WO2016143853A1 - Window film and laminated glass using same - Google Patents

Window film and laminated glass using same Download PDF

Info

Publication number
WO2016143853A1
WO2016143853A1 PCT/JP2016/057584 JP2016057584W WO2016143853A1 WO 2016143853 A1 WO2016143853 A1 WO 2016143853A1 JP 2016057584 W JP2016057584 W JP 2016057584W WO 2016143853 A1 WO2016143853 A1 WO 2016143853A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
layer
index layer
polyester film
Prior art date
Application number
PCT/JP2016/057584
Other languages
French (fr)
Japanese (ja)
Inventor
中島 彰久
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016143853A1 publication Critical patent/WO2016143853A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Definitions

  • the present invention relates to a window film and a laminated glass using the window film. More specifically, the present invention relates to a window film excellent in thermoformability and curved surface shape followability, and a laminated glass using the window film.
  • a resin film called a window film is sandwiched between two glass substrates from the viewpoint of preventing strength and scattering of glass pieces when damaged. Glass is used.
  • the air conditioner is operated to suppress the rise of the temperature inside the vehicle due to such sunlight, but it is highly insulated for the purpose of saving energy by blocking the heat of sunlight entering from the car window and suppressing the operation of the air conditioner.
  • the heat ray blocking laminated glass which has heat ray blocking property is distribute
  • Laminated glass used for such purposes generally has a heat-shielding window film disposed between a pair of glass substrates to block transmission of heat rays (infrared rays or near-infrared rays) in sunlight, and indoors. Methods for suppressing temperature rise and cooling load are known.
  • a general polyester film having a heat shrinkage in the range of 0.2 to 1% is usually used (for example, see Patent Document 1).
  • the windshield and window glass of the above-mentioned automobile are processed to be curved, they are generally thermoformed using a heat gun or the like before being bonded together. If a polyester film in the range of% is used, the thermal shrinkage rate is small, so that there is a problem that curved surface followability is inferior and thermoforming takes time.
  • thermoforming is difficult.
  • the present invention has been made in view of the above-mentioned problems and situations, and a solution to that problem is to provide a window film excellent in thermoformability and curved surface shape followability, and a laminated glass using the window film.
  • the present inventor in the process of examining the cause of the above-mentioned problems, the heat is generated by the window film in which two polyester films A and B having a specific film thickness and a heat shrinkage rate are laminated. It has been found that a window film excellent in moldability and curved surface shape followability can be obtained.
  • the window film support includes a polyester film A having a thickness of 5 ⁇ m or more and a thermal contraction rate of 0.2 to 1%, and a thermal contraction rate of 2 to 10 and a thickness of 5 ⁇ m or more.
  • Thermal shrinkage (%) ⁇ (L (23 ° C.) ⁇ L (150 ° C.)) / L (23 ° C.) ⁇ ⁇ 100 L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH 1. Sample length when left for 1 day 2.
  • the window film according to claim 1 or 2 further comprising a near-infrared absorbing layer between the polyester film A and the polyester film B.
  • the window film according to claim 1 or 2 further comprising a near-infrared reflective layer between the polyester film A and the polyester film B.
  • the window film of the present invention is a film in which two polyester films A and B having a specific film thickness and heat shrinkability are laminated as a support, and is used for glass having a curved shape at least partially.
  • a polyester film having a small heat shrinkage rate on the concave side of the curved surface, the shrinkage of the film on the concave side is small and the shrinkage of the film on the opposite side is large when thermoformed using a heat gun or the like. Therefore, it is presumed that the generation of wrinkles on the side in contact with the curved surface shape is suppressed, the curved surface shape following property to the concave portion of the film is improved, and the thermoformability is improved.
  • Schematic sectional view showing an example of the configuration of the window film of the present invention Schematic sectional view showing an example of the configuration of the window film of the present invention having a near infrared absorption layer
  • Schematic sectional view showing an example of the configuration of the window film of the present invention having a near-infrared reflective layer An example of the window film of the present invention having a multilayer reflective layer
  • the window film of the present invention is characterized in that it is a laminated film of two polyester films A and B having a specific film thickness and heat shrinkage rate. This feature is a technical feature common to the inventions according to claims 1 to 5.
  • the ratio value (A / B) of the film thickness of the polyester film A and the polyester film B is in the range of 90/10 to 50/50.
  • the film thickness of the polyester film having a small heat shrinkage rate is increased and disposed on the concave portion side of the curved surface shape, thereby achieving thermoformability and curved surface shape.
  • a window film excellent in followability can be obtained.
  • the fact that the polyester film A surface side of the window film is disposed at a position in contact with the concave portion of the glass having the curved shape improves the thermoformability and increases the productivity. To preferred.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the window film of the present invention is a window film to be bonded to glass having a curved surface shape at least in part, wherein the window film has a film thickness of at least 5 ⁇ m and a heat shrinkage ratio of 0.2 to 1% as described below.
  • the polyester film A within the range and the polyester film B having a thickness of 5 ⁇ m or more and a thermal shrinkage ratio of 2 to 10% are laminated.
  • the heat shrinkage rate is determined by the following measurement method.
  • the thermal shrinkage rate of the polyester film whose film thickness is adjusted to 5 ⁇ m or more according to the present invention is obtained by the following conditions and formula using a sample sampled from about 10 places from the longitudinal direction or the lateral direction of the film, and the average value thereof. Can be used.
  • a sample sampled from about 10 places from the longitudinal direction or the lateral direction of the film can be used.
  • the sample for example, a sample with a length of 100 mm and a width of 10 mm is used, and the vertical length can be set to the following sample length.
  • each environment can use an environmental test room or a thermostat.
  • Thermal shrinkage (%) ⁇ (L (23 ° C.) ⁇ L (150 ° C.)) / L (23 ° C.) ⁇ ⁇ 100 L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C.
  • FIG. 1 is a schematic sectional view showing an example of the structure of the window film of the present invention (the numbers in parentheses indicate the numbers in the figure).
  • the window film 1 of the present invention has a film thickness of 5 ⁇ m or more and a thermal shrinkage rate of 0.2 to 1%, and a polyester film A (2) in a range of 0.2 to 1% and a film thickness of 5 ⁇ m or more and a heat shrinkage rate of 2 to 10% It is the structure which laminated
  • the adhesion layer 5 for bonding to glass is formed in the surface of the polyester film A (2), and the said adhesion layer 5 is similarly formed in the surface of the polyester film B (3). May be.
  • a polyvinyl butyral (PVB) resin an epoxy resin or the like, which is preferably a polyvinyl acetal resin film, can be preferably used.
  • FIGS. 2A and 2B are schematic cross-sectional views showing an example of the configuration of the window film 10 of the present invention having a layer that absorbs near infrared rays or a layer that reflects near infrared rays.
  • the window film 10 of the present invention having a layer that absorbs near infrared rays or a layer that reflects near infrared rays, which is a preferred embodiment of the present invention, is close to the polyester film A (2) and the polyester film B (3). It is the laminated structure bonded so that the layer 6 which absorbs infrared rays, or the layer 7 which reflects near infrared rays may be pinched
  • the polyester film A (2) and the polyester film B (3) are preferably bonded to the surface of the layer 6 that absorbs near infrared rays or the layer 7 that reflects near infrared rays via an adhesive layer 4, respectively. .
  • the adhesion layer 5 for bonding to glass is formed in the surface of the polyester film A (2), and the said adhesion layer 5 is similarly formed in the surface of the polyester film B (3). May be.
  • polyester film A and polyester film B The polyester film A according to the present invention is a polyester film having a film thickness of 5 ⁇ m or more and a heat shrinkage ratio in the range of 0.2 to 1%, and the polyester film B has a film thickness of 5 ⁇ m or more and a heat shrinkage ratio of 2 It is characterized by being a polyester film in a range of ⁇ 10%.
  • polyester resin that can be used in the polyester film A and the polyester film B (hereinafter sometimes simply referred to as a polyester film) according to the present invention is obtained by polymerizing a dicarboxylic acid and a diol.
  • 70% or more of the dicarboxylic acid structural unit is derived from the aromatic dicarboxylic acid
  • 70% or more of the diol structural unit is preferably derived from an aliphatic diol.
  • the proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, more preferably 90% or more. Two or more polyester resins may be used in combination.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and 4,4′-biphenyl ether.
  • Dicarboxylic acid 4,4'-biphenylmethane dicarboxylic acid, 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic Acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4′-p-terphenylene dicarboxylic acid, 2,5-pyridinedicarboxylic acid, and the like (for example, 5 -Alkyl group-substituted products such as methyl isophthalic acid) and reactive derivatives (eg, Dimethyl phthalate, and alkyl ester derivatives such as diethyl terephthalate) and the like can also be used.
  • terephthalic acid isophthalic acid, 2,6-naphthalenedicarboxylic acid,
  • aromatic dicarboxylic acids may be used alone or in combination of two or more, and together with the aromatic dicarboxylic acid, an aliphatic dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, etc.
  • an aliphatic dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, etc.
  • One or more alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid may be used in combination.
  • aliphatic diol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, Aliphatic diols such as decamethylene glycol and 2,2-dimethyl-1,3-propanediol; 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, cyclohexanediol, trans- or cis-2 Alicyclic diols such as 1,2,4,4-tetramethyl-1,3-cyclobutanediol; p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2-hydroxyethyl) Aromatic diols such as ether) It can, can also be used these substituent
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol are preferable from the viewpoint of heat resistance of the binder resin, and ethylene glycol and 1,3-propanediol are more preferable.
  • 1,4-butanediol is preferred, and ethylene glycol is particularly preferred.
  • diols may be used alone or in combination of two or more. Further, as the diol component, a long chain diol having a molecular weight of 400 to 6000, specifically, one or more of polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol and the like are used in combination with the diols. And may be copolymerized.
  • polyester resin monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
  • a known esterification method or transesterification method can be applied to the production of the polyester resin.
  • the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
  • Preferred polyester resins include polyethylene terephthalate resin (PET), polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene -2,6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2, 6-naphthalene dicarboxylate resin, polybutylene succinate resin (PBS), polybutylene succinate adipate resin (PBSA), polyethylene succinate tree (PES), polybutylene succinate-carbonate resin (PBSC), and the like polyethylene succinate terephthalate resin (PEST).
  • PET polyethylene terephthalate resin
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate.
  • Resin polybutylene succinate resin (PBS), and polybutylene succinate adipate resin (PBSA).
  • the polyester film according to the present invention may contain particles within a range that does not impair transparency.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together.
  • additives may be added in addition to the above particles as necessary.
  • additives include plasticizers, stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, ultraviolet absorbers, and the like.
  • a method for producing a polyester film according to the present invention includes a step of forming a melt-extruded film on a drum of a polyester resin melt, a step of peeling the film from the drum, Stretching the peeled film in the longitudinal direction with a heated roller and then stretching in the transverse direction while holding both ends of the film with a clip in the tenter, and then heat setting (relaxing heat treatment process) while relaxing the strain with the clip
  • this relaxation heat treatment step can be used to control the heat shrinkage rate within a desired range.
  • the longitudinal direction in the tenter is not longitudinal stretching with a heat roller. It is also preferable to perform biaxial stretching in the transverse direction and to perform relaxation heat treatment both longitudinally and laterally.
  • the polyester film according to the present invention is obtained by heating and melting a composition containing other additives such as a polyester resin and a plasticizer to a temperature showing fluidity, and then casting a melt containing the fluid polyester resin. Can be manufactured.
  • melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy.
  • a plurality of raw materials used for melt extrusion are usually preferably kneaded and pelletized in advance.
  • Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder and kneaded using a single-screw or twin-screw extruder, and then formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from a T-die.
  • a polyester film is formed by niping the film with a cooling roller and an elastic touch roller and solidifying the film on the cooling roller.
  • the extrusion flow rate is preferably adjusted stably by introducing a gear pump or the like.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the polyester film temperature on the touch roller side when the polyester film is nipped with a cooling roller and a touch roller is preferably Tg (Tg + 110 ° C.) or less of the film.
  • the touch roller used for such a purpose is preferably a roller having an elastic surface from the viewpoint of preventing scratches on the film surface, and a known roller for the touch roller can be used.
  • the touch roller is also called a pinching rotator.
  • a commercially available touch roller can also be used.
  • the polyester film film obtained as described above is stretched by a stretching operation after passing through the step of contacting the cooling roller.
  • the polyester film may be an unstretched film or a stretched film, but is preferably stretched.
  • the film may be uniaxially stretched in the longitudinal direction or the transverse direction, or may be stretched in the biaxial direction of the longitudinal direction and the transverse direction.
  • a biaxially stretched film it may be biaxially stretched simultaneously or sequentially biaxially stretched.
  • the mechanical strength is improved and the film performance is improved.
  • the stretching method For example, a method in which a circumferential speed difference is applied to a plurality of rollers, and the film is stretched in the longitudinal direction by utilizing the difference between the circumferential speeds of the rollers. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions, and stretching in both the vertical and horizontal directions. Of course, these methods may be used in combination.
  • the tenter may be a pin tenter or a clip tenter.
  • the stretching temperature when performing the stretching step is preferably in the vicinity of the glass transition temperature of the polyester resin of the film raw material, specifically, (glass transition temperature-30) ° C. to (glass transition temperature + 100) ° C. It is preferably (glass transition temperature ⁇ 20) ° C. to (glass transition temperature + 80) ° C. If the stretching temperature is (glass transition temperature ⁇ 30) ° C. or higher, a sufficient stretching ratio can be obtained, and if the stretching temperature is within (glass transition temperature + 100) ° C., the resin flow hardly occurs and is stable. It is preferable because it can be stretched.
  • the draw ratio defined by the area ratio is preferably in the range of 1.1 to 25 times, more preferably in the range of 1.3 to 10 times.
  • a stretching ratio of 1.1 times or more is preferable because it leads to an improvement in toughness accompanying stretching. If the draw ratio is within 25 times, the effect of only increasing the draw ratio can be obtained, and breakage and the like can be suppressed.
  • the stretching speed (one direction) is preferably in the range of 10 to 20000% / min, more preferably in the range of 100 to 10000% / min. If it is 10% / min or more, it can be performed in a short time to obtain a sufficient draw ratio, which is preferable in terms of productivity. If it is less than 20000% / min, the stretched film hardly breaks, which is preferable.
  • the polyester film according to the present invention is preferably heat-set by being left in the range of about 1 to 10 minutes while maintaining the temperature after the stretching, in order to fix the deformation of the resin molecules due to the stretching.
  • Relaxation heat treatment is the process of stretching the polyester film in the stretching process, then releasing the tension applied to the film in the stretching device, for example, in the tenter or until winding after exiting the tenter.
  • the process of intentionally reducing the width of the clip holding the film edge is performed, and the relaxation rate can be obtained by the following equation (S).
  • Formula (S) Relaxation rate (%) (AB) / A ⁇ 100 (In the formula, A: width of the film stretched (unit: m), B: width after shrinking (unit: m))
  • the relaxation heat treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C. Further, both in the longitudinal direction and in the lateral direction, the relaxation rate is preferably within a range of 0.1 to 10%, and more preferably, the relaxation rate is within a range of 2 to 6%.
  • the polyester film that has been subjected to the relaxation heat treatment is further wound through a drying step if necessary.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking and scratching during winding.
  • the knurling method can be performed by heating or pressurizing using a metal ring having an uneven pattern on the side surface. Clip holding parts such as tenters at both ends of the film are usually cut out and reused because the polyester film is deformed and cannot be used as a product.
  • the thickness of the polyester film according to the present invention needs to be 5 ⁇ m or more from the viewpoint of the mechanical strength of the film, but is preferably in the range of 5 to 200 ⁇ m. More preferably, it is in the range of 15 to 100 ⁇ m, and still more preferably in the range of 20 to 70 ⁇ m. If the thickness of the polyester film is 5 ⁇ m or more, wrinkles or the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the handleability and transparency are excellent, and a thin film support can be provided. it can.
  • the ratio value (A / B) of the film thicknesses of the polyester film A and the polyester film B according to the present invention is preferably in the range of 90/10 to 50/50. More preferably, it is in the range of 90/10 to 60/40.
  • the curved surface followability is improved.
  • the polyester film according to the present invention is preferably long, specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape.
  • the width of the support is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the visible light transmittance measured by JIS S3107 (2013) is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is.
  • the haze is preferably less than 1%, and more preferably less than 0.5%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
  • the window film of the present invention preferably contains a layer for controlling the reflectance and transmittance of a specific wavelength, and in particular, a near-infrared absorbing layer or a near-infrared ray that selectively absorbs near-infrared rays. Having a near-infrared reflective layer that selectively reflects is preferable for use as a heat-shielding film.
  • the configuration of the present invention is also a preferable aspect from the point that it is possible to suppress the occurrence of scratches due to external force by sandwiching.
  • the ultraviolet curable resin which is a binder component, a photoinitiator, an infrared absorber, etc. are mentioned. It is preferable that the binder component contained in the near-infrared absorbing layer is cured.
  • the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
  • the inorganic infrared absorber contained in the near infrared absorbing layer is preferably a metal oxide particle from the viewpoint of visible light transmittance, near infrared absorptivity, suitability for dispersion in a resin, for example, tin oxide, Examples thereof include zinc oxide, titanium oxide, tungsten oxide, and indium oxide.
  • heat-absorbing particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide (ATO) particles, gallium-doped zinc oxide (GZO) particles, indium-doped zinc oxide (IZO) particles, aluminum-doped Zinc oxide (AZO) particles, niobium doped titanium oxide particles, tin doped indium oxide (ITO) particles, tin doped zinc oxide particles, silicon doped zinc oxide particles, general formula MxWyOz (where M is H, He, alkali metal, alkaline earth) Metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge , Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, M , Ta, Re
  • ITO indium oxide
  • ATO antimony-doped tin oxide
  • Cs 0.33 WO 3 cesium-containing tungsten oxide
  • the average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm. If it is 5 nm or more, the dispersibility in the resin and the near-infrared absorption are improved. On the other hand, if it is 100 nm or less, the visible light transmittance does not decrease.
  • the average particle size is measured by taking an image with a transmission electron microscope, randomly extracting, for example, 50 particles, measuring the particle size, and averaging the results. Moreover, when the shape of particle
  • the content of the inorganic infrared absorber in the near-infrared absorbing layer is preferably 1 to 80% by mass, and more preferably 5 to 50% by mass with respect to the total mass of the near-infrared absorbing layer. If the content is 1% or more, a sufficient near-infrared absorption effect appears, and if it is 80% or less, a sufficient amount of visible light can be transmitted.
  • Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds.
  • metal complex compounds aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives), and the like. Used.
  • the near-infrared absorbing layer may contain other infrared absorbers such as metal oxides, organic infrared absorbers, metal complexes and the like other than those described above within the scope of the effects of the present invention.
  • specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
  • the ultraviolet curable resin used as the binder component is superior in hardness and smoothness to other resins, and further tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), cesium-containing tungsten oxide (Cs 0.33 WO 3). ) And the dispersibility of the thermally conductive metal oxide is also advantageous.
  • the ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. More preferred is an acrylic resin from the viewpoint of hardness, smoothness and transparency.
  • the acrylic resin is a reactive silica particle in which a photosensitive group having photopolymerization reactivity is introduced on its surface as described in International Publication No. 2008/035669 from the viewpoint of hardness, smoothness, and transparency.
  • a photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group.
  • the ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be.
  • a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group.
  • the average particle diameter of the reactive silica particles is preferably in the range of 0.001 to 0.1 ⁇ m. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
  • photopolymerization initiator known ones can be used, and they can be used alone or in combination of two or more.
  • the thickness of the near infrared absorbing layer is preferably in the range of 0.1 to 50 ⁇ m, and more preferably in the range of 1 to 20 ⁇ m. If it is 0.1 ⁇ m or more, the infrared absorption ability tends to be improved, while if it is 50 ⁇ m or less, the crack resistance of the coating film is improved.
  • the method for forming the near infrared absorbing layer is not particularly limited.
  • the near infrared absorbing layer containing the above-mentioned components is prepared by applying a coating solution for the near infrared absorbing layer, applying the coating solution using a wire bar, and drying. And the like.
  • the near-infrared reflective layer according to the present invention is not particularly limited, and is a commercially available infrared reflective film manufactured by 3M as described in US Pat. No. 6,049,419.
  • the average reflectance at a light wavelength of 400 to 700 nm is 15% or less, and a light wavelength of 900 to The average reflectivity at 1200 nm is 70% or more.
  • the metal oxide and binder described in Table 2012/057199 The near-infrared reflective film etc. which laminated
  • the near-infrared reflective layer according to the present invention includes a high refractive index layer containing the first water-soluble binder resin and the first metal oxide particles, and the second water-soluble binder resin and the second metal oxide.
  • a layer in which a large number of low refractive index layers containing physical particles are alternately laminated is preferable.
  • the near-infrared reflective layer used in the present invention may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer. It is preferable to have a configuration in which two or more of the above laminates composed of low refractive index layers are laminated.
  • the uppermost layer and the lowermost layer of the near-infrared reflective layer may be either a high refractive index layer or a low refractive index layer, but both the uppermost layer and the lowermost layer are preferably low refractive index layers.
  • the uppermost layer is a low refractive index layer, the coating property is improved, and when the lowermost layer is a low refractive index layer, it is preferable from the viewpoint of improving the adhesion to the substrate.
  • an arbitrary refractive index layer of the near-infrared reflective layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer).
  • the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
  • high refractive index layer component there are two components constituting the high refractive index layer (hereinafter also referred to as “high refractive index layer component”) and components constituting the low refractive index layer (hereinafter also referred to as “low refractive index layer component”).
  • low refractive index layer component a layer (mixed layer) containing the high refractive index layer component and the low refractive index layer component is mixed at the interface of the two layers.
  • a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer
  • a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer.
  • the concentration profile of the metal oxide particles in the layer thickness direction in these laminated films can determine whether the mixed layer that can be formed is a high refractive index layer or a low refractive index layer.
  • the concentration profile of the metal oxide particles in the laminated film is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer, etching from the surface to the depth direction, with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio.
  • the metal oxide particles are not contained in the low refractive index component or the high refractive index component and are formed only from the water-soluble resin, similarly, in the concentration profile of the water-soluble resin, for example, It was confirmed that the mixed region was present by measuring the carbon concentration in the layer thickness direction, and further, its composition was measured by EDX (energy dispersive X-ray spectroscopy), and was etched by sputtering.
  • EDX energy dispersive X-ray spectroscopy
  • the XPS surface analyzer is not particularly limited, and any model can be used, but ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more.
  • it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more.
  • the near-infrared reflective layer has two or more laminates (units) of a high refractive index layer and a low refractive index layer, the refraction of the high refractive index layer and the low refractive index layer in all the laminates (units) It is preferable that the rate difference is within the preferable range.
  • the refractive index layer constituting the uppermost layer or the lowermost layer of the near-infrared reflective layer may be configured outside the above-described preferred range.
  • the number of refractive index layers of the near-infrared reflective layer (units of high refractive index layer and low refractive index layer) is preferably 100 layers or less, that is, 50 units or less, and 40 layers (20 Unit) or less, and more preferably 20 layers (10 units) or less.
  • the refractive index ratio between the layers Since the reflection at the interface between adjacent layers depends on the refractive index ratio between the layers, the higher the refractive index ratio, the higher the reflectance.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
  • the thickness per layer of the high refractive index layer is preferably in the range of 20 to 800 nm, and more preferably in the range of 50 to 350 nm.
  • the thickness of the low refractive index layer per layer is preferably in the range of 20 to 800 nm, and more preferably in the range of 50 to 350 nm.
  • the high refractive index layer and the low refractive index layer may have a clear interface between them or may be gradually changed.
  • the optical film of the present invention When the optical film of the present invention is used as a heat-shielding window film, a multilayer film in which films having different refractive indexes are laminated on a polymer film is formed, and the transmittance in the visible light region indicated by JIS R3106-1998 is formed. It is preferable to design the optical film thickness and unit so as to have a region with a reflectance exceeding 40% in a region of a wavelength of 900 to 1400 nm.
  • the high refractive index layer contains the first water-soluble binder resin and the first metal oxide particles, and may contain a curing agent, other binder resin, a surfactant, and various additives as necessary. Good.
  • the refractive index of the high refractive index layer used in the present invention is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
  • First water-soluble binder resin When the first water-soluble binder resin used in the present invention is dissolved in water at a concentration of 0.5 mass% at the temperature at which the water-soluble binder resin is most dissolved, the G2 glass filter (maximum pores 40 to 40) is used. 50 mass), the mass of the insoluble matter that is filtered off when it is filtered is within 50 mass% of the added water-soluble binder resin.
  • the weight average molecular weight of the first water-soluble binder resin used in the present invention is preferably in the range of 1,000 to 200,000. Further, it is more preferably within the range of 3000 to 40000.
  • the weight average molecular weight referred to in the present invention can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. In the present invention, it is measured by a gel permeation chromatography method which is a generally known method.
  • GPC gel permeation chromatography
  • TOF-MASS time-of-flight mass spectrometry
  • the content of the first water-soluble binder resin in the high refractive index layer is preferably within the range of 5 to 50% by mass with respect to the solid content of 100% by mass of the high refractive index layer. It is more preferable to be within the range.
  • the first water-soluble binder resin applied to the high refractive index layer is preferably polyvinyl alcohol.
  • the water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, in the following, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
  • the high refractive index layer and the low refractive index layer preferably contain two or more types of polyvinyl alcohol having different saponification degrees.
  • polyvinyl alcohol as a water-soluble binder resin used in the high refractive index layer is polyvinyl alcohol (A)
  • polyvinyl alcohol as a water-soluble binder resin used in the low refractive index layer is polyvinyl alcohol (B). That's it.
  • each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees
  • the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ) And polyvinyl alcohol (B) in the low refractive index layer.
  • the “degree of saponification” is the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in polyvinyl alcohol.
  • the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. .
  • a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol).
  • polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively.
  • These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B).
  • the above-mentioned “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” suffices to be within 3 mol% when attention is paid to any polyvinyl alcohol.
  • the difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
  • the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, the intermixed state of the high refractive index layer and the low refractive index layer is that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
  • the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably those having a polymerization degree in the range of 1500 to 5000, more preferably in the range of 2000 to 5000. Those are more preferably used. This is because when the polymerization degree of polyvinyl alcohol is 1000 or more, there is no cracking of the coating film, and when it is 5000 or less, the coating solution is stabilized. In the present specification, “the coating solution is stable” means that the coating solution is stable over time.
  • the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is in the range of 2000 to 5000, it is preferable because cracks in the coating film are reduced and the reflectance at a specific wavelength is improved. It is preferable that both the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2000 to 5000, since the above effects can be exhibited more remarkably.
  • Polymerization degree P in the present specification refers to the viscosity average degree of polymerization, and is measured according to JIS K6726 (1994). After PVA is completely re-saponified and purified, it is measured in water at 30 ° C. From the intrinsic viscosity [ ⁇ ] (cm 3 / g), it is obtained by the following formula (1).
  • the polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree in the range of 75 to 90 mol% and a polymerization degree in the range of 2000 to 5000.
  • polyvinyl alcohol having such characteristics is contained in the low refractive index layer, it is preferable in that interfacial mixing is further suppressed. This is considered to be because there are few cracks of a coating film and set property improves.
  • the polyvinyl alcohol (A) and (B) used in the present invention may be a synthetic product or a commercially available product.
  • Examples of commercially available products used as the polyvinyl alcohol (A) and (B) include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA -203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04 , JPF-05, JP-03, JP-04, JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
  • modified polyvinyl alcohol partially modified Alcohol may be included.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group and carboxy group Polyvinyl alcohol etc. are mentioned.
  • vinyl alcohol polymers examples include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
  • the content of the modified polyvinyl alcohol is not particularly limited, but is preferably in the range of 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is in such a range, the said effect will be exhibited more.
  • the polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass
  • the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable.
  • the polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass
  • the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. More preferred.
  • the content is 40% by mass or more, interlayer mixing is suppressed, and the effect of less disturbance of the interface appears remarkably. On the other hand, if content is 100 mass% or less, stability of a coating liquid will improve.
  • the first water-soluble binder resin other than polyvinyl alcohol in the high refractive index layer, is not limited as long as the high refractive index layer containing the first metal oxide particles can form a coating film. But it can be used without restriction.
  • the second water-soluble binder resin other than the polyvinyl alcohol (B) the low refractive index layer containing the second metal oxide particles is coated as described above. Any device can be used without limitation as long as it can be formed. However, in view of environmental problems and flexibility of the coating film, water-soluble polymers (particularly gelatin, thickening polysaccharides, polymers having reactive functional groups) are preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the content of other binder resin used together with polyvinyl alcohol preferably used as a water-soluble binder resin is in the range of 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. It can also be used within.
  • the binder resin is preferably composed of a water-soluble polymer. That is, in the present invention, a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired.
  • the water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 ⁇ m) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most soluble.
  • the mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer.
  • gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the first metal oxide particles applicable to the high refractive index layer are preferably metal oxide particles having a refractive index of 2.0 or more and 3.0 or less. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, oxidation Examples thereof include magnesium, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. In addition, composite oxide particles composed of a plurality of metals, core / shell particles whose metal structure changes into a core / shell shape, and the like can also be used.
  • the high refractive index layer includes metal oxide fine particles having a high refractive index such as titanium and zirconium, that is, titanium oxide fine particles and / or zirconia oxide. It is preferable to contain fine particles.
  • titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer.
  • the rutile type tetragonal type
  • the weather resistance of the high refractive index layer and the adjacent layer is higher, and the refractive index is higher. Is more preferable.
  • core / shell particles are used as the first metal oxide particles in the high refractive index layer, due to the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin, From the effect of suppressing interlayer mixing between the high refractive index layer and the adjacent layer, core-shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide are more preferable.
  • the content of the first metal oxide particles used in the present invention is in the range of 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, the refractive index with the low refractive index layer This is preferable from the viewpoint of providing a difference. Furthermore, it is more preferably in the range of 20 to 77% by mass, and still more preferably in the range of 30 to 75% by mass.
  • content in case metal oxide particles other than the said core-shell particle are contained in a high refractive index layer will not be specifically limited if it is a range which can have the effect of this invention.
  • the volume average particle size of the first metal oxide particles applied to the high refractive index layer is preferably 30 nm or less, more preferably in the range of 1 to 30 nm, and more preferably in the range of 5 to 15 nm. More preferably, it is in the range.
  • a volume average particle size in the range of 1 to 30 nm is preferable from the viewpoint of low visible light transmittance and low haze.
  • the volume average particle diameter of the first metal oxide particles used in the present invention is a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, a refractive index layer, and the like.
  • the particle diameter of 1000 arbitrary particles was measured by a method of observing the particle image appearing on the cross section or surface of the sample with an electron microscope, and particles having particle diameters of d1, d2,.
  • the volume average particle diameter mv ⁇ (vi ⁇ di ) ⁇ / ⁇ (vi) ⁇ is the average particle size weighted by the volume.
  • the first metal oxide particles used in the present invention are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula (2) is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably in the range of 0.1 to 20%.
  • titanium oxide particles surface-treated with a silicon-containing hydrated oxide The titanium oxide particles may be referred to as “core / shell particles” or “Si-coated TiO 2 ”.
  • the titanium oxide particles are coated with a silicon-containing hydrated oxide, and the average particle diameter which is preferably a core portion is in the range of 1 to 30 nm, more preferably the average
  • the surface of the titanium oxide particles having a particle size in the range of 4 to 30 nm has a coating amount of silicon-containing hydrated oxide in the range of 3 to 30% by mass as SiO 2 with respect to the titanium oxide as the core. In this way, a shell made of a silicon-containing hydrated oxide is coated.
  • the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin causes the high refractive index layer and the low refractive index layer to The effect of suppressing the intermixing between the layers and the effect of preventing the deterioration of the binder and choking due to the photocatalytic activity of titanium oxide when titanium oxide is used as the core are exhibited.
  • the core / shell particles preferably have a silicon-containing hydrated oxide coating amount in the range of 3 to 30% by mass as SiO 2 with respect to titanium oxide as the core, more preferably 3 It is in the range of ⁇ 10% by mass, more preferably in the range of 3 to 8% by mass. If the coating amount is 30% by mass or less, a high refractive index layer can be made to have a high refractive index, and if the coating amount is 3% by mass or more, core / shell particle particles can be stably formed. can do.
  • the average particle diameter of the core / shell particles is preferably in the range of 1 to 30 nm, more preferably in the range of 5 to 20 nm, and still more preferably in the range of 5 to 15 nm.
  • optical properties such as near infrared reflectance, transparency, and haze can be further improved.
  • the average particle diameter as used in the field of this invention means a primary average particle diameter, and can be measured from the electron micrograph by a transmission electron microscope (TEM) etc. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
  • TEM transmission electron microscope
  • the average particle diameter of primary particles is the particle itself or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • JP-A-10-158015 JP-A-2000-053421, JP-A-2000-063119.
  • the silicon-containing hydrated oxide applied to the core / shell particles may be either a hydrate of an inorganic silicon compound, a hydrolyzate or a condensate of an organosilicon compound.
  • silanol A compound having a group is preferable.
  • the core / shell particles used in the present invention may be those in which the entire surface of the titanium oxide particles that are the core is coated with a silicon-containing hydrated oxide, or part of the surface of the titanium oxide particles that are the core. It may be coated with a silicon hydrated oxide.
  • a curing agent can also be used to cure the first water-soluble binder resin applied to the high refractive index layer.
  • a curing agent can also be used to cure the first water-soluble binder resin applied to the high refractive index layer.
  • boric acid and its salt are preferable as the curing agent.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • the content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
  • the low refractive index layer used in the present invention includes a second water-soluble binder resin and second metal oxide particles, and further includes a curing agent, a surface coating component, a particle surface protective agent, a binder resin, and a surfactant. Various additives may be included.
  • the refractive index of the low refractive index layer used in the present invention is preferably in the range of 1.10 to 1.60, more preferably 1.30 to 1.50.
  • polyvinyl alcohol As the second water-soluble binder resin applied to the low refractive index layer used in the present invention, polyvinyl alcohol is preferably used. Furthermore, it is more preferable that polyvinyl alcohol (B) different from the saponification degree of polyvinyl alcohol (A) present in the high refractive index layer is used in the low refractive index layer used in the present invention. In addition, description about polyvinyl alcohol (A) and polyvinyl alcohol (B), such as a preferable weight average molecular weight of 2nd water-soluble binder resin here, is demonstrated by the water-soluble binder resin of the said high refractive index layer. The description is omitted here.
  • the content of the second water-soluble binder resin in the low refractive index layer is preferably in the range of 20 to 99.9% by mass with respect to 100% by mass of the solid content of the low refractive index layer, and 25 to 80 More preferably, it is in the range of mass%.
  • the content of other binder resin used together with polyvinyl alcohol preferably used as the second water-soluble binder resin is 0 to 10 mass with respect to 100 mass% of the solid content of the low refractive index layer. % Can also be used.
  • silica silicon dioxide
  • specific examples thereof include synthetic amorphous silica and colloidal silica.
  • the second metal oxide particles (preferably silicon dioxide) applied to the low refractive index layer preferably have an average particle size in the range of 3 to 100 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in a primary particle state is more preferably in the range of 3 to 50 nm, and in the range of 3 to 40 nm. Is more preferably 3 to 20 nm, most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle size of the metal oxide particles applied to the low refractive index layer is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles.
  • the simple average value (number average) is obtained.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • Hollow particles can also be used as the second metal oxide particles applied to the low refractive index layer.
  • the average particle pore diameter is preferably in the range of 3 to 70 nm, more preferably in the range of 5 to 50 nm, and still more preferably in the range of 5 to 45 nm.
  • the average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles.
  • the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained.
  • the average particle hole diameter means the smallest distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
  • the content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass.
  • the low refractive index layer used in the present invention may further contain a curing agent, similar to the high refractive index layer.
  • a curing agent similar to the high refractive index layer.
  • boric acid and its salt and / or borax are preferred as the curing agent when polyvinyl alcohol is used as the second water-soluble binder resin applied to the low refractive index layer.
  • boric acid and its salts known ones can be used.
  • the content of the curing agent in the low refractive index layer is preferably in the range of 1 to 10% by mass and preferably in the range of 2 to 6% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is more preferable.
  • additives for each refractive index layer Various additives can be used in the high refractive index layer and the low refractive index layer used in the present invention, if necessary.
  • the content of the additive in the high refractive index layer is preferably 0 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the additive include surfactants, amino acids, emulsion resins, lithium compounds described in paragraphs [0140] to [0154] of JP2012-139948A and other additives described in paragraph [0155] of the same publication. Can be mentioned.
  • the method for forming the near-infrared reflective layer used in the present invention is preferably formed by applying a wet coating method. Furthermore, the first water-soluble binder resin is formed on the polyester film A or polyester film B in the present invention. And wet coating the coating solution for the high refractive index layer containing the first metal oxide particles and the coating solution for the low refractive index layer containing the second water-soluble binder resin and the second metal oxide particles.
  • the manufacturing method containing is preferable.
  • the wet coating method is not particularly limited.
  • a sequential multilayer application method or a simultaneous multilayer application method may be used as a method of applying a plurality of layers in a multilayer manner.
  • the solvent applicable for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene.
  • examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
  • the solvent of the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
  • the concentration of the water-soluble binder resin in the coating solution for the high refractive index layer is preferably in the range of 1 to 10% by mass.
  • concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably in the range of 1 to 50% by mass.
  • the concentration of the water-soluble binder resin in the coating solution for the low refractive index layer is preferably in the range of 1 to 10% by mass.
  • the concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably in the range of 1 to 50% by mass.
  • the method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited.
  • a water-soluble binder resin, metal oxide particles, and other additives added as necessary The method of adding and stirring and mixing is mentioned.
  • the order of addition of the water-soluble binder resin, the metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring. However, they may be added and mixed at once. If necessary, it is adjusted to an appropriate viscosity using a solvent.
  • a high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing core / shell particles.
  • the core / shell particles are added to the coating solution for the high refractive index layer as a sol having a pH measured in the range of 5.0 to 7.5 at 25 ° C. and a negative zeta potential of the particles. It is preferable to prepare it.
  • the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably within the range of 5 to 150 mPa ⁇ s. -Within the range of s is more preferable.
  • the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably within the range of 5 to 1200 mPa ⁇ s. A range of 25 to 500 mPa ⁇ s is more preferable.
  • the viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa ⁇ s or more, more preferably in the range of 100 to 30000 mPa ⁇ s, and in the range of 3000 to 30000 mPa ⁇ s.
  • the inside is more preferable, and the range of 10,000 to 30,000 mPa ⁇ s is particularly preferable.
  • the coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C.
  • the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of substances in each layer and in each layer by means such as applying cold air to the coating to lower the temperature.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from application of cold air to completion of setting is preferably within 5 minutes, preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, there are places where mixing of the components in the layer becomes insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the difference in refractive index between the high refractive index layer and the low refractive index layer is insufficient. In addition, if the high elasticity of the heat ray blocking film unit between the high refractive index layer and the low refractive index layer occurs quickly, the setting step may not be provided.
  • the set time is adjusted by adjusting the concentration of water-soluble binder resin and metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • FIG. 3 is an example of a window film of the present invention having a reflective layer formed of a multilayer film, and is a schematic cross-sectional view showing a configuration provided with a reflective layer unit having a reflective layer group on one surface side of a polyester film.
  • the window film 10 of the present invention has a reflective layer unit U.
  • the reflective layer unit U includes, as an example, a high refractive index reflective layer containing a first water-soluble binder resin and first metal oxide particles, and a second water-soluble layer on the polyester film A (2).
  • the reflective layer group ML is formed by alternately laminating a low refractive index reflective layer containing a conductive binder resin and second metal oxide particles.
  • the reflective layer group ML is composed of n layers of reflective layers T 1 to T n , for example, T 1 , T 3 , T 5 , (omitted), T n ⁇ 2 , T n with a refractive index of 1.10 to It is composed of a low refractive index layer in the range of 1.60, and T 2 , T 4 , T 6 , (omitted), and T n-1 are high in the refractive index range of 1.80 to 2.50.
  • An example of the configuration is a refractive index layer.
  • the refractive index as used in the field of this invention is the value measured in the environment of 25 degreeC.
  • a polyester film B (3) is laminated on the outermost layer of the reflective layer unit. Between the outermost layer of the reflective layer unit and the polyester film B (3), a hard coat layer for improving scratch resistance can be provided, and the surface of the polyester film A (2) where the reflective layer unit is not provided. It is also preferable to provide an adhesive layer 5 for bonding the window film to another substrate.
  • the polyester film according to the present invention is preferably provided with an easy-adhesion layer.
  • the resin forming the easy adhesion layer is not particularly limited as long as it is highly transparent and durable.
  • acrylic resins, urethane resins, fluorine resins, silicone resins and the like can be used alone or as a mixture.
  • These easy-adhesion layers are coated with a resin or resin composition solution by a known technique such as a gravure coating method, a reverse roll coating method, a roll coating method, a dip coating method, and after drying, ultraviolet rays as necessary. It can be formed by irradiating and curing with an electron beam.
  • the thickness of the easy adhesion layer is preferably 0.5 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the thickness of the easy-adhesion layer is thin, the surface of the substrate cannot be uniformly coated, and the effect of improving the corrosion resistance tends to be insufficient. On the other hand, even if it is formed too thick, no further improvement in scratch resistance is observed.
  • gelatin As the material for the easy adhesion layer, gelatin, polyvinyl alcohol, partially acetalized polyvinyl alcohol, hydrophilic resins such as vinyl acetate-maleic anhydride copolymer, and cellulose ester resins such as cellulose diacetate and cellulose nitrate are preferable. You may use individually or in mixture.
  • Effective solvents for the coating solution for the easy adhesion layer include acetone, methyl ethyl ketone, methanol, isopropanol, methylene chloride, ethylene chloride, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, ethyl acetate, dimethyl Formamide or the like can be used, and these may be mixed and used as necessary.
  • the window film of the present invention has a conductive layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a flow layer for the purpose of adding further functions on the polyester film.
  • a droplet layer, a slippery layer, a hard coat layer, an abrasion resistant layer, an electromagnetic wave shielding layer, an ultraviolet absorption layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, an adhesive layer, and the like may be provided.
  • the laminated glass of the present invention has an adhesive layer represented by polyvinyl butyral (PVB), which is preferably a polyvinyl acetal resin film, as the adhesive layer 5 on the surface of the polyester film A according to the present invention.
  • PVB polyvinyl butyral
  • the adhesive layer 5 on the surface of the polyester film A according to the present invention Through the laminated glass.
  • the polyvinyl acetal resin film By using the polyvinyl acetal resin film, the curved surface followability of the window film of the present invention is improved.
  • FIG. 4 is a schematic view of a laminated glass provided with the window film of the present invention.
  • the laminated glass 20 of the present invention may be a flat laminated glass, or a laminated glass using curved glass used for a windshield of a car. Since the window film of the present invention has improved thermoformability and curved surface followability, it is suitably used for laminated glass using the curved glass 8, in which case the polyester film A side is a concave portion of the curved shape. It is preferable to arrange on the side.
  • the laminated glass according to the present invention preferably has a visible light transmittance of 70% or more, particularly when used as a car window glass.
  • the visible light transmittance can be measured by using, for example, a spectrophotometer (U-4000 type, manufactured by Hitachi, Ltd.), JIS R3106 (1998) “Test of transmittance, reflectance, and solar heat gain of plate glass” It can be measured according to “Method”.
  • the solar heat acquisition rate of the laminated glass of the present invention is preferably 60% or less, and more preferably 55% or less. If it is this range, the heat ray from the outside can be interrupted more effectively.
  • the solar heat acquisition rate is measured using, for example, a spectrophotometer (manufactured by Hitachi, Ltd., U-4000 type) in the same manner as described above using JIS R3106 (1998) “Transmissivity / Reflectance / Solar Heat of Plate Glasses”. It can be determined according to “Acquisition rate test method”.
  • Glass substrate A commercially available glass material can be used as the glass substrate used for the laminated glass of the present invention.
  • the type of glass is not particularly limited, but usually soda lime silica glass is preferably used. In this case, it may be a colorless transparent glass or a colored transparent glass.
  • the outdoor glass substrate close to the incident light is preferably colorless transparent glass.
  • the glass substrate of the indoor side far from the incident light side is a green-colored colored transparent glass or dark colored transparent glass.
  • the green colored transparent glass preferably has ultraviolet absorption performance and infrared absorption performance.
  • the green colored transparent glass is not particularly limited, for example, soda lime silica glass containing iron is preferable.
  • a soda lime silica glass containing 0.3 to 1 mass% of total iron in terms of Fe 2 O 3 in a soda lime silica base glass is preferable.
  • the mass of FeO (divalent iron) is calculated in terms of Fe 2 O 3 , It is preferably 20 to 40% by mass of iron.
  • soda lime silica glass having the following composition substantially. SiO 2 : 65 to 75% by mass, Al 2 O 3 : 0.1 to 5% by mass, Na 2 O + K 2 O: 10 to 18% by mass, CaO: 5 to 15% by mass, MgO: 1 to 6% by mass, terms of Fe 2 O 3 were total iron 0.3 to 1 mass%, the total cerium CeO 2 in terms and / or TiO 2: 0.5 ⁇ 2% by weight.
  • the dark transparent glass is not particularly limited, but, for example, soda lime silica glass containing iron at a high concentration is preferable.
  • both the indoor side glass base material and the outdoor side glass base material is 1.5 to 3.0 mm.
  • the indoor side glass base material and the outdoor side glass base material can have the same thickness or different thicknesses.
  • both the indoor side glass base material and the outdoor side glass base material may have a thickness of 2.0 mm or a thickness of 2.1 mm.
  • the total thickness of the laminated glass is reduced by setting the thickness of the indoor glass substrate to less than 2 mm and the thickness of the outdoor glass plate to 2 mm or more.
  • the indoor glass substrate and the outdoor glass substrate may be flat or curved. Since vehicles, particularly automobile windows, are often curved, the shape of the indoor side glass substrate and the outdoor side glass substrate is often curved.
  • the polyester film A according to the present invention is preferably provided on the concave surface side of the outdoor glass substrate.
  • the method for producing the laminated glass of the present invention is not particularly limited. For example, after producing a window film by sandwiching both sides of the infrared reflective layer unit used in the present invention with the polyester film A and the polyester film B according to the present invention, After forming a polyvinyl acetal resin film as an adhesive layer on the polyester film, sandwiching the window film between two glass substrates, and then removing the excess portion protruding from the edge of the glass substrate as necessary , A method of heating at 100 to 150 ° C. for 10 to 60 minutes, and performing a combined degassing process by pressure degassing.
  • the surface of the adhesive layer may be provided with a release sheet before being used as a window film.
  • the release sheet only needs to be able to protect the tackiness of the pressure-sensitive adhesive.
  • the thickness of the release sheet is not particularly limited, but it is usually preferably in the range of 12 to 250 ⁇ m.
  • Example 1 ⁇ Preparation of window film 1> [Preparation of Polyester Film A] After melting a polyethylene terephthalate chip having an intrinsic viscosity of 0.58 cm 3 / g measured at 25 ° C. at 280 ° C., it was extruded on a cooling drum from a T-die by a conventional method, and then using a roller heated to 90 ° C. in the longitudinal direction. After stretching by 3.3 times, the film was stretched by 3.6 times at 140 ° C. in the transverse direction in the tenter and then heat-set at 230 ° C.
  • Thermal shrinkage (%) (L (23 ° C.) ⁇ L (150 ° C.)) / L (23 ° C.) ⁇ 100 L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH Sample length when left for 1 day at [Preparation of polyester film B] A polyethylene terephthalate chip having an intrinsic viscosity of 0.64 cm 3 / g measured at 25 ° C.
  • Non-infrared absorbing layer 1 A butyral resin layer having a film thickness of 10 ⁇ m, in which a cesium-containing tungsten oxide (Cs 0.33 WO 3 ) as a near-infrared absorber is mixed at 1.4 g / m 2 on the polyester film A, is formed by a die coater.
  • the window film 1 was obtained by coating and then thermocompression bonding with the polyester film B at a temperature of 80 ° C.
  • a window film 9 was obtained in the same manner except that the near-infrared reflective layer 1 was produced and used instead of the near-infrared absorbing layer 1 by the following method.
  • a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles as a near-infrared reflecting layer, and a low refraction containing a second water-soluble binder resin and second metal oxide particles was produced as follows.
  • the undercoat layer coating solution 1 is applied to the polyester film A with an extrusion coater so as to be 15 ml / m 2, and after passing through a 50 ° C. no-air zone (1 second), it is 30 ° C. at 30 ° C.
  • the substrate was dried for 2 seconds to obtain a support coated with an undercoat layer.
  • undercoat layer coating solution 1 10g deionized gelatin 30 ml of pure water Acetic acid 20g The following crosslinking agent 0.2 mol / g gelatin The following nonionic fluorine-containing surfactant 0.2 g
  • ⁇ Preparation of deionized gelatin> Ocein from which lime was removed by performing lime treatment, water washing and neutralization treatment was extracted in hot water at 55 to 60 ° C. to obtain ossein gelatin.
  • the obtained ossein gelatin aqueous solution was subjected to both ion exchanges in a mixed bed of anion exchange resin (Diaion PA-31G) and cation exchange resin (Diaion PK-218).
  • the polyester film B was laminated
  • the obtained colloidal silica dispersion L1 was heated to 45 ° C., and 4.0% by mass of polyvinyl alcohol (B) as a polyvinyl alcohol (manufactured by Nippon Vinyl Bipo-Poval Co., Ltd., JP-45: polymerization) 4500, saponification degree 86.5 to 89.5 mol%) and 760 parts of an aqueous solution were sequentially added with stirring. Thereafter, 40 parts of a 1% by weight betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R) aqueous solution was added to prepare a coating solution L1 for a low refractive index layer.
  • B polyvinyl alcohol
  • betaine surfactant manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R
  • the raw material titanium oxide hydrate is obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
  • the base-treated titanium compound was suspended in pure water so that the concentration when converted to TiO 2 was 20 g / L. Therein, it was added with stirring citric acid 0.4 mol% with respect to TiO 2 weight. Then, when the temperature of the mixed sol solution reached 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L. Further, the mixture was stirred for 3 hours while maintaining the liquid temperature at 95 ° C. to prepare a titanium oxide sol liquid.
  • the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Moreover, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the monodispersity was 16%.
  • titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain titanium oxide powder fine particles.
  • the powder fine particles were subjected to X-ray diffraction measurement using JDX-3530 type manufactured by JEOL Datum Co., Ltd. and confirmed to be rutile titanium oxide fine particles.
  • the volume average particle diameter of the fine particles was 10 nm.
  • a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile-type titanium oxide fine particles having a volume average particle diameter of 10 nm was added to 4 kg of pure water to obtain a sol solution serving as core particles.
  • Preparation of coating liquid H1 for high refractive index layer 28.9 parts of a sol solution containing core / shell particles as the first metal oxide particles having a solid content concentration of 20.0% by mass obtained above, and 10.5 parts of a 1.92% by mass citric acid aqueous solution. And 2.0 parts of an aqueous solution of 10% by weight polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-103: polymerization degree 300, saponification degree 98.5 mol%) and 9.0 parts of a 3% by weight aqueous boric acid solution. By mixing, a core-shell particle dispersion H1 was prepared.
  • the laminated glass window film produced was evaluated according to the following criteria: (Outdoor observation distortion) 5: When looking outside through the glass, it is not particularly distorted 4: When looking outside through the glass, the part with a strong curved surface is slightly distorted 3: When looking outside through the glass, the part with a strong curved surface is distorted 2: When looking outside through the glass The entire surface is slightly distorted 1: The entire image appears distorted (wrinkles) 3: No wrinkle on the entire glass surface 2; Wrinkle on the glass edge 1: Wrinkle on the entire glass surface Table 1 shows the structure of the window film and the evaluation results.
  • the window films 1 to 6 and 9 to 14 of the present invention have excellent curved surface followability when used for laminated glass for automobiles, so that generation of wrinkles is suppressed and visibility through which the outside is viewed through the glass is shown. It turns out that it is excellent in. It can also be seen that the film thicknesses of the window films A and B are preferably B ⁇ A.
  • Example 2 An adhesive layer having a thickness of 10 ⁇ m was provided on the polyester film A side of each of the window films 1 of the present invention and the window film 7 as a comparative example, and a release sheet was bonded thereon.
  • the window films 1 and 7 were laminated on the outer surface of a commercially available car windshield with the release sheet facing outward, and thermoformed with a heat gun. Then, the release sheet was peeled off from the window films 1 and 7, and was applied by 10 installers so that there was no wrinkle inside the windshield. As a result, while the time required for construction with the window film 1 of the present invention is an average of 5 minutes, the time required when using the window film 7 as a comparative example takes an average of 12 minutes. It turned out that the window film of a structure is easy to apply to the curved glass for motor vehicles.
  • Example 3 Copolyester containing terephthalic acid as the dicarboxylic acid component, ethylene glycol and cyclohexanedimethanol (7: 3) as the glycol component, naphthalenedicarboxylic acid and cyclohexanedicarboxylic acid (7: 3) as the dicarboxylic acid component, and ethylene glycol as the glycol component
  • the copolyester contained was alternately extruded from a multilayer extrusion die to produce a near-infrared reflective film having a 200-layer structure and a center of the reflection wavelength at a wavelength of 1000 nm. 0.2 ⁇ m.
  • Adhesive layers are provided on both sides of the near-infrared reflective film, the polyester film A having the configuration of the window film 1 of the present invention is provided on one adhesive layer, and the polyester film B having the configuration of the window film 1 of the present invention is provided on the other adhesive layer. Further, a PVB adhesive layer having a thickness of 10 ⁇ m was provided on the polyester film A side, and a release sheet was bonded thereon.
  • polyester A having a structure of window film 7 as a comparative example is applied to one adhesive layer
  • polyester film B having a structure of window film 7 is applied to the other adhesive layer.
  • a PVB adhesive layer having a thickness of 10 ⁇ m was provided on the polyester film A side, and a release sheet was bonded thereon.
  • the obtained window film was evaluated in the same manner as in Example 2.
  • the construction time was about half when the window film 1 having the configuration of the present invention was used, compared with the case where the window film 7 having the configuration of the comparative example was used. Further, when the glass edge portion having a higher curvature is seen, there is no problem in the configuration of the present invention, but in the configuration of the comparative example, it is observed that the edge portion is wavy.
  • the window film of the present invention is excellent in thermoformability and curved surface shape followability, it is suitable for window films for automobiles and laminated glass using the same.

