularly preferable, but an unstretched or at least one stretched polyester film can be used as long as the obtained film does not depart from the gist of the present invention. . In addition, from the above viewpoint, the stretched film can be preferably used particularly for an automotive windshield.
 また、樹脂フィルムは、150℃における損失係数(tanδ)の制御の観点から、弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸成膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度(熱処理温度)が80~200℃であることが好ましく、100~180℃であることがより好ましく、110~170であることがさらに好ましい。処理温度(熱処理温度)を80℃以上とすることで、基材の150℃における損失係数(tanδ)をより大きくすることができる。また、処理温度(熱処理温度)を200℃以下とすることで、基材の150℃における損失係数(tanδ)をより小さくすることができる。処理時間(熱処理時間)は1~60秒であることが好ましい。処理時間(熱処理時間)を1秒以上とすることで、基材の150℃における損失係数(tanδ)をより小さくすることができる。また、処理時間(熱処理時間)を60秒以下とすることで、基材の150℃における損失係数(tanδ)をより大きくすることができる。同様の観点から、処理時間は、1~50秒であることがより好ましく、2~40秒であることがさらに好ましい。また、長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。 Further, the resin film may be subjected to relaxation treatment or offline heat treatment from the viewpoint of controlling the loss factor (tan δ) at 150 ° C. The relaxation treatment is preferably carried out in the process from the heat setting during the stretching film forming process of the polyester film to the winding process after exiting the tenter. In the relaxation treatment, the treatment temperature (heat treatment temperature) is preferably from 80 to 200 ° C., more preferably from 100 to 180 ° C., and even more preferably from 110 to 170. By setting the treatment temperature (heat treatment temperature) to 80 ° C. or higher, the loss coefficient (tan δ) of the substrate at 150 ° C. can be further increased. Moreover, the loss coefficient (tan-delta) at 150 degreeC of a base material can be made smaller by making processing temperature (heat processing temperature) 200 degrees C or less. The treatment time (heat treatment time) is preferably 1 to 60 seconds. By setting the treatment time (heat treatment time) to 1 second or longer, the loss coefficient (tan δ) of the substrate at 150 ° C. can be further reduced. Further, by setting the treatment time (heat treatment time) to 60 seconds or less, the loss coefficient (tan δ) of the substrate at 150 ° C. can be further increased. From the same viewpoint, the treatment time is more preferably 1 to 50 seconds, and further preferably 2 to 40 seconds. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
 樹脂フィルムは、下引層を有していてもよい。下引層とは、本発明においては、片面または両面に直接隣接する形で形成される水系易接着樹脂塗布層であり、本願における反射層ないし反射層を形成する層とは異なる層であるとする。ここで、水系易接着樹脂塗布層とは、易接着効果を有する水溶性の樹脂および溶媒としての水を含む、水系易接着塗布液(下引層塗布液)を塗布することによって得られる層を表す。
なお、本発明においては、樹脂フィルムがその片面または両面に直接隣接して下引層を有する場合は、下引層を有する樹脂フィルム(下引層および樹脂フィルムからなる積層体)を基材として取り扱うものとする。
The resin film may have an undercoat layer. In the present invention, the undercoat layer is a water-based easy-adhesive resin coating layer formed in a form directly adjacent to one side or both sides, and is a layer different from the reflective layer or the layer forming the reflective layer in the present application. To do. Here, the aqueous easy-adhesive resin coating layer is a layer obtained by applying an aqueous easy-adhesive coating liquid (undercoat layer coating liquid) containing a water-soluble resin having an easy-adhesion effect and water as a solvent. To express.
In the present invention, when the resin film has an undercoat layer directly adjacent to one or both sides thereof, a resin film having a subbing layer (a laminate comprising the undercoat layer and the resin film) is used as a base material. It shall be handled.
 ここで、樹脂フィルムは、成膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。本発明の一形態においては、成膜工程中での下引塗布をインライン下引という。本発明の一形態に係る有用な下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの中でも、水溶性のポリエステル樹脂またはアクリル変性ポリエステル樹脂を用いることがより好ましい。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~5g/m(乾燥状態)程度が好ましく、0.01~2g/m(乾燥状態)程度がより好ましい。 Here, it is preferable to apply the undercoat layer coating solution in-line on one or both surfaces of the resin film during the film formation process. In one embodiment of the present invention, the undercoating during the film forming process is referred to as in-line undercoating. Examples of the resin used in the useful undercoat layer coating liquid according to one embodiment of the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, and polyethyleneimine resins. , Polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used. Among these, it is more preferable to use a water-soluble polyester resin or an acrylic-modified polyester resin. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating. The coating amount of the undercoat layer is preferably about 0.01 to 5 g / m 2 (dry state), more preferably about 0.01 to 2 g / m 2 (dry state).
 [反射層]
 本発明の一形態に係る反射層は、入射光の一部を反射する機能を有する層である。
[Reflective layer]
The reflective layer according to one embodiment of the present invention is a layer having a function of reflecting part of incident light.
 なお、本発明の一形態に係る反射層は、基材および反射層の、150℃における貯蔵弾性率(E’)の差の絶対値が0.05GPa以上であるように、また、光学フィルムの150℃における損失係数(tanδ)が0.12~0.20となるように製法、材料や厚さ等が設定されているものである。 Note that the reflective layer according to one embodiment of the present invention is such that the absolute value of the difference in storage elastic modulus (E ′) at 150 ° C. between the base material and the reflective layer is 0.05 GPa or more, and The manufacturing method, material, thickness, etc. are set so that the loss coefficient (tan δ) at 150 ° C. is 0.12 to 0.20.
 ここで、反射層の150℃における貯蔵弾性率(E’)の値は、特に制限されないが、2.00~13.50GPaであることが好ましい。反射層の150℃における貯蔵弾性率(E’)の値が2.00GPa以上であると、加熱加工後の反射性能をさらに良好なものとすることができる。これは、かような反射層を有することで、反射層の変形量が過剰となることによって生じる反射層の膜厚変動をより抑制することができるからであると推測している。また、反射層の150℃における貯蔵弾性率(E’)の値が13.50GPa以下であると、シワの抑制効果がより高くなる。これは、かような値を有する反射層は、光学フィルムの塑性変形性をより高めることができるからであると推測している。同様の観点から、反射層の150℃における貯蔵弾性率(E’)の値は、2.20~13.20GPaであることがより好ましく、2.50~8.00GPaであることがさらに好ましく、2.60~7.00GPaであることが特に好ましい。 Here, the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is not particularly limited, but is preferably 2.00 to 13.50 GPa. When the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is 2.00 GPa or more, the reflective performance after heat processing can be further improved. This is presumed to be because by having such a reflective layer, it is possible to further suppress the film thickness variation of the reflective layer caused by excessive deformation of the reflective layer. In addition, when the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is 13.50 GPa or less, the effect of suppressing wrinkles becomes higher. This is presumed to be because the reflective layer having such a value can further improve the plastic deformability of the optical film. From the same viewpoint, the value of the storage elastic modulus (E ′) at 150 ° C. of the reflective layer is more preferably 2.20 to 13.20 GPa, further preferably 2.50 to 8.00 GPa, It is particularly preferably 2.60 to 7.00 GPa.
 150℃における貯蔵弾性率(E’)の測定方法としては、反射層測定用試料を用いて測定を行うこと以外は、光学フィルムの150℃における貯蔵弾性率(E’)と同様の方法を用いて測定することができる。なお、詳細な測定方法は実施例に記載する。 As a measuring method of the storage elastic modulus (E ′) at 150 ° C., the same method as the storage elastic modulus (E ′) of the optical film at 150 ° C. is used except that the measurement is performed using the sample for measuring the reflective layer. Can be measured. Detailed measurement methods are described in the examples.
 また、反射層の150℃30分経時における熱収縮率の値は、特に制限されないが、0.5%~5.0%であることが好ましい。反射層の150℃30分経時における熱収縮率の値が0.5%以上であると、シワの抑制効果がより高くなる。これは、かような値を有する反射層は、光学フィルムの変形を大きくし、フィルムの余り部分を減少させるとともに、光学フィルムの塑性変形性をより高めることができるからであると推測している。また、反射層の150℃30分経時における熱収縮率の値が5.0%以下であると、加熱加工後の反射性能をさらに良好なものとすることができる。これは、かような反射層を有することで、反射層の変形量が過剰となることによって生じる反射層の膜厚変動をより抑制することができるからであると推測している。同様の観点から、反射層の150℃30分経時における熱収縮率の値は、0.5~4.0%であることがより好ましく、1.0~3.0%であることがさらに好ましい。 Further, the value of the heat shrinkage rate of the reflective layer after 30 minutes at 150 ° C. is not particularly limited, but is preferably 0.5% to 5.0%. When the value of the heat shrinkage rate at 150 ° C. for 30 minutes of the reflective layer is 0.5% or more, the effect of suppressing wrinkles becomes higher. This is presumed that the reflection layer having such a value can increase the deformation of the optical film, reduce the excess portion of the film, and further improve the plastic deformability of the optical film. . Moreover, the reflective performance after heat processing can be made more favorable in the value of the thermal contraction rate in 150 degreeC 30-minute time-lapse | temporal of a reflection layer being 5.0% or less. This is presumed to be because by having such a reflective layer, it is possible to further suppress the film thickness variation of the reflective layer caused by excessive deformation of the reflective layer. From the same viewpoint, the value of the heat shrinkage ratio of the reflective layer after 30 minutes at 150 ° C. is more preferably 0.5 to 4.0%, and further preferably 1.0 to 3.0%. .
 150℃30分経時における熱収縮率の測定方法としては、反射層測定用試料を用いて測定を行うこと以外は、基材の150℃30分経時における熱収縮率と同様の方法を用いて測定することができる。なお、詳細な測定方法は実施例に記載する。 As a method for measuring the heat shrinkage rate at 150 ° C. for 30 minutes, the measurement is performed using the same method as the heat shrinkage rate at 150 ° C. for 30 minutes, except that measurement is performed using a sample for measuring a reflective layer. can do. Detailed measurement methods are described in the examples.
 反射層の膜厚は、特に制限されないが、1.2μm~7.8μmであることが好ましい。反射層の膜厚が1.2μm以上であると、反射性能をさらに良好なものとすることができる。また、反射層の膜厚が7.8μm以下であると、シワの抑制効果がより高くなる。これは、かような値を有する反射層は、光学フィルムの塑性変形性をより高めることができるからであると推測している。同様の観点から、反射層の膜厚は、1.2~7.6μm以下であることがより好ましく、1.4~4.5μmであることがさらに好ましい。 The thickness of the reflective layer is not particularly limited, but is preferably 1.2 μm to 7.8 μm. When the thickness of the reflective layer is 1.2 μm or more, the reflection performance can be further improved. Further, when the thickness of the reflective layer is 7.8 μm or less, the effect of suppressing wrinkles becomes higher. This is presumed to be because the reflective layer having such a value can further improve the plastic deformability of the optical film. From the same viewpoint, the thickness of the reflective layer is more preferably 1.2 to 7.6 μm or less, and further preferably 1.4 to 4.5 μm.
 反射層の膜厚の測定方法としては、光学フィルムの断層を切削し、その断面を、電子顕微鏡(FE-SEM、S-5000H型、株式会社日立製作所製)を用いて観察することから求めることができる。なお、詳細な測定方法は実施例に記載する。 The method for measuring the thickness of the reflective layer is obtained by cutting a slice of the optical film and observing the cross section with an electron microscope (FE-SEM, S-5000H, manufactured by Hitachi, Ltd.). Can do. Detailed measurement methods are described in the examples.
 ここで、反射層は、特定の波長の光を選択的に透過する反射層であることが好ましく、可視領域から赤外線領域の波長の光を透過する赤外反射膜であることがより好ましい。 Here, the reflective layer is preferably a reflective layer that selectively transmits light having a specific wavelength, and more preferably an infrared reflective film that transmits light having a wavelength in the visible region to the infrared region.
 特定の波長の光を選択的に透過する反射層としては、特に制限されないが、たとえば屈折率が互いに異なる屈折率層を交互に積層してその層厚に応じた波長の光のみを反射する誘電多層膜などを挙げることができる。 The reflective layer that selectively transmits light of a specific wavelength is not particularly limited. For example, a dielectric layer that alternately stacks refractive index layers having different refractive indexes and reflects only light having a wavelength according to the layer thickness. A multilayer film etc. can be mentioned.
 (誘電多層膜)
 本発明に係る光学フィルムに用いられる反射層としては、低屈折率層と高屈折率層とを交互に積層して構成される誘電多層膜であることが好ましい。
(Dielectric multilayer film)
The reflective layer used in the optical film according to the present invention is preferably a dielectric multilayer film configured by alternately laminating low refractive index layers and high refractive index layers.
 本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、光反射フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。 In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” are the same when each refractive index layer constituting the light reflecting film is focused on two adjacent refractive index layers. All forms other than those having a refractive index are included.
 また、反射層として誘電多層膜を有する光学フィルムの光学特性としては、JIS R 3106:1998により測定される可視光領域の透過率が60%以上であり、かつ、波長800~1400nmの領域に反射率50%を超える領域を有することが好ましい。 Further, as an optical characteristic of an optical film having a dielectric multilayer film as a reflective layer, the transmittance in the visible light region measured according to JIS R 3106: 1998 is 60% or more, and the light is reflected in a wavelength region of 800 to 1400 nm. It is preferable to have a region where the rate exceeds 50%.
 反射層は、基材や他の層など、他の隣接部材との密着性、ヘイズおよび可視光透過率の観点から、少なくとも他の隣接部材と接する屈折率層の表面粗さは、算術平均表面粗さ(Ra)が10~100nmであることが好ましく、10~50nmであることがより好ましく、12~20nmであることがさらに好ましい。前記屈折率層の算術平均表面粗さ(Ra)が10nm以上であると、アンカー効果により、反射層と隣接部材との密着性を上げることができる。前記算術平均表面粗さが100nm以下であると、反射層と隣接部材との界面が乱れることなく、ヘイズおよび可視光透過率の低下が抑制できる。なお、隣接部材としては、特に制限されないが、本発明の一形態に係る光学フィルムを合わせガラス用途に用いた時には、たとえば後述の中間層等が挙げられる。 From the viewpoint of adhesion to other adjacent members such as a base material and other layers, haze and visible light transmittance, the reflective layer is at least the surface roughness of the refractive index layer in contact with the other adjacent members is the arithmetic average surface The roughness (Ra) is preferably 10 to 100 nm, more preferably 10 to 50 nm, and even more preferably 12 to 20 nm. When the arithmetic average surface roughness (Ra) of the refractive index layer is 10 nm or more, the adhesion between the reflective layer and the adjacent member can be increased due to the anchor effect. When the arithmetic average surface roughness is 100 nm or less, the haze and visible light transmittance can be prevented from decreasing without disturbing the interface between the reflective layer and the adjacent member. In addition, although it does not restrict | limit especially as an adjacent member, When the optical film which concerns on one form of this invention is used for a laminated glass use, the below-mentioned intermediate | middle layer etc. are mentioned, for example.
 高屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~350nmであることがより好ましい。また、低屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~350nmであることがより好ましい。 The thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm. Further, the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
 ここで、1層あたりの厚さを測定する場合、高屈折率層と低屈折率層とは、これらの間に明確な界面をもっていても、徐々に変化していてもよい。界面が徐々に変化している場合には、それぞれの層が混合し屈折率が連続的に変化する領域中で、最大屈折率-最小屈折率=Δnとした場合、2層間の最小屈折率+Δn/2の地点を層界面とみなす。なお、後述する低屈折率層の層厚においても同様である。 Here, when measuring the thickness per layer, the high refractive index layer and the low refractive index layer may have a clear interface between them or may change gradually. When the interface gradually changes, the maximum refractive index−minimum refractive index = Δn in the region where the refractive index continuously changes due to the mixing of the layers, the minimum refractive index between two layers + Δn The point of / 2 is regarded as the layer interface. The same applies to the layer thickness of the low refractive index layer described later.
 高屈折率層と低屈折率層とを交互に積層して形成された反射層の金属酸化物濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで見ることができる。また、積層膜を切断して、切断面をXPS表面分析装置で原子組成比を測定することで見ることも可能である。混合領域において、金属酸化物の濃度が不連続に変化している場合には電子顕微鏡(TEM)による断層写真により境界を確認することができる。 The metal oxide concentration profile of the reflective layer formed by alternately laminating the high refractive index layer and the low refractive index layer is etched from the surface to the depth direction using a sputtering method, and an XPS surface analyzer is used. Then, the outermost surface can be set to 0 nm, sputtered at a rate of 0.5 nm / min, and the atomic composition ratio can be measured. It is also possible to view the cut surface by cutting the laminated film and measuring the atomic composition ratio with an XPS surface analyzer. In the mixed region, when the concentration of the metal oxide changes discontinuously, the boundary can be confirmed by a tomographic photograph using an electron microscope (TEM).
 XPS表面分析装置としては、特に制限されず、いかなる機種も使用することができるが、たとえば、VGサイエンティフィックス社製ESCALAB-200Rを用いることができる。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定することができる。 The XPS surface analyzer is not particularly limited and any model can be used. For example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used. Mg can be used for the X-ray anode, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
 反射層は、生産性の観点から、好ましい高屈折率層および低屈折率層の総層数の範囲としては、6~100層であり、より好ましくは7~60層であり、さらに好ましくは8~55層であり、特に好ましくは8~40層であり、最も好ましくは、9~30層である。 In terms of productivity, the reflective layer preferably has a total number of high refractive index layers and low refractive index layers in the range of 6 to 100 layers, more preferably 7 to 60 layers, and still more preferably 8 layers. Is 55 layers, particularly preferably 8 to 40 layers, and most preferably 9 to 30 layers.
 反射層は、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で反射率を高くすることができるという観点から好ましい。本発明の一形態においては、隣接する高屈折率層と低屈折率層との屈折率差は0.1以上が好ましく、より好ましくは0.3以上であり、さらに好ましくは0.35以上であり、よりさらに好ましくは0.4以上である。ただし、最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 The reflective layer is preferably designed so that the difference in refractive index between the high refractive index layer and the low refractive index layer is large, so that the reflectance can be increased with a small number of layers. In one embodiment of the present invention, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably 0.3 or more, and further preferably 0.35 or more. Yes, more preferably 0.4 or more. However, regarding the outermost layer and the lowermost layer, a configuration outside the above preferred range may be used.
 また、特定波長領域の反射率は、隣接する2層の屈折率差と積層数で決まり、屈折率の差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。たとえば、近赤外反射率90%以上を得るためには、屈折率差が0.1より小さいと、200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、また故障なく製造することも非常に困難になる。反射率の向上と層数を少なくするという観点からは、屈折率差に上限はないが、実質的には1.4程度が限界である。 Further, the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain a near-infrared reflectance of 90% or more, if the difference in refractive index is smaller than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also at the lamination interface. Scattering increases, transparency decreases, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
 低屈折率層および高屈折率層は樹脂成分を含むことが好ましい。屈折率層を形成するのが樹脂成分であれば、塗布やスピンコートなどの成膜方法が選択可能となる。これらの方法は簡便であり、基材の耐熱性を問わないので選択肢が広く、特に樹脂基材に対して有効な成膜方法といえる。たとえば塗布型ならばロール・ツー・ロール法などの大量生産方式が採用でき、コスト面でもプロセス時間面でも有利になる。また、ポリマー材料を含む膜はフレキシブル性が高いため、生産時や運搬時に巻き取りを行っても、これらの欠陥が発生しづらく、取扱性に優れているという長所がある。また、上記ポリマーを用いて、たとえば共押出法または共流延法等により連続フラットフィルム製造ラインにより、反射層を形成することも可能である。 The low refractive index layer and the high refractive index layer preferably contain a resin component. If the refractive index layer is formed of a resin component, a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time. Moreover, since the film | membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability. Moreover, it is also possible to form a reflective layer using the above polymer by a continuous flat film production line, for example, by a coextrusion method or a co-casting method.
