WO2017077810A1 - Light reflecting film - Google Patents

Light reflecting film Download PDF

Info

Publication number
WO2017077810A1
WO2017077810A1 PCT/JP2016/079743 JP2016079743W WO2017077810A1 WO 2017077810 A1 WO2017077810 A1 WO 2017077810A1 JP 2016079743 W JP2016079743 W JP 2016079743W WO 2017077810 A1 WO2017077810 A1 WO 2017077810A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light stabilizer
refractive index
light
dielectric multilayer
Prior art date
Application number
PCT/JP2016/079743
Other languages
French (fr)
Japanese (ja)
Inventor
安藤 達哉
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017077810A1 publication Critical patent/WO2017077810A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a light reflecting film.
  • the dielectric multilayer film formed using a water-soluble polymer has a problem that, when subjected to a heat resistance test as an acceleration test due to the influence of residual moisture, the haze value increases and transparency is impaired. .
  • an object of the present invention is to provide a light reflecting film having excellent heat resistance even in a configuration having a dielectric multilayer film using a water-soluble polymer.
  • the present invention provides a dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and a low refractive index layer containing a water-soluble polymer are alternately laminated, and a hindered amine-based film.
  • a light reflecting film comprising a light stabilizer and a light stabilizer-containing layer provided adjacent to the dielectric multilayer film.
  • the present invention it is possible to provide a light reflecting film excellent in heat resistance while having a configuration including a dielectric multilayer film using a water-soluble polymer.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the first embodiment.
  • the light reflecting film 1 of the first embodiment shown in this figure is used by being attached to equipment 100 that is exposed to sunlight for a long period of time, such as an outdoor window of a building or an automobile window.
  • a light reflecting film 1 includes a dielectric multilayer film 13 in which low-refractive index layers 13L and high-refractive index layers 13H are alternately stacked on one main surface of a resin base material 11, and the dielectric multilayer film. 13 and a light stabilizer-containing layer 15 provided adjacent to 13.
  • the light reflecting film 1 may include an adhesive layer 17 on the light stabilizer-containing layer 15, and is used by being attached to the equipment 100 through the adhesive layer 17.
  • the optical characteristics of such a light reflecting film 1 are such that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more, preferably 75% or more, more preferably 85% or more. Further, if the light reflecting film 1 is, for example, a near-infrared shielding film, it is preferable that the light reflecting film 1 has a region where the reflectance exceeds 50% in a wavelength region of 900 nm to 1400 nm. In addition, below, embodiment is described as this light reflection film 1 being a heat ray reflective film which reflects near infrared rays.
  • the light reflecting film 1 is not limited to being a near-infrared shielding film, and may be a film that reflects and shields infrared rays and ultraviolet rays, and has a reflectance in each wavelength region of 50. It is assumed that the film thickness and the constituent material of each layer are set so as to exceed%.
  • the detailed configuration of the light reflecting film 1 will be described in the order of the dielectric multilayer film 13, the light stabilizer-containing layer 15, the adhesive layer 17, and the resin base material 11, and finally the method for manufacturing the light reflecting film 1 will be described. To do.
  • the dielectric multilayer film 13 has a configuration in which a high refractive index layer 13H containing a water-soluble polymer and a low refractive index layer 13L containing a water-soluble polymer are alternately laminated, and the high refractive index layer 13H and the low refractive index layer 13L. It has at least one laminated body with the rate layer 13L.
  • the “high refractive index layer” and the “low refractive index layer” are layers having a refractive index difference between them, and when comparing the refractive index difference between two adjacent layers, the layer having the higher refractive index is selected.
  • the high refractive index layer 13H is used, and the lower layer is the low refractive index layer 13L.
  • the dielectric multilayer film 13 may be a laminated body in which the high refractive index layers 13H and the low refractive index layers 13L are alternately laminated, and the number of these laminated layers is not limited.
  • the number of layers of the high refractive index layer 13H and the low refractive index layer 13L is, for example, in the range of 10 to 50 layers, preferably 13 to 39 layers. If the number of laminated layers is 10 or more, a desired infrared reflectance is obtained, and if it is 13 or more, a higher infrared reflectance is obtained and the heat shielding effect is improved.
  • the dielectric multilayer film 13 is excellent in that sufficient weather resistance can be obtained such that the dielectric multilayer film 13 is difficult to break and the edge peeling can be suppressed. Furthermore, if the number of laminated layers is 39 or less, high weather resistance can be obtained, for example, cracking of the dielectric multilayer film 13 and prevention of peeling off of the end portion can be prevented.
  • the lowermost layer on the resin substrate 11 side and the outermost layer on the light stabilizer-containing layer 15 side may be either the high refractive index layer 13H or the low refractive index layer 13L.
  • the adhesion to the adjacent layer (for example, the resin base material 11) in the lowermost layer is improved, and the dielectric multilayer film 13 is formed by coating. It is easy to improve the blowing resistance of the outermost layer.
  • the dielectric multilayer film 13 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer 13H and low refractive index layer 13L increases.
  • the high refractive index layer 13H preferably has a higher refractive index.
  • the refractive index of the high refractive index layer 13H is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and still more preferably 1.90 to 2.20.
  • the low refractive index layer 13L preferably has a lower refractive index.
  • the refractive index of the low refractive index layer 13L is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
  • the refractive index difference is preferably 0.1 or more in at least one pair of the adjacent high refractive index layer 13H and low refractive index layer 13L. 0.2 or more, more preferably 0.25 or more.
  • the refractive index difference is within the above-described preferable range in all layers.
  • the outermost layer and the lowermost layer of the dielectric multilayer film 13 may have a configuration outside the above preferred range.
  • the refractive index difference and the necessary number of layers as described above can be calculated using commercially available optical design software.
  • the dielectric multilayer film 13 as described above contains metal oxide particles in addition to the water-soluble polymer if the high refractive index layer 13H.
  • the low refractive index layer 13L contains inorganic fine particles as required in addition to the water-soluble polymer. Since the high refractive index layer 13H and the low refractive index layer 13L contain these particles, the refractive index can be easily adjusted. Therefore, the difference in refractive index between the high refractive index layer 13H and the low refractive index layer 13L can be increased, and the number of stacked layers can be reduced to make the dielectric multilayer film 13 thinner. Further, by reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the stack interface can be suppressed.
  • a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer 13H and the low refractive index layer 13L.
  • the high refractive index layer 13H includes a set of portions in which the components constituting the high refractive index layer 13H are 50% by mass or more in the mixed layer, and the low refractive index layer A set of portions where the component constituting 13L exceeds 50 mass% is included in the low refractive index layer 13L.
  • the dielectric multilayer film 13 as described above is formed by controlling the refractive index and the film thickness of each of the high refractive index layer 13H and the low refractive index layer 13L constituting the dielectric multilayer film 13, thereby enabling visible light and near red light. It is assumed that the reflectance and transmittance of a specific wavelength such as external light are adjusted.
  • the detailed configuration of the dielectric multilayer film 13 includes the water-soluble polymer contained in the dielectric multilayer film 13, other materials, metal oxide particles contained in the high refractive index layer 13H, and the low refractive index layer 13L.
  • the inorganic fine particles contained in will be described in the order.
  • the water-soluble polymer contained in the dielectric multilayer film 13 functions as a binder for the high refractive index layer 13H and the low refractive index layer 13L.
  • the water-soluble polymer contained in the high refractive index layer 13H and the water-soluble polymer contained in the low refractive index layer 13L may be the same component or different components but different components. Are preferred.
  • Examples of the water-soluble polymer contained in the dielectric multilayer film 13 include polyvinyl alcohol and its derivatives (polyvinyl alcohol resin), gelatin, thickening polysaccharides, and the like. From the viewpoints of coating unevenness and film thickness uniformity (haze), a polyvinyl alcohol resin is preferable.
  • Examples of the polyvinyl alcohol resin include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. These water-soluble polymers may be used alone or in combination of two or more.
  • Polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
  • JP-45 degree of polymerization 4500, degree of saponification 88 mol% manufactured by Nippon Vinegar Poval can be used.
  • modified polyvinyl alcohol examples include (a) anion-modified polyvinyl alcohol, (b) nonion-modified polyvinyl alcohol, (c) cation-modified polyvinyl alcohol, (d) ethylene-modified polyvinyl alcohol, and (e) a vinyl alcohol-based polymer.
  • vinyl acetate resin for example, “Exeval” manufactured by Kuraray Co., Ltd.
  • polyvinyl acetal resin obtained by reacting polyvinyl alcohol with aldehyde for example, “S Lecque” manufactured by Sekisui Chemical Co., Ltd.
  • silanol-modified polyvinyl having silanol group Alcohol for example, “R-1130” manufactured by Kuraray Co., Ltd.
  • modified polyvinyl alcohol resin having an acetoacetyl group in the molecule for example, “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Etc.
  • Examples of (a) anion-modified polyvinyl alcohol include polyvinyl alcohol having an anionic group described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-30779. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group described in JP-A-7-9758 to a part of vinyl alcohol, and a hydrophobic compound described in JP-A-8-25795.
  • a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 is contained in the main chain or side chain of the polyvinyl alcohol. It can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • ethylene-modified polyvinyl alcohol for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used.
  • commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
  • Examples of the vinyl alcohol polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • the weight average molecular weight of the above-mentioned polyvinyl alcohol resin is preferably 1,000 to 200,000, more preferably 3000 to 60,000.
  • the value measured by the static light scattering method, the gel permeation chromatograph method (GPC), TOFMASS, etc. can be employ
  • the content of the water-soluble polymer in the dielectric multilayer film 13 is 5 to 75% by mass with respect to the total solid content of the high refractive index layer 13H and the low refractive index layer 13L constituting the dielectric multilayer film 13. It is preferably 10 to 70% by mass.
  • the content of the water-soluble polymer is 5% by mass or more, when a high refractive index layer is formed by a wet film forming method, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. Can be prevented.
  • the content of the water-soluble polymer is 75% by mass or less, it is preferable when the metal oxide particles are contained in the high refractive index layer 13H and when the inorganic fine particles are contained in the low refractive index layer 13L. Content.
  • content of water-soluble polymer is calculated
  • the heat ray shielding film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight.
  • the water-soluble polymer is polyvinyl alcohol. It can be determined that
  • a curing agent can be used in order to cure the water-soluble polymer.
  • Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc., aldehyde curing agents (formaldehyde, glyoxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active vinyl Examples of such compounds include 1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonyl
  • each layer constituting the dielectric multilayer film 13 may contain a surfactant for adjusting the surface tension during coating film formation.
  • a surfactant for adjusting the surface tension during coating film formation.
  • an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, or the like can be used as the surfactant.
  • an anionic surfactant is preferably used, and one containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule is preferable.
  • the content of the surfactant in the high refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the high refractive index layer.
  • the surfactant for example, Newcol series (manufactured by Nippon Emulsifier Co., Ltd.) can be used.
  • the high refractive index layer 13H preferably includes titanium oxide particles as metal oxide particles, but may be other metal oxide particles.
  • the metal oxide particles contained in the high refractive index layer 13H are, for example, Ti, Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal
  • one or two or more kinds of metal oxide particles can be used.
  • one kind of metal oxide particles may be contained, or two or more kinds may be contained.
  • these metal oxide particles include zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, Magnesium oxide, magnesium hydroxide, titanium oxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide, and lead oxide, and These double oxides include lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide.
  • rare earth metal oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, and erbium oxide. , Thulium oxide, ytterbium oxide, lutetium oxide, and the like can be used.
  • TiO 2 , ZnO, and ZrO 2 are preferable as the metal oxide particles contained in the high refractive index layer 13H.
  • TiO 2 titanium dioxide sol
  • rutile type tetragonal type is particularly preferable to anatase type because it has low catalytic activity, and thus the weather resistance of 13H and adjacent layers is high and the refractive index is high.
  • the high refractive index layer 13H preferably has the largest proportion of titanium oxide as metal oxide particles.
  • the content of the metal oxide particles in the high refractive index layer 13H is preferably 20 to 80% by mass in the solid content of the high refractive index layer 13H from the viewpoint of heat ray shielding and color unevenness reduction, preferably 30 to It is more preferably 75% by mass, and further preferably 40 to 70% by mass.
  • the metal oxide particles used for the high refractive index layer 13H may have a structure in which aluminum, silicon, zirconium, or the like is supported on the surface in an island shape having a three-dimensional barrier.
  • the titanium oxide fine particles may be core-shell particles coated with a silicon-containing hydrated oxide.
  • the core-shell particle has a structure in which the surface of metal oxide particles (for example, titanium oxide particles) serving as a core is covered with a shell layer of silicon-containing hydrated oxide.
  • the “coating” indicates a state in which the silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the metal oxide particles (for example, titanium oxide particles) used for the high refractive index layer 13H may be in a state where the surface is completely covered with silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles.
  • the silicon-containing hydrated oxide may be attached to the substrate.
  • the refractive index of the core-shell particles is affected by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide.
  • such coated titanium oxide core-shell particles are also referred to as “silica-attached titanium dioxide sol”.
  • a method of coating the titanium oxide particles with the silicon-containing hydrated oxide a conventionally known method can be used. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007-246351. It is possible to apply the method described in the gazette.
  • the volume average particle diameter of the metal oxide particles used for the high refractive index layer 13H is preferably 100 nm or less, and more preferably 50 nm or less.
  • the volume average particle diameter is preferably 1 to 30 nm, more preferably 1 to 20 nm.
  • the volume average particle diameter is an average value obtained by measuring the particle diameters of 1000 arbitrary particles by a method of observing the particles themselves.
  • a laser diffraction scattering method, a dynamic light scattering method, or a method of observing a particle image appearing on a cross section or surface of a layer containing particles with an electron microscope is used.
  • the average particle size mv the value represented by ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇ The diameter.
  • any of inorganic oxide particles, metal compound particles, and metal oxide particles can be used.
  • the inorganic oxide particles include silicon dioxide (SiO 2 ).
  • An example of the metal compound particles is magnesium fluoride (MgF 2 ).
  • the metal oxide particles among the metal oxide particles exemplified as being contained in the high refractive index layer 13H, those having a refractive index lower than that contained in the high refractive index layer 13H are used.
  • the inorganic fine particles contained in the low refractive index layer 13L it is preferable to use silicon dioxide, and it is particularly preferable to use colloidal silica.
  • the inorganic fine particles contained in the low refractive index layer 13L preferably have an average particle size of 3 to 100 nm.
  • the average particle size (particle size in the dispersion state before coating) of the inorganic fine particles dispersed in the primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle diameter of the inorganic fine particles in the low-refractive index layer 13L is determined by observing the particles themselves or the particles appearing on the cross section or surface of the low-refractive index layer 13L with an electron microscope.
  • the particle size is measured and determined as a simple average value (number average).
  • the particle size of each particle is a circle diameter (area circle equivalent diameter) when a circle having an area equal to the projected area of the particle is assumed.
  • the content of the inorganic fine particles in the low refractive index layer 13L is preferably 5 to 70% by mass with respect to the solid content of the low refractive index layer 13L from the viewpoint of refractive index, and is 10 to 50% by mass. More preferably.
  • the light stabilizer-containing layer 15 is a layer containing a hindered amine light stabilizer and is provided adjacent to the dielectric multilayer film 13.
  • the light stabilizer-containing layer 15 preferably contains an ultraviolet absorber, and includes a light stabilizer, an ultraviolet absorber, a binder, and other materials as necessary. Hereinafter, these details will be described in order.
  • hindered amine light stabilizer (light stabilizer containing layer 15)
  • the hindered amine light stabilizer contained in the light stabilizer-containing layer 15 for example, an [NR] type in which an organic group (R) is directly bonded to a nitrogen atom (N) of a piperidine ring is used.
  • a [NOR] type in which an organic group (R) is bonded to a nitrogen atom (N) of a piperidine ring via an oxygen atom (O) is used.
  • an [NH] type in which a hydrogen atom (H) is bonded to a nitrogen atom (N) of the piperidine ring is used.
  • the [NR] type or [NOR] type hindered amine light stabilizer is a slow-acting, low-deactivation type, and from the viewpoint of long-term durability, [NR] type or [NOR] type It is preferable to use a hindered amine light stabilizer.
  • the light stabilizer-containing layer 15 may contain a [NH] type hindered amine stabilizer together with at least one of [NR] type and [NOR] type hindered amine stabilizers.
  • the [NH] type hindered amine stabilizer provides an initial ultraviolet deterioration suppressing effect
  • at least one of the [NR] type and [NOR] type hindered amine stabilizers provides a long-term persistence of the ultraviolet deterioration suppressing effect.
  • the light stabilizer-containing layer 15 can be constructed.
  • the [NR] type hindered amine light stabilizer As the [NR] type hindered amine light stabilizer, a conventionally known one can be used. For example, it has at least one piperidine ring structure represented by the following formula (1) in the molecule.
  • R 1 is an organic group in which a carbon atom is directly bonded to the nitrogen atom [N] of the piperidine ring, and as an example, methylene having 1 or more carbon atoms and at least one or more methylene atoms It is a functional group containing a group or a compound group having this functional group. Examples of such a compound group include an alkyl group, and also include oligomers and polymers.
  • Tinuvin 144 (trade name) manufactured by BASF is exemplified.
  • NOR NOR type hindered amine light stabilizer
  • the [NOR] type hindered amine light stabilizer a conventionally known one can be used.
  • it has at least one piperidine ring structure represented by the following formula (2) in the molecule.
  • R 1 is an organic group bonded to the nitrogen atom [N] of the piperidine ring via an oxygen atom [O].
  • R 1 has 1 or more carbon atoms and at least 1 or more carbon atoms. It is a functional group containing a methylene group or a compound group having this functional group.
  • Such compound groups include oligomers and polymers, and specifically include alkyl groups such as propyl groups.
  • Tinuvin 123 (trade name) manufactured by BASF is exemplified.
  • the [NH] type hindered amine light stabilizer As the [NH] type hindered amine light stabilizer, a conventionally known one can be used. For example, it has at least one piperidine ring structure represented by the following formula (3) in the molecule.
  • CHIMASSORB 944 (trade name) manufactured by BASF is exemplified.
  • the light stabilizer-containing layer 15 preferably contains 0.05 to 10% by mass of the above-mentioned hindered amine light stabilizer as a total content.
  • the ultraviolet absorber contained in the light stabilizer-containing layer 15 is not particularly limited, but preferably contains an ultraviolet absorber A having an absorption region at a wavelength of 380 to 400 nm. Moreover, you may contain the several ultraviolet absorber which has an absorption area
  • UV absorber A examples include indole compounds, azomethine compounds, coumarin compounds, and merocyanine compounds.
  • the light stabilizer-containing layer 15 preferably contains one or more of these ultraviolet absorbers A.
  • the indole compound is a compound having an indole skeleton represented by the following formula (4).
  • the indole compound contained in the light stabilizer-containing layer 15 is preferably a compound represented by the following formula (5).
  • R 1 is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms.
  • R 2 is an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an ester group.
  • the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a butyl group, and a 2-ethylhexyl group.
  • An example of the aralkyl group having 7 to 10 carbon atoms is a phenylmethyl group.
  • azomethine compound As the azomethine compound contained in the light stabilizer-containing layer 15, a compound having an azomethine skeleton represented by the following formula (6) is preferable.
  • R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a heterocyclic compound, respectively, and R ′ is a halogen compound Atoms, alkyl groups, aryl groups, alkoxy groups, hydroxyl groups, amino groups, carboxyl groups, and heterocyclic compounds.
  • the azomethine compound contained in the light stabilizer-containing layer 15 is preferably a compound having a structure represented by the following formula (7).
  • the coumarin compound contained in the light stabilizer-containing layer 15 is a compound having a coumarin skeleton represented by the following formula (8).