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention addresses the problem of providing a window film having exceptional heat moldability and curved-shape-following properties, and a laminated glass using the same. The window film of the present invention is affixed to glass having an at least partially curved shape, wherein the window film is characterized by being a laminated film of a polyester film A having at least a film thickness of 5 μm or greater and a heat shrinkage rate within a range of 0.2-1%, and a polyester film B having at least a film thickness of 5 μm or greater and a heat shrinkage rate within a range of 2-10%. Heat shrinkage rate (%) = {(L(23°C) - L(150°C))/L(23°C)} × 100 L(23°C): sample length when allowed to stand for one day in an environment at 23°C and 55% RH. L(150°C): sample length when allowed to stand for one day in an environment at 23°C and 55% RH after standing for 30 minutes in an environment at 150°C.

Description

ウインドウフィルム及びそれを用いた合わせガラスWindow film and laminated glass using the same
 本発明は、ウインドウフィルム及びそれを用いた合わせガラスに関する。より詳しくは、熱成形性及び曲面形状追従性に優れたウインドウフィルム及びそれを用いた合わせガラスに関する。 The present invention relates to a window film and a laminated glass using the window film. More specifically, the present invention relates to a window film excellent in thermoformability and curved surface shape followability, and a laminated glass using the window film.
 近年、自動車用のフロントガラス又は窓ガラスとしては、強度や破損した際のガラス片の飛散を防止する観点から、2枚のガラス基板の間に、ウインドウフィルムと呼称される樹脂フィルムを挟み込んだ合わせガラスが使用されている。通常、このような合わせガラスを通して、太陽光が自動車内に入り込み、その熱エネルギーにより、車内温度が上昇する。このような太陽光による車内温度の上昇を抑えるため、エアコンディショナーを稼動させるが、車窓から入り込む太陽光による熱さを遮り、当該エアコンディショナーの稼働を抑えて、省エネルギー化することを目的として、高い断熱又は熱線遮断性を有する熱線遮断性合わせガラスが市場に流通している。このような目的で使用される合わせガラスは、一般には、一対のガラス基板間に熱線遮断性のウインドウフィルムを配置し、太陽光線中の熱線(赤外線又は近赤外線)の透過を遮断し、室内の温度上昇や冷房負荷を抑制する方法が知られている。 In recent years, as a windshield or window glass for automobiles, a resin film called a window film is sandwiched between two glass substrates from the viewpoint of preventing strength and scattering of glass pieces when damaged. Glass is used. Usually, sunlight enters the automobile through such a laminated glass, and the temperature inside the automobile rises due to the heat energy. The air conditioner is operated to suppress the rise of the temperature inside the vehicle due to such sunlight, but it is highly insulated for the purpose of saving energy by blocking the heat of sunlight entering from the car window and suppressing the operation of the air conditioner. Or the heat ray blocking laminated glass which has heat ray blocking property is distribute | circulating to the market. Laminated glass used for such purposes generally has a heat-shielding window film disposed between a pair of glass substrates to block transmission of heat rays (infrared rays or near-infrared rays) in sunlight, and indoors. Methods for suppressing temperature rise and cooling load are known.
 ウインドウフィルム用の支持体として、熱収縮率が0.2~1%の範囲である一般的なポリエステルフィルムが通常使われている(例えば、特許文献1参照。)。 As a support for a window film, a general polyester film having a heat shrinkage in the range of 0.2 to 1% is usually used (for example, see Patent Document 1).
 また、熱収縮率が2~10%の範囲であるポリエステルフィルムを用いて、合わせガラス用のウインドウフィルムを使うことも知られている(例えば、特許文献2参照。)。 It is also known to use a window film for laminated glass using a polyester film having a heat shrinkage rate in the range of 2 to 10% (see, for example, Patent Document 2).
 しかしながら、上記自動車のフロントガラスや窓ガラスは曲面加工されているので、一般的に貼り合わせる前には、ヒートガン等を用いて熱成形されるが、ウインドウフィルムとして熱収縮率が0.2~1%の範囲であるポリエステルフィルムを用いると、熱収縮率が小さいため、曲面追従性に劣り、熱成形に時間がかかるという問題がある。 However, since the windshield and window glass of the above-mentioned automobile are processed to be curved, they are generally thermoformed using a heat gun or the like before being bonded together. If a polyester film in the range of% is used, the thermal shrinkage rate is small, so that there is a problem that curved surface followability is inferior and thermoforming takes time.
 一方、熱収縮率が2~10%の範囲であるポリエステルフィルムを用いると前記熱成形の時間は短縮されるが、少しでも時間をかけすぎるとウインドウフィルムがシュリンク(収縮)して、成形に失敗することがあり、熱成形が難しいという問題があった。 On the other hand, if a polyester film with a heat shrinkage rate in the range of 2 to 10% is used, the time for thermoforming is shortened. However, if too much time is spent, the window film shrinks (shrinks) and fails to be formed. There is a problem that thermoforming is difficult.
特開2013-209246号公報JP 2013-209246 A 特開2010-215493号公報JP 2010-215493 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、熱成形性及び曲面形状追従性に優れたウインドウフィルム及びそれを用いた合わせガラスを提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and a solution to that problem is to provide a window film excellent in thermoformability and curved surface shape followability, and a laminated glass using the window film.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、特定の膜厚と熱収縮率を有する2枚のポリエステルフィルムA及びBが積層されたウインドウフィルムによって、熱成形性及び曲面形状追従性に優れたウインドウフィルムが得られることを見出した。 In order to solve the above-mentioned problems, the present inventor, in the process of examining the cause of the above-mentioned problems, the heat is generated by the window film in which two polyester films A and B having a specific film thickness and a heat shrinkage rate are laminated. It has been found that a window film excellent in moldability and curved surface shape followability can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.少なくとも一部に曲面形状を有するガラスに貼合するウインドウフィルムであって、
 前記ウインドウフィルムの支持体が、少なくとも膜厚が5μm以上で下記熱収縮率が0.2~1%の範囲内のポリエステルフィルムAと、少なくとも膜厚が5μm以上で下記熱収縮率が2~10%の範囲内のポリエステルフィルムBとの積層されたフィルムであることを特徴とするウインドウフィルム。
1. It is a window film to be bonded to glass having a curved shape at least in part,
The window film support includes a polyester film A having a thickness of 5 μm or more and a thermal contraction rate of 0.2 to 1%, and a thermal contraction rate of 2 to 10 and a thickness of 5 μm or more. %, A window film characterized by being a film laminated with a polyester film B within a range of%.
  熱収縮率(%)={(L(23℃)-L(150℃))/L(23℃)}×100
 L(23℃):23℃・55%RHの環境下で1日放置したときのサンプル長
 L(150℃):150℃の環境下で30分間放置後、23℃・55%RHの環境下で1日放置したときのサンプル長
 2.前記ポリエステルフィルムAと前記ポリエステルフィルムBの膜厚の比の値(A/B)が、90/10~50/50の範囲内であることを特徴とする第1項に記載のウインドウフィルム。
Thermal shrinkage (%) = {(L (23 ° C.) − L (150 ° C.)) / L (23 ° C.)} × 100
L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH 1. Sample length when left for 1 day 2. The window film as set forth in claim 1, wherein the ratio (A / B) of the film thickness ratio between the polyester film A and the polyester film B is in the range of 90/10 to 50/50.
 3.前記ポリエステルフィルムAと前記ポリエステルフィルムBとの間に近赤外線吸収層を有することを特徴とする第1項又は第2項に記載のウインドウフィルム。 3. The window film according to claim 1 or 2, further comprising a near-infrared absorbing layer between the polyester film A and the polyester film B.
 4.前記ポリエステルフィルムAと前記ポリエステルフィルムBとの間に近赤外線反射層を有することを特徴とする第1項又は第2項に記載のウインドウフィルム。 4. The window film according to claim 1 or 2, further comprising a near-infrared reflective layer between the polyester film A and the polyester film B.
 5.第1項から第4項のいずれか一項に記載のウインドウフィルムを、少なくとも一部に曲面形状を有するガラスで挟持した合わせガラスであって、
 前記ウインドウフィルムの前記ポリエステルフィルムA面側が、前記曲面形状を有するガラスの凹部側に接する位置に配置されていることを特徴とする合わせガラス。
5. A laminated glass in which the window film according to any one of Items 1 to 4 is sandwiched between glasses having a curved shape at least in part,
Laminated glass, wherein the polyester film A surface side of the window film is disposed at a position in contact with a concave portion of the curved glass.
 本発明の上記手段により、熱成形性及び曲面形状追従性に優れたウインドウフィルム及びそれを用いた合わせガラスを提供することができる。 By the above means of the present invention, it is possible to provide a window film excellent in thermoformability and curved surface shape followability and a laminated glass using the same.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のウインドウフィルムは、その支持体として、特定の膜厚と熱収縮性を有する2枚のポリエステルフィルムA及びBが積層されたフィルムであり、少なくとも一部に曲面形状を有するガラスに用いる際に、熱収縮率の小さいポリエステルフィルムを曲面形状の凹部側に配置することによって、ヒートガン等を用いて熱成形されるときに凹部側のフィルムの収縮が小さく、かつ反対側のフィルムの収縮が大きいことによって、曲面形状に接する側のしわの発生を抑制し、フィルムの凹部への曲面形状追従性を向上して、熱成型性が向上するものと推察される。 The window film of the present invention is a film in which two polyester films A and B having a specific film thickness and heat shrinkability are laminated as a support, and is used for glass having a curved shape at least partially. In addition, by disposing a polyester film having a small heat shrinkage rate on the concave side of the curved surface, the shrinkage of the film on the concave side is small and the shrinkage of the film on the opposite side is large when thermoformed using a heat gun or the like. Therefore, it is presumed that the generation of wrinkles on the side in contact with the curved surface shape is suppressed, the curved surface shape following property to the concave portion of the film is improved, and the thermoformability is improved.
本発明のウインドウフィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the window film of the present invention 近赤外線吸収層を有する本発明のウインドウフィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the window film of the present invention having a near infrared absorption layer 近赤外線反射層を有する本発明のウインドウフィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the window film of the present invention having a near-infrared reflective layer 多層膜による反射層を有する本発明のウインドウフィルムの一例An example of the window film of the present invention having a multilayer reflective layer 本発明のウインドウフィルムを具備する合わせガラスの概略図Schematic of the laminated glass comprising the window film of the present invention
 本発明のウインドウフィルムは、特定の膜厚と熱収縮率を有する2枚のポリエステルフィルムA及びBの積層型フィルムであることを特徴とする。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。 The window film of the present invention is characterized in that it is a laminated film of two polyester films A and B having a specific film thickness and heat shrinkage rate. This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、本発明の効果発現の観点から、前記ポリエステルフィルムAと前記ポリエステルフィルムBの膜厚の比の値(A/B)が、90/10~50/50の範囲内であることが、少なくとも一部に曲面形状を有するガラスに用いる際に、熱収縮率の小さいポリエステルフィルムの膜厚を厚くし、曲面形状の凹部側に配置することによって、熱成形性及び曲面形状追従性に優れたウインドウフィルムを得ることができる。 As an embodiment of the present invention, from the viewpoint of manifestation of the effect of the present invention, the ratio value (A / B) of the film thickness of the polyester film A and the polyester film B is in the range of 90/10 to 50/50. When it is used for glass having a curved surface shape at least in part, the film thickness of the polyester film having a small heat shrinkage rate is increased and disposed on the concave portion side of the curved surface shape, thereby achieving thermoformability and curved surface shape. A window film excellent in followability can be obtained.
 前記ポリエステルフィルムAと前記ポリエステルフィルムBとの間に近赤外線を吸収する層又は近赤外線を反射する層を設けることが、合わせガラスに用いる熱線遮断性のウインドウフィルムとして好適である。 It is suitable as a heat-shielding window film used for laminated glass to provide a layer that absorbs near infrared rays or a layer that reflects near infrared rays between the polyester film A and the polyester film B.
 本発明の合わせガラスは、前記ウインドウフィルムの前記ポリエステルフィルムA面側が前記曲面形状を有するガラスの凹部側に接する位置に配置されていることが、熱成型性を向上して、生産性を高める観点から好ましい。 In the laminated glass of the present invention, the fact that the polyester film A surface side of the window film is disposed at a position in contact with the concave portion of the glass having the curved shape improves the thermoformability and increases the productivity. To preferred.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明のウインドウフィルムの概要≫
 本発明のウインドウフィルムは、少なくとも一部に曲面形状を有するガラスに貼合するウインドウフィルムであって、前記ウインドウフィルムが、少なくとも膜厚が5μm以上で下記熱収縮率が0.2~1%の範囲内のポリエステルフィルムAと、少なくとも膜厚が5μm以上で下記熱収縮率が2~10%の範囲内のポリエステルフィルムBとを積層したフィルムであることを特徴とする。
<< Outline of Window Film of the Present Invention >>
The window film of the present invention is a window film to be bonded to glass having a curved surface shape at least in part, wherein the window film has a film thickness of at least 5 μm and a heat shrinkage ratio of 0.2 to 1% as described below. The polyester film A within the range and the polyester film B having a thickness of 5 μm or more and a thermal shrinkage ratio of 2 to 10% are laminated.
 ここで熱収縮率とは、以下の測定法によって求められる。 Here, the heat shrinkage rate is determined by the following measurement method.
 〈熱収縮率〉
 本発明に係る膜厚が5μm以上に調整されたポリエステルフィルムの熱収縮率は、フィルムの縦方向又は横方向から10か所程度サンプリングした試料を用いて、下記条件及び式によって求め、その平均値を用いることができる。試料は、例えば縦100mm、横10mmの長さの試料を用い、縦の長さを下記サンプル長とすることができる。また、それぞれの環境は、環境試験室や恒温槽を用いることができる。
<Heat shrinkage>
The thermal shrinkage rate of the polyester film whose film thickness is adjusted to 5 μm or more according to the present invention is obtained by the following conditions and formula using a sample sampled from about 10 places from the longitudinal direction or the lateral direction of the film, and the average value thereof. Can be used. As the sample, for example, a sample with a length of 100 mm and a width of 10 mm is used, and the vertical length can be set to the following sample length. Moreover, each environment can use an environmental test room or a thermostat.
 熱収縮率(%)={(L(23℃)-L(150℃))/L(23℃)}×100
 L(23℃):23℃・55%RHの環境下で1日放置したときのサンプル長
 L(150℃):150℃の環境下で30分間放置後、23℃・55%RHの環境下で1日放置したときのサンプル長
 異なる熱収縮率を有する2枚のポリエステルフィルムを積層することによって、曲面形状を有するガラスに加熱圧着して貼合する際に、熱収縮率の違いから、曲面形状に接する側のしわの発生を抑制して曲面形状追従性を向上し、優れた熱成型性を提供するものである。
Thermal shrinkage (%) = {(L (23 ° C.) − L (150 ° C.)) / L (23 ° C.)} × 100
L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH Sample length when left for 1 day at the time of laminating two polyester films having different heat shrinkage ratios, and when bonding by thermocompression bonding to glass having a curved surface shape, due to the difference in heat shrinkage ratio, curved surface It suppresses the generation of wrinkles on the side in contact with the shape, improves the curved surface shape followability, and provides excellent thermoformability.
 <本発明のウインドウフィルムの構成>
 以下、本発明のウインドウフィルムの構成要素について順次説明する。
<Configuration of window film of the present invention>
Hereinafter, the components of the window film of the present invention will be sequentially described.
 はじめに、図を用いて、本発明のウインドウフィルムの基本的な構成について説明する。 First, the basic configuration of the window film of the present invention will be described with reference to the drawings.
 図1は、本発明のウインドウフィルムの構成の一例を示す概略断面図である(括弧内の数字は図中の番号を示す。)。 FIG. 1 is a schematic sectional view showing an example of the structure of the window film of the present invention (the numbers in parentheses indicate the numbers in the figure).
 本発明のウインドウフィルム1は、膜厚が5μm以上で熱収縮率が0.2~1%の範囲内のポリエステルフィルムA(2)と膜厚が5μm以上で熱収縮率が2~10%の範囲内のポリエステルフィルムB(3)とを積層した構造である。ポリエステルフィルムA(2)とポリエステルフィルムB(3)の間には、粘着層4を設けて接着していてもよいし、これを省略して熱圧着により積層してもよい。 The window film 1 of the present invention has a film thickness of 5 μm or more and a thermal shrinkage rate of 0.2 to 1%, and a polyester film A (2) in a range of 0.2 to 1% and a film thickness of 5 μm or more and a heat shrinkage rate of 2 to 10% It is the structure which laminated | stacked the polyester film B (3) in the range. Between the polyester film A (2) and the polyester film B (3), an adhesive layer 4 may be provided and bonded, or may be omitted and laminated by thermocompression bonding.
 また、ポリエステルフィルムA(2)の表面にガラスに貼合するための粘着層5が形成されていることが好ましく、当該粘着層5はポリエステルフィルムB(3)の表面にも同様に形成されていてもよい。 Moreover, it is preferable that the adhesion layer 5 for bonding to glass is formed in the surface of the polyester film A (2), and the said adhesion layer 5 is similarly formed in the surface of the polyester film B (3). May be.
 粘着層4及び粘着層5としては、好ましくはポリビニルアセタール系樹脂膜であるポリビニルブチラール(PVB)樹脂やエポキシ樹脂等を好ましく用いることができる。 As the adhesive layer 4 and the adhesive layer 5, a polyvinyl butyral (PVB) resin, an epoxy resin or the like, which is preferably a polyvinyl acetal resin film, can be preferably used.
 図2A及び図2Bは、近赤外線を吸収する層又は近赤外線を反射する層を有する本発明のウインドウフィルム10の構成の一例を示す概略断面図である。 2A and 2B are schematic cross-sectional views showing an example of the configuration of the window film 10 of the present invention having a layer that absorbs near infrared rays or a layer that reflects near infrared rays.
 本発明の好ましい実施態様である、近赤外線を吸収する層又は近赤外線を反射する層を有する本発明のウインドウフィルム10は、前記ポリエステルフィルムA(2)と前記ポリエステルフィルムB(3)とで近赤外線を吸収する層6又は近赤外線を反射する層7を挟持するように貼合した積層構造である。前記ポリエステルフィルムA(2)と前記ポリエステルフィルムB(3)とは、近赤外線を吸収する層6又は近赤外線を反射する層7の表面とそれぞれ粘着層4を介して接着されていることが好ましい。 The window film 10 of the present invention having a layer that absorbs near infrared rays or a layer that reflects near infrared rays, which is a preferred embodiment of the present invention, is close to the polyester film A (2) and the polyester film B (3). It is the laminated structure bonded so that the layer 6 which absorbs infrared rays, or the layer 7 which reflects near infrared rays may be pinched | interposed. The polyester film A (2) and the polyester film B (3) are preferably bonded to the surface of the layer 6 that absorbs near infrared rays or the layer 7 that reflects near infrared rays via an adhesive layer 4, respectively. .
 また、ポリエステルフィルムA(2)の表面にガラスに貼合するための粘着層5が形成されていることが好ましく、当該粘着層5はポリエステルフィルムB(3)の表面にも同様に形成されていてもよい。 Moreover, it is preferable that the adhesion layer 5 for bonding to glass is formed in the surface of the polyester film A (2), and the said adhesion layer 5 is similarly formed in the surface of the polyester film B (3). May be.
 〔1〕ポリエステルフィルムA及びポリエステルフィルムB
 本発明に係るポリエステルフィルムAは、膜厚が5μm以上で熱収縮率が0.2~1%の範囲内のポリエステルフィルムであり、ポリエステルフィルムBは、膜厚が5μm以上で熱収縮率が2~10%の範囲内のポリエステルフィルムであることを特徴とする。
[1] Polyester film A and polyester film B
The polyester film A according to the present invention is a polyester film having a film thickness of 5 μm or more and a heat shrinkage ratio in the range of 0.2 to 1%, and the polyester film B has a film thickness of 5 μm or more and a heat shrinkage ratio of 2 It is characterized by being a polyester film in a range of ˜10%.
 前記ポリエステルフィルムの膜厚については、ニコン社製のNikon Digimicro(MF501)を用い、23℃、55%RHの環境下で、フィルムの横方向に10点測定し、その平均値を求め膜厚とすることができる。 Regarding the film thickness of the polyester film, Nikon Digimicro (MF501) manufactured by Nikon Corporation was used and measured at 10 points in the lateral direction of the film in an environment of 23 ° C. and 55% RH. can do.
 〔1.1〕ポリエステル樹脂
 本発明に係るポリエステルフィルムA及びポリエステルフィルムB(以下、簡単にポリエステルフィルムという場合がある。)において用いることができるポリエステル樹脂は、ジカルボン酸とジオールを重合することにより得られ、耐熱性の観点からジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の70%以上が芳香族ジカルボン酸に由来し、かつジオール構成単位(ジオールに由来する構成単位)の70%以上が脂肪族ジオールに由来することが好ましい。
[1.1] Polyester Resin A polyester resin that can be used in the polyester film A and the polyester film B (hereinafter sometimes simply referred to as a polyester film) according to the present invention is obtained by polymerizing a dicarboxylic acid and a diol. From the viewpoint of heat resistance, 70% or more of the dicarboxylic acid structural unit (structural unit derived from dicarboxylic acid) is derived from the aromatic dicarboxylic acid, and 70% or more of the diol structural unit (structural unit derived from diol). It is preferably derived from an aliphatic diol.
 芳香族ジカルボン酸に由来する構成単位の割合は70%以上、好ましくは80%以上、更に好ましくは90%以上である。 The proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
 脂肪族ジオールに由来する構成単位の割合は70%以上、好ましくは80%以上、更に好ましくは90%以上である。ポリエステル樹脂は、2種以上を併用してもよい。 The proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, more preferably 90% or more. Two or more polyester resins may be used in combination.
 前記芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ビフェニルジカルボン酸、4,4′-ビフェニルエーテルジカルボン酸、4,4′-ビフェニルメタンジカルボン酸、4,4′-ビフェニルスルホンジカルボン酸、4,4′-ビフェニルイソプロピリデンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4′-ジカルボン酸、2,5-アントラセンジカルボン酸、2,6-アントラセンジカルボン酸、4,4′-p-ターフェニレンジカルボン酸、2,5-ピリジンジカルボン酸等が挙げられ、これらの置換体(例えば、5-メチルイソフタル酸などのアルキル基置換体など)や反応性誘導体(例えば、テレフタル酸ジメチル、テレフタル酸ジエチルなどのアルキルエステル誘導体など)等を用いることもできる。中でも、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、及びこれらのアルキルエステル誘導体が、より好ましい。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and 4,4′-biphenyl ether. Dicarboxylic acid, 4,4'-biphenylmethane dicarboxylic acid, 4,4'-biphenylsulfone dicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic Acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4′-p-terphenylene dicarboxylic acid, 2,5-pyridinedicarboxylic acid, and the like (for example, 5 -Alkyl group-substituted products such as methyl isophthalic acid) and reactive derivatives (eg, Dimethyl phthalate, and alkyl ester derivatives such as diethyl terephthalate) and the like can also be used. Among these, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and alkyl ester derivatives thereof are more preferable.
 これら芳香族ジカルボン酸は、1種を単独で用いても、2種以上を併用してもよく、当該芳香族ジカルボン酸とともにアジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等の1種以上併用してもよい。 These aromatic dicarboxylic acids may be used alone or in combination of two or more, and together with the aromatic dicarboxylic acid, an aliphatic dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, etc. One or more alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid may be used in combination.
 前記脂肪族ジオールとして、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、2,2-ジメチル-1,3-プロパンジオール等の脂肪族ジオ-ル類;1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、シクロヘキサンジオール、トランス-又はシス-2,2,4,4-テトラメチル-1,3-シクロブタンジオール等の脂環族ジオ-ル類;p-キシレンジオール、ビスフェノールA、テトラブロモビスフェノールA、テトラブロモビスフェノールA-ビス(2-ヒドロキシエチルエーテル)等の芳香族ジオール類等を挙げることができ、これらの置換体も使用することができる。 Examples of the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, Aliphatic diols such as decamethylene glycol and 2,2-dimethyl-1,3-propanediol; 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, cyclohexanediol, trans- or cis-2 Alicyclic diols such as 1,2,4,4-tetramethyl-1,3-cyclobutanediol; p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2-hydroxyethyl) Aromatic diols such as ether) It can, can also be used these substituents.
 中でも、バインダー樹脂の耐熱性の観点から、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノールが好ましく、更には、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが好ましく、特に、エチレングリコールが好ましい。 Of these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol are preferable from the viewpoint of heat resistance of the binder resin, and ethylene glycol and 1,3-propanediol are more preferable. 1,4-butanediol is preferred, and ethylene glycol is particularly preferred.
 これらのジオール類は、1種を単独で用いても、2種以上を併用して用いてもよい。また、ジオール成分として、分子量400~6000の長鎖ジオール類、具体的には、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等の1種以上をジオ-ル類と併用して共重合させてもよい。 These diols may be used alone or in combination of two or more. Further, as the diol component, a long chain diol having a molecular weight of 400 to 6000, specifically, one or more of polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol and the like are used in combination with the diols. And may be copolymerized.
 ポリエステル樹脂には本発明の目的を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 As the polyester resin, monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
 ポリエステル樹脂の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。 A known esterification method or transesterification method can be applied to the production of the polyester resin. Examples of the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
 好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4′-ビフェニルジカルボキシレート樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂、ポリブチレンサクシネート樹脂(PBS)、ポリブチレンサクシネート・アジペート樹脂(PBSA)、ポリエチレンサクシネート樹脂(PES)、ポリブチレンサクシネート・カーボネート樹脂(PBSC)、ポリエチレンサクシネート・テレフタレート樹脂(PEST)等がある。 Preferred polyester resins include polyethylene terephthalate resin (PET), polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene -2,6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2, 6-naphthalene dicarboxylate resin, polybutylene succinate resin (PBS), polybutylene succinate adipate resin (PBSA), polyethylene succinate tree (PES), polybutylene succinate-carbonate resin (PBSC), and the like polyethylene succinate terephthalate resin (PEST).
 より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂、ポリブチレンサクシネート樹脂(PBS)、ポリブチレンサクシネート・アジペート樹脂(PBSA)が挙げられる。 More preferable polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin, polybutylene succinate resin (PBS), and polybutylene succinate adipate resin (PBSA).
 ポリエステル樹脂の固有粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比混合溶媒中、25℃で測定した値)は、0.7~2.0cm/gの範囲が好ましく、より好ましくは0.8~1.5cm/gの範囲である。固有粘度が0.7以上であるとポリエステル樹脂の分子量が充分に高いために、これを使用して得られるポリエステル樹脂組成物からなる成形物が成形物として必要な機械的性質を有するとともに、透明性が良好となる。固有粘度が2.0以下の場合、成形性が良好となる。 The intrinsic viscosity (value measured at 25 ° C. in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane = 60/40 mass ratio) of the polyester resin is in the range of 0.7 to 2.0 cm 3 / g. More preferably, it is in the range of 0.8 to 1.5 cm 3 / g. Since the molecular weight of the polyester resin is sufficiently high when the intrinsic viscosity is 0.7 or more, the molded product made of the polyester resin composition obtained by using the polyester resin has mechanical properties necessary for the molded product and is transparent. Property is improved. When the intrinsic viscosity is 2.0 or less, the moldability is good.
 〈そのほかの添加剤〉
 本発明に係るポリエステルフィルムは、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とするポリエステル中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子のほかにも添加剤を加えてもよい。このような添加剤としては、例えば、可塑剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。
<Other additives>
In order to facilitate handling, the polyester film according to the present invention may contain particles within a range that does not impair transparency. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include plasticizers, stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, ultraviolet absorbers, and the like.
 〔1.2〕ポリエステルフィルムの製造方法
 本発明に係るポリエステルフィルムの製造方法は、ポリエステル樹脂の溶融物をドラム上に溶融押し出し膜を形成する工程と、前記膜を前記ドラムから剥離する工程と、前記剥離した膜を加熱したローラーで縦方向に延伸する工程とその後テンター内でクリップにてフィルムの両端をはさみながら横方向に延伸しその後クリップでひずみを緩和しながら熱固定(弛緩熱処理工程)することが好ましく、熱収縮率を所望の範囲に制御するのに、この弛緩熱処理工程によって行うことが可能である。
[1.2] Method for Producing Polyester Film A method for producing a polyester film according to the present invention includes a step of forming a melt-extruded film on a drum of a polyester resin melt, a step of peeling the film from the drum, Stretching the peeled film in the longitudinal direction with a heated roller and then stretching in the transverse direction while holding both ends of the film with a clip in the tenter, and then heat setting (relaxing heat treatment process) while relaxing the strain with the clip Preferably, this relaxation heat treatment step can be used to control the heat shrinkage rate within a desired range.
 また、縦方向(MD方向又は長手方向ともいう。)、横方向(TD方向又は幅手方向ともいう。)の熱収縮をそろえるために、熱ローラーでの縦延伸でなく、テンター内で縦方向と横方向に同時2軸延伸し、更に弛緩熱処理も縦横両方に行うことも好ましい。 Also, in order to align the thermal shrinkage in the longitudinal direction (also referred to as MD direction or longitudinal direction) and the lateral direction (also referred to as TD direction or lateral direction), the longitudinal direction in the tenter is not longitudinal stretching with a heat roller. It is also preferable to perform biaxial stretching in the transverse direction and to perform relaxation heat treatment both longitudinally and laterally.
 本発明に係るポリエステルフィルムは、ポリエステル樹脂、可塑剤等のそのほかの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のポリエステル樹脂を含む溶融物を流延して製造することができる。 The polyester film according to the present invention is obtained by heating and melting a composition containing other additives such as a polyester resin and a plasticizer to a temperature showing fluidity, and then casting a melt containing the fluid polyester resin. Can be manufactured.
