WO2017010280A1 - Heat ray shielding film - Google Patents

Heat ray shielding film Download PDF

Info

Publication number
WO2017010280A1
WO2017010280A1 PCT/JP2016/069130 JP2016069130W WO2017010280A1 WO 2017010280 A1 WO2017010280 A1 WO 2017010280A1 JP 2016069130 W JP2016069130 W JP 2016069130W WO 2017010280 A1 WO2017010280 A1 WO 2017010280A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray shielding
layer
shielding film
ultraviolet absorbing
Prior art date
Application number
PCT/JP2016/069130
Other languages
French (fr)
Japanese (ja)
Inventor
光範 後藤
安藤 達哉
本田 誠
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017010280A1 publication Critical patent/WO2017010280A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a heat ray shielding film provided with a heat ray shielding layer that absorbs or reflects heat rays such as infrared rays.
  • This infrared reflective laminate is composed of a high refractive index layer and a low refractive index layer in which metal oxide fine particles such as titanium oxide are dispersed in a water-soluble resin.
  • metal oxide particles such as tungsten oxide and composite tungsten oxide for the heat ray shielding film in order to shield infrared rays.
  • tungsten oxide and composite tungsten oxide have a problem in weather resistance such that the infrared shielding properties deteriorate with time.
  • an ultraviolet absorbing material such as a benzotriazole compound, a triazine compound, and an indole compound for the heat ray shielding film (see, for example, Patent Document 2).
  • the heat ray shielding film is damaged such as cracks or peeling of the base material, discoloration, etc. due to exposure to sunlight for a long time.
  • the weather resistance of the heat ray shielding film cannot be sufficiently improved only by including the ultraviolet ray absorbing material in the heat ray shielding film.
  • the present invention provides a heat ray shielding film capable of improving the weather resistance.
  • the heat ray shielding film of the present invention has a base material, a heat ray shielding layer, and an ultraviolet ray absorbing layer, the ultraviolet ray absorbing layer is provided outside the heat ray shielding layer, and the ultraviolet ray absorbing layer has a maximum transmittance at a wavelength of 350 to 400 nm. Is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more.
  • a heat ray shielding film capable of improving weather resistance can be provided.
  • Embodiment of the heat ray shielding film optical reflection film
  • Embodiment of heat ray shielding film second embodiment
  • Embodiment of heat ray shielding film third embodiment
  • the heat ray shielding film has a base material, a heat ray shielding layer, and an ultraviolet ray absorbing layer, and the heat ray shielding film is provided with an ultraviolet ray absorbing layer outside the heat ray shielding layer.
  • the heat ray shielding film has a maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer of 40% or less, and a minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more.
  • the outer side of the dielectric multilayer film on which the ultraviolet absorbing layer is provided is the outside of both main surfaces of the heat ray shielding layer in the stacking direction of the base material and the heat ray shielding layer. Specifically, with respect to the light incident on the heat ray shielding film, the light incident surface side of the heat ray shielding layer is closer to the light incident surface side and the opposite side of the light incident surface (light emission surface side, back surface side). The light emission surface side is shown from the main surface.
  • the heat ray shielding layer is preferably provided on the substrate.
  • the heat ray shielding layer is preferably formed directly on the substrate.
  • the laminated structure (laminated body) which consists of a base material and a heat ray shielding layer is formed.
  • it may be a laminate having a structure in which another layer is formed between the base material and the heat ray shielding layer.
  • an ultraviolet absorption layer is provided in at least one surface.
  • an ultraviolet absorbing layer is provided outside the substrate and the heat ray shielding layer. Specifically, it is preferable that the ultraviolet absorbing layer is provided on the side on which light including a wavelength intended for shielding by the heat ray shielding layer is incident, rather than the base material and the heat ray shielding layer.
  • the maximum transmittance of the heat ray shielding film at a wavelength of 350 to 400 nm is preferably 3% or less.
  • the minimum transmittance at a wavelength of 450 to 600 nm of the heat ray shielding film is preferably 70% or more.
  • the difference in transmittance at a wavelength of 450 to 600 nm of the heat ray shielding film is preferably 20% or less.
  • the transmittance at each wavelength is a value measured by the method described in JIS R3106-1998. Specifically, it can be evaluated by the transmittance in a wavelength range of 200 to 2000 nm of a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.).
  • the heat ray shielding film includes an ultraviolet ray absorbing layer and has the above optical characteristics, the ultraviolet ray irradiation to the base material and the heat ray shielding layer is suppressed, and even in long-term exposure to sunlight or the like, Discoloration can be suppressed. Or damage, such as a crack of a heat ray shielding film and peeling of a base material, can be suppressed. Therefore, the weather resistance of the heat ray shielding film can be improved. Furthermore, since the transmittance at a wavelength of 420 to 780 nm which is a visible light region is high, transparency as a heat ray shielding film can be ensured.
  • the heat ray shielding layer is preferably a dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and titanium oxide and a low refractive index layer containing a water-soluble polymer are alternately laminated.
  • the heat ray shielding layer preferably contains one or more infrared absorbing materials selected from tungsten oxide and composite tungsten oxide. When the heat ray shielding layer has these configurations, the infrared ray shielding ability can be enhanced while maintaining the transparency of the heat ray shielding film.
  • the heat ray shielding film has an ultraviolet absorbing layer, it is possible to reduce ultraviolet irradiation to the titanium oxide contained in the dielectric multilayer film. For this reason, it suppresses the discoloration by the self-reduction at the time of light irradiation of titanium oxide, and suppresses the discoloration of the dielectric multilayer film, thereby suppressing the deterioration of the optical properties such as coloring of the heat ray shielding film and the light transmittance. be able to.
  • discoloration of rutile titanium dioxide having an absorption region on the long wavelength side of ultraviolet light can be suppressed by the low transmittance at a wavelength of 350 to 400 nm, which is ultraviolet light on the long wavelength side close to visible light.
  • the minimum transmittance at a wavelength of 450 to 600 nm is 70% or more, high transparency can be imparted to the heat ray shielding film, which is preferable when applied to a window glass, a car windshield, and the like. Furthermore, since the transmittance difference between wavelengths 450 to 600 nm is 20% or less, the wavelength deviation (wavelength dependence) of transmitted light is reduced, and further improvement in transparency, and in dark and bright places. A difference in visibility can be suppressed.
  • the ultraviolet ray absorbing layer of the heat ray shielding film contains an ultraviolet ray absorbing material.
  • the ultraviolet absorbing material contained in the ultraviolet absorbing layer preferably contains one or more selected from an indole compound, an azomethine compound, a coumarin compound, and a merocyanine compound.
  • the indole compound, the azomethine compound, the coumarin compound, and the merocyanine compound are referred to as an ultraviolet absorbing material group A.
  • These ultraviolet absorbing materials have high absorption ability at a wavelength of 350 to 400 nm. For this reason, it is effective for suppression of discoloration of titanium oxide and improvement of weather resistance.
  • the ultraviolet ray absorbing layer of the heat ray shielding film includes at least one ultraviolet ray absorbing material selected from the above ultraviolet ray absorbing material group A, and at least one selected from a benzotriazole compound, a triazine compound, and a benzophenone compound. It is preferable that an ultraviolet absorbing material is included.
  • the benzotriazole compound, the triazine compound, and the benzophenone compound are referred to as an ultraviolet absorbing material group B.
  • These ultraviolet absorbing materials have a higher ability to absorb ultraviolet rays on the shorter wavelength side than the compounds of the ultraviolet absorbing material group A. For this reason, by using it with the material of the above-mentioned ultraviolet absorbing material group A, it is possible to absorb a wider range of ultraviolet rays and improve the weather resistance of the heat ray shielding film.
  • the ultraviolet absorbing layer preferably contains 0.05 to 15% by mass of an ultraviolet absorbing material.
  • the ultraviolet absorbing layer preferably contains 0.05 to 15% by mass of the material of the ultraviolet absorbing material group A.
  • the ultraviolet absorbing layer has the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B, the total of the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B is 0. .05 to 15% by mass is preferable.
  • the total amount of these ultraviolet absorbing materials is preferably 0.05 to 15% by mass.
  • the ultraviolet absorption layer only needs to be provided on one outer side of the heat ray shielding layer. Preferably, it is provided outside the light incident side. By providing the ultraviolet absorbing layer on the light incident side, the ultraviolet rays incident on the heat ray shielding layer can be reduced. It is also possible to adopt a configuration in which the ultraviolet absorbing layer is provided on both sides of the heat ray shielding layer. Reflected light or the like may enter the heat ray shielding film from the back side. Even in such a case, the ultraviolet ray incident on the heat ray shielding layer from the back surface side can be reduced by providing the ultraviolet ray absorbing layer on the back surface side of the heat ray shielding layer.
  • the ultraviolet absorbing layer can include an adhesive.
  • a heat ray shielding film capable of causing the ultraviolet absorbing layer to function as an adhesive layer is configured.
  • the substrate can function as an ultraviolet absorbing layer.
  • FIG. 1 shows a schematic configuration of the heat ray shielding film.
  • a heat ray shielding film 10 shown in FIG. 1 includes a base material 11, a dielectric multilayer film 12 that is a heat ray shielding layer, and an ultraviolet absorption layer 13.
  • the dielectric multilayer film 12 which is a heat ray shielding layer has a configuration in which high refractive index layers and low refractive index layers are alternately stacked.
  • the ultraviolet absorbing layer 13 is provided on the main surface opposite to the base material 11 with respect to the dielectric multilayer film 12 provided on the base material 11.
  • the ultraviolet absorption layer 13 side is a light incident (drawing arrow) surface. For this reason, the ultraviolet absorbing layer 13 is disposed outside the light incident surface side of the dielectric multilayer film 12.
  • the dielectric multilayer film 12 which is a heat ray shielding layer has a configuration in which low refractive index layers and high refractive index layers are alternately stacked.
  • the dielectric multilayer film 12 has a low-refractive index layer and a high-refractive index layer on the substrate 11 when a two-layered laminate in which a low-refractive index layer and a high-refractive index layer are stacked one by one is used as one unit. And at least one unit.
  • the higher refractive index layer and the lower refractive index layer are the higher refractive index layer and the lower refractive index layer.
  • the layer is a low refractive index layer. Therefore, the high refractive index layer and the low refractive index layer in the dielectric multilayer film 12 are determined by comparing the refractive indexes of two adjacent layers in each layer constituting the dielectric multilayer film 12.
  • the thickness per layer of the high refractive index layer and the low refractive index layer is preferably 20 to 1000 nm. Further, it is preferably 50 to 500 nm, more preferably 100 to 300 nm, and particularly preferably 100 to 200 nm.
  • the number (total number) of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film 12 is not particularly limited, but is preferably 6 to 2000, more preferably 10 to 1500, and still more preferably. Is from 10 to 1000. If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
  • a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer and the low refractive index layer.
  • the high refractive index layer includes a set of portions in which the components constituting the high refractive index layer are 50% by mass or more in the mixed layer, thereby forming the low refractive index layer.
  • a group of sites where the component to be added exceeds 50 mass% is included in the low refractive index layer.
  • the concentration profiles of the components constituting the high refractive index layer and the low refractive index layer are measured, and the high refractive index layer or the low refractive index layer is obtained depending on the composition. be able to.
  • the concentration profile can measure the atomic composition ratio of the surface exposed by etching using an XPS (X-ray-photoelectron-spectroscopy) surface analyzer while etching in the depth direction from the surface using a sputtering method.
  • the reflectance of the dielectric multilayer film 12 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer and low refractive index layer increases.
  • the high refractive index layer preferably has a higher refractive index.
  • the refractive index of the high refractive index layer is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20.
  • the low refractive index layer preferably has a lower refractive index.
  • the refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
  • the refractive index of the high refractive index layer and the low refractive index layer is determined according to the following method. Specifically, a sample in which each layer is formed as a single layer on a substrate is prepared, the sample is cut into 10 cm ⁇ 10 cm, and then the refractive index is obtained according to the following method.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness
  • is the wavelength.
  • the reflection of each wavelength can be controlled by utilizing the optical path difference. That is, the reflection of visible light or near infrared light can be controlled by controlling the refractive index and film thickness of each layer using the relationship represented by the above formula. For example, the reflectance in a specific wavelength region can be improved by controlling the refractive index, film thickness, and lamination state of each layer.
  • the heat ray shielding film 10 is configured to increase the transmittance in a specific wavelength range or to increase the reflectivity in a specific wavelength range by arbitrarily adjusting the wavelength range that improves the reflectivity in the dielectric multilayer film 12. It can be. Thus, the optical characteristics of the heat ray shielding film 10 can be arbitrarily set by the configuration of the dielectric multilayer film 12.
  • the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, and 70% or more. More preferably, it is more preferably 75% or more. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. In addition, it is preferable not to provide a region with a reflectance exceeding 50% in a region with a wavelength of 900 to 1400 nm.
  • the minimum transmittance at a wavelength of 420 to 780 nm is set to 40% or more by adjusting the configuration of the dielectric multilayer film 12.
  • the transmittance at a wavelength of 420 to 780 nm By increasing the transmittance at a wavelength of 420 to 780 nm, the transparency and transparency in the visible light region can be enhanced.
  • the difference in refractive index between the high refractive index layer and the low refractive index layer and the number of layers constituting the dielectric multilayer film 12 can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectivity (infrared shielding rate) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, which not only reduces productivity. , Scattering at the laminated interface increases and transparency decreases. For this reason, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more. Particularly preferably, it is 0.3 or more, more preferably 0.4 or more. From the viewpoint of improving the reflectance and reducing the number of layers, there is no upper limit to the difference in refractive index between the adjacent high refractive index layer and low refractive index layer, but it is substantially about 1.4.
  • the high refractive index layer includes metal oxide fine particles and a water-soluble polymer. Furthermore, the high refractive index layer contains titanium oxide as metal oxide fine particles.
  • the high refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles other than titanium oxide together with titanium oxide.
  • the high refractive index layer preferably has the largest proportion of titanium oxide as metal oxide fine particles. More preferably, it is preferable to contain 50% by mass or more of titanium oxide as the metal oxide fine particles. Further, the metal oxide fine particles preferably contain 70% by mass or more of titanium oxide, and more preferably contain 80% by mass or more of titanium oxide.
  • the low refractive index layer includes a water-soluble polymer.
  • the low refractive index layer may be configured to include inorganic oxide fine particles and metal oxide fine particles together with the water-soluble polymer.
  • the refractive index can be easily adjusted. For this reason, by including oxide fine particles, the number of stacked layers can be reduced, and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
  • the water-soluble polymer contained in the high refractive index layer and the low refractive index layer functions as a binder in the layer.
  • the high refractive index layer and the low refractive index layer contain a water-soluble polymer, environmental problems due to organic solvents can be solved.
  • flexibility is obtained for a coating film by using water-soluble polymer as a binder.
  • the water-soluble polymers contained in the high refractive index layer and the low refractive index layer may be the same or different. Preferably, different materials are used for the high refractive index layer and the low refractive index layer.
  • the water-soluble polymer is a polymer compound that dissolves 1.0% by mass or more at 40 ° C. in an aqueous medium.
  • the high refractive index layer and the low refractive index layer contain a water-soluble polymer
  • a wet film formation method such as a coating method or a spin coating method can be applied to the formation of these layers. Since these film-forming methods are simple and do not ask
  • a mass production method such as a roll-to-roll method can be adopted, which is advantageous in terms of cost and process.
  • membrane containing a water-soluble polymer has high flexibility, even if it winds up at the time of production and conveyance, it is hard to generate
  • the water-soluble polymer contained in the high refractive index layer and the low refractive index layer is not particularly limited.
  • the water-soluble polymer contained in the high refractive index layer and the low refractive index layer include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic Acrylic resins such as potassium acid-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer Styrene-acrylic acid resin such as styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene
  • polyvinyl alcohol and polyvinyl alcohol derivatives which are polyvinyl alcohols, from the viewpoints of coatability and film thickness uniformity (haze).
  • a water-soluble polymer may be used independently and may be used in combination of 2 or more type.
  • the water-soluble polymer may be a synthetic product or a commercially available product.
  • water-soluble polymer for example, publicly known to be used for a high refractive index layer and a low refractive index layer described in International Publication No. 2012/128109, Japanese Unexamined Patent Application Publication No. 2013-121567, Japanese Unexamined Patent Application Publication No. 2013-148849, etc.
  • these resins can be used in the same manner.
  • polyvinyl alcohol resin various modified polyvinyl alcohols can be used in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • the polyvinyl alcohol obtained by hydrolyzing the above-mentioned polyvinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
  • modified polyvinyl alcohol examples include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol-based polymers. These polyvinyl alcohols may be used alone or in combination of two or more. Polyvinyl alcohol may be a synthetic product or a commercial product.
  • the cation-modified polyvinyl alcohol is, for example, polyvinyl having a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol.
  • Examples include alcohol.
  • This cation-modified polyvinyl alcohol is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • anion-modified polyvinyl alcohol examples include polyvinyl alcohols having an anionic group described in JP-A-1-206088, and vinyl alcohols described in JP-A-61-237681 and JP-A-63-307979. And a copolymer of a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol is, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group described in JP-A-7-9758 to a part of vinyl alcohol, and described in JP-A-8-25795.
  • Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol modified polyvinyl alcohol having silanol group, reactive group modified polyvinyl alcohol having reactive group such as acetoacetyl group, carbonyl group, carboxyl group, etc. Can be mentioned.
  • Examples of the ethylene-modified polyvinyl alcohol include those described in JP 2009-107324 A, JP 2003-248123 A, JP 2003-342322 A, and the like. Commercial products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may also be used.
  • Examples of the vinyl alcohol-based polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.), Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and polyvinyl acetal resin obtained by reacting polyvinyl alcohol with an aldehyde (for example, “S REC” manufactured by Sekisui Chemical Co., Ltd., silanol-modified polyvinyl alcohol having a silanol group (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol-based resin having an acetoacetyl group in the molecule (for example, And “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • EXEVAL trade name: manufactured by Kuraray Co., Ltd.
  • Nichigo G polymer trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • the mass average molecular weight of polyvinyl alcohol is preferably 60000-250,000.
  • “mass average molecular weight” a value measured by a static light scattering method, gel permeation chromatography (GPC), TOFMASS, or the like is adopted.
  • GPC gel permeation chromatography
  • TOFMASS TOFMASS
  • the content of the water-soluble polymer in the high refractive index layer and the low refractive index layer is preferably 5 to 75% by mass and more preferably 10 to 70% by mass with respect to the total solid content in each layer. preferable.
  • the content of the water-soluble polymer is 5% by mass or more, in wet film formation, it is possible to prevent deterioration of transparency due to disturbance of the film surface when the coating film is dried.
  • the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the layer contains metal oxide fine particles, and the refractive index difference between the low refractive index layer and the high refractive index layer. Can be increased.
  • content of water-soluble polymer is calculated
  • the thermal barrier film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight.
  • the water-soluble polymer is polyvinyl. It can be determined that it is alcohol.
  • the high refractive index layer contains titanium oxide as metal oxide fine particles.
  • titanium oxide it is preferable to use a titanium dioxide sol from the viewpoint of the stability of the metal oxide fine particle-containing composition. Further, among titanium dioxide, it is preferable to use a rutile type because the catalytic activity is low, the weather resistance of the high refractive index layer and the adjacent layer is high, and the refractive index is high.
  • the preferred primary particle diameter of the titanium dioxide fine particles is 4 nm to 50 nm, more preferably 4 nm to 30 nm.
  • the titanium oxide particles are preferably used by modifying the surface of the titanium oxide sol so that it can be dispersed in water or an organic solvent.
  • Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the description of Japanese Patent No. 17221.
  • the average particle diameter of titanium oxide used in the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less. From the viewpoint of a low haze value and excellent visible light transmittance, the average particle size is more preferably 1 to 30 nm, and more preferably 1 to 20 nm. In addition, an average particle diameter is a volume average particle diameter calculated
  • the average particle diameter is determined by measuring the diameter of 1000 arbitrary particles by a method of observing the particles themselves.
  • a method of observing the particles themselves for example, a laser diffraction scattering method, a dynamic light scattering method, a method of observing using an electron microscope, or a method of observing a particle image appearing on a cross section or surface of a layer with an electron microscope.
  • the particle size of 1000 arbitrary particles is measured, and there are n1, n2..., Ni, nk particles each having a particle size of d1, d2,.
  • the average particle diameter mv is obtained as a volume average particle diameter represented by ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇ .
  • the titanium oxide contained in the high refractive index layer may be in the form of core-shell particles coated with a silicon-containing hydrated oxide.
  • the core-shell particle has a structure in which the surface of the titanium oxide particle is coated with a shell made of a silicon-containing hydrated oxide on the titanium oxide serving as the core.
  • the core-shell particles in the high refractive index layer By including the core-shell particles in the high refractive index layer, the interlayer mixing of the low refractive index layer and the high refractive index layer is suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles.
  • the surface of the titanium oxide particles may be completely covered with the silicon-containing hydrated oxide, or a part of the surface of the titanium oxide particles may be covered with the silicon-containing hydrated oxide. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. Since rutile type titanium oxide particles have lower photocatalytic activity than anatase type titanium oxide particles, the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased. Moreover, the refractive index of a layer tends to become high by using a rutile type titanium oxide particle.
  • the silicon-containing hydrated oxide may be any of a hydrate of an inorganic silicon compound, a hydrolyzate of an organosilicon compound, and a condensate of an organosilicon compound.
  • the silicon-containing hydrated oxide covering titanium oxide preferably has a silanol group.
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass with respect to titanium oxide.
  • the coating amount is 30% by mass or less, it is easy to increase the refractive index of the high refractive index layer, and when the coating amount is 3% by mass or more, the coated particles can be stably formed.
  • a conventionally known method can be applied.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007- The method described in Japanese Patent No. 246351 can be applied.
  • titanium oxide particles are often used in a state where surface treatment has been performed for the purpose of suppressing photocatalytic activity on the particle surface and improving dispersibility in a solvent or the like.
  • the surface treatment it is preferable to use one or more selected from silica, alumina, aluminum hydroxide, zirconia and the like. More specifically, the surface is covered with a silica coating layer, the surface of the particle is negatively charged titanium oxide particles, or the aluminum oxide coating layer is formed, and the surface is positively charged at pH 8-10. Titanium oxide particles are known.
  • the high refractive index layer may contain metal oxide fine particles other than the above titanium oxide.
  • Metal oxide fine particles other than titanium oxide include Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, and Nb. , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals Metal oxides can be used.
  • rare earth oxides can also be used as the metal oxide fine particles.
  • scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, oxidation Examples also include terbium, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • the metal oxide fine particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more, and examples thereof include zirconium oxide, cerium oxide, and zinc oxide.
  • the metal oxide fine particles used for the high refractive index layer may be used singly or in combination of two or more.
  • the volume average particle size of the metal oxide fine particles used for the metal oxide fine particles used in the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less. Further, the volume average particle size of the metal oxide fine particles is more preferably 1 to 30 nm, and further preferably 5 to 15 nm. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the content of the metal oxide fine particles in the high refractive index layer is 20 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer as the total of metal oxides other than titanium oxide and titanium oxide. It is preferably 30 to 75% by mass, more preferably 40 to 70% by mass.
  • the low refractive index layer may contain metal oxide fine particles such as titanium oxide and inorganic oxide fine particles contained in the high refractive index layer.
  • metal oxide fine particles such as titanium oxide and inorganic oxide fine particles contained in the high refractive index layer.
  • silicon dioxide As the inorganic oxide fine particles contained in the low refractive index layer, it is preferable to use silicon dioxide, and it is particularly preferable to use colloidal silica.
  • Colloidal silica is obtained by metathesis with an acid such as sodium silicate or by heat aging of a silica sol obtained by passing through an ion exchange resin layer.
  • Colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-219084, JP-A-61-20792, JP-A-61-188183.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • the metal oxide particles and inorganic oxide fine particles contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in the primary particle state is more preferably 3 to 50 nm, further preferably 3 to 40 nm, and more preferably 3 to 20 nm. Is particularly preferable, and 4 to 10 nm is most preferable.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle size of the fine particles in the low refractive index layer is determined by observing the particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. It is obtained as a simple average value (number average).
  • the particle diameter of each particle is expressed as a diameter assuming a circle equal to the projected area.
  • the content of the metal oxide particles and inorganic oxide fine particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, from the viewpoint of refractive index. More preferably, it is 75 mass%.
  • the heat ray shielding film 10 includes at least one ultraviolet absorbing layer 13 outside the dielectric multilayer film 12.
  • the ultraviolet absorbing layer 13 is preferably provided on the light incident side of the dielectric multilayer film 12 that is a heat ray shielding layer in the heat ray shielding film 10.
  • the ultraviolet absorbing layer 13 may be provided on the substrate 11 side of the dielectric multilayer film 12. In this case, it is possible to cause the base material 11 to function as the ultraviolet light absorbing layer 13 by containing the ultraviolet light absorbing material described later in the base material 11.
  • the ultraviolet absorbing layer 13 includes an ultraviolet absorbing material.
  • the ultraviolet absorbing material contained in the ultraviolet absorbing layer 13 preferably includes an ultraviolet absorbing material having an absorption spectrum peak with an absorbance of 0.5 or more at a wavelength of 380 to 400 nm.
  • having a peak of an absorption spectrum having an absorbance of 0.5 or more in a specific wavelength region is expressed as having an absorption region in that wavelength region.
  • Examples of the ultraviolet absorbing material having an absorption region at a wavelength of 380 to 400 nm include indole compounds, azomethine compounds, coumarin compounds, and merocyanine compounds.
  • a group of these ultraviolet absorbing materials is referred to as an ultraviolet absorbing material group A.
  • the ultraviolet absorbing layer 13 preferably contains one or more selected from the ultraviolet absorbing material group A.
  • the thickness of the ultraviolet absorbing layer 13 is preferably 1 ⁇ m to 30 ⁇ m. By setting the thickness to 1 ⁇ m or more, the film formability of the ultraviolet absorbing layer 13 is improved, and the ultraviolet absorbing ability required for the ultraviolet absorbing layer 13 can be easily imparted. On the other hand, when the thickness exceeds 30 ⁇ m, not only the cost becomes high, but also a time is required for the drying process in the production, and the production becomes difficult.
  • the indole compound is a compound having an indole skeleton represented by the following (Chemical Formula 1).
  • the indole compound contained in the ultraviolet absorbing layer 13 is preferably a compound represented by the following (Chemical Formula 2).
  • R is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a butyl group, and a 2-ethylhexyl group.
  • aralkyl group having 7 to 10 carbon atoms is a phenylmethyl group.
  • azomethine compound As the azomethine compound contained in the ultraviolet absorbing layer 13, a compound having an azomethine skeleton represented by the following (Chemical Formula 3) is preferable.
  • R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a heterocyclic compound
  • R ′ is a halogen atom.
  • the azomethine compound contained in the ultraviolet absorbing layer 13 is preferably a compound having a structure represented by the following (Chemical Formula 4).
  • the coumarin compound contained in the ultraviolet absorbing layer 13 is a compound having a coumarin skeleton represented by the following (Compound 5).
  • Preferred examples of the coumarin compound contained in the ultraviolet absorbing layer 13 include 7-diethylamino-4-methyl-chromen-2-one, 7-diethylamino-4a, 8a-dihydro-chromen-2-one, and 7-diethylamino-3.
  • the ultraviolet absorbing layer 13 preferably contains an ultraviolet absorbing material having an absorption region on the shorter wavelength side than this range, in addition to the above-described ultraviolet absorbing material having an absorption region at a wavelength of 380 to 400 nm.
  • an ultraviolet absorbing material having an absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm for example, an ultraviolet absorbing material having an absorption region at a wavelength of 300 to 350 nm is preferably used.
  • Examples of the ultraviolet absorbing material having an absorption region at a wavelength of 300 to 350 nm include benzotriazole compounds, triazine compounds, and benzophenone compounds.
  • a group of these ultraviolet absorbing materials is referred to as an ultraviolet absorbing material group B.
  • the ultraviolet absorbing layer 13 preferably includes one or more ultraviolet absorbing materials selected from the ultraviolet absorbing material group B together with one or more ultraviolet absorbing materials selected from the ultraviolet absorbing material group A.
  • a known material used as an ultraviolet absorber can be used as each compound of the ultraviolet absorbing material group B.
  • the ultraviolet absorbing layer 13 preferably contains 0.05 to 15% by mass of an ultraviolet absorbing material. Further, it is preferable that 1 to 10% by mass of an ultraviolet absorbing material is contained. In the case where the ultraviolet absorbing layer 13 includes only the material of the ultraviolet absorbing material group A as the ultraviolet absorbing material, it is preferable that the ultraviolet absorbing layer 13 includes the material of the ultraviolet absorbing material group A within the above range. Further, when the ultraviolet absorbing layer 13 includes the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B, the total of the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B is the above. It is preferable to be in the range. Further, when the ultraviolet absorbing layer 13 includes ultraviolet absorbing materials other than the ultraviolet absorbing material group A and the ultraviolet absorbing material group B, it is preferable that the total of all these ultraviolet absorbing materials falls within the above range.
  • the ultraviolet absorbing layer 13 includes a polymer material that serves as a medium for the ultraviolet absorbing material.
  • a polymer material that serves as a medium for the ultraviolet absorbing layer 13 a water-soluble polymer constituting the dielectric multilayer film 12 can be used.
  • a hindered amine light stabilizer is added to the ultraviolet absorbing layer 13 in order to further improve the light resistance of the ultraviolet absorbing layer. Since the hindered amine light stabilizer can suppress deterioration and coloring of the polymer resin compound, the coloring of the heat ray shielding film 10 can be suppressed low.
  • the addition amount of the hindered amine-based additive is preferably 0.05 to 10% by mass in the ultraviolet absorbing layer 13.
  • the ultraviolet absorbing layer 13 can also be configured to serve as the adhesive layer of the heat ray shielding film 10 by including an adhesive material such as an adhesive.
  • an adhesive material such as an adhesive.
  • the well-known release paper may further be provided on the adhesion layer.
  • the adhesive material examples include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent.
  • an adhesion layer contains an adhesive as an adhesive material.
  • adhesives include acrylic adhesives, silicone adhesives, urethane adhesives, polyvinyl butyral adhesives, polyester resins, polyvinyl acetate resins, nitrile rubber, and ethylene-vinyl acetate adhesives. Can do.
  • the so-called water pasting method is preferable. Used for. For this reason, it is preferable to use an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
  • the thickness is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 5 to 20 ⁇ m. Since the adhesive force depends on the thickness of the adhesive layer, the adhesive layer needs to have a certain thickness. When the pressure-sensitive adhesive layer is less than 1.0 ⁇ m, for example, partial contact with an adhesive surface with glass or the like becomes insufficient, and it is difficult to obtain a necessary pressure-sensitive adhesive force. Further, when the thickness of the adhesive layer exceeds 30 ⁇ m, not only the cost is increased, but also after being attached to glass and then peeled off, cohesive failure occurs between the adhesive layers, and the adhesive remains.
  • the base material 11 is a base material formed with the transparent organic material, it will not specifically limit.
  • the substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent
  • the base material include cellulose nanofiber films. Furthermore, two or more layers of these base materials can be laminated and used.
  • a polyester film is preferably used as the substrate 11.
  • dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol
  • the diol component is a main component and has film-forming properties.
  • the substrate 11 may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the thickness of the substrate 11 is preferably in the range of 5 to 200 ⁇ m, more preferably 15 to 150 ⁇ m.
  • the base material 11 preferably has a visible light region transmittance of 85% or more as shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the substrate 11, the minimum transmittance of the heat ray shielding film 10 at a wavelength of 420 to 780 nm can be increased.
  • the base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • a stretched film can also be produced from an unstretched base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching.
  • the draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretch film-forming process of the polyester film to the winding in the transverse stretch tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the base material 11 subjected to the relaxation treatment is improved in heat resistance by performing off-line heat treatment, and further has good dimensional stability.
  • the above-described ultraviolet absorbing material may be included in the base material 11.
  • the base material 11 can function as the ultraviolet absorbing layer 13, or the base material 11 and the ultraviolet absorbing layer 13 can be used in combination.
  • a configuration in which the ultraviolet absorbing layer 13 is provided on one side of the dielectric multilayer film 12 and the substrate 11 containing an ultraviolet absorbing material is provided on the other side can be adopted.
  • the dielectric multilayer film 12 by sandwiching the dielectric multilayer film 12 with the layer containing the ultraviolet absorbing material, not only the direct light incident from the ultraviolet absorbing layer 13 side but also the reflected light incident from the substrate 11 side due to irregular reflection or the like. However, discoloration of the dielectric multilayer film 12 can be suppressed.
  • the heat ray shielding film 10 includes a step of forming a dielectric multilayer film 12 on a substrate 11 and a step of forming an ultraviolet absorption layer 13.
  • the method for forming the dielectric multilayer film 12 is not particularly limited.
  • a method of forming the dielectric multilayer film 12 by alternately applying and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer can be given. It is done.
  • the method for preparing the coating solution for the high refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, metal oxide fine particles, a solvent, and other additives added as necessary. It is done.
  • the method for preparing the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and if necessary, metal oxide fine particles and other additives. It is done.
  • the order of addition of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the solvent for preparing each coating solution is not particularly limited, but it is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • the organic solvent used in each coating solution examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • esters such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone.
  • ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylace
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99. More preferably, it is 5 mass%.
  • 80 mass% or more the volume fluctuation
  • 99.9 mass% or less the homogeneity of a coating liquid increases and the physical property of a coating liquid is stabilized.
  • each prepared coating liquid is apply
  • a dielectric multilayer film can be formed from the coating film.
  • the coating method is not particularly limited, and may be either a sequential coating method or simultaneous multilayer coating, but simultaneous multilayer coating is preferable from the viewpoint of productivity and the like.
  • a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method and the like are preferably used.
  • the temperature of each coating solution at the time of simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., more preferably a temperature range of 30 to 45 ° C.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method it is preferably in the range of 5 to 100 mPa ⁇ s, more preferably in the range of 10 to 50 mPa ⁇ s, in the preferable temperature range of each of the above coating solutions.
  • the curtain coating method it is preferably in the range of 5 to 1200 mPa ⁇ s, more preferably in the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity at 15 ° C. of each coating solution is preferably 100 mPa ⁇ s or more, more preferably 100 to 30000 mPa ⁇ s, further preferably 3000 to 30000 mPa ⁇ s, and most preferably 10,000 to 30000 mPa ⁇ s. is there.
  • the dielectric multilayer film 12 is formed by the sequential coating method, either the low refractive index layer coating solution or the high refractive index layer coating solution heated to 30 to 60 ° C. is used as the base material. After coating on 11 and drying to form a layer, the other coating solution is coated on this layer and dried to form a layer.
  • the dielectric multilayer film 12 is formed by repeating this process so that the number of layers necessary for expressing desired reflection performance is obtained.
  • Drying is preferably performed by drying the formed coating film at 30 ° C. or higher.
  • hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the decreasing rate drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11, the formation is performed.
  • the temperature of the coated film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. Means a process.
  • the state in which the finger is no longer attached is defined as the state of completion of setting.
  • the temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes.
  • the lower limit time is not particularly limited, but is preferably 45 seconds or more.
  • the set time includes various known gels such as gelatin, pectin, agar, carrageenan, and gellan gum. It can adjust by adding other components, such as an agent.
  • the ultraviolet absorbing layer 13 can be prepared by preparing an ultraviolet absorbing layer coating solution, and then applying and drying the coating solution.
  • the method for preparing the UV-absorbing layer coating solution is not particularly limited, and a method of stirring and mixing the above-described UV-absorbing material, water-soluble polymer, solvent, and additives and pressure-sensitive adhesives added as necessary. Can be mentioned.
  • the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time.
  • Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the solvent for preparing the coating solution is not particularly limited, and a solvent similar to the solvent used for forming the dielectric multilayer film 12 can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • a method for applying the ultraviolet absorbing layer coating solution a known method can be used. For example, a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coat method, a dip coat method and the like are preferable, and these can be used alone or in combination.
  • a wet coating method that can be used for forming the dielectric multilayer film 12 may be used to apply the coating directly on the dielectric multilayer film 12.
  • the ultraviolet absorbing layer 13 also serves as an adhesive layer, it is applied directly to the dielectric multilayer film 12, and after being applied to release paper and dried, the ultraviolet absorbing layer 13 is then applied to the dielectric multilayer film. It may be transferred onto the film 12.
  • the drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the ultraviolet absorbing layer 13 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes. Moreover, when an adhesive is contained in the ultraviolet-absorbing layer coating solution, curing is necessary to obtain a stable adhesive force because the adhesive has fluidity. In general, when heated at room temperature for about one week or longer, for example, at about 50 ° C., 3 days or longer is preferable. In the case of heating, if the temperature is raised too much, the flatness of the substrate 11 may be deteriorated.
  • Embodiment of Heat Ray Shielding Film (Second Embodiment)> Next, the heat ray shielding film of 2nd Embodiment is demonstrated.
  • the schematic structure of the heat ray shielding film of 2nd Embodiment is shown in FIG.
  • a heat ray shielding film 20 shown in FIG. 2 includes a base material 11, an infrared absorption layer 22 that is a heat ray shielding layer formed on one surface of the base material 11, and an ultraviolet absorption formed on the other surface of the base material 11. Layer 13.
  • the ultraviolet absorption layer 13 and the base material 11 can apply the structure similar to the above-mentioned 1st Embodiment.
  • the ultraviolet absorbing layer 13 is provided on the main surface of the substrate 11 opposite to the infrared absorbing layer 22.
  • the ultraviolet absorbing layer 13 side is a light incident (drawing arrow) surface. For this reason, the ultraviolet absorption layer 13 is disposed outside the infrared absorption layer 22 and the light incident surface side of the substrate 11.
  • the infrared absorbing layer 22 includes an infrared absorbing material and a polymer that is a medium (binder) of the infrared absorbing material.
  • the infrared absorbing material fine particles of metal oxide (metal oxide particles) having an absorption region in the infrared wavelength region can be used.
  • Metal oxide particles are particles having optical absorption characteristics that have absorption in the infrared wavelength region.
  • the infrared absorption layer 22 it is preferable to use metal oxide particles having large absorption particularly in an infrared region having a wavelength of 1000 nm or more.
  • the metal oxide particles having a large absorption in an infrared region having a wavelength of 1000 nm or more include tungsten oxide and composite tungsten oxide.
  • the infrared absorption layer 22 includes at least one selected from tungsten oxide and composite tungsten oxide.
  • Tungsten oxide is represented by the general formula WyOz.
  • W represents tungsten
  • O represents oxygen
  • tungsten oxides WyOz tungsten trioxide having oxygen vacancies, and so-called tungsten bronzes obtained by adding a positive element such as Na to tungsten trioxide are known to be conductive materials having free electrons. . These materials suggest a response of free electrons to light in the infrared region from analysis of single crystals and the like. That is, these materials have a particularly effective range as an infrared absorbing material in a specific composition range of tungsten and oxygen. Therefore, tungsten oxide particles and composite tungsten oxide particles having high transparency in the visible light region and large absorption in the near infrared region can be found in a specific composition range. In the infrared absorption layer 22, it is preferable to use these tungsten oxide particles and composite tungsten oxide particles as metal oxide particles (infrared absorbing material).
  • the composite tungsten oxide is represented by a general formula MxWyOz.
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I are one or more kinds of elements.
  • W represents tungsten
  • O represents oxygen, and satisfies 0.001 ⁇ x / y ⁇ 1 and 2.2 ⁇ z / y ⁇ 3.
  • the composite tungsten oxide is excellent in durability in the crystal structure represented by the general formula MxWyOz
  • the composite tungsten oxide preferably includes one or more crystal structures selected from hexagonal crystals, tetragonal crystals, and cubic crystals.
  • hexagonal crystals are suitable as infrared absorbing materials because they have the least absorption in the visible light region.
  • the composite tungsten oxide having a hexagonal crystal structure for example, one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as M elements
  • the structure containing is mentioned.
  • the infrared absorption layer 22 preferably contains cesium-containing composite tungsten oxide as composite tungsten oxide.
  • the value of x / y indicating the addition amount of the element M is larger than 0.001
  • a sufficient amount of free electrons is generated and the intended infrared shielding effect can be obtained.
  • the amount of the element M added is increased, the supply amount of free electrons is increased and the infrared shielding efficiency is increased.
  • the value of x / y is about 1, the infrared shielding efficiency is saturated.
  • the value of x / y is 1 or less, generation of an impurity phase in the metal oxide particles can be avoided.
  • the composite tungsten oxide MxWyOz has a particularly effective range as an infrared absorbing material in a specific composition range of tungsten and oxygen, similarly to the above-described tungsten oxide WyOz. Further, the composite tungsten oxide MxWyOz functions as an infrared absorbing material even when the value of z / y indicating the control of the amount of oxygen is 3.0 because free electrons are supplied by adding the element M described above. . Therefore, in the composite tungsten oxide MxWyOz, the value of z / y indicating the control of the oxygen amount is preferably 2.2 ⁇ z / y ⁇ 3.0, more preferably 2.45 ⁇ z / y ⁇ 3.0. It is.
  • the particle diameter of the metal oxide particles can be selected according to the purpose of use. In applications that require transparency, the metal oxide particles preferably have a particle size of 800 nm or less. Since particles smaller than 800 nm do not completely block light due to scattering, the transparency can be efficiently maintained.
  • the particle diameter is preferably 200 nm or less, preferably 100 nm or less. If the particle diameter of the metal oxide particles is small, the scattering of light in the visible light region having a wavelength of 400 to 780 nm due to geometric scattering or Mie scattering is reduced. Specifically, when the particle diameter of the metal oxide particles is 200 nm or less, geometrical scattering and Mie scattering are reduced, and the Rayleigh scattering region becomes dominant.
  • the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced as the particle diameter is reduced, and the transparency of the heat ray shielding film 20 is improved. Furthermore, when the particle diameter of the metal oxide particles is 100 nm or less, the scattered light becomes very small. From the viewpoint of avoiding light scattering, a smaller particle diameter is preferable. Moreover, industrial manufacture is easy if a particle diameter is 1 nm or more.
  • the heat ray shielding film 20 having a haze of 30% or less at a visible light transmittance of 85% or less can be formed.
  • the heat ray shielding film does not look like frosted glass, and clear transparency can be obtained.
  • metal oxide particles used for the infrared absorption layer 22 only one type of composite tungsten oxide or tungsten oxide may be used, or two or more types may be used in combination. Further, it may be used in combination with compound particles having optical absorption characteristics such as titanium oxide, cerium oxide, indium oxide, zinc sulfide, zinc oxide, anti-doped tin oxide (ATO), and tin-doped indium oxide (ITO). .
  • the metal oxide particles and the compound particles are oxides containing metals such as Si, Ti, Zr, Al, and the entire or part of the particle surface is covered. It is preferable that The method of coating the particles is not particularly limited, but the particle surface is coated with the oxide containing the coating metal by adding the alkoxide of the coating metal to a solution in which the metal oxide particles and compound particles are dispersed. be able to.
  • the polymer contained in the infrared absorbing layer 22 is not particularly limited, but silicone-based, acrylic-based, melamine-based, epoxy-based, acrylate-based, polyfunctional (meth) acrylic compounds, and the like are preferable.
  • (meth) acryl refers to acrylic and methacrylic.
  • an additive or the like can be included in the above polymer as necessary within a range that does not impair the effect of the heat ray shielding film 20.
  • dispersants, plasticizers, UV stabilizers, surfactants, antioxidants, flame retardants, preservatives, antioxidants, thermal stabilizers, lubricants, fillers, photoinitiators, photosensitizers, thermal polymerization Initiators, thickeners, coupling agents, antistatic agents, UV absorbing materials, leveling agents, adhesion modifiers, modifiers, or additives such as dyes and pigments to give any color tone may be included. . These may be used alone or in combination of two or more.
  • a hard coat layer is preferably disposed on the outermost layer of the heat ray shielding film 20.
  • the infrared ray absorbing layer 22 can function as a hard coat layer.
  • an infrared absorbing material such as the above-described metal oxide particles may be included in the hard coat layer described below.
  • the hard coat layer is a layer having a pencil hardness of H to 8H. Particularly preferably, it is in the range of 2H to 6H.
  • the prepared hard coat layer is conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and then the pencil hardness evaluation specified by JIS K 5400 is performed using a test pencil specified by JIS S 6006. Measure according to method.
  • the hard coat layer should be formed using an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound, or an inorganic hard coat material such as silicon dioxide. Can do.
  • an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound
  • an inorganic hard coat material such as silicon dioxide.
  • a resin that cures through a crosslinking reaction is a main component.
  • the hard coat layer is mainly composed of an actinic radiation curable resin.
  • the active ray curable resin it is preferable to use an ultraviolet curable resin.
  • the ultraviolet curable resin is not particularly limited.
  • ADEKA OPTMER KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, Asahi Denka Kogyo Co., Ltd.) Manufactured by Koeihard Co., Ltd.), A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102 NS-101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam PHC2210 (S), PHCX-9 (K-3) ), PHC2213, DP-10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P
  • the coating composition containing these ultraviolet curable resins an appropriate concentration is selected depending on the coating method, and for example, the solid content concentration can be used in the range of 10 to 95% by mass.
  • the light source for curing the ultraviolet curable resin is not particularly limited as long as it is a light source that generates ultraviolet rays. Irradiation conditions vary depending on the light source to be used. For example, the irradiation light amount can be about 20 to 1200 mJ / cm 2 , preferably about 50 to 1000 mJ / cm 2 . When a wavelength from the near ultraviolet region to the visible light region is used for curing the ultraviolet curable resin, it is preferable to use a sensitizer having an absorption maximum in that region.
  • the dry film thickness of the hard coat layer is preferably within the range of an average film thickness of 0.1 to 30 ⁇ m. Further, it is preferably in the range of 1 to 20 ⁇ m, particularly preferably in the range of 3 to 15 ⁇ m. When it is 3 ⁇ m or more, sufficient durability and impact resistance can be obtained. Moreover, from a viewpoint of flexibility or economical efficiency, 15 micrometers or less are preferable.
  • the hard coat layer is prepared by dissolving an actinic radiation curable resin in an organic solvent to prepare a hard coat layer coating solution, and after applying the hard coat layer coating solution, irradiating actinic rays during or after drying. Can be formed.
  • the method for applying the hard coat layer coating solution is not particularly limited, for example. Known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. Using these coating methods, it is preferable to form a coating film within a wet film thickness range of 0.1 to 100 ⁇ m.
  • inorganic or organic fine particles may be added to the hard coat layer coating solution in order to give the hard coat layer an antiglare property and to prevent adhesion with other substances and to improve scratch resistance and the like.
  • the average particle size of the added fine particles is preferably within a range of 0.01 to 10 ⁇ m.
  • the fine particles are desirably blended so as to be in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin composition. In order to impart an antiglare effect, it is preferable to use 1 to 15 parts by mass of fine particles having an average particle size of 0.1 to 1 ⁇ m with respect to 100 parts by mass of the ultraviolet curable resin composition.
  • 0.1 to 5 parts by mass of ultrafine particles having a volume average particle size in the range of 0.005 to 0.1 ⁇ m are added to 100 parts by mass of the resin composition. It can also be used.
  • an antioxidant with little suppression of the photocuring reaction can be used in the hard coat layer coating solution.
  • examples of the antioxidant that hardly suppresses the photocuring reaction include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like.
  • 4,4′-thiobis (6-tert-3-methylphenol), 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4-
  • 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4-
  • examples thereof include hydroxy-3,5-di-tert-butylbenzyl phosphate.
  • the hard coat layer coating solution may contain a solvent.
  • the solvent include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate). , Methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • the hard coat layer coating solution contains 5% by mass of propylene glycol monoalkyl ether (1 to 4 carbon atoms in the alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms in the alkyl group). As described above, it is preferable to use an organic solvent contained in the range of 5 to 80% by mass.
  • the hard coat layer is preferably a layer having a good smooth surface with a centerline average surface roughness Ra 75 specified by JIS B 0601 of less than 0.05 ⁇ m, more preferably less than 0.002 to 0.04 ⁇ m. .
  • the center line average roughness (Ra 75 ) is preferably measured with an optical interference type surface roughness measuring instrument, for example, using a non-contact surface fine shape measuring device (WYKO NT-2000) manufactured by WYKO. can do.
  • a binder such as a known thermoplastic resin, thermosetting resin or hydrophilic resin such as gelatin can be mixed with the active energy ray curable resin and used.
  • These resins preferably have a polar group in the molecule.
  • the polar group includes —COOM, —OH, —NR 2 , —NR 3 X, —SO 3 M, —OSO 3 M, —PO 3 M 2 , —OPO 3 M (where M is a hydrogen atom, alkali A metal or an ammonium group, X represents an acid that forms an amine salt, R represents a hydrogen atom or an alkyl group).
  • various additives may be further blended in the hard coat layer as necessary. For example, an antioxidant, an ultraviolet stabilizer, an ultraviolet absorbing material, a surfactant, a leveling agent, an antistatic agent and the like can be used.
  • the heat ray shielding film 20 includes a step of forming the infrared absorption layer 22 on the base material 11 and a step of forming the ultraviolet absorption layer 13 on the base material 11.
  • the infrared absorption layer 22 can be prepared by preparing a heat ray shielding layer coating solution, and then applying and drying the coating solution.
  • the method for preparing the heat ray shielding layer coating liquid is not particularly limited, and, for example, the above-described infrared absorbing material, the above-described medium, polymer, solvent, and additives that are added as necessary are stirred and mixed. A method is mentioned.
  • the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time.
  • Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the coating method of the heat ray shielding layer coating solution is not particularly limited as long as the coating film can be uniformly formed on the surface of the substrate, and examples thereof include a bar coating method, a gravure coating method, a spray coating method, and a dip coating method.
  • the drying temperature and time of the coating film are not specified, but it is preferable that the solvent remaining in the infrared absorption layer 22 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes.
  • the ultraviolet absorption layer 13 is formed on the substrate 11.
  • the ultraviolet absorbing layer 13 can be formed by the same method as the ultraviolet absorbing layer forming step of the heat ray shielding film of the first embodiment described above. Through the above steps, the heat ray shielding film 20 having the configuration shown in FIG. 2 can be produced.
  • the heat ray shielding film 30 shown in FIG. 3 includes a base material 11, an infrared absorption layer 22 formed on one surface of the base material 11, a dielectric multilayer film 12 formed on the other surface of the base material 11, And an ultraviolet absorbing layer 13 formed on the dielectric multilayer film 12.
  • the heat ray shielding film 30 shown in FIG. 3 is different from the heat ray shielding film of the second embodiment described above only in the configuration having the dielectric multilayer film 12, and other configurations are the same as those of the heat ray shielding film of the second embodiment described above. A similar configuration can be applied.
  • the configuration of the dielectric multilayer film 12 can be the same as the configuration of the dielectric multilayer film of the first embodiment described above.
  • the heat ray shielding film 30 includes an infrared absorption layer 22 and a dielectric multilayer film 12 as a heat ray shielding layer. Also in the heat ray shielding film 30, the ultraviolet ray absorbing layer 13 is provided on at least one surface of the main surface of the laminate composed of the base material 11 and the heat ray shielding layer (infrared absorbing layer 22, dielectric multilayer film 12). . As described above, the ultraviolet absorbing layer 13 is provided on one surface of the laminated body including the base material 11 and the heat ray shielding layer (the infrared absorbing layer 22 and the dielectric multilayer film 12) via another configuration. It may be.
  • the ultraviolet absorbing layer 13 is provided on the main surface side opposite to the infrared absorbing layer 22 with respect to the base material 11.
  • the dielectric multilayer film 12 is provided on the main surface of the substrate 11 opposite to the infrared absorption layer 22.
  • the ultraviolet absorbing layer 13 side is a light incident (drawing arrow) surface. For this reason, the dielectric multilayer film 12 and the ultraviolet absorbing layer 13 are disposed outside the infrared absorbing layer 22 and the light incident surface side of the substrate 11.
  • a heat ray shielding film is not limited to these.
  • ⁇ Preparation of heat ray shielding film of sample 101> a dielectric multilayer film in which a high refractive index layer and a low refractive index layer were alternately laminated and an adhesive layer were formed on a substrate, and a heat ray shielding film was produced.
  • the adhesive layer an adhesive layer containing an ultraviolet absorbing material and functioning as an ultraviolet absorbing layer, or an adhesive layer not containing an ultraviolet absorbing material was formed.
  • [Preparation of coating solution for high refractive index layer] (Preparation of silica-attached titanium dioxide sol) 15.0% by mass of titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.) is added to 2 parts by mass of pure water and heated to 90 ° C. did. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration is 0.5 mass%) is gradually added and mixed. Furthermore, heat treatment was performed at 175 ° C. for 18 hours in an autoclave.
  • SRD-W volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.
  • Titanium dioxide sol (hereinafter referred to as silica-attached titanium dioxide sol) in which SiO 2 having a solid content concentration of 6% by mass was attached to the surface (volume average particle size: 9 nm) Got.
  • the coating amount was adjusted so that the low refractive index layer had a thickness of 150 nm and the high refractive index layer had a thickness of 120 nm.
  • the film thickness was confirmed by cutting the manufactured laminate (base material and dielectric multilayer film) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
  • [Formation of adhesive layer] (Composition of adhesive layer coating solution) N2147 (solid content 35%) manufactured by Nippon Synthetic Chemical Industry as an adhesive is 100 parts by mass, and BONASORB-3911 (solid content 100%) (indole compound) manufactured by Orient Chemical is 0.89 parts by mass as an ultraviolet absorbing material. Then, 1.0 part by mass of Coronate HL (solid content 75%) manufactured by Nippon Polyurethane Industry, an isocyanate curing agent, was mixed to prepare an adhesive layer coating solution. In addition, this adhesion layer coating liquid was adjusted so that 2 mass% of said ultraviolet-absorbing materials were contained in the adhesion layer after formation.
  • the adhesive layer was composed of 2% by mass of BONASORB-3701 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of TINUVIN 477 (triazine compound) manufactured by BASF as an ultraviolet absorbing material.
  • a heat ray shielding film of Sample 103 was produced in the same manner as Sample 101 described above, except that it was formed (the total amount of ultraviolet absorbing material was 8% by mass).
  • a heat ray shielding film of the sample 104 was prepared in the same manner as the sample 101 described above except that the thickness of the adhesive layer was changed to 30 ⁇ m.
  • a heat ray shielding film of Sample 105 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was set to 35 ⁇ m in the preparation of Sample 101 described above.
  • a heat ray shielding film of Sample 106 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was set to 1 ⁇ m in the preparation of Sample 101 described above.
  • a heat ray shielding film of Sample 107 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was changed to 0.5 ⁇ m in the preparation of Sample 101 described above.
  • a heat ray shielding film of Sample 108 was prepared in the same manner as Sample 101 described above except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 15% by mass in the preparation of Sample 101 described above.
  • a heat ray shielding film of the sample 109 was prepared in the same manner as the sample 101 described above, except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 0.1% by mass. did.
  • a heat ray shielding film of the sample 110 was prepared in the same manner as the sample 101 described above, except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 0.05% by mass. did.
  • the adhesive layer is composed of 2% by mass of BONASORB-3911 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of TINUVIN 234 (benzotriazole compound) manufactured by BASF as an ultraviolet absorbing material.
  • the heat ray shielding film of the sample 112 was produced by the same method as the above-mentioned sample 101 except that it was formed in the same manner (except that the total amount of the ultraviolet absorbing material was 8% by mass).
  • the adhesive layer is composed of 2% by mass of BONASORB-3911 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of LA-1413 (benzophenone compound) manufactured by ADEKA as an ultraviolet absorbing material.
  • a heat ray shielding film of Sample 113 was produced in the same manner as Sample 101 described above except that the film was formed in the same manner (except that the total amount of the ultraviolet absorbing material was 8 mass%).
  • ⁇ Preparation of heat ray shielding film of sample 114> In the preparation of the sample 105 described above, a heat ray shielding film of the sample 114 was prepared in the same manner as the sample 105 described above except that the content of the ultraviolet absorbing material contained in the adhesive layer was 0.02 parts by mass.
  • a heat ray shielding film of the sample 115 was prepared by the same method as the sample 103 described above, except that the thickness of the adhesive layer was set to 0.5 ⁇ m.
  • the adhesive layer was the same as the sample 101 described above except that the adhesive layer was formed to have a thickness of 40 ⁇ m and 7% by mass of TINUVIN 477 (triazine compound) manufactured by BASF as an ultraviolet absorbing material.
  • the heat ray shielding film of sample 119 was produced by the method.
  • the transmitted light of the sample before and after exposure is evaluated by the transmittance in the wavelength range of 200 to 2000 nm using a spectrophotometer U-4000 type (integrating sphere, manufactured by Hitachi, Ltd.) according to a method according to JIS R3106-1998. did.
  • Table 1 shows the evaluation results of the heat ray shielding films of Samples 101 to 124.
  • the sample has a maximum transmittance at a wavelength of 350 to 400 nm of an ultraviolet absorbing layer (adhesive layer) of 40% or less and a minimum transmittance of a heat ray shielding film at a wavelength of 420 to 780 nm satisfies 40% or more.
  • the heat ray shielding films 101 to 119 have a smaller degree of discoloration than the samples 120 to 123 that do not satisfy the above conditions.
  • An ultraviolet absorbing material (triazine compound, benzotriazole compound, benzophenone compound) having an absorbing region on the shorter wavelength side than wavelength 380 to 400 nm is used together with an ultraviolet absorbing material (indole compound) having an absorbing region at a wavelength of 380 to 400 nm.
  • the sample 103, the sample 112, and the sample 113 that are present have very small discoloration of the heat ray shielding film.
  • the combined use of the ultraviolet absorbing material having the absorption region at the wavelength of 380 to 400 nm and the ultraviolet absorbing material having the absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm suppresses the discoloration of the heat ray shielding film. It is possible to suppress the deterioration of the optical properties of the heat ray shielding film.
  • the content of the ultraviolet absorbing layer is preferably 0.05 to 15% by mass.
  • Samples 116, 117, and 118 using merocyanine compound, coumarin compound, or azomethine compound as the ultraviolet absorbing material showed the same results as those of sample 101 using the indole compound as the ultraviolet absorbing material. . From this result, if the maximum transmittance of the wavelength 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) is 40% or less and the minimum transmittance of the heat ray shielding film wavelength of 420 to 780 nm is 40% or more, Regardless of the type of ultraviolet absorbing material, it can be used for a heat ray shielding film.
  • the maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is low.
  • the maximum transmittance of the ultraviolet absorbing layer (adhesive layer) at a wavelength of 350 to 400 nm is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more. It turns out that it can be used for a heat ray shielding film regardless of the kind of ultraviolet absorbing material.
  • the sample 120 in which the minimum transmittance at a wavelength of 420 to 780 nm of the heat ray shielding film does not satisfy 40% or more has a low initial visible light transmittance.
  • the degree of discoloration is bad. Since the sample 120 has an excessive content of the UV absorbing material, the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is a low value of 34%. For this reason, the initial visible light transmittance is low, and sufficient transparency as a heat ray shielding film cannot be secured.
  • the samples 121 to 123 in which the maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) does not satisfy 40% or less have a low degree of discoloration.
  • the sample 122 having no ultraviolet absorbing material in the adhesive layer has the highest initial visible light transmittance, but the worst color change. That is, since it is a structure which does not have an ultraviolet-absorbing material, the discoloration of the titanium oxide contained in a dielectric multilayer film is large, and the optical characteristic of a heat ray shielding film will fall large.
  • a heat ray shielding layer coating solution A prepared by the following method was applied with a gravure coater, and 1 at 90 ° C. Let dry for minutes. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of illuminance of 100 mW / cm 2 , irradiation amount of 0.2 J / cm 2 , and oxygen concentration of 200 ppm. Thus, a hard coat layer (heat ray shielding layer) was formed. The thickness of the hard coat layer was appropriately adjusted so that the visible light (wavelength: 450 nm to 600 nm) transmittance was 68%.
  • the adhesive layer coating solution B prepared by the following method was applied to the silicone release surface of Nakamoto Pax NS23MA with a comma coater so that the dry film thickness was 10 ⁇ m.
  • An adhesive layer (ultraviolet absorption layer) was formed by drying for 1 minute. Then, this adhesive layer (ultraviolet absorption layer) is bonded to the other surface (surface opposite to the hard coat layer) of the base material on which the hard coat layer is formed by the above-described method, and a heat ray shielding film of sample 201 is produced. did.
  • Heat ray shielding layer coating solution A 390 parts by mass of UV curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) and 0.4 part by mass of EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) were mixed, and carbon black ( CB) 5 parts by mass of a dispersion (KCF-22, manufactured by Sumitomo Metal Mining) and 450 parts by mass of methyl ethyl ketone as a solvent were added.
  • UV curable Aronix registered trademark
  • EBECRYL registered trademark
  • CB carbon black
  • KCF-22 manufactured by Sumitomo Metal Mining
  • Adhesive layer coating solution B 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 2 parts by mass of S0511 (merocyanine compound, manufactured by FEW CHEMICALS) as a UV-absorbing material, TINUVIN 477 (triazine compound, manufactured by BASF) 7 parts by weight and 1.0 part by weight of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution B.
  • N-2147 solid content 35%, manufactured by Nippon Synthetic Chemical Industry
  • S0511 merocyanine compound, manufactured by FEW CHEMICALS
  • TINUVIN 477 triazine compound, manufactured by BASF
  • Coronate HL solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • a heat ray shielding film of Sample 202 was produced in the same manner as Sample 201, except that in the production of the heat ray shielding film of Sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 42%.
  • Adhesive layer coating solution C 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 2 parts by mass of S2142 (coumarin compound, manufactured by FEW CHEMICALS) as a UV absorbing material, TINUVIN 477 (manufactured by BASF) 7 parts by mass and 1.0 part by mass of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution C.
  • ⁇ Preparation of heat ray shielding film of sample 205> In preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 85%, and the thickness of the adhesive layer was adjusted so as to be 15 ⁇ m. A heat ray shielding film of sample 205 was prepared.
  • a polymerization initiator 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of a fluorosurfactant (phthalent (registered trademark) 650A (manufactured by Neos Corporation) were added.
  • a fluorosurfactant phthalent (registered trademark) 650A (manufactured by Neos Corporation)
  • Adhesive layer coating solution A 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industries) as an adhesive, 2 parts by mass of BONASORB-3912 (100% solids, indole compound, manufactured by Orient Chemical Industries), TINUVIN 7 parts by weight of 477 (triazine compound, manufactured by BASF) and 1.0 part by weight of coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution A. did.
  • Adhesive layer coating solution D 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, and 0.89 mass of BONASORB-3911 (100% solid content, indole compound, manufactured by Orient Chemical Industries) as an ultraviolet absorbing material Part, 7 parts by mass of TINUVIN 477 (triazine compound, manufactured by BASF) and 1.0 part by mass of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate-based curing agent, were mixed. D was adjusted.
  • 650 parts by mass and 300 parts by mass of methyl ethyl ketone as a solvent were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of fluorosurfactant surfactant (registered trademark) 650A (manufactured by Neos Co., Ltd.) were added.
  • a heat ray shielding layer coating solution C was prepared.
  • [Coating liquid for low refractive index layer] 380 parts by mass of colloidal silica (10% by mass, Snowtex OXS, average particle size of primary particles 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass), 300 parts by mass Polyvinyl alcohol (4% by mass, JP-45, polymerization degree: 4500, saponification degree: 88 mol%, manufactured by Nihon Vitamin Pover Co., Ltd.), 3 parts by mass of surfactant (5% by mass, SOFTAZOLINE LSB-R) , Manufactured by Kawaken Fine Chemical Co., Ltd.) in this order at 45 ° C. and mixed. And it finished to 100 mass parts with pure water, and prepared the coating liquid for low refractive index layers.
  • titanium dioxide sol sica-attached titanium dioxide sol
  • volume average particle size 9 nm
  • a substrate (thickness 50 ⁇ m) heated to 45 ° C. while keeping the coating solution for low refractive index layer and the coating solution for high refractive index layer obtained by the above method at 45 ° C. using a slide hopper coating apparatus.
  • No. 11 polyethylene terephthalate film (Toyobo Co., Ltd., Cosmo Shine A4300) was applied to 11 layers simultaneously (total thickness of reflective layer: 1.5 ⁇ m). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and the other layers were formed such that low refractive index layers and high refractive index layers were alternately laminated.
  • the coating amount was adjusted so that the low refractive index layer had a thickness of 150 nm and the high refractive index layer had a thickness of 120 nm.
  • the film thickness was confirmed by cutting the manufactured laminate (base material and dielectric multilayer film) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer. Immediately after application, 5 ° C. cold air was blown and set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes. After completion of the setting, hot air of 80 ° C. was blown and dried to form a dielectric multilayer film consisting of 11 layers on the substrate, and a substrate with a dielectric multilayer film (reflection layer) was produced.
  • Adhesive layer coating solution E 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 7 parts by mass of TINUVIN 477 (triazine compound, manufactured by BASF) as an ultraviolet absorbing material, and coronate HL of an isocyanate curing agent 1.0 part by mass (solid content: 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.) was mixed to prepare adhesive layer coating solution E.
  • Adhesive layer coating solution F As an adhesive, 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) and 1.0 part by mass of an isocyanate curing agent coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry) were mixed. The adhesive layer coating solution F was prepared.
  • F (n 1 / n) ⁇ 100 (%) was calculated, where n was the number of cross-cut cells and n 1 was the number of cells remaining on the heat ray shielding film side after tape peeling. . Based on the average value of 20 samples, the tape peeling of the heat ray shielding film was evaluated according to the following criteria. In actual use, when F is 70% or more, it can be said that interlayer adhesion is secured. 4: F ⁇ 90% 3: 90%> F ⁇ 80% 2: 80%> F ⁇ 70% 1: 70%> F
  • Table 2 shows the evaluation results for the heat ray shielding films of Samples 201 to 223.
  • the samples 201 to 217 having a maximum transmittance at a wavelength of 350 to 400 nm of 3% or less and a minimum transmittance at a wavelength of 420 to 780 nm of 40% or more have a maximum wavelength of 350 to 400 nm.
  • samples 218 to 223 having a transmittance of 3% or more good results were obtained in the evaluation of cracks after the weather resistance test and tape peeling. From this result, it is possible to improve the weather resistance of the heat ray shielding film by providing an ultraviolet absorbing layer having a high absorption of light having a wavelength of 350 to 400 nm which is a long wavelength side among ultraviolet light (maximum transmittance is 3% or less).