  • Preferred examples of the coumarin compound contained in the light stabilizer-containing layer 15 include 7-diethylamino-4-methyl-chromen-2-one, 7-diethylamino-4a, 8a-dihydro-chromen-2-one, 7- Diethylamino-3-thiophen-2-yl-chromen-2-one, 7-dimethylamino-2-oxo-2H-chloromen-3-carbonitrile, 3- (1H-benzimidazol-2-yl) -7-diethylamino -Chromen-2-one, 1,1,6,6,8-pentamethyl-2,3,5,6-tetrahydro-1H, 4H-11-oxa-3a-aza-benzo [de] anthraphen-10- ON etc. are mentioned.
  • a preferred example of the merocyanine compound contained in the light stabilizer-containing layer 15 is 1,3-dimethyl-5- [2- (3-methyl-oxadolidin) -ethylidene] -pyrimidine-2,4,6- Trione, 1,3-dimethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 1,3-dimethyl-5- [2- ( 3-methyl-thiazolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 3-ethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -2- Thioxo-oxazolidin-4-one, 3-ethyl-5- [2- (3-methyl-thiazolidin-2-ylidene) -ethylidene] -2-thio
  • the indole compounds used in the examples described below are particularly preferably used as the ultraviolet absorber A from the viewpoint of further preventing deterioration of the resin because they can absorb long wavelengths in the ultraviolet region.
  • UV absorber B As the ultraviolet absorber B having an absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm, a known material generally used as an ultraviolet absorber can be used. Examples of such ultraviolet absorber B include benzotriazole compounds, triazine compounds, and benzophenone compounds.
  • the light stabilizer-containing layer 15 preferably contains one or more of these ultraviolet absorbers B.
  • the light stabilizer-containing layer 15 preferably contains 0.05 to 15% by mass of the ultraviolet absorber as the total content of the above-described ultraviolet absorbers, and preferably 1 to 10% by mass of the ultraviolet absorber. More preferably it is included.
  • the binder constituting the light stabilizer-containing layer 15 is not particularly limited, but urethane-based, silicone-based, acrylic-based, melamine-based, epoxy-based, acrylate-based, polyfunctional (meth) acrylic resins,
  • the water-soluble polymer exemplified for the dielectric multilayer film 13 is used.
  • an acrylic resin excellent in transparency and durability is preferably used, and thereby the deterioration of the light stabilizer-containing layer 15 can be prevented, so that an increase in haze of the light reflecting film 1 can be suppressed over a long period of time.
  • the light resistance is improved
  • Other materials can be added to the light stabilizer-containing layer 15 as necessary, as long as the effects of the light stabilizer-containing layer 15 are not impaired.
  • Other materials include, for example, dispersants, plasticizers, UV stabilizers, surfactants, antioxidants, flame retardants, preservatives, antioxidants, thermal stabilizers, lubricants, fillers, photoinitiators, light Add sensitizers, thermal polymerization initiators, thickeners, coupling agents, antistatic agents, leveling agents, adhesion modifiers, modifiers, or additives such as dyes and pigments to give any color tone May be. These may be used alone or in combination of two or more.
  • the adhesive layer 17 should just be comprised with the material which has transparent adhesiveness.
  • the transparent adhesive material include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent.
  • the adhesion layer 17 contains an adhesive as an adhesive material.
  • the adhesive include acrylic adhesive, silicone adhesive, urethane adhesive, polyvinyl butyral adhesive, polyester resin, polyvinyl acetate resin, nitrile rubber, ethylene-vinyl acetate adhesive, and the like. Can do.
  • a method of spraying water on the window and bonding the adhesive layer 17 side of the light reflecting film 1 to a wet glass surface a so-called water bonding method is used.
  • a so-called water bonding method is used.
  • an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
  • the film thickness of the adhesive layer 17 is preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the adhesive layer 17 is preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • this adhesion layer 17 contains a ultraviolet absorber, and the same thing as the light stabilizer containing layer 15 is used as a contained ultraviolet absorber.
  • the resin substrate 11 is not particularly limited as long as it is a substrate formed of a transparent organic material.
  • resin substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride films, cellulose acetate films, polyimide films, polybutyral films,
  • the resin base material include a cycloolefin polymer film and a transparent cellulose nanofiber film. Furthermore, two or more layers of these resin base materials can be laminated and used.
  • polyester film As the resin base material 11, it is preferable to use a polyester film.
  • dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol
  • a film containing a diol component as a main constituent is preferred.
  • the resin substrate 11 may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the thickness of the resin substrate 11 is preferably in the range of 5 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 150 ⁇ m.
  • the resin base material 11 preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the resin base material 11, the minimum transmittance of the light reflecting film 1 with a wavelength of 420 nm to 780 nm can be increased.
  • the resin base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • a stretched film may be prepared from an unstretched resin base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. It can.
  • the draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the resin base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in any step from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 ° C. to 200 ° C., more preferably a treatment temperature of 100 ° C. to 180 ° C. Further, it is preferable to carry out the treatment at a relaxation rate of 0.1% to 10% in both the longitudinal direction and the width direction, and more preferably, the treatment is performed at a relaxation rate of 2% to 6%.
  • the resin base material 11 subjected to the relaxation treatment is improved in heat resistance by being subjected to off-line heat treatment, and is further improved in dimensional stability.
  • the manufacturing method of the light reflection film 1 includes the step of forming the dielectric multilayer film 13 on the resin base material 11, the step of forming the light stabilizer-containing layer 15 on the dielectric multilayer film 13, and the step of containing the light stabilizer. Forming an adhesive layer 17 on the layer 15.
  • these steps will be described in order.
  • the method for forming the dielectric multilayer film 13 on the resin substrate 11 is not particularly limited, but, for example, a high refractive index layer coating solution and a low refractive index layer coating solution are alternately applied and dried. The method of forming by is mentioned.
  • the method for preparing the coating solution for the high refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, metal oxide particles, a solvent, and other additives added as necessary. It is done.
  • the method for preparing the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and if necessary, inorganic fine particles and other additives.
  • the mixing order of the components is not particularly limited, and the components may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the solvent for preparing each coating solution is not particularly limited, but it is preferable to use water or a mixed solvent of water and an organic solvent. Further, water is preferable in consideration of environmental aspects due to scattering of the organic solvent.
  • the organic solvent used in each coating solution examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • esters such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone.
  • ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylace
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass in the entire mixed solvent, and 90 to 99.5% by mass. More preferably.
  • 80 mass% or more the volume fluctuation
  • 99.9 mass% or less the homogeneity of a coating liquid increases and the physical property of a coating liquid is stabilized.
  • each prepared coating solution is applied onto the resin substrate 11 and dried.
  • the dielectric multilayer film 13 can be formed from the coating film.
  • the coating method is not particularly limited, and any of simultaneous multilayer coating and sequential coating may be used, but simultaneous multilayer coating is preferable from the viewpoint of productivity and the like.
  • a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method, and the like are preferably used.
  • the temperature of each coating solution at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., more preferably 30 to 45 ° C.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method it is preferably in the range of 5 to 100 mPa ⁇ s, more preferably in the range of 10 to 50 mPa ⁇ s, in the preferable temperature range of each of the above coating solutions.
  • the curtain coating method it is preferably in the range of 5 to 1200 mPa ⁇ s, more preferably in the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11, the formation is performed.
  • the temperature of the coated film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. Means a process.
  • the state in which the finger is no longer attached is defined as the state of completion of setting.
  • the temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes.
  • the lower limit time is not particularly limited, but is preferably 45 seconds or more.
  • the set time includes various concentrations such as gelatin, pectin, agar, carrageenan, gellan gum, as well as changing the concentration of water-soluble polymer contained in each coating solution and the concentration of metal oxide particles or inorganic fine particles. It can adjust by adding other components, such as a well-known gelatinizer.
  • the dielectric multilayer film 13 is formed by sequentially repeating this process so that the number of layers necessary for expressing desired reflection performance is obtained.
  • the formed coating film When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry.
  • a drying method warm air drying, infrared drying, and microwave drying are used.
  • the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the method for forming the light stabilizer-containing layer 15 on the dielectric multilayer film 13 is not particularly limited.
  • the light stabilizer-containing layer 15 is formed by preparing a coating solution for the light stabilizer-containing layer and then applying and drying the coating solution. The method of doing is mentioned.
  • the method for preparing the coating solution for the light stabilizer-containing layer is not particularly limited, and the above-described light stabilizer, ultraviolet absorber, binder resin, solvent, and additives added as necessary are stirred.
  • the method of mixing is mentioned.
  • the mixing order of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time, and the coating may be performed by adjusting the amount of the solvent. The viscosity of the liquid is adjusted appropriately.
  • the solvent for preparing the coating solution is not particularly limited, and a solvent similar to the solvent used for forming the dielectric multilayer film 13 can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • the coating method of the coating solution for the light stabilizer-containing layer a known method can be used. Examples thereof include a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method.
  • the drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the light stabilizer-containing layer 15 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes.
  • an adhesive is contained in the light stabilizer-containing layer coating solution, since the adhesive has fluidity, curing is necessary to obtain a stable adhesive force.
  • it is preferably about 50 days at 3 days or longer. In the case of heating, if the temperature is raised too much, the flatness of the substrate 11 may be deteriorated.
  • the method of forming the adhesion layer 17 on the light stabilizer containing layer 15 is not specifically limited, For example, after adjusting the coating liquid for adhesion layers, the method of forming by apply
  • the pressure-sensitive adhesive layer 17 may be transferred onto the light stabilizer-containing layer 15 after the coating liquid is applied on the release paper and dried. In this case, the release paper may be left as it is on the pressure-sensitive adhesive layer 17 to form the light reflecting film 1 with the release paper.
  • the method for preparing the coating solution for the pressure-sensitive adhesive layer is not particularly limited, and a material and a solvent necessary for forming the pressure-sensitive adhesive layer 17 may be mixed with stirring, and is the same as the method for preparing the coating solution for the light stabilizer-containing layer described above. Can be done.
  • the coating film can also be dried in the same manner as the formation of the light stabilizer-containing layer 15.
  • the light reflecting film 1 according to the first embodiment described above is provided with the light stabilizer layer 15 for improving the light resistance.
  • the light reflecting film 1 is formed on the dielectric multilayer film 13 containing a water-soluble polymer.
  • a light stabilizer containing layer 15 containing a hindered amine light stabilizer is provided adjacent to the light stabilizer.
  • the light reflecting film 1 having such a configuration was subjected to a heat resistance test as an acceleration test, although it was configured to have a dielectric multilayer film 13 using a water-soluble polymer, as shown in the following examples. Even in this case, it was confirmed that the haze increase was suppressed, transparency could be maintained, and heat resistance was excellent.
  • Such a mechanism for improving heat resistance is presumed as follows. That is, the dielectric multilayer film 13 containing a water-soluble polymer retains residual moisture therein. For this reason, in the heating environment, the residual moisture moves to the interface of the dielectric multilayer film 13 due to heat and affects adjacent layers.
  • the light reflecting film 1 according to the first embodiment remains due to the action of the hindered amine-based light stabilizer in the light stabilizer-containing layer 15 provided adjacent to the dielectric multilayer film 13. It is presumed that the specific resin deterioration near the interface due to the influence of moisture is prevented, thereby suppressing an increase in haze value in a heating environment.
  • the configuration in which the light stabilizer-containing layer 15 is provided only on one side of the dielectric multilayer film 13 has been described.
  • the dielectric multilayer film 13 A configuration in which the light stabilizer-containing layer 15 is provided on both sides can be presented.
  • another light stabilizer-containing layer may be provided between the resin substrate 11 and the dielectric multilayer film 13 shown in FIG. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
  • FIG. 2 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the second embodiment.
  • the light reflecting film 2 of the second embodiment shown in this figure is used by being mounted on equipment 100 that is exposed to sunlight for a long period of time, such as an outdoor window of a building or an automobile window.
  • a light reflecting film 2 includes a dielectric multilayer film 13 in which low refractive index layers 13L and high refractive index layers 13H are alternately stacked on one main surface of a resin base material 11, and the dielectric multilayer film. 13 is provided with a light stabilizer-containing hard coat layer 21 provided adjacent to 13, and further includes an adhesive layer 17 on the other main surface of the resin substrate 11, and is attached to the equipment 100 via the adhesive layer 17. Used together.
  • the resin base material 11, the dielectric multilayer film 13, and the adhesive layer 17 are the same as those described in the first embodiment, the description thereof is omitted here.
  • the structure of the light stabilizer containing hard-coat layer 21 is demonstrated, and the manufacturing method of the light reflection film 2 is demonstrated.
  • the light stabilizer-containing hard coat layer 21 is a layer containing a hindered amine light stabilizer as a light stabilizer in the hard coat layer for imparting scratch resistance to the exposed surface of the light reflecting film 2. Therefore, it is provided adjacent to the dielectric multilayer film 13.
  • the light stabilizer-containing hard coat layer 21 may contain an ultraviolet absorber.
  • Such a light stabilizer-containing hard coat layer 21 is configured to include a hindered amine light stabilizer, and an ultraviolet absorber and other materials as necessary, in the hard coat layer described below. Among these, the same hindered amine light stabilizer and ultraviolet absorber as those described in the first embodiment are used.
  • the hard coat layer is a layer having a pencil hardness of H to 8H. Particularly preferably, it is in the range of 2H to 6H.
  • the pencil hardness is the pencil hardness specified in JIS K 5400 using the test pencil specified in JIS S 6006 after conditioning the prepared hard coat layer for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. Measure according to the evaluation method.
  • the hard coat layer should be formed using an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound, or an inorganic hard coat material such as silicon dioxide. Can do.
  • an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound
  • an inorganic hard coat material such as silicon dioxide.
  • (meth) acryl refers to acrylic and methacrylic.
  • the hard coat layer is mainly composed of an actinic radiation curable resin.
  • an actinic radiation curable resin an ultraviolet curable resin is preferably used, and a commercially available product may be used.
  • a sensitizer having an absorption maximum in the wavelength region of the actinic radiation used when curing the actinic radiation curable resin it is preferable to use a sensitizer having an absorption maximum in the wavelength region of the actinic radiation used when curing the actinic radiation curable resin as an additive. .
  • the dry film thickness of the hard coat layer is preferably within the range of an average film thickness of 0.1 to 30 ⁇ m. Further, it is preferably in the range of 1 to 20 ⁇ m, particularly preferably in the range of 3 to 15 ⁇ m. When it is 3 ⁇ m or more, sufficient durability and impact resistance can be obtained. Moreover, from a viewpoint of flexibility or economical efficiency, 15 micrometers or less are preferable.
  • inorganic or organic fine particles may be added to the hard coat layer coating liquid in order to give the hard coat layer an antiglare property and to prevent adhesion with other substances and improve scratch resistance and the like. it can.
  • antioxidant in order to improve the heat resistance of a hard-coat layer, antioxidant with little suppression of photocuring reaction can be used in the coating liquid for hard-coat layers.
  • the manufacturing method of the light reflection film 2 includes a step of forming a dielectric multilayer film 13 on one main surface of the resin base material 11, a step of forming a light stabilizer-containing hard coat layer 21 on the dielectric multilayer film 13, and And a step of forming an adhesive layer 17 on the other main surface of the resin base material 11.
  • these steps will be described in order.
  • the method for forming the light stabilizer-containing hard coat layer 21 on the dielectric multilayer film 13 is not particularly limited. For example, after preparing a coating liquid for a hard coat layer, the coating liquid is applied and dried, The method of irradiating actinic rays after drying is mentioned.
  • the method for preparing the coating solution for the hard coat layer is not particularly limited, and the above-described actinic radiation curable resin, light stabilizer, ultraviolet absorber added as necessary, and further, a solvent and other additives are stirred.
  • the method of mixing is mentioned.
  • the mixing order of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time, and the coating may be performed by adjusting the amount of the solvent. The viscosity of the liquid is adjusted appropriately.
  • Solvents for preparing the hard coat layer coating solution include, for example, hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl). Ketones), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • hydrocarbons toluene, xylene
  • alcohols methanol, ethanol, isopropanol, butanol, cyclohexanol
  • ketones acetone, methyl ethyl ketone, methyl isobutyl.
  • Ketones esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used
  • the coating liquid for hard coat layer contains 5% by mass of propylene glycol monoalkyl ether (1 to 4 carbon atoms of alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms of alkyl group). As described above, it is preferable to use an organic solvent contained in the range of 5 to 80% by mass.
  • a known method can be used as a coating method of the coating liquid for the hard coat layer.
  • examples thereof include a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method.
  • the drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the light stabilizer-containing hard coat layer 21 after drying is small.
  • the light source for curing the actinic radiation curable resin during or after drying is not particularly limited as long as it is a light source that generates ultraviolet rays. Irradiation conditions vary depending on the light source to be used. For example, the irradiation light quantity can be about 20 to 1200 mJ / cm 2 , preferably about 50 to 1000 mJ / cm 2 .
  • the method for forming the adhesive layer 17 on the other main surface of the resin base material 11 is not particularly limited, and is carried out in the same manner as the adhesive layer 17 forming step described in the first embodiment, and is a light reflecting film with release paper. It may be 2.
  • the light reflecting film 2 of the second embodiment described above is provided with a light stabilizer-containing hard coat layer 21 containing a hindered amine light stabilizer adjacent to the dielectric multilayer film 13 containing a water-soluble polymer. It is a configuration. Even in the light reflecting film 2 having such a configuration, as shown in the following examples, the light reflecting film 2 has a structure having the dielectric multilayer film 13 using a water-soluble polymer. Since it is possible to suppress an increase in haze under the environment, it is possible to maintain transparency.
  • the light stabilizer-containing layer 15 (see FIG. 1) having the structure described in the first embodiment is provided between the resin base material 11 and the dielectric multilayer film 13 shown in FIG. be able to. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
  • FIG. 3 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the third embodiment.
  • the light reflecting film 3 of the third embodiment shown in this figure is different from the light reflecting film 1 of the first embodiment described with reference to FIG. 1 in that the light stabilizer containing layer 15 and the adhesive in the light reflecting film 1 are the same. Instead of the layer 17, the light stabilizer-containing adhesive layer 31 is provided. Since the other structure is the same as that of 1st Embodiment, the structure of the light stabilizer containing adhesion layer 31 is demonstrated here.
  • the light stabilizer-containing adhesive layer 31 includes a transparent adhesive material, a hindered amine light stabilizer, an ultraviolet absorber, and other materials as necessary.
  • the same material as the adhesive layer 17 (see FIG. 1) described in the first embodiment can be used, but acrylic adhesive having particularly excellent transparency and durability. It is preferable to use an agent as a binder, whereby it is possible to suppress an increase in haze of the light reflecting film 1 due to further improvement in heat resistance, and it is also possible to improve light resistance.
  • the manufacturing method of the light reflecting film 3 as described above includes the step of forming the dielectric multilayer film 13 on one main surface of the resin base material 11, and the light stabilizer-containing adhesive layer 31 on the dielectric multilayer film 13. Forming. These steps are performed in the same manner as the formation step of the dielectric multilayer film 13 and the formation step of the adhesive layer 17 described in the first embodiment (see FIG. 1). However, in the formation process of the light stabilizer containing adhesion layer 31, the light stabilizer containing adhesion layer coating liquid which further mixed the light stabilizer with the coating liquid for adhesion layers demonstrated in 1st Embodiment. Adjust.
  • the light reflecting film 3 of the third embodiment described above is provided with a light stabilizer-containing adhesive layer 31 containing a hindered amine light stabilizer adjacent to the dielectric multilayer film 13 containing a water-soluble polymer. It is a configuration. Even in the light reflection film 3 having such a configuration, as shown in the following examples, the haze increases over a long period of time even though the dielectric multilayer film 13 using the water-soluble polymer is used. Therefore, transparency can be maintained.
  • the glass transition point of the resin is as low as about ⁇ 80 ° C. to ⁇ 10 ° C.
  • the molecular mobility of the light stabilizer is increased.