 また、前記高屈折率層および前記低屈折率層に含まれるポリマー材料は、バインダーとして機能する水溶性バインダー樹脂であることが好ましい。 The polymer material contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble binder resin that functions as a binder.
 ここで、本発明の一形態に係る光学フィルムおいて、高屈折率層または低屈折率層に含まれる第1および第2の水溶性バインダー樹脂は、ポリビニルアルコールであることが好ましい。また、高屈折率層に含まれるポリビニルアルコールのケン化度と、低屈折率層に含まれるポリビニルアルコールのケン化度とは異なることが好ましい。また、前記高屈折率層には第1の金属酸化物粒子を含むことが好ましく、前記低屈折率層には第2の金属酸化物粒子を含むことが好ましい。ここで、前記高屈折率層に含まれる第1の金属酸化物粒子は、含ケイ素の水和酸化物で表面処理された酸化チタン粒子であることが好ましい。 Here, in the optical film according to one embodiment of the present invention, the first and second water-soluble binder resins contained in the high refractive index layer or the low refractive index layer are preferably polyvinyl alcohol. Moreover, it is preferable that the saponification degree of the polyvinyl alcohol contained in the high refractive index layer is different from the saponification degree of the polyvinyl alcohol contained in the low refractive index layer. The high refractive index layer preferably includes first metal oxide particles, and the low refractive index layer preferably includes second metal oxide particles. Here, the first metal oxide particles contained in the high refractive index layer are preferably titanium oxide particles surface-treated with a silicon-containing hydrated oxide.
 前記反射層の少なくとも1層の屈折率層は、ガラス転移温度(Tg)が40℃~70℃である樹脂成分を含むことが好ましい。樹脂成分とは、従来公知のものを使用することができ、たとえば、水溶性バインダー樹脂単独または水溶性バインダー樹脂とラテックスの混合物が挙げられる。特定のTgを有する樹脂成分の割合は、1つの屈折率層の全質量に対し、好ましくは20~70質量%であり、より好ましくは25~65質量%であり、さらに好ましくは、30~65質量%である。屈折率層は、透明基材上の少なくとも一つの面に、屈折率が互いに異なる、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層と、第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層と、を少なくとも1層ずつ積層した層であることが好ましい。 It is preferable that at least one refractive index layer of the reflective layer includes a resin component having a glass transition temperature (Tg) of 40 ° C. to 70 ° C. A conventionally well-known thing can be used with a resin component, for example, water-soluble binder resin independent or the mixture of water-soluble binder resin and latex is mentioned. The ratio of the resin component having a specific Tg is preferably 20 to 70% by mass, more preferably 25 to 65% by mass, and further preferably 30 to 65% by mass with respect to the total mass of one refractive index layer. % By mass. The refractive index layer includes, on at least one surface on the transparent substrate, a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles having different refractive indexes, and a second water-soluble layer. It is preferable that the layer is formed by laminating at least one low refractive index layer containing a conductive binder resin and second metal oxide particles.
 反射層は、少なくとも他の隣接部材と接する屈折率層のガラス転移温度(Tg)が40~70℃である樹脂成分を含むことが好ましい。他の隣接部材と接する屈折率層は、高屈折率層、低屈折率層のどちらでもよいが、他の隣接部材への密着性の観点から、好ましくは低屈折率層である。屈折率層のガラス転移温度(Tg)は、樹脂成分が水溶性バインダー樹脂単独の場合、当該水溶性バインダー樹脂の組成や重合度を調節して制御することができ、樹脂成分が水溶性バインダー樹脂およびラテックスの混合物の場合、樹脂成分の合計に対するラテックスの含有量によって制御することができる。 The reflective layer preferably contains a resin component having a glass transition temperature (Tg) of 40 to 70 ° C. of the refractive index layer in contact with at least another adjacent member. The refractive index layer in contact with other adjacent members may be either a high refractive index layer or a low refractive index layer, but is preferably a low refractive index layer from the viewpoint of adhesion to other adjacent members. When the resin component is a water-soluble binder resin alone, the glass transition temperature (Tg) of the refractive index layer can be controlled by adjusting the composition and degree of polymerization of the water-soluble binder resin, and the resin component is a water-soluble binder resin. In the case of a mixture of latex and latex, it can be controlled by the content of latex with respect to the total resin component.
 (高屈折率層)
 本発明の好ましい一形態においては、高屈折率層は、第1の水溶性バインダー樹脂および第1の金属酸化物粒子を含むことができる。必要に応じて、樹脂成分のガラス転移温度(Tg)を制御するため、高屈折率層に含まれる樹脂成分としてラテックスを含んでもよい。また、高屈折率層は、硬化剤、その他のバインダー樹脂、界面活性剤、およびその他の添加剤からなる群より選択される少なくとも1種をさらに含んでもよい。
(High refractive index layer)
In a preferred embodiment of the present invention, the high refractive index layer can contain a first water-soluble binder resin and first metal oxide particles. If necessary, in order to control the glass transition temperature (Tg) of the resin component, latex may be included as the resin component contained in the high refractive index layer. The high refractive index layer may further include at least one selected from the group consisting of a curing agent, other binder resin, a surfactant, and other additives.
 高屈折率層の屈折率は、好ましくは1.80~2.50であり、より好ましくは1.90~2.20である。 The refractive index of the high refractive index layer is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
 以下、第1の水溶性バインダー樹脂、ラテックス、その他のバインダー樹脂、第1の金属酸化物粒子、硬化剤、界面活性剤およびその他の添加剤について説明する。 Hereinafter, the first water-soluble binder resin, latex, other binder resin, first metal oxide particles, curing agent, surfactant, and other additives will be described.
 (第1の水溶性バインダー樹脂)
 本発明の一形態に係る第1の水溶性バインダー樹脂は、該水溶性バインダー樹脂が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性バインダー樹脂の50質量%以内であるものをいう。
(First water-soluble binder resin)
The first water-soluble binder resin according to an embodiment of the present invention is a G2 glass filter (maximum pore size) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble binder resin is most dissolved. 40 to 50 μm) means that the mass of the insoluble matter separated by filtration is within 50 mass% of the added water-soluble binder resin.
 第1の水溶性バインダー樹脂の重量平均分子量は、1,000以上200,000以下が好ましく、3,000以上40,000以下がより好ましい。 The weight average molecular weight of the first water-soluble binder resin is preferably 1,000 or more and 200,000 or less, and more preferably 3,000 or more and 40,000 or less.
 ここで、重量平均分子量は、公知の方法によって測定することができ、たとえば、静的光散乱、ゲルパーミエーションクロマトグラフィ法(GPC)、飛行時間型質量分析法(TOF-MASS)などによって測定することができる。重量平均分子量は、本願明細書においては、一般的な公知の方法であるゲルパーミエーションクロマトグラフィ法によって測定した値を用いている。 Here, the weight average molecular weight can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. Can do. In the present specification, the weight average molecular weight is a value measured by a gel permeation chromatography method which is a generally known method.
 高屈折率層における第1の水溶性バインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%であることが好ましく、10~40質量%であることがより好ましい。 The content of the first water-soluble binder resin in the high refractive index layer is preferably 5 to 50% by mass and preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Is more preferable.
 第1の水溶性バインダー樹脂は、特に制限はないが、ポリビニルアルコールであることが好ましい。また、後述する低屈折率層に存在する第2の水溶性バインダー樹脂も、ポリビニルアルコールであることが好ましい。したがって、以下では、高屈折率層および低屈折率層に含まれるポリビニルアルコールを併せて説明する。 The first water-soluble binder resin is not particularly limited, but is preferably polyvinyl alcohol. Moreover, it is preferable that the 2nd water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, hereinafter, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
 (ポリビニルアルコール)
 本発明の一形態においては、高屈折率層と低屈折率層は、それぞれケン化度の異なる2種以上のポリビニルアルコールを含むことが好ましい。ここで、区別するために、第1の水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(A)と呼び、第2の水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(B)と呼ぶ。なお、各屈折率層が、ケン化度や重合度が異なる複数のポリビニルアルコールを含む場合には、各屈折率層中で最も含有量の高いポリビニルアルコールをそれぞれ高屈折率層におけるポリビニルアルコール(A)、および低屈折率層におけるポリビニルアルコール(B)と称する。
(Polyvinyl alcohol)
In one form of this invention, it is preferable that a high refractive index layer and a low refractive index layer contain 2 or more types of polyvinyl alcohol from which saponification degree differs, respectively. Here, in order to distinguish, polyvinyl alcohol as the first water-soluble binder resin is referred to as polyvinyl alcohol (A), and polyvinyl alcohol as the second water-soluble binder resin is referred to as polyvinyl alcohol (B). In addition, when each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees, the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ), And polyvinyl alcohol (B) in the low refractive index layer.
 本願明細書でいう「ケン化度」とは、ポリビニルアルコール中のアセチルオキシ基(原料の酢酸ビニル由来のもの)と水酸基との合計数に対する水酸基の割合のことである。 As used herein, “degree of saponification” refers to the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in polyvinyl alcohol.
 また、ここでいう「屈折率層中で最も含有量の高いポリビニルアルコール」という際には、ケン化度の差が3mol%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。ただし、重合度1000以下の低重合度ポリビニルアルコールは、異なるポリビニルアルコールとする(仮にケン化度の差が3mol%以内のポリビニルアルコールがあったとしても同一のポリビニルアルコールとはしない)。具体的には、ケン化度が90mol%、ケン化度が91mol%、ケン化度が93mol%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら3つのポリビニルアルコールは同一のポリビニルアルコールとし、これら3つの混合物をポリビニルアルコール(A)または(B)とする。また、上記「ケン化度の差が3mol%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3mol%以内であれば足り、たとえば、90mol%、91mol%、92mol%、94mol%のポリビニルアルコールを含む場合には、91mol%のポリビニルアルコールに着目した場合に、いずれのポリビニルアルコールのケン化度の差も3mol%以内なので、同一のポリビニルアルコールとなる。 In addition, when referring to “polyvinyl alcohol having the highest content in the refractive index layer” herein, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. . However, a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol). Specifically, when polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively. These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B). The “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” means that it is within 3 mol% when attention is paid to any polyvinyl alcohol. For example, 90 mol%, 91 mol%, 92 mol%, 94 mol % Of polyvinyl alcohol, when paying attention to 91 mol% of polyvinyl alcohol, the difference in saponification degree of any polyvinyl alcohol is within 3 mol%, so that the same polyvinyl alcohol is obtained.
 同一層内にケン化度が3mol%以上異なるポリビニルアルコールが含まれる場合、異なるポリビニルアルコールの混合物とみなし、それぞれに重合度とケン化度を算出する。たとえば、PVA203:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVA(ポリビニルアルコール)は、PVA217~245の混合物であり(PVA217~245のケン化度の差は3mol%以内なので同一のポリビニルアルコールである)、この混合物がポリビニルアルコール(A)または(B)となる。そうして、PVA217~245の混合物(ポリビニルアルコール(A)または(B))において、重合度が、(1700×0.1+2000×0.1+2400×0.1+3500×0.2+4500×0.7)/0.7=3200であり、ケン化度は、88mol%となる。 When polyvinyl alcohol having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are calculated for each. For example, PVA203: 5% by mass, PVA117: 25% by mass, PVA217: 10% by mass, PVA220: 10% by mass, PVA224: 10% by mass, PVA235: 20% by mass, PVA245: 20% by mass, most contained A large amount of PVA (polyvinyl alcohol) is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, and is the same polyvinyl alcohol), and this mixture is polyvinyl alcohol (A) or ( B). Thus, in the mixture of PVA 217 to 245 (polyvinyl alcohol (A) or (B)), the degree of polymerization was (1700 × 0.1 + 2000 × 0.1 + 2400 × 0.1 + 3500 × 0.2 + 4500 × 0.7) / 0.7 = 3200, and the degree of saponification is 88 mol%.
 ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の絶対値の差は、3mol%以上であることが好ましく、5mol%以上であることがより好ましい。かような範囲であれば、高屈折率層と低屈折率層との層間混合状態が好ましいレベルになるため好ましい。また、ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の差は、離れていれば離れているほど好ましいが、ポリビニルアルコールの水への溶解性の観点から、20mol%以下であることが好ましい。 The difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
 また、ポリビニルアルコール(A)およびポリビニルアルコール(B)のケン化度は、水への溶解性の観点で、75mol%以上であることが好ましい。さらに、ポリビニルアルコール(A)およびポリビニルアルコール(B)のうち一方がケン化度90mol%以上であり、他方が90mol%以下であることが、高屈折率層と低屈折率層との層間混合状態を好ましいレベルにするために好ましい。ポリビニルアルコール(A)およびポリビニルアルコール(B)のうち一方が、ケン化度95mol%以上であり、他方が90mol%以下であることがより好ましい。なお、ポリビニルアルコールのケン化度の上限は特に限定されるものではないが、通常100mol%未満であり、好ましくは99.9mol%以下である。 In addition, the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, between polyvinyl alcohol (A) and polyvinyl alcohol (B), one of them has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol%, Preferably it is 99.9 mol% or less.
 また、ケン化度の異なる2種のポリビニルアルコールの重合度は、1,000以上のものが好ましく用いられる。ポリビニルアルコールの重合度が、1,000以上であると塗布膜のひび割れの発生頻度がより低くなるからである。また、ケン化度の異なる2種のポリビニルアルコールの重合度は、5,000以下のものが好ましく用いられる。ポリビニルアルコールの重合度が、5,000以下であると塗布液がより安定するからである。なお、本願明細書において、「塗布液が安定する」とは、塗布液が経時的に安定することを意味する。同様の観点から、重合度が1,500~5,000のものがより好ましく、2,000~5,000のものがさらに好ましい。ポリビニルアルコール(A)およびポリビニルアルコール(B)の少なくとも一方の重合度が2,000~5,000であると、塗膜のひび割れの発生頻度が顕著に減少し、特定の波長の反射率が向上するからである。ここで、ポリビニルアルコール(A)とポリビニルアルコール(B)との双方が2,000~5,000であると、上記効果はより顕著に発揮できるため、特に好ましい。 Also, the polymerization degree of two kinds of polyvinyl alcohols having different saponification degrees is preferably 1,000 or more. This is because when the polymerization degree of polyvinyl alcohol is 1,000 or more, the frequency of occurrence of cracks in the coating film becomes lower. The polymerization degree of two kinds of polyvinyl alcohols having different saponification degrees is preferably 5,000 or less. This is because the coating solution is more stable when the polymerization degree of polyvinyl alcohol is 5,000 or less. In the present specification, “the coating solution is stable” means that the coating solution is stable over time. From the same viewpoint, those having a polymerization degree of 1,500 to 5,000 are more preferable, and those having a polymerization degree of 2,000 to 5,000 are more preferable. When the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2,000 to 5,000, the frequency of occurrence of cracks in the coating film is remarkably reduced, and the reflectance at a specific wavelength is improved. Because it does. Here, it is particularly preferable that both of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2,000 to 5,000, since the above-described effect can be more remarkably exhibited.
 本明細書でいう「重合度」とは、粘度平均重合度を指し、JIS K 6726:1994に準じて測定され、PVAを完全に再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められるものである。 “Degree of polymerization” as used herein refers to a viscosity average degree of polymerization, which is measured according to JIS K 6726: 1994, and is the limit measured in water at 30 ° C. after completely re-saponifying and purifying PVA. It is obtained from the viscosity [η] (dl / g) by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 低屈折率層に含まれるポリビニルアルコール(B)は、ケン化度が75mol%以上90mol%以下で、かつ重合度が2,000以上5,000以下であることが好ましい。かようなポリビニルアルコールを低屈折率層に含有させると、界面混合がより抑制され点で好ましい。これは塗膜のひび割れが少なく、かつセット性が向上するためであると考えられる。 The polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree of 75 mol% or more and 90 mol% or less and a polymerization degree of 2,000 or more and 5,000 or less. When such polyvinyl alcohol is contained in the low refractive index layer, interfacial mixing is further suppressed, which is preferable. This is considered to be because there are few cracks of a coating film and set property improves.
 本発明の一形態において用いられるポリビニルアルコール(A)および(B)は、合成品を用いてもよいし市販品を用いてもよい。ポリビニルアルコール(A)および(B)として用いられる市販品としては、たとえば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 The polyvinyl alcohol (A) and (B) used in one embodiment of the present invention may be a synthetic product or a commercially available product. Examples of commercially available products used as polyvinyl alcohol (A) and (B) include PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, and PVA-203. , PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF -05, JP-03, JP-04JP-05, JP-45 (above, manufactured by Nippon Vineyard PVA).
 本発明の一形態に係る第1の水溶性バインダー樹脂は、本発明の効果を損なわない限りは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、一部が変性された変性ポリビニルアルコールを含んでもよい。かような変性ポリビニルアルコールを含むと、膜の密着性や耐水性、柔軟性が改良される場合がある。かような変性ポリビニルアルコールとしては、たとえば、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマー等が挙げられる。 The first water-soluble binder resin according to an embodiment of the present invention is partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate unless the effects of the present invention are impaired. Modified polyvinyl alcohol may be included. When such modified polyvinyl alcohol is contained, the adhesion, water resistance, and flexibility of the film may be improved. Examples of such modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
 カチオン変性ポリビニルアルコールとしては、たとえば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコール等であり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383 in the main chain or side chain of the polyvinyl alcohol. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、たとえば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して好ましくは0.1~10mol%、より好ましくは0.2~5mol%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、たとえば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているようなビニルアルコールと水溶性基を有するビニル化合物との共重合体、および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコール等が挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、たとえば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシ基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group and carboxy group Polyvinyl alcohol etc. are mentioned.
 また、ビニルアルコール系ポリマーとして、たとえば、エクセバール(登録商標、株式会社クラレ製)やニチゴGポリマー(登録商標、日本合成化学工業株式会社製)等が挙げられる。 Further, examples of the vinyl alcohol polymer include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 変性ポリビニルアルコールは、重合度や変性の種類違いなど2種類以上を併用することができる。 Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
 変性ポリビニルアルコールの含有量は、特に限定されるものではないが、各屈折率の全質量(固形分)に対し、好ましくは1~30質量%である。かような範囲であれば、上記効果がより発揮される。 The content of the modified polyvinyl alcohol is not particularly limited, but is preferably 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is such a range, the said effect will be exhibited more.
 本発明の一形態においては、屈折率の異なる層間ではケン化度の異なる2種のポリビニルアルコールがそれぞれ用いられることが好ましい。 In one embodiment of the present invention, it is preferable that two types of polyvinyl alcohol having different saponification degrees are used between layers having different refractive indexes.
 たとえば、高屈折率層に低ケン化度のポリビニルアルコール(A)を用い、低屈折率層に高ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましい。 For example, when polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable.