Abstract

Provided is a heat ray shielding film which is able to have improved weather resistance. This heat ray shielding film is configured to comprise a base, a heat ray shielding layer and an ultraviolet absorbing layer, and is also configured such that: the ultraviolet absorbing layer is arranged on the outer side of the heat ray shielding layer; the maximum transmittance of the ultraviolet absorbing layer at a wavelength of 350-400 nm is 40% or less; and the minimum transmittance of the heat ray shielding film at a wavelength of 420-780 nm is 40% or more.

Description

熱線遮蔽フィルムHeat ray shielding film
 本発明は、赤外線等の熱線を吸収又は反射する熱線遮蔽層を備える熱線遮蔽フィルムに係わる。 The present invention relates to a heat ray shielding film provided with a heat ray shielding layer that absorbs or reflects heat rays such as infrared rays.
 近年、建物や車両の窓ガラス面に貼合する窓貼り用フィルムが多く利用されている。その中の一つに、赤外線の建物内への侵入を抑え、室内の温度が過剰に上昇するのを防ぐ機能を有する、赤外線遮断用の熱線遮蔽フィルムがあり、冷房の使用量を低減し、省エネルギー化に貢献している。 In recent years, many films for pasting windows that are bonded to the window glass surfaces of buildings and vehicles have been used. One of them is a heat ray shielding film for blocking infrared rays, which has the function of suppressing the intrusion of infrared rays into the building and preventing the indoor temperature from rising excessively, reducing the amount of cooling used, Contributes to energy saving.
 赤外線を反射する熱線遮蔽フィルムとしては、屈折率の異なる層が交互に積層されて形成された、赤外反射積層体を有する構成が提案されている(例えば、特許文献1参照)。この赤外反射積層体は、水溶性樹脂中に酸化チタン等の金属酸化物微粒子が分散された高屈折率層と低屈折率層とから構成されている。 As a heat ray shielding film that reflects infrared rays, a configuration having an infrared reflection laminate formed by alternately laminating layers having different refractive indexes has been proposed (for example, see Patent Document 1). This infrared reflective laminate is composed of a high refractive index layer and a low refractive index layer in which metal oxide fine particles such as titanium oxide are dispersed in a water-soluble resin.
 また、熱線遮蔽フィルムには、赤外線を遮蔽するために、タングステン酸化物や複合タングステン酸化物等の金属酸化物粒子を用いることが提案されている。しかしながら、タングステン酸化物や複合タングステン酸化物は、赤外線遮蔽特性が経時的に低下するといった耐候性に問題がある。この問題に対し、熱線遮蔽フィルムに、ベンゾトリアゾール化合物、トリアジン化合物及びインドール化合物等の紫外線吸収材料を用いることが提案されている(例えば、特許文献2参照)。 It has also been proposed to use metal oxide particles such as tungsten oxide and composite tungsten oxide for the heat ray shielding film in order to shield infrared rays. However, tungsten oxide and composite tungsten oxide have a problem in weather resistance such that the infrared shielding properties deteriorate with time. In order to solve this problem, it has been proposed to use an ultraviolet absorbing material such as a benzotriazole compound, a triazine compound, and an indole compound for the heat ray shielding film (see, for example, Patent Document 2).
特開2012-131130号公報JP 2012-131130 A 特開2014-210698号公報JP, 2014-210698, A
 しかしながら、上述の紫外線吸収材料を用いた構成においても、長期間の太陽光の曝露等により、熱線遮蔽フィルムにひび割れや基材の剥離等の破損、変色等が発生してしまう。このように、熱線遮蔽フィルムに紫外線吸収材料を含ませただけでは、熱線遮蔽フィルムの耐候性を充分に向上させることができていない。 However, even in the configuration using the above-described ultraviolet absorbing material, the heat ray shielding film is damaged such as cracks or peeling of the base material, discoloration, etc. due to exposure to sunlight for a long time. Thus, the weather resistance of the heat ray shielding film cannot be sufficiently improved only by including the ultraviolet ray absorbing material in the heat ray shielding film.
 上述した問題の解決のため、本発明においては、耐候性の向上が 可能な熱線遮蔽フィルムを提供するものである。 In order to solve the above-described problems, the present invention provides a heat ray shielding film capable of improving the weather resistance.
 本発明の熱線遮蔽フィルムは、基材と、熱線遮蔽層と、紫外線吸収層とを有し、紫外線吸収層が熱線遮蔽層の外側に設けられ、紫外線吸収層の波長350~400nmの最大透過率が40%以下であり、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上である。 The heat ray shielding film of the present invention has a base material, a heat ray shielding layer, and an ultraviolet ray absorbing layer, the ultraviolet ray absorbing layer is provided outside the heat ray shielding layer, and the ultraviolet ray absorbing layer has a maximum transmittance at a wavelength of 350 to 400 nm. Is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more.
 本発明によれば、耐候性の向上が可能な熱線遮蔽フィルムを提供することができる。 According to the present invention, a heat ray shielding film capable of improving weather resistance can be provided.
第1実施形態の熱線遮蔽フィルム(光学反射フィルム)の構成を示す図である。It is a figure which shows the structure of the heat ray shielding film (optical reflection film) of 1st Embodiment. 第2実施形態の熱線遮蔽フィルムの概略構成を示す図である。It is a figure which shows schematic structure of the heat ray shielding film of 2nd Embodiment. 第3実施形態の熱線遮蔽フィルムの概略構成を示す図である。It is a figure which shows schematic structure of the heat ray shielding film of 3rd Embodiment.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.熱線遮蔽フィルム(光学反射フィルム)の実施形態(第1実施形態)
2.熱線遮蔽フィルムの実施形態(第2実施形態)
3.熱線遮蔽フィルムの実施形態(第3実施形態)
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment of the heat ray shielding film (optical reflection film) (first embodiment)
2. Embodiment of heat ray shielding film (second embodiment)
3. Embodiment of heat ray shielding film (third embodiment)
〈1.熱線遮蔽フィルム(光学反射フィルム)(第1実施形態)〉
 以下本発明の熱線遮蔽フィルムの具体的な実施の形態について説明する。
 熱線遮蔽フィルムは、基材と、熱線遮蔽層と、紫外線吸収層とを有し、熱線遮蔽フィルムが、熱線遮蔽層の外側に紫外線吸収層が設けられる。そして、熱線遮蔽フィルムは、紫外線吸収層の波長350~400nmの最大透過率が40%以下であり、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上である。
<1. Heat ray shielding film (optical reflection film) (first embodiment)>
Hereinafter, specific embodiments of the heat ray shielding film of the present invention will be described.
The heat ray shielding film has a base material, a heat ray shielding layer, and an ultraviolet ray absorbing layer, and the heat ray shielding film is provided with an ultraviolet ray absorbing layer outside the heat ray shielding layer. The heat ray shielding film has a maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer of 40% or less, and a minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more.
 紫外線吸収層が設けられる誘電体多層膜の外側とは、基材と熱線遮蔽層の積層方向における熱線遮蔽層の両主面の外部である。具体的には、熱線遮蔽フィルムに入射する光に対し、熱線遮蔽層の光入射面側の主面よりも光入射面側と、光入射面と反対側(光射出面側、裏面側)の主面よりも光射出面側を示す。 The outer side of the dielectric multilayer film on which the ultraviolet absorbing layer is provided is the outside of both main surfaces of the heat ray shielding layer in the stacking direction of the base material and the heat ray shielding layer. Specifically, with respect to the light incident on the heat ray shielding film, the light incident surface side of the heat ray shielding layer is closer to the light incident surface side and the opposite side of the light incident surface (light emission surface side, back surface side). The light emission surface side is shown from the main surface.
 熱線遮蔽フィルムにおいて、熱線遮蔽層は基材上に設けられていることが好ましい。特に、熱線遮蔽層は、基材上に直接形成されていることが好ましい。これにより、基材と熱線遮蔽層とからなる積層構造(積層体)が形成される。但し、基材と熱線遮蔽層とを含む積層構造を有していれば、基材と熱線遮蔽層との間に他の層が形成された構造の積層体であってもよい。そして、基材と熱線遮蔽層とからなる積層体の主面において、少なくとも一方の面に、紫外線吸収層が設けられることが好ましい。すなわち、基材と熱線遮蔽層との外側に、紫外線吸収層が設けられることが好ましい。具体的には、基材や熱線遮蔽層よりも、主に熱線遮蔽層での遮蔽を目的とする波長を含む光が入射する側に、紫外線吸収層が設けられることが好ましい。 In the heat ray shielding film, the heat ray shielding layer is preferably provided on the substrate. In particular, the heat ray shielding layer is preferably formed directly on the substrate. Thereby, the laminated structure (laminated body) which consists of a base material and a heat ray shielding layer is formed. However, as long as it has a laminated structure including a base material and a heat ray shielding layer, it may be a laminate having a structure in which another layer is formed between the base material and the heat ray shielding layer. And in the main surface of the laminated body which consists of a base material and a heat ray shielding layer, it is preferable that an ultraviolet absorption layer is provided in at least one surface. That is, it is preferable that an ultraviolet absorbing layer is provided outside the substrate and the heat ray shielding layer. Specifically, it is preferable that the ultraviolet absorbing layer is provided on the side on which light including a wavelength intended for shielding by the heat ray shielding layer is incident, rather than the base material and the heat ray shielding layer.
 また、熱線遮蔽フィルムの波長350~400nmの最大透過率は、3%以下であることが好ましい。熱線遮蔽フィルムの波長450~600nmの最小透過率は、70%以上であることが好ましい。熱線遮蔽フィルムの波長450~600nmの透過率差は、20%以下であることが好ましい。熱線遮蔽フィルムにおいて、各波長における透過率は、JIS R3106-1998に記載の方法により測定される値である。具体的には、分光光度計U-4000型(積分球使用、日立製作所社製)の波長200~2000nm領域における透過率によって評価できる。 The maximum transmittance of the heat ray shielding film at a wavelength of 350 to 400 nm is preferably 3% or less. The minimum transmittance at a wavelength of 450 to 600 nm of the heat ray shielding film is preferably 70% or more. The difference in transmittance at a wavelength of 450 to 600 nm of the heat ray shielding film is preferably 20% or less. In the heat ray shielding film, the transmittance at each wavelength is a value measured by the method described in JIS R3106-1998. Specifically, it can be evaluated by the transmittance in a wavelength range of 200 to 2000 nm of a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.).
 熱線遮蔽フィルムが、紫外線吸収層を備え、上記の光学特性を有することにより、基材や熱線遮蔽層への紫外線照射が抑制され、太陽光等への長期間の曝露においても、熱線遮蔽層の変色を抑制することができる。或いは、熱線遮蔽フィルムのひび割れや基材の剥離等の破損を抑制することができる。従って、熱線遮蔽フィルムの耐候性を向上させることができる。さらに、可視光域である波長420~780nmの透過率が高いことにより、熱線遮蔽フィルムとしての透明性を確保することができる。 Since the heat ray shielding film includes an ultraviolet ray absorbing layer and has the above optical characteristics, the ultraviolet ray irradiation to the base material and the heat ray shielding layer is suppressed, and even in long-term exposure to sunlight or the like, Discoloration can be suppressed. Or damage, such as a crack of a heat ray shielding film and peeling of a base material, can be suppressed. Therefore, the weather resistance of the heat ray shielding film can be improved. Furthermore, since the transmittance at a wavelength of 420 to 780 nm which is a visible light region is high, transparency as a heat ray shielding film can be ensured.
 熱線遮蔽層は、水溶性高分子及び酸化チタンを含む高屈折率層と、水溶性高分子を含む低屈折率層とが交互に積層された構成の誘電体多層膜であることが好ましい。或いは、熱線遮蔽層は、タングステン酸化物、及び、複合タングステン酸化物から選ばれる1種以上の赤外線吸収材料を含むことが好ましい。熱線遮蔽層がこれらの構成を有することにより、熱線遮蔽フィルムの透明性を維持したまた赤外線遮蔽能力を高めることができる。 The heat ray shielding layer is preferably a dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and titanium oxide and a low refractive index layer containing a water-soluble polymer are alternately laminated. Alternatively, the heat ray shielding layer preferably contains one or more infrared absorbing materials selected from tungsten oxide and composite tungsten oxide. When the heat ray shielding layer has these configurations, the infrared ray shielding ability can be enhanced while maintaining the transparency of the heat ray shielding film.
 熱線遮蔽フィルムが紫外線吸収層を有することにより、誘電体多層膜に含まれる酸化チタンへの紫外線照射を低減することができる。このため、酸化チタンの光照射時の自己還元による変色を抑制し、誘電体多層膜の変色を抑制することにより、熱線遮蔽フィルムの着色や光透過率の低下等の光学特性の低下を抑制することができる。特に、可視光に近い長波長側の紫外線である波長350~400nmの透過率が低いことにより、紫外線の長波長側に吸収域を持つルチル型の二酸化チタンの変色を抑制することができる。 Since the heat ray shielding film has an ultraviolet absorbing layer, it is possible to reduce ultraviolet irradiation to the titanium oxide contained in the dielectric multilayer film. For this reason, it suppresses the discoloration by the self-reduction at the time of light irradiation of titanium oxide, and suppresses the discoloration of the dielectric multilayer film, thereby suppressing the deterioration of the optical properties such as coloring of the heat ray shielding film and the light transmittance. be able to. In particular, discoloration of rutile titanium dioxide having an absorption region on the long wavelength side of ultraviolet light can be suppressed by the low transmittance at a wavelength of 350 to 400 nm, which is ultraviolet light on the long wavelength side close to visible light.
 また、波長450~600nmの最小透過率が70%以上であることにより、熱線遮蔽フィルムに高い透明性を付与することができるため、窓ガラスや車のフロントガラス等へ適用する際に好ましい。さらに、波長450~600nmの透過率差が20%以下であることにより、透過する光の波長の偏り(波長依存性)が小さくなり、更なる透明性の向上や、暗所及び明所での視認性差を抑制することができる。 Further, since the minimum transmittance at a wavelength of 450 to 600 nm is 70% or more, high transparency can be imparted to the heat ray shielding film, which is preferable when applied to a window glass, a car windshield, and the like. Furthermore, since the transmittance difference between wavelengths 450 to 600 nm is 20% or less, the wavelength deviation (wavelength dependence) of transmitted light is reduced, and further improvement in transparency, and in dark and bright places. A difference in visibility can be suppressed.
 また、熱線遮蔽フィルムの紫外線吸収層には、紫外線吸収材料が含まれている。紫外線吸収層に含まれる紫外線吸収材料には、インドール化合物、アゾメチン化合物、クマリン化合物、及び、メロシアニン化合物から選択される1種以上が含まれていることが好ましい。以下、インドール化合物、アゾメチン化合物、クマリン化合物、及び、メロシアニン化合物を、紫外線吸収材料群Aとする。
 これらの紫外線吸収材料は、波長350~400nmにおける吸収能が高い。このため、酸化チタンの変色の抑制や、耐候性の向上に効果的である。
The ultraviolet ray absorbing layer of the heat ray shielding film contains an ultraviolet ray absorbing material. The ultraviolet absorbing material contained in the ultraviolet absorbing layer preferably contains one or more selected from an indole compound, an azomethine compound, a coumarin compound, and a merocyanine compound. Hereinafter, the indole compound, the azomethine compound, the coumarin compound, and the merocyanine compound are referred to as an ultraviolet absorbing material group A.
These ultraviolet absorbing materials have high absorption ability at a wavelength of 350 to 400 nm. For this reason, it is effective for suppression of discoloration of titanium oxide and improvement of weather resistance.
 さらに、熱線遮蔽フィルムの紫外線吸収層には、上記紫外線吸収材料群Aから選択される1種以上の紫外線吸収材料とともに、ベンゾトリアゾール化合物、トリアジン化合物、及び、ベンゾフェノン化合物から選択される1種以上の紫外線吸収材料が含まれていることが好ましい。以下、ベンゾトリアゾール化合物、トリアジン化合物、及び、ベンゾフェノン化合物を、紫外線吸収材料群Bとする。
 これらの紫外線吸収材料は、紫外線吸収材料群Aの化合物よりも短波長側の紫外線の吸収能が高い。このため、上述の紫外線吸収材料群Aの材料とともに用いることにより、より広い範囲の紫外線の吸収が可能となり、熱線遮蔽フィルムの耐候性を向上させることができる。
Further, the ultraviolet ray absorbing layer of the heat ray shielding film includes at least one ultraviolet ray absorbing material selected from the above ultraviolet ray absorbing material group A, and at least one selected from a benzotriazole compound, a triazine compound, and a benzophenone compound. It is preferable that an ultraviolet absorbing material is included. Hereinafter, the benzotriazole compound, the triazine compound, and the benzophenone compound are referred to as an ultraviolet absorbing material group B.
These ultraviolet absorbing materials have a higher ability to absorb ultraviolet rays on the shorter wavelength side than the compounds of the ultraviolet absorbing material group A. For this reason, by using it with the material of the above-mentioned ultraviolet absorbing material group A, it is possible to absorb a wider range of ultraviolet rays and improve the weather resistance of the heat ray shielding film.
 紫外線吸収層には、0.05~15質量%の紫外線吸収材料が含まれることが好ましい。紫外線吸収層が、紫外線吸収材料として紫外線吸収材料群Aの材料のみを有する場合には、紫外線吸収層に紫外線吸収材料群Aの材料が0.05~15質量%含まれることが好ましい。また、紫外線吸収層が、紫外線吸収材料群Aの材料と紫外線吸収材料群Bの材料とを有する場合には、紫外線吸収材料群Aの材料と紫外線吸収材料群Bの材料との合計で、0.05~15質量%含まれることが好ましい。さらに、紫外線吸収材料群A及び紫外線吸収材料群B以外の紫外線吸収材料が含まれる場合には、これらの紫外線吸収材料の合計として、0.05~15質量%含まれることが好ましい。 The ultraviolet absorbing layer preferably contains 0.05 to 15% by mass of an ultraviolet absorbing material. When the ultraviolet absorbing layer has only the material of the ultraviolet absorbing material group A as the ultraviolet absorbing material, the ultraviolet absorbing layer preferably contains 0.05 to 15% by mass of the material of the ultraviolet absorbing material group A. Further, when the ultraviolet absorbing layer has the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B, the total of the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B is 0. .05 to 15% by mass is preferable. Further, when ultraviolet absorbing materials other than the ultraviolet absorbing material group A and the ultraviolet absorbing material group B are included, the total amount of these ultraviolet absorbing materials is preferably 0.05 to 15% by mass.
 紫外線吸収層は、熱線遮蔽層の一方の外側に設けられていればよい。好ましくは、光入射側の外側に設けられていることが好ましい。光入射側に紫外線吸収層を設けることで、熱線遮蔽層に入射する紫外線を低減することができる。
 また、紫外線吸収層が熱線遮蔽層の両側に設けられた構成とすることも可能である。熱線遮蔽フィルムには、反射光等が裏面側から入射する場合がある。このような場合においても、熱線遮蔽層の裏面側に紫外線吸収層を設けることにより、熱線遮蔽層に裏面側から入射する紫外線を低減することができる。
The ultraviolet absorption layer only needs to be provided on one outer side of the heat ray shielding layer. Preferably, it is provided outside the light incident side. By providing the ultraviolet absorbing layer on the light incident side, the ultraviolet rays incident on the heat ray shielding layer can be reduced.
It is also possible to adopt a configuration in which the ultraviolet absorbing layer is provided on both sides of the heat ray shielding layer. Reflected light or the like may enter the heat ray shielding film from the back side. Even in such a case, the ultraviolet ray incident on the heat ray shielding layer from the back surface side can be reduced by providing the ultraviolet ray absorbing layer on the back surface side of the heat ray shielding layer.
 また、熱線遮蔽フィルムでは、紫外線吸収層が粘着剤を含む構成とすることができる。この場合には、紫外線吸収層を粘着層として機能させることが可能な熱線遮蔽フィルムが構成される。また、例えば、基材に紫外線吸収材料を含ませることにより、基材を紫外線吸収層として機能させることも可能である。このような紫外線吸収層に他の機能を付加した構成とすることにより、熱線遮蔽フィルムの層構造の簡略化が可能となる。 In addition, in the heat ray shielding film, the ultraviolet absorbing layer can include an adhesive. In this case, a heat ray shielding film capable of causing the ultraviolet absorbing layer to function as an adhesive layer is configured. Further, for example, by including an ultraviolet absorbing material in the substrate, the substrate can function as an ultraviolet absorbing layer. By adopting a configuration in which other functions are added to such an ultraviolet absorbing layer, the layer structure of the heat ray shielding film can be simplified.
[熱線遮蔽フィルムの構成]
 図1に熱線遮蔽フィルムの概略構成を示す。図1に示す熱線遮蔽フィルム10は、基材11と、熱線遮蔽層である誘電体多層膜12と、紫外線吸収層13とを備える。熱線遮蔽層である誘電体多層膜12は、高屈折率層と低屈折率層とが交互に積層された構成を有する。紫外線吸収層13は、基材11上に設けられた誘電体多層膜12に対して、基材11と逆側の主面上に設けられている。熱線遮蔽フィルム10においては、紫外線吸収層13側が光入射(図面矢印)面である。このため、紫外線吸収層13は、誘電体多層膜12の光入射面側の外側に配置されている。
[Configuration of heat ray shielding film]
FIG. 1 shows a schematic configuration of the heat ray shielding film. A heat ray shielding film 10 shown in FIG. 1 includes a base material 11, a dielectric multilayer film 12 that is a heat ray shielding layer, and an ultraviolet absorption layer 13. The dielectric multilayer film 12 which is a heat ray shielding layer has a configuration in which high refractive index layers and low refractive index layers are alternately stacked. The ultraviolet absorbing layer 13 is provided on the main surface opposite to the base material 11 with respect to the dielectric multilayer film 12 provided on the base material 11. In the heat ray shielding film 10, the ultraviolet absorption layer 13 side is a light incident (drawing arrow) surface. For this reason, the ultraviolet absorbing layer 13 is disposed outside the light incident surface side of the dielectric multilayer film 12.
[誘電体多層膜]
 熱線遮蔽層である誘電体多層膜12は、低屈折率層と高屈折率層とが交互に積層された構成を有する。誘電体多層膜12は、低屈折率層と高屈折率層とを1層ずつ積層した2層構成の積層体を1ユニットとしたとき、基材11上に低屈折率層と高屈折率層とのユニットを少なくとも1つ以上有する構成であればよい。
[Dielectric multilayer film]
The dielectric multilayer film 12 which is a heat ray shielding layer has a configuration in which low refractive index layers and high refractive index layers are alternately stacked. The dielectric multilayer film 12 has a low-refractive index layer and a high-refractive index layer on the substrate 11 when a two-layered laminate in which a low-refractive index layer and a high-refractive index layer are stacked one by one is used as one unit. And at least one unit.
 誘電体多層膜12において、高屈折率層及び低屈折率層は、隣接した2層の屈折率差を比較した場合に、屈折率の高い方の層が高屈折率層であり、低い方の層が低屈折率層である。従って、誘電体多層膜12における高屈折率層及び低屈折率層は、誘電体多層膜12を構成する各層において、隣接する2つの層の屈折率の比較により決められる。 In the dielectric multilayer film 12, when comparing the refractive index difference between two adjacent layers, the higher refractive index layer and the lower refractive index layer are the higher refractive index layer and the lower refractive index layer. The layer is a low refractive index layer. Therefore, the high refractive index layer and the low refractive index layer in the dielectric multilayer film 12 are determined by comparing the refractive indexes of two adjacent layers in each layer constituting the dielectric multilayer film 12.
 高屈折率層及び低屈折率層の1層あたりの厚み(乾燥後の厚み)は、20~1000nmであることが好ましい。さらに、50~500nmであることが好ましく、100~300nmであることがより好ましく、特に、100~200nmであることが好ましい。 The thickness per layer of the high refractive index layer and the low refractive index layer (thickness after drying) is preferably 20 to 1000 nm. Further, it is preferably 50 to 500 nm, more preferably 100 to 300 nm, and particularly preferably 100 to 200 nm.
 誘電体多層膜12を構成する、高屈折率層及び低屈折率層の数(総数)は、特に制限はないが、好ましくは6~2000であり、より好ましくは10~1500であり、さらに好ましくは10~1000である。層数が2000を超えるとヘイズが発生しやすく、6未満であると所望の反射率に達しないことがある。 The number (total number) of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film 12 is not particularly limited, but is preferably 6 to 2000, more preferably 10 to 1500, and still more preferably. Is from 10 to 1000. If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
 また、誘電体多層膜12においては、高屈折率層と低屈折率層との界面において、各層を構成する成分が混在する混合層が形成される場合がある。このような混合層が存在する場合には、混合層中において、高屈折率層を構成する成分が50質量%以上である部位の集合が高屈折率層に含まれ、低屈折率層を構成する成分が50質量%を超える部位の集合が低屈折率層に含まれる。 In the dielectric multilayer film 12, a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer and the low refractive index layer. When such a mixed layer exists, the high refractive index layer includes a set of portions in which the components constituting the high refractive index layer are 50% by mass or more in the mixed layer, thereby forming the low refractive index layer. A group of sites where the component to be added exceeds 50 mass% is included in the low refractive index layer.
 具体的には、誘電体多層膜12の積層方向において、高屈折率層及び低屈折率層を構成する成分の濃度プロファイルを測定し、その組成によって、高屈折率層又は低屈折率層とすることができる。濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行いながら、エッチングにより露出した表面の原子組成比をXPS(X-ray Photoelectron Spectroscopy)表面分析装置を用いて測定することができる。 Specifically, in the stacking direction of the dielectric multilayer film 12, the concentration profiles of the components constituting the high refractive index layer and the low refractive index layer are measured, and the high refractive index layer or the low refractive index layer is obtained depending on the composition. be able to. The concentration profile can measure the atomic composition ratio of the surface exposed by etching using an XPS (X-ray-photoelectron-spectroscopy) surface analyzer while etching in the depth direction from the surface using a sputtering method.
 誘電体多層膜12の反射率は、隣接する高屈折率層と低屈折率層との屈折率の差は大きいほど、少ない層数で赤外反射率を高くすることができる。
 誘電体多層膜12において、高屈折率層は、より高い屈折率を有することが好ましい。高屈折率層の屈折率は、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらに好ましくは1.90~2.20である。
 また、誘電体多層膜12において、低屈折率層は、より低い屈折率を有することが好ましい。低屈折率層の屈折率は、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらに好ましくは1.30~1.50である。
The reflectance of the dielectric multilayer film 12 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer and low refractive index layer increases.
In the dielectric multilayer film 12, the high refractive index layer preferably has a higher refractive index. The refractive index of the high refractive index layer is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20.
In the dielectric multilayer film 12, the low refractive index layer preferably has a lower refractive index. The refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
 高屈折率層、低屈折率層の屈折率は、下記の方法に従って求める。具体的には、基板上に各層を単層で成膜したサンプルを作製し、このサンプルを10cm×10cmに断裁した後、下記の方法に従って屈折率を求める。 The refractive index of the high refractive index layer and the low refractive index layer is determined according to the following method. Specifically, a sample in which each layer is formed as a single layer on a substrate is prepared, the sample is cut into 10 cm × 10 cm, and then the refractive index is obtained according to the following method.
 まず、サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止する。そして、分光光度計としてU-4000型(日立製作所社製)を用い、5度正反射の条件にて、可視光領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 First, after roughening the surface opposite to the measurement surface (back surface) of the sample, light absorption processing is performed with a black spray to prevent reflection of light on the back surface. Then, using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the reflectance in the visible light region (400 nm to 700 nm) is measured at 25 points under the condition of regular reflection at 5 degrees, and an average value is obtained. The average refractive index is obtained from the measurement result.
 隣接した層界面での反射は、隣接する層の屈折率比に依存する。このため、隣接する層の屈折率比が大きいほど、反射率が高まる。また、単層膜において、層表面での反射光と、層底部での反射光との光路差が[n・d=λ/4]で表される関係になると、この特定の波長の反射を位相差によって強めるように制御することができる。この結果、特定の波長の反射率を上げることができる。なお、nは屈折率、dは層の物理膜厚、n・dは光学膜厚、λは波長である。 The reflection at the interface between adjacent layers depends on the refractive index ratio of the adjacent layers. For this reason, the greater the refractive index ratio between adjacent layers, the higher the reflectivity. Further, in the single layer film, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is represented by [n · d = λ / 4], the reflection at this specific wavelength is suppressed. It can be controlled to be strengthened by the phase difference. As a result, the reflectance of a specific wavelength can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, n · d is the optical film thickness, and λ is the wavelength.
 このように、誘電体多層膜12では、光路差を利用することで、各波長の反射を制御できる。即ち、上記式で表される関係を利用して、各層の屈折率と膜厚を制御することにより、可視光や近赤外光の反射を制御することができる。例えば、各層の屈折率、膜厚及び積層状態を制御することにより、特定波長領域の反射率を向上させることができる。 Thus, in the dielectric multilayer film 12, the reflection of each wavelength can be controlled by utilizing the optical path difference. That is, the reflection of visible light or near infrared light can be controlled by controlling the refractive index and film thickness of each layer using the relationship represented by the above formula. For example, the reflectance in a specific wavelength region can be improved by controlling the refractive index, film thickness, and lamination state of each layer.
 熱線遮蔽フィルム10は、誘電体多層膜12において、反射率を向上させる波長領域を任意に調整することにより、特定の波長域の透過率を高める構成や、特定の波長域の反射率を高める構成とすることができる。このように、誘電体多層膜12の構成により、熱線遮蔽フィルム10の光学特性を、任意に設定することが可能である。 The heat ray shielding film 10 is configured to increase the transmittance in a specific wavelength range or to increase the reflectivity in a specific wavelength range by arbitrarily adjusting the wavelength range that improves the reflectivity in the dielectric multilayer film 12. It can be. Thus, the optical characteristics of the heat ray shielding film 10 can be arbitrarily set by the configuration of the dielectric multilayer film 12.
 熱線遮蔽フィルム10においては、誘電体多層膜12の構成を調整することにより、JIS R3106:1998で示される可視光領域の550nmでの透過率を50%以上とすることが好ましく、70%以上とすることがより好ましく、75%以上とすることがさらに好ましい。また、1200nmでの透過率を35%以下とすることが好ましく、25%以下とすることがより好ましく、20%以下とすることがさらに好ましい。また、波長900nm~1400nmの領域に反射率50%を超える領域を設けないことが好ましい。 In the heat ray shielding film 10, by adjusting the configuration of the dielectric multilayer film 12, the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, and 70% or more. More preferably, it is more preferably 75% or more. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. In addition, it is preferable not to provide a region with a reflectance exceeding 50% in a region with a wavelength of 900 to 1400 nm.
 また、熱線遮蔽フィルム10においては、誘電体多層膜12の構成を調整することにより、波長420~780nmの最小透過率を40%以上とする。波長420~780nmの透過率を高めることにより、可視光域での透過性、透明性を高めることができる。 In the heat ray shielding film 10, the minimum transmittance at a wavelength of 420 to 780 nm is set to 40% or more by adjusting the configuration of the dielectric multilayer film 12. By increasing the transmittance at a wavelength of 420 to 780 nm, the transparency and transparency in the visible light region can be enhanced.
 なお、高屈折率層と低屈折率層との屈折率差、及び、誘電体多層膜12を構成する層数は、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率(赤外遮蔽率)90%以上を得るためには、屈折率差が0.1より小さいと、100層を超える積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下する。このため、隣接する高屈折率層と低屈折率層との屈折率差は、0.1以上であることが好ましい。特に好ましくは0.3以上であり、更に好ましくは0.4以上である。反射率の向上と層数を少なくする観点からは、隣接する高屈折率層と低屈折率層と屈折率差に上限はないが、実質的には1.4程度である。 The difference in refractive index between the high refractive index layer and the low refractive index layer and the number of layers constituting the dielectric multilayer film 12 can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectivity (infrared shielding rate) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, which not only reduces productivity. , Scattering at the laminated interface increases and transparency decreases. For this reason, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more. Particularly preferably, it is 0.3 or more, more preferably 0.4 or more. From the viewpoint of improving the reflectance and reducing the number of layers, there is no upper limit to the difference in refractive index between the adjacent high refractive index layer and low refractive index layer, but it is substantially about 1.4.
(高屈折率層・低屈折率層)
 高屈折率層は、金属酸化物微粒子と水溶性高分子とを含む。さらに、高屈折率層は、金属酸化物微粒子として、酸化チタンを含む。また、高屈折率層は、酸化チタンと共に、酸化チタン以外の金属酸化物微粒子や無機酸化物微粒子が含まれていてもよい。高屈折率層は、金属酸化物微粒子として、酸化チタンを最も多い比率で有していることが好ましい。さらに好ましくは、金属酸化物微粒子として、酸化チタンを50質量%以上含むことが好ましい。さらに、金属酸化物微粒子として、酸化チタンを70質量%以上含むことが好ましく、酸化チタンを80質量%以上含むことがより好ましい。
(High refractive index layer / Low refractive index layer)
The high refractive index layer includes metal oxide fine particles and a water-soluble polymer. Furthermore, the high refractive index layer contains titanium oxide as metal oxide fine particles. The high refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles other than titanium oxide together with titanium oxide. The high refractive index layer preferably has the largest proportion of titanium oxide as metal oxide fine particles. More preferably, it is preferable to contain 50% by mass or more of titanium oxide as the metal oxide fine particles. Further, the metal oxide fine particles preferably contain 70% by mass or more of titanium oxide, and more preferably contain 80% by mass or more of titanium oxide.
 低屈折率層は、水溶性高分子を含んで構成されている。また、低屈折率層は、水溶性高分子とともに、無機酸化物微粒子や金属酸化物微粒子を含んで構成されていてもよい。高屈折率層と低屈折率層とが酸化物微粒子を含有することにより、屈折率の調整が容易となる。このため、酸化物微粒子を含むことにより、積層数を低減することができ、薄膜とすることができる。層数を減らすことで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。 The low refractive index layer includes a water-soluble polymer. The low refractive index layer may be configured to include inorganic oxide fine particles and metal oxide fine particles together with the water-soluble polymer. When the high refractive index layer and the low refractive index layer contain fine oxide particles, the refractive index can be easily adjusted. For this reason, by including oxide fine particles, the number of stacked layers can be reduced, and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
(水溶性高分子)
 高屈折率層及び低屈折率層に含まれる水溶性高分子は、層中においてバインダーとして機能する。高屈折率層及び低屈折率層は、水溶性高分子を含むことで、有機溶剤による環境上の問題を解決することができる。また、バインダーとして水溶性高分子を用いることで、塗膜に柔軟性が得られる。高屈折率層及び低屈折率層に含有される水溶性高分子は、同じであってもよく、異なっていてもよい。好ましくは、高屈折率層と低屈折率層とで、それぞれ異なる材料を用いる。なお、水溶性高分子は、水媒体に対し、40℃で1.0質量%以上溶解する高分子化合物とする。
(Water-soluble polymer)
The water-soluble polymer contained in the high refractive index layer and the low refractive index layer functions as a binder in the layer. When the high refractive index layer and the low refractive index layer contain a water-soluble polymer, environmental problems due to organic solvents can be solved. Moreover, a softness | flexibility is obtained for a coating film by using water-soluble polymer as a binder. The water-soluble polymers contained in the high refractive index layer and the low refractive index layer may be the same or different. Preferably, different materials are used for the high refractive index layer and the low refractive index layer. The water-soluble polymer is a polymer compound that dissolves 1.0% by mass or more at 40 ° C. in an aqueous medium.
 高屈折率層及び低屈折率層が水溶性高分子を含むことにより、これらの層の形成に塗布法やスピンコート法等の湿式成膜法が適用できる。これらの成膜方法は簡便で、基材の耐熱性を問わないため、特に基材11を用いる熱線遮蔽フィルム10においては有効である。また、ロール・ツー・ロール法等の大量生産方式が採用でき、コストやプロセスにおいて有利である。また、水溶性高分子を含む膜は、柔軟性が高いため、生産や運搬の際に巻き取りを行っても、欠陥が発生しづらく、取扱性に優れる。 Since the high refractive index layer and the low refractive index layer contain a water-soluble polymer, a wet film formation method such as a coating method or a spin coating method can be applied to the formation of these layers. Since these film-forming methods are simple and do not ask | require the heat resistance of a base material, especially in the heat ray shielding film 10 using the base material 11, it is effective. In addition, a mass production method such as a roll-to-roll method can be adopted, which is advantageous in terms of cost and process. Moreover, since the film | membrane containing a water-soluble polymer has high flexibility, even if it winds up at the time of production and conveyance, it is hard to generate | occur | produce a defect and is excellent in handling property.
 高屈折率層及び低屈折率層に含まれる水溶性高分子は、特に制限されない。高屈折率層及び低屈折率層に含まれる水溶性高分子としては、例えば、ゼラチン、増粘多糖類、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α -メチルスチレン-アクリル酸-アクリル酸エステル共重合体等のスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体等の酢酸ビニル系共重合体等が挙げられる。これらのなかでも、塗布性や膜厚均一性(ヘイズ)等の観点から、ポリビニルアルコール類である、ポリビニルアルコール、ポリビニルアルコールの誘導体を含むことが好ましい。水溶性高分子は、単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、水溶性高分子は、合成品を用いてもよいし、市販品を用いてもよい。 The water-soluble polymer contained in the high refractive index layer and the low refractive index layer is not particularly limited. Examples of the water-soluble polymer contained in the high refractive index layer and the low refractive index layer include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, acrylic Acrylic resins such as potassium acid-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer Styrene-acrylic acid resin such as styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, styrene-α -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene -Sodium styrene sulfonate copolymer, Styrene-2- Roxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl Examples thereof include vinyl acetate copolymers such as naphthalene-maleic acid copolymer, vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, and vinyl acetate-acrylic acid copolymer. Among these, it is preferable to include polyvinyl alcohol and polyvinyl alcohol derivatives, which are polyvinyl alcohols, from the viewpoints of coatability and film thickness uniformity (haze). A water-soluble polymer may be used independently and may be used in combination of 2 or more type. The water-soluble polymer may be a synthetic product or a commercially available product.
 水溶性高分子としては、例えば、国際公開第2012/128109号、特開2013-121567号公報、特開2013-148849号公報等に記載の高屈折率層及び低屈折率層に使用される公知の樹脂を同様にして使用できる。具体的には、ポリビニルアルコール系樹脂として、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他、各種の変性ポリビニルアルコールも用いることもできる。 As the water-soluble polymer, for example, publicly known to be used for a high refractive index layer and a low refractive index layer described in International Publication No. 2012/128109, Japanese Unexamined Patent Application Publication No. 2013-121567, Japanese Unexamined Patent Application Publication No. 2013-148849, etc. These resins can be used in the same manner. Specifically, as polyvinyl alcohol resin, various modified polyvinyl alcohols can be used in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
 上述のポリ酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上であることが好ましく、平均重合度が1500~5000であることが特に好ましい。また、ケン化度は、70~100モル%であることが好ましく、80~99.9モル%であることが特に好ましい。 The polyvinyl alcohol obtained by hydrolyzing the above-mentioned polyvinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