  • the light stabilizer can act more effectively at the interface between the dielectric multilayer film 13 and the light stabilizer-containing adhesive layer 31.
  • the third embodiment described above as a modification thereof, a configuration in which light stabilizer-containing layers are provided on both sides of the dielectric multilayer film 13 can be presented.
  • the light stabilizer-containing layer 15 (see FIG. 1) having the structure described in the first embodiment is provided between the resin substrate 11 and the dielectric multilayer film 13 shown in FIG. be able to. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
  • silica-attached titanium dioxide sol A silica-attached titanium dioxide sol used for the coating solution for the high refractive index layer was prepared as follows. First, 2 parts by mass of pure water was added to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle diameter: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.), and then 90 ° C. Heated to. Next, with respect to the heated solution, 0.5 part by mass of a silicic acid aqueous solution (sodium silicate 4 manufactured by Nippon Kagaku Co., Ltd.
  • silica deposition dioxide sol the volume average particle diameter: 9 nm
  • the low refractive index layer coating solution and the high refractive index layer coating solution obtained by the above method are kept at 45 ° C. while being heated to 45 ° C. 11 layers were simultaneously applied (total thickness of dielectric multilayer film: 1.5 ⁇ m).
  • the lowermost layer and the outermost layer were the low refractive index layers 13L, and the other layers were formed such that the low refractive index layers 13L and the high refractive index layers 13H were alternately laminated.
  • the coating amount was adjusted so that the low refractive index layer 13L was 150 nm in each layer and the high refractive index layer 13H was 120 nm in the film thickness after drying.
  • the film thickness was confirmed by cutting the produced laminate (resin substrate 11 and dielectric multilayer film 13) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
  • Example 1 (configuration of FIG. 1)>
  • the light stabilizer-containing layer 15 and the adhesive layer 17 are further formed as follows to produce the light reflecting film 1. did.
  • coating solution A1 for light stabilizer-containing layer To 100 parts by mass of a urethane resin solution (DM-677: manufactured by DIC), 50 parts by mass of toluene and 1 part by mass of [NH] type hindered amine light stabilizer (CHIMASSORB 944, manufactured by BASF) are added and stirred. A coating solution A1 for a light stabilizer-containing layer was prepared.
  • a urethane resin solution DM-677: manufactured by DIC
  • 50 parts by mass of toluene and 1 part by mass of [NH] type hindered amine light stabilizer CHIMASSORB 944, manufactured by BASF
  • a light stabilizer-containing layer 15 having a dry film thickness of 10 ⁇ m was formed on the dielectric multilayer film 13 by applying the light stabilizer-containing layer coating solution A1 using a gravure coater and performing a drying treatment. .
  • the adhesive layer coating solution B is applied to the silicone release surface of the release paper (Nakamoto Pax separator NS23MA) with a comma coater so that the dry film thickness is 10 ⁇ m, and dried at 90 ° C. for 1 minute. Thus, an adhesive layer 17 was formed. Next, the pressure-sensitive adhesive layer 17 on the release paper was bonded to the light stabilizer-containing layer 15 on the resin base material 11 to produce the light reflecting film 1 of Example 1 with release paper.
  • Example 2 to Example 4 (Configuration of FIG. 1)>
  • the following example was used except that the following hindered amine light stabilizer was used instead of the [NH] type hindered amine light stabilizer.
  • the light reflecting films 1 of Examples 2 to 4 with release paper were produced.
  • Example 2 ... [NOR] type: Tinuvin 123 (manufactured by BASF)
  • Example 3 [NR] type: Tinuvin 144 (manufactured by BASF)
  • Example 5 (configuration of FIG. 1)> The same as in Example 1 except that the light stabilizer-containing layer coating solution A1 described in Example 1 was changed to a light stabilizer-containing layer coating solution A2 that was prepared as follows using an acrylic resin. Thus, the light reflecting film 1 of Example 5 with release paper was produced.
  • coating solution A2 for light stabilizer-containing layer 100 parts by mass of an acrylic resin solution (Acridic A-165: manufactured by DIC), 50 parts by mass of toluene, 50 parts by mass of n-butanol, 1 part by mass of [NR] type hindered amine light stabilizer (Tinuvin 144, manufactured by BASF) The mixture was stirred and mixed to prepare a coating solution A2 for a light stabilizer-containing layer.
  • an acrylic resin solution Acridic A-165: manufactured by DIC
  • toluene 50 parts by mass of n-butanol
  • [NR] type hindered amine light stabilizer Tinuvin 144, manufactured by BASF
  • Example 6 (configuration of FIG. 2)>
  • the light stabilizer-containing hard coat layer 21 is formed as follows.
  • An adhesive layer 17 was formed on the main surface to produce a light reflecting film 2.
  • UV curable resin (Aronix M-305: manufactured by Toagosei Co., Ltd.), 100 parts by mass of solvent (methyl ethyl ketone), [NR] type hindered amine light stabilizer (Tinuvin 144: manufactured by BASF), 1 part by mass, polymerization initiator (Irgacure 819: manufactured by BASF Japan Ltd.) 5 parts by mass, fluorine-based surfactant (Furgent 650A: manufactured by Neos Co., Ltd.) 0.1 part by mass was added and mixed by stirring to apply a light stabilizer-containing hard coat layer. Liquid C was prepared.
  • the light stabilizer-containing coating liquid C for hard coat layer was applied using a gravure coater, and dried at 90 ° C. for 1 minute. Next, using an ultraviolet lamp, ultraviolet rays were applied from the side where the light stabilizer-containing hard coat layer coating liquid C was applied under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. By irradiating, the coating film was cured and the light stabilizer-containing hard coat layer 21 was formed.
  • the adhesive layer coating solution B prepared as described in Example 1 was applied to the silicone release surface of the release paper (Nakamoto Packs separator NS23MA) with a comma coater so that the dry film thickness was 10 ⁇ m.
  • the adhesive layer 17 was formed by drying at 90 ° C. for 1 minute.
  • the pressure-sensitive adhesive layer 17 on the release paper was bonded to the other main surface side of the resin base material 11 to prepare the light reflecting film 2 of Example 6 with release paper.
  • Example 7 (configuration of FIG. 3)>
  • the light stabilizer-containing adhesive layer 31 was formed as follows to produce the light reflecting film 3.
  • Adjustment of coating solution D for light stabilizer-containing adhesive layer 100 parts by weight of an adhesive (N-2147, manufactured by Nihon Gosei Co., Ltd.), 100 parts by weight of a solvent (ethyl acetate), 1 part by weight of [NR] type hindered amine light stabilizer (Tinuvin 144, manufactured by BASF), an isocyanate curing agent 1.0 part by mass (Coronate HL, manufactured by Tosoh Corporation) was stirred and mixed to prepare a coating solution D for the light stabilizer-containing adhesive layer.
  • an adhesive N-2147, manufactured by Nihon Gosei Co., Ltd.
  • a solvent ethyl acetate
  • [NR] type hindered amine light stabilizer Tinuvin 144, manufactured by BASF
  • an isocyanate curing agent 1.0 part by mass (Coronate HL, manufactured by Tosoh Corporation) was stirred and mixed to prepare a coating solution D for the light stabilizer-containing adhesive layer.
  • the light stabilizer-containing adhesive layer coating solution D was applied to the silicone release surface of release paper (Nakamoto Packs separator NS23MA) with a comma coater so that the dry film thickness was 10 ⁇ m.
  • the light stabilizer-containing adhesive layer 31 was formed by drying at 1 ° C. for 1 minute.
  • the light stabilizer-containing adhesive layer 31 on the release paper was bonded to the dielectric multilayer film 13 on the resin base material 11, and the light reflecting film 3 of Example 7 with release paper was produced.
  • Example 8 (configuration of FIG. 3)>
  • a triazine compound (Tinuvin 477, manufactured by BASF) that further serves as an ultraviolet absorber having an absorption region shorter than a wavelength of 380 to 400 nm. Except having added 5 weight part, it carried out similarly to Example 7, and produced the light reflection film 3 of Example 8 with a release paper.
  • Example 9 (configuration of FIG. 3)>
  • a triazine compound (Tinuvin 477, manufactured by BASF) that further serves as an ultraviolet absorber having an absorption region shorter than a wavelength of 380 to 400 nm.
  • Release paper in the same manner as in Example 7 except that 5 parts by weight and 3 parts by mass of an indole compound (BONASORB 3912, manufactured by Orient Chemical Industries) serving as an ultraviolet absorber having an absorption region at a wavelength of 380 to 400 nm were added.
  • BONASORB 3912 an indole compound
  • Example 1 (see FIG. 3)> A light-reflective film with release paper was produced in the same manner as in Example 7 except that an adhesive layer containing no light stabilizer was formed instead of the light stabilizer-containing adhesive layer 31 formed in Example 7. did.
  • the adhesive layer coating solution B described in Example 1 was used, and the adhesive layer was formed in the same manner as the formation of the light stabilizer-containing adhesive layer 31 described in Example 7.
  • the haze was measured using a haze meter (NDH2000 type manufactured by Nippon Denshoku Industries Co., Ltd.), and the average value of 10 optical reflective film samples was calculated. Moreover, the difference ((DELTA) H) of the haze value before and behind a heat resistance test was computed.
  • a haze meter NDH2000 type manufactured by Nippon Denshoku Industries Co., Ltd.
  • the difference ((DELTA) H) of the haze value before and behind a heat resistance test was computed.
  • an initial haze value before the heat resistance test of an optical reflection film it is preferable in it being 1.5% or less.
  • the haze value after the heat resistance test is preferably 3.0% or less.
  • the release paper was peeled off from each of the produced light reflecting films and attached to blue glass having a thickness of 3 mm. 100 W / m with respect to each light reflecting film through blue glass using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emits light very close to sunlight) under the conditions of 30 ° C. and 60% RH. Xenon light having an intensity of 2 was irradiated for 1,000 hours.
  • a slow-acting and low-activation type [NR] type or [NOR] type hindered amine type light is used.
  • the haze difference ( ⁇ H) of Examples 2 to 4 using the stabilizer is suppressed to be lower than the haze difference ( ⁇ H) of Example 1 using the [NH] type hindered amine light stabilizer.
  • the layer adjacent to the dielectric multilayer film 13 contains a [NR] type or [NOR] type hindered amine light stabilizer as the light stabilizer, thereby further improving the weather resistance. It was confirmed that
  • the light resistance (color change ⁇ E) of Example 5 using an acrylic resin as a binder is as a binder. It turns out that it is restrained lower than the light resistance (discoloration (DELTA) E) of Example 3 using a urethane-type resin. Thereby, it was confirmed that the layer containing the light stabilizer provided adjacent to the dielectric multilayer film 13 is improved in light resistance by using an acrylic resin as a binder. Moreover, since the initial haze value of Example 5 was restrained lower than the initial haze value of Example 3, it was confirmed that transparency was improved by using an acrylic resin.
  • Example 5 As a layer adjacent to the dielectric multilayer film 13 of Example 6, the evaluation result of the configuration in which the light stabilizer-containing hard coat layer 21 containing a hindered amine-based light stabilizer is provided is as in Example 5. It turns out that it is comparable with the evaluation result of a structure. Thereby, it is not necessary to provide a special layer as a layer containing a hindered amine light stabilizer, and a hindered amine light stabilizer is contained in an existing layer adjacent to the dielectric multilayer film 13. Thus, it was confirmed that the effects of the present invention can be obtained.
  • the evaluation result of the structure which provided the light stabilizer containing adhesion layer 31 containing a hindered amine type light stabilizer as a layer adjacent to the dielectric multilayer film 13 of Example 7 is the structure of Example 5. It can be seen that both the haze difference ( ⁇ H) and the light resistance (discoloration ⁇ E) are suppressed to be lower than those of the evaluation results. Thereby, the effect which makes the layer containing a hindered amine light stabilizer the adhesive layer which used the adhesive as a binder was confirmed.
  • Example 7 Further, comparing the configurations of Example 7 to Example 9 in which only the ultraviolet absorber contained in the light stabilizer-containing adhesive layer 31 was changed, the light resistance of Examples 8 and 9 containing the ultraviolet absorber was compared. It can be seen that (color change ⁇ E) is suppressed to be lower than the light resistance (color change ⁇ E) of Example 7 in which no ultraviolet absorber was contained. In addition, it can be seen that the light resistance (discoloration ⁇ E) of Example 9 containing triazine and indole having different wavelength absorption regions as the UV absorber is particularly low. Thereby, the effect of containing an ultraviolet absorber in the layer adjacent to the dielectric multilayer film 13 and the effect of containing an indole compound as the ultraviolet absorber were confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

A light reflecting film which comprises: a dielectric multilayer film wherein high-refractive-index layers containing a water-soluble polymer and low-refractive-index layers containing a water-soluble polymer are alternately laminated; and a light stabilizer-containing layer which contains a hindered amine light stabilizer and is arranged adjacent to the dielectric multilayer film.

Description

光反射フィルムLight reflection film
 本発明は、光反射フィルムに関する。 The present invention relates to a light reflecting film.
 近年、省エネルギー対策への関心が高まり、冷房設備にかかる負荷を減らすなどの観点から、建物や車両の窓ガラスに装着させて、太陽光の熱線の透過を遮断する赤外遮熱フィルムの要望が高まってきている。赤外線を遮蔽する構成の一つとして、高屈折率層と低屈折率層とを交互に積層させた誘電体多層膜が知られている。 In recent years, there has been an increasing demand for energy-saving measures, and from the viewpoint of reducing the load on cooling equipment, there has been a demand for infrared heat-shielding films that can be attached to window glass of buildings and vehicles to block the transmission of solar heat rays. It is increasing. As one configuration for shielding infrared rays, a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately laminated is known.
 このような誘電体多層膜の形成には、安価でありながらも環境負荷を抑えた層形成が可能であることから、水溶性高分子と無機酸化物粒子とを含有した水系の塗布液を用いた湿式塗布法が採用されている(下記特許文献1参照)。 In order to form such a dielectric multilayer film, it is possible to form a layer with a low environmental load while being inexpensive, and therefore a water-based coating liquid containing a water-soluble polymer and inorganic oxide particles is used. The wet coating method was employed (see Patent Document 1 below).
特開2015-125168号公報JP2015-125168A
 しかしながら、水溶性高分子を用いて形成された誘電体多層膜は、残留水分の影響により、加速試験として耐熱性試験を行うと、ヘイズ値が上昇して透明性が損なわれるという問題があった。 However, the dielectric multilayer film formed using a water-soluble polymer has a problem that, when subjected to a heat resistance test as an acceleration test due to the influence of residual moisture, the haze value increases and transparency is impaired. .
 そこで本発明は、水溶性高分子を用いた誘電体多層膜を有する構成であっても、耐熱性に優れた光反射フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a light reflecting film having excellent heat resistance even in a configuration having a dielectric multilayer film using a water-soluble polymer.
 このような目的を達成するための本発明は、水溶性高分子を含む高屈折率層と水溶性高分子を含む低屈折率層とが交互に積層された誘電体多層膜と、ヒンダードアミン系の光安定化剤を含有し前記誘電体多層膜に隣接して設けられた光安定化剤含有層とを有する光反射フィルムである。 In order to achieve such an object, the present invention provides a dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and a low refractive index layer containing a water-soluble polymer are alternately laminated, and a hindered amine-based film. A light reflecting film comprising a light stabilizer and a light stabilizer-containing layer provided adjacent to the dielectric multilayer film.
 本発明によれば、水溶性高分子を用いた誘電体多層膜を有する構成でありながらも、耐熱性に優れた光反射フィルムを提供することができる。 According to the present invention, it is possible to provide a light reflecting film excellent in heat resistance while having a configuration including a dielectric multilayer film using a water-soluble polymer.
第1実施形態の光反射フィルムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the light reflection film of 1st Embodiment. 第2実施形態の光反射フィルムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the light reflection film of 2nd Embodiment. 第3実施形態の光反射フィルムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the light reflection film of 3rd Embodiment.
 以下、本技術を適用した光反射フィルムに関する第1実施形態~第3実施形態を説明する。なお、各実施形態において同一の構成要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, first to third embodiments relating to a light reflecting film to which the present technology is applied will be described. In addition, in each embodiment, the same code | symbol is attached | subjected to the same component and the overlapping description is abbreviate | omitted.
≪第1実施形態≫
 図1は、第1実施形態の光反射フィルムの構成を説明するための断面模式図である。この図に示す第1実施形態の光反射フィルム1は、建物の屋外の窓や自動車窓等、長期間太陽光に晒らされる設備100に装着して用いられるものである。このような光反射フィルム1は、樹脂基材11の一主面上に、低屈折率層13Lと高屈折率層13Hとが交互に積層された誘電体多層膜13と、この誘電体多層膜13に隣接して設けられた光安定化剤含有層15とを備えている。さらに、この光反射フィルム1は、光安定化剤含有層15上に粘着層17を備えていてもよく、この粘着層17を介して設備100に対して貼り合わせて用いられる。
<< First Embodiment >>
FIG. 1 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the first embodiment. The light reflecting film 1 of the first embodiment shown in this figure is used by being attached to equipment 100 that is exposed to sunlight for a long period of time, such as an outdoor window of a building or an automobile window. Such a light reflecting film 1 includes a dielectric multilayer film 13 in which low-refractive index layers 13L and high-refractive index layers 13H are alternately stacked on one main surface of a resin base material 11, and the dielectric multilayer film. 13 and a light stabilizer-containing layer 15 provided adjacent to 13. Further, the light reflecting film 1 may include an adhesive layer 17 on the light stabilizer-containing layer 15, and is used by being attached to the equipment 100 through the adhesive layer 17.
 このような光反射フィルム1の光学特性は、JIS R3106-1998で示される可視光領域の透過率が50%以上であり、好ましくは75%以上であり、より好ましくは85%以上である。また、この光反射フィルム1が、例えば近赤外遮蔽フィルムであれば、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。なお、以下においては、この光反射フィルム1が近赤外線を反射する熱線反射フィルムであることとして実施の形態を説明する。しかしながら、この光反射フィルム1は、近赤外遮蔽フィルムであることに限定されることはなく、赤外線や紫外線を反射して遮蔽するフィルムであってもよく、それぞれの波長領域の反射率が50%を超えるように、各層の膜厚および構成材料が設定されていることとする。 The optical characteristics of such a light reflecting film 1 are such that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more, preferably 75% or more, more preferably 85% or more. Further, if the light reflecting film 1 is, for example, a near-infrared shielding film, it is preferable that the light reflecting film 1 has a region where the reflectance exceeds 50% in a wavelength region of 900 nm to 1400 nm. In addition, below, embodiment is described as this light reflection film 1 being a heat ray reflective film which reflects near infrared rays. However, the light reflecting film 1 is not limited to being a near-infrared shielding film, and may be a film that reflects and shields infrared rays and ultraviolet rays, and has a reflectance in each wavelength region of 50. It is assumed that the film thickness and the constituent material of each layer are set so as to exceed%.
 以下、光反射フィルム1の詳細な構成を、誘電体多層膜13、光安定化剤含有層15、粘着層17、樹脂基材11の順に説明し、最後に光反射フィルム1の製造方法を説明する。 Hereinafter, the detailed configuration of the light reflecting film 1 will be described in the order of the dielectric multilayer film 13, the light stabilizer-containing layer 15, the adhesive layer 17, and the resin base material 11, and finally the method for manufacturing the light reflecting film 1 will be described. To do.