 溶融流延製膜法では、機械的強度及び表面精度等の点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常あらかじめ混錬してペレット化しておくことが好ましい。 In the melt casting film forming method, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. A plurality of raw materials used for melt extrusion are usually preferably kneaded and pelletized in advance.
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder and kneaded using a single-screw or twin-screw extruder, and then formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
 添加剤は、押出機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
 粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 押出機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化できる程度になるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at a temperature as low as possible so that it can be pelletized so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
 上記ペレットを1軸や2軸タイプの押出機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルター等で濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ローラーと弾性タッチローラーでフィルムをニップし、冷却ローラー上で固化させることにより、ポリエステルフィルムを製膜する。 Using a single-screw or twin-screw type extruder, the melting temperature at the time of extrusion is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from a T-die. A polyester film is formed by niping the film with a cooling roller and an elastic touch roller and solidifying the film on the cooling roller.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.
 押出し流量は、ギヤポンプを導入する等して安定に調整することが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably adjusted stably by introducing a gear pump or the like. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子等の添加剤は、あらかじめ樹脂と混合しておいてもよいし、押出機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー等の混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ローラーとタッチローラー(引取りローラーともいう。)でポリエステルフィルムをニップする際のタッチローラー側のポリエステルフィルム温度はフィルムのTg以上(Tg+110℃)以下にすることが好ましい。このような目的で使用するタッチローラーは弾性体表面を有するローラーであることがフィルム表面への傷を防止する観点から好ましく、当該タッチローラー公知のローラーが使用できる。 The polyester film temperature on the touch roller side when the polyester film is nipped with a cooling roller and a touch roller (also referred to as a take-off roller) is preferably Tg (Tg + 110 ° C.) or less of the film. The touch roller used for such a purpose is preferably a roller having an elastic surface from the viewpoint of preventing scratches on the film surface, and a known roller for the touch roller can be used.
 タッチローラーは挟圧回転体ともいう。タッチローラーとしては、市販されているものを用いることもできる。 The touch roller is also called a pinching rotator. A commercially available touch roller can also be used.
 冷却ローラーからポリエステルフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the polyester film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたポリエステルフィルムフィルムは、冷却ローラーに接する工程を通過後、延伸操作により延伸することが好ましい。 Moreover, it is preferable that the polyester film film obtained as described above is stretched by a stretching operation after passing through the step of contacting the cooling roller.
 ポリエステルフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよいが延伸することが好ましい。延伸する場合は、フィルムの縦方向又は横方向に一軸延伸してもよいし、縦方向及び横方向の2軸方向に延伸してもよい。2軸延伸フィルムとする場合は、同時2軸延伸したものでもよいし、逐次2軸延伸したものでもよい。2軸延伸した場合は、機械強度が向上しフィルム性能が向上する。 The polyester film may be an unstretched film or a stretched film, but is preferably stretched. In the case of stretching, the film may be uniaxially stretched in the longitudinal direction or the transverse direction, or may be stretched in the biaxial direction of the longitudinal direction and the transverse direction. When a biaxially stretched film is used, it may be biaxially stretched simultaneously or sequentially biaxially stretched. In the case of biaxial stretching, the mechanical strength is improved and the film performance is improved.
 延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、フィルムの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、又は縦、横同時に広げて縦、横両方向に延伸する方法等が挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。 There is no particular limitation on the stretching method. For example, a method in which a circumferential speed difference is applied to a plurality of rollers, and the film is stretched in the longitudinal direction by utilizing the difference between the circumferential speeds of the rollers. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions, and stretching in both the vertical and horizontal directions. Of course, these methods may be used in combination.
 いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。テンターはピンテンターでもクリップテンターでもよい。 In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced. The tenter may be a pin tenter or a clip tenter.
 延伸工程を行う場合の延伸温度は、フィルム原料のポリエステル樹脂のガラス転移温度近辺で行うことが好ましく、具体的には(ガラス転移温度-30)℃~(ガラス転移温度+100)℃で行うことが好ましく、より好ましくは(ガラス転移温度-20)℃~(ガラス転移温度+80)℃である。延伸温度が(ガラス転移温度-30)℃以上であれば、十分な延伸倍率が得られ、延伸温度が(ガラス転移温度+100)℃以内であれば、樹脂の流動(フロー)が起こり難く安定な延伸が行えるために好ましい。 The stretching temperature when performing the stretching step is preferably in the vicinity of the glass transition temperature of the polyester resin of the film raw material, specifically, (glass transition temperature-30) ° C. to (glass transition temperature + 100) ° C. It is preferably (glass transition temperature−20) ° C. to (glass transition temperature + 80) ° C. If the stretching temperature is (glass transition temperature −30) ° C. or higher, a sufficient stretching ratio can be obtained, and if the stretching temperature is within (glass transition temperature + 100) ° C., the resin flow hardly occurs and is stable. It is preferable because it can be stretched.
 面積比で定義される延伸倍率は、好ましくは1.1~25倍の範囲、より好ましくは1.3~10倍の範囲とすることができる。延伸倍率が1.1倍以上であれば、延伸に伴う靭性の向上につながり好ましい。延伸倍率が25倍以内であれば、延伸倍率を上げるだけの効果を得るとともに、破断等を抑制することができる。 The draw ratio defined by the area ratio is preferably in the range of 1.1 to 25 times, more preferably in the range of 1.3 to 10 times. A stretching ratio of 1.1 times or more is preferable because it leads to an improvement in toughness accompanying stretching. If the draw ratio is within 25 times, the effect of only increasing the draw ratio can be obtained, and breakage and the like can be suppressed.
 延伸速度(一方向)としては、好ましくは10~20000%/分の範囲、より好ましくは100~10000%/分の範囲である。10%/分以上であれば、十分な延伸倍率を得るのに短時間で行え、生産性上好ましい。20000%/分以内であれば、延伸フィルムの破断等が起こり難く、好ましい。 The stretching speed (one direction) is preferably in the range of 10 to 20000% / min, more preferably in the range of 100 to 10000% / min. If it is 10% / min or more, it can be performed in a short time to obtain a sufficient draw ratio, which is preferable in terms of productivity. If it is less than 20000% / min, the stretched film hardly breaks, which is preferable.
 本発明に係るポリエステルフィルムは、前記延伸した後温度を保持しながら1~10分程度の範囲内で放置して熱固定することが、延伸による樹脂分子の変形を固定化する上で好ましい。 The polyester film according to the present invention is preferably heat-set by being left in the range of about 1 to 10 minutes while maintaining the temperature after the stretching, in order to fix the deformation of the resin molecules due to the stretching.
 さらに、弛緩熱処理工程によって製造することが好ましく、弛緩熱処理することで、熱収縮率を所望の範囲に制御することが可能である。 Furthermore, it is preferable to manufacture by a relaxation heat treatment step, and it is possible to control the heat shrinkage rate within a desired range by performing the relaxation heat treatment.
 弛緩熱処理とは、前記ポリエステルフィルムの延伸工程において延伸した後、延伸装置、例えばテンター内、又はテンターを出た後の巻き取りまでの工程で、フィルムに付与していた延伸のための張力を解放し、フィルム端部を保持しているクリップの幅を意図的に縮める処理を行うことをいい、下記式(S)によって弛緩率を求めることができる。 Relaxation heat treatment is the process of stretching the polyester film in the stretching process, then releasing the tension applied to the film in the stretching device, for example, in the tenter or until winding after exiting the tenter. In addition, the process of intentionally reducing the width of the clip holding the film edge is performed, and the relaxation rate can be obtained by the following equation (S).
 式(S) 弛緩率(%)=(A-B)/A×100
 (式中、A:フィルムを延伸した幅(単位:m)、B:縮めた後の幅(単位:m)を表す。)
 弛緩熱処理は処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは処理温度が100~180℃の範囲内である。また縦方向、横方向ともに、弛緩率が0.1~10%の範囲内で行われることが好ましく、より好ましくは弛緩率が2~6%の範囲内で処理されることである。
Formula (S) Relaxation rate (%) = (AB) / A × 100
(In the formula, A: width of the film stretched (unit: m), B: width after shrinking (unit: m))
The relaxation heat treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C. Further, both in the longitudinal direction and in the lateral direction, the relaxation rate is preferably within a range of 0.1 to 10%, and more preferably, the relaxation rate is within a range of 2 to 6%.
 弛緩熱処理が完了したポリエステルフィルムは、必要であれば、更に乾燥工程を経て、巻き取られる。 The polyester film that has been subjected to the relaxation heat treatment is further wound through a drying step if necessary.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きや擦り傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凹凸のパターンを側面に有する金属リングを用いて加熱や加圧をすることにより加工することができる。フィルム両端部のテンター等のクリップの把持部分は通常、ポリエステルフィルムが変形しており製品として使用できないので切除され、再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking and scratching during winding. The knurling method can be performed by heating or pressurizing using a metal ring having an uneven pattern on the side surface. Clip holding parts such as tenters at both ends of the film are usually cut out and reused because the polyester film is deformed and cannot be used as a product.
 〔1.3〕ポリエステルフィルムの物性
 本発明に係るポリエステルフィルムの厚さは、フィルムの機械的強度の観点から5μm以上であることが必要であるが、5~200μmの範囲内であることが好ましく、より好ましくは15~100μmの範囲内であり、更に好ましくは20~70μmでの範囲内である。ポリエステルフィルムの厚さが5μm以上であれば、取り扱い中にしわ等が発生しにくくなり、また厚さが200μm以下であれば、取扱い性や透明性に優れ、薄膜の支持体を提供することができる。
[1.3] Physical properties of polyester film The thickness of the polyester film according to the present invention needs to be 5 μm or more from the viewpoint of the mechanical strength of the film, but is preferably in the range of 5 to 200 μm. More preferably, it is in the range of 15 to 100 μm, and still more preferably in the range of 20 to 70 μm. If the thickness of the polyester film is 5 μm or more, wrinkles or the like are less likely to occur during handling, and if the thickness is 200 μm or less, the handleability and transparency are excellent, and a thin film support can be provided. it can.
 本発明に係るポリエステルフィルムA及びポリエステルフィルムBの膜厚の比の値(A/B)が、90/10~50/50の範囲内であることが好ましい。より好ましくは、90/10~60/40の範囲である。 The ratio value (A / B) of the film thicknesses of the polyester film A and the polyester film B according to the present invention is preferably in the range of 90/10 to 50/50. More preferably, it is in the range of 90/10 to 60/40.
 曲面形状のガラスの凹部へポリエステルフィルムAを貼合する場合に、ポリエステルフィルムAの膜厚が、ポリエステルフィルムBの膜厚と同等から厚い方が、熱収縮した場合のカール方向がガラスの曲面形状に沿うため、曲面追従性が向上するものと推定される。 When the polyester film A is bonded to the concave portion of the curved glass, the curl direction when the polyester film A is heat-shrinked when the thickness of the polyester film A is equal to or thicker than the thickness of the polyester film B is the curved shape of the glass. Therefore, it is estimated that the curved surface followability is improved.
 本発明に係るポリエステルフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、当該支持体の幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。 The polyester film according to the present invention is preferably long, specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape. The width of the support is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
 本発明に係るポリエステルフィルムの光学特性として、JIS S3107(2013)で測定される可視光透過率としては、好ましくは60%以上であり、より好ましくは70%以上であり、更に好ましくは80%以上である。 As the optical characteristics of the polyester film according to the present invention, the visible light transmittance measured by JIS S3107 (2013) is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is.
 ヘイズは、1%未満であることが好ましく、0.5%未満であることがより好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。 The haze is preferably less than 1%, and more preferably less than 0.5%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
 〔2〕光学機能層
 本発明のウインドウフィルムは、特定の波長の反射率や透過率を制御する層を内在することが好ましく、特に近赤外線を選択的に吸収する近赤外線吸収層又は近赤外線を選択的に反射する近赤外線反射層を有することが、熱遮断性フィルムの用途として好ましい。
[2] Optical functional layer The window film of the present invention preferably contains a layer for controlling the reflectance and transmittance of a specific wavelength, and in particular, a near-infrared absorbing layer or a near-infrared ray that selectively absorbs near-infrared rays. Having a near-infrared reflective layer that selectively reflects is preferable for use as a heat-shielding film.
 前記熱遮断性を有する層が傷によってピンホールが空くとその部分の熱遮断性が劣化するが、本発明に係るポリエステルフィルムA及びポリエステルフィルムBとによって、前記近赤外線吸収層や近赤外線反射層を挟持することで、外力による傷の発生を抑制できる点からも、本発明の構成は好ましい態様である。 When the pinhole is vacated due to scratches on the heat-insulating layer, the heat-shielding property of the portion is deteriorated. The configuration of the present invention is also a preferable aspect from the point that it is possible to suppress the occurrence of scratches due to external force by sandwiching.
 〔2.1〕近赤外線吸収層
 近赤外線吸収層に含まれる材料としては、特に制限されないが、例えば、バインダー成分である紫外線硬化樹脂、光重合開始剤、赤外線吸収剤などが挙げられる。近赤外線吸収層は、含まれるバインダー成分が硬化していることが好ましい。ここで、硬化とは、紫外線などの活性エネルギー線や熱などにより反応が進み硬化することを指す。
[2.1] Near-infrared absorption layer Although it does not restrict | limit especially as a material contained in a near-infrared absorption layer, For example, the ultraviolet curable resin which is a binder component, a photoinitiator, an infrared absorber, etc. are mentioned. It is preferable that the binder component contained in the near-infrared absorbing layer is cured. Here, the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
 近赤外線吸収層に含まる無機赤外線吸収剤としては、可視光線透過率、近赤外線吸収性、樹脂中への分散適性等の観点から、金属酸化物粒子であることが好ましく、例えば、酸化スズ、酸化亜鉛、酸化チタン、酸化タングステン及び酸化インジウム等が挙げられる。熱線吸収粒子の具体例としては、アルミニウムドープ酸化スズ粒子、インジウムドープ酸化スズ粒子、アンチモンドープ酸化スズ(ATO)粒子、ガリウムドープ酸化亜鉛(GZO)粒子、インジウムドープ酸化亜鉛(IZO)粒子、アルミニウムドープ酸化亜鉛(AZO)粒子、ニオブドープ酸化チタン粒子、スズドープ酸化インジウム(ITO)粒子、スズドープ酸化亜鉛粒子、ケイ素ドープ酸化亜鉛粒子、一般式MxWyOz(ただし、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2<z/y≦3.0)で表される複合タングステン酸化物の微粒子、及び一般式XB(ただし、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr又はCaから選択される少なくとも1種以上である)で表される6ホウ化物の微粒子を含有することが好ましい。 The inorganic infrared absorber contained in the near infrared absorbing layer is preferably a metal oxide particle from the viewpoint of visible light transmittance, near infrared absorptivity, suitability for dispersion in a resin, for example, tin oxide, Examples thereof include zinc oxide, titanium oxide, tungsten oxide, and indium oxide. Specific examples of heat-absorbing particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide (ATO) particles, gallium-doped zinc oxide (GZO) particles, indium-doped zinc oxide (IZO) particles, aluminum-doped Zinc oxide (AZO) particles, niobium doped titanium oxide particles, tin doped indium oxide (ITO) particles, tin doped zinc oxide particles, silicon doped zinc oxide particles, general formula MxWyOz (where M is H, He, alkali metal, alkaline earth) Metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge , Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, M , Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 <z / composite tungsten oxide fine particles represented by y ≦ 3.0) and general formula XB 6 (wherein element X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu) , Er, Tm, Yb, Lu, Sr, or Ca).
 中でも、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、セシウム含有酸化タングステン(Cs0.33WO)等が好ましい。これらは単独でも又は2種以上組み合わせても用いることができる。無機赤外線吸収剤の平均粒径は、5~100nmが好ましく、10~50nmがより好ましい。5nm以上であれば樹脂中の分散性や、近赤外線吸収性が向上する。一方、100nm以下であれば、可視光線透過率が低下することがない。なお、平均粒径の測定は、透過型電子顕微鏡により撮像し、無作為に、例えば50個の粒子を抽出して該粒径を測定し、これを平均したものである。また、粒子の形状が球形でない場合には、長径を測定して算出したものと定義する。 Among these, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), cesium-containing tungsten oxide (Cs 0.33 WO 3 ) and the like are preferable. These may be used alone or in combination of two or more. The average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm. If it is 5 nm or more, the dispersibility in the resin and the near-infrared absorption are improved. On the other hand, if it is 100 nm or less, the visible light transmittance does not decrease. The average particle size is measured by taking an image with a transmission electron microscope, randomly extracting, for example, 50 particles, measuring the particle size, and averaging the results. Moreover, when the shape of particle | grains is not spherical, it defines as what was calculated by measuring a major axis.
 前記無機赤外線吸収剤の近赤外線吸収層における含有量は、近赤外線吸収層の全質量に対して1~80質量%であることが好ましく、5~50質量%であることがより好ましい。含有量が1%以上であれば、十分な近赤外線吸収効果が現れ、80%以下であれば、十分な量の可視光線を透過できる。 The content of the inorganic infrared absorber in the near-infrared absorbing layer is preferably 1 to 80% by mass, and more preferably 5 to 50% by mass with respect to the total mass of the near-infrared absorbing layer. If the content is 1% or more, a sufficient near-infrared absorption effect appears, and if it is 80% or less, a sufficient amount of visible light can be transmitted.
 また、有機物の赤外線吸収材料としては、ポリメチン系、フタロシアニン系、ナフタロシアニン系、金属錯体系、アミニウム系、イモニウム系、ジイモニウム系、アンスラキノン系、ジチオール金属錯体系、ナフトキノン系、インドールフェノール系、アゾ系、トリアリルメタン系の化合物などが挙げられる。金属錯体系化合物、アミニウム系化合物(アミニウム誘導体)、フタロシアニン系化合物(フタロシアニン誘導体)、ナフタロシアニン系化合物(ナフタロシアニン誘導体)、ジイモニウム系化合物(ジイモニウム誘導体)、スクワリウム系化合物(スクワリウム誘導体)等が特に好ましく用いられる。 Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds. Particularly preferred are metal complex compounds, aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives), and the like. Used.
 近赤外線吸収層においては、本発明の効果を奏する範囲内で、上記以外の金属酸化物や、有機系赤外線吸収剤、金属錯体等のほかの赤外線吸収剤を含んでもよい。このようなほかの赤外線吸収剤の具体例としては、例えば、ジイモニウム系化合物、アルミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物等が挙げられる。 The near-infrared absorbing layer may contain other infrared absorbers such as metal oxides, organic infrared absorbers, metal complexes and the like other than those described above within the scope of the effects of the present invention. Specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
 バインダー成分として用いられる紫外線硬化樹脂は、ほかの樹脂よりも硬度や平滑性に優れ、更にはスズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、セシウム含有酸化タングステン(Cs0.33WO)や熱伝導性の金属酸化物の分散性の観点からも有利である。紫外線硬化樹脂としては、硬化によって透明な層を形成する物であれば特に制限なく使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル樹脂、アリルエステル樹脂等が挙げられる。より好ましくは、硬度、平滑性、透明性の観点からアクリル樹脂である。 The ultraviolet curable resin used as the binder component is superior in hardness and smoothness to other resins, and further tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), cesium-containing tungsten oxide (Cs 0.33 WO 3). ) And the dispersibility of the thermally conductive metal oxide is also advantageous. The ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. More preferred is an acrylic resin from the viewpoint of hardness, smoothness and transparency.
 前記アクリル樹脂は、硬度、平滑性、透明性の観点から、国際公開第2008/035669号に記載されているような、表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むことが好ましい。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基などを挙げることができる。また、紫外線硬化樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する有機化合物を含むものであってもよい。また重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。ここで、反応性シリカ粒子の平均粒子径は、0.001~0.1μmの範囲であることが好ましい。平均粒子径をこのような範囲にすることにより、透明性、平滑性、硬度をバランスよく満たすことができる。 The acrylic resin is a reactive silica particle in which a photosensitive group having photopolymerization reactivity is introduced on its surface as described in International Publication No. 2008/035669 from the viewpoint of hardness, smoothness, and transparency. (Hereinafter also simply referred to as “reactive silica particles”). Here, examples of the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group. The ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be. In addition, a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group. Can be used as conductive silica particles. Here, the average particle diameter of the reactive silica particles is preferably in the range of 0.001 to 0.1 μm. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
 光重合開始剤としては、公知のものを使用することができ、単独でも又は2種以上の組み合わせでも使用することができる。 As the photopolymerization initiator, known ones can be used, and they can be used alone or in combination of two or more.
 近赤外線吸収層の厚さは0.1~50μmの範囲が好ましく、1~20μmの範囲がより好ましい。0.1μm以上であれば赤外線吸収能力が向上する傾向にあり、一方、50μm以下であれば塗膜の耐クラック性が向上する。 The thickness of the near infrared absorbing layer is preferably in the range of 0.1 to 50 μm, and more preferably in the range of 1 to 20 μm. If it is 0.1 μm or more, the infrared absorption ability tends to be improved, while if it is 50 μm or less, the crack resistance of the coating film is improved.
 該近赤外線吸収層の形成方法は特に制限されず、例えば、上記各成分を含む近赤外線吸収層用塗布液を調製した後、ワイヤーバー等を用いて塗布液を塗布し、乾燥することにより形成する方法等が挙げられる。 The method for forming the near infrared absorbing layer is not particularly limited. For example, the near infrared absorbing layer containing the above-mentioned components is prepared by applying a coating solution for the near infrared absorbing layer, applying the coating solution using a wire bar, and drying. And the like.
 〔2.2〕近赤外線反射層
 本発明に係る近赤外線を反射する層としては、特に限定されるものではなく、米国特許公報第6049419号明細書に記載の3M社製の市販の赤外線反射フィルム(3Mスコッチテント(登録商標)マルチレイヤーNANOシリーズ:光波長850~1100nmの範囲で、20%未満の光透過率を有する透明な赤外線反射フィルム。)や、特開2012-81748号公報記載の多層フィルム(異なる光学的性質を有する2種以上の熱可塑性樹脂が交互にそれぞれ50層以上積層されたフィルム。光波長400~700nmでの平均反射率が15%以下であって、かつ光波長900~1200nmでの平均反射率が70%以上。)や、再表2012/057199号公報記載の金属酸化物とバインダーを含有する高屈折率層及び低屈折率層を交互に多数層を積層した近赤外線反射フィルム等を用いることができる。
[2.2] Near-infrared reflective layer The near-infrared reflective layer according to the present invention is not particularly limited, and is a commercially available infrared reflective film manufactured by 3M as described in US Pat. No. 6,049,419. (3M Scotch Tent (registered trademark) multi-layer NANO series: transparent infrared reflective film having a light transmittance of less than 20% in the light wavelength range of 850 to 1100 nm) and multilayers described in JP2012-81748A Film (a film in which 50 or more layers of two or more thermoplastic resins having different optical properties are alternately laminated. The average reflectance at a light wavelength of 400 to 700 nm is 15% or less, and a light wavelength of 900 to The average reflectivity at 1200 nm is 70% or more.) And the metal oxide and binder described in Table 2012/057199. The near-infrared reflective film etc. which laminated | stacked many high refractive index layers and low refractive index layers alternately can be used.
 中でも、本発明に係る近赤外線反射層としては、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に多数積層した層であることが好ましい。 Among them, the near-infrared reflective layer according to the present invention includes a high refractive index layer containing the first water-soluble binder resin and the first metal oxide particles, and the second water-soluble binder resin and the second metal oxide. A layer in which a large number of low refractive index layers containing physical particles are alternately laminated is preferable.
 本発明に用いられる近赤外線反射層は、高屈折率層と低屈折率層とから構成される積層体(ユニット)を少なくとも一つ含む構成を有するものであればよいが、高屈折率層及び低屈折率層とから構成される上記積層体が二つ以上複数で積層された構成を有することが好ましい。この場合、近赤外線反射層の最上層及び最下層は高屈折率層及び低屈折率層のいずれであってもよいが、最上層及び最下層の両者が低屈折率層であることが好ましい。最上層が低屈折率層であると塗布性が良くなり、最下層が低屈折率層であると基材との密着性が良くなる観点から好ましい。 The near-infrared reflective layer used in the present invention may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer. It is preferable to have a configuration in which two or more of the above laminates composed of low refractive index layers are laminated. In this case, the uppermost layer and the lowermost layer of the near-infrared reflective layer may be either a high refractive index layer or a low refractive index layer, but both the uppermost layer and the lowermost layer are preferably low refractive index layers. When the uppermost layer is a low refractive index layer, the coating property is improved, and when the lowermost layer is a low refractive index layer, it is preferable from the viewpoint of improving the adhesion to the substrate.
 ここで、近赤外線反射層の任意の屈折率層が高屈折率層であるか低屈折率層であるかは、隣接する屈折率層との屈折率の対比によって判断される。具体的には、ある屈折率層を基準層としたとき、当該基準層に隣接する屈折率層が基準層より屈折率が低ければ、基準層は高屈折率層である(隣接層は低屈折率層である。)と判断される。一方、基準層より隣接層の屈折率が高ければ、基準層は低屈折率層である(隣接層は高屈折率層である。)と判断される。したがって、屈折率層が高屈折率層であるか低屈折率層であるかは、隣接層が有する屈折率との関係で定まる相対的なものであり、ある屈折率層は、隣接層との関係によって高屈折率層にも低屈折率層にもなりうる。 Here, whether an arbitrary refractive index layer of the near-infrared reflective layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer.) On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
 ここで、高屈折率層を構成する成分(以下、「高屈折率層成分」とも称する。)と低屈折率層を構成する成分(以下、「低屈折率層成分」とも称する。)がふたつの層の界面で混合され、高屈折率層成分と低屈折率層成分とを含む層(混合層)が形成される場合がある。この場合、混合層において、高屈折率層成分が50質量%以上である部位の集合を高屈折率層とし、低屈折率層成分が50質量%を超える部位の集合を低屈折率層とする。具体的には、低屈折率層が、例えば、低屈折率層及び高屈折率層がそれぞれ異なる金属酸化物粒子を含む場合、これらの積層膜における層厚方向での金属酸化物粒子の濃度プロファイルを測定し、その組成によって、形成されうる混合層が、高屈折率層であるか低屈折率層であるかを決定することができる。積層膜の金属酸化物粒子の濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで観測することができる。また、低屈折率成分又は高屈折率成分に金属酸化物粒子が含有されておらず、水溶性樹脂のみから形成されている場合においても、同様にして、水溶性樹脂の濃度プロファイルにて、例えば、層厚方向での炭素濃度を測定することにより混合領域が存在していることを確認し、更にその組成をEDX(エネルギー分散型X線分光法)より測定することで、スパッタでエッチングされた各層が、高屈折率層又は低屈折率層とみなすことができる。 Here, there are two components constituting the high refractive index layer (hereinafter also referred to as “high refractive index layer component”) and components constituting the low refractive index layer (hereinafter also referred to as “low refractive index layer component”). In some cases, a layer (mixed layer) containing the high refractive index layer component and the low refractive index layer component is mixed at the interface of the two layers. In this case, in the mixed layer, a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer, and a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer. . Specifically, when the low refractive index layer includes, for example, different metal oxide particles in the low refractive index layer and the high refractive index layer, the concentration profile of the metal oxide particles in the layer thickness direction in these laminated films , And the composition can determine whether the mixed layer that can be formed is a high refractive index layer or a low refractive index layer. The concentration profile of the metal oxide particles in the laminated film is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer, etching from the surface to the depth direction, with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio. Further, even when the metal oxide particles are not contained in the low refractive index component or the high refractive index component and are formed only from the water-soluble resin, similarly, in the concentration profile of the water-soluble resin, for example, It was confirmed that the mixed region was present by measuring the carbon concentration in the layer thickness direction, and further, its composition was measured by EDX (energy dispersive X-ray spectroscopy), and was etched by sputtering. Each layer can be regarded as a high refractive index layer or a low refractive index layer.
 XPS表面分析装置としては、特に限定なく、いかなる機種も使用することができるが、VGサイエンティフィックス社製ESCALAB-200Rを用いた。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定する。 The XPS surface analyzer is not particularly limited, and any model can be used, but ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