 また、上記変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。これらのポリビニルアルコールは、単独で用いても、2種以上を組み合わせて用いてもよい。また、ポリビニルアルコールは合成品を用いてもよいし、市販品を用いてもよい。 Also, examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol-based polymers. These polyvinyl alcohols may be used alone or in combination of two or more. Polyvinyl alcohol may be a synthetic product or a commercial product.
 カチオン変性ポリビニルアルコールは、例えば、特開昭61-10483号公報に記載されている第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールが挙げられる。このカチオン変性ポリビニルアルコールは、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 The cation-modified polyvinyl alcohol is, for example, polyvinyl having a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol. Examples include alcohol. This cation-modified polyvinyl alcohol is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているビニルアルコールと水溶性基を有するビニル化合物との共重合体、並びに、特開平7-285265号公報に記載されている水溶性基を有する変性ポリビニルアルコールが挙げられる。 Examples of the anion-modified polyvinyl alcohol include polyvinyl alcohols having an anionic group described in JP-A-1-206088, and vinyl alcohols described in JP-A-61-237681 and JP-A-63-307979. And a copolymer of a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
 ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohol is, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group described in JP-A-7-9758 to a part of vinyl alcohol, and described in JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol modified polyvinyl alcohol having silanol group, reactive group modified polyvinyl alcohol having reactive group such as acetoacetyl group, carbonyl group, carboxyl group, etc. Can be mentioned.
 エチレン変性ポリビニルアルコールとしては、例えば、特開2009-107324号公報、特開2003-248123号公報、特開2003-342322号公報等に記載されるものが挙げられる。また、エクセバール(商品名:株式会社クラレ製)等の市販品を使用してもよい。 Examples of the ethylene-modified polyvinyl alcohol include those described in JP 2009-107324 A, JP 2003-248123 A, JP 2003-342322 A, and the like. Commercial products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may also be used.
 ビニルアルコール系ポリマーとしては、例えば、エクセバール(商品名:株式会社クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業株式会社製)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学工業株式会社製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、株式会社クラレ製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業株式会社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)等が挙げられる。 Examples of the vinyl alcohol-based polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.), Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and polyvinyl acetal resin obtained by reacting polyvinyl alcohol with an aldehyde ( For example, “S REC” manufactured by Sekisui Chemical Co., Ltd., silanol-modified polyvinyl alcohol having a silanol group (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol-based resin having an acetoacetyl group in the molecule (for example, And “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 ポリビニルアルコールの質量平均分子量は60000~250000であることが好ましい。なお、「質量平均分子量」の値は、静的光散乱法、ゲルパーミエーションクロマトグラフ法(GPC)、TOFMASSなどによって測定した値を採用する。水溶性高分子の質量平均分子量が上記範囲にあると、湿式成膜法の適用が可能となり、生産性を向上させることができる。 The mass average molecular weight of polyvinyl alcohol is preferably 60000-250,000. As the value of “mass average molecular weight”, a value measured by a static light scattering method, gel permeation chromatography (GPC), TOFMASS, or the like is adopted. When the mass average molecular weight of the water-soluble polymer is in the above range, the wet film forming method can be applied, and the productivity can be improved.
 高屈折率層及び低屈折率層における水溶性高分子の含有量は、各層中の全固形分に対して、5~75質量%であることが好ましく、10~70質量%であることがより好ましい。水溶性高分子の含有量が5質量%以上であると、湿式成膜において、塗膜の乾燥時に、膜面の乱れによる透明性の劣化を防止できる。一方、水溶性高分子の含有量が75質量%以下であると、層中に金属酸化物微粒子を含有する場合に好適な含有量となり、低屈折率層と高屈折率層との屈折率差を大きくできる。 The content of the water-soluble polymer in the high refractive index layer and the low refractive index layer is preferably 5 to 75% by mass and more preferably 10 to 70% by mass with respect to the total solid content in each layer. preferable. When the content of the water-soluble polymer is 5% by mass or more, in wet film formation, it is possible to prevent deterioration of transparency due to disturbance of the film surface when the coating film is dried. On the other hand, when the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the layer contains metal oxide fine particles, and the refractive index difference between the low refractive index layer and the high refractive index layer. Can be increased.
 なお、水溶性高分子の含有量は、蒸発乾固法の残固形分より求められる。具体的には、遮熱フィルムを95℃の熱水に2時間浸し、残ったフィルムを除去した後、熱水を蒸発させ、得られた固形物の量を水溶性高分子量とする。この際、IR(赤外分光)スペクトルにおいて1700~1800cm-1、900~1000cm-1、及び、800~900cm-1の領域にそれぞれ1つずつピークが見られる場合、その水溶性高分子はポリビニルアルコールであると断定することができる。 In addition, content of water-soluble polymer is calculated | required from the residual solid content of the evaporation-drying method. Specifically, the thermal barrier film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight. At this time, when one peak is observed in each of the regions of 1700 to 1800 cm −1 , 900 to 1000 cm −1 , and 800 to 900 cm −1 in the IR (infrared spectroscopy) spectrum, the water-soluble polymer is polyvinyl. It can be determined that it is alcohol.
(金属酸化物微粒子;高屈折率層)
 高屈折率層は、金属酸化物微粒子として、酸化チタンを含む。酸化チタンとしては、金属酸化物微粒子含有組成物の安定性の観点から、二酸化チタンゾルを用いることが好ましい。また、二酸化チタンの中でも、触媒活性が低く、高屈折率層や隣接した層の耐候性が高くなるため、さらに、屈折率が高いため、ルチル型を用いることが好ましい。
 二酸化チタン微粒子の好ましい一次粒子径は、4nm~50nmであり、より好ましくは4nm~30nmである。
(Metal oxide fine particles; high refractive index layer)
The high refractive index layer contains titanium oxide as metal oxide fine particles. As titanium oxide, it is preferable to use a titanium dioxide sol from the viewpoint of the stability of the metal oxide fine particle-containing composition. Further, among titanium dioxide, it is preferable to use a rutile type because the catalytic activity is low, the weather resistance of the high refractive index layer and the adjacent layer is high, and the refractive index is high.
The preferred primary particle diameter of the titanium dioxide fine particles is 4 nm to 50 nm, more preferably 4 nm to 30 nm.
 酸化チタン粒子は、酸化チタンゾルの表面を変性して、水又は有機溶剤等に分散可能な状態にして用いることが好ましい。水系の酸化チタンゾルの調製方法としては、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報等の記載を参照することができる。 The titanium oxide particles are preferably used by modifying the surface of the titanium oxide sol so that it can be dispersed in water or an organic solvent. Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the description of Japanese Patent No. 17221.
 高屈折率層で用いられる酸化チタンの平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましい。ヘイズ値が低く可視光透過率に優れる観点から、平均粒径は、1~30nmであることがさらに好ましく、1~20nmであることがより好ましい。なお、ここで平均粒径とは、下記の方法で求められる体積平均粒径である。 The average particle diameter of titanium oxide used in the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less. From the viewpoint of a low haze value and excellent visible light transmittance, the average particle size is more preferably 1 to 30 nm, and more preferably 1 to 20 nm. In addition, an average particle diameter is a volume average particle diameter calculated | required with the following method here.
 平均粒径は、粒子そのものを観察する方法により、1000個の任意の粒子の粒径を測定する。粒径の測定には、例えば、レーザー回折散乱法、動的光散乱法、又は、電子顕微鏡を用いて観察する方法や、層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法を用いる。 The average particle diameter is determined by measuring the diameter of 1000 arbitrary particles by a method of observing the particles themselves. For the measurement of particle size, for example, a laser diffraction scattering method, a dynamic light scattering method, a method of observing using an electron microscope, or a method of observing a particle image appearing on a cross section or surface of a layer with an electron microscope. Use.
 そして、1000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子が、それぞれn1、n2・・・ni・・・nk個存在する集団において、粒子1個当りの体積をviとした場合に、平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積平均粒径として求められる。 Then, the particle size of 1000 arbitrary particles is measured, and there are n1, n2..., Ni, nk particles each having a particle size of d1, d2,. When the volume per particle in a group is vi, the average particle diameter mv is obtained as a volume average particle diameter represented by {Σ (vi · di)} / {Σ (vi)}.
 また、高屈折率層に含まれる酸化チタンは、含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態であってもよい。コアシェル粒子は、酸化チタン粒子の表面を、コアとなる酸化チタンに含ケイ素の水和酸化物からなるシェルが被覆した構造を有する。コアシェル粒子を高屈折率層に含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、低屈折率層と高屈折率層との層間混合が抑制される。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。以下ではこのような被覆された酸化チタン粒子を「シリカ付着二酸化チタンゾル」とも称する。 Further, the titanium oxide contained in the high refractive index layer may be in the form of core-shell particles coated with a silicon-containing hydrated oxide. The core-shell particle has a structure in which the surface of the titanium oxide particle is coated with a shell made of a silicon-containing hydrated oxide on the titanium oxide serving as the core. By including the core-shell particles in the high refractive index layer, the interlayer mixing of the low refractive index layer and the high refractive index layer is suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. . Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles may be completely covered with the silicon-containing hydrated oxide, or a part of the surface of the titanium oxide particles may be covered with the silicon-containing hydrated oxide. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . Hereinafter, such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよいが、ルチル型がより好ましい。ルチル型の酸化チタン粒子は、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなる。また、ルチル型の酸化チタン粒子を用いることにより、層の屈折率が高くなりやすい。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. Since rutile type titanium oxide particles have lower photocatalytic activity than anatase type titanium oxide particles, the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased. Moreover, the refractive index of a layer tends to become high by using a rutile type titanium oxide particle.
 含ケイ素の水和酸化物とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物、及び、有機ケイ素化合物の縮合物のいずれでもよい。酸化チタンを被覆する含ケイ素の水和酸化物としては、シラノール基を有することがより好ましい。 The silicon-containing hydrated oxide may be any of a hydrate of an inorganic silicon compound, a hydrolyzate of an organosilicon compound, and a condensate of an organosilicon compound. The silicon-containing hydrated oxide covering titanium oxide preferably has a silanol group.
 含ケイ素の水和酸化物の被覆量は、酸化チタンに対して3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の高屈折率化が容易となり、被覆量が3質量%以上であると、被覆した粒子を安定に形成することができる。 The coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass with respect to titanium oxide. When the coating amount is 30% by mass or less, it is easy to increase the refractive index of the high refractive index layer, and when the coating amount is 3% by mass or more, the coated particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法は、従来公知の方法を適用することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された方法を適用することができる。 As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, a conventionally known method can be applied. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007- The method described in Japanese Patent No. 246351 can be applied.
 一般的に、酸化チタン粒子は、粒子表面の光触媒活性の抑制や、溶媒等への分散性を向上する目的で、表面処理が施された状態で使用されることが多い。表面処理には、シリカ、アルミナ、水酸化アルミニウム、ジルコニア等から選ばれる1種又は2種類以上が用いられていることが好ましい。より具体的には、表面がシリカの被覆層で覆われ、粒子表面が負電荷を帯びた酸化チタン粒子や、アルミニウム酸化物の被覆層が形成され、pH8~10で表面が正電荷を帯びた酸化チタン粒子が知られている。 Generally, titanium oxide particles are often used in a state where surface treatment has been performed for the purpose of suppressing photocatalytic activity on the particle surface and improving dispersibility in a solvent or the like. For the surface treatment, it is preferable to use one or more selected from silica, alumina, aluminum hydroxide, zirconia and the like. More specifically, the surface is covered with a silica coating layer, the surface of the particle is negatively charged titanium oxide particles, or the aluminum oxide coating layer is formed, and the surface is positively charged at pH 8-10. Titanium oxide particles are known.
 また、高屈折率層には、上記酸化チタン以外の金属酸化物微粒子が含まれていてもよい。酸化チタン以外の金属酸化物微粒子としては、Li、Na、Mg、Al、Si、K、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属の酸化物を用いることができる。 Further, the high refractive index layer may contain metal oxide fine particles other than the above titanium oxide. Metal oxide fine particles other than titanium oxide include Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, and Nb. , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals Metal oxides can be used.
 具体的には、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化バリウム、酸化インジウム、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、酸化鉛、及び、これら酸化物ぁら構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等が挙げられる。 Specifically, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, Strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide, lead oxide, and complex oxides composed of these oxides Examples thereof include lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ).
 また、金属酸化物微粒子として、希土類酸化物を用いることもでき、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。 In addition, rare earth oxides can also be used as the metal oxide fine particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, oxidation Examples also include terbium, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
 高屈折率層に用いられる金属酸化物微粒子としては、屈折率が1.90以上の金属酸化物粒子が好ましく、例えば、酸化ジルコニウム、酸化セリウム、酸化亜鉛等を挙げることができる。 The metal oxide fine particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more, and examples thereof include zirconium oxide, cerium oxide, and zinc oxide.
 高屈折率層に用いられる金属酸化物微粒子は、1種単独であってもよいし、2種以上併用してもよい。
 高屈折率層で用いられる金属酸化物微粒子に用いられる金属酸化物微粒子の体積平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましい。さらに、金属酸化物微粒子の体積平均粒径は、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。体積平均粒径が上記範囲であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。
The metal oxide fine particles used for the high refractive index layer may be used singly or in combination of two or more.
The volume average particle size of the metal oxide fine particles used for the metal oxide fine particles used in the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less. Further, the volume average particle size of the metal oxide fine particles is more preferably 1 to 30 nm, and further preferably 5 to 15 nm. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
 高屈折率層における金属酸化物微粒子の含有量としては、酸化チタンと酸化チタン以外の金属酸化物の合計として、高屈折率層の固形分100質量%に対して、20~80質量%であることが好ましく、30~75質量%であることがより好ましく、40~70質量%であることがさらに好ましい。 The content of the metal oxide fine particles in the high refractive index layer is 20 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer as the total of metal oxides other than titanium oxide and titanium oxide. It is preferably 30 to 75% by mass, more preferably 40 to 70% by mass.
(無機酸化物微粒子・金属酸化物微粒子;低屈折率層)
 低屈折率層は、上述の高屈折率層に含まれる酸化チタン等の金属酸化物微粒子や、無機酸化物微粒子を含んでいてもよい。低屈折率層に含まれる無機酸化物微粒子としては、二酸化ケイ素を用いることが好ましく、コロイダルシリカを用いることが特に好ましい。
(Inorganic oxide fine particles / metal oxide fine particles; low refractive index layer)
The low refractive index layer may contain metal oxide fine particles such as titanium oxide and inorganic oxide fine particles contained in the high refractive index layer. As the inorganic oxide fine particles contained in the low refractive index layer, it is preferable to use silicon dioxide, and it is particularly preferable to use colloidal silica.
 コロイダルシリカは、珪酸ナトリウム等の酸による複分解や、イオン交換樹脂層を通過させて得られるシリカゾルの加熱熟成により得られる。コロイダルシリカは、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、及び、国際公開第94/26530号等に記載されている製法及び構成を適用することができる。コロイダルシリカは、その表面をカチオン変性されていてもよく、Al、Ca、Mg又はBa等で処理されていてもよい。 Colloidal silica is obtained by metathesis with an acid such as sodium silicate or by heat aging of a silica sol obtained by passing through an ion exchange resin layer. Colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-219084, JP-A-61-20792, JP-A-61-188183. JP-A-63-17807, JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, Manufacturing methods and configurations described in JP-A-7-81214, JP-A-7-101142, JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530 Can be applied. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 低屈折率層に含まれる金属酸化物粒子及び無機酸化物微粒子は、その平均粒径が3~100nmであることが好ましい。また、一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmがより好ましく、3~40nmがさらに好ましく、3~20nmが特に好ましく、4~10nmが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。低屈折率層中の微粒子の平均粒径は、粒子自体、又は、屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径として表す。 The metal oxide particles and inorganic oxide fine particles contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle size of primary particles of silicon dioxide dispersed in the primary particle state (particle size in the dispersion state before coating) is more preferably 3 to 50 nm, further preferably 3 to 40 nm, and more preferably 3 to 20 nm. Is particularly preferable, and 4 to 10 nm is most preferable. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less. The average particle size of the fine particles in the low refractive index layer is determined by observing the particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. It is obtained as a simple average value (number average). Here, the particle diameter of each particle is expressed as a diameter assuming a circle equal to the projected area.
 低屈折率層における金属酸化物粒子及び無機酸化物微粒子の含有量としては、低屈折率層の固形分に対して、屈折率の観点から、5~80質量%であることが好ましく、10~75質量%であることがさらに好ましい。 The content of the metal oxide particles and inorganic oxide fine particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, from the viewpoint of refractive index. More preferably, it is 75 mass%.
[紫外線吸収層]
 熱線遮蔽フィルム10は、誘電体多層膜12の外側に、少なくとも1層の紫外線吸収層13を備える。紫外線吸収層13は、図1に示すように、熱線遮蔽フィルム10において、熱線遮蔽層である誘電体多層膜12の光入射側に設けられていることが好ましい。また、図1に示す構成と異なり、基材11側が光入射面となる場合には、誘電体多層膜12の基材11側に紫外線吸収層13が設けられていてもよい。この場合、基材11に後述する紫外線吸収材料を含有させることにより、基材11を紫外線吸収層13として機能させることも可能である。
[UV absorbing layer]
The heat ray shielding film 10 includes at least one ultraviolet absorbing layer 13 outside the dielectric multilayer film 12. As shown in FIG. 1, the ultraviolet absorbing layer 13 is preferably provided on the light incident side of the dielectric multilayer film 12 that is a heat ray shielding layer in the heat ray shielding film 10. In addition, unlike the configuration shown in FIG. 1, when the substrate 11 side is the light incident surface, the ultraviolet absorbing layer 13 may be provided on the substrate 11 side of the dielectric multilayer film 12. In this case, it is possible to cause the base material 11 to function as the ultraviolet light absorbing layer 13 by containing the ultraviolet light absorbing material described later in the base material 11.
 紫外線吸収層13は、紫外線吸収材料を含む。紫外線吸収層13に含まれる紫外線吸収材料としては、波長380~400nmに吸光度0.5以上の吸収スペクトルのピークを有する紫外線吸収材料を含むことが好ましい。なお、以下の説明では、特定の波長領域に吸光度0.5以上の吸収スペクトルのピークを有することを、その波長領域において吸収領域を有すると表記する。
 波長380~400nmに吸収領域を有する上記紫外線吸収材料を含むことにより、紫外線吸収層13の波長350~400nmの最大透過率を40%以下とすることができる。
The ultraviolet absorbing layer 13 includes an ultraviolet absorbing material. The ultraviolet absorbing material contained in the ultraviolet absorbing layer 13 preferably includes an ultraviolet absorbing material having an absorption spectrum peak with an absorbance of 0.5 or more at a wavelength of 380 to 400 nm. In the following description, having a peak of an absorption spectrum having an absorbance of 0.5 or more in a specific wavelength region is expressed as having an absorption region in that wavelength region.
By including the ultraviolet absorbing material having an absorption region at a wavelength of 380 to 400 nm, the maximum transmittance of the ultraviolet absorbing layer 13 at a wavelength of 350 to 400 nm can be made 40% or less.
 波長380~400nmに吸収領域を有する紫外線吸収材料としては、インドール化合物、アゾメチン化合物、クマリン化合物、及び、メロシアニン化合物が挙げられる。これらの紫外線吸収材料の群を紫外線吸収材料群Aとする。紫外線吸収層13には、紫外線吸収材料群Aから選択される1種以上が含まれていることが好ましい。 Examples of the ultraviolet absorbing material having an absorption region at a wavelength of 380 to 400 nm include indole compounds, azomethine compounds, coumarin compounds, and merocyanine compounds. A group of these ultraviolet absorbing materials is referred to as an ultraviolet absorbing material group A. The ultraviolet absorbing layer 13 preferably contains one or more selected from the ultraviolet absorbing material group A.
 紫外線吸収層13の厚さは、1μm~30μmであることが好ましい。厚さを1μm以上とすることにより、紫外線吸収層13の成膜性が向上するとともに、紫外線吸収層13に要求される紫外線の吸収能力を容易に付与することができる。また、厚さが30μmを超えると、コストが高くなるだけでなく、作製の際の乾燥工程において時間がかかり、製造が困難になる。 The thickness of the ultraviolet absorbing layer 13 is preferably 1 μm to 30 μm. By setting the thickness to 1 μm or more, the film formability of the ultraviolet absorbing layer 13 is improved, and the ultraviolet absorbing ability required for the ultraviolet absorbing layer 13 can be easily imparted. On the other hand, when the thickness exceeds 30 μm, not only the cost becomes high, but also a time is required for the drying process in the production, and the production becomes difficult.
 以下、紫外線吸収材料群Aのインドール化合物、アゾメチン化合物、クマリン化合物、及び、メロシアニン化合物の好ましい形態について説明する。
(インドール化合物)
 インドール化合物は、下記(化学式1)で示されるインドール骨格を持つ化合物である。
Hereinafter, preferred forms of the indole compound, the azomethine compound, the coumarin compound, and the merocyanine compound of the ultraviolet absorbing material group A will be described.
(Indole compound)
The indole compound is a compound having an indole skeleton represented by the following (Chemical Formula 1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 紫外線吸収層13に含まれるインドール化合物としては、下記(化学式2)で示される化合物であることが好ましい。 The indole compound contained in the ultraviolet absorbing layer 13 is preferably a compound represented by the following (Chemical Formula 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (化学式2)において、Rは、炭素数が1~10のアルキル基、又は、炭素数が7~10のアラルキル基である。炭素数が1~10のアルキル基としては、例えば、メチル基、エチル基、ブチル基、2-エチルヘキシル基等を挙げることができる。また、炭素数が7~10のアラルキル基としては、例えば、フェニルメチル基を挙げることができる。 In Chemical Formula 2, R is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a butyl group, and a 2-ethylhexyl group. An example of the aralkyl group having 7 to 10 carbon atoms is a phenylmethyl group.
(アゾメチン化合物)
 紫外線吸収層13に含まれるアゾメチン化合物としては、下記(化学式3)で示されるアゾメチン骨格を有する化合物が好ましい。
(Azomethine compound)
As the azomethine compound contained in the ultraviolet absorbing layer 13, a compound having an azomethine skeleton represented by the following (Chemical Formula 3) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (化学式3)において、R、Rは、水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシル基、アミノ基、カルボキシル基、複素環式化合物であり、R’は、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシル基、アミノ基、カルボキシル基、複素環式化合物である。 In (Chemical Formula 3), R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a heterocyclic compound, and R ′ is a halogen atom. An alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a heterocyclic compound.
 また、紫外線吸収層13に含まれるアゾメチン化合物としては、下記(化学式4)で示される構造の化合物が好ましい。 The azomethine compound contained in the ultraviolet absorbing layer 13 is preferably a compound having a structure represented by the following (Chemical Formula 4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(クマリン化合物)
 紫外線吸収層13に含まれるクマリン化合物は、下記(化合物5)で示すクマリン骨格を有する化合物である。
(Coumarin compound)
The coumarin compound contained in the ultraviolet absorbing layer 13 is a compound having a coumarin skeleton represented by the following (Compound 5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 紫外線吸収層13に含まれるクマリン化合物の好ましい例としては、7-ジエチルアミノ-4-メチル-クロメン-2-オン、7-ジエチルアミノ-4a,8a-ジヒドロ-クロメン-2-オン、7-ジエチルアミノ-3-チオフェン-2-イル-クロメン-2-オン、7-ジメチルアミノ-2-オキソ-2H-クロロメン-3-カルボニトリル、3-(1H-ベンゾイミダゾール-2-イル)-7-ジエチルアミノ-クロメン-2-オン、1,1,6,6,8-ペンタメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-3a-アザ-ベンゾ[デ]アントラフェン-10-オン等が挙げられる。 Preferred examples of the coumarin compound contained in the ultraviolet absorbing layer 13 include 7-diethylamino-4-methyl-chromen-2-one, 7-diethylamino-4a, 8a-dihydro-chromen-2-one, and 7-diethylamino-3. -Thiophen-2-yl-chromen-2-one, 7-dimethylamino-2-oxo-2H-chloromen-3-carbonitrile, 3- (1H-benzimidazol-2-yl) -7-diethylamino-chromene- 2-one, 1,1,6,6,8-pentamethyl-2,3,5,6-tetrahydro-1H, 4H-11-oxa-3a-aza-benzo [de] anthraphen-10-one, etc. Can be mentioned.
(メロシアニン化合物)
 紫外線吸収層13に含まれるメロシアニン化合物の好ましい例としては、1,3-ジメチル-5-[2-(3-メチル-オキサドリディン)-エチリデン]-ピリミジン-2,4,6-トリオン、1,3-ジメチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-ピリミジン-2,4,6-トリオン、1,3-ジメチル-5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-ピリミジン-2,4,6-トリオン、3-エチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-2-チオキソ-オキサゾリディン-4-オン、3-エチル-5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-2-チオキソ-オキサゾリディン-4-オン、1,3-ジメチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-2-チオキソ-イミダゾリン-4-オン、[5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-4-オキソ-2-チオキソ-チアゾリディン-3-イル]-アセチル酸、3-エチル-5-[2-(3-メチル-チアゾリディン-2-イリディン)-エチリデン]-2-チオキソ-チアオゾリディン-4-オン、[5-[1-メチル-2-(3-メチル-チアオゾリディン-2-イリデン)-エチリデン)]-4-オキソ-2-チオキソ-チアゾリディン-3-イル]-アセチル酸などが挙げられる。
(Merocyanine compound)
Preferable examples of the merocyanine compound contained in the ultraviolet absorbing layer 13 include 1,3-dimethyl-5- [2- (3-methyl-oxadolidin) -ethylidene] -pyrimidine-2,4,6-trione, 1 , 3-Dimethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 1,3-dimethyl-5- [2- (3-methyl -Thiazolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 3-ethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -2-thioxo-oxazolidin -4-one, 3-ethyl-5- [2- (3-methyl-thiazolidin-2-ylidene) -ethylidene] -2-thioxo-oxazolidin-4-one, 1,3 Dimethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -2-thioxo-imidazolin-4-one, [5- [2- (3-methyl-thiazolidin-2-ylidene)- Ethylidene] -4-oxo-2-thioxo-thiazolidin-3-yl] -acetyl acid, 3-ethyl-5- [2- (3-methyl-thiazolidin-2-ylidin) -ethylidene] -2-thioxo-thiazolidin -4-one, [5- [1-methyl-2- (3-methyl-thiazolidin-2-ylidene) -ethylidene)]-4-oxo-2-thioxo-thiazolidin-3-yl] -acetyl acid and the like Can be mentioned.
 また、紫外線吸収層13には、上述の波長380~400nmに吸収領域を有する紫外線吸収材料とともに、この範囲よりも短波長側に吸収領域を有する紫外線吸収材料を含むことが好ましい。波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収材料としては、例えば、波長300~350nmに吸収領域を有する紫外線吸収材料を用いることが好ましい。このような、波長300~350nmに吸収領域を有する紫外線吸収材料としては、ベンゾトリアゾール化合物、トリアジン化合物、及び、ベンゾフェノン化合物が挙げられる。これらの紫外線吸収材料の群を、紫外線吸収材料群Bとする。紫外線吸収層13は、上記紫外線吸収材料群Aから選択される1種以上の紫外線吸収材料とともに、紫外線吸収材料群Bから選択される1種以上の紫外線吸収材料を含むことが好ましい。紫外線吸収材料群Bの各化合物としては、紫外線吸収剤として用いられている公知の材料を用いることができる。 The ultraviolet absorbing layer 13 preferably contains an ultraviolet absorbing material having an absorption region on the shorter wavelength side than this range, in addition to the above-described ultraviolet absorbing material having an absorption region at a wavelength of 380 to 400 nm. As the ultraviolet absorbing material having an absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm, for example, an ultraviolet absorbing material having an absorption region at a wavelength of 300 to 350 nm is preferably used. Examples of the ultraviolet absorbing material having an absorption region at a wavelength of 300 to 350 nm include benzotriazole compounds, triazine compounds, and benzophenone compounds. A group of these ultraviolet absorbing materials is referred to as an ultraviolet absorbing material group B. The ultraviolet absorbing layer 13 preferably includes one or more ultraviolet absorbing materials selected from the ultraviolet absorbing material group B together with one or more ultraviolet absorbing materials selected from the ultraviolet absorbing material group A. As each compound of the ultraviolet absorbing material group B, a known material used as an ultraviolet absorber can be used.
 紫外線吸収層13には、0.05~15質量%の紫外線吸収材料が含まれることが好ましい。さらに、1~10質量%の紫外線吸収材料が含まれることが好ましい。
 なお、紫外線吸収層13において、紫外線吸収材料として紫外線吸収材料群Aの材料のみを有する場合には、紫外線吸収層13に紫外線吸収材料群Aの材料が上記の範囲で含まれることが好ましい。また、紫外線吸収層13に紫外線吸収材料群Aの材料と紫外線吸収材料群Bの材料とが含まれる場合には、紫外線吸収材料群Aの材料と紫外線吸収材料群Bの材料との合計が上記の範囲となることが好ましい。さらに、紫外線吸収層13に紫外線吸収材料群A及び紫外線吸収材料群B以外の紫外線吸収材料が含まれる場合には、これらすべての紫外線吸収材料の合計が上記の範囲となることが好ましい。
The ultraviolet absorbing layer 13 preferably contains 0.05 to 15% by mass of an ultraviolet absorbing material. Further, it is preferable that 1 to 10% by mass of an ultraviolet absorbing material is contained.
In the case where the ultraviolet absorbing layer 13 includes only the material of the ultraviolet absorbing material group A as the ultraviolet absorbing material, it is preferable that the ultraviolet absorbing layer 13 includes the material of the ultraviolet absorbing material group A within the above range. Further, when the ultraviolet absorbing layer 13 includes the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B, the total of the material of the ultraviolet absorbing material group A and the material of the ultraviolet absorbing material group B is the above. It is preferable to be in the range. Further, when the ultraviolet absorbing layer 13 includes ultraviolet absorbing materials other than the ultraviolet absorbing material group A and the ultraviolet absorbing material group B, it is preferable that the total of all these ultraviolet absorbing materials falls within the above range.
(紫外線吸収層;他の構成)
 紫外線吸収層13には、上述の紫外線吸収材料の他に、紫外線吸収材料の媒体となる高分子材料を含む。紫外線吸収層13の媒体となる高分子材料としては、上述の誘電体多層膜12を構成する水溶性高分子を用いることができる。
(UV absorbing layer; other configurations)
In addition to the above-described ultraviolet absorbing material, the ultraviolet absorbing layer 13 includes a polymer material that serves as a medium for the ultraviolet absorbing material. As a polymer material that serves as a medium for the ultraviolet absorbing layer 13, a water-soluble polymer constituting the dielectric multilayer film 12 can be used.
 また、紫外線吸収層13には、紫外線吸収層の耐光性をさらに向上させるためにヒンダードアミン系の光安定化剤が添加されていることが好ましい。ヒンダードアミン光安定化剤は、高分子の樹脂化合物の劣化や着色を抑制することができるため、熱線遮蔽フィルム10の着色を低く抑制することができる。ヒンダードアミン系添加剤の添加量としては、紫外線吸収層13中に0.05~10質量%含まれていることが好ましい。 In addition, it is preferable that a hindered amine light stabilizer is added to the ultraviolet absorbing layer 13 in order to further improve the light resistance of the ultraviolet absorbing layer. Since the hindered amine light stabilizer can suppress deterioration and coloring of the polymer resin compound, the coloring of the heat ray shielding film 10 can be suppressed low. The addition amount of the hindered amine-based additive is preferably 0.05 to 10% by mass in the ultraviolet absorbing layer 13.
 また、紫外線吸収層13は、粘着剤等の粘着性を有する材料を含むことにより、熱線遮蔽フィルム10の粘着層を兼ねる構成とすることもできる。紫外線吸収層13を粘着層として機能させる場合には、熱線遮蔽フィルム10の最外層に紫外線吸収層13を設けることが好ましい。また、紫外線吸収層13を粘着層として機能させる場合には、公知の剥離紙が粘着層上にさらに設けられていてもよい。 Further, the ultraviolet absorbing layer 13 can also be configured to serve as the adhesive layer of the heat ray shielding film 10 by including an adhesive material such as an adhesive. When making the ultraviolet absorption layer 13 function as an adhesive layer, it is preferable to provide the ultraviolet absorption layer 13 as the outermost layer of the heat ray shielding film 10. Moreover, when making the ultraviolet absorption layer 13 function as an adhesion layer, the well-known release paper may further be provided on the adhesion layer.
 粘着性を有する材料としては、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等を挙げることができる。なかでも、粘着層は、粘着性を有する材料として粘着剤を含むことが好ましい。粘着剤としては、アクリル系粘着剤、シリコン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、ポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ニトリルゴム、エチレン-酢酸ビニル系粘着剤等を挙げることができる。特に、熱線遮蔽フィルム10を窓ガラスに貼り合わせて用いる用途においては、窓に水を吹き付け、濡れた状態のガラス面に熱線遮蔽フィルム10の粘着層側を貼り合わせる方法、いわゆる水貼り法が好適に用いられる。そのため、水が存在する湿潤下で粘着力が弱いアクリル系粘着剤を用いることが好ましい。 Examples of the adhesive material include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent. Especially, it is preferable that an adhesion layer contains an adhesive as an adhesive material. Examples of adhesives include acrylic adhesives, silicone adhesives, urethane adhesives, polyvinyl butyral adhesives, polyester resins, polyvinyl acetate resins, nitrile rubber, and ethylene-vinyl acetate adhesives. Can do. In particular, in applications where the heat ray shielding film 10 is bonded to a window glass, a method of spraying water on the window and sticking the adhesive layer side of the heat ray shielding film 10 to a wet glass surface, the so-called water pasting method is preferable. Used for. For this reason, it is preferable to use an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
 紫外線吸収層13が粘着層を兼ねる場合には、厚さが1~30μmの範囲であることが好ましく、5~20μmの範囲がさらに好ましい。粘着力は粘着層の厚みに依存するため、粘着層の厚みはある程度必要である。粘着層が1.0μm未満であると、例えば部分的にガラス等との接着面での接触が不十分となり、必要な粘着力が得られにくい。また、粘着層の厚みが30μmを越える場合には、コストが高くなるだけでなく、ガラスに貼り付けた後、剥がしたときに粘着層間で凝集破壊が生じ、粘着剤が残ってしまう。 When the ultraviolet absorbing layer 13 also serves as an adhesive layer, the thickness is preferably in the range of 1 to 30 μm, more preferably in the range of 5 to 20 μm. Since the adhesive force depends on the thickness of the adhesive layer, the adhesive layer needs to have a certain thickness. When the pressure-sensitive adhesive layer is less than 1.0 μm, for example, partial contact with an adhesive surface with glass or the like becomes insufficient, and it is difficult to obtain a necessary pressure-sensitive adhesive force. Further, when the thickness of the adhesive layer exceeds 30 μm, not only the cost is increased, but also after being attached to glass and then peeled off, cohesive failure occurs between the adhesive layers, and the adhesive remains.
[基材]
 熱線遮蔽フィルム10において、基材11は、透明の有機材料で形成された基材であれば、特に限定されるものではない。基材11としては、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等の各基材を挙げることができる。さらに、これらの基材を2層以上積層して用いることもできる。
[Base material]
In the heat ray shielding film 10, if the base material 11 is a base material formed with the transparent organic material, it will not specifically limit. Examples of the substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent Examples of the base material include cellulose nanofiber films. Furthermore, two or more layers of these base materials can be laminated and used.
 基材11としては、ポリエステルフィルムを用いることが好ましい。特に、ポリエステルフィルムの中でも透明性、機械的強度、寸法安定性などの観点から、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分とを主要な構成成分とし、フィルム形成性を有することが好ましい。具体的には、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステル、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールとからなる共重合ポリエステル、及び、これらのポリエステルの2種以上の混合物を主要な構成成分とすることが好ましい。 As the substrate 11, a polyester film is preferably used. In particular, from the viewpoint of transparency, mechanical strength, dimensional stability among polyester films, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol It is preferable that the diol component is a main component and has film-forming properties. Specifically, a polyester mainly composed of polyethylene terephthalate or polyethylene naphthalate, a copolymer polyester composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more kinds of these polyesters It is preferable that the mixture is a major constituent.
 また、基材11は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
 基材11の厚さは、5~200μmの範囲が好ましく、更に好ましくは15~150μmである。
 基材11は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材11の透過率を高めることにより、熱線遮蔽フィルム10の波長420~780nmの最小透過率を高めることができる。
The substrate 11 may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
The thickness of the substrate 11 is preferably in the range of 5 to 200 μm, more preferably 15 to 150 μm.
The base material 11 preferably has a visible light region transmittance of 85% or more as shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the substrate 11, the minimum transmittance of the heat ray shielding film 10 at a wavelength of 420 to 780 nm can be increased.