 また、高屈折率層に高ケン化度のポリビニルアルコール(A)を用い、低屈折率層に低ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましい。低屈折率層中のポリビニルアルコール(B)の含有量が40質量%以上であると、層間混合が抑制され、界面の乱れがより小さくなるという効果が顕著に現れる。一方、低屈折率層中のポリビニルアルコール(B)の含有量が100質量%以下であれば、塗布液の安定性がより向上する。同様の観点から、低屈折率層中のポリビニルアルコール(B)の含有量は、60質量%以上95質量以下がより好ましい。 When polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the low refractive index layer. When the content of the polyvinyl alcohol (B) in the low refractive index layer is 40% by mass or more, interlayer mixing is suppressed, and the effect that the disturbance of the interface becomes smaller appears remarkably. On the other hand, if the content of the polyvinyl alcohol (B) in the low refractive index layer is 100% by mass or less, the stability of the coating solution is further improved. From the same viewpoint, the content of the polyvinyl alcohol (B) in the low refractive index layer is more preferably 60% by mass or more and 95% by mass or less.
 (ラテックス)
 本発明の一形態においては、高屈折率層は、樹脂成分として水溶性バインダー樹脂に加え、ラテックスを含んでもよい。ラテックスとは、水媒体中に安定して分散される樹脂である。本発明の一形態におけるラテックスとしては、たとえば、エマルジョン樹脂が挙げられる。樹脂成分の合計に対するラテックスの含有量により、樹脂成分のガラス転移温度(Tg)を制御することができ、また樹脂成分としてラテックスを含むことにより、作製した合わせガラスの耐熱性が良くなる。
(latex)
In one embodiment of the present invention, the high refractive index layer may contain latex as a resin component in addition to the water-soluble binder resin. Latex is a resin that is stably dispersed in an aqueous medium. As latex in one form of this invention, emulsion resin is mentioned, for example. The glass transition temperature (Tg) of the resin component can be controlled by the content of the latex with respect to the total of the resin components, and the heat resistance of the produced laminated glass is improved by including the latex as the resin component.
 上記ラテックスの含有量としては、前記水溶性バインダー樹脂とラテックスの合計(100質量%)に対して、好ましくは1質量%以上50質量%以下であり、より好ましくは5質量%以上50質量%未満であり、さらに好ましくは、5質量%~20質量%である。 The content of the latex is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and less than 50% by mass with respect to the total (100% by mass) of the water-soluble binder resin and latex. More preferably, it is 5% by mass to 20% by mass.
 エマルジョン樹脂とは、水系媒体中に微細な、たとえば、平均粒径が0.01~2.0μm程度の樹脂粒子がエマルジョン状態で分散されている樹脂で、油溶性のモノマーを、水酸基を有する高分子分散剤を用いてエマルジョン重合する等によって得ることができる。用いる分散剤の種類によって、得られるエマルジョン樹脂のポリマー成分に基本的な違いは見られない。エマルジョンの重合時に使用される分散剤としては、たとえば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。水酸基を有する高分子分散剤を用いてエマルジョン重合すると、微細な微粒子の少なくとも表面に水酸基の存在が推定され、他の分散剤を用いて重合したエマルジョン樹脂とはエマルジョンの化学的、物理的性質が異なる。 The emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 μm, for example, are dispersed in an emulsion state in an aqueous medium. It can be obtained, for example, by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used. Examples of the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkyl sulfonate, alkylbenzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salts. , Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone. When emulsion polymerization is performed using a polymer dispersant having a hydroxyl group, the presence of hydroxyl groups is estimated on at least the surface of fine particles, and the emulsion resin polymerized using other dispersants has chemical and physical properties of the emulsion. Different.
 水酸基を含む高分子分散剤とは、重量平均分子量が10000以上の高分子の分散剤で、側鎖または末端に水酸基が置換されたものであり、たとえばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコールなどが挙げられ、特にポリビニルアルコールが好ましい。 The polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted on the side chain or terminal. For example, an acrylic polymer such as sodium polyacrylate or polyacrylamide is used. Examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
 高分子分散剤として使用されるポリビニルアルコールは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カチオン変性したポリビニルアルコールやカルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールが含まれていてもよい。ポリビニルアルコールは、平均重合度が高い方がインク吸収層を形成する際のクラックの発生を抑制する効果が大きいが、平均重合度が5000以内であると、エマルジョン樹脂の粘度が高くなく、製造時に取り扱いやすい。したがって、平均重合度は300~5000のものが好ましく、1500~5000のものがより好ましく、3000~4500のものが特に好ましい。ポリビニルアルコールのケン化度は70~100mol%のものが好ましく、80~99.5mol%のものがより好ましい。 Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group may be contained. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when the ink absorption layer is formed when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle. Accordingly, the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500. The saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
 上記の高分子分散剤で乳化重合される樹脂としては、アクリル酸エステル、メタクリル酸エステル、ビニル系化合物、スチレン系化合物といったエチレン系単量体、ブタジエン、イソプレンといったジエン系化合物の単独重合体または共重合体が挙げられる。より詳細には、高分子分散剤で乳化重合される樹脂としては、たとえばアクリル系樹脂(アクリル樹脂)、スチレン-ブタジエン系樹脂、エチレン-酢酸ビニル系樹脂等が挙げられる。 Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene. A polymer is mentioned. More specifically, examples of the resin that is emulsion-polymerized with the polymer dispersant include acrylic resins (acrylic resins), styrene-butadiene resins, ethylene-vinyl acetate resins, and the like.
 アクリル樹脂としては、特に制限されないが、構成成分である単量体の合計を100モル%としたときに、アクリル酸エステルまたはメタクリル酸エステルの割合が50モル%以上であるものが好ましい。 The acrylic resin is not particularly limited, but an acrylic resin or methacrylic acid ester having a proportion of 50 mol% or more is preferable when the total amount of the constituent monomers is 100 mol%.
 アクリル樹脂としては、市販されているものを用いてもよく、たとえば、AE120A(株式会社イーテック製)、ビニブラン(登録商標)2585、2680(日信化学工業株式会社製)、EK108(サイデン化学株式会社製)、VONCOAT(登録商標)CE-6400(DIC株式会社製)等が挙げられる。 As the acrylic resin, commercially available ones may be used. For example, AE120A (manufactured by Etec Co., Ltd.), Viniblanc (registered trademark) 2585, 2680 (manufactured by Nissin Chemical Industry Co., Ltd.), EK108 (Siden Chemical Co., Ltd.) And VONCOAT (registered trademark) CE-6400 (manufactured by DIC Corporation).
 (その他のバインダー樹脂)
 本発明の一形態においては、高屈折率層は、本発明の効果を損なわない限りにおいて、前記第一の水溶性バインダー樹脂成分に加え、その他の水溶性バインダー樹脂を使用することができる。その他の水溶性バインダー樹脂としては、特に制限はないが、環境の問題や塗膜の柔軟性を考慮すると、水溶性高分子が好ましい。
(Other binder resins)
In one embodiment of the present invention, the high refractive index layer can use other water-soluble binder resins in addition to the first water-soluble binder resin component as long as the effects of the present invention are not impaired. Other water-soluble binder resins are not particularly limited, but water-soluble polymers are preferable in consideration of environmental problems and coating film flexibility.
 高屈折率層において、前記第一の水溶性バインダー樹脂成分とともに併用する、その他のバインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%で用いることもできる。 In the high refractive index layer, the content of the other binder resin used together with the first water-soluble binder resin component is 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. You can also.
 すなわち、本発明の一形態においては、その効果を損なわない限りにおいて、上記ポリビニルアルコールおよび変性ポリビニルアルコールに加えて、ポリビニルアルコールおよび変性ポリビニルアルコール以外の水溶性高分子をバインダー樹脂として用いてもよい。前記水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものをいう。そのような水溶性高分子の中でも特にゼラチン、セルロース類、増粘多糖類、または反応性官能基を有するポリマーが好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。 That is, in one embodiment of the present invention, a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired. The water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 μm) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most dissolved. The mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer. Among such water-soluble polymers, gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
 (共押出法または共流延法によって形成する反射層に好適な樹脂成分)
 また、共押出法または共流延法を用いて反射層を形成する場合、高屈折率層に含まれる樹脂成分としては、特に制限されないが、たとえば、ポリエチレンテレフタラート(PET)、ポリエチレンテレフタラートのコポリマー(coPET)、ポリ(メチルメタクリラート)(PMMA)、ポリ(メチルメタクリラート)のコポリマー(coPMMA)、シクロヘキサンジメタノール(PETG)、シクロヘキサンジメタノールのコポリマー(coPETG)、ポリエチレンナフタラート(PEN)ポリエチレンナフタラートのコポリマー(coPEN)、ポリエチレンナフタラート、ポリエチレンナフタラートのコポリマー、ポリ(メチルメタクリラート)、およびポリ(メチルメタクリラート)のコポリマー等が挙げられる。なお、低屈折率層に含まれる樹脂成分としても、高屈折率層に含まれる樹脂成分と同様のものを挙げることができる。各高屈折率層および低屈折率層には、これらのポリマーを1種、または2種以上の組み合わせを用いることができる。また、好適なポリマーの組み合わせの例として、米国特許第6,352,761号明細書に記載のものが挙げられる。
(Resin component suitable for reflective layer formed by co-extrusion method or co-casting method)
In addition, when the reflective layer is formed using a co-extrusion method or a co-casting method, the resin component contained in the high refractive index layer is not particularly limited. For example, polyethylene terephthalate (PET), polyethylene terephthalate Copolymer (coPET), poly (methyl methacrylate) (PMMA), copolymer of poly (methyl methacrylate) (coPMMA), cyclohexanedimethanol (PETG), copolymer of cyclohexanedimethanol (coPETG), polyethylene naphthalate (PEN) polyethylene These include naphthalate copolymer (coPEN), polyethylene naphthalate, polyethylene naphthalate copolymer, poly (methyl methacrylate), and poly (methyl methacrylate) copolymer. In addition, as a resin component contained in a low refractive index layer, the thing similar to the resin component contained in a high refractive index layer can be mentioned. For each high refractive index layer and low refractive index layer, one or a combination of two or more of these polymers can be used. Examples of suitable polymer combinations include those described in US Pat. No. 6,352,761.
 (第1の金属酸化物粒子)
 本発明の一形態に係る第1の金属酸化物粒子としては、屈折率が2.0以上、3.0以下である金属酸化物粒子が好ましい。さらに具体的には、たとえば、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。また複数の金属で構成された複合酸化物粒子やコアシェル状に金属構成が変化するコアシェル粒子等を用いてもよい。
(First metal oxide particles)
As the first metal oxide particles according to one embodiment of the present invention, metal oxide particles having a refractive index of 2.0 or more and 3.0 or less are preferable. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, second oxide Examples include iron, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Also, composite oxide particles composed of a plurality of metals, core-shell particles whose metal structure changes into a core-shell shape, or the like may be used.
 透明でより屈折率の高い高屈折率層を形成するために、本発明の一形態に係る高屈折率層には、チタン、ジルコニウム等の高屈折率を有する金属の酸化物微粒子を含有させることが好ましく、酸化チタン微粒子または酸化ジルコニア微粒子を含有させることがより好ましい。これらの中でも、高屈折率層を形成するための塗布液の安定性の観点から、酸化チタンがさらに好ましい。また、酸化チタンの中でも、アナターゼ型よりもルチル型(正方晶形)の方が、触媒活性が低いために、高屈折率層や隣接した層の耐候性が高くなり、さらに屈折率が高くなることから特に好ましい。 In order to form a transparent high refractive index layer having a higher refractive index, the high refractive index layer according to one embodiment of the present invention contains metal oxide fine particles having a high refractive index such as titanium and zirconium. It is more preferable that titanium oxide fine particles or zirconia oxide fine particles are contained. Among these, titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer. Among titanium oxides, the rutile type (tetragonal type) has lower catalytic activity than the anatase type, so that the weather resistance of the high refractive index layer and the adjacent layer is higher, and the refractive index is higher. Is particularly preferred.
 また、酸化チタンは、含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態であってもよい。当該コアシェル粒子は、酸化チタン粒子の表面を、コアとなる酸化チタンに含ケイ素の水和酸化物からなるシェルが被覆してなる構造を有する。この際のコアの部分となる酸化チタン粒子の体積平均粒径は、1nm超30nm未満であることが好ましく、4nm以上30nm未満であることがより好ましく、4nm以上15nm未満であることがより好ましい。かようなコアシェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、高屈折率層と低屈折率層との層間混合をより抑制することができる。 Further, the titanium oxide may be in the form of core-shell particles coated with a silicon-containing hydrated oxide. The core-shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on a titanium oxide serving as a core. In this case, the volume average particle size of the titanium oxide particles serving as the core portion is preferably more than 1 nm and less than 30 nm, more preferably 4 nm or more and less than 30 nm, and more preferably 4 nm or more and less than 15 nm. By including such core-shell particles, the intermixing of the high refractive index layer and the low refractive index layer can be further suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. it can.
 上述の第1の金属酸化物粒子は、単独で用いても、2種以上を混合して用いてもよい。 The first metal oxide particles described above may be used alone or in combination of two or more.
 第1の金属酸化物粒子の含有量は、高屈折率層の固形分100質量%に対して、15~80質量%であると、低屈折率層との屈折率差を付与するという観点で好ましい。さらに、20~77質量%であることがより好ましく、30~75質量%であることがさらに好ましい。 The content of the first metal oxide particles is 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, from the viewpoint of providing a refractive index difference from the low refractive index layer. preferable. Furthermore, it is more preferably 20 to 77% by mass, and further preferably 30 to 75% by mass.
 第1の金属酸化物粒子の体積平均粒径は、30nm以下であることが好ましく、1~30nmであることがより好ましい。第1の金属酸化物粒子の体積平均粒径が1nm以上30nm以下であれば、ヘイズがより少なく可視光透過性により優れる高屈折率層を形成することができる。同様の観点から、第1の金属酸化物粒子の体積平均粒径は、5~15nmであることがさらに好ましい。 The volume average particle diameter of the first metal oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm. When the volume average particle diameter of the first metal oxide particles is 1 nm or more and 30 nm or less, a high refractive index layer with less haze and better visible light transmittance can be formed. From the same viewpoint, the volume average particle size of the first metal oxide particles is more preferably 5 to 15 nm.
 なお、第1の金属酸化物粒子の体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子状の金属酸化物の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径である。 The volume average particle diameter of the first metal oxide particles refers to a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a cross section or surface of the refractive index layer. The particle size of 1,000 arbitrary particles is measured by a method of observing the appearing particle image with an electron microscope, and particles having particle sizes of d1, d2,. n2... ni... nk particles of a group of particulate metal oxides, where the volume per particle is vi, the volume average particle diameter mv = {Σ (vi · di)} / The average particle diameter is weighted by the volume represented by {Σ (vi)}.
 さらに、第1の金属酸化物粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。 Furthermore, the first metal oxide particles are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (硬化剤)
 本発明の一形態においては、第1の水溶性バインダー樹脂を硬化させるため、硬化剤を使用することもできる。第1の水溶性バインダー樹脂と共に用いることができる硬化剤としては、当該水溶性バインダー樹脂と硬化反応を起こすものであれば特に制限はない。たとえば、第1の水溶性バインダー樹脂として、ポリビニルアルコールを用いる場合では、硬化剤として、ホウ酸またはその塩が好ましい。ホウ酸またはその塩以外にも公知のものが使用でき、一般的には、ポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、たとえば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。
(Curing agent)
In one embodiment of the present invention, a curing agent can be used to cure the first water-soluble binder resin. The curing agent that can be used together with the first water-soluble binder resin is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin. For example, when polyvinyl alcohol is used as the first water-soluble binder resin, boric acid or a salt thereof is preferable as the curing agent. In addition to boric acid or a salt thereof, known ones can be used. In general, a compound having a group capable of reacting with polyvinyl alcohol or a compound that promotes the reaction between different groups possessed by polyvinyl alcohol. Select and use. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 ホウ酸またはその塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。 Boric acid or a salt thereof refers to an oxygen acid having a boron atom as a central atom and a salt thereof, specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaboron. Examples include acids and their salts.
 硬化剤としてのホウ素原子を有するホウ酸またはその塩は、単独の水溶液でも、また、2種以上を混合して使用してもよい。特に好ましいのはホウ酸とホウ砂との混合水溶液である。 Boric acid having a boron atom or a salt thereof as a curing agent may be used alone or as a mixture of two or more. Particularly preferred is a mixed aqueous solution of boric acid and borax.
 ホウ酸とホウ砂は、水溶液を調製するに際しては、それぞれ、比較的希薄な水溶液を形成する含有量でしか添加することができないが、両者を混合することで濃厚な水溶液にすることができ、塗布液を濃縮化することができる。また、添加する水溶液のpHを比較的自由にコントロールすることができる利点がある。 When preparing an aqueous solution, boric acid and borax can each be added only at a content that forms a relatively dilute aqueous solution, but by mixing both, a concentrated aqueous solution can be obtained. The coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
 本発明の一形態においては、硬化剤は、ホウ酸もしくはその塩、またはホウ砂を用いることがより好ましい。ホウ酸もしくはその塩、またはホウ砂を用いた場合には、金属酸化物粒子と水溶性バインダー樹脂であるポリビニルアルコールのOH基と水素結合ネットワークがより形成しやすく、その結果として高屈折率層と低屈折率層との層間混合が抑制され、好ましい近赤外遮断特性が達成されると考えられる。特に、高屈折率層および低屈折率層の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 In one embodiment of the present invention, it is more preferable to use boric acid or a salt thereof, or borax as the curing agent. When boric acid or a salt thereof, or borax is used, the metal oxide particles and the water-soluble binder resin polyvinyl alcohol OH group and hydrogen bond network are more easily formed, and as a result, a high refractive index layer and It is considered that interlayer mixing with the low refractive index layer is suppressed, and preferable near-infrared blocking characteristics are achieved. In particular, when a set coating process is used in which a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a coater, and after the film surface temperature of the coating film is once cooled to about 15 ° C., the film surface is dried. Can express an effect more preferably.
 高屈折率層における硬化剤の含有量は、高屈折率層の固形分100質量%に対して、1~10質量%であることが好ましく、2~6質量%であることがより好ましい。 The content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
 特に、第1の水溶性バインダー樹脂としてポリビニルアルコールを使用する場合の上記硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgが好ましく、ポリビニルアルコール1g当たり100~600mgがより好ましい。 In particular, when polyvinyl alcohol is used as the first water-soluble binder resin, the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
 (界面活性剤)
 本発明の一形態においては、高屈折率層の少なくとも1層が、さらに界面活性剤を含有してもよい。界面活性剤としては、両性イオン系、カチオン系、アニオン系、ノニオン系のいずれの種類も使用することができる。より好ましくは、ベタイン系両性イオン性界面活性剤、4級アンモニウム塩系カチオン性界面活性剤、ジアルキルスルホコハク酸塩系アニオン性界面活性剤、アセチレングリコール系ノニオン性界面活性剤、またはフッ素系カチオン性界面活性剤が好ましい。
(Surfactant)
In one embodiment of the present invention, at least one of the high refractive index layers may further contain a surfactant. As the surfactant, any of zwitterionic, cationic, anionic, and nonionic types can be used. More preferably, a betaine zwitterionic surfactant, a quaternary ammonium salt cationic surfactant, a dialkylsulfosuccinate anionic surfactant, an acetylene glycol nonionic surfactant, or a fluorine cationic interface Activators are preferred.