 一般に、近赤外線反射層においては、低屈折率層と高屈折率層との屈折率の差を大きく設計することが、少ない層数で、赤外光反射率を高くすることができるという観点から好ましい。本形態では、低屈折率層及び高屈折率層から構成される積層体(ユニット)の少なくとも一つにおいて、隣接する低屈折率層と高屈折率層との屈折率差が0.1以上であることが好ましく、0.3以上であることがより好ましく、0.35以上であることが更に好ましく、0.4以上であることが特に好ましい。近赤外線反射層が高屈折率層及び低屈折率層の積層体(ユニット)を2以上の複数有する場合には、全ての積層体(ユニット)における高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、この場合でも近赤外線反射層の最上層や最下層を構成する屈折率層に関しては、上記好適な範囲外の構成であってもよい。 In general, in the near-infrared reflective layer, it is possible to design a large difference in refractive index between the low refractive index layer and the high refractive index layer, from the viewpoint that the infrared light reflectance can be increased with a small number of layers. preferable. In this embodiment, in at least one of the laminates (units) composed of the low refractive index layer and the high refractive index layer, the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more. When the near-infrared reflective layer has two or more laminates (units) of a high refractive index layer and a low refractive index layer, the refraction of the high refractive index layer and the low refractive index layer in all the laminates (units) It is preferable that the rate difference is within the preferable range. However, even in this case, the refractive index layer constituting the uppermost layer or the lowermost layer of the near-infrared reflective layer may be configured outside the above-described preferred range.
 近赤外線反射層の屈折率層の層数(高屈折率層及び低屈折率層のユニット)としては、上記の観点から、100層以下、すなわち50ユニット以下であることが好ましく、40層(20ユニット)以下であることがより好ましく、20層(10ユニット)以下であることが更に好ましい。 From the above viewpoint, the number of refractive index layers of the near-infrared reflective layer (units of high refractive index layer and low refractive index layer) is preferably 100 layers or less, that is, 50 units or less, and 40 layers (20 Unit) or less, and more preferably 20 layers (10 units) or less.
 上記隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、dは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。 Since the reflection at the interface between adjacent layers depends on the refractive index ratio between the layers, the higher the refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. The reflectance can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By utilizing this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light.
 すなわち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率を増大させることができる。 That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
 本発明に係る近赤外線反射層において、前記高屈折率層の1層当たりの厚さは、20~800nmの範囲内であることが好ましく、50~350nmの範囲内であることがより好ましい。また、前記低屈折率層の1層当たりの厚さは、20~800nmの範囲内であることが好ましく、50~350nmの範囲内であることがより好ましい。 In the near-infrared reflective layer according to the present invention, the thickness per layer of the high refractive index layer is preferably in the range of 20 to 800 nm, and more preferably in the range of 50 to 350 nm. The thickness of the low refractive index layer per layer is preferably in the range of 20 to 800 nm, and more preferably in the range of 50 to 350 nm.
 ここで、1層あたりの各層の厚さを測定する場合、高屈折率層と低屈折率層は、これらの間に明確な界面をもっていても、徐々に変化していてもよい。界面が徐々に変化している場合には、それぞれの層が混合し屈折率が連続的に変化する領域中で、最大屈折率-最小屈折率=Δnとした場合、2層間の最小屈折率+Δn/2の地点を層界面とみなす。 Here, when measuring the thickness of each layer per layer, the high refractive index layer and the low refractive index layer may have a clear interface between them or may be gradually changed. When the interface gradually changes, the maximum refractive index−minimum refractive index = Δn in the region where the refractive index continuously changes due to the mixing of the layers, the minimum refractive index between two layers + Δn The point of / 2 is regarded as the layer interface.
 本発明の光学フィルムを熱遮断性のウインドウフィルムに用いる場合は、高分子フィルムに互いに屈折率が異なる膜を積層させた多層膜を形成し、JIS R3106-1998で示される可視光領域の透過率が50%以上で、かつ、波長900~1400nmの領域に反射率40%を超える領域を有するように光学膜厚とユニットを設計することが好ましい。 When the optical film of the present invention is used as a heat-shielding window film, a multilayer film in which films having different refractive indexes are laminated on a polymer film is formed, and the transmittance in the visible light region indicated by JIS R3106-1998 is formed. It is preferable to design the optical film thickness and unit so as to have a region with a reflectance exceeding 40% in a region of a wavelength of 900 to 1400 nm.
 〈屈折率層:高屈折率層及び低屈折率層〉
 〔高屈折率層〕
 高屈折率層は、第1の水溶性バインダー樹脂及び第1の金属酸化物粒子を含有し、必要に応じて、硬化剤、そのほかのバインダー樹脂、界面活性剤、及び各種添加剤等を含んでもよい。
<Refractive index layer: high refractive index layer and low refractive index layer>
(High refractive index layer)
The high refractive index layer contains the first water-soluble binder resin and the first metal oxide particles, and may contain a curing agent, other binder resin, a surfactant, and various additives as necessary. Good.
 本発明に用いられる高屈折率層の屈折率は、好ましくは1.80~2.50であり、より好ましくは1.90~2.20である。 The refractive index of the high refractive index layer used in the present invention is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
 (第1の水溶性バインダー樹脂)
 本発明に用いられる第1の水溶性バインダー樹脂は、該水溶性バインダー樹脂が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性バインダー樹脂の50質量%以内であるものをいう。
(First water-soluble binder resin)
When the first water-soluble binder resin used in the present invention is dissolved in water at a concentration of 0.5 mass% at the temperature at which the water-soluble binder resin is most dissolved, the G2 glass filter (maximum pores 40 to 40) is used. 50 mass), the mass of the insoluble matter that is filtered off when it is filtered is within 50 mass% of the added water-soluble binder resin.
 本発明に用いられる第1の水溶性バインダー樹脂の重量平均分子量は、1000~200000の範囲内であることが好ましい。更には、3000~40000の範囲内がより好ましい。 The weight average molecular weight of the first water-soluble binder resin used in the present invention is preferably in the range of 1,000 to 200,000. Further, it is more preferably within the range of 3000 to 40000.
 本発明でいう重量平均分子量は、公知の方法によって測定することができ、例えば、静的光散乱、ゲルパーミエーションクロマトグラフィー法(GPC)、飛行時間型質量分析法(TOF-MASS)などによって測定することができ、本発明では一般的な公知の方法であるゲルパーミエーションクロマトグラフィー法によって測定する。 The weight average molecular weight referred to in the present invention can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. In the present invention, it is measured by a gel permeation chromatography method which is a generally known method.
 高屈折率層における第1の水溶性バインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%の範囲内であることが好ましく、10~40質量%の範囲内であることがより好ましい。 The content of the first water-soluble binder resin in the high refractive index layer is preferably within the range of 5 to 50% by mass with respect to the solid content of 100% by mass of the high refractive index layer. It is more preferable to be within the range.
 高屈折率層に適用する第1の水溶性バインダー樹脂としては、ポリビニルアルコールであることが好ましい。また、後述する低屈折率層に存在する水溶性バインダー樹脂も、ポリビニルアルコールであることが好ましい。したがって、以下においては、高屈折率層及び低屈折率層に含まれるポリビニルアルコールを併せて説明する。 The first water-soluble binder resin applied to the high refractive index layer is preferably polyvinyl alcohol. Moreover, it is preferable that the water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, in the following, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
 〈ポリビニルアルコール〉
 本発明において、高屈折率層と低屈折率層とは、ケン化度の異なる2種以上のポリビニルアルコールを含むことが好ましい。ここで、区別するために、高屈折率層で用いる水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(A)とし、低屈折率層で用いる水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(B)という。なお、各屈折率層が、ケン化度や重合度が異なる複数のポリビニルアルコールを含む場合には、各屈折率層中で最も含有量の高いポリビニルアルコールをそれぞれ高屈折率層におけるポリビニルアルコール(A)、及び低屈折率層におけるポリビニルアルコール(B)と称する。
<Polyvinyl alcohol>
In the present invention, the high refractive index layer and the low refractive index layer preferably contain two or more types of polyvinyl alcohol having different saponification degrees. Here, in order to distinguish, polyvinyl alcohol as a water-soluble binder resin used in the high refractive index layer is polyvinyl alcohol (A), and polyvinyl alcohol as a water-soluble binder resin used in the low refractive index layer is polyvinyl alcohol (B). That's it. In addition, when each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees, the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ) And polyvinyl alcohol (B) in the low refractive index layer.
 本発明でいう「ケン化度」とは、ポリビニルアルコール中のアセチルオキシ基(原料の酢酸ビニル由来のもの)とヒドロキシ基との合計数に対するヒドロキシ基の割合のことである。 In the present invention, the “degree of saponification” is the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in polyvinyl alcohol.
 また、ここでいう「屈折率層中で最も含有量の高いポリビニルアルコール」という際には、ケン化度の差が3mol%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。ただし、重合度1000以下の低重合度ポリビニルアルコールは、異なるポリビニルアルコールとする(仮にケン化度の差が3mol%以内のポリビニルアルコールがあったとしても同一のポリビニルアルコールとはしない)。具体的には、ケン化度が90mol%、ケン化度が91mol%、ケン化度が93mol%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら三つのポリビニルアルコールは同一のポリビニルアルコールとし、これら三つの混合物をポリビニルアルコール(A)又は(B)とする。また、上記「ケン化度の差が3mol%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3mol%以内であれば足り、例えば、90mol%、91mol%、92mol%、94mol%のポリビニルアルコールを含む場合には、91mol%のポリビニルアルコールに着目した場合に、いずれのポリビニルアルコールのケン化度の差も3mol%以内なので、同一のポリビニルアルコールとなる。 In addition, when referring to “polyvinyl alcohol having the highest content in the refractive index layer” herein, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. . However, a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol). Specifically, when polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively. These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B). In addition, the above-mentioned “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” suffices to be within 3 mol% when attention is paid to any polyvinyl alcohol. For example, 90 mol%, 91 mol%, 92 mol%, 94 mol % Of polyvinyl alcohol, when paying attention to 91 mol% of polyvinyl alcohol, the difference in saponification degree of any polyvinyl alcohol is within 3 mol%, so that the same polyvinyl alcohol is obtained.
 ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の絶対値の差は、3mol%以上であることが好ましく、5mol%以上であることがより好ましい。このような範囲であれば、高屈折率層と低屈折率層との層間混合状態が好ましいレベルになるため好ましい。また、ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の差は、離れていれば離れているほど好ましいが、ポリビニルアルコールの水への溶解性の観点から、20mol%以下であることが好ましい。 The difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
 また、ポリビニルアルコール(A)及びポリビニルアルコール(B)のケン化度は、水への溶解性の観点で、75mol%以上であることが好ましい。さらに、ポリビニルアルコール(A)及びポリビニルアルコール(B)のうち一方がケン化度90mol%以上であり、他方が90mol%以下であることが、高屈折率層と低屈折率層との層間混合状態を好ましいレベルにするために好ましい。ポリビニルアルコール(A)及びポリビニルアルコール(B)のうち一方が、ケン化度95mol%以上であり、他方が90mol%以下であることがより好ましい。なお、ポリビニルアルコールのケン化度の上限は特に限定されるものではないが、通常100mol%未満であり、99.9mol%以下程度である。 In addition, the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, the intermixed state of the high refractive index layer and the low refractive index layer is that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
 また、ケン化度の異なる2種のポリビニルアルコールの重合度は、1000以上のものが好ましく用いられ、特に、重合度が1500~5000の範囲内のものがより好ましく、2000~5000の範囲内のものが更に好ましく用いられる。ポリビニルアルコールの重合度が、1000以上であると塗布膜のひび割れがなく、5000以下であると塗布液が安定するからである。なお、本明細書において、「塗布液が安定する」とは、塗布液が経時的に安定することを意味する。ポリビニルアルコール(A)及びポリビニルアルコール(B)の少なくとも一方の重合度が2000~5000の範囲内であると、塗膜のひび割れが減少し、特定の波長の反射率が向上するため好ましい。ポリビニルアルコール(A)及びポリビニルアルコール(B)の双方が、2000~5000であると上記効果はより顕著に発揮できるため好ましい。 In addition, the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably those having a polymerization degree in the range of 1500 to 5000, more preferably in the range of 2000 to 5000. Those are more preferably used. This is because when the polymerization degree of polyvinyl alcohol is 1000 or more, there is no cracking of the coating film, and when it is 5000 or less, the coating solution is stabilized. In the present specification, “the coating solution is stable” means that the coating solution is stable over time. When the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is in the range of 2000 to 5000, it is preferable because cracks in the coating film are reduced and the reflectance at a specific wavelength is improved. It is preferable that both the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2000 to 5000, since the above effects can be exhibited more remarkably.
 本明細書でいう「重合度P」とは、粘度平均重合度を指し、JIS K6726(1994)に準じて測定され、PVAを完全に再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](cm/g)から、下式(1)により求められるものである。 “Polymerization degree P” in the present specification refers to the viscosity average degree of polymerization, and is measured according to JIS K6726 (1994). After PVA is completely re-saponified and purified, it is measured in water at 30 ° C. From the intrinsic viscosity [η] (cm 3 / g), it is obtained by the following formula (1).
 式(1)
   P=(〔η〕×10/8.29)(1/0.62)
 低屈折率層に含まれるポリビニルアルコール(B)は、ケン化度が75~90mol%の範囲内で、かつ重合度が2000~5000の範囲内であることが好ましい。このような特性を備えたポリビニルアルコールを低屈折率層に含有させると、界面混合がより抑制される点で好ましい。これは塗膜のひび割れが少なく、かつセット性が向上するためであると考えられる。
Formula (1)
P = ([η] × 10 3 /8.29) (1 / 0.62)
The polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree in the range of 75 to 90 mol% and a polymerization degree in the range of 2000 to 5000. When polyvinyl alcohol having such characteristics is contained in the low refractive index layer, it is preferable in that interfacial mixing is further suppressed. This is considered to be because there are few cracks of a coating film and set property improves.
 本発明で用いられるポリビニルアルコール(A)及び(B)は、合成品を用いてもよいし市販品を用いてもよい。ポリビニルアルコール(A)及び(B)として用いられる市販品の例としては、例えば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04、JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 The polyvinyl alcohol (A) and (B) used in the present invention may be a synthetic product or a commercially available product. Examples of commercially available products used as the polyvinyl alcohol (A) and (B) include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA -203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04 , JPF-05, JP-03, JP-04, JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
 本発明に用いられる第1の水溶性バインダー樹脂は、本発明の効果を損なわない限りでは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールのほかに、一部が変性された変性ポリビニルアルコールを含んでもよい。このような変性ポリビニルアルコールを含むと、膜の密着性や耐水性、柔軟性が改良される場合がある。このような変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 As long as the first water-soluble binder resin used in the present invention does not impair the effects of the present invention, in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate, modified polyvinyl alcohol partially modified Alcohol may be included. When such a modified polyvinyl alcohol is included, the adhesion, water resistance, and flexibility of the film may be improved. Examples of such modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10mol%、好ましくは0.2~5mol%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシ基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group and carboxy group Polyvinyl alcohol etc. are mentioned.
 また、ビニルアルコール系ポリマーとして、エクセバール(登録商標、株式会社クラレ製)やニチゴGポリマー(登録商標、日本合成化学工業株式会社製)などが挙げられる。 Also, examples of vinyl alcohol polymers include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 変性ポリビニルアルコールは、重合度や変性の種類違いなど2種類以上を併用することができる。 Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
 変性ポリビニルアルコールの含有量は、特に限定されるものではないが、各屈折率の全質量(固形分)に対し、好ましくは1~30質量%の範囲内である。このような範囲内であれば、上記効果がより発揮される。 The content of the modified polyvinyl alcohol is not particularly limited, but is preferably in the range of 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is in such a range, the said effect will be exhibited more.
 本発明においては、屈折率の異なる層間ではケン化度の異なる2種のポリビニルアルコールがそれぞれ用いられることが好ましい。 In the present invention, it is preferable to use two types of polyvinyl alcohols having different saponification levels between layers having different refractive indexes.
 例えば、高屈折率層に低ケン化度のポリビニルアルコール(A)を用い、低屈折率層に高ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましい。また、高屈折率層に高ケン化度のポリビニルアルコール(A)を用い、低屈折率層に低ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量以下がより好ましい。含有量が40質量%以上であると、層間混合が抑制され、界面の乱れが小さくなるという効果が顕著に現れる。一方、含有量が100質量%以下であれば、塗布液の安定性が向上する。 For example, when polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable. When polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. More preferred. When the content is 40% by mass or more, interlayer mixing is suppressed, and the effect of less disturbance of the interface appears remarkably. On the other hand, if content is 100 mass% or less, stability of a coating liquid will improve.
 (そのほかのバインダー樹脂)
 本発明において、高屈折率層では、ポリビニルアルコール以外の第1の水溶性バインダー樹脂としては、第1の金属酸化物粒子を含有した高屈折率層が塗膜を形成することができれば、いかなるものでも制限なく使用可能である。また、後述する低屈折率層においても、ポリビニルアルコール(B)以外の第2の水溶性バインダー樹脂としては、前記と同様に、第2の金属酸化物粒子を含有した低屈折率層が塗膜を形成することができれば、どのようなものでも制限なく使用可能である。ただし、環境の問題や塗膜の柔軟性を考慮すると、水溶性高分子(特にゼラチン、増粘多糖類、反応性官能基を有するポリマー)が好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。
(Other binder resins)
In the present invention, in the high refractive index layer, the first water-soluble binder resin other than polyvinyl alcohol is not limited as long as the high refractive index layer containing the first metal oxide particles can form a coating film. But it can be used without restriction. Moreover, also in the low refractive index layer described later, as the second water-soluble binder resin other than the polyvinyl alcohol (B), the low refractive index layer containing the second metal oxide particles is coated as described above. Any device can be used without limitation as long as it can be formed. However, in view of environmental problems and flexibility of the coating film, water-soluble polymers (particularly gelatin, thickening polysaccharides, polymers having reactive functional groups) are preferable. These water-soluble polymers may be used alone or in combination of two or more.
 高屈折率層において、水溶性バインダー樹脂として好ましく用いられるポリビニルアルコールとともに、併用するほかのバインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%の範囲内で用いることもできる。 In the high refractive index layer, the content of other binder resin used together with polyvinyl alcohol preferably used as a water-soluble binder resin is in the range of 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. It can also be used within.
 本発明においては、有機溶媒を用いる必要がなく、環境保全上好ましいことから、バインダー樹脂は水溶性高分子から構成されることが好ましい。すなわち、本発明ではその効果を損なわない限りにおいて、上記ポリビニルアルコール及び変性ポリビニルアルコールに加えて、ポリビニルアルコール及び変性ポリビニルアルコール以外の水溶性高分子をバインダー樹脂として用いてもよい。前記水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルター(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものをいう。そのような水溶性高分子の中でも特にゼラチン、セルロース類、増粘多糖類、又は反応性官能基を有するポリマーが好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。 In the present invention, it is not necessary to use an organic solvent and it is preferable from the viewpoint of environmental conservation. Therefore, the binder resin is preferably composed of a water-soluble polymer. That is, in the present invention, a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired. The water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 μm) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most soluble. The mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer. Among such water-soluble polymers, gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
 (第1の金属酸化物粒子)
 本発明において、高屈折率層に適用可能な第1の金属酸化物粒子としては、屈折率が2.0以上、3.0以下である金属酸化物粒子が好ましい。更に具体的には、例えば、酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。また複数の金属で構成された複合酸化物粒子やコア・シェル状に金属構成が変化するコア・シェル粒子等を用いることもできる。
(First metal oxide particles)
In the present invention, the first metal oxide particles applicable to the high refractive index layer are preferably metal oxide particles having a refractive index of 2.0 or more and 3.0 or less. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, oxidation Examples thereof include magnesium, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. In addition, composite oxide particles composed of a plurality of metals, core / shell particles whose metal structure changes into a core / shell shape, and the like can also be used.
 透明でより屈折率の高い高屈折率層を形成するために、高屈折率層には、チタン、ジルコニウム等の高屈折率を有する金属の酸化物微粒子、すなわち、酸化チタン微粒子及び/又は酸化ジルコニア微粒子を含有させることが好ましい。これらの中でも、高屈折率層を形成するための塗布液の安定性の観点から、酸化チタンがより好ましい。また、酸化チタンの中でも、特にアナターゼ型よりルチル型(正方晶形)の方が、触媒活性が低いために、高屈折率層や隣接した層の耐候性が高くなり、更に屈折率が高くなることからより好ましい。 In order to form a transparent and high refractive index layer having a higher refractive index, the high refractive index layer includes metal oxide fine particles having a high refractive index such as titanium and zirconium, that is, titanium oxide fine particles and / or zirconia oxide. It is preferable to contain fine particles. Among these, titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer. Among titanium oxides, the rutile type (tetragonal type) has a lower catalytic activity than the anatase type, and the weather resistance of the high refractive index layer and the adjacent layer is higher, and the refractive index is higher. Is more preferable.
 また、高屈折率層に、第1の金属酸化物粒子としてコア・シェル粒子を用いた場合では、シェル層の含ケイ素の水和酸化物と第1の水溶性バインダー樹脂との相互作用により、高屈折率層と隣接層の層間混合が抑制される効果から、酸化チタン粒子が含ケイ素の水和酸化物で被覆されたコア・シェル粒子が更に好ましい。 In the case where the core / shell particles are used as the first metal oxide particles in the high refractive index layer, due to the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin, From the effect of suppressing interlayer mixing between the high refractive index layer and the adjacent layer, core-shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide are more preferable.
 本発明に用いられる第1の金属酸化物粒子の含有量が高屈折率層の固形分100質量%に対して、15~80質量%の範囲内であると、低屈折率層との屈折率差を付与するという観点で好ましい。更に、20~77質量%の範囲内であることがより好ましく、30~75質量%の範囲内であることが更に好ましい。なお、当該コア・シェル粒子以外の金属酸化物粒子が、高屈折率層に含有される場合の含有量は、本発明の効果を奏することができる範囲であれば特に限定されるものではない。 When the content of the first metal oxide particles used in the present invention is in the range of 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, the refractive index with the low refractive index layer This is preferable from the viewpoint of providing a difference. Furthermore, it is more preferably in the range of 20 to 77% by mass, and still more preferably in the range of 30 to 75% by mass. In addition, content in case metal oxide particles other than the said core-shell particle are contained in a high refractive index layer will not be specifically limited if it is a range which can have the effect of this invention.
 本発明においては、高屈折率層に適用する第1の金属酸化物粒子の体積平均粒径は、30nm以下であることが好ましく、1~30nmの範囲内であることがより好ましく、5~15nmの範囲内であるのが更に好ましい。体積平均粒径が1~30nmの範囲内であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 In the present invention, the volume average particle size of the first metal oxide particles applied to the high refractive index layer is preferably 30 nm or less, more preferably in the range of 1 to 30 nm, and more preferably in the range of 5 to 15 nm. More preferably, it is in the range. A volume average particle size in the range of 1 to 30 nm is preferable from the viewpoint of low visible light transmittance and low haze.
 なお、本発明に用いられる第1の金属酸化物粒子の体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、又は電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子状の金属酸化物の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径である。 The volume average particle diameter of the first metal oxide particles used in the present invention is a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, a refractive index layer, and the like. The particle diameter of 1000 arbitrary particles was measured by a method of observing the particle image appearing on the cross section or surface of the sample with an electron microscope, and particles having particle diameters of d1, d2,. In a population of n1, n2... Ni... Nk particulate metal oxides, where the volume per particle is vi, the volume average particle diameter mv = {Σ (vi · di )} / {Σ (vi)} is the average particle size weighted by the volume.
 さらに、本発明に用いられる第1の金属酸化物粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式(2)で求められる単分散度が40%以下であることをいう。この単分散度は、更に好ましくは30%以下であり、特に好ましくは0.1~20%の範囲内である。 Furthermore, the first metal oxide particles used in the present invention are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula (2) is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably in the range of 0.1 to 20%.
 式(2)
   単分散度=(粒径の標準偏差)/(粒径の平均値)×100(%)
 〈コア・シェル粒子〉
 本発明に用いられる高屈折率層に適用する第1の金属酸化物粒子としては、「含ケイ素の水和酸化物で表面処理された酸化チタン粒子」を用いることが好ましく、このような形態の酸化チタン粒子を「コア・シェル粒子」、又は「Si被覆TiO」と称する場合もある。
Formula (2)
Monodispersity = (standard deviation of particle size) / (average value of particle size) × 100 (%)
<Core shell particle>
As the first metal oxide particles applied to the high refractive index layer used in the present invention, it is preferable to use “titanium oxide particles surface-treated with a silicon-containing hydrated oxide”. The titanium oxide particles may be referred to as “core / shell particles” or “Si-coated TiO 2 ”.
 本発明に用いられるコア・シェル粒子は、酸化チタン粒子が含ケイ素の水和酸化物で被覆されており、好ましくはコアの部分である平均粒径が1~30nmの範囲内、より好ましくは平均粒径が4~30nmの範囲内にある酸化チタン粒子の表面を、コアとなる酸化チタンに対して、含ケイ素の水和酸化物の被覆量がSiOとして3~30質量%の範囲内となるように含ケイ素の水和酸化物からなるシェルが被覆した構造である。 In the core / shell particles used in the present invention, the titanium oxide particles are coated with a silicon-containing hydrated oxide, and the average particle diameter which is preferably a core portion is in the range of 1 to 30 nm, more preferably the average The surface of the titanium oxide particles having a particle size in the range of 4 to 30 nm has a coating amount of silicon-containing hydrated oxide in the range of 3 to 30% by mass as SiO 2 with respect to the titanium oxide as the core. In this way, a shell made of a silicon-containing hydrated oxide is coated.
 すなわち、本発明では、コア・シェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物と第1の水溶性バインダー樹脂との相互作用により、高屈折率層と低屈折率層との層間混合が抑制される効果、及びコアとして酸化チタンを用いる場合の酸化チタンの光触媒活性によるバインダーの劣化やチョーキングなどの問題を防げるという効果を奏する。 That is, in the present invention, by including the core-shell particles, the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin causes the high refractive index layer and the low refractive index layer to The effect of suppressing the intermixing between the layers and the effect of preventing the deterioration of the binder and choking due to the photocatalytic activity of titanium oxide when titanium oxide is used as the core are exhibited.
 本発明において、コア・シェル粒子は、コアとなる酸化チタンに対して、含ケイ素の水和酸化物の被覆量がSiOとして3~30質量%の範囲内であること好ましく、より好ましくは3~10質量%の範囲内であり、更に好ましくは3~8質量%の範囲内である。被覆量が30質量%以下であれば、高屈折率層の高屈折率化を達成することができ、また、被覆量が3質量%以上であれば、コア・シェル粒子の粒子を安定に形成することができる。 In the present invention, the core / shell particles preferably have a silicon-containing hydrated oxide coating amount in the range of 3 to 30% by mass as SiO 2 with respect to titanium oxide as the core, more preferably 3 It is in the range of ˜10% by mass, more preferably in the range of 3 to 8% by mass. If the coating amount is 30% by mass or less, a high refractive index layer can be made to have a high refractive index, and if the coating amount is 3% by mass or more, core / shell particle particles can be stably formed. can do.
 さらに、本発明において、コア・シェル粒子の平均粒径は、好ましくは1~30nmの範囲内であり、より好ましくは5~20nmの範囲内であり、更に好ましくは5~15nmの範囲内である。コア・シェル粒子の平均粒径が1~30nmの範囲内であれば、近赤外線反射率や、透明性、ヘイズといった光学特性がより向上させることができる。 Furthermore, in the present invention, the average particle diameter of the core / shell particles is preferably in the range of 1 to 30 nm, more preferably in the range of 5 to 20 nm, and still more preferably in the range of 5 to 15 nm. . When the average particle diameter of the core / shell particles is in the range of 1 to 30 nm, optical properties such as near infrared reflectance, transparency, and haze can be further improved.
 なお、本発明でいう平均粒径とは、一次平均粒径をいい、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。 In addition, the average particle diameter as used in the field of this invention means a primary average particle diameter, and can be measured from the electron micrograph by a transmission electron microscope (TEM) etc. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