 基材11は、従来公知の一般的な方法により製造することが可能である。例えば、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。また、未延伸の基材から、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法を用いて、延伸フィルムを作製することもできる。この場合の延伸倍率は、原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 The base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. In addition, a stretched film can also be produced from an unstretched base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching. . The draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、基材11は、寸法安定性の点で弛緩処理、オフライン熱処理が行われていてもよい。弛緩処理はポリエステルフィルムの延伸製膜工程中で熱固定した後、横延伸のテンター内、又は、テンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された基材11は、オフライン熱処理を施すことにより耐熱性が向上し、更に寸法安定性が良好になる。 Further, the base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability. The relaxation treatment is preferably carried out in the process from the heat setting in the stretch film-forming process of the polyester film to the winding in the transverse stretch tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The base material 11 subjected to the relaxation treatment is improved in heat resistance by performing off-line heat treatment, and further has good dimensional stability.
 また、基材11に、上述の紫外線吸収材料が含まれていてもよい。この場合には、基材11を紫外線吸収層13として機能させることも、基材11と紫外線吸収層13とを併用する構成とすることもできる。例えば、誘電体多層膜12の一方の側に紫外線吸収層13が設けられ、他方の側に紫外線吸収材料を含む基材11が設けられた構成とすることができる。 Further, the above-described ultraviolet absorbing material may be included in the base material 11. In this case, the base material 11 can function as the ultraviolet absorbing layer 13, or the base material 11 and the ultraviolet absorbing layer 13 can be used in combination. For example, a configuration in which the ultraviolet absorbing layer 13 is provided on one side of the dielectric multilayer film 12 and the substrate 11 containing an ultraviolet absorbing material is provided on the other side can be adopted.
 このように、紫外線吸収材料を含む層で誘電体多層膜12を挟持することにより、紫外線吸収層13側から入射する直接的な光だけでなく、乱反射等により基材11側から入射する反射光に対しても、誘電体多層膜12の変色を抑制することが可能となる。 In this way, by sandwiching the dielectric multilayer film 12 with the layer containing the ultraviolet absorbing material, not only the direct light incident from the ultraviolet absorbing layer 13 side but also the reflected light incident from the substrate 11 side due to irregular reflection or the like. However, discoloration of the dielectric multilayer film 12 can be suppressed.
[熱線遮蔽フィルムの製造方法]
 次に、上述の熱線遮蔽フィルム10の製造方法について説明する。熱線遮蔽フィルム10は、基材11上に、誘電体多層膜12を形成する工程と、紫外線吸収層13を形成する工程とからなる。
[Method for producing heat ray shielding film]
Next, the manufacturing method of the above-mentioned heat ray shielding film 10 is demonstrated. The heat ray shielding film 10 includes a step of forming a dielectric multilayer film 12 on a substrate 11 and a step of forming an ultraviolet absorption layer 13.
(誘電体多層膜形成工程)
 誘電体多層膜12を形成する方法は、特に限定されないが、例えば、高屈折率層用塗布液、及び、低屈折率層用塗布液を、交互に塗布及び乾燥させることによって形成する方法が挙げられる。
(Dielectric multilayer film formation process)
The method for forming the dielectric multilayer film 12 is not particularly limited. For example, a method of forming the dielectric multilayer film 12 by alternately applying and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer can be given. It is done.
 高屈折率層用塗布液の調製方法は、特に制限されず、水溶性高分子、金属酸化物微粒子、溶媒、及び、必要に応じて添加されるその他の添加剤を、撹拌混合する方法が挙げられる。また、低屈折率層用塗布液の調製方法は、特に制限されず、水溶性高分子、溶媒、及び、必要に応じて金属酸化物微粒子や、その他の添加剤を、撹拌混合する方法が挙げられる。この撹拌混合の際、各成分の添加順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗布液は、溶媒の量を調整することにより、適当な粘度に調整する。 The method for preparing the coating solution for the high refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, metal oxide fine particles, a solvent, and other additives added as necessary. It is done. The method for preparing the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and if necessary, metal oxide fine particles and other additives. It is done. At the time of this stirring and mixing, the order of addition of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 ここで、各塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、又は、これらの混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、又は、水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。 Here, the solvent for preparing each coating solution is not particularly limited, but it is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
 各塗布液に用いる有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノール等のアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン等のアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類が挙げられる。これら有機溶媒は、単独でも2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水と、メタノール、エタノール、及び、酢酸エチルとの混合溶媒が好ましい。 Examples of the organic solvent used in each coating solution include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. And ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the standpoint of environment and ease of operation, the solvent for the coating solution is preferably a mixed solvent of water, methanol, ethanol, and ethyl acetate.
 水と少量の有機溶媒との混合溶媒を用いる際、混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、塗膜形成の操作性が向上する。また、99.9質量%以下にすることで、塗布液の均質性が増し、塗布液の物性が安定する。 When a mixed solvent of water and a small amount of organic solvent is used, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99. More preferably, it is 5 mass%. Here, by setting it as 80 mass% or more, the volume fluctuation | variation by volatilization of a solvent can be reduced, and the operativity of coating-film formation improves. Moreover, by setting it as 99.9 mass% or less, the homogeneity of a coating liquid increases and the physical property of a coating liquid is stabilized.
 次に、調製した各塗布液を基材11上に塗布し、乾燥させる。この塗布工程と乾燥工程とを行なうことにより、塗布膜から誘電体多層膜を形成することができる。
 塗布方法としては、特に限定されず、逐次塗布法、同時重層塗布のいずれであってもよいが、生産性等の観点から同時重層塗布であることが好ましい。塗布方式としては、例えば、カーテン塗布方法、米国特許第2761419号、米国特許第2761791号に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
Next, each prepared coating liquid is apply | coated on the base material 11, and it is made to dry. By performing the coating process and the drying process, a dielectric multilayer film can be formed from the coating film.
The coating method is not particularly limited, and may be either a sequential coating method or simultaneous multilayer coating, but simultaneous multilayer coating is preferable from the viewpoint of productivity and the like. As the coating method, for example, a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method and the like are preferably used.
 同時重層塗布を行う際の各塗布液の温度は、スライドビード塗布方式を用いる場合には、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合には、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 When the slide bead coating method is used, the temperature of each coating solution at the time of simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., more preferably a temperature range of 30 to 45 ° C. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の各塗布液の粘度は、特に制限されない。例えば、スライドビード塗布方式を用いる場合には、上記の各塗布液の好ましい温度の範囲において、5~100mPa・sの範囲であることが好ましく、10~50mPa・sの範囲であることがより好ましい。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲であることが好ましく、25~500mPa・sの範囲であることがより好ましい。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited. For example, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, more preferably in the range of 10 to 50 mPa · s, in the preferable temperature range of each of the above coating solutions. . When the curtain coating method is used, it is preferably in the range of 5 to 1200 mPa · s, more preferably in the range of 25 to 500 mPa · s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、各塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30000mPa・sがより好ましく、さらに好ましくは3000~30000mPa・sであり、最も好ましいのは10000~30000mPa・sである。 Further, the viscosity at 15 ° C. of each coating solution is preferably 100 mPa · s or more, more preferably 100 to 30000 mPa · s, further preferably 3000 to 30000 mPa · s, and most preferably 10,000 to 30000 mPa · s. is there.
 逐次塗布法で誘電体多層膜12を形成する場合には、30~60℃に加温した低屈折率層用塗布液又は高屈折率層用塗布液のいずれか一方の塗布液を、基材11上に塗布、乾燥して層を形成した後、他方の塗布液をこの層上に塗布、乾燥して層を形成する。これを所望の反射性能を発現するために必要な層数となるように繰り返して、誘電体多層膜12を形成する。 When the dielectric multilayer film 12 is formed by the sequential coating method, either the low refractive index layer coating solution or the high refractive index layer coating solution heated to 30 to 60 ° C. is used as the base material. After coating on 11 and drying to form a layer, the other coating solution is coated on this layer and dried to form a layer. The dielectric multilayer film 12 is formed by repeating this process so that the number of layers necessary for expressing desired reflection performance is obtained.
 乾燥は、形成した塗膜を30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥することが好ましく、例えば、40~85℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスでの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にすることがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。 Drying is preferably performed by drying the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. In addition, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the decreasing rate drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布で誘電体多層膜12を形成する場合には、各塗布液を30~60℃に加温して、基材11上に各塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 When the dielectric multilayer film 12 is formed by simultaneous multilayer coating, each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11, the formation is performed. The temperature of the coated film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、上記セットとは、冷風等を塗布膜の表面に当てて温度を下げる等の手段により、塗膜組成物の粘度を高め、各層の物質の流動性の低下、又は、ゲル化を行う工程を意味する。塗布膜の表面に指を押し付けたときに、指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. Means a process. When the finger is pressed against the surface of the coating film, the state in which the finger is no longer attached is defined as the state of completion of setting.
 セット工程において使用される冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 塗膜形成から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上とすることが好ましい。セット時間を一定以上設けることで、層中の成分が十分に混合する。一方、セット時間を短時間とすることにより、金属酸化物微粒子の層間拡散を防止し、高屈折率層と低屈折率層とに所望の屈折率差を設けることができる。なお、高屈折率層と低屈折率層との間の境界面において高弾性化が素早く起こる場合には、セット工程を設けなくとも好適な界面を形成することができる。 The time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. The lower limit time is not particularly limited, but is preferably 45 seconds or more. By providing a set time or longer, the components in the layer are sufficiently mixed. On the other hand, by setting the set time short, the interlayer diffusion of the metal oxide fine particles can be prevented, and a desired refractive index difference can be provided between the high refractive index layer and the low refractive index layer. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
 なお、セット時間は、各塗布液に含まれる水溶性高分子の濃度や、金属酸化物微粒子の濃度を変更することの他、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など他の成分を添加することにより調整することができる。 In addition to changing the concentration of the water-soluble polymer contained in each coating solution and the concentration of the metal oxide fine particles, the set time includes various known gels such as gelatin, pectin, agar, carrageenan, and gellan gum. It can adjust by adding other components, such as an agent.
(紫外線吸収層形成工程)
 紫外線吸収層13は、紫外線吸収層塗布液を調製した後、塗布液を塗布、及び、乾燥することにより作製することができる。
(Ultraviolet absorption layer forming process)
The ultraviolet absorbing layer 13 can be prepared by preparing an ultraviolet absorbing layer coating solution, and then applying and drying the coating solution.
 紫外線吸収層塗布液の調製方法は、特に制限されず、上述の紫外線吸収材料、水溶性高分子、溶媒、及び、必要に応じて添加される添加剤や粘着剤等を、撹拌混合する方法が挙げられる。混合の際、各成分の添加順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗布液は、溶媒の量を調整することにより、適当な粘度に調整する。 The method for preparing the UV-absorbing layer coating solution is not particularly limited, and a method of stirring and mixing the above-described UV-absorbing material, water-soluble polymer, solvent, and additives and pressure-sensitive adhesives added as necessary. Can be mentioned. At the time of mixing, the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 塗布液を調製するための溶媒は、特に制限されず、上述の誘電体多層膜12の形成に用いる溶媒と同様の溶媒を用いることができる。水、有機溶媒、又は、これらの混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、又は、水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。 The solvent for preparing the coating solution is not particularly limited, and a solvent similar to the solvent used for forming the dielectric multilayer film 12 can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
 紫外線吸収層塗布液の塗布方法としては、公知の方法が使用できる。例えば、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法等が好ましく挙げられ、単独または組合せて用いることができる。また、紫外線吸収層塗布液の塗布方法としては、誘電体多層膜12の形成に用いることのできる湿式塗布方式を用いて、誘電体多層膜12上に直に塗布してもよい。 As a method for applying the ultraviolet absorbing layer coating solution, a known method can be used. For example, a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coat method, a dip coat method and the like are preferable, and these can be used alone or in combination. In addition, as a method for applying the ultraviolet absorbing layer coating solution, a wet coating method that can be used for forming the dielectric multilayer film 12 may be used to apply the coating directly on the dielectric multilayer film 12.
 また、紫外線吸収層13が粘着層を兼ねる構成の場合には、直接誘電体多層膜12上に塗布する他に、一度剥離紙に塗布して乾燥させた後、紫外線吸収層13を誘電体多層膜12上に転写させてもよい。 In the case where the ultraviolet absorbing layer 13 also serves as an adhesive layer, it is applied directly to the dielectric multilayer film 12, and after being applied to release paper and dried, the ultraviolet absorbing layer 13 is then applied to the dielectric multilayer film. It may be transferred onto the film 12.
 塗布膜の乾燥は、乾燥温度や時間は特定されないが、乾燥後の紫外線吸収層13に残留する溶剤は少ない方が好ましい。このため、50~150℃の温度で、10秒~5分の乾燥を行なうことが好ましい。また、紫外線吸収層塗布液に粘着剤が含まれる場合には、粘着剤が流動性を有するため、安定した粘着力を得るために養生が必要である。一般的には、室温で約1週間以上、加熱した場合で、例えば50℃位であると3日以上が好ましい。加熱の場合、温度を上げすぎると基材11の平面性が悪化することがあるため、できるだけ低温で行なうことが好ましい。 The drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the ultraviolet absorbing layer 13 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes. Moreover, when an adhesive is contained in the ultraviolet-absorbing layer coating solution, curing is necessary to obtain a stable adhesive force because the adhesive has fluidity. In general, when heated at room temperature for about one week or longer, for example, at about 50 ° C., 3 days or longer is preferable. In the case of heating, if the temperature is raised too much, the flatness of the substrate 11 may be deteriorated.
〈2.熱線遮蔽フィルムの実施形態(第2実施形態)〉
 次に、第2実施形態の熱線遮蔽フィルムについて説明する。図2に第2実施形態の熱線遮蔽フィルムの概略構成を示す。図2に示す熱線遮蔽フィルム20は、基材11と、基材11の一方の面に形成された熱線遮蔽層である赤外線吸収層22と、基材11の他方の面に形成された紫外線吸収層13とを備える。なお、熱線遮蔽フィルム20において、紫外線吸収層13、及び、基材11は、上述の第1実施形態と同様の構成を適用することができる。
<2. Embodiment of Heat Ray Shielding Film (Second Embodiment)>
Next, the heat ray shielding film of 2nd Embodiment is demonstrated. The schematic structure of the heat ray shielding film of 2nd Embodiment is shown in FIG. A heat ray shielding film 20 shown in FIG. 2 includes a base material 11, an infrared absorption layer 22 that is a heat ray shielding layer formed on one surface of the base material 11, and an ultraviolet absorption formed on the other surface of the base material 11. Layer 13. In addition, in the heat ray shielding film 20, the ultraviolet absorption layer 13 and the base material 11 can apply the structure similar to the above-mentioned 1st Embodiment.
 紫外線吸収層13は、基材11の赤外線吸収層22と逆側の主面上に設けられている。熱線遮蔽フィルム20においては、紫外線吸収層13側が光入射(図面矢印)面である。このため、紫外線吸収層13は、赤外線吸収層22及び基材11の光入射面側の外側に配置されている。 The ultraviolet absorbing layer 13 is provided on the main surface of the substrate 11 opposite to the infrared absorbing layer 22. In the heat ray shielding film 20, the ultraviolet absorbing layer 13 side is a light incident (drawing arrow) surface. For this reason, the ultraviolet absorption layer 13 is disposed outside the infrared absorption layer 22 and the light incident surface side of the substrate 11.
[熱線遮蔽層]
(構成)
 赤外線吸収層22は、赤外線吸収材料と、この赤外線吸収材料の媒体(バインダー)となるポリマーとを含んで構成される。赤外線吸収材料としては、赤外線波長域に吸収領域を有する金属酸化物の微粒子(金属酸化物粒子)を用いることができる。
[Heat ray shielding layer]
(Constitution)
The infrared absorbing layer 22 includes an infrared absorbing material and a polymer that is a medium (binder) of the infrared absorbing material. As the infrared absorbing material, fine particles of metal oxide (metal oxide particles) having an absorption region in the infrared wavelength region can be used.
(金属酸化物粒子)
 金属酸化物粒子とは、赤外線波長域に吸収を持つ、光学吸収特性を有する粒子である。赤外線吸収層22においては、特に波長1000nm以上の赤外線領域に大きな吸収を有する金属酸化物粒子を用いることが好ましい。波長1000nm以上の赤外線領域に大きな吸収を有する金属酸化物粒子としては、例えば、タングステン酸化物や、複合タングステン酸化物を挙げることができる。このため、赤外線吸収層22は、タングステン酸化物、及び、複合タングステン酸化物から選ばれる少なくとも一種を含むことが好ましい。
(Metal oxide particles)
Metal oxide particles are particles having optical absorption characteristics that have absorption in the infrared wavelength region. In the infrared absorption layer 22, it is preferable to use metal oxide particles having large absorption particularly in an infrared region having a wavelength of 1000 nm or more. Examples of the metal oxide particles having a large absorption in an infrared region having a wavelength of 1000 nm or more include tungsten oxide and composite tungsten oxide. For this reason, it is preferable that the infrared absorption layer 22 includes at least one selected from tungsten oxide and composite tungsten oxide.
 タングステン酸化物は、一般式WyOzで表される。ただし、一般式WyOzにおいて、Wはタングステンを表し、Oは酸素を表し、2.2≦z/y≦2.999を満たす。 Tungsten oxide is represented by the general formula WyOz. However, in the general formula WyOz, W represents tungsten, O represents oxygen, and satisfies 2.2 ≦ z / y ≦ 2.999.
 タングステン酸化物WyOzの中でも、酸素欠損を持つ3酸化タングステンや、3酸化タングステンにNa等の陽性元素を添加した所謂タングステンブロンズは、導電性材料で自由電子を持つ材料であることが知られている。これらの材料は、単結晶等の分析から赤外線領域の光に対する自由電子の応答が示唆されている。すなわち、これらの材料は、タングステンと酸素との特定の組成範囲において、赤外線吸収材料として特に有効な範囲を有する。従って、可視光領域での透明性が高く、近赤外線領域での吸収が大きいタングステン酸化物粒子や、複合タングステン酸化物粒子を、特定の組成範囲において見出すことができる。赤外線吸収層22においては、これらのタングステン酸化物粒子や複合タングステン酸化物粒子を、金属酸化物粒子(赤外線吸収材料)として用いることが好ましい。 Among tungsten oxides WyOz, tungsten trioxide having oxygen vacancies, and so-called tungsten bronzes obtained by adding a positive element such as Na to tungsten trioxide are known to be conductive materials having free electrons. . These materials suggest a response of free electrons to light in the infrared region from analysis of single crystals and the like. That is, these materials have a particularly effective range as an infrared absorbing material in a specific composition range of tungsten and oxygen. Therefore, tungsten oxide particles and composite tungsten oxide particles having high transparency in the visible light region and large absorption in the near infrared region can be found in a specific composition range. In the infrared absorption layer 22, it is preferable to use these tungsten oxide particles and composite tungsten oxide particles as metal oxide particles (infrared absorbing material).
 複合タングステン酸化物は、一般式MxWyOzで表される。
 一般式MxWyOzにおいて、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、及び、Iから選ばれる1種類以上の元素である。また、Wはタングステンを表し、Oは酸素を表し、0.001≦x/y≦1、且つ、2.2≦z/y≦3を満たす。
The composite tungsten oxide is represented by a general formula MxWyOz.
In the general formula MxWyOz, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I are one or more kinds of elements. W represents tungsten, O represents oxygen, and satisfies 0.001 ≦ x / y ≦ 1 and 2.2 ≦ z / y ≦ 3.
 複合タングステン酸化物は、一般式MxWyOzで表される結晶構造において耐久性に優れることから、六方晶、正方晶、及び、立方晶から選ばれる1つ以上の結晶構造を含むことが好ましい。これらの中でも、六方晶は可視光領域の吸収が最も少ないため、赤外吸収材料として好適である。 Since the composite tungsten oxide is excellent in durability in the crystal structure represented by the general formula MxWyOz, the composite tungsten oxide preferably includes one or more crystal structures selected from hexagonal crystals, tetragonal crystals, and cubic crystals. Among these, hexagonal crystals are suitable as infrared absorbing materials because they have the least absorption in the visible light region.
 六方晶の結晶構造を持つ複合酸化タングステンとしては、例えば、M元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、及び、Snから選ばれる1種類以上の元素を含む構成が挙げられる。赤外線遮蔽特性及び耐候性などの観点から、赤外線吸収層22は、複合酸化タングステンとしてセシウム含有複合タングステン酸化物を含むことが好ましい。 As the composite tungsten oxide having a hexagonal crystal structure, for example, one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as M elements The structure containing is mentioned. From the viewpoints of infrared shielding properties and weather resistance, the infrared absorption layer 22 preferably contains cesium-containing composite tungsten oxide as composite tungsten oxide.
 複合タングステン酸化物MxWyOzにおいて、元素Mの添加量を示すx/yの値が0.001より大きければ、十分な量の自由電子が生成され目的とする赤外線遮蔽効果を得ることができる。また、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線遮蔽効率も上昇するが、x/yの値が1程度で赤外線遮蔽効率が飽和する。さらに、x/yの値が1以下であれば、金属酸化物粒子中での不純物相の生成を回避できる。 In the composite tungsten oxide MxWyOz, if the value of x / y indicating the addition amount of the element M is larger than 0.001, a sufficient amount of free electrons is generated and the intended infrared shielding effect can be obtained. Further, as the amount of the element M added is increased, the supply amount of free electrons is increased and the infrared shielding efficiency is increased. However, when the value of x / y is about 1, the infrared shielding efficiency is saturated. Furthermore, if the value of x / y is 1 or less, generation of an impurity phase in the metal oxide particles can be avoided.
 また、複合タングステン酸化物MxWyOzにおいても、上述のタングステン酸化物WyOzと同様に、タングステンと酸素との特定の組成範囲において赤外線吸収材料として特に有効な範囲を有する。さらに、複合タングステン酸化物MxWyOzは、上述の元素Mの添加による自由電子の供給があるため、酸素量の制御を示すz/yの値が3.0であっても、赤外線吸収材料として機能する。従って、複合タングステン酸化物MxWyOzにおける、酸素量の制御を示すz/yの値は、2.2≦z/y≦3.0が好ましく、さらに好ましくは2.45≦z/y≦3.0である。 Also, the composite tungsten oxide MxWyOz has a particularly effective range as an infrared absorbing material in a specific composition range of tungsten and oxygen, similarly to the above-described tungsten oxide WyOz. Further, the composite tungsten oxide MxWyOz functions as an infrared absorbing material even when the value of z / y indicating the control of the amount of oxygen is 3.0 because free electrons are supplied by adding the element M described above. . Therefore, in the composite tungsten oxide MxWyOz, the value of z / y indicating the control of the oxygen amount is preferably 2.2 ≦ z / y ≦ 3.0, more preferably 2.45 ≦ z / y ≦ 3.0. It is.
 金属酸化物粒子の粒子径は、その使用目的によって各々選定することができる。透明性を要求される用途では、金属酸化物粒子の粒子径を800nm以下とすることが好ましい。800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無いため、効率よく透明性を保持することができる。 The particle diameter of the metal oxide particles can be selected according to the purpose of use. In applications that require transparency, the metal oxide particles preferably have a particle size of 800 nm or less. Since particles smaller than 800 nm do not completely block light due to scattering, the transparency can be efficiently maintained.
 また、可視光領域の透明性を重視する場合は、金属酸化物粒子による散乱も考慮することが好ましい。粒子による散乱を低減するためには、粒子径を200nm以下、好ましくは100nm以下とすることが好ましい。金属酸化物粒子の粒子径が小さければ、幾何学散乱、又は、ミー散乱に起因する波長400~780nmの可視光線領域の光の散乱が低減される。具体的には、金属酸化物粒子の粒子径が200nm以下になると、幾何学散乱やミー散乱が低減し、レイリー散乱領域が支配的となる。レイリー散乱領域では、散乱光が粒子径の6乗に反比例して低減するため、粒子径の減少に伴い散乱が低減し、熱線遮蔽フィルム20の透明性が向上する。さらに、金属酸化物粒子の粒子径が100nm以下になると、散乱光は非常に少なくなる。光の散乱を回避する観点からは、粒子径が小さい方が好ましい。また、粒子径が1nm以上あれば工業的な製造は容易である。 Also, when importance is attached to the transparency in the visible light region, it is preferable to consider scattering by metal oxide particles. In order to reduce scattering by particles, the particle diameter is preferably 200 nm or less, preferably 100 nm or less. If the particle diameter of the metal oxide particles is small, the scattering of light in the visible light region having a wavelength of 400 to 780 nm due to geometric scattering or Mie scattering is reduced. Specifically, when the particle diameter of the metal oxide particles is 200 nm or less, geometrical scattering and Mie scattering are reduced, and the Rayleigh scattering region becomes dominant. In the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced as the particle diameter is reduced, and the transparency of the heat ray shielding film 20 is improved. Furthermore, when the particle diameter of the metal oxide particles is 100 nm or less, the scattered light becomes very small. From the viewpoint of avoiding light scattering, a smaller particle diameter is preferable. Moreover, industrial manufacture is easy if a particle diameter is 1 nm or more.
 金属酸化物粒子の粒子径を800nm以下とすることにより、可視光透過率85%以下においてヘイズ30%以下の熱線遮蔽フィルム20を構成することができる。ヘイズが30%以下であれば、熱線遮蔽フィルムが曇りガラスのようにならずに、鮮明な透明性が得られる。 By setting the particle diameter of the metal oxide particles to 800 nm or less, the heat ray shielding film 20 having a haze of 30% or less at a visible light transmittance of 85% or less can be formed. When the haze is 30% or less, the heat ray shielding film does not look like frosted glass, and clear transparency can be obtained.
 赤外線吸収層22に用いる金属酸化物粒子としては、複合酸化タングステン酸化物、又は、タングステン酸化物を、1種類のみ用いてもよく、2種類以上組み合わせて用いてもよい。さらに、酸化チタン、酸化セリウム、酸化インジウム、硫化亜鉛、酸化亜鉛、アンチドープ酸化錫(ATO)、及び、錫ドープ酸化インジウム(ITO)等の光学吸収特性を有する化合物粒子と組み合わせて用いてもよい。 As the metal oxide particles used for the infrared absorption layer 22, only one type of composite tungsten oxide or tungsten oxide may be used, or two or more types may be used in combination. Further, it may be used in combination with compound particles having optical absorption characteristics such as titanium oxide, cerium oxide, indium oxide, zinc sulfide, zinc oxide, anti-doped tin oxide (ATO), and tin-doped indium oxide (ITO). .
 また、耐候性や分散性の観点から、上記金属酸化物粒子、及び、上記化合物粒子は、Si、Ti、Zr、Al等の金属を含有する酸化物で、粒子表面の全体又は一部が被覆されていることが好ましい。粒子への被覆方法は特に限定されないが、金属酸化物粒子や化合物粒子を分散した溶液中へ、上記被覆金属のアルコキシドを添加することで、上記被覆金属を含有する酸化物で粒子表面を被覆することができる。 In addition, from the viewpoint of weather resistance and dispersibility, the metal oxide particles and the compound particles are oxides containing metals such as Si, Ti, Zr, Al, and the entire or part of the particle surface is covered. It is preferable that The method of coating the particles is not particularly limited, but the particle surface is coated with the oxide containing the coating metal by adding the alkoxide of the coating metal to a solution in which the metal oxide particles and compound particles are dispersed. be able to.
(ポリマー)
 赤外線吸収層22に含まれるポリマーとしては、特に制限はないが、シリコーン系、アクリル系、メラミン系、エポキシ系、アクリレート系、多官能(メタ)アクリル系化合物などが好ましい。ここで、(メタ)アクリルとはアクリル及びメタクリルを示す。
(polymer)
The polymer contained in the infrared absorbing layer 22 is not particularly limited, but silicone-based, acrylic-based, melamine-based, epoxy-based, acrylate-based, polyfunctional (meth) acrylic compounds, and the like are preferable. Here, (meth) acryl refers to acrylic and methacrylic.
 また、熱線遮蔽フィルム20の効果を損なわない範囲で、上記のポリマーに必要に応じて添加剤等を含ませることができる。例えば、分散剤、可塑剤、紫外線安定剤、界面活性剤、酸化防止剤、難燃剤、防腐剤、抗酸化剤、熱安定剤、滑剤、充填剤、光開始剤、光増感剤、熱重合開始剤、増粘剤、カップリング剤、帯電防止剤、紫外線吸収材料、レベリング剤、接着調整剤、改質剤又は任意の色調を与えるための染料や顔料等の添加剤を含ませてもよい。これらを1種で用いてもよいし、2種以上組み合わせて用いてもよい。 In addition, an additive or the like can be included in the above polymer as necessary within a range that does not impair the effect of the heat ray shielding film 20. For example, dispersants, plasticizers, UV stabilizers, surfactants, antioxidants, flame retardants, preservatives, antioxidants, thermal stabilizers, lubricants, fillers, photoinitiators, photosensitizers, thermal polymerization Initiators, thickeners, coupling agents, antistatic agents, UV absorbing materials, leveling agents, adhesion modifiers, modifiers, or additives such as dyes and pigments to give any color tone may be included. . These may be used alone or in combination of two or more.
(ハードコート層)
 熱線遮蔽フィルム20の最外層には、表面に耐擦傷性を付与するために、ハードコート層を配置することが好ましい。このため、熱線遮蔽フィルム20において、図2に示すように、赤外線吸収層22が熱線遮蔽フィルム20の最外層に設けられている場合には、赤外線吸収層22がハードコート層として機能することが好ましい。赤外線吸収層22をハードコート層として機能させるためには、以下に示すハードコート層中に、上述の金属酸化物粒子等の赤外線吸収材料を含ませればよい。
(Hard coat layer)
In order to impart scratch resistance to the surface, a hard coat layer is preferably disposed on the outermost layer of the heat ray shielding film 20. For this reason, in the heat ray shielding film 20, as shown in FIG. 2, when the infrared ray absorbing layer 22 is provided in the outermost layer of the heat ray shielding film 20, the infrared ray absorbing layer 22 can function as a hard coat layer. preferable. In order for the infrared absorbing layer 22 to function as a hard coat layer, an infrared absorbing material such as the above-described metal oxide particles may be included in the hard coat layer described below.
 ハードコート層とは、鉛筆硬度がH~8Hである層をいう。特に好ましくは2H~6Hの範囲内であることが好ましい。鉛筆硬度は、作製したハードコート層を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定する。 The hard coat layer is a layer having a pencil hardness of H to 8H. Particularly preferably, it is in the range of 2H to 6H. For pencil hardness, the prepared hard coat layer is conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and then the pencil hardness evaluation specified by JIS K 5400 is performed using a test pencil specified by JIS S 6006. Measure according to method.
 ハードコート層は、シリコーン系、メラミン系、エポキシ系、アクリレート系、多官能(メタ)アクリル系化合物等の有機系ハードコート材料や、二酸化ケイ素等の無機系ハードコート材料等を用いて形成することができる。特に、接着力が高く、生産性に優れるため、(メタ)アクリレート系、多官能(メタ)アクリル系化合物のハードコート材料を用いることが好ましい。 The hard coat layer should be formed using an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound, or an inorganic hard coat material such as silicon dioxide. Can do. In particular, since the adhesive strength is high and the productivity is excellent, it is preferable to use a hard coat material of a (meth) acrylate-based or polyfunctional (meth) acrylic-based compound.
 また、ハードコート層において、高い耐擦傷性を得るためには、架橋反応を経て硬化する樹脂を主成分とすることが好ましい。特に、ハードコート層が活性線硬化性樹脂を主成分とすることが好ましい。 Further, in order to obtain high scratch resistance in the hard coat layer, it is preferable that a resin that cures through a crosslinking reaction is a main component. In particular, it is preferable that the hard coat layer is mainly composed of an actinic radiation curable resin.
 活性線硬化性樹脂としては、紫外線硬化性樹脂を用いることが好ましい。紫外線硬化性樹脂としては特に限定されないが、例えば、アデカオプトマーKR、BYシリーズのKR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、旭電化工業(株)製)、コーエイハードのA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、大日本インキ化学工業(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H-601R(三洋化成工業(株)製)、SP-1509、SP-1507(以上、昭和高分子(株)製)、RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成(株)製)、又はその他の市販品が挙げられる。これらの紫外線硬化性樹脂を含む塗布組成物は、塗布方法により適当な濃度が選ばれ、例えば、固形分濃度が10~95質量%の範囲で用いることができる。 As the active ray curable resin, it is preferable to use an ultraviolet curable resin. The ultraviolet curable resin is not particularly limited. For example, ADEKA OPTMER KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, Asahi Denka Kogyo Co., Ltd.) Manufactured by Koeihard Co., Ltd.), A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102 NS-101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam PHC2210 (S), PHCX-9 (K-3) ), PHC2213, DP-10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 Manufactured by Dainichi Seika Kogyo Co., Ltd.), KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB), RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.), Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sun Rad H-601R (manufactured by Sanyo Chemical Industries), SP-1509, SP-1507 (above, Showa Polymer Co., Ltd.), RCC-15C (Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.), or other commercially available products. For the coating composition containing these ultraviolet curable resins, an appropriate concentration is selected depending on the coating method, and for example, the solid content concentration can be used in the range of 10 to 95% by mass.
 紫外線硬化性樹脂を硬化させるための光源としては、紫外線を発生する光源であれば、特に限定されずに使用できる。照射条件は、使用する光源によってそれぞれ異なるが、例えば、照射光量が20~1200mJ/cm程度、好ましくは、50~1000mJ/cm程度とすることができる。紫外線硬化性樹脂の硬化に近紫外線領域から可視光線領域の波長を用いる場合には、その領域に吸収極大のある増感剤を用いることが好ましい。 The light source for curing the ultraviolet curable resin is not particularly limited as long as it is a light source that generates ultraviolet rays. Irradiation conditions vary depending on the light source to be used. For example, the irradiation light amount can be about 20 to 1200 mJ / cm 2 , preferably about 50 to 1000 mJ / cm 2 . When a wavelength from the near ultraviolet region to the visible light region is used for curing the ultraviolet curable resin, it is preferable to use a sensitizer having an absorption maximum in that region.
 ハードコート層のドライ膜厚は、平均膜厚0.1~30μmの範囲内が好ましい。さらに1~20μmの範囲内が好ましく、3~15μmの範囲内が特に好ましい。3μm以上である場合は、十分な耐久性、耐衝撃性が得られる。また、屈曲性又は経済性の観点から、15μm以下が好ましい。 The dry film thickness of the hard coat layer is preferably within the range of an average film thickness of 0.1 to 30 μm. Further, it is preferably in the range of 1 to 20 μm, particularly preferably in the range of 3 to 15 μm. When it is 3 μm or more, sufficient durability and impact resistance can be obtained. Moreover, from a viewpoint of flexibility or economical efficiency, 15 micrometers or less are preferable.
 ハードコート層は、例えば、有機溶媒に活性線硬化性樹脂を溶解してハードコート層塗布液を調製し、ハードコート層塗布液を塗布した後、乾燥中、又は、乾燥後に、活性線を照射して形成することができる。ハードコート層塗布液の塗布方法としては特に限定はなく、例えば。グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いることができる。これら塗布方法を用いて、ウェット膜厚0.1~100μmの範囲内で塗布膜を形成することが好ましい。 For example, the hard coat layer is prepared by dissolving an actinic radiation curable resin in an organic solvent to prepare a hard coat layer coating solution, and after applying the hard coat layer coating solution, irradiating actinic rays during or after drying. Can be formed. The method for applying the hard coat layer coating solution is not particularly limited, for example. Known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. Using these coating methods, it is preferable to form a coating film within a wet film thickness range of 0.1 to 100 μm.
 また、ハードコート層に防眩性を与えるため、及び、他の物質との密着を防いで耐擦過性等を高めるために、ハードコート層塗布液中に無機又は有機の微粒子を加えることもできる。加える微粒子の平均粒子径は、0.01~10μmの範囲内が好ましい。微粒子は、紫外線硬化性樹脂組成物100質量部に対して、0.1~20質量部の範囲内となるように配合することが望ましい。防眩効果を付与するには、平均粒径0.1~1μmの範囲内の微粒子を、紫外線硬化性樹脂組成物100質量部に対して1~15質量部用いることが好ましい。さらに、ハードコート層にブロッキング防止機能を付与するために、体積平均粒径0.005~0.1μmの範囲内の極微粒子を樹脂組成物100質量部に対して0.1~5質量部を用いることもできる。 In addition, inorganic or organic fine particles may be added to the hard coat layer coating solution in order to give the hard coat layer an antiglare property and to prevent adhesion with other substances and to improve scratch resistance and the like. . The average particle size of the added fine particles is preferably within a range of 0.01 to 10 μm. The fine particles are desirably blended so as to be in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin composition. In order to impart an antiglare effect, it is preferable to use 1 to 15 parts by mass of fine particles having an average particle size of 0.1 to 1 μm with respect to 100 parts by mass of the ultraviolet curable resin composition. Further, in order to impart an antiblocking function to the hard coat layer, 0.1 to 5 parts by mass of ultrafine particles having a volume average particle size in the range of 0.005 to 0.1 μm are added to 100 parts by mass of the resin composition. It can also be used.
 また、ハードコート層の耐熱性を高めるために、ハードコート層塗布液中に、光硬化反応の抑制が少ない酸化防止剤を用いることができる。光硬化反応の抑制が少ない酸化防止剤としては、例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等が挙げられる。具体的には、例えば、4,4′-チオビス(6-tert-3-メチルフェノール)、4,4′-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)メシチレン、ジ-オクタデシル-4-ヒドロキシ-3,5-ジ-tert-ブチルベンジルホスフェート等が挙げられる。 In addition, in order to increase the heat resistance of the hard coat layer, an antioxidant with little suppression of the photocuring reaction can be used in the hard coat layer coating solution. Examples of the antioxidant that hardly suppresses the photocuring reaction include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like. Specifically, for example, 4,4′-thiobis (6-tert-3-methylphenol), 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4- Examples thereof include hydroxy-3,5-di-tert-butylbenzyl phosphate.
 ハードコート層塗布液は、溶媒が含まれていてもよい。溶媒としては、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から、適宜選択して、又は、これらを混合して用いることができる。ハードコート層塗布液には、プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1~4)又はプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1~4)等を5質量%以上、より好ましくは5~80質量%の範囲内含有する有機溶媒を用いることが好ましい。 The hard coat layer coating solution may contain a solvent. Examples of the solvent include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate). , Methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used. The hard coat layer coating solution contains 5% by mass of propylene glycol monoalkyl ether (1 to 4 carbon atoms in the alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms in the alkyl group). As described above, it is preferable to use an organic solvent contained in the range of 5 to 80% by mass.