 界面活性剤としては、たとえばソフタゾリン(登録商標)LSB-R(川研ファインケミカル株式会社製)等の市販品を用いることができる。 As the surfactant, for example, commercially available products such as Softazoline (registered trademark) LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) can be used.
 界面活性剤の添加量としては、高屈折率層用塗布液の全質量を100質量%としたとき、0.005~0.30質量%であることが好ましく、0.01~0.10質量%であることがより好ましい。 The addition amount of the surfactant is preferably 0.005 to 0.30% by mass, and 0.01 to 0.10% by mass when the total mass of the coating solution for the high refractive index layer is 100% by mass. % Is more preferable.
 (その他の添加剤)
 本発明の一形態に係る高屈折率層に適用可能な各種の添加剤を、以下に列挙する。たとえば、特開昭57-74193号公報、特開昭57-87988号公報、および特開昭62-261476号公報に記載の紫外線吸収剤;特開昭57-74192号、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、および特開平3-13376号公報等に記載されている退色防止剤;特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、および特開平4-219266号公報等に記載されている蛍光増白剤;硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤;消泡剤;ジエチレングリコール等の潤滑剤;防腐剤;防黴剤;帯電防止剤;マット剤;熱安定剤;酸化防止剤;難燃剤;結晶核剤;無機粒子;有機粒子;減粘剤;滑剤;赤外線吸収剤;色素;顔料等の公知の各種添加剤などが挙げられる。
(Other additives)
Various additives applicable to the high refractive index layer according to an embodiment of the present invention are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476; JP-A-57-74192, JP-A-57-87989 No. 5, JP-A-60-72785, JP-A 61-146591, JP-A-1-95091, JP-A-3-13376, and the like; Fluorescent whitening described in JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771, JP-A-4-219266, etc. Agents; pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate; antifoaming agents; lubricants such as diethylene glycol; antiseptics; Antistatic agent; Matting agent; Thermal stabilizer; Antioxidant; Flame retardant; Crystal nucleating agent; Inorganic particle; Organic particle; Thickening agent; Lubricant; Infrared absorber; Dye; Etc.
 ここで、pH調整剤を用いる場合は、高屈折率層用塗布液の全質量を100質量%としたとき、0.5~5.0質量%であることが好ましく、1.0~4.0質量%であることがより好ましい。 Here, in the case of using a pH adjuster, when the total mass of the coating solution for the high refractive index layer is 100% by mass, it is preferably 0.5 to 5.0% by mass, and 1.0 to 4. More preferably, it is 0% by mass.
 <低屈折率層>
 本発明の好ましい一形態において、低屈折率層は、樹脂成分として第2の水溶性バインダー樹脂および第2の金属酸化物粒子を含むことができる。必要に応じて、低屈折率層に含まれる樹脂成分として、高屈折率層と同様に、水溶性バインダー樹脂に加え、ラテックスを含むことができる。また、その他のバインダー樹脂、硬化剤、界面活性剤、およびその他の添加剤からなる群から選択される少なくとも1種を含んでもよい。
<Low refractive index layer>
In a preferred embodiment of the present invention, the low refractive index layer can contain a second water-soluble binder resin and second metal oxide particles as a resin component. If necessary, as a resin component contained in the low refractive index layer, latex can be contained in addition to the water-soluble binder resin, similarly to the high refractive index layer. Moreover, you may include at least 1 sort (s) selected from the group which consists of another binder resin, a hardening | curing agent, surfactant, and another additive.
 低屈折率層の屈折率は、好ましくは1.10~1.60であり、より好ましくは1.30~1.50である。 The refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.50.
 以下、第2の水溶性バインダー樹脂、その他のバインダー樹脂、および第2の金属酸化物粒子について説明する。なお、第2の水溶性バインダー樹脂、ラテックス、硬化剤、界面活性剤、およびその他の添加剤としては高屈折率層と同様のものを用いることができるため、これらの詳細は高屈折率層における説明を参照されたい。 Hereinafter, the second water-soluble binder resin, the other binder resin, and the second metal oxide particles will be described. In addition, since the same thing as a high refractive index layer can be used as a 2nd water-soluble binder resin, latex, a hardening | curing agent, surfactant, and another additive, these details are in a high refractive index layer. See description.
 (第2の水溶性バインダー樹脂)
 本発明の一形態においては、第2の水溶性バインダー樹脂としては、第1の水溶性バインダー樹脂と同様のものが用いられうる。
(Second water-soluble binder resin)
In one embodiment of the present invention, the second water-soluble binder resin may be the same as the first water-soluble binder resin.
 低屈折率層における第2の水溶性バインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、20~99.9質量%であることが好ましく、25~80質量%であることがより好ましく、21.5~25.0質量%であることがさらに好ましく、22.5~24.5質量%であることが特に好ましい。 The content of the second water-soluble binder resin in the low refractive index layer is preferably 20 to 99.9% by mass, and 25 to 80% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 21.5 to 25.0% by mass, and particularly preferably 22.5 to 24.5% by mass.
 (ラテックス)
 本発明の一形態においては、低屈折率層は、樹脂成分として水溶性バインダー樹脂に加え、ラテックスを含んでもよい。ラテックスとは、水媒体中に安定して分散される樹脂である。好ましいラテックスとしては、高屈折率層で挙げたものと同様のものを用いることができる。
(latex)
In one embodiment of the present invention, the low refractive index layer may contain latex as a resin component in addition to the water-soluble binder resin. Latex is a resin that is stably dispersed in an aqueous medium. As the preferable latex, the same latexes as those mentioned for the high refractive index layer can be used.
 上記ラテックスの含有量としては、前記水溶性バインダー樹脂とラテックスの合計(100質量%)に対して、好ましくは1質量%以上50質量%以下、より好ましくは5質量%以上50質量%未満であり、さらに好ましくは22.0質量%以上49質量%以下であり、よりさらに好ましくは30.0質量%以上49質量%以下であり、特に好ましくは30質量%以上45.0質量%以下であり、極めて好ましくは30.0質量%以上40.0質量%以下であり、最も好ましくは30.0質量%以上35.0質量%以下である。 The content of the latex is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and less than 50% by mass with respect to the total (100% by mass) of the water-soluble binder resin and latex. More preferably, it is 22.0 mass% or more and 49 mass% or less, More preferably, it is 30.0 mass% or more and 49 mass% or less, Most preferably, it is 30 mass% or more and 45.0 mass% or less, Most preferably, it is 30.0 mass% or more and 40.0 mass% or less, Most preferably, it is 30.0 mass% or more and 35.0 mass% or less.
 (その他のバインダー樹脂)
 本発明の一形態においては、低屈折率層に含まれうるその他のバインダー樹脂としては、高屈折率層と同様のものが用いられうる。
(Other binder resins)
In one embodiment of the present invention, as the other binder resin that can be included in the low refractive index layer, the same binder resin as that in the high refractive index layer can be used.
 低屈折率層において、前記第二の水溶性バインダー樹脂成分とともに併用する、その他のバインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、0.1~10質量%で用いることもできる。 In the low refractive index layer, the content of the other binder resin used together with the second water-soluble binder resin component is 0.1 to 10% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It can also be used.
 (第2の金属酸化物粒子)
 本発明の一形態に係る第2の金属酸化物粒子としては、シリカ(二酸化ケイ素)を用いることが好ましい。シリカの具体的な例としては、合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらの中でも、酸性のコロイダルシリカゾル(コロイダルシリカ分散液)を用いることがより好ましく、有機溶媒に分散させたコロイダルシリカゾルを用いることがさらに好ましい。また、屈折率をより低減させるためには、第2の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いることができ、シリカ(二酸化ケイ素)の中空微粒子が特に好ましい。
(Second metal oxide particles)
As the second metal oxide particles according to one embodiment of the present invention, silica (silicon dioxide) is preferably used. Specific examples of silica include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol (colloidal silica dispersion), and it is more preferable to use colloidal silica sol dispersed in an organic solvent. In order to further reduce the refractive index, hollow fine particles having pores inside the particles can be used as the second metal oxide particles, and hollow fine particles of silica (silicon dioxide) are particularly preferable.
 第2の金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであることがより好ましく、3~40nmであることがさらに好ましく、3~20nmであることが特に好ましく、4~10nmであることが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The second metal oxide particles (preferably silicon dioxide) preferably have an average particle size of 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 第2の金属酸化物微粒子の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The average particle diameter of the second metal oxide fine particles was determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle diameter of 1,000 arbitrary particles, It is obtained as a simple average value (number average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明の一形態において用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。 The colloidal silica used in one embodiment of the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091. JP, 60-219083, JP 60-219084, JP 61-20792, JP 61-188183, JP 63-17807, JP JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7- No. 101142, JP-A-7-179029, JP-A-7-137431, International Publication No. 94/26530, etc. Those listed.
 かようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、たとえばスノーテックス(登録商標)OXS(日産化学工業株式会社製)等を挙げることができる。コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理されたものであってもよい。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include Snowtex (registered trademark) OXS (manufactured by Nissan Chemical Industries, Ltd.). The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 本発明の一形態においては、第2の金属酸化物粒子として、中空粒子を用いることもできる。中空粒子を用いる場合には、平均粒子空孔径が、3~70nmであるのが好ましく、5~50nmがより好ましく、5~45nmがさらに好ましい。なお、中空粒子の平均粒子空孔径とは、中空粒子の内径の平均値である。本発明の一形態においては、中空粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、本願明細書中、平均粒子空孔径としては、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 In one embodiment of the present invention, hollow particles can be used as the second metal oxide particles. When hollow particles are used, the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles. In one embodiment of the present invention, the refractive index of the low refractive index layer is sufficiently lowered if the average particle pore diameter of the hollow particles is in the above range. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. In the present specification, the average particle pore diameter is the minimum distance among the distances between the outer edges of the pore diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines. Means.
 本発明の一形態においては、第2の金属酸化物粒子は、表面被覆成分により表面コーティングされていてもよい。特に本発明に係る第1の金属酸化物粒子としてコアシェル状ではない金属酸化物粒子を用いる際に、第2の金属酸化物粒子の表面をポリ塩化アルミニウムなどの表面被覆成分によりコーティングすると、第1の金属酸化物粒子と凝集しにくくなる。 In one embodiment of the present invention, the second metal oxide particles may be surface-coated with a surface coating component. In particular, when using metal oxide particles that are not core-shell as the first metal oxide particles according to the present invention, the surface of the second metal oxide particles is coated with a surface coating component such as polyaluminum chloride. It becomes difficult to aggregate with the metal oxide particles.
 低屈折率層における第2の金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、0.1~70質量%であることが好ましく、30~70質量%であることがより好ましく、45~65質量%であることがさらに好ましく、55~65質量%であることがよりさらに好ましく、58~64質量%であることが特に好ましく、60~63質量%であることが最も好ましい。 The content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass, still more preferably 55 to 65% by mass, particularly preferably 58 to 64% by mass, and 60 to 63% by mass. Most preferred.
 上記の第2の金属酸化物粒子は、屈折率を調整する等の観点から、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned second metal oxide particles may be used alone or in combination of two or more from the viewpoint of adjusting the refractive index.
 (硬化剤)
 本発明の一形態においては、第2の水溶性バインダー樹脂を硬化させるため、硬化剤を使用することもできる。好ましい硬化剤としては、高屈折率層で挙げたものと同様のものを用いることができる。
(Curing agent)
In one embodiment of the present invention, a curing agent can be used to cure the second water-soluble binder resin. As a preferable curing agent, the same ones as mentioned for the high refractive index layer can be used.
 低屈折率層における硬化剤の含有量は、低屈折率層の固形分100質量%に対して、1.0~10.0質量%であることが好ましく、1.62~1.88質量%であることが好ましく、1.70~1.85質量%であることがより好ましい。 The content of the curing agent in the low refractive index layer is preferably 1.0 to 10.0% by mass, and 1.62 to 1.88% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 1.70 to 1.85% by mass.
 特に、第2の水溶性バインダー樹脂としてポリビニルアルコールを使用する場合の上記硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgが好ましく、ポリビニルアルコール1g当たり100~600mgがより好ましい。 In particular, when polyvinyl alcohol is used as the second water-soluble binder resin, the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
 (界面活性剤)
 本発明の一形態においては、低屈折率層の少なくとも1層が、さらに界面活性剤を含有してもよい。好ましい界面活性剤としては、高屈折率層で挙げたものと同様のものを用いることができる。
(Surfactant)
In one embodiment of the present invention, at least one of the low refractive index layers may further contain a surfactant. As a preferable surfactant, the same surfactants as those mentioned for the high refractive index layer can be used.
 界面活性剤の添加量としては、低屈折率層用塗布液の全質量を100質量%としたとき、0.01~2.00質量%であることが好ましく、0.01~1.00質量%であることがより好ましく、0.01~0.10質量%であることがさらに好ましい。 The addition amount of the surfactant is preferably 0.01 to 2.00% by mass, preferably 0.01 to 1.00% by mass, when the total mass of the coating solution for the low refractive index layer is 100% by mass. % Is more preferable, and 0.01 to 0.10% by mass is even more preferable.
 (その他の添加剤)
 本発明の一形態においては、その他添加剤は高屈折率層で挙げたものと同様のものを用いることができる。
(Other additives)
In one embodiment of the present invention, other additives may be the same as those mentioned for the high refractive index layer.
 (反射層の製造方法)
 本発明の一形態に係る反射層の形成方法は、特に制限されない。好ましくは、基材上に、第1の水溶性バインダー樹脂と第1の金属酸化物粒子と、を含む、高屈折率層用塗布液と、第2の水溶性バインダー樹脂と第2の金属酸化物粒子と、を含む、低屈折率層用塗布液と、を塗布する工程を含む製造方法を実施することができる。
(Manufacturing method of reflective layer)
The method for forming the reflective layer according to one embodiment of the present invention is not particularly limited. Preferably, a coating solution for a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles on a substrate, a second water-soluble binder resin, and a second metal oxide The manufacturing method including the process of apply | coating the coating liquid for low refractive index layers containing object particle | grains can be implemented.
 塗布方法は、特に制限されず、たとえば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、または米国特許第2,761,419号明細書、米国特許第2,761,791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。また、複数の層を重層塗布する方式としては、逐次重層塗布でもよいし同時重層塗布でもよいが、同時重層塗布であることが好ましい。 The coating method is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, or U.S. Pat. No. 2,761,419, U.S. Pat. Examples thereof include a slide hopper coating method and an extrusion coating method described in Japanese Patent No. 2,761,791. In addition, as a method of applying a plurality of layers in a multilayer manner, sequential multilayer coating or simultaneous multilayer coating may be used, but simultaneous multilayer coating is preferable.
 以下、本発明の好ましい製造方法(塗布方法)であるスライドホッパー塗布法による同時重層塗布について詳細に説明する。 Hereinafter, the simultaneous multilayer coating by the slide hopper coating method, which is a preferable manufacturing method (coating method) of the present invention, will be described in detail.
 (溶媒)
 高屈折率層用塗布液および低屈折率層用塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。
(solvent)
The solvent for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 有機溶媒としては、特に制限されず、適切な溶媒を用いることができる。具体的には、たとえば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。 The organic solvent is not particularly limited, and an appropriate solvent can be used. Specifically, for example, alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene Examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
 環境面、操作の簡便性などから、塗布液の溶媒としては、特に水が好ましい。 From the viewpoint of environment and ease of operation, water is particularly preferable as the solvent for the coating solution.
 (塗布液の濃度)
 高屈折率層用塗布液中の第1の水溶性バインダー樹脂の濃度は、1~10質量%であることが好ましい。また、高屈折率層用塗布液中の第1の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。
(Concentration of coating solution)
The concentration of the first water-soluble binder resin in the coating solution for the high refractive index layer is preferably 1 to 10% by mass. The concentration of the first metal oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
 低屈折率層用塗布液中の第2の水溶性バインダー樹脂の濃度は、1~10質量%であることが好ましい。また、低屈折率層用塗布液中の第2の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the second water-soluble binder resin in the coating solution for the low refractive index layer is preferably 1 to 10% by mass. The concentration of the second metal oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
 (塗布液の調製方法)
 高屈折率層用塗布液および低屈折率層用塗布液の調製方法は、特に制限されず、たとえば、水溶性バインダー樹脂、金属酸化物粒子、および必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、水溶性バインダー樹脂、金属酸化物粒子、および必要に応じて用いられるその他の添加剤の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。
(Method for preparing coating solution)
The method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited. For example, a water-soluble binder resin, metal oxide particles, and other additives added as necessary. The method of adding and stirring and mixing is mentioned. At this time, the order of addition of the water-soluble binder resin, metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring, or stirring. However, they may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 コアシェル粒子を添加、分散して調製した水系の高屈折率層用塗布液を用いて、高屈折率層を形成してもよい。このとき、コアシェル粒子としては、pHが5.0以上、7.5以下で、かつ粒子のゼータ電位が負であるゾルとして、高屈折率層用塗布液に添加して調製することが好ましい。 The high refractive index layer may be formed using an aqueous coating solution for a high refractive index layer prepared by adding and dispersing core-shell particles. At this time, the core-shell particles are preferably prepared by adding to the coating solution for the high refractive index layer as a sol having a pH of 5.0 or more and 7.5 or less and a negative zeta potential of the particles.
 (塗布液の粘度)
 スライドホッパー塗布法により同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の30~45℃における粘度は、5~500mPa・sの範囲が好ましく、10~450mPa・sの範囲がより好ましい。また、スライド型カーテン塗布法により同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の30~45℃における粘度は、5~1200mPa・sの範囲が好ましく、25~500mPa・sの範囲がより好ましい。
(Viscosity of coating solution)
The viscosity at 30 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably in the range of 5 to 500 mPa · s, and 10 to 450 mPa · s. The range of s is more preferable. The viscosity at 30 to 45 ° C. of the coating solution for high refractive index layer and the coating solution for low refractive index layer when simultaneous multilayer coating is performed by the slide curtain coating method is preferably in the range of 5 to 1200 mPa · s, 25 A range of ˜500 mPa · s is more preferable.
 また、高屈折率層用塗布液および低屈折率層用塗布液の15℃における粘度は、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、3,000~30,000mPa・sがさらに好ましく、10,000~30,000mPa・sが特に好ましい。 The viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, and more preferably 3,000 to 30,000 mPa · s. s is more preferable, and 10,000 to 30,000 mPa · s is particularly preferable.
 (塗布および乾燥方法)
 スライドホッパー塗布法は、スライドホッパー塗布装置を用いて塗布を行う方法である。
(Coating and drying method)
The slide hopper coating method is a method of performing coating using a slide hopper coating apparatus.