 また、電子顕微鏡から求める場合、一次粒子の平均粒径は、粒子そのもの又は屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 Moreover, when obtaining from an electron microscope, the average particle diameter of primary particles is the particle itself or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明に適用可能なコア・シェル粒子の製造方法は、公知の方法を採用することができ、例えば、特開平10-158015号公報、特開2000-053421号公報、特開2000-063119号公報、特開2000-204301号公報、特許第4550753号公報などを参照することができる。 As a method for producing core / shell particles applicable to the present invention, a known method can be employed. For example, JP-A-10-158015, JP-A-2000-053421, JP-A-2000-063119. Reference can be made to JP-A-2000-204301, JP-A-4550753, and the like.
 本発明において、コア・シェル粒子に適用する含ケイ素の水和酸化物とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物又は縮合物のいずれでもよく、本発明においては、シラノール基を有する化合物であることが好ましい。 In the present invention, the silicon-containing hydrated oxide applied to the core / shell particles may be either a hydrate of an inorganic silicon compound, a hydrolyzate or a condensate of an organosilicon compound. In the present invention, silanol A compound having a group is preferable.
 本発明に用いられるコア・シェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。 The core / shell particles used in the present invention may be those in which the entire surface of the titanium oxide particles that are the core is coated with a silicon-containing hydrated oxide, or part of the surface of the titanium oxide particles that are the core. It may be coated with a silicon hydrated oxide.
 (硬化剤)
 本発明においては、高屈折率層に適用する第1の水溶性バインダー樹脂を硬化させるため、硬化剤を使用することもできる。例えば、第1の水溶性バインダー樹脂として、ポリビニルアルコールを用いる場合では、硬化剤として、ホウ酸及びその塩が好ましい。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウムミョウバン等が挙げられる。
(Curing agent)
In the present invention, a curing agent can also be used to cure the first water-soluble binder resin applied to the high refractive index layer. For example, when polyvinyl alcohol is used as the first water-soluble binder resin, boric acid and its salt are preferable as the curing agent. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 高屈折率層における硬化剤の含有量は、高屈折率層の固形分100質量%に対して、1~10質量%であることが好ましく、2~6質量%であることがより好ましい。 The content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
 特に、第1の水溶性バインダー樹脂としてポリビニルアルコールを使用する場合の上記硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgが好ましく、ポリビニルアルコール1g当たり100~600mgがより好ましい。 In particular, when polyvinyl alcohol is used as the first water-soluble binder resin, the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
 〔低屈折率層〕
 本発明に用いられる低屈折率層は、第2の水溶性バインダー樹脂及び第2の金属酸化物粒子を含み、更は、硬化剤、表面被覆成分、粒子表面保護剤、バインダー樹脂、界面活性剤、各種添加剤等を含んでもよい。
(Low refractive index layer)
The low refractive index layer used in the present invention includes a second water-soluble binder resin and second metal oxide particles, and further includes a curing agent, a surface coating component, a particle surface protective agent, a binder resin, and a surfactant. Various additives may be included.
 本発明に用いられる低屈折率層の屈折率は、好ましくは1.10~1.60の範囲内であり、より好ましくは1.30~1.50である。 The refractive index of the low refractive index layer used in the present invention is preferably in the range of 1.10 to 1.60, more preferably 1.30 to 1.50.
 (第2の水溶性バインダー樹脂)
 本発明に用いられる低屈折率層に適用する第2の水溶性バインダー樹脂として、ポリビニルアルコールが好ましく用いられる。更に、前記高屈折率層に存在するポリビニルアルコール(A)のケン化度とは異なるポリビニルアルコール(B)が、本発明に用いられる低屈折率層に用いられることがより好ましい。なお、ここでの第2の水溶性バインダー樹脂の好ましい重量平均分子量等、ポリビニルアルコール(A)及びポリビニルアルコール(B)についての説明は、上記高屈折率層の水溶性バインダー樹脂にて説明されており、ここでは説明を省略する。
(Second water-soluble binder resin)
As the second water-soluble binder resin applied to the low refractive index layer used in the present invention, polyvinyl alcohol is preferably used. Furthermore, it is more preferable that polyvinyl alcohol (B) different from the saponification degree of polyvinyl alcohol (A) present in the high refractive index layer is used in the low refractive index layer used in the present invention. In addition, description about polyvinyl alcohol (A) and polyvinyl alcohol (B), such as a preferable weight average molecular weight of 2nd water-soluble binder resin here, is demonstrated by the water-soluble binder resin of the said high refractive index layer. The description is omitted here.
 低屈折率層における第2の水溶性バインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、20~99.9質量%の範囲内であることが好ましく、25~80質量%の範囲内であることがより好ましい。 The content of the second water-soluble binder resin in the low refractive index layer is preferably in the range of 20 to 99.9% by mass with respect to 100% by mass of the solid content of the low refractive index layer, and 25 to 80 More preferably, it is in the range of mass%.
 低屈折率層において、第2の水溶性バインダー樹脂として好ましく用いられるポリビニルアルコールとともに、併用するほかのバインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、0~10質量%の範囲内で用いることもできる。 In the low refractive index layer, the content of other binder resin used together with polyvinyl alcohol preferably used as the second water-soluble binder resin is 0 to 10 mass with respect to 100 mass% of the solid content of the low refractive index layer. % Can also be used.
 (第2の金属酸化物粒子)
 本発明に用いられる低屈折率層に適用する第2の金属酸化物粒子としては、シリカ(二酸化ケイ素)を用いることが好ましく、具体的な例として合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましい。
(Second metal oxide particles)
As the second metal oxide particles applied to the low refractive index layer used in the present invention, silica (silicon dioxide) is preferably used, and specific examples thereof include synthetic amorphous silica and colloidal silica. . Of these, it is more preferable to use an acidic colloidal silica sol.
 低屈折率層に適用する第2の金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmの範囲内であることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmの範囲内であることがより好ましく、3~40nmの範囲内であることが更に好ましく、3~20nmであることが特に好ましく、4~10nmの範囲内であることが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The second metal oxide particles (preferably silicon dioxide) applied to the low refractive index layer preferably have an average particle size in the range of 3 to 100 nm. The average particle size of primary particles of silicon dioxide dispersed in a primary particle state (particle size in a dispersion state before coating) is more preferably in the range of 3 to 50 nm, and in the range of 3 to 40 nm. Is more preferably 3 to 20 nm, most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 低屈折率層に適用する金属酸化物粒子の平均粒径は、粒子そのもの又は屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The average particle size of the metal oxide particles applied to the low refractive index layer is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. The simple average value (number average) is obtained. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明で用いられるコロイダルシリカは、ケイ酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、及び国際公開第94/26530号などに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091 JP, 60-219083, JP 60-218904, JP 61-20792, JP 61-188183, JP 63-17807, JP 4-207 No. 93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 Described in Japanese Patent Laid-Open No. 7-179029, Japanese Patent Laid-Open No. 7-137431, and International Publication No. 94/26530. Than is.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、Mg又はBa等で処理された物であってもよい。 Such colloidal silica may be a synthetic product or a commercially available product. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 低屈折率層に適用する第2の金属酸化物粒子として、中空粒子を用いることもできる。中空粒子を用いる場合には、平均粒子空孔径が、3~70nmの範囲内であるのが好ましく、5~50nmの範囲内がより好ましく、5~45nmの範囲内が更に好ましい。なお、中空粒子の平均粒子空孔径とは、中空粒子の内径の平均値である。本発明において、中空粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形又は実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径としては、円形、楕円形又は実質的に円形若しくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Hollow particles can also be used as the second metal oxide particles applied to the low refractive index layer. When hollow particles are used, the average particle pore diameter is preferably in the range of 3 to 70 nm, more preferably in the range of 5 to 50 nm, and still more preferably in the range of 5 to 45 nm. The average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles. In the present invention, when the average particle pore diameter of the hollow particles is in the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained. The average particle hole diameter means the smallest distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
 低屈折率層における第2の金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、0.1~70質量%であることが好ましく、30~70質量%であることがより好ましく、45~65質量%であることが更に好ましい。 The content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass.
 (硬化剤)
 本発明に用いられる低屈折率層において、前記高屈折率層と同様に、硬化剤を更に含むことができる。低屈折率層に含まれる第2の水溶性バインダー樹脂と硬化反応を起こすものであれば、特に制限されない。特に、低屈折率層に適用する第2の水溶性バインダー樹脂としてポリビニルアルコールを用いた場合の硬化剤としては、ホウ酸及びその塩及び/又はホウ砂が好ましい。また、ホウ酸及びその塩以外にも公知のものが使用できる。
(Curing agent)
The low refractive index layer used in the present invention may further contain a curing agent, similar to the high refractive index layer. There is no particular limitation as long as it causes a curing reaction with the second water-soluble binder resin contained in the low refractive index layer. In particular, boric acid and its salt and / or borax are preferred as the curing agent when polyvinyl alcohol is used as the second water-soluble binder resin applied to the low refractive index layer. In addition to boric acid and its salts, known ones can be used.
 低屈折率層における硬化剤の含有量は、低屈折率層の固形分100質量%に対して、1~10質量%の範囲内であることが好ましく、2~6質量%の範囲内であることがより好ましい。 The content of the curing agent in the low refractive index layer is preferably in the range of 1 to 10% by mass and preferably in the range of 2 to 6% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is more preferable.
 また、硬化剤の具体例などは、上述した高屈折率層と同様であるため、ここでは説明を省略する。 Further, specific examples of the curing agent are the same as those of the above-described high refractive index layer, and thus the description thereof is omitted here.
 〔各屈折率層のそのほかの添加剤〕
 本発明に用いられる高屈折率層及び低屈折率層には、必要に応じて各種の添加剤を用いることができる。また、高屈折率層における添加剤の含有量は、高屈折率層の固形分100質量%に対して、0~20質量%であることが好ましい。当該添加剤として例えば、特開2012-139948号公報段落〔0140〕~〔0154〕に記載の界面活性剤、アミノ酸、エマルジョン樹脂、リチウム化合物、及び同公報段落〔0155〕記載のそのほかの添加剤を挙げることができる。
[Other additives for each refractive index layer]
Various additives can be used in the high refractive index layer and the low refractive index layer used in the present invention, if necessary. The content of the additive in the high refractive index layer is preferably 0 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Examples of the additive include surfactants, amino acids, emulsion resins, lithium compounds described in paragraphs [0140] to [0154] of JP2012-139948A and other additives described in paragraph [0155] of the same publication. Can be mentioned.
 〔近赤外線反射層群の形成方法〕
 本発明に用いられる近赤外線反射層の形成方法は、湿式塗布方式を適用して形成することが好ましく、更には、本発明にポリエステルフィルムA又はポリエステルフィルムB上に、第1の水溶性バインダー樹脂及び第1の金属酸化物粒子を含む高屈折率層用塗布液と、第2の水溶性バインダー樹脂及び第2の金属酸化物粒子を含む低屈折率層用塗布液と、を湿式塗布する工程を含む製造方法が好ましい。
[Method of forming near-infrared reflective layer group]
The method for forming the near-infrared reflective layer used in the present invention is preferably formed by applying a wet coating method. Furthermore, the first water-soluble binder resin is formed on the polyester film A or polyester film B in the present invention. And wet coating the coating solution for the high refractive index layer containing the first metal oxide particles and the coating solution for the low refractive index layer containing the second water-soluble binder resin and the second metal oxide particles. The manufacturing method containing is preferable.
 湿式塗布方法は、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。また、複数の層を重層塗布する方式としては、逐次重層塗布方式でもよいし、同時重層塗布方式でもよい。 The wet coating method is not particularly limited. For example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, US Pat. No. 2,761,419, US Pat. No. 2,761791 And a slide hopper coating method, an extrusion coating method and the like described in a book. In addition, as a method of applying a plurality of layers in a multilayer manner, a sequential multilayer application method or a simultaneous multilayer application method may be used.
 以下、本発明に用いられる好ましい製造方法(塗布方法)であるスライドホッパー塗布法による同時重層塗布について詳細に説明する。 Hereinafter, the simultaneous multilayer coating by the slide hopper coating method, which is a preferred manufacturing method (coating method) used in the present invention, will be described in detail.
 (溶媒)
 高屈折率層用塗布液及び低屈折率層用塗布液を調製するために適用可能な溶媒は、特に制限されないが、水、有機溶媒、又はその混合溶媒が好ましい。
(solvent)
The solvent applicable for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でも又は2種以上混合して用いてもよい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene. Examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
 環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、又は水とメタノール、エタノール、若しくは酢酸エチルとの混合溶媒が好ましい。 From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
 (塗布液の濃度)
 高屈折率層用塗布液中の水溶性バインダー樹脂の濃度は、1~10質量%の範囲内であることが好ましい。また、高屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%の範囲内であることが好ましい。
(Concentration of coating solution)
The concentration of the water-soluble binder resin in the coating solution for the high refractive index layer is preferably in the range of 1 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably in the range of 1 to 50% by mass.
 低屈折率層用塗布液中の水溶性バインダー樹脂の濃度は、1~10質量%の範囲内であることが好ましい。また、低屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%の範囲内であることが好ましい。 The concentration of the water-soluble binder resin in the coating solution for the low refractive index layer is preferably in the range of 1 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably in the range of 1 to 50% by mass.
 (塗布液の調製方法)
 高屈折率層用塗布液及び低屈折率層用塗布液の調製方法は、特に制限されず、例えば、水溶性バインダー樹脂、金属酸化物粒子、及び必要に応じて添加されるそのほかの添加剤を添加し、撹拌混合する方法が挙げられる。この際、水溶性バインダー樹脂、金属酸化物粒子、及び必要に応じて用いられるそのほかの添加剤の添加順も特に制限されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。必要に応じて、更に溶媒を用いて、適当な粘度に調製される。
(Method for preparing coating solution)
The method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited. For example, a water-soluble binder resin, metal oxide particles, and other additives added as necessary. The method of adding and stirring and mixing is mentioned. At this time, the order of addition of the water-soluble binder resin, the metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring. However, they may be added and mixed at once. If necessary, it is adjusted to an appropriate viscosity using a solvent.
 本発明においては、コア・シェル粒子を添加、分散して調製した水系の高屈折率層塗布液を用いて、高屈折率層を形成することが好ましい。このとき、前記コア・シェル粒子としては、25℃で測定したpHが5.0~7.5の範囲内で、かつ粒子のゼータ電位が負であるゾルとして、高屈折率層塗布液に添加して調製することが好ましい。 In the present invention, it is preferable to form a high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing core / shell particles. At this time, the core / shell particles are added to the coating solution for the high refractive index layer as a sol having a pH measured in the range of 5.0 to 7.5 at 25 ° C. and a negative zeta potential of the particles. It is preferable to prepare it.
 (塗布液の粘度)
 スライドホッパー塗布法により同時重層塗布を行う際の高屈折率層用塗布液及び低屈折率層用塗布液の40~45℃における粘度は、5~150mPa・sの範囲内が好ましく、10~100mPa・sの範囲内がより好ましい。また、スライド型カーテン塗布法により同時重層塗布を行う際の高屈折率層用塗布液及び低屈折率層用塗布液の40~45℃における粘度は、5~1200mPa・sの範囲内が好ましく、25~500mPa・s内の範囲内がより好ましい。
(Viscosity of coating solution)
The viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably within the range of 5 to 150 mPa · s. -Within the range of s is more preferable. The viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably within the range of 5 to 1200 mPa · s. A range of 25 to 500 mPa · s is more preferable.
 また、高屈折率層用塗布液及び低屈折率層用塗布液の15℃における粘度は、100mPa・s以上が好ましく、100~30000mPa・sの範囲内がより好ましく、3000~30000mPa・sの範囲内が更に好ましく、10000~30000mPa・sの範囲内が特に好ましい。 The viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa · s or more, more preferably in the range of 100 to 30000 mPa · s, and in the range of 3000 to 30000 mPa · s. The inside is more preferable, and the range of 10,000 to 30,000 mPa · s is particularly preferable.
 (塗布及び乾燥方法)
 塗布及び乾燥方法は、特に制限されないが、高屈折率層用塗布液及び低屈折率層用塗布液を30℃以上に加温して、基材上に高屈折率層用塗布液及び低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃に一旦冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
(Coating and drying method)
The coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate. After the simultaneous application of the rate layer coating solution, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 高屈折率層用塗布液及び低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚さとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め各層間及び各層内の物質の流動性を低下させる工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of substances in each layer and in each layer by means such as applying cold air to the coating to lower the temperature. To do. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した後、冷風を当ててからセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることが好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が短すぎると、層中の成分の混合が不十分となるところがある。一方、セット時間が長すぎると、金属酸化物粒子の層間拡散が進み、高屈折率層と低屈折率層との屈折率差が不十分となるところがある。なお、高屈折率層と低屈折率層との間の熱線遮断フィルムユニットの高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 After application, the time (setting time) from application of cold air to completion of setting is preferably within 5 minutes, preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, there are places where mixing of the components in the layer becomes insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the difference in refractive index between the high refractive index layer and the low refractive index layer is insufficient. In addition, if the high elasticity of the heat ray blocking film unit between the high refractive index layer and the low refractive index layer occurs quickly, the setting step may not be provided.
 セット時間の調整は、水溶性バインダー樹脂の濃度や金属酸化物粒子の濃度を調整し、ゼラチン、ペクチン、寒天、カラギーナン、ゲランガム等の各種公知のゲル化剤など、ほかの成分を添加することにより調整することができる。 The set time is adjusted by adjusting the concentration of water-soluble binder resin and metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. Can be adjusted.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、10~120秒であることが好ましい。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 図3は、多層膜による反射層を有する本発明のウインドウフィルムの一例であり、ポリエステルフィルムの一方の面側に反射層群を有する反射層ユニットを備えた構成を示す概略断面図である。 FIG. 3 is an example of a window film of the present invention having a reflective layer formed of a multilayer film, and is a schematic cross-sectional view showing a configuration provided with a reflective layer unit having a reflective layer group on one surface side of a polyester film.
 図3において、本発明のウインドウフィルム10は、反射層ユニットUを有する。更に、反射層ユニットUは、ポリエステルフィルムA(2)上に、一例として、第1の水溶性バインダー樹脂と第1の金属酸化物粒子を含有する高屈折率の反射層と、第2の水溶性バインダー樹脂と第2の金属酸化物粒子を含有する低屈折率の反射層とを交互に積層した反射層群MLを有している。反射層群MLは、反射層T~Tのn層で構成され、例えば、T、T、T、(中略)、Tn-2、Tを屈折率が1.10~1.60の範囲内にある低屈折率層で構成し、T、T、T、(中略)、Tn-1を屈折率が1.80~2.50の範囲内にある高屈折率層とする構成が一例として挙げられる。本発明でいう屈折率とは、25℃の環境下で測定した値である。 In FIG. 3, the window film 10 of the present invention has a reflective layer unit U. Furthermore, the reflective layer unit U includes, as an example, a high refractive index reflective layer containing a first water-soluble binder resin and first metal oxide particles, and a second water-soluble layer on the polyester film A (2). The reflective layer group ML is formed by alternately laminating a low refractive index reflective layer containing a conductive binder resin and second metal oxide particles. The reflective layer group ML is composed of n layers of reflective layers T 1 to T n , for example, T 1 , T 3 , T 5 , (omitted), T n−2 , T n with a refractive index of 1.10 to It is composed of a low refractive index layer in the range of 1.60, and T 2 , T 4 , T 6 , (omitted), and T n-1 are high in the refractive index range of 1.80 to 2.50. An example of the configuration is a refractive index layer. The refractive index as used in the field of this invention is the value measured in the environment of 25 degreeC.
 また、反射層ユニットの最外層上には、ポリエステルフィルムB(3)が積層されている。反射層ユニットの最外層と前記ポリエステルフィルムB(3)の間には、耐傷性を向上するためのハードコート層を設けることもでき、ポリエステルフィルムA(2)の反射層ユニットを設けていない面にはウインドウフィルムをほかの基材に貼合する粘着層5を設けることも好ましい。 Further, a polyester film B (3) is laminated on the outermost layer of the reflective layer unit. Between the outermost layer of the reflective layer unit and the polyester film B (3), a hard coat layer for improving scratch resistance can be provided, and the surface of the polyester film A (2) where the reflective layer unit is not provided. It is also preferable to provide an adhesive layer 5 for bonding the window film to another substrate.
 〔2.3〕易接着層
 本発明に係る近赤外線を吸収する層又は近赤外線を反射する層を設ける前に、本発明に係るポリエステルフィルムには易接着層を設けることが好ましい。
[2.3] Easy-Adhesion Layer Before providing the near-infrared absorbing layer or the near-infrared reflecting layer according to the present invention, the polyester film according to the present invention is preferably provided with an easy-adhesion layer.
 易接着層を形成する樹脂は、高透明で耐久性があるものであれば特に限定されることはない。例えば、アクリル系樹脂、ウレタン系樹脂、フッ素系樹脂、シリコーン系樹脂などを単独、又は混合物として使用することができる。これら易接着層は、樹脂又は樹脂組成物の溶液を、グラビアコーティング法、リバースロールコーティング法、ロールコーティング法、ディップコーティング法などの公知の技術で塗布し、乾燥した後、必要に応じて紫外線、電子線などを照射し硬化させることにより形成することができる。易接着層の厚さについては、0.5~5μmであることが好ましく、1~3μmであることがより好ましい。易接着層の厚さが薄いと、基材表面を均一に被覆することができないばかりか、耐腐食性を向上させる効果が十分に得られない傾向がある。逆に、過度に厚く形成しても、更なる耐擦過性向上は見られない。 The resin forming the easy adhesion layer is not particularly limited as long as it is highly transparent and durable. For example, acrylic resins, urethane resins, fluorine resins, silicone resins and the like can be used alone or as a mixture. These easy-adhesion layers are coated with a resin or resin composition solution by a known technique such as a gravure coating method, a reverse roll coating method, a roll coating method, a dip coating method, and after drying, ultraviolet rays as necessary. It can be formed by irradiating and curing with an electron beam. The thickness of the easy adhesion layer is preferably 0.5 to 5 μm, more preferably 1 to 3 μm. If the thickness of the easy-adhesion layer is thin, the surface of the substrate cannot be uniformly coated, and the effect of improving the corrosion resistance tends to be insufficient. On the other hand, even if it is formed too thick, no further improvement in scratch resistance is observed.
 易接着層の素材としてはゼラチン、ポリビニルアルコール、部分アセタール化ポリビニルアルコール、酢酸ビニル~無水マレイン酸共重合体等の親水性樹脂、セルロースジアセテート、セルロースナイトレート等のセルロースエステル樹脂が好ましく、これらを単独又は混合して用いてもよい。 As the material for the easy adhesion layer, gelatin, polyvinyl alcohol, partially acetalized polyvinyl alcohol, hydrophilic resins such as vinyl acetate-maleic anhydride copolymer, and cellulose ester resins such as cellulose diacetate and cellulose nitrate are preferable. You may use individually or in mixture.
 易接着層の塗布液に有効な溶媒としては、アセトン、メチルエチルケトン、メタノール、イソプロパノール、メチレンクロライド、エチレンクロライド、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール、エチルアセテート、ジメチルホルムアミド等を用いることができ、これらを必要に応じて混合して用いるのがよい。 Effective solvents for the coating solution for the easy adhesion layer include acetone, methyl ethyl ketone, methanol, isopropanol, methylene chloride, ethylene chloride, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, ethyl acetate, dimethyl Formamide or the like can be used, and these may be mixed and used as necessary.
 〔2.4〕そのほかの機能層
 本発明のウインドウフィルムは、ポリエステルフィルム上に、更なる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、電磁波シールド層、紫外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、接着層等を設けてもよい。
[2.4] Other functional layers The window film of the present invention has a conductive layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a flow layer for the purpose of adding further functions on the polyester film. A droplet layer, a slippery layer, a hard coat layer, an abrasion resistant layer, an electromagnetic wave shielding layer, an ultraviolet absorption layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, an adhesive layer, and the like may be provided.
 〔3〕合わせガラス
 本発明の合わせガラスは、本発明に係るポリエステルフィルムAの表面上に、粘着層5として、好ましくはポリビニルアセタール系樹脂膜であるポリビニルブチラール(PVB)に代表される粘着層を介して、合わせガラスに貼合される。ポリビニルアセタール系樹脂膜を用いることで、本発明のウインドウフィルムの曲面追従性が向上する。
[3] Laminated glass The laminated glass of the present invention has an adhesive layer represented by polyvinyl butyral (PVB), which is preferably a polyvinyl acetal resin film, as the adhesive layer 5 on the surface of the polyester film A according to the present invention. Through the laminated glass. By using the polyvinyl acetal resin film, the curved surface followability of the window film of the present invention is improved.
 図4は、本発明のウインドウフィルムを具備する合わせガラスの概略図である。 FIG. 4 is a schematic view of a laminated glass provided with the window film of the present invention.
 本発明の合わせガラス20は、平板状の合わせガラスであってもよく、また車のフロントガラスに使用されるような曲面状のガラスを用いた合わせガラスであってもよい。本発明のウインドウフィルムは、熱成型性及び曲面追従性が改善されていることから、曲面形状のガラス8を用いた合わせガラスに好適に用いられ、その際はポリエステルフィルムA側が当該曲面形状の凹部側に配置することが好ましい。 The laminated glass 20 of the present invention may be a flat laminated glass, or a laminated glass using curved glass used for a windshield of a car. Since the window film of the present invention has improved thermoformability and curved surface followability, it is suitably used for laminated glass using the curved glass 8, in which case the polyester film A side is a concave portion of the curved shape. It is preferable to arrange on the side.
 本発明に係る合わせガラスは、特に、車の窓ガラスとして用いられる場合において、可視光透過率が70%以上であることが好ましい。なお、可視光透過率は、例えば、分光光度計(日立製作所株式会社製、U-4000型)を用いて、JIS R3106(1998)「板ガラス類の透過率・反射率・日射熱取得率の試験方法」に準拠して、測定することができる。 The laminated glass according to the present invention preferably has a visible light transmittance of 70% or more, particularly when used as a car window glass. The visible light transmittance can be measured by using, for example, a spectrophotometer (U-4000 type, manufactured by Hitachi, Ltd.), JIS R3106 (1998) “Test of transmittance, reflectance, and solar heat gain of plate glass” It can be measured according to “Method”.
 本発明の合わせガラスの日射熱取得率は、60%以下であることが好ましく、55%以下であることがより好ましい。この範囲であれば、より効果的に外部からの熱線を遮断することができる。なお、日射熱取得率は、例えば、上記と同様に、分光光度計(日立製作所社製、U-4000型)を用いて、JIS R3106(1998)「板ガラス類の透過率・反射率・日射熱取得率の試験方法」に準拠して求めることができる。 The solar heat acquisition rate of the laminated glass of the present invention is preferably 60% or less, and more preferably 55% or less. If it is this range, the heat ray from the outside can be interrupted more effectively. In addition, the solar heat acquisition rate is measured using, for example, a spectrophotometer (manufactured by Hitachi, Ltd., U-4000 type) in the same manner as described above using JIS R3106 (1998) “Transmissivity / Reflectance / Solar Heat of Plate Glasses”. It can be determined according to “Acquisition rate test method”.
 〈ガラス基材〉
 本発明の合わせガラスに用いられるガラス基材としては、市販のガラス材料を用いることができる。
<Glass substrate>
A commercially available glass material can be used as the glass substrate used for the laminated glass of the present invention.
 ガラスの種類は、特に限定されないが、通常、ソーダライムシリカガラスが好適に用いられる。この場合、無色透明ガラスであってよく、有色透明ガラスであってもよい。 The type of glass is not particularly limited, but usually soda lime silica glass is preferably used. In this case, it may be a colorless transparent glass or a colored transparent glass.
 また、2枚のガラス基材のうち、入射光に近い室外側のガラス基材は、無色透明ガラスであることが好ましい。また、入射光側から遠い室内側のガラス基材は、グリーン系有色透明ガラス又は濃色透明ガラスであることが好ましい。グリーン系有色透明ガラスは、紫外線吸収性能及び赤外線吸収性能を有することが好ましい。これらを用いることにより、室外側でできるだけ日射エネルギーを反射することができ、更に合わせガラスの日射透過率を小さくすることができるからである。 Of the two glass substrates, the outdoor glass substrate close to the incident light is preferably colorless transparent glass. Moreover, it is preferable that the glass substrate of the indoor side far from the incident light side is a green-colored colored transparent glass or dark colored transparent glass. The green colored transparent glass preferably has ultraviolet absorption performance and infrared absorption performance. By using these, the solar radiation energy can be reflected as much as possible on the outdoor side, and the solar radiation transmittance of the laminated glass can be further reduced.