 ハードコート層は、JIS B 0601で規定される中心線平均表面粗さRa75が0.05μm未満、より好ましくは0.002~0.04μm未満の良好な平滑面を有する層であることが好ましい。中心線平均粗さ(Ra75)は、光干渉式の表面粗さ測定器で測定することが好ましく、例えば、WYKO社製の非接触表面微細形状計測装置(WYKO NT-2000)を用いて測定することができる。 The hard coat layer is preferably a layer having a good smooth surface with a centerline average surface roughness Ra 75 specified by JIS B 0601 of less than 0.05 μm, more preferably less than 0.002 to 0.04 μm. . The center line average roughness (Ra 75 ) is preferably measured with an optical interference type surface roughness measuring instrument, for example, using a non-contact surface fine shape measuring device (WYKO NT-2000) manufactured by WYKO. can do.
 ハードコート層には、公知の熱可塑性樹脂、熱硬化性樹脂又はゼラチン等の親水性樹脂等のバインダーを、上記活性エネルギー線硬化性樹脂に混合して使用することができる。これら樹脂は、その分子中に極性基を持っていることが好ましい。極性基としては、-COOM、-OH、-NR、-NRX、-SOM、-OSOM、-PO、-OPOM(ここで、Mは水素原子、アルカリ金属又はアンモニウム基を、Xはアミン塩を形成する酸を、Rは水素原子、アルキル基を表す)等が挙げられる。
 また、ハードコート層中には、さらに各種の添加剤が必要に応じて配合されていてもよい。例えば、酸化防止剤、紫外線安定剤、紫外線吸収材料、界面活性剤、レベリング剤、帯電防止剤等を用いることができる。
For the hard coat layer, a binder such as a known thermoplastic resin, thermosetting resin or hydrophilic resin such as gelatin can be mixed with the active energy ray curable resin and used. These resins preferably have a polar group in the molecule. The polar group includes —COOM, —OH, —NR 2 , —NR 3 X, —SO 3 M, —OSO 3 M, —PO 3 M 2 , —OPO 3 M (where M is a hydrogen atom, alkali A metal or an ammonium group, X represents an acid that forms an amine salt, R represents a hydrogen atom or an alkyl group).
Further, various additives may be further blended in the hard coat layer as necessary. For example, an antioxidant, an ultraviolet stabilizer, an ultraviolet absorbing material, a surfactant, a leveling agent, an antistatic agent and the like can be used.
[熱線遮蔽フィルムの製造方法]
 次に、上述の熱線遮蔽フィルム20の製造方法について説明する。熱線遮蔽フィルム20は、基材11上に赤外線吸収層22を形成する工程と、基材11上に紫外線吸収層13を形成する工程とからなる。
[Method for producing heat ray shielding film]
Next, the manufacturing method of the above-mentioned heat ray shielding film 20 is demonstrated. The heat ray shielding film 20 includes a step of forming the infrared absorption layer 22 on the base material 11 and a step of forming the ultraviolet absorption layer 13 on the base material 11.
(熱線遮蔽層形成工程)
 赤外線吸収層22は、熱線遮蔽層塗布液を調製した後、塗布液を塗布、及び、乾燥することにより作製することができる。
 熱線遮蔽層塗布液の調製方法は、特に限定されず、例えば、上述の赤外線吸収材料と、上述の媒体となるポリマー、溶媒、及び、必要に応じて添加される添加剤等を、撹拌混合する方法が挙げられる。混合の際、各成分の添加順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗布液は、溶媒の量を調整することにより、適当な粘度に調整する。
(Heat ray shielding layer forming process)
The infrared absorption layer 22 can be prepared by preparing a heat ray shielding layer coating solution, and then applying and drying the coating solution.
The method for preparing the heat ray shielding layer coating liquid is not particularly limited, and, for example, the above-described infrared absorbing material, the above-described medium, polymer, solvent, and additives that are added as necessary are stirred and mixed. A method is mentioned. At the time of mixing, the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 熱線遮蔽層塗布液の塗布方法としては、基材表面に塗布膜を均一に形成できればよく、特に限定されないが、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が挙げられる。 The coating method of the heat ray shielding layer coating solution is not particularly limited as long as the coating film can be uniformly formed on the surface of the substrate, and examples thereof include a bar coating method, a gravure coating method, a spray coating method, and a dip coating method.
 塗布膜の乾燥は、乾燥温度や時間は特定されないが、乾燥後の赤外線吸収層22に残留する溶剤は少ない方が好ましい。このため、50~150℃の温度で、10秒~5分の乾燥を行なうことが好ましい。 The drying temperature and time of the coating film are not specified, but it is preferable that the solvent remaining in the infrared absorption layer 22 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes.
(紫外線吸収層形成工程)
 次に、基材11上に紫外線吸収層13を形成する。紫外線吸収層13の形成は、上述の第1実施形態の熱線遮蔽フィルムの紫外線吸収層形成工程と同様の方法で行なうことができる。
 以上の工程により、図2に示す構成の熱線遮蔽フィルム20を作製することができる。
(Ultraviolet absorption layer forming process)
Next, the ultraviolet absorption layer 13 is formed on the substrate 11. The ultraviolet absorbing layer 13 can be formed by the same method as the ultraviolet absorbing layer forming step of the heat ray shielding film of the first embodiment described above.
Through the above steps, the heat ray shielding film 20 having the configuration shown in FIG. 2 can be produced.
〈3.熱線遮蔽フィルムの実施形態(第3実施形態)〉
 次に、第3実施形態の熱線遮蔽フィルムの構成について説明する。第3実施形態の熱線遮蔽フィルムの概略構成を図3に示す。
<3. Embodiment of Heat Shielding Film (Third Embodiment)>
Next, the structure of the heat ray shielding film of 3rd Embodiment is demonstrated. The schematic structure of the heat ray shielding film of 3rd Embodiment is shown in FIG.
 図3に示す熱線遮蔽フィルム30は、基材11と、基材11の一方の面に形成された赤外線吸収層22と、基材11の他方の面に形成された誘電体多層膜12と、誘電体多層膜12上に形成された紫外線吸収層13とを備える。図3に示す熱線遮蔽フィルム30は、誘電体多層膜12を有する構成のみが、上述の第2実施形態の熱線遮蔽フィルムと異なり、これ以外の構成は上述の第2実施形態の熱線遮蔽フィルムと同様の構成を適用できる。また、誘電体多層膜12の構成は、上述の第1実施形態の誘電体多層膜と同様の構成を適用することができる。 The heat ray shielding film 30 shown in FIG. 3 includes a base material 11, an infrared absorption layer 22 formed on one surface of the base material 11, a dielectric multilayer film 12 formed on the other surface of the base material 11, And an ultraviolet absorbing layer 13 formed on the dielectric multilayer film 12. The heat ray shielding film 30 shown in FIG. 3 is different from the heat ray shielding film of the second embodiment described above only in the configuration having the dielectric multilayer film 12, and other configurations are the same as those of the heat ray shielding film of the second embodiment described above. A similar configuration can be applied. The configuration of the dielectric multilayer film 12 can be the same as the configuration of the dielectric multilayer film of the first embodiment described above.
 熱線遮蔽フィルム30は、熱線遮蔽層として、赤外線吸収層22と誘電体多層膜12とを備える。熱線遮蔽フィルム30においても、基材11と熱線遮蔽層(赤外線吸収層22、誘電体多層膜12)とからなる積層体の主面において、少なくとも一方の面に紫外線吸収層13が設けられている。このように、紫外線吸収層13は、基材11と熱線遮蔽層(赤外線吸収層22、誘電体多層膜12)とからなる積層体のいずれか一方の面において、他の構成を介して設けられていてもよい。例えば、紫外線吸収層13が、基材11と熱線遮蔽層(赤外線吸収層22、誘電体多層膜12)との積層体において、赤外線吸収層22の表面に形成される構成においても同様である。 The heat ray shielding film 30 includes an infrared absorption layer 22 and a dielectric multilayer film 12 as a heat ray shielding layer. Also in the heat ray shielding film 30, the ultraviolet ray absorbing layer 13 is provided on at least one surface of the main surface of the laminate composed of the base material 11 and the heat ray shielding layer (infrared absorbing layer 22, dielectric multilayer film 12). . As described above, the ultraviolet absorbing layer 13 is provided on one surface of the laminated body including the base material 11 and the heat ray shielding layer (the infrared absorbing layer 22 and the dielectric multilayer film 12) via another configuration. It may be. For example, the same applies to a configuration in which the ultraviolet absorbing layer 13 is formed on the surface of the infrared absorbing layer 22 in a laminate of the base material 11 and the heat ray shielding layer (the infrared absorbing layer 22 and the dielectric multilayer film 12).
 紫外線吸収層13は、基材11に対して、赤外線吸収層22と逆側の主面側に設けられている。そして、誘電体多層膜12が、赤外線吸収層22と逆側の基材11の主面上に設けられている。熱線遮蔽フィルム30においては、紫外線吸収層13側が光入射(図面矢印)面である。このため、誘電体多層膜12と紫外線吸収層13とが、赤外線吸収層22及び基材11の光入射面側の外側に配置されている。 The ultraviolet absorbing layer 13 is provided on the main surface side opposite to the infrared absorbing layer 22 with respect to the base material 11. The dielectric multilayer film 12 is provided on the main surface of the substrate 11 opposite to the infrared absorption layer 22. In the heat ray shielding film 30, the ultraviolet absorbing layer 13 side is a light incident (drawing arrow) surface. For this reason, the dielectric multilayer film 12 and the ultraviolet absorbing layer 13 are disposed outside the infrared absorbing layer 22 and the light incident surface side of the substrate 11.
 以下、実施例を挙げて熱線遮蔽フィルムを具体的に説明するが、熱線遮蔽フィルムはこれらに限定されるものではない。 Hereinafter, although an Example is given and a heat ray shielding film is demonstrated concretely, a heat ray shielding film is not limited to these.
〈試料101の熱線遮蔽フィルムの作製〉
 以下の方法により、基材上に、高屈折率層と低屈折率層とが交互に積層された誘電体多層膜、及び、粘着層を形成し、熱線遮蔽フィルムを作製した。粘着層としては、紫外線吸収材料を含み紫外線吸収層として機能する粘着層、又は、紫外線吸収材料を含まない粘着層を形成した。
<Preparation of heat ray shielding film of sample 101>
By the following method, a dielectric multilayer film in which a high refractive index layer and a low refractive index layer were alternately laminated and an adhesive layer were formed on a substrate, and a heat ray shielding film was produced. As the adhesive layer, an adhesive layer containing an ultraviolet absorbing material and functioning as an ultraviolet absorbing layer, or an adhesive layer not containing an ultraviolet absorbing material was formed.
[低屈折率層用塗布液の作製]
 低屈折率層用塗布液を以下のようにして調製した。
 380質量部のコロイダルシリカ(10質量%)(スノーテックスOXS、一次粒子の平均粒径=4~6nm、日産化学工業株式会社製)、50質量部のホウ酸水溶液(3質量%)、300質量部のポリビニルアルコール(4質量%)(JP-45、重合度:4500、ケン化度:88mol%、日本酢ビ・ポバール株式会社製)、3質量部の界面活性剤(5質量%)(ソフタゾリンLSB-R、川研ファインケミカル株式会社製)を、45℃でこの順に加えて混合した。そして、純水で100質量部に仕上げ、低屈折率層用塗布液を調製した。
[Preparation of coating solution for low refractive index layer]
A coating solution for a low refractive index layer was prepared as follows.
380 parts by mass of colloidal silica (10% by mass) (Snowtex OXS, average particle size of primary particles = 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass), 300% by mass Parts of polyvinyl alcohol (4% by mass) (JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nihon Acetate Bipoval Co., Ltd.), 3 parts by weight of surfactant (5% by mass) (softazoline LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 45 ° C. and mixed. And it finished to 100 mass parts with pure water, and prepared the coating liquid for low refractive index layers.
[高屈折率層塗布液の作製]
(シリカ付着二酸化チタンゾルの作製)
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次に、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に加えて混合し、さらに、オートクレーブにおいて、175℃で18時間の加熱処理を行った。そして、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
[Preparation of coating solution for high refractive index layer]
(Preparation of silica-attached titanium dioxide sol)
15.0% by mass of titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.) is added to 2 parts by mass of pure water and heated to 90 ° C. did. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration is 0.5 mass%) is gradually added and mixed. Furthermore, heat treatment was performed at 175 ° C. for 18 hours in an autoclave. And after cooling, it concentrates with an ultrafiltration membrane, Titanium dioxide sol (hereinafter referred to as silica-attached titanium dioxide sol) in which SiO 2 having a solid content concentration of 6% by mass was attached to the surface (volume average particle size: 9 nm) Got.
(高屈折率層塗布液の調製)
 得られたシリカ付着二酸化チタンゾル(20質量%)113質量部に対し、クエン酸水溶液(1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(クラレ社製、エクセバールRS-2117、鹸化度:97.5~99モル%、エチレン変性度:3.0mol%、重合度:1700、粘度(4%、20℃):23.0~30.0(mPa・s)、8質量%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)0.4質量部を加えて、高屈折率層塗布液を作製した。
(Preparation of high refractive index layer coating solution)
To 113 parts by mass of the silica-attached titanium dioxide sol (20% by mass), 48 parts by mass of an aqueous citric acid solution (1.92% by mass) was added, and ethylene modified polyvinyl alcohol (Kuraray Co., Ltd. Exval RS-2117, saponification) was added. Degree: 97.5 to 99 mol%, ethylene modification degree: 3.0 mol%, polymerization degree: 1700, viscosity (4%, 20 ° C.): 23.0 to 30.0 (mPa · s), 8% by mass) Was added and stirred, and finally 0.4 parts by mass of a 5% by weight aqueous surfactant solution (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added to prepare a high refractive index layer coating solution.
[基材への誘電体多層膜の形成]
 スライドホッパー塗布装置を用いて、上記の方法で得られた低屈折率層用塗布液及び高屈折率層用塗布液を45℃に保温しながら、45℃に加温した基材(厚さ50μmのポリエチレンテレフタレートフィルム;東洋紡株式会社製、コスモシャインA4300)上に、11層同時重層塗布(誘電体多層膜の全膜厚;1.5μm)を行った。この際、最下層及び最上層は低屈折率層とし、それ以外は低屈折率層と高屈折率層とがそれぞれ交互に積層されるように形成した。塗布量は、乾燥後の膜厚において、低屈折率層が各層150nm、高屈折率層が各層120nmになるように調節した。なお、膜厚は、製造した積層体(基材及び誘電体多層膜)を切断し、その切断面を電子顕微鏡により観察することで確認した。この際、2つの層間の界面を明確に観測することができない場合には、XPS表面分析装置により得た層中に含まれるTiOの厚さ方向のXPSプロファイルにより界面を決定した。
[Formation of dielectric multilayer film on substrate]
A substrate (thickness 50 μm) heated to 45 ° C. while keeping the coating solution for low refractive index layer and the coating solution for high refractive index layer obtained by the above method at 45 ° C. using a slide hopper coating apparatus. No. 11 polyethylene terephthalate film (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) was subjected to simultaneous multilayer coating (total thickness of dielectric multilayer film: 1.5 μm). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and the other layers were formed such that low refractive index layers and high refractive index layers were alternately laminated. The coating amount was adjusted so that the low refractive index layer had a thickness of 150 nm and the high refractive index layer had a thickness of 120 nm. The film thickness was confirmed by cutting the manufactured laminate (base material and dielectric multilayer film) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
 塗布直後、5℃の冷風を吹き付けてセットした。このとき、表面を指で触れても指に何もつかなくなるまでの時間(セット時間)は5分であった。セット完了後、80℃の温風を吹き付けて乾燥させて、11層からなる誘電体多層膜を基材上に形成した。 Immediately after application, it was set by blowing cold air of 5 ° C. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes. After completion of the setting, warm air of 80 ° C. was blown and dried to form an eleven-layer dielectric multilayer film on the substrate.
[粘着層の形成]
(粘着層塗布液の組成)
 粘着剤として日本合成化学工業製 N-2147(固形分35%)を100質量部、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3911(固形分100%)(インドール化合物)を0.89質量部、及び、イソシアネート系硬化剤の日本ポリウレタン工業製のコロネートHL(固形分75%)を1.0質量部混合して粘着層塗布液を調製した。なお、この粘着層塗布液は、形成後の粘着層に上記の紫外線吸収材料が2質量%含まれるように調整した。
[Formation of adhesive layer]
(Composition of adhesive layer coating solution)
N2147 (solid content 35%) manufactured by Nippon Synthetic Chemical Industry as an adhesive is 100 parts by mass, and BONASORB-3911 (solid content 100%) (indole compound) manufactured by Orient Chemical is 0.89 parts by mass as an ultraviolet absorbing material. Then, 1.0 part by mass of Coronate HL (solid content 75%) manufactured by Nippon Polyurethane Industry, an isocyanate curing agent, was mixed to prepare an adhesive layer coating solution. In addition, this adhesion layer coating liquid was adjusted so that 2 mass% of said ultraviolet-absorbing materials were contained in the adhesion layer after formation.
(粘着層の作製)
 上記の粘着層塗布液を中本パックス製セパレータ NS23MAのシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗布し、90℃、1分間乾燥して粘着層を形成した。
 この粘着層に、上述の方法で基材上に形成した誘電体多層膜を貼りあわせ、誘電体多層膜上に粘着層を形成した。
 以上のようにして、基材、誘電体多層膜、粘着層(紫外線吸収剤含有)がこの順で積層されてなる試料101の熱線遮蔽フィルムを作製した。
(Preparation of adhesive layer)
Apply the above adhesive layer coating solution on the silicone release surface of Nakamoto Pax's separator NS23MA with a comma coater to a dry film thickness of 10 μm, and dry at 90 ° C. for 1 minute to form an adhesive layer did.
The adhesive multilayer film formed on the base material by the above-mentioned method was bonded to this adhesive layer, and the adhesive layer was formed on the dielectric multilayer film.
As described above, a heat ray shielding film of Sample 101 in which a base material, a dielectric multilayer film, and an adhesive layer (containing an ultraviolet absorber) were laminated in this order was produced.
〈試料102の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、基材として、紫外線吸収材料が含まれた厚さ25μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム社製テトロン(登録商標)フィルムHB)を用いた以外は、上述の試料101と同様の方法で試料102の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 102>
In preparation of the above-mentioned sample 101, the above-mentioned thing except having used the 25-micrometer-thick polyethylene terephthalate (PET) film (Tetron (trademark) film HB by Teijin DuPont Films) containing the ultraviolet absorption material as a substrate. A heat ray shielding film of Sample 102 was produced in the same manner as Sample 101.
〈試料103の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3701(インドール化合物)が2質量%、BASF製のTINUVIN 477(トリアジン化合物)が6質量%となるように形成(紫外線吸収材料の合計が8質量%)した以外は、上述の試料101と同様の方法で試料103の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 103>
In the preparation of the sample 101 described above, the adhesive layer was composed of 2% by mass of BONASORB-3701 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of TINUVIN 477 (triazine compound) manufactured by BASF as an ultraviolet absorbing material. A heat ray shielding film of Sample 103 was produced in the same manner as Sample 101 described above, except that it was formed (the total amount of ultraviolet absorbing material was 8% by mass).
〈試料104の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層の厚さを30μmとした以外は、上述の試料101と同様の方法で試料104の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 104>
In the preparation of the sample 101 described above, a heat ray shielding film of the sample 104 was prepared in the same manner as the sample 101 described above except that the thickness of the adhesive layer was changed to 30 μm.
〈試料105の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層の厚さを35μmとした以外は、上述の試料101と同様の方法で試料105の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 105>
A heat ray shielding film of Sample 105 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was set to 35 μm in the preparation of Sample 101 described above.
〈試料106の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層の厚さを1μmとした以外は、上述の試料101と同様の方法で試料106の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 106>
A heat ray shielding film of Sample 106 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was set to 1 μm in the preparation of Sample 101 described above.
〈試料107の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層の厚さを0.5μmとした以外は、上述の試料101と同様の方法で試料107の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 107>
A heat ray shielding film of Sample 107 was prepared in the same manner as Sample 101 described above except that the thickness of the adhesive layer was changed to 0.5 μm in the preparation of Sample 101 described above.
〈試料108の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料の含有量が15質量%となるように形成した以外は、上述の試料101と同様の方法で試料108の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 108>
A heat ray shielding film of Sample 108 was prepared in the same manner as Sample 101 described above except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 15% by mass in the preparation of Sample 101 described above.
〈試料109の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料の含有量が0.1質量%となるように形成した以外は、上述の試料101と同様の方法で試料109の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 109>
In the preparation of the sample 101 described above, a heat ray shielding film of the sample 109 was prepared in the same manner as the sample 101 described above, except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 0.1% by mass. did.
〈試料110の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料の含有量が0.05質量%となるように形成した以外は、上述の試料101と同様の方法で試料110の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 110>
In the preparation of the sample 101 described above, a heat ray shielding film of the sample 110 was prepared in the same manner as the sample 101 described above, except that the adhesive layer was formed so that the content of the ultraviolet absorbing material was 0.05% by mass. did.
〈試料111の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層に含まれる紫外線吸収材料として、粘着層に含まれる紫外線吸収材料の含有量を0.02質量部とした以外は、上述の試料101と同様の方法で試料111の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 111>
In the preparation of the sample 101 described above, the sample was prepared in the same manner as the sample 101 described above, except that the content of the ultraviolet absorbing material contained in the adhesive layer was 0.02 parts by mass as the ultraviolet absorbing material contained in the adhesive layer. 111 heat ray shielding film was produced.
〈試料112の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3911(インドール化合物)が2質量%、BASF製のTINUVIN 234(ベンゾトリアゾール化合物)が6質量%となるように形成(紫外線吸収材料の合計が8質量%)した以外は、上述の試料101と同様の方法で試料112の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 112>
In the preparation of the above-described sample 101, the adhesive layer is composed of 2% by mass of BONASORB-3911 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of TINUVIN 234 (benzotriazole compound) manufactured by BASF as an ultraviolet absorbing material. The heat ray shielding film of the sample 112 was produced by the same method as the above-mentioned sample 101 except that it was formed in the same manner (except that the total amount of the ultraviolet absorbing material was 8% by mass).
〈試料113の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3911(インドール化合物)が2質量%、ADEKA製のLA-1413(ベンゾフェノン化合物)が6質量%となるように形成(紫外線吸収材料の合計が8質量%)した以外は、上述の試料101と同様の方法で試料113の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 113>
In the preparation of the above-described sample 101, the adhesive layer is composed of 2% by mass of BONASORB-3911 (indole compound) manufactured by Orient Chemical Industry and 6% by mass of LA-1413 (benzophenone compound) manufactured by ADEKA as an ultraviolet absorbing material. A heat ray shielding film of Sample 113 was produced in the same manner as Sample 101 described above except that the film was formed in the same manner (except that the total amount of the ultraviolet absorbing material was 8 mass%).
〈試料114の熱線遮蔽フィルムの作製〉
 上述の試料105の作製において、粘着層に含まれる紫外線吸収材料の含有量を0.02質量部とした以外は、上述の試料105と同様の方法で試料114の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 114>
In the preparation of the sample 105 described above, a heat ray shielding film of the sample 114 was prepared in the same manner as the sample 105 described above except that the content of the ultraviolet absorbing material contained in the adhesive layer was 0.02 parts by mass.
〈試料115の熱線遮蔽フィルムの作製〉
 上述の試料103の作製において、粘着層の厚さを0.5μmとした以外は、上述の試料103と同様の方法で試料115の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 115>
In the preparation of the sample 103 described above, a heat ray shielding film of the sample 115 was prepared by the same method as the sample 103 described above, except that the thickness of the adhesive layer was set to 0.5 μm.
〈試料116の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてFEW CHEMICALS社製のS0511(メロシアン化合物)が2.0質量%となるように形成した以外は、上述の試料101と同様の方法で試料116の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 116>
In the preparation of the sample 101 described above, the adhesive layer was formed in the same manner as the sample 101 described above except that the S0511 (merocyanine compound) manufactured by FEW CHEMICALS was 2.0% by mass as an ultraviolet absorbing material. A heat ray shielding film of Sample 116 was produced.
〈試料117の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてFEW CHEMICALS製のS2142(クマリン化合物)が2.0質量%となるように形成した以外は、上述の試料101と同様の方法で試料117の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 117>
In the preparation of the sample 101 described above, the sample was prepared in the same manner as the sample 101 described above, except that the adhesive layer was formed so that S2142 (coumarin compound) manufactured by FEW CHEMICALS was 2.0% by mass as an ultraviolet absorbing material. 117 heat ray shielding film was produced.
〈試料118の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3701(アゾメチン化合物)が2質量%となるように形成した以外は、上述の試料101と同様の方法で試料118の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 118>
In the preparation of the sample 101 described above, the adhesive layer was formed in the same manner as the sample 101 described above, except that BONASORB-3701 (azomethine compound) manufactured by Orient Chemical Co., Ltd. was used as an ultraviolet absorbing material so as to be 2% by mass. A heat ray shielding film of Sample 118 was produced.
〈試料119の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、厚さが40μm、紫外線吸収材料としてBASF製のTINUVIN 477(トリアジン化合物)が7質量%となるように形成した以外は、上述の試料101と同様の方法で試料119の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 119>
In the preparation of the sample 101 described above, the adhesive layer was the same as the sample 101 described above except that the adhesive layer was formed to have a thickness of 40 μm and 7% by mass of TINUVIN 477 (triazine compound) manufactured by BASF as an ultraviolet absorbing material. The heat ray shielding film of sample 119 was produced by the method.
〈試料120の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてオリヱント化学工業製のBONASORB-3911(インドール化合物)が17質量%となるように形成した以外は、上述の試料101と同様の方法で試料120の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 120>
In the preparation of the sample 101 described above, the adhesive layer was formed in the same manner as the sample 101 described above except that the adhesive layer was formed such that BONASORB-3911 (indole compound) manufactured by Orient Chemical Co., Ltd. was 17% by mass. A heat ray shielding film of Sample 120 was produced.
〈試料121の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてBASF製のTINUVIN 477(トリアジン化合物)が5質量%となるように形成した以外は、上述の試料101と同様の方法で試料121の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 121>
In the preparation of the sample 101 described above, the adhesive layer was formed in the same manner as the sample 101 described above except that the adhesive layer was formed so that TINUVIN 477 (triazine compound) manufactured by BASF was 5% by mass. A heat ray shielding film was produced.
〈試料122の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、基材として、紫外線吸収材料が含まれた厚さ25μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム社製テトロン(登録商標)フィルムHB)を用い、さらに、粘着層を、紫外線吸収材料を含有させずに形成した以外は、上述の試料101と同様の方法で試料122の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 122>
In the preparation of the sample 101 described above, a 25 μm thick polyethylene terephthalate (PET) film (Tetron (registered trademark) film HB manufactured by Teijin DuPont Films) containing an ultraviolet absorbing material was used as a base material, and an adhesive layer was further used. Was formed without containing the ultraviolet absorbing material, and a heat ray shielding film of Sample 122 was produced in the same manner as Sample 101 described above.
〈試料123の熱線遮蔽フィルムの作製〉
 上述の試料101の作製において、粘着層を、紫外線吸収材料としてBASF製のTINUVIN 234(トリアジン化合物)が4質量%、BASF製のTINUVIN 477(ベンゾトリアゾール化合物)が6質量%となるように形成した以外は、上述の試料101と同様の方法で試料123の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 123>
In the preparation of the sample 101 described above, the adhesive layer was formed so that BASF TINUVIN 234 (triazine compound) was 4% by mass and BASF TINUVIN 477 (benzotriazole compound) was 6% by mass as the ultraviolet absorbing material. Except for the above, a heat ray shielding film of Sample 123 was produced in the same manner as Sample 101 described above.
〈評価〉
[粘着層の紫外線透過率]
 JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて、波長350~400nmの領域において、各試料の粘着層の最大透過率(%)を求めた。
<Evaluation>
[UV transmittance of adhesive layer]
Using a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.) by a method according to JIS R3106-1998, the maximum transmittance (% )
[熱線遮蔽フィルムの可視光透過率]
 JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて、波長420~780nmの領域において、各試料の熱線遮蔽フィルムの最小透過率(%)を求めた。
[Visible light transmittance of heat ray shielding film]
Using a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.) by a method according to JIS R3106-1998, the minimum transmittance of the heat ray shielding film of each sample in the wavelength range of 420 to 780 nm ( %).
[変色度(ΔE)]
 厚さ3mmの青色ガラスに、作製した熱線遮蔽フィルムの各試料を、粘着剤層を介して貼り付けた。この試料に対し、30℃60%RHの条件で、試料の粘着層(紫外線吸収層)側からキセノンウェザーメーター(スガ試験機社製;太陽光に極めて近似した光を発する)を用いて100W/mの強度のキセノン光を2000時間曝露し、曝露前後での透過光の差異から色差(ΔE)を計算した。このΔEの値が小さいほど、キセノン光曝露による着色の程度が小さいことを意味する。
 曝露前後のサンプルの透過光は、JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて波長200~2000nmの領域の透過率によって評価した。
[Discoloration (ΔE)]
Each sample of the produced heat ray shielding film was affixed on the blue glass of thickness 3mm through the adhesive layer. 100 W / with respect to this sample, using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emits light very close to sunlight) from the adhesive layer (ultraviolet absorption layer) side of the sample under the conditions of 30 ° C. and 60% RH. Xenon light with an intensity of m 2 was exposed for 2000 hours, and the color difference (ΔE) was calculated from the difference in transmitted light before and after exposure. A smaller value of ΔE means that the degree of coloring due to exposure to xenon light is smaller.
The transmitted light of the sample before and after exposure is evaluated by the transmittance in the wavelength range of 200 to 2000 nm using a spectrophotometer U-4000 type (integrating sphere, manufactured by Hitachi, Ltd.) according to a method according to JIS R3106-1998. did.
 試料101~124の熱線遮蔽フィルムについて、各評価結果を表1に示す。 Table 1 shows the evaluation results of the heat ray shielding films of Samples 101 to 124.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、紫外線吸収層(粘着層)の波長350~400nmの最大透過率が40%以下、且つ、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上を満たす、試料101~119の熱線遮蔽フィルムは、上記条件の満たさない試料120~123に比べて、変色度が小さい。 As shown in Table 1, the sample has a maximum transmittance at a wavelength of 350 to 400 nm of an ultraviolet absorbing layer (adhesive layer) of 40% or less and a minimum transmittance of a heat ray shielding film at a wavelength of 420 to 780 nm satisfies 40% or more. The heat ray shielding films 101 to 119 have a smaller degree of discoloration than the samples 120 to 123 that do not satisfy the above conditions.
 この結果から、熱線遮蔽フィルムが上記条件を満たす紫外線吸収層を有することにより、誘電体多層膜に含まれる酸化チタンの変色を抑制し、熱線遮蔽フィルムの光透過特性の低下を抑制できることがわかる。 From this result, it can be seen that, when the heat ray shielding film has an ultraviolet absorbing layer satisfying the above conditions, discoloration of titanium oxide contained in the dielectric multilayer film can be suppressed, and deterioration of the light transmission characteristics of the heat ray shielding film can be suppressed.
 紫外線吸収材料を含む基材を用いた試料102では、PET製の基材を用いた試料101と同程度の結果が得られた。この結果から、紫外線吸収材料が含まれた基材を用いることも可能である。 In the sample 102 using the base material containing the ultraviolet absorbing material, the same result as the sample 101 using the PET base material was obtained. From this result, it is also possible to use a substrate containing an ultraviolet absorbing material.
 波長380~400nmに吸収領域を有する紫外線吸収材料(インドール化合物)とともに、波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収材料(トリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物)が用いられている試料103、試料112、及び、試料113は、熱線遮蔽フィルムの変色度が非常に小さい。このように、波長380~400nmに吸収領域を有する紫外線吸収材料と、波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収材料とを併用することにより、熱線遮蔽フィルムの変色を抑制することができ、熱線遮蔽フィルムの光学特性の低下を抑制することができる。 An ultraviolet absorbing material (triazine compound, benzotriazole compound, benzophenone compound) having an absorbing region on the shorter wavelength side than wavelength 380 to 400 nm is used together with an ultraviolet absorbing material (indole compound) having an absorbing region at a wavelength of 380 to 400 nm. The sample 103, the sample 112, and the sample 113 that are present have very small discoloration of the heat ray shielding film. As described above, the combined use of the ultraviolet absorbing material having the absorption region at the wavelength of 380 to 400 nm and the ultraviolet absorbing material having the absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm suppresses the discoloration of the heat ray shielding film. It is possible to suppress the deterioration of the optical properties of the heat ray shielding film.
 試料101、及び、試料104~107の結果から、紫外線吸収材料の含有量が同じであれば、紫外線吸収層(粘着層)の厚さが小さいと変色度が悪化し、厚さが大きいと初期可視光透過率が低下する傾向にある。また、試料103と試料115の結果から、紫外線吸収材料を複数種類用いた場合にも、紫外線吸収層(粘着層)の厚さが小さいと変色度が悪化している。この結果から、熱線遮蔽フィルムの変色度と可視光透過率との両立を容易とするためには、紫外線吸収層の厚さを1μm~30μmとすることが好ましい。 From the results of Sample 101 and Samples 104 to 107, if the content of the ultraviolet absorbing material is the same, if the thickness of the ultraviolet absorbing layer (adhesive layer) is small, the discoloration degree deteriorates, and if the thickness is large, the initial value is obtained. Visible light transmittance tends to decrease. Further, from the results of the samples 103 and 115, even when a plurality of types of ultraviolet absorbing materials are used, the discoloration degree deteriorates when the thickness of the ultraviolet absorbing layer (adhesive layer) is small. From this result, it is preferable to set the thickness of the ultraviolet absorbing layer to 1 μm to 30 μm in order to facilitate the coexistence of the color change degree and the visible light transmittance of the heat ray shielding film.
 また、試料101、及び、試料108~111の結果から、紫外線吸収層(粘着層)の厚さ同じであれば、紫外線吸収材料の含有量が小さいと変色度が悪化し、含有量が大きいと初期可視光透過率が低下する傾向にある。このため、熱線遮蔽フィルムの変色度と可視光透過率との両立を容易とするためには、紫外線吸収層の含有量を0.05~15質量%とすることが好ましい。 Further, from the results of Sample 101 and Samples 108 to 111, if the thickness of the UV absorbing layer (adhesive layer) is the same, if the content of the UV absorbing material is small, the degree of discoloration deteriorates and the content is large. The initial visible light transmittance tends to decrease. For this reason, in order to facilitate the coexistence of the color change degree and the visible light transmittance of the heat ray shielding film, the content of the ultraviolet absorbing layer is preferably 0.05 to 15% by mass.
 紫外線吸収材料として、メロシアニン化合物、クマリン化合物、又は、アゾメチン化合物と用いた試料116、試料117、及び、試料118においても、紫外線吸収材料としてインドール化合物を用いた試料101と同様の結果が得られた。この結果から、紫外線吸収層(粘着層)の波長350~400nmの最大透過率が40%以下、且つ、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上を満たす構成であれば、紫外線吸収材料の種類を問わず、熱線遮蔽フィルムに用いることができる。 Samples 116, 117, and 118 using merocyanine compound, coumarin compound, or azomethine compound as the ultraviolet absorbing material showed the same results as those of sample 101 using the indole compound as the ultraviolet absorbing material. . From this result, if the maximum transmittance of the wavelength 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) is 40% or less and the minimum transmittance of the heat ray shielding film wavelength of 420 to 780 nm is 40% or more, Regardless of the type of ultraviolet absorbing material, it can be used for a heat ray shielding film.
 紫外線吸収材料としてトリアジン化合物を用いた試料119においても、紫外線吸収層(粘着層)の波長350~400nmの最大透過率が40%以下、且つ、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上を満たすことにより、熱線遮蔽フィルムとして十分な可視光透過率、及び、変色度が得られている。この結果からも、紫外線吸収層(粘着層)の波長350~400nmの最大透過率が40%以下、且つ、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上を満たす構成であれば、紫外線吸収材料の種類を問わず、熱線遮蔽フィルムに用いることができることがわかる。 Also in the sample 119 using the triazine compound as the ultraviolet absorbing material, the maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is low. By satisfying 40% or more, visible light transmittance and discoloration sufficient for a heat ray shielding film are obtained. Also from this result, the maximum transmittance of the ultraviolet absorbing layer (adhesive layer) at a wavelength of 350 to 400 nm is 40% or less, and the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is 40% or more. It turns out that it can be used for a heat ray shielding film regardless of the kind of ultraviolet absorbing material.
 一方で、熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上を満たさない試料120は、初期可視光透過率が低い。さらに、変色度も悪い。試料120は、紫外線吸収材料の含有量が過剰であるため、熱線遮蔽フィルムの波長420~780nmの最小透過率が34%と低い値である。このため、初期可視光透過率が低く、熱線遮蔽フィルムとして十分な透明性が確保できていない。 On the other hand, the sample 120 in which the minimum transmittance at a wavelength of 420 to 780 nm of the heat ray shielding film does not satisfy 40% or more has a low initial visible light transmittance. In addition, the degree of discoloration is bad. Since the sample 120 has an excessive content of the UV absorbing material, the minimum transmittance of the heat ray shielding film at a wavelength of 420 to 780 nm is a low value of 34%. For this reason, the initial visible light transmittance is low, and sufficient transparency as a heat ray shielding film cannot be secured.