 塗布および乾燥方法は、特に制限されないが、高屈折率層用塗布液および低屈折率層用塗布液を30℃以上に加温して、基材上に高屈折率層用塗布液および低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃に一旦冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 The coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate. After the simultaneous application of the rate layer coating solution, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚さとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め各層間および各層内の物質の流動性を低下させる工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of the substances in each layer and in each layer by means such as applying cold air to the coating film to lower the temperature. To do. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した後、冷風を当ててからセットが完了するまでの時間(セット時間)は、7分以内であることが好ましく、5分以内であることが好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が45秒以上であれば、層中の成分がより充分に混合される。一方、セット時間が7分以内であれば、高屈折率層と低屈折率層との屈折率差が不十分となることをより防止できる。なお、高屈折率層と低屈折率層との間の中間層の高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 After application, the time (setting time) from application of cold air to completion of setting is preferably within 7 minutes, and preferably within 5 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is 45 seconds or more, the components in the layer are more thoroughly mixed. On the other hand, if the set time is within 7 minutes, the difference in refractive index between the high refractive index layer and the low refractive index layer can be further prevented. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
 なお、セット時間は、水溶性バインダー樹脂の濃度や金属酸化物粒子等の濃度設定や、ゼラチン、ペクチン、寒天、カラギーナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加すること等によって、調整することができる。 The set time is such that the concentration of the water-soluble binder resin, the concentration of the metal oxide particles, etc., the addition of other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. Can be adjusted.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、10~120秒であることが好ましい。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 [他の層]
 本発明の一形態に係る光学フィルムにおいては、基材上に、さらなる機能の付加を目的として、光吸収層、断熱層、帯電防止層、ガスバリア層、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層などの機能層を有していてもよい。
[Other layers]
In the optical film according to one embodiment of the present invention, a light absorbing layer, a heat insulating layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a droplet layer are provided on the substrate for the purpose of adding further functions. Further, it may have functional layers such as an easy-sliding layer, a hard coat layer, an abrasion-resistant layer, and an antireflection layer.
 以下では、他の層の1つである、光吸収層について詳細に説明する。 Hereinafter, the light absorption layer, which is one of the other layers, will be described in detail.
 (光吸収層)
 本発明の一形態に係る光学フィルムは、基材上に、さらに光吸収層を有していてもよい。光吸収層としては、特に制限されないが、たとえば赤外線吸収層等が挙げられる。また、光吸収層は、染料や顔料によって特定の波長を吸収する層であってもよい。以下では、赤外線吸収層を一例として説明するが、本発明に用いることができる光吸収層はこれに限定されない。
(Light absorption layer)
The optical film according to one embodiment of the present invention may further have a light absorption layer on the substrate. Although it does not restrict | limit especially as a light absorption layer, For example, an infrared rays absorption layer etc. are mentioned. Further, the light absorption layer may be a layer that absorbs a specific wavelength by a dye or a pigment. Hereinafter, an infrared absorption layer will be described as an example, but a light absorption layer that can be used in the present invention is not limited to this.
 赤外線吸収層に含まれる材料としては、ポリマーである紫外線硬化樹脂、光重合開始剤、赤外線吸収剤などが挙げられる。赤外線吸収層は、含まれるポリマー成分が硬化していることが好ましい。ここで、硬化とは、紫外線などの活性エネルギー線や熱などにより反応が進み硬化することを指す。 Examples of materials contained in the infrared absorbing layer include polymers such as ultraviolet curable resins, photopolymerization initiators, and infrared absorbers. It is preferable that the polymer component contained in the infrared absorbing layer is cured. Here, the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
 紫外線硬化樹脂は、他の樹脂よりも硬度や平滑性に優れ、さらにはITO(スズドープ酸化インジウム)、ATO(アンチモンドープ酸化スズ)や熱伝導性の金属酸化物の分散性の観点からも有利である。紫外線硬化樹脂としては、硬化によって透明な層を形成する物であれば特に制限なく使用でき、たとえば、シリコーン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル樹脂、アリルエステル樹脂等が挙げられる。これらの中でも、硬度、平滑性、透明性の観点からアクリル樹脂が好ましい。 UV curable resins are superior in hardness and smoothness to other resins, and are also advantageous from the viewpoint of dispersibility of ITO (tin-doped indium oxide), ATO (antimony-doped tin oxide) and heat conductive metal oxides. is there. The ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. Among these, acrylic resins are preferable from the viewpoints of hardness, smoothness, and transparency.
 アクリル樹脂は、硬度、平滑性、透明性の観点から、国際公開第2008/035669号に記載されているような、表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むことが好ましい。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基などを挙げることができる。また、紫外線硬化樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、たとえば、重合性不飽和基を有する有機化合物を含むものであってもよい。 Acrylic resin is a reactive silica particle in which a photosensitive group having photopolymerization reactivity is introduced on its surface as described in International Publication No. 2008/035669 from the viewpoint of hardness, smoothness, and transparency ( In the following, it is preferable to simply include “reactive silica particles”. Here, examples of the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group. Further, the ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be.
 また重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。ここで、反応性シリカ粒子の平均粒子径は、0.001~0.1μmであることが好ましい。平均粒子径をこのような範囲にすることにより、透明性、平滑性、硬度をバランスよく満たすことができる。 In addition, a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group. Can be used as conductive silica particles. Here, the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 μm. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
 また、アクリル樹脂は、屈折率を調整するという観点から、フッ素を含むことが好ましい。すなわち、赤外線吸収層はフッ素を含むことが好ましい。このようなアクリル樹脂としては、含フッ素ビニルモノマーに由来する構成単位を含むアクリル樹脂が挙げられる。含フッ素ビニルモノマーとしては、フルオロオレフィン類(たとえばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(たとえば大阪有機化学工業株式会社製ビスコート6FMや、ダイキン工業株式会社製R-2020等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。 The acrylic resin preferably contains fluorine from the viewpoint of adjusting the refractive index. That is, the infrared absorption layer preferably contains fluorine. Examples of such an acrylic resin include an acrylic resin containing a structural unit derived from a fluorine-containing vinyl monomer. Examples of the fluorine-containing vinyl monomer include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), partial (meth) acrylic acid or fully fluorinated alkyl ester derivatives (for example, Osaka Organic Chemical Industry) Biscoat 6FM manufactured by Daikin Industries, Ltd., R-2020 manufactured by Daikin Industries, Ltd.), and fully or partially fluorinated vinyl ethers.
 光重合開始剤としては、公知のものを使用することができ、単独でもまたは2種以上の組み合わせでも使用することができる。 As the photopolymerization initiator, known ones can be used, either alone or in combination of two or more.
 赤外線吸収層に含まれうる無機赤外線吸収剤としては、可視光線透過率、赤外線吸収性、樹脂中への分散適性等の観点から、ITO、ATO、アンチモン酸亜鉛、6ホウ化ランタン(LaB)、セシウム含有酸化タングステン(たとえば、Cs0.33WOなど)等が好ましい。 Inorganic infrared absorbers that can be contained in the infrared absorbing layer include ITO, ATO, zinc antimonate, lanthanum hexaboride (LaB 6 ) from the viewpoints of visible light transmittance, infrared absorptivity, dispersibility in the resin, and the like. Cesium-containing tungsten oxide (for example, Cs 0.33 WO 3 etc.) is preferable.
 これらは単独でもまたは2種以上組み合わせても用いることができる。無機赤外線吸収剤の平均粒径は、5~100nmが好ましく、10~50nmがより好ましい。5nm以上であると樹脂中の分散性や、赤外線吸収性がより良好となる。一方、100nm以下であると、可視光線透過率がより向上する。 These can be used alone or in combination of two or more. The average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm. When it is 5 nm or more, dispersibility in the resin and infrared absorptivity become better. On the other hand, when it is 100 nm or less, the visible light transmittance is further improved.
 なお、平均粒径の測定は、透過型電子顕微鏡により撮像し、無作為に、たとえば50個の粒子を抽出して該粒径を測定し、これを平均したものである。また、粒子の形状が球形でない場合には、長径を測定して算出したものと定義する。 The average particle size is measured by taking an image with a transmission electron microscope, extracting, for example, 50 particles at random, measuring the particle size, and averaging the results. Moreover, when the shape of particle | grains is not spherical, it defines as what was calculated by measuring a major axis.
 前記赤外線吸収層における無機赤外線吸収剤の含有量は、赤外線吸収層の全質量に対して1~80質量%であることが好ましい。無機赤外線吸収剤の含有量が1%以上であれば、より高い赤外線吸収効果が表れ、80%以下であれば、可視光線をより透過できる。同様の観点から、無機赤外線吸収剤の含有量は、5~50質量%であることがより好ましい。 The content of the inorganic infrared absorber in the infrared absorbing layer is preferably 1 to 80% by mass with respect to the total mass of the infrared absorbing layer. If the content of the inorganic infrared absorber is 1% or more, a higher infrared absorption effect appears, and if it is 80% or less, visible light can be transmitted more. From the same viewpoint, the content of the inorganic infrared absorber is more preferably 5 to 50% by mass.
 また、有機物の赤外線吸収材料としては、ポリメチン系、フタロシアニン系、ナフタロシアニン系、金属錯体系、アミニウム系、イモニウム系、ジイモニウム系、アンスラキノン系、ジチオール金属錯体系、ナフトキノン系、インドールフェノール系、アゾ系、トリアリルメタン系の化合物などが挙げられる。これらの中でも、金属錯体系化合物、アミニウム系化合物(アミニウム誘導体)、フタロシアニン系化合物(フタロシアニン誘導体)、ナフタロシアニン系化合物(ナフタロシアニン誘導体)、ジイモニウム系化合物(ジイモニウム誘導体)、スクワリウム系化合物(スクワリウム誘導体)等が特に好ましく用いられる。 Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds. Among these, metal complex compounds, aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives) Etc. are particularly preferably used.
 赤外線吸収層においては、本発明の効果を奏する範囲内で、上記以外の金属酸化物や、有機系赤外線吸収剤、金属錯体等の他の赤外線吸収剤を含んでもよい。このような他の赤外線吸収剤の具体例としては、たとえば、ジイモニウム系化合物、アルミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物等が挙げられる。 The infrared absorption layer may contain other infrared absorbers such as metal oxides other than those described above, organic infrared absorbers, metal complexes, and the like within the scope of the effects of the present invention. Specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
 赤外線吸収層の厚さは0.1~50μmの範囲が好ましい。赤外線吸収層の厚さが0.1μm以上であれば、赤外線吸収能力がより向上する傾向にあり、一方、50μm以下であれば、塗膜の耐クラック性がより向上する。同様の観点から、赤外線吸収層の厚さは、1~20μmの範囲がより好ましい。 The thickness of the infrared absorbing layer is preferably in the range of 0.1 to 50 μm. If the thickness of the infrared absorbing layer is 0.1 μm or more, the infrared absorbing ability tends to be improved, while if it is 50 μm or less, the crack resistance of the coating film is further improved. From the same viewpoint, the thickness of the infrared absorption layer is more preferably in the range of 1 to 20 μm.
 該赤外線吸収層の形成方法は特に制限されず、たとえば、上記各成分を含む赤外線吸収層用塗布液を調製した後、ワイヤーバー等を用いて塗布液を塗布し、乾燥することにより形成する方法等が挙げられる。 The method for forming the infrared absorbing layer is not particularly limited. For example, a method of forming the infrared absorbing layer coating liquid containing the above components, applying the coating liquid using a wire bar or the like, and drying the coating liquid. Etc.
 なお、光吸収層は、JIS K 5600-5-4:1999に準じた鉛筆硬度がH以上の層である場合は、ハードコート層を兼ねることができる。ハードコート層を兼ねる光吸収層を有する形態は、光学フィルムと一枚の基体とを貼合した光学積層体に用いられ、光吸収層が光学積層体の最外層に配置されることが好ましい。 The light absorption layer can also serve as a hard coat layer when the pencil hardness according to JIS K 5600-5-4: 1999 is H or higher. The form having a light absorption layer that also serves as a hard coat layer is used in an optical laminate in which an optical film and a single substrate are bonded, and the light absorption layer is preferably disposed in the outermost layer of the optical laminate.
 本発明の特に好ましい一形態に係る光学フィルムは、曲面を有する基体への貼合用の光学フィルムである。なお、曲面を有する基体については、後述の光学積層体の説明に詳細を記載する。 The optical film according to a particularly preferred embodiment of the present invention is an optical film for bonding to a substrate having a curved surface. In addition, about the base | substrate which has a curved surface, it describes in detail in description of the optical laminated body mentioned later.
 <光学積層体>
 次いで、本発明の他の形態である光学積層体に用いられる基体について説明する。ここで、光学積層体は、本発明の一形態に係る光学フィルム、および基体を含む。
<Optical laminate>
Next, the substrate used for the optical layered body according to another embodiment of the present invention will be described. Here, the optical laminate includes an optical film according to one embodiment of the present invention and a substrate.
 以下、本形態の光学フィルム全体の構成について、図面を参照しながら説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the configuration of the entire optical film of the present embodiment will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、本発明の光学フィルムを含む光学積層体である合わせガラスの一例を示す概略断面図である。ここで、光学積層体10は、合わせガラスであり、屋外側の曲面を有する基体11、中間層12、光学フィルム13、中間層14、および屋内側の曲面を有する基体15がこの順で積層されてなる。ここで、光学フィルム13は、基材13aが屋内側の曲面を有する基体15側、反射層13bが屋外側の曲面を有する基体11側になるよう配置されてなる。ただし、本発明に係る光学フィルムは、この構造に限定されるものではない。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated glass that is an optical laminate including the optical film of the present invention. Here, the optical laminated body 10 is a laminated glass, and a base body 11 having a curved surface on the outdoor side, an intermediate layer 12, an optical film 13, an intermediate layer 14, and a base body 15 having a curved surface on the indoor side are laminated in this order. It becomes. Here, the optical film 13 is arranged so that the base material 13a is on the base 15 side having a curved surface on the indoor side, and the reflective layer 13b is on the base 11 side having a curved surface on the outdoor side. However, the optical film according to the present invention is not limited to this structure.
 また、図2は、本発明の光学フィルムを含む光学積層体の他の一例を示す概略断面図である。ここで、光学積層体20は、曲面を有する基体21、中間層22、光学フィルム23がこの順に配置されてなる。ここで、光学フィルム23は、基材23aが曲面を有する基体21側、反射層23bが曲面を有する基体21側とは反対側となるよう配置されてなる。ただし、本発明に係る光学フィルムは、この構造に限定されるものではない。 FIG. 2 is a schematic sectional view showing another example of an optical laminate including the optical film of the present invention. Here, the optical layered body 20 is formed by arranging a base 21 having a curved surface, an intermediate layer 22 and an optical film 23 in this order. Here, the optical film 23 is disposed such that the base material 23a is on the side of the base 21 having a curved surface, and the reflection layer 23b is on the side opposite to the side of the base 21 having a curved surface. However, the optical film according to the present invention is not limited to this structure.
 なお、上記図1および図2の構成は一例であり、本発明はこれらに限定されない。 1 and 2 are examples, and the present invention is not limited to these.
 (中間層)
 本発明の一形態に係る光学積層体は、特に図1に示すような合わせガラスにおいて、光学フィルムを中間層でラミネートして基材に貼合することが好ましい。このとき、光学フィルムの両面に中間層をラミネート貼合し、光学フィルムおよび中間層からなる積層体を形成した後、二枚のガラスで前記積層体を圧着して合わせガラスを作製してもよい。
(Middle layer)
The laminated optical glass according to one embodiment of the present invention is preferably laminated with an intermediate layer of an optical film in a laminated glass as shown in FIG. At this time, after laminating the intermediate layer on both surfaces of the optical film to form a laminate composed of the optical film and the intermediate layer, the laminate may be pressure-bonded with two sheets of glass to produce a laminated glass. .
 このとき、中間層は、ガラスと光学フィルムの間に介在され、ガラスと光学フィルムを接着し固定する役割を果たす。典型的には、合わせガラスは、二組の中間層およびガラスで、赤外遮蔽フィルムを、中間層同志が向かい合うようにして挟持する構成である。2つの中間層の構成材料は、同一であっても異なっていてもよい。 At this time, the intermediate layer is interposed between the glass and the optical film and serves to bond and fix the glass and the optical film. Typically, the laminated glass has a configuration in which an infrared shielding film is sandwiched between two sets of intermediate layers and glass so that the intermediate layers face each other. The constituent materials of the two intermediate layers may be the same or different.
 中間層としては、ポリビニルブチラールやエチレン-酢酸ビニルなどの樹脂により構成されているシートであることが好ましい。具体的には可塑性ポリビニルブチラール(積水化学工業株式会社製、三菱モンサント化成株式会社製等)、エチレン-酢酸ビニル共重合体(デュポン株式会社製、武田薬品工業株式会社製 デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー株式会社製 メルセン(登録商標)G)等を用いることができる。 The intermediate layer is preferably a sheet made of a resin such as polyvinyl butyral or ethylene-vinyl acetate. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Kasei Co., Ltd.), ethylene-vinyl acetate copolymer (manufactured by DuPont Co., Ltd., duramin by Takeda Pharmaceutical Co., Ltd.), modified ethylene-acetic acid A vinyl copolymer (Mersen (registered trademark) G manufactured by Tosoh Corporation) or the like can be used.
 この中間層には、添加剤として、たとえば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。特に、窓貼用として使用する場合は、紫外線による光学フィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。 This intermediate layer contains, for example, stabilizers, surfactants, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, and the like as additives. It can also be made. In particular, when used for window sticking, the addition of an ultraviolet absorber is effective for suppressing deterioration of the optical film due to ultraviolet rays.
 合わせガラスに用いる中間膜層の膜厚は、特に限定されるものではないが、合わせガラスとして最小限必要な耐貫通性や経済性等の観点から、好ましくは100~1000μmであり、より好ましくは100~750μm、さらに好ましくは、200~500μmであり、特に好ましくは300~400μmであり、最も好ましくは、350~450μmである。 The film thickness of the interlayer film used for the laminated glass is not particularly limited, but is preferably 100 to 1000 μm, more preferably from the viewpoint of the minimum penetration resistance and economy required for the laminated glass. The thickness is 100 to 750 μm, more preferably 200 to 500 μm, particularly preferably 300 to 400 μm, and most preferably 350 to 450 μm.
 また、本発明に関わる中間層は、あらかじめ光学フィルムに接着層として付与しておくこともできる。かような形態としては、特に図2に示すような光学積層体の構成において、光学フィルムの少なくとも一方の面に中間層である接着層を配置した後、接着層を介して光学フィルムと基体が接合されて光学積層体を構成することが好ましい。 Further, the intermediate layer according to the present invention can be previously provided as an adhesive layer on the optical film. As such a configuration, in particular, in the configuration of the optical laminate as shown in FIG. 2, after an adhesive layer as an intermediate layer is disposed on at least one surface of the optical film, the optical film and the substrate are interposed via the adhesive layer. It is preferable to form an optical layered body by bonding.
 接着層の光学フィルム上への形成方法は、特に制限されず、たとえば、上記粘着剤を含む粘着剤塗布液を調製した後、ワイヤーバー等を用いて光学フィルム上に塗布し、乾燥して接着層付きの光学フィルムを作製する方法等を用いることができる。 The method for forming the adhesive layer on the optical film is not particularly limited. For example, after preparing a pressure-sensitive adhesive coating solution containing the above pressure-sensitive adhesive, it is coated on the optical film using a wire bar or the like, dried and bonded. For example, a method for producing an optical film with a layer can be used.
 光学反射フィルムと基体とを貼り合わせる接着層は、光学フィルムを光線(たとえば日光、熱線など)入射面側に設置することが好ましい。また、本発明の一実施態様に係る光学フィルムの1種である光学フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。また、本発明の一形態係る光学フィルムである赤外遮蔽フィルムを、屋外や車の外側(外貼り用)に設置することは、良好な環境耐久性が得られるため好ましい。 In the adhesive layer for bonding the optical reflection film and the substrate, the optical film is preferably installed on the incident surface side of the light beam (for example, sunlight, heat rays, etc.). In addition, it is preferable to sandwich an optical film, which is a kind of optical film according to an embodiment of the present invention, between a window glass and a substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. In addition, it is preferable to install an infrared shielding film, which is an optical film according to an embodiment of the present invention, outdoors or on the outside of a vehicle (for external application) because good environmental durability can be obtained.