<誘電体多層膜13>
 誘電体多層膜13は、水溶性高分子を含む高屈折率層13Hと水溶性高分子を含む低屈折率層13Lとが交互に積層された構成を有し、高屈折率層13Hと低屈折率層13Lとの積層体を少なくとも1つ有する。なお、「高屈折率層」及び「低屈折率層」は、互いに屈折率差を有する層であって、隣接した2層の屈折率差を比較した場合に、屈折率の高い方の層を高屈折率層13Hとし、低い方の層を低屈折率層13Lとする。
<Dielectric multilayer film 13>
The dielectric multilayer film 13 has a configuration in which a high refractive index layer 13H containing a water-soluble polymer and a low refractive index layer 13L containing a water-soluble polymer are alternately laminated, and the high refractive index layer 13H and the low refractive index layer 13L. It has at least one laminated body with the rate layer 13L. Note that the “high refractive index layer” and the “low refractive index layer” are layers having a refractive index difference between them, and when comparing the refractive index difference between two adjacent layers, the layer having the higher refractive index is selected. The high refractive index layer 13H is used, and the lower layer is the low refractive index layer 13L.
 また誘電体多層膜13は、高屈折率層13Hと低屈折率層13Lとが交互に積層された積層体であればよく、これらの積層数に制限はない。高屈折率層13Hと低屈折率層13Lの積層数は、例えば10層~50層の範囲であり、好ましくは13層~39層である。積層数が10層以上であれば、所望の赤外反射率が得られ、13層以上であるとより高い赤外反射率が得られ、遮熱性効果が向上する。また、積層数が50層以下であれば誘電体多層膜13が割れ難く、端部剥がれも抑制できるなど十分な耐候性が得られる点で優れている。さらに、積層数が39層以下であれば、誘電体多層膜13の割れを防止し、端部剥がれも防止できるなど、高い耐候性が得られる。 The dielectric multilayer film 13 may be a laminated body in which the high refractive index layers 13H and the low refractive index layers 13L are alternately laminated, and the number of these laminated layers is not limited. The number of layers of the high refractive index layer 13H and the low refractive index layer 13L is, for example, in the range of 10 to 50 layers, preferably 13 to 39 layers. If the number of laminated layers is 10 or more, a desired infrared reflectance is obtained, and if it is 13 or more, a higher infrared reflectance is obtained and the heat shielding effect is improved. Further, if the number of laminated layers is 50 or less, the dielectric multilayer film 13 is excellent in that sufficient weather resistance can be obtained such that the dielectric multilayer film 13 is difficult to break and the edge peeling can be suppressed. Furthermore, if the number of laminated layers is 39 or less, high weather resistance can be obtained, for example, cracking of the dielectric multilayer film 13 and prevention of peeling off of the end portion can be prevented.
 さらに誘電体多層膜13は、樹脂基材11側の最下層と、光安定化剤含有層15側の最表層とは、高屈折率層13H、低屈折率層13Lのいずれでもよい。ただし、最下層および最表層が低屈折率層13Lであると、最下層の隣接層(例えば、樹脂基材11)への密着性が向上し、誘電体多層膜13を塗布成膜によって形成する際の最表層の吹かれ耐性が向上しやすい。 Further, in the dielectric multilayer film 13, the lowermost layer on the resin substrate 11 side and the outermost layer on the light stabilizer-containing layer 15 side may be either the high refractive index layer 13H or the low refractive index layer 13L. However, when the lowermost layer and the outermost layer are the low refractive index layer 13L, the adhesion to the adjacent layer (for example, the resin base material 11) in the lowermost layer is improved, and the dielectric multilayer film 13 is formed by coating. It is easy to improve the blowing resistance of the outermost layer.
 誘電体多層膜13は、隣接する高屈折率層13Hと低屈折率層13Lとの屈折率の差が大きいほど、少ない層数で赤外反射率を高くすることができる。したがって、高屈折率層13Hは、より高い屈折率を有することが好ましい。高屈折率層13Hの屈折率は、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらに好ましくは1.90~2.20である。また低屈折率層13Lは、より低い屈折率を有することが好ましい。低屈折率層13Lの屈折率は、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらに好ましくは1.30~1.50である。 The dielectric multilayer film 13 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer 13H and low refractive index layer 13L increases. Accordingly, the high refractive index layer 13H preferably has a higher refractive index. The refractive index of the high refractive index layer 13H is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and still more preferably 1.90 to 2.20. The low refractive index layer 13L preferably has a lower refractive index. The refractive index of the low refractive index layer 13L is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
 高屈折率層13Hおよび低屈折率層13Lからなる積層体において、隣接する高屈折率層13Hと低屈折率層13Lとの少なくとも1組において、屈折率差が0.1以上であることが好ましく、0.2以上であることがより好ましく、0.25以上であることがさらに好ましい。誘電体多層膜13が複数の高屈折率層13Hおよび低屈折率層13Lを有する場合には、全ての層において屈折率差が上記好適な範囲内にあることが好ましい。ただし、誘電体多層膜13の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。以上のような屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。 In the laminate composed of the high refractive index layer 13H and the low refractive index layer 13L, the refractive index difference is preferably 0.1 or more in at least one pair of the adjacent high refractive index layer 13H and low refractive index layer 13L. 0.2 or more, more preferably 0.25 or more. In the case where the dielectric multilayer film 13 includes a plurality of high refractive index layers 13H and low refractive index layers 13L, it is preferable that the refractive index difference is within the above-described preferable range in all layers. However, the outermost layer and the lowermost layer of the dielectric multilayer film 13 may have a configuration outside the above preferred range. The refractive index difference and the necessary number of layers as described above can be calculated using commercially available optical design software.
 以上のような誘電体多層膜13は、高屈折率層13Hであれば水溶性高分子の他に金属酸化物粒子を含有している。また低屈折率層13Lであれば水溶性高分子の他に、必要に応じて無機微粒子を含有している。高屈折率層13Hと低屈折率層13Lとが、これらの粒子を含有することにより、屈折率の調整が容易となる。このため、高屈折率層13Hと低屈折率層13Lとの屈折率差を大きくすることも可能となり、積層数を低減して誘電体多層膜13を薄くすることができる。また層数を低減することで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。 The dielectric multilayer film 13 as described above contains metal oxide particles in addition to the water-soluble polymer if the high refractive index layer 13H. In addition, the low refractive index layer 13L contains inorganic fine particles as required in addition to the water-soluble polymer. Since the high refractive index layer 13H and the low refractive index layer 13L contain these particles, the refractive index can be easily adjusted. Therefore, the difference in refractive index between the high refractive index layer 13H and the low refractive index layer 13L can be increased, and the number of stacked layers can be reduced to make the dielectric multilayer film 13 thinner. Further, by reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the stack interface can be suppressed.
 このような誘電体多層膜13においては、高屈折率層13Hと低屈折率層13Lとの界面において、各層を構成する成分が混在する混合層が形成される場合がある。このような混合層が存在する場合には、混合層中において、高屈折率層13Hを構成する成分が50質量%以上である部位の集合が高屈折率層13Hに含まれ、低屈折率層13Lを構成する成分が50質量%を超える部位の集合が低屈折率層13Lに含まれる。 In such a dielectric multilayer film 13, a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer 13H and the low refractive index layer 13L. When such a mixed layer exists, the high refractive index layer 13H includes a set of portions in which the components constituting the high refractive index layer 13H are 50% by mass or more in the mixed layer, and the low refractive index layer A set of portions where the component constituting 13L exceeds 50 mass% is included in the low refractive index layer 13L.
 また以上のような誘電体多層膜13は、誘電体多層膜13を構成する高屈折率層13Hと低屈折率層13Lの各層の屈折率と膜厚を制御することにより、可視光や近赤外光等の特定の波長の反射率や透過率が調整されていることとする。 In addition, the dielectric multilayer film 13 as described above is formed by controlling the refractive index and the film thickness of each of the high refractive index layer 13H and the low refractive index layer 13L constituting the dielectric multilayer film 13, thereby enabling visible light and near red light. It is assumed that the reflectance and transmittance of a specific wavelength such as external light are adjusted.
 以下、誘電体多層膜13の詳細な構成を、誘電体多層膜13に含有される水溶性高分子、その他の材料、高屈折率層13Hに含有される金属酸化物粒子、低屈折率層13Lに含有される無機微粒子の順に説明する。 Hereinafter, the detailed configuration of the dielectric multilayer film 13 includes the water-soluble polymer contained in the dielectric multilayer film 13, other materials, metal oxide particles contained in the high refractive index layer 13H, and the low refractive index layer 13L. The inorganic fine particles contained in will be described in the order.
[水溶性高分子(誘電体多層膜13)]
 誘電体多層膜13に含まれる水溶性高分子は、高屈折率層13Hおよび低屈折率層13Lのバインダーとして機能するものである。高屈折率層13H含まれる水溶性高分子と、低屈折率層13Lに含まれる水溶性高分子とは、同じ成分であってもよく、異なる成分であってもよいが、異なる成分であることとが好ましい。
[Water-soluble polymer (dielectric multilayer film 13)]
The water-soluble polymer contained in the dielectric multilayer film 13 functions as a binder for the high refractive index layer 13H and the low refractive index layer 13L. The water-soluble polymer contained in the high refractive index layer 13H and the water-soluble polymer contained in the low refractive index layer 13L may be the same component or different components but different components. Are preferred.
 誘電体多層膜13に含まれる水溶性高分子としては、例えば、ポリビニルアルコール及びその誘導体(ポリビニルアルコール系樹脂)、ゼラチン、並びに、増粘多糖類等が挙げられる。塗布ムラや膜厚均一性(ヘイズ)等の観点からは、ポリビニルアルコール系樹脂であることが好ましい。ポリビニルアルコール系樹脂としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他、各種の変性ポリビニルアルコールも含まれる。これらの水溶性高分子は、単独で用いてもよいし、2種以上組み合わせて用いてもよい。 Examples of the water-soluble polymer contained in the dielectric multilayer film 13 include polyvinyl alcohol and its derivatives (polyvinyl alcohol resin), gelatin, thickening polysaccharides, and the like. From the viewpoints of coating unevenness and film thickness uniformity (haze), a polyvinyl alcohol resin is preferable. Examples of the polyvinyl alcohol resin include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. These water-soluble polymers may be used alone or in combination of two or more.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上であることが好ましく、平均重合度が1500~5000であることが特に好ましい。また、ケン化度は、70~100モル%であることが好ましく、80~99.9モル%であることが特に好ましい。このようなポリビニルアルコールとしては、例えば、日本酢ビ・ポバール社製のJP-45(重合度4500、ケン化度88モル%)等を用いることもできる。 Polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%. As such polyvinyl alcohol, for example, JP-45 (degree of polymerization 4500, degree of saponification 88 mol%) manufactured by Nippon Vinegar Poval can be used.
 変性ポリビニルアルコールとしては、(a)アニオン変性ポリビニルアルコール、(b)ノニオン変性ポリビニルアルコール、(c)カチオン変性ポリビニルアルコール、(d)エチレン変性ポリビニルアルコール、(e)ビニルアルコール系ポリマーが挙げられる。また、酢酸ビニル系樹脂(例えば、クラレ社製「エクセバール」)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学工業社製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、クラレ社製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)等も変性ポリビニルアルコールに含まれる。このうち、上記(a)~(e)を説明する。 Examples of the modified polyvinyl alcohol include (a) anion-modified polyvinyl alcohol, (b) nonion-modified polyvinyl alcohol, (c) cation-modified polyvinyl alcohol, (d) ethylene-modified polyvinyl alcohol, and (e) a vinyl alcohol-based polymer. In addition, vinyl acetate resin (for example, “Exeval” manufactured by Kuraray Co., Ltd.), polyvinyl acetal resin obtained by reacting polyvinyl alcohol with aldehyde (for example, “S Lecque” manufactured by Sekisui Chemical Co., Ltd.), silanol-modified polyvinyl having silanol group Alcohol (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol resin having an acetoacetyl group in the molecule (for example, “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Etc. are also included in the modified polyvinyl alcohol. Among these, the above (a) to (e) will be described.
 (a)アニオン変性ポリビニルアルコールとしては、例えば、特開平1-206088号公報に記載のアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び特開昭63-307979号公報に記載のビニルアルコールと水溶性基を有するビニル化合物との共重合体、特開平7-285265号公報に記載の水溶性基を有する変性ポリビニルアルコールが挙げられる。 Examples of (a) anion-modified polyvinyl alcohol include polyvinyl alcohol having an anionic group described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-30779. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
 (b)ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載のポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載の疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基等の反応性基を有する反応性基変性ポリビニルアルコールが挙げられる。 (B) Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group described in JP-A-7-9758 to a part of vinyl alcohol, and a hydrophobic compound described in JP-A-8-25795. A block copolymer of a vinyl compound having a reactive group and vinyl alcohol, a silanol-modified polyvinyl alcohol having a silanol group, and a reactive group-modified polyvinyl alcohol having a reactive group such as an acetoacetyl group, a carbonyl group, or a carboxyl group. .
 (c)カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載の第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールが挙げられ、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 (C) As the cation-modified polyvinyl alcohol, for example, a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 is contained in the main chain or side chain of the polyvinyl alcohol. It can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%であることが好ましく、0.2~5モル%であることがより好ましい。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
 (d)エチレン変性ポリビニルアルコールとしては、例えば、特開2009-107324号公報、特開2003-248123号公報、特開2003-342322号公報等に記載のものが使用できる。または、エクセバール(商品名:株式会社クラレ製)等の市販品を使用してもよい。 (D) As the ethylene-modified polyvinyl alcohol, for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used. Alternatively, commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
 (e)ビニルアルコール系ポリマーとしては、エクセバール(商品名:株式会社クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業株式会社製)等が挙げられる。 (E) Examples of the vinyl alcohol polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 上述のポリビニルアルコール系樹脂の重量平均分子量は、1000~200000であることが好ましく、3000~60000であることがより好ましい。なお、「重量平均分子量」の値は、静的光散乱法、ゲルパーミエーションクロマトグラフ法(GPC)、TOFMASS等によって測定した値を採用することができる。水溶性高分子の重量平均分子量が上記範囲内であると、塗布法の適用が可能となり、生産性を向上させることができる。 The weight average molecular weight of the above-mentioned polyvinyl alcohol resin is preferably 1,000 to 200,000, more preferably 3000 to 60,000. In addition, the value measured by the static light scattering method, the gel permeation chromatograph method (GPC), TOFMASS, etc. can be employ | adopted for the value of a "weight average molecular weight". When the weight average molecular weight of the water-soluble polymer is within the above range, the application method can be applied and the productivity can be improved.
 誘電体多層膜13における水溶性高分子の含有量は、誘電体多層膜13を構成する高屈折率層13Hおよび低屈折率層13Lの全固形分に対して、5~75質量%であることが好ましく、10~70質量%であることがより好ましい。水溶性高分子の含有量が5質量%以上であると、湿式製膜法で高屈折率層を形成する場合に、塗布して得られた塗膜の乾燥時に、膜面の乱れによる透明性の劣化を抑制できる。一方、水溶性高分子の含有量が75質量%以下であると、高屈折率層13H中に金属酸化物粒子を含有する場合、および低屈折率層13L中に無機微粒子を含有する場合に好適な含有量となる。 The content of the water-soluble polymer in the dielectric multilayer film 13 is 5 to 75% by mass with respect to the total solid content of the high refractive index layer 13H and the low refractive index layer 13L constituting the dielectric multilayer film 13. It is preferably 10 to 70% by mass. When the content of the water-soluble polymer is 5% by mass or more, when a high refractive index layer is formed by a wet film forming method, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. Can be prevented. On the other hand, when the content of the water-soluble polymer is 75% by mass or less, it is preferable when the metal oxide particles are contained in the high refractive index layer 13H and when the inorganic fine particles are contained in the low refractive index layer 13L. Content.
 なお、水溶性高分子の含有量は、蒸発乾固法の残固形分より求められる。具体的には、熱線遮蔽フィルムを95℃の熱水に2時間浸し、残ったフィルムを除去した後、熱水を蒸発させ、得られた固形物の量を水溶性高分子量とする。この際、IR(赤外分光)スペクトルにおいて1700~1800cm-1、900~1000cm-1、および800~900cm-1の領域にそれぞれ1つずつピークが見られる場合、その水溶性高分子はポリビニルアルコールであると断定することができる。 In addition, content of water-soluble polymer is calculated | required from the residual solid content of the evaporation-drying method. Specifically, the heat ray shielding film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight. At this time, when one peak is observed in each of the regions of 1700 to 1800 cm −1 , 900 to 1000 cm −1 , and 800 to 900 cm −1 in the IR (infrared spectroscopy) spectrum, the water-soluble polymer is polyvinyl alcohol. It can be determined that
[その他の材料(誘電体多層膜13)]
 誘電体多層膜13を構成する各層には、水溶性高分子を硬化させるために、硬化剤を使用することもできる。硬化剤としては、ホウ酸及びその塩、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬、ホウ砂等が挙げられる。屈折率層における硬化剤の含有量は、屈折率層の固形分に対して、1~10質量%であることが好ましい。
[Other materials (dielectric multilayer film 13)]
In each layer constituting the dielectric multilayer film 13, a curing agent can be used in order to cure the water-soluble polymer. Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc., aldehyde curing agents (formaldehyde, glyoxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active vinyl Examples of such compounds include 1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, aluminum alum and borax. The content of the curing agent in the refractive index layer is preferably 1 to 10% by mass with respect to the solid content of the refractive index layer.
 また誘電体多層膜13を構成する各層には、塗布成膜時の表面張力を調整するための界面活性剤を含んでもよい。ここで、界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等を用いることができる。界面活性剤としては、アニオン系界面活性剤を用いることが好ましく、1分子中に炭素数8~30の疎水性基とスルホン酸基又はその塩を含有するものが好ましい。高屈折率層における界面活性剤の含有量は、高屈折率層の固形分に対して、0.01~5質量%であることが好ましい。界面活性剤としては、例えば、ニューコールシリーズ(日本乳化剤株式会社製)等を用いることができる。 Further, each layer constituting the dielectric multilayer film 13 may contain a surfactant for adjusting the surface tension during coating film formation. Here, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, or the like can be used as the surfactant. As the surfactant, an anionic surfactant is preferably used, and one containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule is preferable. The content of the surfactant in the high refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the high refractive index layer. As the surfactant, for example, Newcol series (manufactured by Nippon Emulsifier Co., Ltd.) can be used.
[高屈折率層13H(誘電体多層膜13)に含有される金属酸化物粒子]
 高屈折率層13Hは、金属酸化物粒子として酸化チタン粒子を含むことが好ましが、それ以外の金属酸化物粒子であってもよい。高屈折率層13Hに含有される金属酸化物粒子は、例えば、Ti、Li、Na、Mg、Al、Si、K、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種又は2種以上の金属の酸化物粒子を用いることができる。高屈折率層13H中には、このようは金属酸化物粒子が、1種含有されていてもよく、2種以上含有されていてもよい。
[Metal Oxide Particles Contained in High Refractive Index Layer 13H (Dielectric Multilayer Film 13)]
The high refractive index layer 13H preferably includes titanium oxide particles as metal oxide particles, but may be other metal oxide particles. The metal oxide particles contained in the high refractive index layer 13H are, for example, Ti, Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal One or two or more kinds of metal oxide particles can be used. In the high refractive index layer 13H, one kind of metal oxide particles may be contained, or two or more kinds may be contained.
 これらの金属酸化物粒子の具体例としては、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、酸化チタン、チタン酸ストロンチウム、酸化イットリウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化バリウム、酸化インジウム、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、及び、酸化鉛、並びに、これらの複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、及び、アルミニウム・マグネシウム酸化物等が挙げられる。 Specific examples of these metal oxide particles include zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, Magnesium oxide, magnesium hydroxide, titanium oxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide, and lead oxide, and These double oxides include lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide.
 また、希土類金属の酸化物としては、例えば、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等を用いることができる。 Examples of rare earth metal oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, and erbium oxide. , Thulium oxide, ytterbium oxide, lutetium oxide, and the like can be used.