 また、紫外線吸収層(粘着層)の波長350~400nmの最大透過率が40%以下を満たさない試料121~123は、変色度が悪い。特に、粘着層に紫外線吸収材料を有していない試料122は、初期可視光透過率が高いものの、変色度が最も悪い。即ち、紫外線吸収材料を有していない構成であるため、誘電体多層膜に含まれる酸化チタンの変色が大きく、熱線遮蔽フィルムの光学特性が大きく低下してしまう。 In addition, the samples 121 to 123 in which the maximum transmittance at a wavelength of 350 to 400 nm of the ultraviolet absorbing layer (adhesive layer) does not satisfy 40% or less have a low degree of discoloration. In particular, the sample 122 having no ultraviolet absorbing material in the adhesive layer has the highest initial visible light transmittance, but the worst color change. That is, since it is a structure which does not have an ultraviolet-absorbing material, the discoloration of the titanium oxide contained in a dielectric multilayer film is large, and the optical characteristic of a heat ray shielding film will fall large.
〈試料201の熱線遮蔽フィルムの作製〉
 基材(厚さ50μmのポリエチレンテレフタレートフィルム、コスモシャインA4300、東洋紡株式会社製)の一方の面に、下記の方法で調製した熱線遮蔽層塗布液Aを、グラビアコーターで塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させてハードコート層(熱線遮蔽層)を形成した。ハードコート層の厚みは可視光(波長450nm~600nm)透過率が68%になるよう適宜調整した。
<Preparation of heat ray shielding film of sample 201>
On one surface of a base material (polyethylene terephthalate film having a thickness of 50 μm, Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.), a heat ray shielding layer coating solution A prepared by the following method was applied with a gravure coater, and 1 at 90 ° C. Let dry for minutes. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface far from the base material of the coating film under the conditions of illuminance of 100 mW / cm 2 , irradiation amount of 0.2 J / cm 2 , and oxygen concentration of 200 ppm. Thus, a hard coat layer (heat ray shielding layer) was formed. The thickness of the hard coat layer was appropriately adjusted so that the visible light (wavelength: 450 nm to 600 nm) transmittance was 68%.
 次に、下記の方法で調製した粘着層塗布液Bを中本パックス製セパレータ NS23MAのシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層(紫外線吸収層)を形成した。そして、この粘着層(紫外線吸収層)を、上述の方法でハードコート層を形成した基材の他方の面(ハードコート層と逆側の面)に貼り合わせ、試料201の熱線遮蔽フィルムを作製した。 Next, the adhesive layer coating solution B prepared by the following method was applied to the silicone release surface of Nakamoto Pax NS23MA with a comma coater so that the dry film thickness was 10 μm. An adhesive layer (ultraviolet absorption layer) was formed by drying for 1 minute. Then, this adhesive layer (ultraviolet absorption layer) is bonded to the other surface (surface opposite to the hard coat layer) of the base material on which the hard coat layer is formed by the above-described method, and a heat ray shielding film of sample 201 is produced. did.
[熱線遮蔽層塗布液A]
 紫外線硬化性アロニックス(登録商標)M-405(東亞合成株式会社製)390質量部と、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)0.4質量部とを混合し、カーボンブラック(CB)分散液(KCF-22、住友金属鉱山社製)5質量部、溶媒としてメチルエチルケトン450質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤フタージェント(登録商標)650A(株式会社ネオス製)0.5質量部を添加して、熱線遮蔽層塗布液Aを調製した。
[Heat ray shielding layer coating solution A]
390 parts by mass of UV curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) and 0.4 part by mass of EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) were mixed, and carbon black ( CB) 5 parts by mass of a dispersion (KCF-22, manufactured by Sumitomo Metal Mining) and 450 parts by mass of methyl ethyl ketone as a solvent were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of fluorosurfactant surfactant (registered trademark) 650A (manufactured by Neos Co., Ltd.) were added. Then, a heat ray shielding layer coating solution A was prepared.
[粘着層塗布液B]
 粘着剤としてN-2147(固形分35%、日本合成化学工業製)を100質量部、紫外線吸収材料としてS0511(メロシアニン化合物、FEW CHEMICALS社製)を2質量部、TINUVIN 477(トリアジン化合物、BASF製)を7質量部、及び、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して粘着層塗布液Bを調整した。
[Adhesive layer coating solution B]
100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 2 parts by mass of S0511 (merocyanine compound, manufactured by FEW CHEMICALS) as a UV-absorbing material, TINUVIN 477 (triazine compound, manufactured by BASF) 7 parts by weight and 1.0 part by weight of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution B.
〈試料202の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が42%になるように調整した以外は、試料201と同様に試料202の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 202>
A heat ray shielding film of Sample 202 was produced in the same manner as Sample 201, except that in the production of the heat ray shielding film of Sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 42%.
〈試料203の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が42%になるように調整し、粘着層塗付液Bを下記の方法で調製した粘着層塗付液Cに変更した以外は、試料201と同様に試料203の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 203>
In preparation of the heat ray shielding film of the above-mentioned sample 201, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 42%, and the adhesive layer coating solution B was prepared by the following method. A heat ray shielding film of Sample 203 was produced in the same manner as Sample 201 except that the sample was changed to C.
[粘着層塗付液C]
 粘着剤としてN-2147(固形分35%。日本合成化学工業製)を100質量部、紫外線吸収材料としてS2142(クマリン化合物、FEW CHEMICALS製)を2質量部、TINUVIN 477(トリアジン化合物、BASF製)を7質量部、及び、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して、粘着層塗布液Cを調整した。
[Adhesive layer coating solution C]
100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 2 parts by mass of S2142 (coumarin compound, manufactured by FEW CHEMICALS) as a UV absorbing material, TINUVIN 477 (manufactured by BASF) 7 parts by mass and 1.0 part by mass of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution C.
〈試料204の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層の厚みを15μmに調整した以外は、試料201と同様に試料204の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 204>
In the production of the heat ray shielding film of the sample 201 described above, the sample was the same as the sample 201 except that the thickness of the hard coat layer was adjusted so that the visible light transmittance was 72% and the thickness of the adhesive layer was adjusted to 15 μm. 204 heat ray shielding films were produced.
〈試料205の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層の厚みが15μmになるよう調整した以外は、試料201と同様に試料205の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 205>
In preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 85%, and the thickness of the adhesive layer was adjusted so as to be 15 μm. A heat ray shielding film of sample 205 was prepared.
〈試料206の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを下記の方法で調製した熱線遮蔽層塗布液Bに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整した以外は、試料201と同様に試料206の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 206>
In the production of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution B prepared by the following method, and the thickness of the hard coat layer becomes 72% visible light transmittance. A heat ray shielding film of Sample 206 was produced in the same manner as Sample 201 except that the adjustment was made as described above.
[熱線遮蔽層塗布液B]
 紫外線硬化性アロニックス(登録商標)M-405(東亞合成株式会社製)390質量部と、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)0.4質量部とを混合し、ATO(アンチモンドープ酸化スズ、ANP社製、SR35M、平均粒径:15nm)650質量部、溶媒としてメチルエチルケトン300質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤(フタージェント(登録商標)650A(株式会社ネオス製)0.5質量部を添加して、熱線遮蔽層塗布液Bを調製した。
[Heat ray shielding layer coating solution B]
Ultraviolet curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) (390 parts by mass) and EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) (0.4 parts by mass) were mixed, and ATO (antimony) was mixed. 650 parts by mass of doped tin oxide, manufactured by ANP, SR35M, average particle size: 15 nm), and 300 parts by mass of methyl ethyl ketone as a solvent were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of a fluorosurfactant (phthalent (registered trademark) 650A (manufactured by Neos Corporation) were added. Thus, a heat ray shielding layer coating solution B was prepared.
〈試料207の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Bに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを粘着層塗付液Cに変更した以外は、試料201と同様に試料207の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 207>
In the production of the heat ray shielding film of the above-described sample 201, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution B, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 72%. A heat ray shielding film of Sample 207 was produced in the same manner as Sample 201 except that the layer coating solution B was changed to the adhesive layer coating solution C.
〈試料208の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Bに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを下記の方法で調製した粘着層塗付液Aに変更した以外は、試料201と同様に試料208の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 208>
In the production of the heat ray shielding film of the above-described sample 201, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution B, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 72%. A heat ray shielding film of Sample 208 was produced in the same manner as Sample 201 except that the layer coating solution B was changed to the adhesive layer coating solution A prepared by the following method.
[粘着層塗付液A]
 粘着剤としてN-2147(固形分35%、日本合成化学工業製)を100質量部、紫外線吸収材料としてBONASORB-3912(固形分100%、インドール化合物、オリヱント化学工業製)を2質量部、TINUVIN 477(トリアジン化合物。BASF製)を7質量部、及び、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して、粘着層塗布液Aを調整した。
[Adhesive layer coating solution A]
100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industries) as an adhesive, 2 parts by mass of BONASORB-3912 (100% solids, indole compound, manufactured by Orient Chemical Industries), TINUVIN 7 parts by weight of 477 (triazine compound, manufactured by BASF) and 1.0 part by weight of coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry), an isocyanate curing agent, were mixed to prepare an adhesive layer coating solution A. did.
〈試料209の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Bに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを下記の方法で調製した粘着層塗付液Dに変更した以外は、試料201と同様に試料209の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 209>
In the production of the heat ray shielding film of the above-described sample 201, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution B, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 72%. A heat ray shielding film of Sample 209 was produced in the same manner as Sample 201, except that the layer coating solution B was changed to the adhesive layer coating solution D prepared by the following method.
[粘着層塗付液D]
 粘着剤としてN-2147(固形分35%、日本合成化学工業製)を100質量部、紫外線吸収材料としてBONASORB-3911(固形分100%、インドール化合物、オリヱント化学工業製の)を0.89質量部、TINUVIN 477(トリアジン化合物、BASF製)を7質量部、及び、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して、粘着層塗布液Dを調整した。
[Adhesive layer coating solution D]
100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, and 0.89 mass of BONASORB-3911 (100% solid content, indole compound, manufactured by Orient Chemical Industries) as an ultraviolet absorbing material Part, 7 parts by mass of TINUVIN 477 (triazine compound, manufactured by BASF) and 1.0 part by mass of Coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.), an isocyanate-based curing agent, were mixed. D was adjusted.
〈試料210の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを下記の方法で調製した熱線遮蔽層塗布液Dに変更し、ハードコート層の厚みを可視光透過率が43%になるように調整し、粘着層塗付液Bを粘着層塗付液Aに変更した以外は、試料201と同様に試料210の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 210>
In the production of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution D prepared by the following method, and the thickness of the hard coat layer becomes 43% visible light transmittance. Thus, a heat ray shielding film of Sample 210 was prepared in the same manner as Sample 201 except that the adhesive layer coating solution B was changed to the adhesive layer coating solution A.
[熱線遮蔽層塗布液D]
 紫外線硬化性アロニックス(登録商標)M-405(東亞合成株式会社製)390質量部と、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)0.4質量部とを混合し、カーボンブラック(CB)分散液(KCF-22、住友金属鉱山社製)5質量部、セシウム含有酸化タングステンとしてセシウムドープト酸化タングステン分散液YMF-02A(全固形分濃度28質量%、セシウムドープト酸化タングステン粒子の濃度18.5質量%、組成:Cs0.33WO、住友金属鉱山株式会社製)650質量部、溶媒としてメチルエチルケトン300質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤フタージェント(登録商標)650A(株式会社ネオス製)0.5質量部を添加して、熱線遮蔽層塗布液Dを調製した。
[Heat ray shielding layer coating solution D]
390 parts by mass of UV curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) and 0.4 part by mass of EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) were mixed, and carbon black ( CB) Dispersion (KCF-22, manufactured by Sumitomo Metal Mining Co., Ltd.) 5 parts by mass, cesium-containing tungsten oxide as cesium doped tungsten oxide dispersion YMF-02A (total solid concentration 28 mass%, cesium doped tungsten oxide particles A concentration of 18.5% by mass, composition: Cs 0.33 WO 3 , manufactured by Sumitomo Metal Mining Co., Ltd.) 650 parts by mass, and 300 parts by mass of methyl ethyl ketone as a solvent were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of fluorosurfactant surfactant (registered trademark) 650A (manufactured by Neos Co., Ltd.) were added. Then, a heat ray shielding layer coating solution D was prepared.
〈試料211の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Dに変更し、ハードコート層の厚みを可視光透過率が43%になるように調整し、粘着層塗付液Bを粘着層塗付液Dに変更した以外は、試料201と同様に試料211の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 211>
In the preparation of the heat ray shielding film of the above-described sample 201, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution D, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 43%. A heat ray shielding film of Sample 211 was prepared in the same manner as Sample 201 except that the layer coating solution B was changed to the adhesive layer coating solution D.
〈試料212の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを下記の方法で調製した熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを粘着層塗付液Dに変更した以外は、試料201と同様に試料212の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 212>
In the production of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution C prepared by the following method, and the visible light transmittance becomes 72% with respect to the thickness of the hard coat layer. Thus, a heat ray shielding film of Sample 212 was prepared in the same manner as Sample 201 except that the adhesive layer coating solution B was changed to the adhesive layer coating solution D.
[熱線遮蔽層塗布液C]
 紫外線硬化性アロニックス(登録商標)M-405(東亞合成株式会社製)390質量部と、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)0.4質量部とを混合し、セシウム含有酸化タングステンとしてセシウムドープト酸化タングステン分散液YMF-02A(全固形分濃度28質量%、セシウムドープト酸化タングステン粒子の濃度18.5質量%、組成:Cs0.33WO、住友金属鉱山株式会社製)650質量部、溶媒としてメチルエチルケトン300質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤フタージェント(登録商標)650A(株式会社ネオス製)0.5質量部を添加して、熱線遮蔽層塗布液Cを調製した。
[Heat ray shielding layer coating solution C]
390 parts by mass of UV curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) and 0.4 part by mass of EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) are mixed, and cesium-containing oxidation Cesium-doped tungsten oxide dispersion YMF-02A as tungsten (total solid content concentration 28% by mass, concentration of cesium-doped tungsten oxide particles 18.5% by mass, composition: Cs 0.33 WO 3 , manufactured by Sumitomo Metal Mining Co., Ltd. ) 650 parts by mass and 300 parts by mass of methyl ethyl ketone as a solvent were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of fluorosurfactant surfactant (registered trademark) 650A (manufactured by Neos Co., Ltd.) were added. A heat ray shielding layer coating solution C was prepared.
〈試料213の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを粘着層塗付液Aに変更した以外は、試料201と同様に試料213の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 213>
In the preparation of the heat ray shielding film of the above-described sample 201, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution C, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 72%. A heat ray shielding film of Sample 213 was produced in the same manner as Sample 201 except that the layer coating solution B was changed to the adhesive layer coating solution A.
〈試料214の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層塗付液Bを粘着層塗付液Dに変更した以外は、試料201と同様に試料214の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 214>
In the preparation of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution C, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 85%, A heat ray shielding film of sample 214 was produced in the same manner as sample 201 except that layer coating solution B was changed to adhesive layer coating solution D.
〈試料215の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層塗付液Bを粘着層塗付液Aに変更した以外は、試料201と同様に試料215の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 215>
In the preparation of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to the heat ray shielding layer coating solution C, and the thickness of the hard coat layer is adjusted so that the visible light transmittance is 85%, A heat ray shielding film of Sample 215 was produced in the same manner as Sample 201 except that the layer coating solution B was changed to the adhesive layer coating solution A.
〈試料216の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、基材を下記に方法で作製した誘電体多層膜(反射層)付基材に変更し、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを粘着層塗付液Dに変更した以外は、試料201と同様に試料216の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 216>
In the preparation of the heat ray shielding film of the sample 201 described above, the substrate was changed to a substrate with a dielectric multilayer film (reflective layer) produced by the following method, and the heat ray shielding layer coating solution A was changed to the heat ray shielding layer coating solution C. The thickness of the hard coat layer was adjusted so that the visible light transmittance was 72%, and the adhesive layer coating solution B was changed to the adhesive layer coating solution D except that the sample 216 was changed. A heat ray shielding film was produced.
[低屈折率層用塗布液]
 380質量部のコロイダルシリカ(10質量%、スノーテックスOXS、一次粒子の平均粒径=4~6nm、日産化学工業株式会社製)、50質量部のホウ酸水溶液(3質量%)、300質量部のポリビニルアルコール(4質量%、JP-45、重合度:4500、ケン化度:88mol%、日本酢ビ・ポバール株式会社製)、3質量部の界面活性剤(5質量%、ソフタゾリンLSB-R、川研ファインケミカル株式会社製)を、45℃でこの順に加えて混合した。そして、純水で100質量部に仕上げ、低屈折率層用塗布液を調製した。
[Coating liquid for low refractive index layer]
380 parts by mass of colloidal silica (10% by mass, Snowtex OXS, average particle size of primary particles = 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass), 300 parts by mass Polyvinyl alcohol (4% by mass, JP-45, polymerization degree: 4500, saponification degree: 88 mol%, manufactured by Nihon Vitamin Pover Co., Ltd.), 3 parts by mass of surfactant (5% by mass, SOFTAZOLINE LSB-R) , Manufactured by Kawaken Fine Chemical Co., Ltd.) in this order at 45 ° C. and mixed. And it finished to 100 mass parts with pure water, and prepared the coating liquid for low refractive index layers.
[高屈折率層塗布液]
(シリカ付着二酸化チタンゾルの作製)
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に、純水2質量部を加えた後、90℃に加熱した。次に、ケイ酸水溶液(日本化学社製のケイ酸ソーダ4号を、SiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に加えて混合し、さらに、オートクレーブにおいて、175℃で18時間の加熱処理を行った。そして、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が6質量%のSiOを表面に付着させた二酸化チタンゾル(シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
[High refractive index layer coating solution]
(Preparation of silica-attached titanium dioxide sol)
After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.), Heated. Next, 0.5 parts by mass of an aqueous silicic acid solution (sodium silicate No. 4 manufactured by Nippon Chemical Co., Ltd. diluted with pure water so that the SiO 2 concentration is 0.5 mass%) is gradually added and mixed. Furthermore, heat treatment was performed at 175 ° C. for 18 hours in an autoclave. And after cooling, it concentrates with an ultrafiltration membrane to obtain a titanium dioxide sol (silica-attached titanium dioxide sol) (volume average particle size: 9 nm) having SiO 2 with a solid content concentration of 6% by mass attached to the surface. It was.
(高屈折率層塗布液の調整)
 得られたシリカ付着二酸化チタンゾル(20質量%)113質量部に対し、クエン酸水溶液(1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(クラレ社製、エクセバールRS-2117、鹸化度:97.5~99モル%、エチレン変性度:3.0mol%、重合度:1700、粘度(4%、20℃):23.0~30.0mPa・s、8質量%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)0.4質量部を加えて、高屈折率層塗布液を調製した。
(Adjustment of high refractive index layer coating solution)
To 113 parts by mass of the silica-attached titanium dioxide sol (20% by mass), 48 parts by mass of an aqueous citric acid solution (1.92% by mass) was added, and ethylene modified polyvinyl alcohol (Kuraray Co., Ltd. Exval RS-2117, saponification) was added. Degree: 97.5 to 99 mol%, ethylene modification degree: 3.0 mol%, polymerization degree: 1700, viscosity (4%, 20 ° C.): 23.0 to 30.0 mPa · s, 8 mass%) 113 mass Then, 0.4 parts by mass of a 5% by weight aqueous solution of surfactant (SOFTAZOLINE LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added to prepare a high refractive index layer coating solution.
[誘電体多層膜(反射層)付基材の作製]
 スライドホッパー塗布装置を用いて、上記の方法で得られた低屈折率層用塗布液及び高屈折率層用塗布液を45℃に保温しながら、45℃に加温した基材(厚さ50μmのポリエチレンテレフタレートフィルム;東洋紡株式会社製、コスモシャインA4300)上に、11層同時重層塗布(反射層の全膜厚;1.5μm)を行った。この際、最下層及び最上層は低屈折率層とし、それ以外は低屈折率層と高屈折率層とがそれぞれ交互に積層されるように形成した。塗布量は、乾燥後の膜厚において、低屈折率層が各層150nm、高屈折率層が各層120nmになるように調節した。なお、膜厚は、製造した積層体(基材及び誘電体多層膜)を切断し、その切断面を電子顕微鏡により観察することで確認した。この際、2つの層間の界面を明確に観測することができない場合には、XPS表面分析装置により得た層中に含まれるTiOの厚さ方向のXPSプロファイルにより界面を決定した。
 塗布直後、5℃の冷風を吹き付けてセットした。このとき、表面を指で触れても指に何もつかなくなるまでの時間(セット時間)は5分であった。セット完了後、80℃の温風を吹き付けて乾燥させて、11層からなる誘電体多層膜を基材上に形成し、誘電体多層膜(反射層)付基材を作製した。
[Production of substrate with dielectric multilayer film (reflection layer)]
A substrate (thickness 50 μm) heated to 45 ° C. while keeping the coating solution for low refractive index layer and the coating solution for high refractive index layer obtained by the above method at 45 ° C. using a slide hopper coating apparatus. No. 11 polyethylene terephthalate film (Toyobo Co., Ltd., Cosmo Shine A4300) was applied to 11 layers simultaneously (total thickness of reflective layer: 1.5 μm). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and the other layers were formed such that low refractive index layers and high refractive index layers were alternately laminated. The coating amount was adjusted so that the low refractive index layer had a thickness of 150 nm and the high refractive index layer had a thickness of 120 nm. The film thickness was confirmed by cutting the manufactured laminate (base material and dielectric multilayer film) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
Immediately after application, 5 ° C. cold air was blown and set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes. After completion of the setting, hot air of 80 ° C. was blown and dried to form a dielectric multilayer film consisting of 11 layers on the substrate, and a substrate with a dielectric multilayer film (reflection layer) was produced.
〈試料217の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、基材を誘電体多層膜(反射層)付基材に変更し、熱線遮蔽層塗布液Aを熱線遮蔽層塗布液Cに変更し、ハードコート層の厚みを可視光透過率が72%になるように調整し、粘着層塗付液Bを粘着層塗付液Aに変更した以外は、試料201と同様に試料217の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 217>
In the production of the heat ray shielding film of the sample 201 described above, the base material is changed to a base material with a dielectric multilayer film (reflective layer), the heat ray shielding layer coating liquid A is changed to the heat ray shielding layer coating liquid C, and the hard coat layer The heat ray shielding film of Sample 217 was produced in the same manner as Sample 201, except that the thickness of the film was adjusted so that the visible light transmittance was 72% and the adhesive layer coating solution B was changed to the adhesive layer coating solution A. .
〈試料218の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層塗付液Bを下記の方法で調製した粘着層塗付液Eに変更した以外は、試料201と同様に試料218の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 218>
In preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 85%, and the adhesive layer coating solution B was prepared by the following method. A heat ray shielding film of Sample 218 was produced in the same manner as Sample 201 except that the sample was changed to E.
[粘着層塗付液E]
 粘着剤としてN-2147(固形分35%、日本合成化学工業製)を100質量部、紫外線吸収材料としてTINUVIN 477(トリアジン化合物、BASF製)を7質量部、及び、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して、粘着層塗布液Eを調整した。
[Adhesive layer coating solution E]
100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) as an adhesive, 7 parts by mass of TINUVIN 477 (triazine compound, manufactured by BASF) as an ultraviolet absorbing material, and coronate HL of an isocyanate curing agent 1.0 part by mass (solid content: 75%, manufactured by Nippon Polyurethane Industry Co., Ltd.) was mixed to prepare adhesive layer coating solution E.
〈試料219の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層塗付液Bを粘着層塗付液Dに変更し、粘着層の厚みを5μmにした以外は、試料201と同様に試料219の熱線遮蔽フィルムを作製した。
<Preparation of Sample 219 Heat Shielding Film>
In the preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 85%, the adhesive layer coating liquid B was changed to the adhesive layer coating liquid D, and the adhesive A heat ray shielding film of Sample 219 was produced in the same manner as Sample 201 except that the thickness of the layer was 5 μm.
〈試料220の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aを下記の方法で調製したクリアハードコート(CHC)液に変更し、ハードコート層の厚みを2μmになるように調整し、粘着層塗付液Bを粘着層塗付液Eに変更した以外は、試料201と同様に試料220の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 220>
In the preparation of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A is changed to a clear hard coat (CHC) solution prepared by the following method, and the thickness of the hard coat layer is adjusted to 2 μm, A heat ray shielding film of Sample 220 was prepared in the same manner as Sample 201 except that the adhesive layer coating solution B was changed to the adhesive layer coating solution E.
[クリアハードコート液]
 紫外線硬化性アロニックス(登録商標)M-405(東亞合成株式会社製)390質量部と、EBECRYL(登録商標)350(ダイセル・オルネクス株式会社製)0.4質量部とを混合し、溶媒としてメチルエチルケトン300質量部を加えた。さらに、重合開始剤としてIrgacure(登録商標)819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤フタージェント(登録商標)650A(株式会社ネオス製)0.5質量部を添加して、クリアハードコート液を調製した。
[Clear hard coat solution]
Ultraviolet curable Aronix (registered trademark) M-405 (manufactured by Toagosei Co., Ltd.) 390 parts by mass and EBECRYL (registered trademark) 350 (manufactured by Daicel Ornex Co., Ltd.) 0.4 parts by mass were mixed, and methyl ethyl ketone as a solvent. 300 parts by weight were added. Furthermore, as a polymerization initiator, 20 parts by mass of Irgacure (registered trademark) 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of fluorosurfactant surfactant (registered trademark) 650A (manufactured by Neos Co., Ltd.) were added. A clear hard coating solution was prepared.
〈試料221の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、熱線遮蔽層塗布液Aをクリアハードコート液に変更し、ハードコート層の厚みを2μmになるように調整し、粘着層塗付液Bを下記の方法で調製した粘着層塗付液Fに変更した以外は、試料201と同様に試料221の熱線遮蔽フィルムを作製した。
<Preparation of Sample 221 Heat Shielding Film>
In the preparation of the heat ray shielding film of the sample 201 described above, the heat ray shielding layer coating solution A was changed to a clear hard coat solution, the thickness of the hard coat layer was adjusted to 2 μm, and the adhesive layer coating solution B was changed to the following: A heat ray shielding film of Sample 221 was produced in the same manner as Sample 201 except that the adhesive layer coating solution F was prepared by the method.
[粘着層塗付液F]
 粘着剤としてN-2147(固形分35%、日本合成化学工業製)を100質量部、イソシアネート系硬化剤のコロネートHL(固形分75%、日本ポリウレタン工業製)を1.0質量部混合して、粘着層塗布液Fを調整した。
[Adhesive layer coating solution F]
As an adhesive, 100 parts by mass of N-2147 (solid content 35%, manufactured by Nippon Synthetic Chemical Industry) and 1.0 part by mass of an isocyanate curing agent coronate HL (solid content 75%, manufactured by Nippon Polyurethane Industry) were mixed. The adhesive layer coating solution F was prepared.
〈試料222の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が85%になるように調整し、粘着層塗付液Bを粘着層塗付液Fに変更した以外は、試料201と同様に試料222の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 222>
In preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 85%, and the adhesive layer coating solution B was changed to the adhesive layer coating solution F. A heat ray shielding film of Sample 222 was produced in the same manner as Sample 201.
〈試料223の熱線遮蔽フィルムの作製〉
 上述の試料201の熱線遮蔽フィルムの作製において、ハードコート層の厚みを可視光透過率が30%になるように調整し、粘着層塗付液Bを粘着層塗付液Fに変更した以外は、試料201と同様に試料223の熱線遮蔽フィルムを作製した。
<Preparation of heat ray shielding film of sample 223>
In preparation of the heat ray shielding film of the sample 201 described above, the thickness of the hard coat layer was adjusted so that the visible light transmittance was 30%, and the adhesive layer coating solution B was changed to the adhesive layer coating solution F. A heat ray shielding film of Sample 223 was produced in the same manner as Sample 201.
〈評価〉
[波長350~400nmの最大透過率]
 JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて、波長350~400nmの領域において、各試料の熱線遮蔽フィルムの最大透過率(%)を求めた。
<Evaluation>
[Maximum transmittance at a wavelength of 350 to 400 nm]
Using a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.) by a method according to JIS R3106-1998, the maximum transmittance of the heat ray shielding film of each sample in the wavelength region of 350 to 400 nm ( %).
[波長450~600nmの最小透過率、透過率差]
 JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて、波長450~600nmの領域において、各試料の熱線遮蔽フィルムの最小透過率(%)を求めた。さらに、求めた波長450~600nmの領域の熱線遮蔽フィルムの透過率における最大値T%max(450~600)と最小値T%min(450~600)とから、波長450~600nmの領域における熱線遮蔽フィルムの透過率差を求めた。
[Minimum transmittance at 450 to 600 nm, difference in transmittance]
Using a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.) by a method according to JIS R3106-1998, the minimum transmittance of the heat ray shielding film of each sample in the wavelength region of 450 to 600 nm ( %). Further, from the maximum value T% max (450 to 600) and the minimum value T% min (450 to 600) in the transmittance of the heat ray shielding film in the wavelength region of 450 to 600 nm, the heat ray in the wavelength region of 450 to 600 nm is obtained. The difference in transmittance of the shielding film was determined.
[耐候性試験]
 厚さ3mmの青色ガラスに、試料201~223の熱線遮蔽フィルムの粘着層側を貼り付けた。そして、30℃60%RHの条件で、キセノンウェザーメーター(スガ試験機社製;太陽光に極めて近似した光を発する)を用いて、100W/mの強度のキセノン光を青色ガラス側から試料201~223の熱線遮蔽フィルムに1000時間照射した。この耐候性試験の後、下記のひび割れ、及び、テープ剥離試験を行なった。
[Weather resistance test]
The adhesive layer side of the heat ray shielding films of Samples 201 to 223 was attached to blue glass having a thickness of 3 mm. Then, using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emitting light very close to sunlight) under the condition of 30 ° C. and 60% RH, a sample of xenon light having an intensity of 100 W / m 2 is obtained from the blue glass side. The heat shielding films 201 to 223 were irradiated for 1000 hours. After this weather resistance test, the following crack and tape peel test were performed.
[ひび割れ]
 熱線遮蔽フィルムの試料に対し、15cm×5cm(75cm)を目視にて観察し、クラックの数を計数した。各試料20枚の平均値に基づき、以下の基準で熱線遮蔽フィルムのひび割れを評価した。なお、ひび割れが4又は3であれば、実用上問題なく使用できる。
 4:0個
 3:1~10個
 2:~25個
 1:26個以上
[crack]
With respect to the sample of the heat ray shielding film, 15 cm × 5 cm (75 cm 2 ) was visually observed, and the number of cracks was counted. Based on the average value of 20 samples, the crack of the heat ray shielding film was evaluated according to the following criteria. In addition, if a crack is 4 or 3, it can be used practically without a problem.
4: 0 pieces 3: 1 to 10 pieces 2: 25 pieces 1:26 pieces or more
[テープ剥離試験]
 直径10mmのマンドレルをセットした1506マンドレル屈曲試験機(Elcometer社製)を用いて、熱線遮蔽層を外側に配置して各試料の熱線遮蔽フィルムを屈曲した。この後、JIS-K5600-5-6:1999のクロスカット法に従い、外側に配置した面の最表面に、片刃のカミソリの刃を面に対して90°の角度で2mm間隔のクロスカットを行い、10mm角の碁盤目を作製した。日東電工社製のセロハンテープNo.29を貼り付けて、テープをはがし、膜の剥離状態を調べた。クロスカットしたマス目の数をn、テープ剥離後に熱線遮蔽フィルム側に膜が残っているマス目の数をnとしたとき、F=(n/n)×100(%)を計算した。各試料20枚の平均値に基づき、以下の基準で熱線遮蔽フィルムのテープ剥離を評価した。なお、実使用においては、Fが70%以上であれば層間密着性が確保されていると言える。
 4:F≧90%
 3:90%>F≧80%
 2:80%>F≧70%
 1:70%>F
[Tape peeling test]
Using a 1506 mandrel bending tester (manufactured by Elcometer) with a mandrel having a diameter of 10 mm, the heat ray shielding layer was placed outside and the heat ray shielding film of each sample was bent. After that, according to the cross-cut method of JIS-K5600-5-6: 1999, a cross-cut with a one-blade razor blade is performed at an angle of 90 ° with respect to the surface on the outermost surface of the surface arranged outside. A 10 mm square grid was prepared. Cellophane tape No. manufactured by Nitto Denko Corporation 29 was affixed, the tape was peeled off, and the peeled state of the film was examined. F = (n 1 / n) × 100 (%) was calculated, where n was the number of cross-cut cells and n 1 was the number of cells remaining on the heat ray shielding film side after tape peeling. . Based on the average value of 20 samples, the tape peeling of the heat ray shielding film was evaluated according to the following criteria. In actual use, when F is 70% or more, it can be said that interlayer adhesion is secured.
4: F ≧ 90%
3: 90%> F ≧ 80%
2: 80%> F ≧ 70%
1: 70%> F
[遮熱性能(TSER:Total Solar Energy Rejection)]
 熱線遮蔽フィルムの各試料を、3mmの板ガラスに貼り付け、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて、300nm~2500nmの領域における5nmおきの透過率及び反射率を測定した。次に、JIS S 3107:2013に記載の方法で求められる、日射透過率T(DS)及び日射反射率R(DS)を用いて、下記計算式で遮熱性能TSERを算出した。なお、紫外線吸収層側を分光光度計の検出器側に向けて測定した。
TSER(%)=((100-T(DS)-R(DS))×0.7143)+R(DS)
[Heat insulation performance (TSER: Total Solar Energy Rejection)]
Each sample of the heat ray shielding film was affixed to a 3 mm plate glass, and using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4000 type), transmittance every 5 nm in the region of 300 nm to 2500 nm and The reflectance was measured. Next, using the solar transmittance T (DS) and solar reflectance R (DS) obtained by the method described in JIS S 3107: 2013, the heat shielding performance TSER was calculated by the following formula. The measurement was performed with the ultraviolet absorption layer side facing the detector side of the spectrophotometer.
TSER (%) = ((100−T (DS) −R (DS)) × 0.7143) + R (DS)
 試料201~223の熱線遮蔽フィルムについて、各評価結果を表2に示す。 Table 2 shows the evaluation results for the heat ray shielding films of Samples 201 to 223.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、波長350~400nmの最大透過率が3%以下であり、且つ、波長420~780nmの最小透過率が40%以上である試料201~217は、波長350~400nmの最大透過率が3%以上である試料218~223に比べて、耐候性試験後のひび割れ、及び、テープ剥離の評価においてよい結果が得られている。
 この結果から、紫外光の中でも長波長側である波長350~400nmの光の吸収が高い(最大透過率が3%以下)紫外線吸収層を設けることにより、熱線遮蔽フィルムの耐候性が向上することがわかる。
As shown in Table 2, the samples 201 to 217 having a maximum transmittance at a wavelength of 350 to 400 nm of 3% or less and a minimum transmittance at a wavelength of 420 to 780 nm of 40% or more have a maximum wavelength of 350 to 400 nm. Compared with samples 218 to 223 having a transmittance of 3% or more, good results were obtained in the evaluation of cracks after the weather resistance test and tape peeling.
From this result, it is possible to improve the weather resistance of the heat ray shielding film by providing an ultraviolet absorbing layer having a high absorption of light having a wavelength of 350 to 400 nm which is a long wavelength side among ultraviolet light (maximum transmittance is 3% or less). I understand.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,20,30・・・熱線遮蔽フィルム、11・・・基材、12・・・誘電体多層膜、13・・・紫外線吸収層、22・・・赤外線吸収層 10, 20, 30 ... heat ray shielding film, 11 ... base material, 12 ... dielectric multilayer film, 13 ... ultraviolet absorption layer, 22 ... infrared absorption layer