 グリーン系有色透明ガラスは特に限定されないが、例えば、鉄を含有するソーダライムシリカガラスが好適に挙げられる。例えば、ソーダライムシリカ系の母ガラスに、Fe換算で、全鉄0.3~1質量%を含有するソーダライムシリカガラスである。更に、近赤外領域の波長の光の吸収は全鉄のうちの2価の鉄による吸収が支配的であるため、FeO(2価の鉄)の質量が、Fe換算で、全鉄の20~40質量%であることが好ましい。 Although the green colored transparent glass is not particularly limited, for example, soda lime silica glass containing iron is preferable. For example, a soda lime silica glass containing 0.3 to 1 mass% of total iron in terms of Fe 2 O 3 in a soda lime silica base glass. Furthermore, since absorption of light having a wavelength in the near-infrared region is dominated by divalent iron out of total iron, the mass of FeO (divalent iron) is calculated in terms of Fe 2 O 3 , It is preferably 20 to 40% by mass of iron.
 紫外線吸収性能を付与するためには、ソーダライムシリカ系の母ガラスにセリウム等を加える方法が挙げられる。具体的には、実質的に以下の組成のソーダライムシリカガラスを用いるのが好ましい。SiO:65~75質量%、Al:0.1~5質量%、NaO+KO:10~18質量%、CaO:5~15質量%、MgO:1~6質量%、Fe換算した全鉄:0.3~1質量%、CeO換算した全セリウム及び/又はTiO:0.5~2質量%。 In order to impart ultraviolet absorption performance, a method of adding cerium or the like to a soda lime silica base glass can be mentioned. Specifically, it is preferable to use soda lime silica glass having the following composition substantially. SiO 2 : 65 to 75% by mass, Al 2 O 3 : 0.1 to 5% by mass, Na 2 O + K 2 O: 10 to 18% by mass, CaO: 5 to 15% by mass, MgO: 1 to 6% by mass, terms of Fe 2 O 3 were total iron 0.3 to 1 mass%, the total cerium CeO 2 in terms and / or TiO 2: 0.5 ~ 2% by weight.
 また、濃色透明ガラスは、特に限定されないが、例えば、鉄を高濃度で含有するソーダライムシリカガラスが好適に挙げられる。 Further, the dark transparent glass is not particularly limited, but, for example, soda lime silica glass containing iron at a high concentration is preferable.
 本発明の合わせガラスを車両等の窓に用いるにあたって、室内側ガラス基材及び室外側ガラス基材の厚さは、ともに1.5~3.0mmであることが好ましい。この場合、室内側ガラス基材及び室外側ガラス基材を等しい厚さにすることも、異なる厚さにすることもできる。合わせガラスを自動車窓に用いるにあたっては、例えば、室内側ガラス基材及び室外側ガラス基材を、ともに2.0mmの厚さにしたり、2.1mmの厚さにしたりすることが挙げられる。また、合わせガラスを自動車窓に用いるにあたっては、例えば、室内側ガラス基材の厚さを2mm未満、室外側ガラス板の厚さを2mm以上とすることで、合わせガラスの総厚さを小さくし、かつ車外側からの外力に抗することができる。室内側ガラス基材及び室外側ガラス基材は、平板状でも湾曲状でもよい。車両、特に自動車窓は湾曲していることが多いため、室内側ガラス基材及び室外側ガラス基材の形状は湾曲形状であることが多い。この場合、本発明に係るポリエステルフィルムAは室外側ガラス基材の凹面側に設けられることが、好ましい。 When the laminated glass of the present invention is used for a window of a vehicle or the like, it is preferable that the thickness of both the indoor side glass base material and the outdoor side glass base material is 1.5 to 3.0 mm. In this case, the indoor side glass base material and the outdoor side glass base material can have the same thickness or different thicknesses. In using laminated glass for an automobile window, for example, both the indoor side glass base material and the outdoor side glass base material may have a thickness of 2.0 mm or a thickness of 2.1 mm. Moreover, when using laminated glass for an automobile window, for example, the total thickness of the laminated glass is reduced by setting the thickness of the indoor glass substrate to less than 2 mm and the thickness of the outdoor glass plate to 2 mm or more. In addition, it can resist external force from the outside of the vehicle. The indoor glass substrate and the outdoor glass substrate may be flat or curved. Since vehicles, particularly automobile windows, are often curved, the shape of the indoor side glass substrate and the outdoor side glass substrate is often curved. In this case, the polyester film A according to the present invention is preferably provided on the concave surface side of the outdoor glass substrate.
 本発明の合わせガラスの製造方法は、特に制限されないが、例えば、本発明に用いられる赤外線反射層ユニットの両面を本発明に係るポリエステルフィルムA及びポリエステルフィルムBによって挟持してウインドウフィルムを作製後、当該ポリエステルフィルムにポリビニルアセタール系樹脂膜を粘着層として形成し、前記ウインドウフィルムを2枚のガラス基材で挟持した後、必要に応じてガラス基材のエッジ部からはみ出た余剰部分を除去した後、100~150℃で、10~60分間加熱し、加圧脱気処理して合わせ処理を行う方法が挙げられる。 The method for producing the laminated glass of the present invention is not particularly limited. For example, after producing a window film by sandwiching both sides of the infrared reflective layer unit used in the present invention with the polyester film A and the polyester film B according to the present invention, After forming a polyvinyl acetal resin film as an adhesive layer on the polyester film, sandwiching the window film between two glass substrates, and then removing the excess portion protruding from the edge of the glass substrate as necessary , A method of heating at 100 to 150 ° C. for 10 to 60 minutes, and performing a combined degassing process by pressure degassing.
 なお、粘着層の表面には、ウインドウフィルムとして用いられる前には、剥離シートを備えていてもよい。 The surface of the adhesive layer may be provided with a release sheet before being used as a window film.
 剥離シートとしては、粘着剤の粘着性を保護することができるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂に離型剤をコーティングした樹脂フィルム又はシートが用いられる。 The release sheet only needs to be able to protect the tackiness of the pressure-sensitive adhesive. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film Or a plastic film or sheet such as a sheet or a fluorine film, or a resin film or sheet in which titanium oxide, silica, aluminum powder, copper powder or the like is kneaded, or a resin film or sheet in which a release agent is coated on the resin in which these are kneaded. Is used.
 剥離シートの厚さは、特に制限されないが、通常12~250μmの範囲内であることが好ましい。 The thickness of the release sheet is not particularly limited, but it is usually preferably in the range of 12 to 250 μm.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 <ウインドウフィルム1の作製>
 [ポリエステルフィルムAの作製]
 25℃測定の固有粘度0.58cm/gのポリエチレンテレフタレートチップを280℃で溶融後、常法により、Tダイより冷却ドラム上に押し出し、次いで、縦方向に90℃に加熱したローラーを用いて3.3倍に延伸後、横方向にテンター内にて140℃で3.6倍に延伸後、230℃で熱固定した。次いで、テンターの幅を縮めて、下記式Sで定義される弛緩率が3.6%の弛緩熱処理を行い、下記熱収縮率が0.6%で、膜厚が20μmのポリエステルフィルムAを得た。
Example 1
<Preparation of window film 1>
[Preparation of Polyester Film A]
After melting a polyethylene terephthalate chip having an intrinsic viscosity of 0.58 cm 3 / g measured at 25 ° C. at 280 ° C., it was extruded on a cooling drum from a T-die by a conventional method, and then using a roller heated to 90 ° C. in the longitudinal direction. After stretching by 3.3 times, the film was stretched by 3.6 times at 140 ° C. in the transverse direction in the tenter and then heat-set at 230 ° C. Subsequently, the width of the tenter was reduced, and a relaxation heat treatment with a relaxation rate defined by the following formula S of 3.6% was performed to obtain a polyester film A having a thermal shrinkage rate of 0.6% and a film thickness of 20 μm. It was.
 〈弛緩率〉
 式S 弛緩率(%)=(A-B)/A×100
 (式中、A:フィルムを延伸した幅(単位:m)、B:縮めた後の幅(単位:m)を表す。)
 〈熱収縮率〉
 試料として縦100mm、横10mmの長さの試料を用い、縦の長さを下記サンプル長とした。
<Relaxation rate>
Formula S Relaxation rate (%) = (AB) / A × 100
(In the formula, A: width of the film stretched (unit: m), B: width after shrinking (unit: m))
<Heat shrinkage>
A sample having a length of 100 mm and a width of 10 mm was used as a sample, and the vertical length was set to the following sample length.
 熱収縮率(%)=(L(23℃)-L(150℃))/L(23℃)×100
 L(23℃):23℃・55%RHの環境下で1日放置したときのサンプル長
 L(150℃):150℃の環境下で30分間放置後、23℃・55%RHの環境下で1日放置したときのサンプル長
 [ポリエステルフィルムBの作製]
 25℃測定の固有粘度0.64cm/gのポリエチレンテレフタレートチップを280℃で溶融後、常法により、Tダイより冷却ドラム上に押し出し、次いで、縦方向に90℃に加熱したローラーを用いて3.3倍に延伸後、横方向にテンター内にて140℃で3.6倍に延伸した。次いで、180℃で熱固定し、弛緩熱処理は行わず、熱収縮率が5.5%で、膜厚が20μmのポリエステルフィルムBを得た。
Thermal shrinkage (%) = (L (23 ° C.) − L (150 ° C.)) / L (23 ° C.) × 100
L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH Sample length when left for 1 day at [Preparation of polyester film B]
A polyethylene terephthalate chip having an intrinsic viscosity of 0.64 cm 3 / g measured at 25 ° C. was melted at 280 ° C., and then extruded by a conventional method onto a cooling drum from a T die and then using a roller heated to 90 ° C. in the longitudinal direction. After stretching by 3.3 times, the film was stretched by 3.6 times at 140 ° C. in the tenter in the transverse direction. Subsequently, the film was heat-set at 180 ° C., heat treatment was not performed, and a polyester film B having a heat shrinkage rate of 5.5% and a film thickness of 20 μm was obtained.
 [近赤外線吸収層1]
 ポリエステルフィルムA上に、近赤外線吸収剤のセシウム含有酸化タングステン(Cs0.33WO)を1.4g/mとなるように混ぜ込んだ、膜厚10μmのブチラール樹脂層をダイコーターにて塗設し、その後ポリエステルフィルムBと80℃の温度で熱圧着させ、ウインドウフィルム1を得た。
[Near-infrared absorbing layer 1]
A butyral resin layer having a film thickness of 10 μm, in which a cesium-containing tungsten oxide (Cs 0.33 WO 3 ) as a near-infrared absorber is mixed at 1.4 g / m 2 on the polyester film A, is formed by a die coater. The window film 1 was obtained by coating and then thermocompression bonding with the polyester film B at a temperature of 80 ° C.
 <ウインドウフィルム2~8の作製>
 ウインドウフィルム1の作製において、ポリエステルフィルムA及びポリエステルフィルムBの熱固定温度、弛緩熱処理、膜厚を表1で示すように変化させて、熱収縮率を変化させた以外は同様にして、ウインドウフィルム2~8を作製した。
<Preparation of window films 2-8>
In the production of the window film 1, the heat fixing temperature, the relaxation heat treatment, and the film thickness of the polyester film A and the polyester film B were changed as shown in Table 1 to change the heat shrinkage rate in the same manner. 2 to 8 were produced.
 <ウインドウフィルム9の作製>
 ウインドウフィルム1の作製において、近赤外線吸収層1の代わりに、下記方法にて近赤外線反射層1を作製して用いた以外は同様にして、ウインドウフィルム9を得た。
<Preparation of window film 9>
In the production of the window film 1, a window film 9 was obtained in the same manner except that the near-infrared reflective layer 1 was produced and used instead of the near-infrared absorbing layer 1 by the following method.
 近赤外線反射層として、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に積層した、図3で示したウインドウフィルムを以下のように作製した。 A high refractive index layer containing a first water-soluble binder resin and first metal oxide particles as a near-infrared reflecting layer, and a low refraction containing a second water-soluble binder resin and second metal oxide particles The window film shown in FIG. 3 in which the rate layers were alternately laminated was produced as follows.
 ポリエステルフィルムAに下引層塗布液1をエクストルージョンコーターで15ml/m2となるように塗布し、塗布後50℃の無風ゾーン(1秒)を経た後、120℃で30
秒乾燥し、下引層塗布済み支持体を得た。
The undercoat layer coating solution 1 is applied to the polyester film A with an extrusion coater so as to be 15 ml / m 2, and after passing through a 50 ° C. no-air zone (1 second), it is 30 ° C. at 30 ° C.
The substrate was dried for 2 seconds to obtain a support coated with an undercoat layer.
 〈下引層塗布液1の調製〉
 脱イオン化ゼラチン 10g
 純水       30ml
 酢酸        20g
 下記架橋剤    0.2mol/gゼラチン
 下記ノニオン系フッ素含有界面活性剤
           0.2g
メタノール/アセトン=2/8の有機溶媒で1000mlにし、下引層塗布液1とした。
<Preparation of undercoat layer coating solution 1>
10g deionized gelatin
30 ml of pure water
Acetic acid 20g
The following crosslinking agent 0.2 mol / g gelatin The following nonionic fluorine-containing surfactant 0.2 g
The undercoat layer coating solution 1 was made up to 1000 ml with an organic solvent of methanol / acetone = 2/8.
Figure JPOXMLDOC01-appb-C000001
〈脱イオン化ゼラチンの作製〉
 石灰処理、水洗、中和処理を行い、石灰を除去したオセインを55~60℃の熱水中で抽出処理を行い、オセインゼラチンを得た。得られたオセインゼラチン水溶液を、アニオン交換樹脂(ダイヤイオンPA-31G)とカチオン交換樹脂(ダイヤイオンPK-218)の混合ベッドで両イオン交換を行った。
Figure JPOXMLDOC01-appb-C000001
<Preparation of deionized gelatin>
Ocein from which lime was removed by performing lime treatment, water washing and neutralization treatment was extracted in hot water at 55 to 60 ° C. to obtain ossein gelatin. The obtained ossein gelatin aqueous solution was subjected to both ion exchanges in a mixed bed of anion exchange resin (Diaion PA-31G) and cation exchange resin (Diaion PK-218).
 [近赤外線反射層の形成]
 重層塗布可能なスライドホッパー塗布装置を用い、上記の下引層塗布済みポリエステルフィルムAの上に、最下層を低屈折率層になるようにして、低屈折率層9層、高屈折率層8層を交互に計17層の同時重層塗布を行った。塗布工程の間、低屈折率層用塗布液L1及び高屈折率層用塗布液H1を45℃に保温、ポリエステルフィルムAは45℃に加温した。
[Formation of near-infrared reflective layer]
Using a slide hopper coating apparatus capable of multi-layer coating, 9 layers of low refractive index layers and 8 layers of high refractive index are formed on the polyester film A coated with the undercoat layer so that the lowermost layer is a low refractive index layer. A total of 17 layers were simultaneously applied alternately. During the coating process, the coating solution L1 for the low refractive index layer and the coating solution H1 for the high refractive index layer were kept warm at 45 ° C., and the polyester film A was heated to 45 ° C.
 塗布直後、5℃の冷風を5分間吹き付けてセットさせた。その後、80℃の温風を吹き付けて乾燥させて、17層からなる近赤外線反射層を形成した。高屈折率層及び低屈折率層の乾燥後の膜厚は130nmであった。さらに、近赤外線反射層上にポリエステルフィルムBを積層して近赤外線反射フィルムであるウインドウフィルム9を得た。 Immediately after application, 5 ° C. cold air was blown for 5 minutes to set. Thereafter, warm air of 80 ° C. was blown and dried to form a near-infrared reflective layer consisting of 17 layers. The film thickness after drying of the high refractive index layer and the low refractive index layer was 130 nm. Furthermore, the polyester film B was laminated | stacked on the near-infrared reflective layer, and the window film 9 which is a near-infrared reflective film was obtained.
 〔低屈折率層用塗布液L1の調製〕
 まず、10質量%の第2の金属酸化物粒子としてのコロイダルシリカ(日産化学工業株式会社製、スノーテックス(登録商標)OXS)水溶液680部と、4.0質量%のポリビニルアルコール(株式会社クラレ製、PVA-103:重合度300、ケン化度98.5mol%)水溶液30部と、3.0質量%のホウ酸水溶液150部とを混合し、分散した。純水を加え、全体として1000部のコロイダルシリカ分散液L1を調製した。
[Preparation of coating liquid L1 for low refractive index layer]
First, 680 parts of a colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) OXS) aqueous solution as 10% by mass of second metal oxide particles, and 4.0% by mass of polyvinyl alcohol (Kuraray Co., Ltd.). (Manufactured by PVA-103: polymerization degree 300, saponification degree 98.5 mol%) 30 parts of an aqueous solution and 150 parts of a 3.0% by weight boric acid aqueous solution were mixed and dispersed. Pure water was added to prepare 1000 parts of colloidal silica dispersion L1 as a whole.
 次いで、得られたコロイダルシリカ分散液L1を45℃に加熱し、その中に4.0質量%のポリビニルアルコール(B)としてのポリビニルアルコール(日本酢ビ・ポバール株式会社製、JP-45:重合度4500、ケン化度86.5~89.5mol%)水溶液760部とを順次に、撹拌しながら添加した。その後、1質量%のベタイン系界面活性剤(川研ファインケミカル株式会社製、ソフダゾリン(登録商標)LSB-R)水溶液40部を添加し、低屈折率層用塗布液L1を調製した。 Next, the obtained colloidal silica dispersion L1 was heated to 45 ° C., and 4.0% by mass of polyvinyl alcohol (B) as a polyvinyl alcohol (manufactured by Nippon Vinyl Bipo-Poval Co., Ltd., JP-45: polymerization) 4500, saponification degree 86.5 to 89.5 mol%) and 760 parts of an aqueous solution were sequentially added with stirring. Thereafter, 40 parts of a 1% by weight betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R) aqueous solution was added to prepare a coating solution L1 for a low refractive index layer.
 〔高屈折率層用塗布液H1の調製〕
 (コア・シェル粒子のコアとするルチル型酸化チタンの調製)
 水中に、酸化チタン水和物を懸濁させ、TiO2に換算した時の濃度が100g/Lになるように、酸化チタンの水性懸濁液を調製した。10L(リットル)の該懸濁液に、30Lの水酸化ナトリウム水溶液(濃度10mol/L)を撹拌しながら加えた後、90℃に加熱し、5時間熟成させた。次いで、塩酸を用いて中和し、濾過後水を用いて洗浄した。
[Preparation of coating liquid H1 for high refractive index layer]
(Preparation of rutile titanium oxide as core of core / shell particles)
An aqueous suspension of titanium oxide was prepared such that the titanium oxide hydrate was suspended in water and the concentration when converted to TiO 2 was 100 g / L. To 10 L (liter) of the suspension, 30 L of sodium hydroxide aqueous solution (concentration: 10 mol / L) was added with stirring, then heated to 90 ° C. and aged for 5 hours. Next, the mixture was neutralized with hydrochloric acid, washed with water after filtration.
 なお、上記反応(処理)において、原料である酸化チタン水和物は、公知の手法に従い、硫酸チタン水溶液を熱加水分解処理によって得られたものである。 In the above reaction (treatment), the raw material titanium oxide hydrate is obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
 純水中に、上記塩基処理したチタン化合物をTiO2に換算した時の濃度が20g/Lになるように、懸濁させた。その中に、TiO2量に対し0.4mol%のクエン酸を撹拌しながら加えた。その後、加熱し、混合ゾル液の温度が95℃になるところで、塩酸濃度が30g/Lになるように濃塩酸を加えた。さらに、液温を95℃に維持しながら、3時間撹拌させ、酸化チタンゾル液を調製した。 The base-treated titanium compound was suspended in pure water so that the concentration when converted to TiO 2 was 20 g / L. Therein, it was added with stirring citric acid 0.4 mol% with respect to TiO 2 weight. Then, when the temperature of the mixed sol solution reached 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L. Further, the mixture was stirred for 3 hours while maintaining the liquid temperature at 95 ° C. to prepare a titanium oxide sol liquid.
 上記のように、得られた酸化チタンゾル液のpH及びゼータ電位を測定したところ、pHは1.4であり、ゼータ電位は+40mVであった。また、マルバーン社製ゼータサイザーナノにより粒径測定を行ったところ、単分散度は16%であった。 As described above, when the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Moreover, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the monodispersity was 16%.
 さらに、酸化チタンゾル液を105℃で3時間乾燥させ、酸化チタンの粉体微粒子を得た。日本電子データム株式会社製、JDX-3530型を用いて、該粉体微粒子をX線回折測定し、ルチル型の酸化チタン微粒子であることが確認された。また、該微粒子の体積平均粒径は10nmであった。 Further, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain titanium oxide powder fine particles. The powder fine particles were subjected to X-ray diffraction measurement using JDX-3530 type manufactured by JEOL Datum Co., Ltd. and confirmed to be rutile titanium oxide fine particles. The volume average particle diameter of the fine particles was 10 nm.
 そして、純水4kgに、得られた体積平均粒径10nmのルチル型の酸化チタン微粒子を含む20.0質量%の酸化チタンゾル水系分散液を添加して、コア粒子となるゾル液を得た。 Then, a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile-type titanium oxide fine particles having a volume average particle diameter of 10 nm was added to 4 kg of pure water to obtain a sol solution serving as core particles.
 (シェル被覆によるコア・シェル粒子の調製)
 2kgの純水に、10.0質量%の酸化チタンゾル水系分散液0.5kgを加え、90℃に加熱した。次いで、SiO2に換算したときの濃度が2.0質量%であるように調製したケイ酸水溶液1.3kgを徐々に添加し、オートクレーブ中、175℃で18時間加熱処理を行い、更に濃縮して、コア粒子としてはルチル型構造を有する酸化チタンであり、被覆層としてはSiO2であるコア・シェル粒子(平均粒径:10nm)のゾル液(固形分濃度20質量%)を得た。
(Preparation of core / shell particles by shell coating)
To 2 kg of pure water, 0.5 kg of 10.0 mass% titanium oxide sol aqueous dispersion was added and heated to 90 ° C. Next, 1.3 kg of an aqueous silicic acid solution prepared so that the concentration when converted to SiO 2 is 2.0% by mass is gradually added, followed by heat treatment at 175 ° C. for 18 hours in an autoclave, and further concentrated. Thus, a sol solution (solid content concentration of 20% by mass) of core-shell particles (average particle size: 10 nm), which is a titanium oxide having a rutile structure as a core particle and SiO 2 as a coating layer, was obtained.
 (高屈折率層用塗布液H1の調製)
 上記で得られた固形分濃度20.0質量%の第1の金属酸化物粒子としてのコア・シェル粒子を含むゾル液28.9部と、1.92質量%のクエン酸水溶液10.5部と、10質量%のポリビニルアルコール(株式会社クラレ製、PVA-103:重合度300、ケン化度98.5mol%)水溶液2.0部と、3質量%のホウ酸水溶液9.0部とを混合して、コア・シェル粒子分散液H1を調製した。
(Preparation of coating liquid H1 for high refractive index layer)
28.9 parts of a sol solution containing core / shell particles as the first metal oxide particles having a solid content concentration of 20.0% by mass obtained above, and 10.5 parts of a 1.92% by mass citric acid aqueous solution. And 2.0 parts of an aqueous solution of 10% by weight polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-103: polymerization degree 300, saponification degree 98.5 mol%) and 9.0 parts of a 3% by weight aqueous boric acid solution. By mixing, a core-shell particle dispersion H1 was prepared.
 次いで、コア・シェル分散液H1を撹拌しながら、純水16.3部及び5.0質量%のポリビニルアルコール(A)としてのポリビニルアルコール(株式会社クラレ製、PVA-124:重合度2400、ケン化度98~99mol%)水溶液33.5部を加えた。さらに、1質量%のベタイン系界面活性剤(川研ファインケミカル株式会社製、ソフダゾリン(登録商標)LSB-R)水溶液0.5部を添加し、純水を用いて全体として1000部の高屈折率層用塗布液H1を調製した。 Next, while stirring the core / shell dispersion H1, 16.3 parts of pure water and 5.0% by mass of polyvinyl alcohol (A) as polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-124: polymerization degree 2400, Ken 33.5 parts of an aqueous solution was added. Furthermore, 0.5 part of 1% by weight of a betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R) aqueous solution was added, and a high refractive index of 1000 parts as a whole using pure water A layer coating solution H1 was prepared.
 <ウインドウフィルム10~16の作製>
 ウインドウフィルム9の作製において、ポリエステルフィルムA及びポリエステルフィルムBの熱固定温度、弛緩熱処理、膜厚を表1で示すように変化させて、熱収縮率を変化させた以外は同様にして、ウインドウフィルム10~16を作製した。
<Preparation of window films 10 to 16>
In the production of the window film 9, the heat fixing temperature, relaxation heat treatment, and the film thickness of the polyester film A and the polyester film B were changed as shown in Table 1, and the heat shrinkage rate was changed in the same manner. 10 to 16 were produced.
 ≪評価≫
 上記作製したウインドウフィルム1~16を用いて、フィルムの両面を合わせガラス用ブチラールシートで挟み、ポリエステルフィルムA側が合わせガラスの凹面側となるように自動車のフロント用ガラスの間に挟み込み、真空熱圧着をして、自動車用合わせガラスを作製した。
≪Evaluation≫
Using the window films 1 to 16 produced above, both sides of the film are sandwiched between butyral sheets for laminated glass, and sandwiched between the front glass of an automobile so that the polyester film A side becomes the concave side of the laminated glass, and vacuum thermocompression bonding Thus, a laminated glass for automobiles was produced.
 作製した合わせガラスのウインドウフィルムを以下の基準で評価した、
 (屋外観察の歪み)
 5:ガラスを通して屋外を見ても特に歪まない
 4:ガラスを通して屋外を見ると曲面の強い部分がかすかに歪む
 3:ガラスを通して屋外を見ると曲面の強い部分が歪む
 2:ガラスを通して屋外を見ると全面が僅かに歪む
 1:全体的に歪んで見える
 (しわ)
 3:ガラス全面において、しわが入らない
 2;ガラス端部にしわが入る
 1:ガラス全面にしわが入る
 ウインドウフィルムの構成及び上記評価結果を、表1に示した。
The laminated glass window film produced was evaluated according to the following criteria:
(Outdoor observation distortion)
5: When looking outside through the glass, it is not particularly distorted 4: When looking outside through the glass, the part with a strong curved surface is slightly distorted 3: When looking outside through the glass, the part with a strong curved surface is distorted 2: When looking outside through the glass The entire surface is slightly distorted 1: The entire image appears distorted (wrinkles)
3: No wrinkle on the entire glass surface 2; Wrinkle on the glass edge 1: Wrinkle on the entire glass surface Table 1 shows the structure of the window film and the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、本発明のウインドウフィルム1~6、9~14は、自動車用合わせガラスに用いた場合に、曲面形状追従性に優れるため、しわの発生を抑制し、ガラスを通して屋外を見る視認性に優れていることが分かる。ウインドウフィルムA及びBの膜厚は、B≦Aであることが好ましいことも分かる。 As shown in Table 1, the window films 1 to 6 and 9 to 14 of the present invention have excellent curved surface followability when used for laminated glass for automobiles, so that generation of wrinkles is suppressed and visibility through which the outside is viewed through the glass is shown. It turns out that it is excellent in. It can also be seen that the film thicknesses of the window films A and B are preferably B ≦ A.
 また機能性層として、近赤外線吸収層や多層構成の近赤外線反射層を、ポリエステルフィルムA及びBの間に挟持しても、本発明の優れた効果を同様に発揮することができる。 Further, even if a near-infrared absorbing layer or a multilayered near-infrared reflecting layer is sandwiched between the polyester films A and B as the functional layer, the excellent effects of the present invention can be exhibited similarly.
 実施例2
 本発明のウインドウフィルム1及び比較例であるウインドウフィルム7のそれぞれのウインドウフィルムのポリエステルフィルムA側に、厚さ10μmの粘着層を設けその上に剥離シートを貼り合わせた。
Example 2
An adhesive layer having a thickness of 10 μm was provided on the polyester film A side of each of the window films 1 of the present invention and the window film 7 as a comparative example, and a release sheet was bonded thereon.
 そのウインドウフィルム1、7を市販の自動車のフロントガラスの外面に、剥離シートを外側向けた状態で重ねて、ヒートガンにより熱成形した。その後、ウインドウフィルム1、7から剥離シートを剥がし、フロントガラスの内側に、しわがないように10人の施工者により施工した。その結果、本発明のウインドウフィルム1で施工に要した時間が平均5分であるのに対し、比較例であるウインドウフィルム7を用いた場合に要した時間は、平均12分かかり、本発明の構成のウインドウフィルムは、自動車用曲面ガラスに施工しやすいことが分かった。 The window films 1 and 7 were laminated on the outer surface of a commercially available car windshield with the release sheet facing outward, and thermoformed with a heat gun. Then, the release sheet was peeled off from the window films 1 and 7, and was applied by 10 installers so that there was no wrinkle inside the windshield. As a result, while the time required for construction with the window film 1 of the present invention is an average of 5 minutes, the time required when using the window film 7 as a comparative example takes an average of 12 minutes. It turned out that the window film of a structure is easy to apply to the curved glass for motor vehicles.
 実施例3
 ジカルボン酸成分としてテレフタル酸、グリコール成分としてエチレングリコールとシクロヘキサンジメタノール(7:3)を含むコポリエステルと、ジカルボン酸成分としてナフタレンジカルボン酸とシクロヘキサンジカルボン酸(7:3)、グリコール成分としてエチレングリコールを含むコポリエステルとを交互に重層押し出しダイスから押し出し、200層構成で、波長1000nmに反射波長の中心がある近赤外線反射フィルムを作製した、200層のポリエステルの各層の膜厚は、0.1~0.2μmである。
Example 3
Copolyester containing terephthalic acid as the dicarboxylic acid component, ethylene glycol and cyclohexanedimethanol (7: 3) as the glycol component, naphthalenedicarboxylic acid and cyclohexanedicarboxylic acid (7: 3) as the dicarboxylic acid component, and ethylene glycol as the glycol component The copolyester contained was alternately extruded from a multilayer extrusion die to produce a near-infrared reflective film having a 200-layer structure and a center of the reflection wavelength at a wavelength of 1000 nm. 0.2 μm.
 この近赤外線反射フィルムの両面に接着層を設け、一方の接着層に本発明のウインドウフィルム1の構成のポリエステルフィルムA、もう一方の接着層に本発明のウインドウフィルム1の構成のポリエステルフィルムBを貼り付け、更に、ポリエステルフィルムA側に厚さ10μmのPVBの粘着層を設け、その上に剥離シートを貼り合わせた。 Adhesive layers are provided on both sides of the near-infrared reflective film, the polyester film A having the configuration of the window film 1 of the present invention is provided on one adhesive layer, and the polyester film B having the configuration of the window film 1 of the present invention is provided on the other adhesive layer. Further, a PVB adhesive layer having a thickness of 10 μm was provided on the polyester film A side, and a release sheet was bonded thereon.
 また、上記近赤外線反射フィルムの両面に接着層を設け、一方の接着層に比較例であるウインドウフィルム7の構成のポリエステルA、もう一方の接着層にウインドウフィルム7の構成のポリエステルフィルムBを貼り付け、更に、ポリエステルフィルムA側に厚さ10μmのPVBの粘着層を設け、その上に剥離シートを貼り合わせた。 In addition, adhesive layers are provided on both sides of the near-infrared reflective film, polyester A having a structure of window film 7 as a comparative example is applied to one adhesive layer, and polyester film B having a structure of window film 7 is applied to the other adhesive layer. Further, a PVB adhesive layer having a thickness of 10 μm was provided on the polyester film A side, and a release sheet was bonded thereon.
 得られたウインドウフィルムについて、実施例2と同様に評価した。 The obtained window film was evaluated in the same manner as in Example 2.
 その結果、施工時間は、本発明の構成のウインドウフィルム1を用いた方が比較例の構成のウインドウフィルム7を用いた場合に対して、約半分となり、施工しやすいことが分かった。さらに曲率の高いガラス端部を見ると、本発明の構成では問題ないが、比較例の構成では、端部が波打っていることが観察された。 As a result, it was found that the construction time was about half when the window film 1 having the configuration of the present invention was used, compared with the case where the window film 7 having the configuration of the comparative example was used. Further, when the glass edge portion having a higher curvature is seen, there is no problem in the configuration of the present invention, but in the configuration of the comparative example, it is observed that the edge portion is wavy.
 本発明のウインドウフィルムは、熱成形性及び曲面形状追従性に優れているため、自動車用途のウインドウフィルム及びそれを用いた合わせガラスに好適である。 Since the window film of the present invention is excellent in thermoformability and curved surface shape followability, it is suitable for window films for automobiles and laminated glass using the same.
 1 ウインドウフィルム
 2 ポリエステルフィルムA
 3 ポリエステルフィルムB
 4 粘着層
 5 粘着層
 6 近赤外線吸収層
 7 近赤外線反射層
 8 合わせガラス
 10 ウインドウフィルム
 20 合わせガラス
 ML 近赤外線反射層積層体
 U 光学反射ユニット
 T1~Tn、Ta1~Tan、Tb1~Tbn 屈折率層
1 Window film 2 Polyester film A
3 Polyester film B
4 Adhesive Layer 5 Adhesive Layer 6 Near-Infrared Absorbing Layer 7 Near-Infrared Reflecting Layer 8 Laminated Glass 10 Window Film 20 Laminated Glass ML Near-Infrared Reflecting Layer Laminate U Optical Reflecting Unit T1-Tn, Ta1-Tan, Tb1-Tbn Refractive Index Layer