 以上の材料のなかでも、高屈折率層13Hに含有される金属酸化物粒子としては、TiO、ZnO、ZrOが好ましく、高屈折率層13H中における安定性の観点ではTiO(二酸化チタンゾル)がより好ましい。また、TiOの中でも特にアナターゼ型よりルチル型(正方晶形)の方が、触媒活性が低いために13Hや、これに隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。 Among these materials, TiO 2 , ZnO, and ZrO 2 are preferable as the metal oxide particles contained in the high refractive index layer 13H. From the viewpoint of stability in the high refractive index layer 13H, TiO 2 (titanium dioxide sol ) Is more preferable. Of TiO 2 , rutile type (tetragonal type) is particularly preferable to anatase type because it has low catalytic activity, and thus the weather resistance of 13H and adjacent layers is high and the refractive index is high.
 高屈折率層13Hは、金属酸化物粒子として、酸化チタンを最も多い比率で有していることが好ましい。好ましくは、全粒子中において、酸化チタンを50質量%以上含むことが好ましく、さらに、酸化チタンを70質量%以上含むことが好ましく、酸化チタンを80質量%以上含むことがより好ましい。 The high refractive index layer 13H preferably has the largest proportion of titanium oxide as metal oxide particles. Preferably, in all the particles, it is preferable to contain 50% by mass or more of titanium oxide, more preferably 70% by mass or more of titanium oxide, and more preferably 80% by mass or more of titanium oxide.
 高屈折率層13Hにおける金属酸化物粒子の含有量としては、熱線遮蔽性や色ムラ低減の観点から、高屈折率層13Hの固形分中、20~80質量%であることが好ましく、30~75質量%であることがより好ましく、40~70質量%であることがさらに好ましい。 The content of the metal oxide particles in the high refractive index layer 13H is preferably 20 to 80% by mass in the solid content of the high refractive index layer 13H from the viewpoint of heat ray shielding and color unevenness reduction, preferably 30 to It is more preferably 75% by mass, and further preferably 40 to 70% by mass.
 また、高屈折率層13Hに用いられる金属酸化物粒子は、表面にアルミニウム、珪素、ジルコニウム等を立体的障壁のある島状に担持した構成であってもよい。例えば、酸化チタン微粒子が、含ケイ素水和酸化物で被覆されたコアシェル粒子であってもよい。コアシェル粒子は、コアとなる金属酸化物粒子(例えば酸化チタン粒子)の表面に、含ケイ素水和酸化物のシェル層が被覆した構造を有する。このようなコアシェル粒子を高屈折率層13Hに用いることで、シェル層の含ケイ素水和酸化物と水溶性樹脂との相互作用により、隣接する層界面での混合が抑制される。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素水和酸化物が付着した状態を示す。すなわち、高屈折率層13Hに用いられる金属酸化物粒子(たとえば酸化チタン粒子)は、その表面が、完全に含ケイ素水和酸化物で覆われた状態でもよく、酸化チタン粒子の表面の一部に含ケイ素水和酸化物が付着した状態でもよい。 Further, the metal oxide particles used for the high refractive index layer 13H may have a structure in which aluminum, silicon, zirconium, or the like is supported on the surface in an island shape having a three-dimensional barrier. For example, the titanium oxide fine particles may be core-shell particles coated with a silicon-containing hydrated oxide. The core-shell particle has a structure in which the surface of metal oxide particles (for example, titanium oxide particles) serving as a core is covered with a shell layer of silicon-containing hydrated oxide. By using such core-shell particles for the high refractive index layer 13H, mixing at the interface between adjacent layers is suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. Here, the “coating” indicates a state in which the silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the metal oxide particles (for example, titanium oxide particles) used for the high refractive index layer 13H may be in a state where the surface is completely covered with silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles. The silicon-containing hydrated oxide may be attached to the substrate.
 コアシェル粒子の屈折率は、含ケイ素水和酸化物の被覆量に影響を受けるため、酸化チタン粒子の表面の一部が含ケイ素水和酸化物で被覆されていることが好ましい。以下ではこのような被覆された酸化チタンのコアシェル粒子を「シリカ付着二酸化チタンゾル」とも称する。酸化チタン粒子を含ケイ素水和酸化物で被覆する方法としては、従来公知の方法を用いることができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された方法を適用することができる。 Since the refractive index of the core-shell particles is affected by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. In the following, such coated titanium oxide core-shell particles are also referred to as “silica-attached titanium dioxide sol”. As a method of coating the titanium oxide particles with the silicon-containing hydrated oxide, a conventionally known method can be used. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007-246351. It is possible to apply the method described in the gazette.
 高屈折率層13Hに用いられる金属酸化物粒子の体積平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましい。特に、ヘイズ値が低く、可視光透過率に優れることから、体積平均粒径が1~30nmであることが好ましく、1~20nmであることがより好ましい。 The volume average particle diameter of the metal oxide particles used for the high refractive index layer 13H is preferably 100 nm or less, and more preferably 50 nm or less. In particular, since the haze value is low and the visible light transmittance is excellent, the volume average particle diameter is preferably 1 to 30 nm, more preferably 1 to 20 nm.
 なお、ここで体積平均粒径は、粒子そのものを観察する方法により、1000個の任意の粒子の粒径を測定し、平均した値である。粒径の測定には、例えば、レーザー回折散乱法、動的光散乱法、又は粒子を含有する層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法を用いる。そして、これらの方法により測定された1000個の任意の粒子について、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子が、それぞれn1、n2・・・ni・・・nk個存在する集団において、粒子1個当りの体積をviとした場合に、平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される値を、上述の体積平均粒径とする。 Here, the volume average particle diameter is an average value obtained by measuring the particle diameters of 1000 arbitrary particles by a method of observing the particles themselves. For the measurement of the particle size, for example, a laser diffraction scattering method, a dynamic light scattering method, or a method of observing a particle image appearing on a cross section or surface of a layer containing particles with an electron microscope is used. And about 1000 arbitrary particles measured by these methods, there are n1, n2,..., Ni, nk particles having particle diameters of d1, d2,. In the existing population, when the volume per particle is vi, the average particle size mv = the value represented by {Σ (vi · di)} / {Σ (vi)} The diameter.
[低屈折率層13L(誘電体多層膜13)に含有される無機微粒子]
 低屈折率層13Lに含有される無機微粒子としては、無機酸化物粒子、金属化合物粒子、または金属酸化物粒子の何れかを用いることができる。無機酸化物粒子としては、二酸化ケイ素(SiO)が例示される。金属化合物粒子としては、フッ化マグネシウム(MgF)が例示される。金属酸化物粒子としては、高屈折率層13Hに含有されるとして例示した金属酸化物粒子のうち、高屈折率層13Hに含有させるものよりも屈折率が低いものが用いられる。これらのなかでも、低屈折率層13Lに含有される無機微粒子としては、二酸化ケイ素を用いることが好ましく、コロイダルシリカを用いることが特に好ましい。
[Inorganic fine particles contained in the low refractive index layer 13L (dielectric multilayer film 13)]
As the inorganic fine particles contained in the low refractive index layer 13L, any of inorganic oxide particles, metal compound particles, and metal oxide particles can be used. Examples of the inorganic oxide particles include silicon dioxide (SiO 2 ). An example of the metal compound particles is magnesium fluoride (MgF 2 ). As the metal oxide particles, among the metal oxide particles exemplified as being contained in the high refractive index layer 13H, those having a refractive index lower than that contained in the high refractive index layer 13H are used. Among these, as the inorganic fine particles contained in the low refractive index layer 13L, it is preferable to use silicon dioxide, and it is particularly preferable to use colloidal silica.
 低屈折率層13Lに含まれる無機微粒子は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された無機微粒子の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。低屈折率層13L中の無機微粒子の平均粒径は、粒子自体を、又は、低屈折率層13Lの断面や表面に現れた粒子を、電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求める。ここで個々の粒子の粒径は、粒子の投影面積と等しい面積の円を仮定したときの、円の直径(面積円相当径)である。 The inorganic fine particles contained in the low refractive index layer 13L preferably have an average particle size of 3 to 100 nm. The average particle size (particle size in the dispersion state before coating) of the inorganic fine particles dispersed in the primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less. The average particle diameter of the inorganic fine particles in the low-refractive index layer 13L is determined by observing the particles themselves or the particles appearing on the cross section or surface of the low-refractive index layer 13L with an electron microscope. The particle size is measured and determined as a simple average value (number average). Here, the particle size of each particle is a circle diameter (area circle equivalent diameter) when a circle having an area equal to the projected area of the particle is assumed.
 低屈折率層13Lにおける無機微粒子の含有量としては、低屈折率層13Lの固形分に対して、屈折率の観点から、5~70質量%であることが好ましく、10~50質量%であることがさらに好ましい。 The content of the inorganic fine particles in the low refractive index layer 13L is preferably 5 to 70% by mass with respect to the solid content of the low refractive index layer 13L from the viewpoint of refractive index, and is 10 to 50% by mass. More preferably.
<光安定化剤含有層15>
 光安定化剤含有層15は、ヒンダードアミン系の光安定化剤を含有した層であって、誘電体多層膜13に隣接して設けられている。また、この光安定化剤含有層15は、紫外線吸収剤を含有することが好ましく、光安定化剤、紫外線吸収剤、バインダー、および必要に応じてその他の材料を含んで構成されている。以下これらの詳細を順に説明する。
<Light stabilizer containing layer 15>
The light stabilizer-containing layer 15 is a layer containing a hindered amine light stabilizer and is provided adjacent to the dielectric multilayer film 13. The light stabilizer-containing layer 15 preferably contains an ultraviolet absorber, and includes a light stabilizer, an ultraviolet absorber, a binder, and other materials as necessary. Hereinafter, these details will be described in order.
[ヒンダードアミン系光安定化剤(光安定化剤含有層15)]
 光安定化剤含有層15に含有されるヒンダードアミン系光安定化剤は、例えばピペリジン環の窒素原子(N)に対して直接有機基(R)が結合した[NR]型のものが用いられる。また、ピペリジン環の窒素原子(N)に対して酸素原子(O)を介して有機基(R)が結合した[NOR]型のものが用いられる。さらに、ピペリジン環の窒素原子(N)に対して水素原子(H)が結合した[NH]型のものが用いられる。
[Hindered amine light stabilizer (light stabilizer containing layer 15)]
As the hindered amine light stabilizer contained in the light stabilizer-containing layer 15, for example, an [NR] type in which an organic group (R) is directly bonded to a nitrogen atom (N) of a piperidine ring is used. Further, a [NOR] type in which an organic group (R) is bonded to a nitrogen atom (N) of a piperidine ring via an oxygen atom (O) is used. Further, an [NH] type in which a hydrogen atom (H) is bonded to a nitrogen atom (N) of the piperidine ring is used.
 このうち[NR]型または[NOR]型のヒンダードアミン系光安定化剤は、遅効性・低失活性型であり、耐久性の長期持続性の観点からは、[NR]型または[NOR]型のヒンダードアミン系光安定化剤を用いることが好ましい。 Among these, the [NR] type or [NOR] type hindered amine light stabilizer is a slow-acting, low-deactivation type, and from the viewpoint of long-term durability, [NR] type or [NOR] type It is preferable to use a hindered amine light stabilizer.
 また光安定化剤含有層15には、[NR]型および[NOR]型のヒンダードアミン安定化剤のうちの少なくとも一方と共に、[NH]型のヒンダードアミン安定化剤を含有していてもよい。これにより、[NH]型のヒンダードアミン安定化剤によって初期紫外線劣化抑制効果を得ると共に、[NR]型および[NOR]型のヒンダードアミン安定化剤のうちの少なくとも一方によって紫外線劣化抑制効果の長期持続性に優れた光安定化剤含有層15を構成することができる。 The light stabilizer-containing layer 15 may contain a [NH] type hindered amine stabilizer together with at least one of [NR] type and [NOR] type hindered amine stabilizers. Thus, the [NH] type hindered amine stabilizer provides an initial ultraviolet deterioration suppressing effect, and at least one of the [NR] type and [NOR] type hindered amine stabilizers provides a long-term persistence of the ultraviolet deterioration suppressing effect. The light stabilizer-containing layer 15 can be constructed.
 以下、各型のヒンダードアミン系光安定化剤を説明する。 Hereinafter, each type of hindered amine light stabilizer will be described.
-[NR]型ヒンダードアミン系光安定化剤-
 [NR]型ヒンダードアミン系光安定化剤は、従来公知のものを用いることができ、例えば下記式(1)で示されるピペリジン環構造を、分子中に少なくとも1個有する。
-[NR] type hindered amine light stabilizer-
As the [NR] type hindered amine light stabilizer, a conventionally known one can be used. For example, it has at least one piperidine ring structure represented by the following formula (1) in the molecule.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、式(1)中、Rは、ピペリジン環の窒素原子[N]に炭素原子が直接結合している有機基であり、一例として炭素数が1以上で、かつ少なくとも1以上のメチレン基を含む官能基、またはこの官能基を有する化合物基である。このような化合物基としては、例えばアルキル基が挙げられ、オリゴマーやポリマーも含む。 Here, in formula (1), R 1 is an organic group in which a carbon atom is directly bonded to the nitrogen atom [N] of the piperidine ring, and as an example, methylene having 1 or more carbon atoms and at least one or more methylene atoms It is a functional group containing a group or a compound group having this functional group. Examples of such a compound group include an alkyl group, and also include oligomers and polymers.
 このような[NR]型ヒンダードアミン系光安定剤の市販品としては、BASF社製「Tinuvin144」(商品名)が例示される。 As a commercial product of such an [NR] type hindered amine light stabilizer, “Tinuvin 144” (trade name) manufactured by BASF is exemplified.
-[NOR]型ヒンダードアミン系光安定化剤-
 [NOR]型ヒンダードアミン系光安定剤は、従来公知のものを用いることができ、例えば下記式(2)で表されるピペリジン環構造を、分子中に少なくとも1個有する。
-[NOR] type hindered amine light stabilizer-
As the [NOR] type hindered amine light stabilizer, a conventionally known one can be used. For example, it has at least one piperidine ring structure represented by the following formula (2) in the molecule.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは、ピペリジン環の窒素原子[N]に酸素原子[O]を介して結合している有機基であり、一例として炭素数が1以上で、かつ少なくとも1以上のメチレン基を含む官能基、またはこの官能基を有する化合物基である。このような化合物基としては、オリゴマーやポリマーも含み、具体的には、プロピル基等のアルキル基が挙げられる。 In Formula (2), R 1 is an organic group bonded to the nitrogen atom [N] of the piperidine ring via an oxygen atom [O]. As an example, R 1 has 1 or more carbon atoms and at least 1 or more carbon atoms. It is a functional group containing a methylene group or a compound group having this functional group. Such compound groups include oligomers and polymers, and specifically include alkyl groups such as propyl groups.
 このような[NOR]型ヒンダードアミン系光安定剤の市販品としては、BASF社製「Tinuvin123」(商品名)が例示される。 As a commercially available product of such a [NOR] type hindered amine light stabilizer, “Tinuvin 123” (trade name) manufactured by BASF is exemplified.
-[NH]型ヒンダードアミン系光安定化剤-
 [NH]型ヒンダードアミン系光安定化剤は、従来公知のものを用いることができ、例えば下記式(3)で表されるピペリジン環構造を、分子中に少なくとも1個有する。
-[NH] type hindered amine light stabilizer-
As the [NH] type hindered amine light stabilizer, a conventionally known one can be used. For example, it has at least one piperidine ring structure represented by the following formula (3) in the molecule.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このような[NH]型ヒンダードアミン系光安定剤の市販品としては、BASF社製 「CHIMASSORB944」(商品名)が例示される。 As a commercially available product of such an [NH] type hindered amine light stabilizer, “CHIMASSORB 944” (trade name) manufactured by BASF is exemplified.
-ヒンダードアミン系光安定化剤の含有量-
 光安定化剤含有層15には、上述したヒンダードアミン系光安定化剤が合計の含有量として、0.05~10質量%含まれていることが好ましい。
-Content of hindered amine light stabilizer-
The light stabilizer-containing layer 15 preferably contains 0.05 to 10% by mass of the above-mentioned hindered amine light stabilizer as a total content.
[紫外線吸収剤(光安定化剤含有層15)]
 光安定化剤含有層15に含有される紫外線吸収剤は、特に限定されるものではないが、波長380~400nmに吸収領域を有する紫外線吸収剤Aを含むことが好ましい。また、より広い波長範囲の紫外線を吸収することを目的として、異なる波長範囲に吸収領域を有する複数の紫外線吸収剤を含有させてもよい。このため、さらに波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収剤Bを含んでもよい。このように、光安定化剤含有層15に対して紫外線吸収剤を含有させることにより、光安定化剤含有層15の耐熱性だけでなく、耐光性も確保することが可能である。
[Ultraviolet absorber (light stabilizer containing layer 15)]
The ultraviolet absorber contained in the light stabilizer-containing layer 15 is not particularly limited, but preferably contains an ultraviolet absorber A having an absorption region at a wavelength of 380 to 400 nm. Moreover, you may contain the several ultraviolet absorber which has an absorption area | region in a different wavelength range for the purpose of absorbing the ultraviolet of a wider wavelength range. For this reason, an ultraviolet absorber B having an absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm may be further included. Thus, by including the ultraviolet absorber in the light stabilizer-containing layer 15, not only the heat resistance of the light stabilizer-containing layer 15 but also the light resistance can be ensured.
-紫外線吸収剤A-
 波長380~400nmに吸収領域を有する紫外線吸収剤Aとしては、インドール化合物、アゾメチン化合物、クマリン化合物、及びメロシアニン化合物が例示される。光安定化剤含有層15中には、これらの紫外線吸収剤Aのうちの1種以上を含むことが好ましい。
-UV absorber A-
Examples of the ultraviolet absorber A having an absorption region at a wavelength of 380 to 400 nm include indole compounds, azomethine compounds, coumarin compounds, and merocyanine compounds. The light stabilizer-containing layer 15 preferably contains one or more of these ultraviolet absorbers A.
 以下、紫外線吸収剤Aのインドール化合物、アゾメチン化合物、クマリン化合物、及びメロシアニン化合物の好ましい形態について説明する。 Hereinafter, preferred forms of the indole compound, the azomethine compound, the coumarin compound, and the merocyanine compound of the ultraviolet absorber A will be described.
(インドール化合物)
 インドール化合物は、下記式(4)で示されるインドール骨格を持つ化合物である。
(Indole compound)
The indole compound is a compound having an indole skeleton represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 光安定化剤含有層15に含まれるインドール化合物としては、下記式(5)で示される化合物であることが好ましい。 The indole compound contained in the light stabilizer-containing layer 15 is preferably a compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)において、Rは、炭素数が1~10のアルキル基、又は、炭素数が7~10のアラルキル基である。Rは、炭素数が1~10のアルキル基、炭素数が7~10のアラルキル基、又は、エステル基である。炭素数が1~10のアルキル基としては、例えば、メチル基、エチル基、ブチル基、2-エチルヘキシル基等を挙げることができる。また、炭素数が7~10のアラルキル基としては、例えば、フェニルメチル基を挙げることができる。 In Formula (5), R 1 is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. R 2 is an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an ester group. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a butyl group, and a 2-ethylhexyl group. An example of the aralkyl group having 7 to 10 carbon atoms is a phenylmethyl group.
(アゾメチン化合物)
 光安定化剤含有層15に含まれるアゾメチン化合物としては、下記式(6)で示されるアゾメチン骨格を有する化合物が好ましい。
(Azomethine compound)
As the azomethine compound contained in the light stabilizer-containing layer 15, a compound having an azomethine skeleton represented by the following formula (6) is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(6)において、R、Rは、それぞれ水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシル基、アミノ基、カルボキシル基、複素環式化合物であり、R’は、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシル基、アミノ基、カルボキシル基、複素環式化合物である。 In the formula (6), R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a heterocyclic compound, respectively, and R ′ is a halogen compound Atoms, alkyl groups, aryl groups, alkoxy groups, hydroxyl groups, amino groups, carboxyl groups, and heterocyclic compounds.