Claims (13)

  1.  基材と、熱線遮蔽層と、紫外線吸収層とを有する熱線遮蔽フィルムであって、
     前記紫外線吸収層が前記熱線遮蔽層の外側に設けられ、
     前記紫外線吸収層の波長350~400nmの最大透過率が40%以下であり、 
     前記熱線遮蔽フィルムの波長420~780nmの最小透過率が40%以上である
     熱線遮蔽フィルム。
    A heat ray shielding film having a substrate, a heat ray shielding layer, and an ultraviolet ray absorbing layer,
    The ultraviolet absorbing layer is provided outside the heat ray shielding layer;
    The maximum transmittance of the ultraviolet absorbing layer at a wavelength of 350 to 400 nm is 40% or less,
    The heat ray shielding film, wherein the heat ray shielding film has a minimum transmittance of 40% or more at a wavelength of 420 to 780 nm.
  2.  前記熱線遮蔽フィルムの波長350~400nmの最大透過率が3%以下である請求項1に記載の熱線遮蔽フィルム。  The heat ray shielding film according to claim 1, wherein the heat ray shielding film has a maximum transmittance of 3% or less at a wavelength of 350 to 400 nm.
  3.  前記熱線遮蔽フィルムの波長450~600nmの最小透過率が70%以上である請求項1に記載の熱線遮蔽フィルム。  The heat ray shielding film according to claim 1, wherein the heat ray shielding film has a minimum transmittance of 70% or more at a wavelength of 450 to 600 nm.
  4.  前記熱線遮蔽フィルムの波長450~600nmの透過率差が20%以下である請求項1に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 1, wherein the heat ray shielding film has a transmittance difference of 20% or less at a wavelength of 450 to 600 nm.
  5.  前記熱線遮蔽層が、タングステン酸化物、及び、複合タングステン酸化物から選ばれる1種以上の赤外線吸収材料を含む請求項1に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 1, wherein the heat ray shielding layer contains one or more infrared absorbing materials selected from tungsten oxide and composite tungsten oxide.
  6.  熱線遮蔽層が、水溶性高分子及び酸化チタンを含む高屈折率層と、水溶性高分子を含む低屈折率層とが交互に積層された誘電体多層膜である請求項1に記載の熱線遮蔽フィルム。 The heat ray according to claim 1, wherein the heat ray shielding layer is a dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and titanium oxide and a low refractive index layer containing a water-soluble polymer are alternately laminated. Shielding film.
  7.  前記紫外線吸収層が、インドール化合物、アゾメチン化合物、クマリン化合物、メロシアニン化合物から選択される1種以上の紫外線吸収材料を含む請求項1に記載の熱線遮蔽フィルム。  The heat ray shielding film according to claim 1, wherein the ultraviolet absorbing layer contains one or more ultraviolet absorbing materials selected from an indole compound, an azomethine compound, a coumarin compound, and a merocyanine compound.
  8.  前記紫外線吸収層が、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾフェノン化合物から選択される1種以上の紫外線吸収材料を含む請求項7に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 7, wherein the ultraviolet absorbing layer contains one or more ultraviolet absorbing materials selected from a benzotriazole compound, a triazine compound, and a benzophenone compound.
  9.  前記紫外線吸収層に、0.05~15質量%の紫外線吸収材料が含まれる請求項7に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 7, wherein the ultraviolet absorbing layer contains 0.05 to 15% by mass of an ultraviolet absorbing material.
  10.  前記紫外線吸収層の厚さが、1μm~30μmである請求項1に記載の熱線遮蔽フィルム。 2. The heat ray shielding film according to claim 1, wherein the ultraviolet absorbing layer has a thickness of 1 μm to 30 μm.
  11.  前記熱線遮蔽層の両外側に前記紫外線吸収層が設けられる請求項1に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 1, wherein the ultraviolet ray absorbing layer is provided on both outer sides of the heat ray shielding layer.
  12.  前記紫外線吸収層が、粘着剤を含む請求項1に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 1, wherein the ultraviolet absorbing layer contains an adhesive.
  13.  上記基材に、紫外線吸収材料が含まれている請求項1に記載の熱線遮蔽フィルム。 The heat ray shielding film according to claim 1, wherein the base material contains an ultraviolet absorbing material.
PCT/JP2016/069130 2015-07-13 2016-06-28 Heat ray shielding film WO2017010280A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015139785 2015-07-13
JP2015-139785 2015-07-13
JP2015167426 2015-08-27
JP2015-167426 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017010280A1 true WO2017010280A1 (en) 2017-01-19