Claims (5)

  1.  少なくとも一部に曲面形状を有するガラスに貼合するウインドウフィルムであって、
     前記ウインドウフィルムの支持体が、少なくとも膜厚が5μm以上で下記熱収縮率が0.2~1%の範囲内のポリエステルフィルムAと、少なくとも膜厚が5μm以上で下記熱収縮率が2~10%の範囲内のポリエステルフィルムBとの積層されたフィルムであることを特徴とするウインドウフィルム。
      熱収縮率(%)={(L(23℃)-L(150℃))/L(23℃)}×100
     L(23℃):23℃・55%RHの環境下で1日放置したときのサンプル長
     L(150℃):150℃の環境下で30分間放置後、23℃・55%RHの環境下で1日放置したときのサンプル長
    It is a window film to be bonded to glass having a curved shape at least in part,
    The window film support includes a polyester film A having a thickness of 5 μm or more and a thermal contraction rate of 0.2 to 1%, and a thermal contraction rate of 2 to 10 and a thickness of 5 μm or more. %, A window film characterized by being a film laminated with a polyester film B within a range of%.
    Thermal shrinkage (%) = {(L (23 ° C.) − L (150 ° C.)) / L (23 ° C.)} × 100
    L (23 ° C.): Sample length when left for 1 day in an environment of 23 ° C. and 55% RH L (150 ° C.): After standing for 30 minutes in an environment of 150 ° C., in an environment of 23 ° C. and 55% RH Sample length when left for 1 day
  2.  前記ポリエステルフィルムAと前記ポリエステルフィルムBの膜厚の比の値(A/B)が、90/10~50/50の範囲内であることを特徴とする請求項1に記載のウインドウフィルム。 2. The window film according to claim 1, wherein the ratio (A / B) of the film thickness ratio between the polyester film A and the polyester film B is in the range of 90/10 to 50/50.
  3.  前記ポリエステルフィルムAと前記ポリエステルフィルムBとの間に近赤外線吸収層を有することを特徴とする請求項1又は請求項2に記載のウインドウフィルム。 The window film according to claim 1 or 2, further comprising a near-infrared absorbing layer between the polyester film A and the polyester film B.
  4.  前記ポリエステルフィルムAと前記ポリエステルフィルムBとの間に近赤外線反射層を有することを特徴とする請求項1又は請求項2に記載のウインドウフィルム。 The window film according to claim 1 or 2, further comprising a near-infrared reflective layer between the polyester film A and the polyester film B.
  5.  請求項1から請求項4のいずれか一項に記載のウインドウフィルムを、少なくとも一部に曲面形状を有するガラスで挟持した合わせガラスであって、
     前記ウインドウフィルムの前記ポリエステルフィルムA面側が、前記曲面形状を有するガラスの凹部側に接する位置に配置されていることを特徴とする合わせガラス。
    A laminated glass in which the window film according to any one of claims 1 to 4 is sandwiched by glass having a curved surface shape at least partially,
    Laminated glass, wherein the polyester film A surface side of the window film is disposed at a position in contact with a concave portion of the curved glass.
PCT/JP2016/057584 2015-03-11 2016-03-10 Window film and laminated glass using same WO2016143853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-047820 2015-03-11
JP2015047820A JP2018070383A (en) 2015-03-11 2015-03-11 Window film and glass laminate using the same