 また、光安定化剤含有層15に含まれるアゾメチン化合物としては、下記式(7)で示される構造の化合物が好ましい。 The azomethine compound contained in the light stabilizer-containing layer 15 is preferably a compound having a structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(クマリン化合物)
 光安定化剤含有層15に含まれるクマリン化合物は、下記式(8)で示すクマリン骨格を有する化合物である。
(Coumarin compound)
The coumarin compound contained in the light stabilizer-containing layer 15 is a compound having a coumarin skeleton represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 光安定化剤含有層15に含まれるクマリン化合物の好ましい例としては、7-ジエチルアミノ-4-メチル-クロメン-2-オン、7-ジエチルアミノ-4a,8a-ジヒドロ-クロメン-2-オン、7-ジエチルアミノ-3-チオフェン-2-イル-クロメン-2-オン、7-ジメチルアミノ-2-オキソ-2H-クロロメン-3-カルボニトリル、3-(1H-ベンゾイミダゾール-2-イル)-7-ジエチルアミノ-クロメン-2-オン、1,1,6,6,8-ペンタメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-3a-アザ-ベンゾ[デ]アントラフェン-10-オン等が挙げられる。 Preferred examples of the coumarin compound contained in the light stabilizer-containing layer 15 include 7-diethylamino-4-methyl-chromen-2-one, 7-diethylamino-4a, 8a-dihydro-chromen-2-one, 7- Diethylamino-3-thiophen-2-yl-chromen-2-one, 7-dimethylamino-2-oxo-2H-chloromen-3-carbonitrile, 3- (1H-benzimidazol-2-yl) -7-diethylamino -Chromen-2-one, 1,1,6,6,8-pentamethyl-2,3,5,6-tetrahydro-1H, 4H-11-oxa-3a-aza-benzo [de] anthraphen-10- ON etc. are mentioned.
(メロシアニン化合物)
 光安定化剤含有層15に含まれるメロシアニン化合物の好ましい例としては、1,3-ジメチル-5-[2-(3-メチル-オキサドリディン)-エチリデン]-ピリミジン-2,4,6-トリオン、1,3-ジメチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-ピリミジン-2,4,6-トリオン、1,3-ジメチル-5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-ピリミジン-2,4,6-トリオン、3-エチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-2-チオキソ-オキサゾリディン-4-オン、3-エチル-5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-2-チオキソ-オキサゾリディン-4-オン、1,3-ジメチル-5-[2-(1-メチル-ピロリジン-2-イリデン)-エチリデン]-2-チオキソ-イミダゾリン-4-オン、[5-[2-(3-メチル-チアゾリディン-2-イリデン)-エチリデン]-4-オキソ-2-チオキソ-チアゾリディン-3-イル]-アセチル酸、3-エチル-5-[2-(3-メチル-チアゾリディン-2-イリディン)-エチリデン]-2-チオキソ-チアオゾリディン-4-オン、[5-[1-メチル-2-(3-メチル-チアオゾリディン-2-イリデン)-エチリデン)]-4-オキソ-2-チオキソ-チアゾリディン-3-イル]-アセチル酸などが挙げられる。
(Merocyanine compound)
A preferred example of the merocyanine compound contained in the light stabilizer-containing layer 15 is 1,3-dimethyl-5- [2- (3-methyl-oxadolidin) -ethylidene] -pyrimidine-2,4,6- Trione, 1,3-dimethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 1,3-dimethyl-5- [2- ( 3-methyl-thiazolidin-2-ylidene) -ethylidene] -pyrimidine-2,4,6-trione, 3-ethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -2- Thioxo-oxazolidin-4-one, 3-ethyl-5- [2- (3-methyl-thiazolidin-2-ylidene) -ethylidene] -2-thioxo-oxazolidin-4-one, 1 3-dimethyl-5- [2- (1-methyl-pyrrolidin-2-ylidene) -ethylidene] -2-thioxo-imidazolin-4-one, [5- [2- (3-methyl-thiazolidin-2-ylidene] ) -Ethylidene] -4-oxo-2-thioxo-thiazolidin-3-yl] -acetyl acid, 3-ethyl-5- [2- (3-methyl-thiazolidin-2-ylidin) -ethylidene] -2-thioxo -Thiazolidin-4-one, [5- [1-methyl-2- (3-methyl-thiazolidin-2-ylidene) -ethylidene)]-4-oxo-2-thioxo-thiazolidin-3-yl] -acetyl acid Etc.
 以上説明した化合物のうち、以降に説明する実施例でも用いたインドール化合物は、特に紫外領域の長波長を吸収できるため、樹脂の劣化を更に防止できる観点から、紫外線吸収剤Aとして好ましく用いられる。 Of the compounds described above, the indole compounds used in the examples described below are particularly preferably used as the ultraviolet absorber A from the viewpoint of further preventing deterioration of the resin because they can absorb long wavelengths in the ultraviolet region.
-紫外線吸収剤B-
 波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収剤Bとしては、一般的に紫外線吸収剤として用いられている公知の材料を用いることができる。このような紫外線吸収剤Bは、例えば、ベンゾトリアゾール化合物、トリアジン化合物、及び、ベンゾフェノン化合物が挙げられる。光安定化剤含有層15中には、これらの紫外線吸収剤Bのうちの1種以上を含むことが好ましい。
-UV absorber B-
As the ultraviolet absorber B having an absorption region on the shorter wavelength side than the wavelength of 380 to 400 nm, a known material generally used as an ultraviolet absorber can be used. Examples of such ultraviolet absorber B include benzotriazole compounds, triazine compounds, and benzophenone compounds. The light stabilizer-containing layer 15 preferably contains one or more of these ultraviolet absorbers B.
-紫外線吸収剤の含有量-
 光安定化剤含有層15には、上述した紫外線吸収剤の合計の含有量として、0.05~15質量%の紫外線吸収剤が含まれることが好ましく、1~10質量%の紫外線吸収剤が含まれることがさらに好ましい。
-Content of UV absorber-
The light stabilizer-containing layer 15 preferably contains 0.05 to 15% by mass of the ultraviolet absorber as the total content of the above-described ultraviolet absorbers, and preferably 1 to 10% by mass of the ultraviolet absorber. More preferably it is included.
[バインダー(光安定化剤含有層15)]
 光安定化剤含有層15を構成するバインダーとしては、特に制限はないが、ウレタン系、シリコーン系、アクリル系、メラミン系、エポキシ系、アクリレート系、多官能(メタ)アクリル系の樹脂、さらには上述の誘電体多層膜13で例示した水溶性高分子が用いられる。中でも、透明性および耐久性に優れたアクリル樹脂が好ましく用いられ、これにより光安定化剤含有層15の劣化を防止できるため、長期にわたって光反射フィルム1のヘイズの上昇を抑えることが可能であり、また耐光性の向上も図られる
[Binder (light stabilizer containing layer 15)]
The binder constituting the light stabilizer-containing layer 15 is not particularly limited, but urethane-based, silicone-based, acrylic-based, melamine-based, epoxy-based, acrylate-based, polyfunctional (meth) acrylic resins, The water-soluble polymer exemplified for the dielectric multilayer film 13 is used. Among them, an acrylic resin excellent in transparency and durability is preferably used, and thereby the deterioration of the light stabilizer-containing layer 15 can be prevented, so that an increase in haze of the light reflecting film 1 can be suppressed over a long period of time. In addition, the light resistance is improved
[その他の材料(光安定化剤含有層15)]
 光安定化剤含有層15には、光安定化剤含有層15の効果を損なわない範囲で、必要に応じてその他の材料を添加させることができる。その他の材料としては、例えば、分散剤、可塑剤、紫外線安定剤、界面活性剤、酸化防止剤、難燃剤、防腐剤、抗酸化剤、熱安定剤、滑剤、充填剤、光開始剤、光増感剤、熱重合開始剤、増粘剤、カップリング剤、帯電防止剤、レベリング剤、接着調整剤、改質剤、または任意の色調を与えるための染料や顔料等の添加剤を含ませてもよい。これらを1種で用いてもよいし、2種以上組み合わせて用いてもよい。
[Other materials (light stabilizer containing layer 15)]
Other materials can be added to the light stabilizer-containing layer 15 as necessary, as long as the effects of the light stabilizer-containing layer 15 are not impaired. Other materials include, for example, dispersants, plasticizers, UV stabilizers, surfactants, antioxidants, flame retardants, preservatives, antioxidants, thermal stabilizers, lubricants, fillers, photoinitiators, light Add sensitizers, thermal polymerization initiators, thickeners, coupling agents, antistatic agents, leveling agents, adhesion modifiers, modifiers, or additives such as dyes and pigments to give any color tone May be. These may be used alone or in combination of two or more.
<粘着層17>
 粘着層17は、透明な粘着性を有する材料で構成されたものであればよい。透明な粘着性を有する材料としては、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等を挙げることができる。なかでも、粘着層17は、粘着性を有する材料として粘着剤を含むことが好ましい。粘着剤としては、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、ポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ニトリルゴム、エチレン-酢酸ビニル系粘着剤等を挙げることができる。
<Adhesion layer 17>
The adhesive layer 17 should just be comprised with the material which has transparent adhesiveness. Examples of the transparent adhesive material include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent. Especially, it is preferable that the adhesion layer 17 contains an adhesive as an adhesive material. Examples of the adhesive include acrylic adhesive, silicone adhesive, urethane adhesive, polyvinyl butyral adhesive, polyester resin, polyvinyl acetate resin, nitrile rubber, ethylene-vinyl acetate adhesive, and the like. Can do.
 特に、光反射フィルム1を窓ガラスに貼り合わせて用いる用途においては、窓に水を吹き付け、濡れた状態のガラス面に光反射フィルム1の粘着層17側を貼り合わせる方法、いわゆる水貼り法が好適に用いられる。そのため、水が存在する湿潤下で粘着力が弱いアクリル系粘着剤を用いることが好ましい。 In particular, in applications where the light reflecting film 1 is used by being bonded to a window glass, a method of spraying water on the window and bonding the adhesive layer 17 side of the light reflecting film 1 to a wet glass surface, a so-called water bonding method is used. Preferably used. For this reason, it is preferable to use an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
 粘着層17の膜厚は、10μm以上、30μm以下であることが好ましい。粘着層17の膜厚を10μm以上とすることにより、ガラス等の設備100に対して必要な粘着力を得ることができる。また粘着層17の膜厚を30μm以下とすることにより、設備100から光反射フィルム1を剥がす際に、粘着層17内において凝集破壊が生じて設備100側に粘着層17が残ることが防止される。 The film thickness of the adhesive layer 17 is preferably 10 μm or more and 30 μm or less. By setting the thickness of the adhesive layer 17 to 10 μm or more, it is possible to obtain a necessary adhesive force for the equipment 100 such as glass. Further, by setting the thickness of the adhesive layer 17 to 30 μm or less, when the light reflecting film 1 is peeled off from the equipment 100, it is prevented that cohesive failure occurs in the adhesive layer 17 and the adhesive layer 17 remains on the equipment 100 side. The
 なお、この粘着層17は、紫外線吸収剤を含有することが好ましく、含有される紫外線吸収剤としては光安定化剤含有層15と同様のものが用いられる。 In addition, it is preferable that this adhesion layer 17 contains a ultraviolet absorber, and the same thing as the light stabilizer containing layer 15 is used as a contained ultraviolet absorber.
<樹脂基材11>
 樹脂基材11は、透明の有機材料で形成された基材であれば、特に限定されるものではない。このような樹脂基材11としては、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニルフィルム、3酢酸セルロースフィルム、ポリイミドフィルム、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等の各樹脂基材を挙げることができる。さらに、これらの樹脂基材を2層以上積層して用いることもできる。
<Resin substrate 11>
The resin substrate 11 is not particularly limited as long as it is a substrate formed of a transparent organic material. Examples of such resin substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride films, cellulose acetate films, polyimide films, polybutyral films, Examples of the resin base material include a cycloolefin polymer film and a transparent cellulose nanofiber film. Furthermore, two or more layers of these resin base materials can be laminated and used.
 樹脂基材11としては、ポリエステルフィルムを用いることが好ましい。特に、ポリエステルフィルムの中でも透明性、機械的強度、寸法安定性などの観点から、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分とを主要な構成成分とするフィルムが好ましい。具体的には、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステル、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールとからなる共重合ポリエステル、及び、これらのポリエステルの2種以上の混合物を主要な構成成分とすることが好ましい。 As the resin base material 11, it is preferable to use a polyester film. In particular, from the viewpoint of transparency, mechanical strength, dimensional stability among polyester films, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol A film containing a diol component as a main constituent is preferred. Specifically, a polyester mainly composed of polyethylene terephthalate or polyethylene naphthalate, a copolymer polyester composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more kinds of these polyesters It is preferable that the mixture is a major constituent.
 また、樹脂基材11は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 The resin substrate 11 may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
 樹脂基材11の厚さは、5μm以上、200μm以下の範囲が好ましく、更に好ましくは15μm以上、150μm以下である。 The thickness of the resin substrate 11 is preferably in the range of 5 μm to 200 μm, more preferably 15 μm to 150 μm.
 樹脂基材11は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。樹脂基材11の透過率を高めることにより、光反射フィルム1における波長420nm~780nmの最小透過率を高めることができる。 The resin base material 11 preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the resin base material 11, the minimum transmittance of the light reflecting film 1 with a wavelength of 420 nm to 780 nm can be increased.
 樹脂基材11は、従来公知の一般的な方法により製造することが可能である。例えば、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。また、未延伸の樹脂基材から、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法を用いて、延伸フィルムを作製することもできる。この場合の延伸倍率は、原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 The resin base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. In addition, a stretched film may be prepared from an unstretched resin base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. it can. The draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、樹脂基材11は、寸法安定性の点で弛緩処理、オフライン熱処理が行われていてもよい。弛緩処理はポリエステルフィルムの延伸製膜工程中で熱固定した後、横延伸のテンター内、又は、テンターを出た後の巻き取りまでの何れかの工程で行うことが好ましい。弛緩処理は処理温度80℃~200℃で行うことが好ましく、より好ましくは処理温度が100℃~180℃である。また長手方向、幅手方向ともに、弛緩率0.1%~10%の範囲で行うことが好ましく、より好ましくは弛緩率2%~6%で処理する。弛緩処理された樹脂基材11は、オフライン熱処理を施すことにより耐熱性が向上し、更に寸法安定性が良好になる。 Further, the resin base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability. The relaxation treatment is preferably carried out in any step from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 ° C. to 200 ° C., more preferably a treatment temperature of 100 ° C. to 180 ° C. Further, it is preferable to carry out the treatment at a relaxation rate of 0.1% to 10% in both the longitudinal direction and the width direction, and more preferably, the treatment is performed at a relaxation rate of 2% to 6%. The resin base material 11 subjected to the relaxation treatment is improved in heat resistance by being subjected to off-line heat treatment, and is further improved in dimensional stability.
<光反射フィルム1の製造方法>
 次に、光反射フィルム1の製造方法を説明する。光反射フィルム1の製造は、樹脂基材11上に誘電体多層膜13を形成する工程と、誘電体多層膜13上に光安定化剤含有層15を形成する工程と、光安定化剤含有層15上に粘着層17を形成する工程とを有する。以下これらの工程を順に説明する。
<The manufacturing method of the light reflection film 1>
Next, the manufacturing method of the light reflection film 1 is demonstrated. The production of the light reflecting film 1 includes the step of forming the dielectric multilayer film 13 on the resin base material 11, the step of forming the light stabilizer-containing layer 15 on the dielectric multilayer film 13, and the step of containing the light stabilizer. Forming an adhesive layer 17 on the layer 15. Hereinafter, these steps will be described in order.
[誘電体多層膜13の形成工程]
 樹脂基材11上に誘電体多層膜13を形成する方法は、特に限定されないが、例えば、高屈折率層用塗布液、及び、低屈折率層用塗布液を、交互に塗布及び乾燥させることによって形成する方法が挙げられる。
[Process for forming dielectric multilayer 13]
The method for forming the dielectric multilayer film 13 on the resin substrate 11 is not particularly limited, but, for example, a high refractive index layer coating solution and a low refractive index layer coating solution are alternately applied and dried. The method of forming by is mentioned.
 高屈折率層用塗布液の調製方法は、特に制限されず、水溶性高分子、金属酸化物粒子、溶媒、及び、必要に応じて添加されるその他の添加剤を、撹拌混合する方法が挙げられる。また、低屈折率層用塗布液の調製方法は、特に制限されず、水溶性高分子、溶媒、及び、必要に応じて無機微粒子や、その他の添加剤を、撹拌混合する方法が挙げられる。この撹拌混合の際、各成分の混合順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗布液は、溶媒の量を調整することにより、適当な粘度に調整する。 The method for preparing the coating solution for the high refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, metal oxide particles, a solvent, and other additives added as necessary. It is done. The method for preparing the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and if necessary, inorganic fine particles and other additives. During the stirring and mixing, the mixing order of the components is not particularly limited, and the components may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 ここで、各塗布液を調製するための溶媒は、特に制限されないが、水、または水と有機溶媒との混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると水が好ましい。 Here, the solvent for preparing each coating solution is not particularly limited, but it is preferable to use water or a mixed solvent of water and an organic solvent. Further, water is preferable in consideration of environmental aspects due to scattering of the organic solvent.
 各塗布液に用いる有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノール等のアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン等のアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類が挙げられる。これら有機溶媒は、単独でも2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水と、メタノール、エタノール、及び、酢酸エチルとの混合溶媒が好ましい。 Examples of the organic solvent used in each coating solution include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. And ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the standpoint of environment and ease of operation, the solvent for the coating solution is preferably a mixed solvent of water, methanol, ethanol, and ethyl acetate.
 水と少量の有機溶媒との混合溶媒を用いる際、混合溶媒中の水の含有量は、混合溶媒全体中の80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、塗膜形成の操作性が向上する。また、99.9質量%以下にすることで、塗布液の均質性が増し、塗布液の物性が安定する。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably 80 to 99.9% by mass in the entire mixed solvent, and 90 to 99.5% by mass. More preferably. Here, by setting it as 80 mass% or more, the volume fluctuation | variation by volatilization of a solvent can be reduced, and the operativity of coating-film formation improves. Moreover, by setting it as 99.9 mass% or less, the homogeneity of a coating liquid increases and the physical property of a coating liquid is stabilized.
 次に、調製した各塗布液を樹脂基材11上に塗布し、乾燥させる。この塗布工程と乾燥工程とを行なうことにより、塗布膜から誘電体多層膜13を形成することができる。 Next, each prepared coating solution is applied onto the resin substrate 11 and dried. By performing the coating process and the drying process, the dielectric multilayer film 13 can be formed from the coating film.
 塗布方法としては、特に限定されず、同時重層塗布、逐次塗布法いずれであってもよいが、生産性等の観点から同時重層塗布であることが好ましい。塗布方法としては、例えば、カーテン塗布方法、米国特許第2761419号、米国特許第2761791号に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 The coating method is not particularly limited, and any of simultaneous multilayer coating and sequential coating may be used, but simultaneous multilayer coating is preferable from the viewpoint of productivity and the like. As the coating method, for example, a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method, and the like are preferably used.