 適用可能な接着層形成材料としては、公知の接着剤を用いることができる。接着剤としては、特に制限されず、たとえば光硬化性樹脂または熱硬化性樹脂を主成分とする接着剤等を用いることができる。また、接着層形成材料としては、粘着剤を用いることもできる。粘着剤としては、紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤がより好ましい。これらの中でも粘着特性やコストの観点から、アクリル系粘着剤がさらに好ましい。アクリル系粘着剤としては、剥離強さの制御が容易なことから、溶剤系のアクリル系粘着剤(アクリル溶剤系粘着剤)であることが好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。 As the applicable adhesive layer forming material, a known adhesive can be used. The adhesive is not particularly limited, and for example, an adhesive mainly composed of a photocurable resin or a thermosetting resin can be used. Moreover, as an adhesive layer forming material, an adhesive can also be used. As an adhesive, what has durability with respect to an ultraviolet-ray is preferable, and an acrylic adhesive or a silicone adhesive is more preferable. Among these, an acrylic pressure-sensitive adhesive is more preferable from the viewpoint of pressure-sensitive adhesive properties and cost. The acrylic pressure-sensitive adhesive is preferably a solvent-based acrylic pressure-sensitive adhesive (acrylic solvent-based pressure-sensitive adhesive) because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
 この接着層には、添加剤として、たとえば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。特に、窓貼用として使用する場合は、紫外線による光学フィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。 This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made. In particular, when used for window sticking, the addition of an ultraviolet absorber is effective for suppressing deterioration of the optical film due to ultraviolet rays.
 (基体)
 基体としては、特に制限されないが、ガラス基板であることが好ましい。ガラス基板に用いられるガラスとしては、無機ガラスおよび有機ガラスが挙げられる。無機ガラスとしては、特に限定されないが、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、熱線吸収板ガラス、着色板ガラスなどの各種無機ガラスなどが挙げられる。また、有機ガラスとしては、特に限定されないが、ポリカーボネート類、ポリスチレン類、ポリメチルメタクリレート類等の樹脂からなるガラス板などが挙げられる。これらの有機ガラス板は、上記樹脂からなるシート形状のものを複数積層してなる積層体であってもよい。
(Substrate)
The substrate is not particularly limited, but is preferably a glass substrate. Examples of the glass used for the glass substrate include inorganic glass and organic glass. The inorganic glass is not particularly limited, and examples thereof include various types of inorganic glass such as float plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, heat ray absorbing plate glass, and colored plate glass. Further, the organic glass is not particularly limited, and examples thereof include glass plates made of resins such as polycarbonates, polystyrenes, polymethyl methacrylates, and the like. These organic glass plates may be a laminate formed by laminating a plurality of sheet-shaped ones made of the resin.
 ガラス基板としては、市販のガラスを用いることができる。ガラスの種類は特に限定されないが、通常、ソーダライムシリカガラスが好適に用いられる。この場合、無色透明ガラスであってよいし、有色透明ガラスであってもよい。 Commercial glass can be used as the glass substrate. Although the kind of glass is not specifically limited, Usually, soda-lime silica glass is used suitably. In this case, it may be a colorless transparent glass or a colored transparent glass.
 光学積層体の構成は、特に制限されないが、たとえば1枚の基体上に本発明の一形態に係る光学フィルムが配置された構成であってもよい。また、2枚以上の基体の間に本発明の一形態に係る光学フィルムが配置された構成からなる合わせガラスであってもよい。本発明の一形態に係る光学積層体としては、合わせガラスであることが好ましい。 The configuration of the optical laminate is not particularly limited, but may be a configuration in which, for example, an optical film according to an embodiment of the present invention is disposed on a single substrate. Moreover, the laminated glass which consists of a structure by which the optical film which concerns on one form of this invention is arrange | positioned between two or more base | substrates may be sufficient. As an optical laminated body which concerns on one form of this invention, it is preferable that it is a laminated glass.
 ここで、光学積層体が2枚の基体を有する合わせガラスである場合、2枚の基体のうち、入射光に近い室外側のガラス基板は、無色透明ガラスであることが好ましい。また、入射光側から遠い室内側のガラス基板は、グリーン系有色透明ガラス、濃色透明ガラスまたは無色透明ガラスであることが好ましい。グリーン系有色透明ガラスは、紫外線吸収性能および赤外線吸収性能を有することが好ましい。これらを用いることにより、室外側でできるだけ日射エネルギーを反射することができ、さらに合わせガラスの日射透過率を小さくすることができるからである。 Here, when the optical laminate is a laminated glass having two substrates, the glass substrate on the outdoor side close to the incident light among the two substrates is preferably a colorless transparent glass. The glass substrate on the indoor side far from the incident light side is preferably green colored transparent glass, dark transparent glass, or colorless transparent glass. The green colored transparent glass preferably has ultraviolet absorption performance and infrared absorption performance. By using these, the solar radiation energy can be reflected as much as possible on the outdoor side, and the solar radiation transmittance of the laminated glass can be further reduced.
 グリーン系有色透明ガラスは、特に限定されないが、たとえば、鉄を含有するソーダライムシリカガラス等が好適に挙げられる。グリーン系有色透明ガラスの一例としては、たとえば、ソーダライムシリカ系の母ガラスに、Fe換算で、全鉄0.3~1質量%を含有するソーダライムシリカガラスが挙げられる。さらに、近赤外領域の波長の光の吸収は全鉄のうちの2価の鉄による吸収が支配的であるため、FeO(2価の鉄)の質量が、Fe換算で、全鉄の20~40質量%であることが好ましい。 Although the green colored transparent glass is not particularly limited, for example, soda lime silica glass containing iron is preferable. An example of the green colored transparent glass is soda lime silica glass containing 0.3 to 1% by mass of total iron in terms of Fe 2 O 3 in a soda lime silica base glass. Furthermore, since the absorption of light in the near-infrared region is dominated by divalent iron out of the total iron, the mass of FeO (divalent iron) is all in terms of Fe 2 O 3. It is preferably 20 to 40% by mass of iron.
 紫外線吸収性能を付与するためには、ソーダライムシリカ系の母ガラスにセリウム等を加える方法が挙げられる。具体的には、実質的に以下の組成のソーダライムシリカガラスを用いるのが好ましい;
 SiO:65~75質量%、Al:0.1~5質量%、NaO+KO:10~18質量%、CaO:5~15質量%、MgO:1~6質量%、Fe換算した全鉄:0.3~1質量%、CeO換算した全セリウムおよびTiO:0.5~2質量%。
In order to impart ultraviolet absorption performance, a method of adding cerium or the like to a soda lime silica base glass can be mentioned. Specifically, it is preferable to use soda lime silica glass having substantially the following composition;
SiO 2 : 65 to 75% by mass, Al 2 O 3 : 0.1 to 5% by mass, Na 2 O + K 2 O: 10 to 18% by mass, CaO: 5 to 15% by mass, MgO: 1 to 6% by mass, Fe 2 O 3 converted total iron: 0.3 to 1% by mass, CeO 2 converted total cerium and TiO 2 : 0.5 to 2% by mass.
 また、濃色透明ガラスは、特に限定されないが、たとえば、鉄を高濃度で含有するソーダライムシリカガラスが好適に挙げられる。 Further, the dark transparent glass is not particularly limited, and for example, soda lime silica glass containing iron at a high concentration is preferably used.
 本発明の一形態に係る光学積層体において、基体の厚さは、1.5~3.0mmであることが好ましい。かような厚さとすることで、光学積層体は車両等の窓用としてより適したものとなる。2枚の基体を有する合わせガラスにおいては、室内側の基体および室外側の基体を等しい厚さにすることも、異なる厚さにすることもできる。2枚の基体を有する合わせガラスを自動車窓に用いるにあたっては、たとえば、室内側の基体および室外側の基体を、ともに2.0mmの厚さにしたり、2.1mmの厚さにしたりすることも可能である。 In the optical layered body according to one embodiment of the present invention, the thickness of the substrate is preferably 1.5 to 3.0 mm. By setting it as such thickness, an optical laminated body becomes a more suitable thing for windows, such as a vehicle. In a laminated glass having two substrates, the indoor substrate and the outdoor substrate can have the same thickness or different thicknesses. When a laminated glass having two substrates is used for an automobile window, for example, both the indoor substrate and the outdoor substrate may be 2.0 mm thick or 2.1 mm thick. Is possible.
 また、2枚の基体を有する合わせガラスを自動車窓に用いるにあたっては、たとえば、室内側の基体の厚さを2mm未満、室外側の基体の厚さを2mm強とすることで、合わせガラスの総厚さを小さくし、かつ車外側からの外力に抗することができる。 Further, when using laminated glass having two substrates for an automobile window, for example, the thickness of the indoor substrate is less than 2 mm and the thickness of the outdoor substrate is slightly more than 2 mm. The thickness can be reduced and the external force from the outside of the vehicle can be resisted.
 基体は、平板状でも曲面を有していてもよい。本発明の一形態においては、光学積層体が、曲面を有する基体を含むことが好ましい。曲面を有する場合、光学フィルムの端の部分にしわやうねりが生じやすくなるが、本発明の一形態に係る光学フィルムではその抑制効果が大きいので、光学フィルムを、曲面を有する基体を含む光学積層体に好ましく適用できる。 The substrate may be flat or have a curved surface. In one form of this invention, it is preferable that an optical laminated body contains the base | substrate which has a curved surface. In the case of having a curved surface, wrinkles and undulations are likely to occur in the end portion of the optical film, but the optical film according to one embodiment of the present invention has a great suppression effect, so the optical film includes an optical laminate including a substrate having a curved surface. It can be preferably applied to the body.
 本願明細書において、曲面とは、曲率半径Rが無限大ではない面をいう。曲面を有する合わせガラスとは、合わせガラスの少なくとも一部分に曲面を有していることを意味する。 In this specification, a curved surface refers to a surface whose curvature radius R is not infinite. The laminated glass having a curved surface means that at least a part of the laminated glass has a curved surface.
 車両、特に自動車窓は曲面を有していることが多いため、基体の形状は湾曲形状であることが多い。 Since vehicles, particularly automobile windows, often have curved surfaces, the shape of the base is often curved.
 曲面を有する基体の一例としては、湾曲したガラス板が挙げられる。湾曲したガラス板は、フロート法によるソーダライムガラスを軟化点以上の温度に加熱し、曲げ加工されて得られ、3次元的に湾曲したガラス板の使用が簡便である。 An example of a substrate having a curved surface is a curved glass plate. The curved glass plate is obtained by bending soda-lime glass heated to a temperature equal to or higher than the softening point by a float method, and the use of a three-dimensional curved glass plate is simple.
 3次元的に湾曲した基体の形状としては、たとえば、球面、楕円球面、または、自動車の前面ガラスなどのような曲率半径が場所によって異なる基体等が挙げられる。曲面を有する基体の円直径φは、特に制限されないが、100~500mmであることが好ましい。円直径φが100~500mmであると自動車窓などの曲率のある曲面ガラスと対応したシワ評価ができるためより好ましい。同様の観点から、より好ましくは100~300mmである。 Examples of the shape of the three-dimensionally curved base include a spherical base, an elliptical spherical base, and a base having a different radius of curvature depending on the location, such as a front glass of an automobile. The circular diameter φ of the substrate having a curved surface is not particularly limited, but is preferably 100 to 500 mm. A circular diameter φ of 100 to 500 mm is more preferable because wrinkle evaluation corresponding to curved glass with a curvature such as an automobile window can be performed. From the same viewpoint, the thickness is more preferably 100 to 300 mm.
 また、曲面を有する基体の曲率半径Rは、特に制限はないが、0.1~3.0mであることが好ましい。曲率半径Rが0.1mより大きいと、一般に合わせ加工において、光学フィルムのしわがより生じ難くなる。同様の観点から、より好ましくは0.9~3mである。 Further, the radius of curvature R of the substrate having a curved surface is not particularly limited, but is preferably 0.1 to 3.0 m. If the radius of curvature R is greater than 0.1 m, the wrinkles of the optical film are generally less likely to occur in the mating process. From the same viewpoint, it is more preferably 0.9 to 3 m.
 この場合、2枚の基体を有する合わせガラスに含まれる光学フィルムは、室外側ガラス基板の凹面側に設けられることが好ましい。 In this case, the optical film included in the laminated glass having two substrates is preferably provided on the concave surface side of the outdoor glass substrate.
 更に、必要に応じて3枚以上のガラス基板を用いることもできる。 Furthermore, three or more glass substrates can be used as necessary.
 (光学積層体の製造方法)
 本発明の光学積層体の製造方法の一例として、2枚の基体を有する合わせガラスの製造方法を記載するが、本発明はこれに限定されるものではない。
(Method for producing optical laminate)
As an example of the method for producing an optical laminate of the present invention, a method for producing a laminated glass having two substrates is described, but the present invention is not limited to this.
 前記光学フィルムは、2枚の基体の間に挟んで合わせガラスとすることができる。合わせガラスの製造方法は、特に制限されないが、たとえば、光学フィルムを中間層(たとえば、ポリビニルブチラールからなるシート等)で両面ラミネートして得られた積層体を2枚の基体の間に挟み込んで基体に挟持された積層体を製造する工程と、前記基体に挟持された積層体を加熱しながら接合する工程を含むことが好ましい。詳細な製造方法としては、公知の合わせガラス作製方法を適宜用いることができる。 The optical film may be laminated glass between two substrates. The method for producing the laminated glass is not particularly limited. For example, a laminated body obtained by laminating an optical film on both sides with an intermediate layer (for example, a sheet made of polyvinyl butyral, etc.) is sandwiched between two substrates. It is preferable to include a step of manufacturing a laminated body sandwiched between and a step of joining the laminated body sandwiched between the substrates while heating. As a detailed manufacturing method, a known laminated glass manufacturing method can be appropriately used.
 一般的には、光学フィルムを2枚のガラス基板に挟んだ後、加熱処理と加圧処理(ゴムローラーでしごく等)とを数回繰り返し、最後にオートクレーブ等を利用して加圧条件下での加熱処理を行い接合するという方法がとられる。 In general, after sandwiching an optical film between two glass substrates, heat treatment and pressure treatment (such as squeezing with a rubber roller) are repeated several times, and finally, under pressure conditions using an autoclave or the like. The method of joining by performing the heat treatment of is taken.
 光学フィルムが接していない基体に挟持された積層体を、加熱しながら圧着することが好ましい。前記基体に挟持された積層体と期待との接合は、たとえば、真空バッグなどで減圧下において、温度80~120℃、時間30~60分で予備圧着した後、オートクレーブ中、1.0~1.5MPaの加圧下で100~150℃、好ましくは120~150℃の温度で接合し、2枚の基体に積層体が挟まれた合わせガラスとすることができる。また、粘着剤等を用いて貼り合わせてもよい。このとき、1.0~1.5MPaの加圧下で100~150℃、好ましくは120~150℃の温度での加熱圧着の時間は、20~90分であることが好ましい。 It is preferable to pressure-bond the laminate sandwiched between the substrates that are not in contact with the optical film while heating. Joining of the laminate sandwiched between the base and the expectation is performed by, for example, pre-pressing in a vacuum bag or the like under reduced pressure at a temperature of 80 to 120 ° C. for 30 to 60 minutes, and then in an autoclave for 1.0 to 1 The laminated glass can be obtained by bonding at a temperature of 100 to 150 ° C., preferably 120 to 150 ° C. under a pressure of 5 MPa, and a laminate is sandwiched between two substrates. Moreover, you may stick together using an adhesive. At this time, the time for thermocompression bonding at a temperature of 100 to 150 ° C., preferably 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa is preferably 20 to 90 minutes.
 加熱圧着終了後、放冷の仕方については特に制限はなく、適宜圧力を開放しながら放冷して、合わせガラスを得てもよい。本発明では、加熱圧着終了後、圧力を保持した状態で降温を行うことが、得られる合わせガラスのしわや割れをさらに改善する観点から好ましい。ここで、圧力を保持した状態で降温するとは、加熱圧着時(好ましくは150℃)の装置内部圧力から、40℃のときの装置内部圧力が加熱圧着時の75~100%となるように降温することを意味する。 After the thermocompression bonding, there is no particular limitation on the method of cooling, and the laminated glass may be obtained by cooling while releasing the pressure as appropriate. In the present invention, after completion of thermocompression bonding, it is preferable to lower the temperature while maintaining the pressure from the viewpoint of further improving wrinkles and cracks of the obtained laminated glass. Here, decreasing the temperature while maintaining the pressure means decreasing the temperature from the internal pressure of the apparatus at the time of thermocompression bonding (preferably 150 ° C.) so that the internal pressure of the apparatus at 40 ° C. is 75 to 100% of that at the thermocompression bonding. It means to do.
 圧力を保持した状態で降温する方法としては、40℃まで降温したときの圧力が上記範囲内であれば特に制限はないが、圧力装置内部圧力が温度減少に伴って自然と低下していくように装置内部から圧力を漏らさずに降温する態様や、装置内部圧力が温度減少に伴って減少しないように外部からさらに加圧しながら降温する態様が好ましい。圧力を保持した状態で降温する場合、100~150℃、好ましくは120~150℃で加熱圧着した後、40℃まで1~5時間かけて放冷することが好ましい。 The method of lowering the temperature while maintaining the pressure is not particularly limited as long as the pressure when the temperature is lowered to 40 ° C. is within the above range, but the pressure inside the pressure device naturally decreases as the temperature decreases. In addition, a mode in which the temperature is lowered without leaking pressure from the inside of the apparatus or a mode in which the temperature is lowered while further pressurizing from the outside so that the internal pressure of the apparatus does not decrease as the temperature decreases is preferable. In the case of lowering the temperature while maintaining the pressure, it is preferable to heat-press at 100 to 150 ° C., preferably 120 to 150 ° C., and then cool to 40 ° C. over 1 to 5 hours.
 圧力を保持した状態で降温を行った後、次いで圧力を開放する工程を含むことが好ましい。具体的には、圧力を保持した状態で降温を行った後、オートクレーブ内の温度が40℃以下になった後に圧力を開放して降温することが好ましい。 It is preferable to include a step of releasing the pressure after the temperature is lowered with the pressure held. Specifically, it is preferable to lower the temperature by releasing the pressure after the temperature in the autoclave becomes 40 ° C. or lower after the temperature is lowered while the pressure is maintained.
 以上より、前記合わせガラスの製造方法は、合わせガラスの構成層を積層する工程と、その後1.0~1.5MPaの加圧下で120~150℃の温度で加熱圧着し接合する工程と、圧力を保持した状態で降温を行う工程と、圧力を開放する工程を含むことが好ましい。 From the above, the method for producing the laminated glass includes a step of laminating the constituent layers of the laminated glass, a step of bonding by thermocompression bonding at a temperature of 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa, It is preferable to include a step of lowering the temperature while holding the pressure and a step of releasing the pressure.