Family

ID=57757727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069130 WO2017010280A1 (en) 2015-07-13 2016-06-28 Heat ray shielding film

Country Status (1)

Country Link
WO (1) WO2017010280A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207701A1 (en) * 2017-05-09 2018-11-15 日東電工株式会社 Composition for optical members, optical member and image display device
JP2018200463A (en) * 2017-05-09 2018-12-20 日東電工株式会社 Composition for optical members, optical member and image display device
CN109254340A (en) * 2017-07-12 2019-01-22 张家港康得新光电材料有限公司 Infrared and ultraviolet ends composition, infrared and ultraviolet cut film and infrared and ultraviolet cut film application
WO2020003812A1 (en) * 2018-06-28 2020-01-02 日東電工株式会社 Optical laminate and organic el display device
WO2020180899A1 (en) * 2019-03-05 2020-09-10 Quantum-Si Incorporated Optical absorption filter for an integrated device
CN113355030A (en) * 2021-06-03 2021-09-07 中稀产业发展(天津)集团有限公司 Preparation method of intelligent dimming glass color-changing heat insulation adhesive film based on quantum dots

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
JP2003267754A (en) * 2002-03-14 2003-09-25 Toto Ltd Heat ray shielding transparent plate
JP2008224926A (en) * 2007-03-12 2008-09-25 Nippon Shokubai Co Ltd Near-infrared ray absorption coating agent
JP2009062411A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
WO2014178276A1 (en) * 2013-05-02 2014-11-06 コニカミノルタ株式会社 Infrared light shielding film, method for installing infrared light shielding film, and method for preventing occurrence of iris on infrared light shielding film
JP2015033854A (en) * 2005-06-21 2015-02-19 日本板硝子株式会社 Transparent article and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
JP2003267754A (en) * 2002-03-14 2003-09-25 Toto Ltd Heat ray shielding transparent plate
JP2015033854A (en) * 2005-06-21 2015-02-19 日本板硝子株式会社 Transparent article and method for producing the same
JP2008224926A (en) * 2007-03-12 2008-09-25 Nippon Shokubai Co Ltd Near-infrared ray absorption coating agent
JP2009062411A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
WO2014178276A1 (en) * 2013-05-02 2014-11-06 コニカミノルタ株式会社 Infrared light shielding film, method for installing infrared light shielding film, and method for preventing occurrence of iris on infrared light shielding film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207701A1 (en) * 2017-05-09 2018-11-15 日東電工株式会社 Composition for optical members, optical member and image display device
JP2018200463A (en) * 2017-05-09 2018-12-20 日東電工株式会社 Composition for optical members, optical member and image display device
CN109254340A (en) * 2017-07-12 2019-01-22 张家港康得新光电材料有限公司 Infrared and ultraviolet ends composition, infrared and ultraviolet cut film and infrared and ultraviolet cut film application
CN109254340B (en) * 2017-07-12 2021-08-10 张家港康得新光电材料有限公司 Infrared and ultraviolet cut-off composition, infrared and ultraviolet cut-off film and application of infrared and ultraviolet cut-off film
WO2020003812A1 (en) * 2018-06-28 2020-01-02 日東電工株式会社 Optical laminate and organic el display device
JP2020003650A (en) * 2018-06-28 2020-01-09 日東電工株式会社 Optical laminate and organic el display device
CN112334801A (en) * 2018-06-28 2021-02-05 日东电工株式会社 Optical laminate and organic EL display device
JP7184549B2 (en) 2018-06-28 2022-12-06 日東電工株式会社 Optical laminate and organic EL display device
WO2020180899A1 (en) * 2019-03-05 2020-09-10 Quantum-Si Incorporated Optical absorption filter for an integrated device
CN113355030A (en) * 2021-06-03 2021-09-07 中稀产业发展(天津)集团有限公司 Preparation method of intelligent dimming glass color-changing heat insulation adhesive film based on quantum dots

Similar Documents

Publication Publication Date Title
WO2017010280A1 (en) Heat ray shielding film
JP6443341B2 (en) Light reflecting film and light reflector using the same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2013099564A1 (en) Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
JP6064911B2 (en) Infrared shielding film and infrared shielding body using the same
JPWO2016006388A1 (en) Optical film
JP2020115157A (en) Light reflection film and manufacturing method for light reflection film
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
JP2018116069A (en) Infrared blocking film
JPWO2016017513A1 (en) Infrared reflective film and laminated glass
JP2015125168A (en) Dielectric multilayer film
WO2016152458A1 (en) Optical film and method for manufacturing optical film
WO2017077810A1 (en) Light reflecting film
JP6759697B2 (en) Roll-shaped optical reflective film
JP6176256B2 (en) Optical reflection film and optical reflector using the same
JPWO2016076333A1 (en) Manufacturing method of optical reflection film
JP6326780B2 (en) Window pasting film
JP2017096990A (en) Method for producing light reflection film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
WO2014148366A1 (en) Light reflecting film and fabrication method therefor
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
WO2017043288A1 (en) Optical reflection film
JP2017026864A (en) Optical Reflection Film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16824260

Country of ref document: EP

Kind code of ref document: A1