 同時重層塗布を行う際の各塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 When using the slide bead coating method, the temperature of each coating solution at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., more preferably 30 to 45 ° C. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の各塗布液の粘度は、特に制限されない。例えば、スライドビード塗布方式を用いる場合には、上記の各塗布液の好ましい温度の範囲において、5~100mPa・sの範囲であることが好ましく、10~50mPa・sの範囲であることがより好ましい。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲であることが好ましく、25~500mPa・sの範囲であることがより好ましい。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited. For example, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, more preferably in the range of 10 to 50 mPa · s, in the preferable temperature range of each of the above coating solutions. . When the curtain coating method is used, it is preferably in the range of 5 to 1200 mPa · s, more preferably in the range of 25 to 500 mPa · s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、同時重層塗布で誘電体多層膜13を形成する場合には、各塗布液を30~60℃に加温して、基材11上に各塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 Further, when forming the dielectric multilayer film 13 by simultaneous multilayer coating, each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11, the formation is performed. The temperature of the coated film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、上記セットとは、冷風等を塗布膜の表面に当てて温度を下げる等の手段により、塗膜組成物の粘度を高め、各層の物質の流動性の低下、又は、ゲル化を行う工程を意味する。塗布膜の表面に指を押し付けたときに、指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. Means a process. When the finger is pressed against the surface of the coating film, the state in which the finger is no longer attached is defined as the state of completion of setting.
 セット工程において使用される冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 塗膜形成から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上とすることが好ましい。セット時間を一定以上設けることで、層中の成分が十分に混合する。一方、セット時間を短時間とすることにより、金属酸化物粒子の層間拡散を防止し、高屈折率層と低屈折率層とに所望の屈折率差を設けることができる。なお、高屈折率層と低屈折率層との間の境界面において高弾性化が素早く起こる場合には、セット工程を設けなくとも好適な界面を形成することができる。 The time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. The lower limit time is not particularly limited, but is preferably 45 seconds or more. By providing a set time or longer, the components in the layer are sufficiently mixed. On the other hand, by setting the set time short, the interlayer diffusion of the metal oxide particles can be prevented, and a desired refractive index difference can be provided between the high refractive index layer and the low refractive index layer. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
 なお、セット時間は、各塗布液に含まれる水溶性高分子の濃度や、金属酸化物粒子または無機微粒子の濃度を変更することの他、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など他の成分を添加することにより調整することができる。 The set time includes various concentrations such as gelatin, pectin, agar, carrageenan, gellan gum, as well as changing the concentration of water-soluble polymer contained in each coating solution and the concentration of metal oxide particles or inorganic fine particles. It can adjust by adding other components, such as a well-known gelatinizer.
 逐次塗布法で誘電体多層膜13を形成する場合には、30~60℃に加温した低屈折率層用塗布液又は高屈折率層用塗布液のいずれか一方の塗布液を、基材11上に塗布、乾燥して層を形成した後、他方の塗布液をこの層上に塗布、乾燥して層を形成する。これを所望の反射性能を発現するために必要な層数となるように逐次繰り返して、誘電体多層膜13を形成する。 In the case of forming the dielectric multilayer film 13 by the sequential coating method, either the low refractive index layer coating liquid or the high refractive index layer coating liquid heated to 30 to 60 ° C. is used as the base material. After coating on 11 and drying to form a layer, the other coating solution is coated on this layer and dried to form a layer. The dielectric multilayer film 13 is formed by sequentially repeating this process so that the number of layers necessary for expressing desired reflection performance is obtained.
 乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥することが好ましく、例えば、40~85℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥をすることが好ましく、恒率乾燥部の温度<減率乾燥部の温度にすることがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。 When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. In addition, it is preferable to perform a multi-stage process rather than a single process, and it is more preferable that the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
[光安定化剤含有層15の形成工程]
 誘電体多層膜13上に光安定化剤含有層15を形成する方法は、特に限定されないが、例えば光安定化剤含有層用塗布液を調製した後、塗布液を塗布及び乾燥させることによって形成する方法が挙げられる。
[Step of forming light stabilizer-containing layer 15]
The method for forming the light stabilizer-containing layer 15 on the dielectric multilayer film 13 is not particularly limited. For example, the light stabilizer-containing layer 15 is formed by preparing a coating solution for the light stabilizer-containing layer and then applying and drying the coating solution. The method of doing is mentioned.
 光安定化剤含有層用塗布液の調製方法は、特に制限されず、上述の光安定化剤、紫外線吸収剤、バインダー樹脂、溶媒、及び、必要に応じて添加される添加剤等を、撹拌混合する方法が挙げられる。混合の際、各成分の混合順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよく、溶媒の量を調整することにより、塗布液の粘度を適宜に調整する。 The method for preparing the coating solution for the light stabilizer-containing layer is not particularly limited, and the above-described light stabilizer, ultraviolet absorber, binder resin, solvent, and additives added as necessary are stirred. The method of mixing is mentioned. During mixing, the mixing order of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time, and the coating may be performed by adjusting the amount of the solvent. The viscosity of the liquid is adjusted appropriately.
 塗布液を調製するための溶媒は、特に制限されず、上述の誘電体多層膜13の形成に用いる溶媒と同様の溶媒を用いることができる。水、有機溶媒、又は、これらの混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、又は、水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。 The solvent for preparing the coating solution is not particularly limited, and a solvent similar to the solvent used for forming the dielectric multilayer film 13 can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
 光安定化剤含有層用塗布液の塗布方法としては、公知の方法が使用できる。例えば、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法等が挙げられる。 As the coating method of the coating solution for the light stabilizer-containing layer, a known method can be used. Examples thereof include a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method.
 塗布膜の乾燥は、乾燥温度や時間は特定されないが、乾燥後の光安定化剤含有層15に残留する溶剤は少ない方が好ましい。このため、50~150℃の温度で、10秒~5分の乾燥を行なうことが好ましい。また、光安定化剤含有層用塗布液に粘着剤が含まれる場合には、粘着剤が流動性を有するため、安定した粘着力を得るために養生が必要である。一般的には、室温で約1週間以上、加熱した場合、例えば、50℃位であると3日以上が好ましい。加熱の場合、温度を上げすぎると基材11の平面性が悪化することがあるため、できるだけ低温で行なうことが好ましい。 The drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the light stabilizer-containing layer 15 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes. Moreover, when an adhesive is contained in the light stabilizer-containing layer coating solution, since the adhesive has fluidity, curing is necessary to obtain a stable adhesive force. In general, when heated at room temperature for about one week or longer, for example, it is preferably about 50 days at 3 days or longer. In the case of heating, if the temperature is raised too much, the flatness of the substrate 11 may be deteriorated.
[粘着層17の形成工程]
 光安定化剤含有層15上に粘着層17を形成する方法は、特に限定されないが、例えば粘着層用塗布液を調整した後、塗布液を塗布及び乾燥させることによって形成する方法が挙げられる。また、粘着層17は、剥離紙上に塗布液を塗布して乾燥させた後、剥離紙上の粘着層17を光安定化剤含有層15上に転写させてもよい。この場合、剥離紙は、粘着層17上にそのまま残し、剥離紙付きの光反射フィルム1としてもよい。
[Formation process of adhesive layer 17]
Although the method of forming the adhesion layer 17 on the light stabilizer containing layer 15 is not specifically limited, For example, after adjusting the coating liquid for adhesion layers, the method of forming by apply | coating and drying a coating liquid is mentioned. Alternatively, the pressure-sensitive adhesive layer 17 may be transferred onto the light stabilizer-containing layer 15 after the coating liquid is applied on the release paper and dried. In this case, the release paper may be left as it is on the pressure-sensitive adhesive layer 17 to form the light reflecting film 1 with the release paper.
 粘着層用塗布液の調製方法は、特に限定されず、粘着層17の形成に必要な材料と溶媒とを撹拌混合すればよく、上述した光安定化剤含有層用塗布液の調製方法と同様に行うことができる。また塗布膜の乾燥も、光安定化剤含有層15の形成と同様に行うことができる。 The method for preparing the coating solution for the pressure-sensitive adhesive layer is not particularly limited, and a material and a solvent necessary for forming the pressure-sensitive adhesive layer 17 may be mixed with stirring, and is the same as the method for preparing the coating solution for the light stabilizer-containing layer described above. Can be done. The coating film can also be dried in the same manner as the formation of the light stabilizer-containing layer 15.
<第1実施形態の効果>
 以上説明した第1実施形態の光反射フィルム1は、耐光性の向上を図るための光安定化剤層15を設けた構成ものであるが、特に水溶性高分子を含む誘電体多層膜13に隣接させて、ヒンダードアミン系の光安定化剤を含有する光安定化剤含有層15を設けた構成である。このような構成の光反射フィルム1は、以降の実施例で示されるように、水溶性高分子を用いた誘電体多層膜13を有する構成でありながらも、加速試験として耐熱性試験を行った場合であっても、ヘイズの上昇が抑えられて透明性を維持でき、耐熱性に優れたものであることが確認された。
<Effects of First Embodiment>
The light reflecting film 1 according to the first embodiment described above is provided with the light stabilizer layer 15 for improving the light resistance. In particular, the light reflecting film 1 is formed on the dielectric multilayer film 13 containing a water-soluble polymer. A light stabilizer containing layer 15 containing a hindered amine light stabilizer is provided adjacent to the light stabilizer. The light reflecting film 1 having such a configuration was subjected to a heat resistance test as an acceleration test, although it was configured to have a dielectric multilayer film 13 using a water-soluble polymer, as shown in the following examples. Even in this case, it was confirmed that the haze increase was suppressed, transparency could be maintained, and heat resistance was excellent.
 このような耐熱性向上のメカニズムは、以下のように推測される。すなわち、水溶性高分子を含む誘電体多層膜13は、内部に残留水分を保有する。このため、加熱環境下においては、この残留水分が熱によって誘電体多層膜13の界面に移動し、隣接する層に対して影響を及ぼすことになる。しかしながら、本第1実施形態の光反射フィルム1は、誘電体多層膜13に対して隣接して設けた光安定化剤含有層15中のヒンダードアミン系の光安定化剤が作用することにより、残留水分の影響による界面付近においての特異的な樹脂の劣化が防止され、これによって加熱環境下でのヘイズ値の上昇が抑えられていると推測される。 Such a mechanism for improving heat resistance is presumed as follows. That is, the dielectric multilayer film 13 containing a water-soluble polymer retains residual moisture therein. For this reason, in the heating environment, the residual moisture moves to the interface of the dielectric multilayer film 13 due to heat and affects adjacent layers. However, the light reflecting film 1 according to the first embodiment remains due to the action of the hindered amine-based light stabilizer in the light stabilizer-containing layer 15 provided adjacent to the dielectric multilayer film 13. It is presumed that the specific resin deterioration near the interface due to the influence of moisture is prevented, thereby suppressing an increase in haze value in a heating environment.
 以上の第1実施形態においては、誘電体多層膜13の一方側のみに光安定化剤含有層15を設けた構成を説明したが、第1実施形態の変形例として、誘電体多層膜13の両側に光安定化剤含有層15を設けた構成を提示することができる。この場合、図1に示した樹脂基材11と誘電体多層膜13との間に、別の光安定化剤含有層を設けた構成とすることができる。このような構成によれば、さらにヘイズ値の上昇を抑える効果を期待できる。 In the first embodiment described above, the configuration in which the light stabilizer-containing layer 15 is provided only on one side of the dielectric multilayer film 13 has been described. However, as a modification of the first embodiment, the dielectric multilayer film 13 A configuration in which the light stabilizer-containing layer 15 is provided on both sides can be presented. In this case, another light stabilizer-containing layer may be provided between the resin substrate 11 and the dielectric multilayer film 13 shown in FIG. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
≪第2実施形態≫
 図2は、第2実施形態の光反射フィルムの構成を説明するための断面模式図である。この図に示す第2実施形態の光反射フィルム2は、建物の屋外の窓や自動車窓等、長期間太陽光に晒らされる設備100に装着して用いられるものである。このような光反射フィルム2は、樹脂基材11の一主面上に、低屈折率層13Lと高屈折率層13Hとが交互に積層された誘電体多層膜13と、この誘電体多層膜13に隣接して設けられた光安定化剤含有ハードコート層21とを備え、さらに樹脂基材11の他主面上に粘着層17を備え、粘着層17を介して設備100に対して貼り合わせて用いられる。
<< Second Embodiment >>
FIG. 2 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the second embodiment. The light reflecting film 2 of the second embodiment shown in this figure is used by being mounted on equipment 100 that is exposed to sunlight for a long period of time, such as an outdoor window of a building or an automobile window. Such a light reflecting film 2 includes a dielectric multilayer film 13 in which low refractive index layers 13L and high refractive index layers 13H are alternately stacked on one main surface of a resin base material 11, and the dielectric multilayer film. 13 is provided with a light stabilizer-containing hard coat layer 21 provided adjacent to 13, and further includes an adhesive layer 17 on the other main surface of the resin substrate 11, and is attached to the equipment 100 via the adhesive layer 17. Used together.
 このうち、樹脂基材11、誘電体多層膜13、および粘着層17は、第1実施形態で説明したものと同様であるため、ここでの説明は省略する。以下においては、光安定化剤含有ハードコート層21の構成を説明し、次いで光反射フィルム2の製造方法を説明する。 Among these, since the resin base material 11, the dielectric multilayer film 13, and the adhesive layer 17 are the same as those described in the first embodiment, the description thereof is omitted here. Below, the structure of the light stabilizer containing hard-coat layer 21 is demonstrated, and the manufacturing method of the light reflection film 2 is demonstrated.
<光安定化剤含有ハードコート層21>
 光安定化剤含有ハードコート層21は、光反射フィルム2の露出面に耐擦傷性を付与するためのハードコート層中に、光安定化剤としてヒンダードアミン系の光安定化剤を含有する層であって、誘電体多層膜13に隣接して設け設けられている。また、この光安定化剤含有ハードコート層21は、紫外線吸収剤を含有していてもよい。
<Light stabilizer-containing hard coat layer 21>
The light stabilizer-containing hard coat layer 21 is a layer containing a hindered amine light stabilizer as a light stabilizer in the hard coat layer for imparting scratch resistance to the exposed surface of the light reflecting film 2. Therefore, it is provided adjacent to the dielectric multilayer film 13. The light stabilizer-containing hard coat layer 21 may contain an ultraviolet absorber.
 このような光安定化剤含有ハードコート層21は、以下に示すハードコート層中に、ヒンダードアミン系の光安定化剤、必要に応じて紫外線吸収剤およびその他の材料を含んで構成されている。このうち、ヒンダードアミン系の光安定化剤および紫外線吸収剤は、第1実施形態で説明したものと同様のものが用いられる。 Such a light stabilizer-containing hard coat layer 21 is configured to include a hindered amine light stabilizer, and an ultraviolet absorber and other materials as necessary, in the hard coat layer described below. Among these, the same hindered amine light stabilizer and ultraviolet absorber as those described in the first embodiment are used.
 ハードコート層とは、鉛筆硬度がH~8Hである層をいう。特に好ましくは2H~6Hの範囲内であることが好ましい。鉛筆硬度は、作製したハードコート層を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400で規定された鉛筆硬度評価方法に従い測定する。 The hard coat layer is a layer having a pencil hardness of H to 8H. Particularly preferably, it is in the range of 2H to 6H. The pencil hardness is the pencil hardness specified in JIS K 5400 using the test pencil specified in JIS S 6006 after conditioning the prepared hard coat layer for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. Measure according to the evaluation method.
 ハードコート層は、シリコーン系、メラミン系、エポキシ系、アクリレート系、多官能(メタ)アクリル系化合物等の有機系ハードコート材料や、二酸化ケイ素等の無機系ハードコート材料等を用いて形成することができる。特に、接着力が高く、生産性に優れるため、(メタ)アクリレート系、多官能(メタ)アクリル系化合物のハードコート材料を用いることが好ましい。ここで、(メタ)アクリルとはアクリル及びメタクリルを示す。 The hard coat layer should be formed using an organic hard coat material such as silicone, melamine, epoxy, acrylate, or polyfunctional (meth) acrylic compound, or an inorganic hard coat material such as silicon dioxide. Can do. In particular, since the adhesive strength is high and the productivity is excellent, it is preferable to use a hard coat material of a (meth) acrylate-based or polyfunctional (meth) acrylic-based compound. Here, (meth) acryl refers to acrylic and methacrylic.
 また、ハードコート層において、高い耐擦傷性を得るためには、架橋反応を経て硬化する樹脂を主成分とすることが好ましい。特に、ハードコート層が活性線硬化性樹脂を主成分とすることが好ましい。活性線硬化性樹脂としては、紫外線硬化性樹脂を用いることが好ましく、市販品を用いてもよい。またハードコート層に活性線硬化性樹脂を用いた場合であれば、活性線硬化性樹脂を硬化させる際に用いる活性線の波長領域に吸収極大のある増感剤を添加剤として用いることが好ましい。 Further, in order to obtain high scratch resistance in the hard coat layer, it is preferable that a resin that cures through a crosslinking reaction is a main component. In particular, it is preferable that the hard coat layer is mainly composed of an actinic radiation curable resin. As the actinic radiation curable resin, an ultraviolet curable resin is preferably used, and a commercially available product may be used. Further, when an actinic radiation curable resin is used for the hard coat layer, it is preferable to use a sensitizer having an absorption maximum in the wavelength region of the actinic radiation used when curing the actinic radiation curable resin as an additive. .
 ハードコート層のドライ膜厚は、平均膜厚0.1~30μmの範囲内が好ましい。さらに1~20μmの範囲内が好ましく、3~15μmの範囲内が特に好ましい。3μm以上である場合は、十分な耐久性、耐衝撃性が得られる。また、屈曲性又は経済性の観点から、15μm以下が好ましい。 The dry film thickness of the hard coat layer is preferably within the range of an average film thickness of 0.1 to 30 μm. Further, it is preferably in the range of 1 to 20 μm, particularly preferably in the range of 3 to 15 μm. When it is 3 μm or more, sufficient durability and impact resistance can be obtained. Moreover, from a viewpoint of flexibility or economical efficiency, 15 micrometers or less are preferable.
 また、ハードコート層に防眩性を与えるため、及び、他の物質との密着を防いで耐擦り傷性等を高めるために、ハードコート層用塗布液中に無機又は有機の微粒子を加えることもできる。また、ハードコート層の耐熱性を高めるために、ハードコート層用塗布液中に、光硬化反応の抑制が少ない酸化防止剤を用いることができる。 In addition, inorganic or organic fine particles may be added to the hard coat layer coating liquid in order to give the hard coat layer an antiglare property and to prevent adhesion with other substances and improve scratch resistance and the like. it can. Moreover, in order to improve the heat resistance of a hard-coat layer, antioxidant with little suppression of photocuring reaction can be used in the coating liquid for hard-coat layers.
<光反射フィルム2の製造方法>
 次に、光反射フィルム2の製造方法を説明する。光反射フィルム2の製造は、樹脂基材11の一主面上に誘電体多層膜13を形成する工程と、誘電体多層膜13上に光安定化剤含有ハードコート層21を形成する工程と、樹脂基材11の他主面上に粘着層17を形成する工程とを有する。以下これらの工程を順に説明する。
<The manufacturing method of the light reflection film 2>
Next, the manufacturing method of the light reflection film 2 is demonstrated. The production of the light reflecting film 2 includes a step of forming a dielectric multilayer film 13 on one main surface of the resin base material 11, a step of forming a light stabilizer-containing hard coat layer 21 on the dielectric multilayer film 13, and And a step of forming an adhesive layer 17 on the other main surface of the resin base material 11. Hereinafter, these steps will be described in order.
[誘電体多層膜13の形成工程]
 樹脂基材11の一主面上に誘電体多層膜13を形成する方法は、第1実施形態で説明した方法と同様の用法が適用される。
[Process for forming dielectric multilayer 13]
A method similar to the method described in the first embodiment is applied to the method for forming the dielectric multilayer film 13 on one main surface of the resin base material 11.
[光安定化剤含有ハードコート層21の形成工程]
 誘電体多層膜13上に光安定化剤含有ハードコート層21を形成する方法は、特に限定されないが、例えばハードコート層用塗布液を調製した後、塗布液を塗布および乾燥させ、乾燥中または乾燥後に活性線を照射する方法が挙げられる。
[Step of forming light stabilizer-containing hard coat layer 21]
The method for forming the light stabilizer-containing hard coat layer 21 on the dielectric multilayer film 13 is not particularly limited. For example, after preparing a coating liquid for a hard coat layer, the coating liquid is applied and dried, The method of irradiating actinic rays after drying is mentioned.