 なお、他の構成の光学積層体、たとえば1枚の基体上に本発明の一形態に係る光学フィルムが配置された構成の光学積層体等の製造においても、基体と光学フィルムの加熱圧着を行うことが一般的である。これより、他の構成の光学積層体についても、本発明の一形態に係る光学フィルムを用いることにより、シワの発生が抑制され、優れた反射性能を有する光学積層体を得ることができる。 Note that, in manufacturing an optical laminate having another configuration, for example, an optical laminate having a configuration in which an optical film according to an embodiment of the present invention is disposed on a single substrate, the substrate and the optical film are subjected to thermocompression bonding. It is common. From this, also about the optical laminated body of another structure, by using the optical film which concerns on one form of this invention, generation | occurrence | production of a wrinkle is suppressed and the optical laminated body which has the outstanding reflective performance can be obtained.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行われた。さらに、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, and unless otherwise specified, measurement of operation and physical properties was performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH. Further, unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 <光学フィルムの作製>
 (実施例1)
 (ポリエステルチップの作製)
 ジメチルテレフタレート100部、エチレングリコール70部、および酢酸カルシウム一水塩0.07部を反応器にとり、加熱昇温すると共にメタノール留去させエステル交換反応を行い、反応開始後、約4時間半を要して230℃に昇温し、実質的にエステル交換反応を終了した。次に燐酸0.04部および三酸化アンチモン0.035部を添加し、常法に従って重合した。すなわち、反応温度を徐々に上げて、最終的に280℃とし、一方、圧力は徐々に減じて、最終的に0.05mmHgとした。4時間後、反応を終了し、常法に従い、チップ化してポリエステルチップを得た。このポリエステルチップはポリエチレンテレフタレートチップであった。
<Production of optical film>
(Example 1)
(Production of polyester chip)
Take 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and 0.07 part of calcium acetate monohydrate in a reactor, heat up and evaporate methanol to conduct transesterification, and take about 4 and a half hours after starting the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, 0.04 part of phosphoric acid and 0.035 part of antimony trioxide were added and polymerized in accordance with a conventional method. That is, the reaction temperature was gradually raised to finally 280 ° C., while the pressure was gradually reduced to finally 0.05 mmHg. After 4 hours, the reaction was completed, and chips were obtained according to a conventional method to obtain polyester chips. This polyester chip was a polyethylene terephthalate chip.
 (ポリエステルフィルム基材の作製)
 上記ポリエステルチップを原料とし、溶融押出機により溶融押出して無定形シートを得た。ついで、冷却したキャスティングドラム上に、シートを共押出し冷却固化させて無配向シートを得た。次いで、得られた無配向シートを、90℃にて縦方向に3.6倍延伸した。さらに、縦延伸後のシートの両面に、水系易接着塗布液(下引層塗布液)を、それぞれの面で5g/mの塗布量で塗布した。さらに、水系易接着塗布液塗布後のシートをテンター内で予熱工程を経て90℃で横方向に4倍延伸し、その後190℃で10秒間の熱処理を行いうことで、合計厚さ50μmの、両面に水系易接着樹脂塗布層(下引層)を有するポリエステルフィルム基材を得た。ここで、水系易接着塗布液に用いた水系易接着樹脂は、水溶性ポリエステル樹脂であった。
(Production of polyester film substrate)
The polyester chip was used as a raw material and melt-extruded by a melt extruder to obtain an amorphous sheet. Subsequently, the sheet was coextruded on a cooled casting drum and solidified by cooling to obtain a non-oriented sheet. Next, the obtained non-oriented sheet was stretched 3.6 times in the longitudinal direction at 90 ° C. Furthermore, a water-based easy-adhesion coating solution (undercoat layer coating solution) was applied to both surfaces of the sheet after longitudinal stretching at a coating amount of 5 g / m 2 on each surface. Furthermore, the sheet after application of the water-based easy-adhesion coating solution is subjected to a preheating step in the tenter and is stretched 4 times in the transverse direction at 90 ° C., and then subjected to heat treatment at 190 ° C. for 10 seconds, with a total thickness of 50 μm A polyester film substrate having an aqueous easy-adhesive resin coating layer (undercoat layer) on both sides was obtained. Here, the water-based easy-adhesion resin used for the water-based easy-adhesion coating solution was a water-soluble polyester resin.
 (高屈折率層用塗布液1の調製)
 15.0質量%の酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が、6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
(Preparation of coating solution 1 for high refractive index layer)
After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass of titanium oxide sol (SRD-W, volume average particle diameter: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), 90 Heated to ° C. Next, 0.5 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 0.5 mass%) was gradually added. Then, heat treatment was performed at 175 ° C. for 18 hours in an autoclave, and after cooling, the solution was concentrated with an ultrafiltration membrane, whereby a titanium dioxide sol (hereinafter referred to as SiO 2) having a solid content concentration of 6% by mass attached to the surface. , Silica-attached titanium dioxide sol) (volume average particle size: 9 nm).
 このようにして得られた20質量%のシリカ付着二酸化チタンゾル113質量部に対して、1.92質量%のクエン酸水溶液を48質量部加え、8質量%のポリビニルアルコール水溶液(株式会社クラレ製、PVA-117、重合度1700、ケン化度:97.5~99モル%)を113質量部加えて撹拌し、最後に5質量%の界面活性剤水溶液(ソフタゾリン(登録商標)LSB-R、川研ファインケミカル株式会社製)0.4質量部を加えて、高屈折率層用塗布液1を調製した。 48 mass parts of 1.92 mass% citric acid aqueous solution is added with respect to 113 mass parts of 20 mass% silica adhesion titanium dioxide sol obtained in this way, and 8 mass% polyvinyl alcohol aqueous solution (made by Kuraray Co., Ltd. 113 parts by mass of PVA-117, polymerization degree 1700, saponification degree: 97.5-99 mol%) was added and stirred, and finally 5% by mass of a surfactant aqueous solution (SOFTAZOLINE® LSB-R, Kawasaki) 0.4 parts by mass of Ken Fine Chemical Co., Ltd.) was added to prepare a coating solution 1 for a high refractive index layer.
 (低屈折率層用塗布液1の調製)
 10質量%の酸性コロイダルシリカ水分散液(スノーテックス(登録商標)OXS、一次粒径:5.4nm、日産化学工業株式会社製)31質量部を40℃に加熱し、3質量%のホウ酸水溶液3質量部を加え、さらに6質量%のポリビニルアルコール水溶液(PVA-224、重合度:2400、ケン化度:87モル%、クラレ株式会社製)20質量部、6質量%の水分散性アクリル樹脂分散液1(AE120A、粒子径=55nm、株式会社イーテック製)6質量部、および5質量%の界面活性剤水溶液(ソフタゾリン(登録商標)LSB-R、川研ファインケミカル株式会社製)1質量部を40℃でこの順に添加して、低屈折率層用塗布液1を調製した。
(Preparation of coating solution 1 for low refractive index layer)
10 mass% acidic colloidal silica aqueous dispersion (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) 31 mass parts was heated to 40 ° C., and 3 mass% boric acid. 3 parts by weight of an aqueous solution was added, and further 6 parts by weight of a polyvinyl alcohol aqueous solution (PVA-224, polymerization degree: 2400, saponification degree: 87 mol%, manufactured by Kuraray Co., Ltd.), 20 parts by weight, 6% by weight of water-dispersible acrylic Resin dispersion 1 (AE120A, particle size = 55 nm, manufactured by Etec Co., Ltd.) 6 parts by mass, and 5% by mass of a surfactant aqueous solution (Softazoline (registered trademark) LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) 1 part by mass Were added in this order at 40 ° C. to prepare a coating solution 1 for a low refractive index layer.
 (反射層の形成方法)
 60層重層塗布可能なスライドホッパー塗布装置を用いて、高屈折率層用塗布液1および低屈折率層用塗布液2を40℃に保温し、40℃に加温した160mm幅のポリエステルフィルム基材上に、最下層と最上層は低屈折率層として、低屈折率層と高屈折率層とがそれぞれ交互に配置されるように、乾燥時の膜厚が、最下層の低屈折率層は220nmとし、その他の層については、低屈折率層は各層150nm、高屈折率層は各層130nmとなるように、計53層の同時多層塗布を行った。塗布直後、10℃の冷風を吹き付けてセット(増粘)させた。セット(増粘)完了後、60℃の温風を吹き付けて乾燥させて、計53層からなる誘電多層膜の反射層(7.5μm)を有する光学フィルム1を作製した。
(Method for forming reflective layer)
Using a slide hopper coating apparatus capable of 60-layer coating, a high refractive index layer coating liquid 1 and a low refractive index layer coating liquid 2 are kept at 40 ° C. and heated to 40 ° C., and a polyester film base having a width of 160 mm On the material, the lowermost layer and the uppermost layer are low refractive index layers, and the low refractive index layer and the low refractive index layer are alternately disposed so that the low refractive index layer and the lower refractive index layer are alternately arranged. A total of 53 layers were simultaneously applied so that the low refractive index layer was 150 nm and the high refractive index layer was 130 nm. Immediately after application, cold air of 10 ° C. was blown to set (thickening). After completion of the setting (thickening), hot air of 60 ° C. was blown and dried to produce an optical film 1 having a dielectric multilayer reflective layer (7.5 μm) consisting of a total of 53 layers.
 (実施例2~7、比較例1、2)
 各基材として、ポリエステルフィルムの膜厚、および熱処理温度を適宜変更した以外は実施例1と同様にして、各基材を準備した。また、水分散性アクリル樹脂分散液の添加量を変更した以外は低屈折率層用塗布液1と同様にして調整した低屈折率層用塗布液2~9を準備した。そして、各基材上に、低屈折率層用塗布液1の替わりに低屈折率層用塗布液2~9を用いたこと、および反射層積層数を適宜変更したこと以外は実施例1と同様にして、各反射層を形成し、実施例2~7に係る光学フィルム2~7、ならびに比較例1および2に係る光学フィルム8および9を作製した。ここで、反射層の高温における貯蔵弾性率(E’)については、水分散性アクリル樹脂分散液の添加量により変更可能であり、添加量を減らすことにより、高温における貯蔵弾性率(E’)を増加させることができる。また、添加量を増やすことにより、高温における貯蔵弾性率(E’)を低下させることができる。水分散性アクリル樹脂分散液1の添加量、および各光学フィルムの特徴ならびに性能評価結果を下記表1に示す。
(Examples 2 to 7, Comparative Examples 1 and 2)
Each substrate was prepared in the same manner as in Example 1 except that the thickness of the polyester film and the heat treatment temperature were appropriately changed as each substrate. Also, low refractive index layer coating solutions 2 to 9 prepared in the same manner as the low refractive index layer coating solution 1 except that the amount of the water-dispersible acrylic resin dispersion was changed were prepared. Then, Example 1 is used except that the low refractive index layer coating liquids 2 to 9 are used in place of the low refractive index layer coating liquid 1 on each substrate, and that the number of reflection layers laminated is appropriately changed. Similarly, each reflective layer was formed, and optical films 2 to 7 according to Examples 2 to 7 and optical films 8 and 9 according to Comparative Examples 1 and 2 were produced. Here, the storage elastic modulus (E ′) at a high temperature of the reflective layer can be changed by the addition amount of the water-dispersible acrylic resin dispersion, and the storage elastic modulus (E ′) at a high temperature can be reduced by reducing the addition amount. Can be increased. Moreover, the storage elastic modulus (E ') in high temperature can be reduced by increasing the addition amount. Table 1 below shows the amount of the water-dispersible acrylic resin dispersion 1, the characteristics of each optical film, and the performance evaluation results.
 <光学積層体の作製>
 室内側ガラスとなる曲面形状円形レンズガラス(円形レンズ直径φ150mm、ガラス曲率半径R200mm)、室内側の中間層となる厚さ380μmのポリビニルブチラールからなるシート、光学フィルム1、室外側の中間層となる厚さ380μmのポリビニルブチラールからなるシート、室外側ガラスとなる曲面形状円形レンズガラス(円形レンズ直径φ150mm、ガラス曲率半径R200mm)をこの順に積層し、ガラスのエッジ部からはみ出した余剰部分を除去した後、150℃で30分間加熱し、加圧脱気して接合処理を行い、実施例1の光学フィルムを用いた光学積層体として合わせガラス1を作製した。ここで、前記積層は、室内側の中間層となるポリビニルブチラールからなるシート、光学フィルムおよび室外側の中間層となるポリビニルブチラールからなるシートを、ラミネータにより圧着して積層体を形成したのち、この積層体を室内側ガラスとなる曲面形状円形レンズガラス、および室外側ガラスとなる曲面形状円形レンズガラスで挟み込むことで行った。なお光学フィルムは基材が室内側となるように配置した。
<Production of optical laminate>
A curved circular lens glass (circular lens diameter φ150 mm, glass curvature radius R200 mm) serving as the indoor side glass, a sheet of polyvinyl butyral having a thickness of 380 μm serving as the intermediate layer on the indoor side, the optical film 1, and the intermediate layer on the outdoor side After laminating a sheet made of polyvinyl butyral having a thickness of 380 μm and a curved circular lens glass (circular lens diameter φ150 mm, glass radius of curvature R200 mm) as an outdoor glass in this order, and removing an excess portion protruding from the edge portion of the glass The laminated glass 1 was produced as an optical laminate using the optical film of Example 1 by heating at 150 ° C. for 30 minutes, pressurizing and deaerating to perform bonding treatment. Here, the lamination is performed by pressing a sheet made of polyvinyl butyral serving as an intermediate layer on the indoor side, an optical film, and a sheet consisting of polyvinyl butyral serving as the intermediate layer on the outdoor side with a laminator to form a laminate. The laminate was sandwiched between a curved circular lens glass serving as an indoor glass and a curved circular lens glass serving as an outdoor glass. The optical film was arranged so that the base material was on the indoor side.
 また、合わせガラス1の作製と同様にして、光学フィルム1の代わりに実施例2~7に係る光学フィルム2~7、ならびに比較例1および2に係る光学フィルム8および9を用いて、合わせガラス2~9を作製した。 Further, in the same manner as in the production of the laminated glass 1, instead of the optical film 1, the optical films 2 to 7 according to Examples 2 to 7 and the optical films 8 and 9 according to Comparative Examples 1 and 2 were used. 2 to 9 were produced.
 <評価>
 (反射層の膜厚測定)
 反射層の膜厚は、前記作製した光学フィルムの断層を切削し、その断面を、電子顕微鏡(FE-SEM、S-5000H型、株式会社日立製作所製)を用いて、加速電圧2.0kVの条件で1cm長さが観察できるように視野数を選び観察した。次いで得られた画像を、デジタル化し、コントラストを調整する画像処理を施した。その後、膜厚を各層毎に測定して、反射層の膜厚を得た。なお、膜厚は、1000箇所の測定結果の平均値とした。
<Evaluation>
(Reflective layer thickness measurement)
The thickness of the reflective layer was determined by cutting a tom of the produced optical film, and using an electron microscope (FE-SEM, S-5000H type, manufactured by Hitachi, Ltd.) for the cross section. The number of fields was selected and observed so that a 1 cm length could be observed under the conditions. Next, the obtained image was digitized and subjected to image processing for adjusting the contrast. Then, the film thickness was measured for each layer, and the film thickness of the reflective layer was obtained. In addition, the film thickness was made into the average value of the measurement result of 1000 places.
 (反射層測定用試料の作製)
 反射層のみをエタノールと水の混合溶媒で溶解後、溶解液を回収した。次いで、その溶解液を離型フィルム上に、乾燥後の膜厚が4μmとなるよう製膜し、離形フィルムを剥離して得られた単膜を反射層測定用試料とした。この反射層測定用試料の熱収縮率、および高温における貯蔵弾性率(E’)を測定した。なお、本測定では、各光学フィルムの反射層の膜厚範囲では、膜厚が変化しても反射層測定用試料の貯蔵弾性率(E’)および熱収縮率の値は変化しないことを確認しているため、すべての光学フィルムについての反射層測定用試料を、膜厚4μmとして作製した。以下の高温における貯蔵弾性率(E’)および熱収縮率の測定においては、反射層測定試料を用いての測定結果を、反射層の測定結果として取り扱うこととした。
(Preparation of reflective layer measurement sample)
Only the reflective layer was dissolved in a mixed solvent of ethanol and water, and the solution was recovered. Subsequently, the solution was formed on a release film so that the film thickness after drying was 4 μm, and a single film obtained by peeling the release film was used as a sample for measuring a reflective layer. The thermal contraction rate and the storage elastic modulus (E ′) at a high temperature of this reflective layer measurement sample were measured. In this measurement, in the thickness range of the reflective layer of each optical film, it was confirmed that the values of the storage elastic modulus (E ′) and the heat shrinkage rate of the reflective layer measurement sample did not change even when the thickness changed. Therefore, the reflective layer measurement samples for all the optical films were prepared with a film thickness of 4 μm. In the measurement of the storage elastic modulus (E ′) and the heat shrinkage rate at the following high temperatures, the measurement results using the reflection layer measurement sample were handled as the measurement results of the reflection layer.
 (光学フィルムおよび基材の損失係数(tanδ)の測定)
 各光学フィルムを準備した。また、各光学フィルム作製に用いた基材と同様の基材をそれぞれ準備した。
(Measurement of loss factor (tan δ) of optical film and substrate)
Each optical film was prepared. Moreover, the base material similar to the base material used for each optical film preparation was prepared, respectively.
 光学フィルムおよび基材の貯蔵弾性率(E’)と損失弾性率(E”)を、JIS K7244-1:1998に基づいて、動的粘弾性自動測定器(エーアンドディー株式会社製 DDV-01GP)を用い、引張りモード、周波数10Hz、昇温速度5℃/min、最小張力/圧縮比49mN、張力/圧縮力ゲイン1.0、力振幅初期値49mNで、25℃から250℃まで測定することにより評価した。次いで、得られた結果より、E”/E’を算出することにより損失係数(tanδ)を求めた。なお、測定は、フィルムの機械方向、すなわち光学フィルムおよび基材の長手方向とそれに直交する方向について行い、その平均値を評価結果とした。各実施例および比較例の150℃における損失係数(tanδ)の値を表1に示す。 Based on JIS K7244-1: 1998, the storage elastic modulus (E ′) and loss elastic modulus (E ″) of the optical film and substrate are measured based on a dynamic viscoelasticity automatic measuring instrument (DDV-01GP manufactured by A & D Corporation). ), Measuring from 25 ° C. to 250 ° C. in tension mode, frequency 10 Hz, heating rate 5 ° C./min, minimum tension / compression ratio 49 mN, tension / compression force gain 1.0, and force amplitude initial value 49 mN. Next, the loss factor (tan δ) was obtained by calculating E ″ / E ′ from the obtained results. The measurement was performed in the machine direction of the film, that is, the longitudinal direction of the optical film and the base material and the direction orthogonal thereto, and the average value was used as the evaluation result. Table 1 shows the value of the loss factor (tan δ) at 150 ° C. in each example and comparative example.
 (基材および反射層の高温における貯蔵弾性率(E’)の測定)
 各光学フィルムの作製に用いた基材と同様の基材をそれぞれ準備した。また、各光学フィルムに用いられる反射層に対応する反射層測定用試料をそれぞれ準備した。
(Measurement of storage elastic modulus (E ′) of substrate and reflective layer at high temperature)
A substrate similar to the substrate used for the production of each optical film was prepared. Moreover, the reflection layer measurement sample corresponding to the reflection layer used for each optical film was prepared, respectively.