Publications (1)

Publication Number Publication Date
WO2016143853A1 true WO2016143853A1 (en) 2016-09-15

Family

ID=56879532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057584 WO2016143853A1 (en) 2015-03-11 2016-03-10 Window film and laminated glass using same

Country Status (2)

Country Link
JP (1) JP2018070383A (en)
WO (1) WO2016143853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164186A1 (en) * 2018-02-23 2019-08-29 삼성전자 주식회사 Window and electronic device containing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138638A1 (en) * 2020-12-25 2022-06-30 積水化学工業株式会社 Laminated glass
WO2024043305A1 (en) * 2022-08-25 2024-02-29 富士フイルム株式会社 Method for producing curved glass with reflective film, curved glass with reflective film, and head-up display system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784540A (en) * 1992-11-16 1995-03-31 Oji Yuka Synthetic Paper Co Ltd Production of display
JP2010159201A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010159395A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215491A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784540A (en) * 1992-11-16 1995-03-31 Oji Yuka Synthetic Paper Co Ltd Production of display
JP2010159201A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010159395A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215491A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164186A1 (en) * 2018-02-23 2019-08-29 삼성전자 주식회사 Window and electronic device containing same
KR20190101738A (en) * 2018-02-23 2019-09-02 삼성전자주식회사 Window and electric device comprising the same
KR102474836B1 (en) 2018-02-23 2022-12-06 삼성전자 주식회사 Window and electric device comprising the same

Also Published As

Publication number Publication date
JP2018070383A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6443341B2 (en) Light reflecting film and light reflector using the same
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2016017604A1 (en) Optical film and method for manufacturing optical film
WO2013099564A1 (en) Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
JPWO2014156822A1 (en) Laminated glass
WO2016052740A1 (en) Optical film and process for producing optical film
WO2014010562A1 (en) Infrared-shielding film
WO2016006388A1 (en) Optical film
WO2015104981A1 (en) Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
WO2017010280A1 (en) Heat ray shielding film
JP2018124300A (en) Infrared shielding body
WO2015182639A1 (en) Film for laminated glass, and laminated glass
WO2016143853A1 (en) Window film and laminated glass using same
WO2015146676A1 (en) Optical film, infrared reflective film using same and laminated glass
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2016017513A1 (en) Infrared reflective film and laminated glass
WO2016152458A1 (en) Optical film and method for manufacturing optical film
JP2015125168A (en) Dielectric multilayer film
JP6759697B2 (en) Roll-shaped optical reflective film
WO2015005199A1 (en) Laminated reflective film, method for producing same, and infrared shield including same
JP6326780B2 (en) Window pasting film
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
WO2014148366A1 (en) Light reflecting film and fabrication method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761819

Country of ref document: EP

Kind code of ref document: A1