 基材および反射層測定用試料の貯蔵弾性率(E’)を、上記損失係数(tanδ)の測定において貯蔵弾性率(E’)を評価した方法と同様の方法を用いて評価した。なお、基材の測定は、フィルムの機械方向、すなわち基材の長手方向とそれに直交する方向について行い、その平均値を評価結果とした。反射層測定用試料は、任意の互いに直交する2方向について測定を行い、その平均値を評価結果とした。得られた値より、基材と反射層の貯蔵弾性率(E’)の差の絶対値を算出した。各実施例および比較例の150℃における貯蔵弾性率(E’)の値、および基材と反射層との貯蔵弾性率(E’)の差の絶対値を表1に示す。 The storage elastic modulus (E ′) of the substrate and the reflection layer measurement sample was evaluated using the same method as the method for evaluating the storage elastic modulus (E ′) in the measurement of the loss factor (tan δ). The measurement of the substrate was performed in the machine direction of the film, that is, the longitudinal direction of the substrate and the direction orthogonal thereto, and the average value was used as the evaluation result. The reflective layer measurement sample was measured in two arbitrary directions orthogonal to each other, and the average value was taken as the evaluation result. From the obtained value, the absolute value of the difference in storage elastic modulus (E ′) between the substrate and the reflective layer was calculated. Table 1 shows the value of the storage elastic modulus (E ′) at 150 ° C. of each Example and Comparative Example, and the absolute value of the difference in the storage elastic modulus (E ′) between the substrate and the reflective layer.
 (基材および反射層の熱収縮率の測定)
 各光学フィルムの作製に用いた基材と同様の各基材をそれぞれ準備した。また、各光学フィルムに用いられる反射層に対応する各反射層測定用試料をそれぞれ準備した。
(Measurement of thermal shrinkage of base material and reflective layer)
Each base material similar to the base material used for preparation of each optical film was prepared. Moreover, each reflective layer measurement sample corresponding to the reflective layer used for each optical film was prepared.
 基材および反射層測定用試料を温度23℃、相対湿度55%RHの環境にて、24時間保存した後、幅方向に100mm間隔で二つの印を付け、無荷重状態で二つの印の間の距離L1を、顕微鏡等を用いて測定した。続いて、150℃の環境のオーブン内に試料を吊るし、30分間放置した。30分間経過後、オーブンから当該試料を取り出し、再び温度23℃、相対湿度55%の環境で24時間保存した。次いで、無荷重状態の試料の二つの印の間の距離L2を、顕微鏡等を用いて測定した。測定した距離L1およびL2から、下記式により試料の熱収縮率を算出した;
  熱収縮率(%)=((L1-L2)/L1)×100
 なお、基材の測定は、フィルムの機械方向、すなわち基材の長手方向とそれに直交する方向について行い、その平均値を評価結果とした。反射層測定用試料は、任意の互いに直交する2方向について測定を行い、その平均値を評価結果とした。各実施例および比較例の150℃30分経時における熱収縮率の値を表1に示す。
After the substrate and the reflective layer measurement sample are stored for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH, two marks are made at intervals of 100 mm in the width direction, and between the two marks in an unloaded state The distance L1 was measured using a microscope or the like. Subsequently, the sample was hung in an oven at 150 ° C. and left for 30 minutes. After 30 minutes, the sample was taken out of the oven and stored again for 24 hours in an environment at a temperature of 23 ° C. and a relative humidity of 55%. Next, the distance L2 between the two marks on the unloaded sample was measured using a microscope or the like. From the measured distances L1 and L2, the thermal contraction rate of the sample was calculated by the following formula;
Thermal contraction rate (%) = ((L1-L2) / L1) × 100
The measurement of the substrate was performed in the machine direction of the film, that is, the longitudinal direction of the substrate and the direction orthogonal thereto, and the average value was used as the evaluation result. The reflective layer measurement sample was measured in two arbitrary directions orthogonal to each other, and the average value was taken as the evaluation result. Table 1 shows the values of the heat shrinkage rate of each example and comparative example over time at 150 ° C. for 30 minutes.
 <シワの評価>
 各光学フィルムを用いて、各光学積層体の作製を100回同様にして行い、150℃30分間の加熱加工の際に発生するシワの頻度および発生位置を目視で、下記の基準に従って評価した。なお、評価は〇以上が実用的な特性であると判断した。この結果を表1に示す;
 ◎:シワが全く発生しない、
 ○:発生頻度は5回以内であり、発生位置は全て端部10mm未満の位置に存在する、
 △:発生頻度は5回以内であり、発生位置が端部10mm以上の位置に達するものが存在する、
 ×:発生頻度は5回を越え、発生位置が端部10mm以上の位置に達するものが存在する。
<Evaluation of wrinkles>
Using each optical film, each optical laminate was prepared in the same manner 100 times, and the frequency and generation position of wrinkles generated during heating at 150 ° C. for 30 minutes were visually evaluated according to the following criteria. In addition, the evaluation judged that ○ or more is a practical characteristic. The results are shown in Table 1;
A: Wrinkles are not generated at all.
○: Occurrence frequency is 5 times or less, and all occurrence positions are present at positions less than 10 mm at the end.
Δ: Occurrence frequency is 5 times or less, and there is an occurrence position where the occurrence position reaches a position of 10 mm or more at the end,
X: Occurrence frequency exceeds 5 times, and the occurrence position reaches a position where the end portion is 10 mm or more.
 <赤外反射率性能の評価>
 各光学フィルムを用いて製造した各光学積層体について、ガラスの中心部と端部を30mm四方に切り出して、その熱線(赤外線)反射率を、分光光度計V700(日本分光株式会社製)を用いて、800~2000nmまでの波長域を測定し、その領域の平均赤外反射率を算出した。得られた測定結果から中心部と端部との熱線透過率差を算出し、下記の基準に従って評価した。なお、評価は〇以上が実用的な特性であると判断した。この結果を表1に示す。;
 ◎:中心部と端部との熱線(赤外線)反射率差が1%以下である、
 ○:中心部と端部との熱線(赤外線)反射率差が1%超過2%以下である、
 △:中心部と端部との熱線(赤外線)反射率差が2%超過3%以下である、
 ×:中心部と端部との熱線(赤外線)反射率差が3%超過である。
<Evaluation of infrared reflectance performance>
About each optical laminated body manufactured using each optical film, the center part and edge part of glass are cut out to 30 mm square, and the heat ray (infrared) reflectance is measured using a spectrophotometer V700 (manufactured by JASCO Corporation). Then, the wavelength region from 800 to 2000 nm was measured, and the average infrared reflectance of the region was calculated. From the obtained measurement results, a difference in heat ray transmittance between the center portion and the end portion was calculated and evaluated according to the following criteria. In addition, the evaluation judged that ○ or more is a practical characteristic. The results are shown in Table 1. ;
A: Heat ray (infrared) reflectance difference between the center and the end is 1% or less,
○: Heat ray (infrared) reflectance difference between the center and the end is more than 1% and 2% or less,
Δ: Heat ray (infrared) reflectance difference between the center and the end is more than 2% and not more than 3%.
X: The heat ray (infrared ray) reflectance difference between the center portion and the end portion exceeds 3%.
 ここで、光学積層体における赤外反射性能が良好であることは、光学フィルムの赤外反射性能が良好であることを意味するものである。 Here, the favorable infrared reflection performance of the optical laminate means that the infrared reflection performance of the optical film is good.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、本発明の光学フィルムは、比較例の光学フィルムよりも、加熱加工の際のシワの発生が抑制され、かつ赤外反射性能に優れることが示された。 From the results of Table 1, it was shown that the optical film of the present invention was less likely to be wrinkled during heat processing and superior in infrared reflection performance than the optical film of the comparative example.
 本出願は、2015年6月25日に出願された日本特許出願番号2015-127799号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2015-127799 filed on June 25, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (14)

  1.  基材、および反射層を有し、
     前記基材および前記反射層は、150℃における貯蔵弾性率(E’) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の差の絶対値が0.05GPa以上であり、
     150℃における損失係数(tanδ) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が0.12~0.20である、
    光学フィルム。
    A substrate, and a reflective layer;
    The base material and the reflective layer have an absolute value of a difference in storage elastic modulus (E ′) at 150 ° C. (measuring condition: JIS K7244-1: 1998, tensile mode, heating rate 5 ° C./min, frequency 10 Hz). Is 0.05 GPa or more,
    Loss coefficient at 150 ° C. (tan δ) (measurement conditions: JIS K7244-1: 1998 compliant, tensile mode, temperature rising rate 5 ° C./min, frequency 10 Hz) is 0.12 to 0.20.
    Optical film.
  2.  前記基材は、150℃における損失係数(tanδ) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が0.12~0.45である、請求項1に記載の光学フィルム。 The substrate has a loss coefficient (tan δ) at 150 ° C. (measurement conditions: JIS K7244-1: 1998 compliant, tensile mode, temperature rising rate 5 ° C./min, frequency 10 Hz) of 0.12 to 0.45. The optical film according to claim 1.
  3.  前記基材は、150℃における貯蔵弾性率(E’) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が0.01GPa以上であって、かつ前記反射層の150℃における貯蔵弾性率(E’)の値よりも小さい、請求項1または2に記載の光学フィルム。 The base material had a storage elastic modulus (E ′) at 150 ° C. (measurement conditions: JIS K7244-1: 1998 compliant, tensile mode, heating rate 5 ° C./min, frequency 10 Hz) of 0.01 GPa or more. And the optical film of Claim 1 or 2 smaller than the value of the storage elastic modulus (E ') in 150 degreeC of the said reflection layer.
  4.  前記基材は、150℃の環境下、30分放置した後の、熱収縮率が2.0~10.0%である、請求項1~3のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 3, wherein the base material has a heat shrinkage rate of 2.0 to 10.0% after being left for 30 minutes in an environment of 150 ° C.
  5.  前記基材は、樹脂フィルムである、請求項1~4のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the substrate is a resin film.
  6.  前記反射層は、150℃における貯蔵弾性率(E’) (測定条件:JIS K7244-1:1998準拠、引張モード、昇温速度5℃/min、周波数10Hz)の値が2.00GPa~13.50GPaである、請求項1~5のいずれか1項に記載の光学フィルム。 The reflective layer has a storage elastic modulus (E ′) at 150 ° C. (measuring condition: JIS K7244-1: 1998 compliant, tensile mode, heating rate 5 ° C./min, frequency 10 Hz) of 2.00 GPa to 13.2. The optical film according to any one of claims 1 to 5, which has a pressure of 50 GPa.
  7.  前記反射層は、150℃の環境下、30分放置した後の、熱収縮率が0.5~5.0%である、請求項1~6のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 6, wherein the reflective layer has a thermal shrinkage of 0.5 to 5.0% after being left for 30 minutes in an environment of 150 ° C.
  8.  前記反射層は、高屈折率層および低屈折率層が交互に積層されてなる誘電多層膜である、請求項1~7のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 7, wherein the reflective layer is a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately laminated.
  9.  前記高屈折率層および前記低屈折率層の少なくとも一方が、水溶性バインダー樹脂を含有する、請求項1~8のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 8, wherein at least one of the high refractive index layer and the low refractive index layer contains a water-soluble binder resin.
  10.  前記基材の膜厚は、前記光学フィルム全体の膜厚のなかで、86.5%以上の割合を占める、請求項1~9のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 9, wherein the thickness of the base material occupies a ratio of 86.5% or more in the total thickness of the optical film.
  11.  前記反射層が、赤外反射層であることを特徴とする請求項1~10のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 1 to 10, wherein the reflective layer is an infrared reflective layer.
  12.  請求項1~11のいずれか1項に記載の光学フィルムおよび少なくとも1つの基体を含有する、光学積層体。 An optical laminate comprising the optical film according to any one of claims 1 to 11 and at least one substrate.
  13.  前記基体が曲面を有する、請求項12に記載の光学積層体。 The optical laminate according to claim 12, wherein the substrate has a curved surface.
  14.  合わせガラスである、請求項12または13に記載の光学積層体。 The optical laminate according to claim 12 or 13, which is a laminated glass.
PCT/JP2016/068305 2015-06-25 2016-06-20 Optical film and optical laminate containing same WO2016208548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524901A JP6729580B2 (en) 2015-06-25 2016-06-20 Optical film and optical laminate containing the same
CN201680036899.XA CN107710035B (en) 2015-06-25 2016-06-20 Optical film and optical laminate comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127799 2015-06-25
JP2015-127799 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208548A1 true WO2016208548A1 (en) 2016-12-29

Family

ID=57585728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068305 WO2016208548A1 (en) 2015-06-25 2016-06-20 Optical film and optical laminate containing same

Country Status (3)

Country Link
JP (1) JP6729580B2 (en)
CN (1) CN107710035B (en)
WO (1) WO2016208548A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680700A4 (en) * 2017-09-07 2021-03-31 FUJIFILM Corporation One-way mirror film for displaying projected images, laminated glass for displaying projected images, and image display system
TWI812332B (en) * 2022-07-07 2023-08-11 長春石油化學股份有限公司 Polyvinyl alcohol film and optical film produced by the same
WO2024043305A1 (en) * 2022-08-25 2024-02-29 富士フイルム株式会社 Method for producing curved glass with reflective film, curved glass with reflective film, and head-up display system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202033474A (en) 2018-12-21 2020-09-16 日商積水化學工業股份有限公司 Interlayer film for laminated glass, and laminated glass
EP3995466A4 (en) * 2019-07-02 2023-07-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
CN110511060A (en) * 2019-08-22 2019-11-29 德化县顺尔美工艺品有限公司 One kind is imitative to twist tire ceramics and its manufacture craft
CN112542653B (en) * 2019-09-05 2023-03-14 深圳市拓邦锂电池有限公司 Anti-wrinkle diaphragm of lithium battery and preparation method thereof
CN110627382B (en) * 2019-10-15 2020-07-24 福耀玻璃工业集团股份有限公司 Heat-insulating automobile laminated glass and manufacturing method thereof
US20210138879A1 (en) * 2019-11-08 2021-05-13 Mockstar, Inc. Uv protection screen for vehicles
TWI727675B (en) * 2020-02-26 2021-05-11 南亞塑膠工業股份有限公司 Infrared shielding film and method for manufacturing the same
CN111509395B (en) * 2020-03-24 2021-04-06 浙江大学 TE polarization, ultra-wideband and angle-adjustable electromagnetic wave angle selection transparent structure
US20220091313A1 (en) * 2020-09-18 2022-03-24 Viavi Solutions Inc. Diffractive pigment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037204A (en) * 2007-03-27 2009-02-19 Dainippon Printing Co Ltd Sheet-shaped optical member, resin composition for optical sheet, optical sheet and process for producing the same
WO2015056752A1 (en) * 2013-10-17 2015-04-23 コニカミノルタ株式会社 Ir-blocking film, and ir blocker and heat-reflecting laminated glass using said ir-blocking film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618192B2 (en) * 1997-04-08 2005-02-09 リンテック株式会社 Adhesive sheet
US6485826B1 (en) * 1997-04-08 2002-11-26 Lintec Corporation Adhesive sheet
JP2004029367A (en) * 2002-06-26 2004-01-29 Nitto Denko Corp Optical members having excellent cutting workability and method of cutting
TWI380900B (en) * 2004-09-17 2013-01-01 Sumitomo Chemical Co Optical laminate
US20060255486A1 (en) * 2005-05-10 2006-11-16 Benson Olester Jr Method of manufacturing composite optical body containing inorganic fibers
WO2008026509A1 (en) * 2006-08-29 2008-03-06 National Institute Of Advanced Industrial Science And Technology Thermoplastic elastomer composition having hierarchical structure and process for the production thereof
US20100239776A1 (en) * 2007-07-25 2010-09-23 Hoya Corporation Method for producing plastic lens
US20140162035A1 (en) * 2011-08-09 2014-06-12 Mitsubishi Plastics, Inc. Transparent laminated film
JP6289799B2 (en) * 2012-02-28 2018-03-07 リンテック株式会社 Optical adhesive and optical filter for hard transparent plate
JP6295659B2 (en) * 2012-12-27 2018-03-20 三菱ケミカル株式会社 Molded resin laminate and molded body
CN104781229B (en) * 2013-09-26 2017-03-01 三井化学株式会社 Double (isocyanatomethyl) hexamethylene of 1,4-, polyisocyantates composition, polyurethane resin, products formed, ocular lens material, spectacle-frame and eyeglass
JP2016080948A (en) * 2014-10-20 2016-05-16 コニカミノルタ株式会社 Light reflection film, light reflection body having the same, and solar light reflection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037204A (en) * 2007-03-27 2009-02-19 Dainippon Printing Co Ltd Sheet-shaped optical member, resin composition for optical sheet, optical sheet and process for producing the same
WO2015056752A1 (en) * 2013-10-17 2015-04-23 コニカミノルタ株式会社 Ir-blocking film, and ir blocker and heat-reflecting laminated glass using said ir-blocking film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680700A4 (en) * 2017-09-07 2021-03-31 FUJIFILM Corporation One-way mirror film for displaying projected images, laminated glass for displaying projected images, and image display system
US11526006B2 (en) 2017-09-07 2022-12-13 Fujifilm Corporation Half-mirror film for displaying projection image, laminated glass for displaying projection image, and image display system
EP4312066A3 (en) * 2017-09-07 2024-04-17 FUJIFILM Corporation One-way mirror film for displaying projected images, laminated glass for displaying projected images, and image display system
TWI812332B (en) * 2022-07-07 2023-08-11 長春石油化學股份有限公司 Polyvinyl alcohol film and optical film produced by the same
WO2024043305A1 (en) * 2022-08-25 2024-02-29 富士フイルム株式会社 Method for producing curved glass with reflective film, curved glass with reflective film, and head-up display system

Also Published As

Publication number Publication date
JPWO2016208548A1 (en) 2018-04-26
CN107710035B (en) 2020-05-19
CN107710035A (en) 2018-02-16
JP6729580B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2014156822A1 (en) Laminated glass
JP5994849B2 (en) Laminated glass
WO2016017604A1 (en) Optical film and method for manufacturing optical film
WO2013179902A1 (en) Infrared-shielding object
WO2014162864A1 (en) Heat ray shielding laminated glass and manufacturing method for heat ray shielding laminated glass
WO2015104981A1 (en) Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
WO2016006388A1 (en) Optical film
WO2015182639A1 (en) Film for laminated glass, and laminated glass
JP2014201450A (en) Heat-ray shielding laminated glass and method for manufacturing heat-ray shielding laminated glass
JP6743806B2 (en) Optical film and method of manufacturing optical film
WO2016143853A1 (en) Window film and laminated glass using same
JP6176256B2 (en) Optical reflection film and optical reflector using the same
JP6759697B2 (en) Roll-shaped optical reflective film
JP6672683B2 (en) Manufacturing method of laminated glass and laminated glass
WO2017094453A1 (en) Laminated glass
JP6326780B2 (en) Window pasting film
JP2016222507A (en) Intermediate film for laminated glass, laminated glass using the same and production method therefor
WO2017169810A1 (en) Optical reflection film
JP2016138906A (en) Optical reflective film and optical reflector
WO2016104295A1 (en) Infrared-shielding film and infrared-shielding body using same
JP2016168770A (en) Window film
JP2015152631A (en) optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814318

Country of ref document: EP

Kind code of ref document: A1