 ハードコート層用塗布液の調製方法は、特に限定されず、上述した活性線硬化性樹脂、光安定化剤、必要に応じて添加される紫外線吸収剤、さらに溶媒およびその他の添加剤を、撹拌混合する方法が挙げられる。混合の際、各成分の混合順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよく、溶媒の量を調整することにより、塗布液の粘度を適宜に調整する。 The method for preparing the coating solution for the hard coat layer is not particularly limited, and the above-described actinic radiation curable resin, light stabilizer, ultraviolet absorber added as necessary, and further, a solvent and other additives are stirred. The method of mixing is mentioned. During mixing, the mixing order of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time, and the coating may be performed by adjusting the amount of the solvent. The viscosity of the liquid is adjusted appropriately.
 ハードコート層用塗布液を調整するための溶媒としては、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から、適宜選択して、又は、これらを混合して用いることができる。ハードコート層用塗布液には、プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1~4)又はプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1~4)を5質量%以上、より好ましくは5~80質量%の範囲内で含有する有機溶媒を用いることが好ましい。 Solvents for preparing the hard coat layer coating solution include, for example, hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl). Ketones), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used. The coating liquid for hard coat layer contains 5% by mass of propylene glycol monoalkyl ether (1 to 4 carbon atoms of alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms of alkyl group). As described above, it is preferable to use an organic solvent contained in the range of 5 to 80% by mass.
 ハードコート層用塗布液の塗布方法としては、公知の方法が使用できる。例えば、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法等が挙げられる。これら塗布方法を用いて、塗布膜厚0.1~100μmの範囲内で塗布膜を形成することが好ましい。 A known method can be used as a coating method of the coating liquid for the hard coat layer. Examples thereof include a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method. Using these coating methods, it is preferable to form a coating film within a range of a coating film thickness of 0.1 to 100 μm.
 塗布膜の乾燥は、乾燥温度や時間は特定されないが、乾燥後の光安定化剤含有ハードコート層21に残留する溶剤は少ない方が好ましい。 The drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the light stabilizer-containing hard coat layer 21 after drying is small.
 また乾燥中または乾燥後に活性線硬化性樹脂を硬化させるための光源としては、紫外線を発生する光源であれば、特に限定されずに使用できる。照射条件は、使用する光源によってそれぞれ異なるが、例えば、照射光量が20~1200mJ/cm程度、好ましくは、50~1000mJ/cm程度のとすることができる。 The light source for curing the actinic radiation curable resin during or after drying is not particularly limited as long as it is a light source that generates ultraviolet rays. Irradiation conditions vary depending on the light source to be used. For example, the irradiation light quantity can be about 20 to 1200 mJ / cm 2 , preferably about 50 to 1000 mJ / cm 2 .
[粘着層17の形成工程]
 樹脂基材11の他主面上に粘着層17を形成する方法は、特に限定されず、第1実施形態で説明した粘着層17の形成工程と同様に実施され、剥離紙付きの光反射フィルム2としてもよい。
[Formation process of adhesive layer 17]
The method for forming the adhesive layer 17 on the other main surface of the resin base material 11 is not particularly limited, and is carried out in the same manner as the adhesive layer 17 forming step described in the first embodiment, and is a light reflecting film with release paper. It may be 2.
<第2実施形態の効果>
 以上説明した第2実施形態の光反射フィルム2は、水溶性高分子を含む誘電体多層膜13に隣接させてヒンダードアミン系の光安定化剤を含有する光安定化剤含有ハードコート層21を設けた構成である。このような構成の光反射フィルム2であっても、以降の実施例で示されるように、水溶性高分子を用いた誘電体多層膜13を有する構成でありながらも、耐熱性の向上により加熱環境下においてのヘイズの上昇を抑えることができるため、透明性を維持することが可能である。
<Effects of Second Embodiment>
The light reflecting film 2 of the second embodiment described above is provided with a light stabilizer-containing hard coat layer 21 containing a hindered amine light stabilizer adjacent to the dielectric multilayer film 13 containing a water-soluble polymer. It is a configuration. Even in the light reflecting film 2 having such a configuration, as shown in the following examples, the light reflecting film 2 has a structure having the dielectric multilayer film 13 using a water-soluble polymer. Since it is possible to suppress an increase in haze under the environment, it is possible to maintain transparency.
 また以上の第2実施形態の変形例として、誘電体多層膜13の両側に光安定化剤含有層を設けた構成を提示することができる。この場合、図2に示した樹脂基材11と誘電体多層膜13との間に、第1実施形態で説明した構成の光安定化剤含有層15(図1参照)を設けた構成とすることができる。このような構成によれば、さらにヘイズ値の上昇を抑える効果を期待できる。 As a modification of the second embodiment described above, a configuration in which light stabilizer-containing layers are provided on both sides of the dielectric multilayer film 13 can be presented. In this case, the light stabilizer-containing layer 15 (see FIG. 1) having the structure described in the first embodiment is provided between the resin base material 11 and the dielectric multilayer film 13 shown in FIG. be able to. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
≪第3実施形態≫
 図3は、第3実施形態の光反射フィルムの構成を説明するための断面模式図である。この図に示す第3実施形態の光反射フィルム3が、図1を用いて説明した第1実施形態の光反射フィルム1と異なるところは、光反射フィルム1における光安定化剤含有層15および粘着層17に替えて、光安定化剤含有粘着層31を設けたところにある。その他の構成は、第1実施形態と同様であるため、ここでは光安定化剤含有粘着層31の構成を説明する。
«Third embodiment»
FIG. 3 is a schematic cross-sectional view for explaining the configuration of the light reflecting film of the third embodiment. The light reflecting film 3 of the third embodiment shown in this figure is different from the light reflecting film 1 of the first embodiment described with reference to FIG. 1 in that the light stabilizer containing layer 15 and the adhesive in the light reflecting film 1 are the same. Instead of the layer 17, the light stabilizer-containing adhesive layer 31 is provided. Since the other structure is the same as that of 1st Embodiment, the structure of the light stabilizer containing adhesion layer 31 is demonstrated here.
<光安定化剤含有粘着層31>
 光安定化剤含有粘着層31は、透明な粘着性を有する材料、ヒンダードアミン系の光安定化剤、紫外線吸収剤、および必要に応じてその他の材料を含んで構成されている。
<Light Stabilizer-Containing Adhesive Layer 31>
The light stabilizer-containing adhesive layer 31 includes a transparent adhesive material, a hindered amine light stabilizer, an ultraviolet absorber, and other materials as necessary.
 このうち透明な粘着性を有する材料としては、第1実施形態で説明した粘着層17(図1参照)と同様の材料を用いることができるが、特に透明性および耐久性に優れたアクリル系粘着剤をバインダーとして用いることが好ましく、これにより、さらなる耐熱性の向上による光反射フィルム1のヘイズの上昇を抑えることが可能であると共に、耐光性の向上を図ることも可能である。 Among these, as the material having transparent adhesiveness, the same material as the adhesive layer 17 (see FIG. 1) described in the first embodiment can be used, but acrylic adhesive having particularly excellent transparency and durability. It is preferable to use an agent as a binder, whereby it is possible to suppress an increase in haze of the light reflecting film 1 due to further improvement in heat resistance, and it is also possible to improve light resistance.
 また、ヒンダードアミン系の光安定化剤および紫外線吸収剤は、第1実施形態で説明したものと同様のものが用いられる。 Further, the same hindered amine light stabilizer and ultraviolet absorber as those described in the first embodiment are used.
<光反射フィルム3の製造方法>
 以上のような光反射フィルム3の製造方法は、樹脂基材11の一主面上に誘電体多層膜13を形成する工程と、誘電体多層膜13上に光安定化剤含有粘着層31を形成する工程とを有する。これらの工程は、第1実施形態(図1参照)において説明した誘電体多層膜13の形成工程、および粘着層17の形成工程と同様に実施される。ただし、光安定化剤含有粘着層31の形成工程においては、第1実施形態で説明した粘着層用塗布液に対して、光安定化剤をさらに混合した光安定化剤含有粘着層用塗布液を調整する。
<The manufacturing method of the light reflection film 3>
The manufacturing method of the light reflecting film 3 as described above includes the step of forming the dielectric multilayer film 13 on one main surface of the resin base material 11, and the light stabilizer-containing adhesive layer 31 on the dielectric multilayer film 13. Forming. These steps are performed in the same manner as the formation step of the dielectric multilayer film 13 and the formation step of the adhesive layer 17 described in the first embodiment (see FIG. 1). However, in the formation process of the light stabilizer containing adhesion layer 31, the light stabilizer containing adhesion layer coating liquid which further mixed the light stabilizer with the coating liquid for adhesion layers demonstrated in 1st Embodiment. Adjust.
<第3実施形態の効果>
 以上説明した第3実施形態の光反射フィルム3は、水溶性高分子を含む誘電体多層膜13に隣接させて、ヒンダードアミン系の光安定化剤を含有する光安定化剤含有粘着層31を設けた構成である。このような構成の光反射フィルム3であっても、以降の実施例で示されるように、水溶性高分子を用いた誘電体多層膜13を有する構成でありながらも、長期にわたってヘイズの上昇を抑えることができるため、透明性を維持することが可能である。
<Effect of the third embodiment>
The light reflecting film 3 of the third embodiment described above is provided with a light stabilizer-containing adhesive layer 31 containing a hindered amine light stabilizer adjacent to the dielectric multilayer film 13 containing a water-soluble polymer. It is a configuration. Even in the light reflection film 3 having such a configuration, as shown in the following examples, the haze increases over a long period of time even though the dielectric multilayer film 13 using the water-soluble polymer is used. Therefore, transparency can be maintained.
 また特に、誘電体多層膜13に隣接させて設けた光安定化剤含有粘着層31中においては、樹脂の中でもガラス転移点が-80℃~-10℃程度と低く、これにより熱運動性が高く粘着性を有する材料中に、光安定剤が含有されていることにより、光安定化剤の分子運動性が高まる。このため、誘電体多層膜13と光安定化剤含有粘着層31との界面において、光安定化剤をより効果的に作用させることができる。この結果、第1実施形態および第2実施形態の構成と比較して、残留水分の影響による樹脂の劣化を防止してヘイズの上昇を抑える効果を高く得ることができるため、さらなる耐熱性の向上を図ることが可能になる。 In particular, in the light stabilizer-containing adhesive layer 31 provided adjacent to the dielectric multilayer film 13, the glass transition point of the resin is as low as about −80 ° C. to −10 ° C. By containing the light stabilizer in the highly adhesive material, the molecular mobility of the light stabilizer is increased. For this reason, the light stabilizer can act more effectively at the interface between the dielectric multilayer film 13 and the light stabilizer-containing adhesive layer 31. As a result, compared with the configuration of the first embodiment and the second embodiment, it is possible to obtain a high effect of preventing deterioration of the resin due to the influence of residual moisture and suppressing an increase in haze, and thus further improvement of heat resistance Can be achieved.
 また以上の第3実施形態に対しても、その変形例として、誘電体多層膜13の両側に光安定化剤含有層を設けた構成を提示することができる。この場合、図3に示した樹脂基材11と誘電体多層膜13との間に、第1実施形態で説明した構成の光安定化剤含有層15(図1参照)を設けた構成とすることができる。このような構成によれば、さらにヘイズ値の上昇を抑える効果を期待できる。 Also for the third embodiment described above, as a modification thereof, a configuration in which light stabilizer-containing layers are provided on both sides of the dielectric multilayer film 13 can be presented. In this case, the light stabilizer-containing layer 15 (see FIG. 1) having the structure described in the first embodiment is provided between the resin substrate 11 and the dielectric multilayer film 13 shown in FIG. be able to. According to such a configuration, an effect of further suppressing an increase in haze value can be expected.
 次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。以下においては、先ず、各実施例および比較例に共通の工程として、樹脂基材上に誘電体多層膜を形成する工程を説明し、次に各実施例および比較例において引き続き実施される工程を個別に説明する。なお、以降の表1には、各実施例および比較例において光安定化剤を含有する層の構成を示す。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented. In the following, first, as a step common to each example and comparative example, a step of forming a dielectric multilayer film on a resin base material will be described, and then a step subsequently performed in each example and comparative example will be described. Individually explained. In addition, in the following Table 1, the structure of the layer containing a light stabilizer in each Example and a comparative example is shown.
<誘電体多層膜の形成>
[1.低屈折率層用塗布液の調製]
 380質量部のコロイダルシリカ(10質量%、スノーテックスOXS、一次粒子の平均粒径=4~6nm、日産化学工業株式会社製)、50質量部のホウ酸水溶液(3質量%)、300質量部のポリビニルアルコール(4質量%、JP-45、重合度:4500、ケン化度:88mol%、日本酢ビ・ポバール株式会社製)、3質量部の界面活性剤(5質量%、ソフタゾリンLSB-R、川研ファインケミカル株式会社製)を、45℃でこの順に加えて混合した。そして、純水で100質量部に仕上げ、低屈折率層用塗布を調製した。
<Formation of dielectric multilayer film>
[1. Preparation of coating solution for low refractive index layer]
380 parts by mass of colloidal silica (10% by mass, Snowtex OXS, average particle size of primary particles = 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass), 300 parts by mass Polyvinyl alcohol (4% by mass, JP-45, polymerization degree: 4500, saponification degree: 88 mol%, manufactured by Nihon Vitamin Pover Co., Ltd.), 3 parts by mass of surfactant (5% by mass, SOFTAZOLINE LSB-R) , Manufactured by Kawaken Fine Chemical Co., Ltd.) in this order at 45 ° C. and mixed. And it finished to 100 mass parts with pure water, and prepared the application for low refractive index layers.
[2.高屈折率層用塗布液の調製]
(2-1.シリカ付着二酸化チタンゾルの作製)
 高屈折率層用塗布液に用いるシリカ付着二酸化チタンゾルを以下のように作製した。先ず15.0質量%酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に、純水2質量部を加えた後、90℃に加熱した。次に、加熱した溶液に対して、ケイ酸水溶液(日本化学社製のケイ酸ソーダ4号をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を、徐々に加えて混合し、さらにオートクレーブにおいて175℃で18時間の加熱処理を行った。そして、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が6質量%のSiOを表面に付着させた二酸化チタンゾル(以下シリカ付着二酸化チタンゾル、体積平均粒径:9nm)を得た。
[2. Preparation of coating solution for high refractive index layer]
(2-1. Preparation of silica-attached titanium dioxide sol)
A silica-attached titanium dioxide sol used for the coating solution for the high refractive index layer was prepared as follows. First, 2 parts by mass of pure water was added to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle diameter: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.), and then 90 ° C. Heated to. Next, with respect to the heated solution, 0.5 part by mass of a silicic acid aqueous solution (sodium silicate 4 manufactured by Nippon Kagaku Co., Ltd. diluted with pure water so that the SiO 2 concentration becomes 0.5 mass%) Were gradually added and mixed, followed by further heat treatment at 175 ° C. for 18 hours in an autoclave. Then, after cooling, by concentration using an ultrafiltration membrane, sol dioxide solid concentration was deposited SiO 2 of 6 wt% on the surface (hereinafter silica deposition dioxide sol, the volume average particle diameter: 9 nm) to give the It was.
(2-2.高屈折率層用塗布液の調整)
 得られたシリカ付着二酸化チタンゾル(20質量%)113質量部に対し、クエン酸水溶液(1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(クラレ社製、エクセバールRS-2117、ケン度:97.5~99モル%、エチレン変性度:3.0mol%、重合度:1700、粘度(4%、20℃):23.0~30.0[mPa・s]、8質量%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)0.4質量部を加えて、高屈折率層用塗布液を作製した。
(2-2. Preparation of coating solution for high refractive index layer)
To 113 parts by mass of the silica-attached titanium dioxide sol (20% by mass), 48 parts by mass of an aqueous citric acid solution (1.92% by mass) was added, and ethylene modified polyvinyl alcohol (Kuraray Co., Ltd., EXVAL RS-2117, Ken Degree: 97.5 to 99 mol%, ethylene modification degree: 3.0 mol%, polymerization degree: 1700, viscosity (4%, 20 ° C.): 23.0 to 30.0 [mPa · s], 8 mass%) Was added and stirred, and finally 0.4 parts by weight of a 5% by weight aqueous surfactant solution (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added to prepare a coating solution for a high refractive index layer. .
[3.誘電体多層膜の形成(図1~図3参照)]
 樹脂基材11として、厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製、コスモシャインA4300)を用意した。
[3. Formation of dielectric multilayer film (see FIGS. 1 to 3)]
A 50 μm thick polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., Cosmo Shine A4300) was prepared as the resin substrate 11.
 スライドホッパー塗布装置を用いて、上記の方法で得られた低屈折率層用塗布液及び高屈折率層用塗布液を45℃に保温しながら、45℃に加温した樹脂基材11上に、11層同時重層塗布(誘電体多層膜の全膜厚;1.5μm)を行った。この際、最下層及び最表層は低屈折率層13Lとし、それ以外は低屈折率層13Lと高屈折率層13Hとがそれぞれ交互に積層されるように形成した。塗布量は、乾燥後の膜厚において、低屈折率層13Lが各層150nm、高屈折率層13Hが各層120nmになるように調節した。なお、膜厚は、製造した積層体(樹脂基材11及び誘電体多層膜13)を切断し、その切断面を電子顕微鏡により観察することで確認した。この際、2つの層間の界面を明確に観測することができない場合には、XPS表面分析装置により得た層中に含まれるTiOの厚さ方向のXPSプロファイルにより界面を決定した。 Using a slide hopper coating apparatus, the low refractive index layer coating solution and the high refractive index layer coating solution obtained by the above method are kept at 45 ° C. while being heated to 45 ° C. 11 layers were simultaneously applied (total thickness of dielectric multilayer film: 1.5 μm). At this time, the lowermost layer and the outermost layer were the low refractive index layers 13L, and the other layers were formed such that the low refractive index layers 13L and the high refractive index layers 13H were alternately laminated. The coating amount was adjusted so that the low refractive index layer 13L was 150 nm in each layer and the high refractive index layer 13H was 120 nm in the film thickness after drying. The film thickness was confirmed by cutting the produced laminate (resin substrate 11 and dielectric multilayer film 13) and observing the cut surface with an electron microscope. At this time, when the interface between the two layers could not be clearly observed, the interface was determined by the XPS profile in the thickness direction of TiO 2 contained in the layer obtained by the XPS surface analyzer.
 塗布直後、5℃の冷風を吹き付けてセットした。このとき、表面を指で触れても指に何もつかなくなるまでの時間(セット時間)は5分であった。セット完了後、80℃の温風を吹き付けて乾燥させて、11層からなる誘電体多層膜13を樹脂基材11上に形成した。 Immediately after application, it was set by blowing cold air of 5 ° C. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes. After completion of the setting, warm air of 80 ° C. was blown and dried to form a dielectric multilayer film 13 consisting of 11 layers on the resin base material 11.
<実施例1(図1の構成)>
 上述のようにして樹脂基材11上に形成した誘電体多層膜13上に、以下のようにして、さらに光安定化剤含有層15と粘着層17とを形成して光反射フィルム1を作製した。
<Example 1 (configuration of FIG. 1)>
On the dielectric multilayer film 13 formed on the resin substrate 11 as described above, the light stabilizer-containing layer 15 and the adhesive layer 17 are further formed as follows to produce the light reflecting film 1. did.
[1.光安定化剤含有層用塗布液A1の調整]
 ウレタン樹脂溶液(DM-677:DIC社製)100質量部に、トルエンを50質量部、[NH]型ヒンダードアミン系光安定化剤(CHIMASSORB944、BASF社製)を1質量部加え、撹拌混合して光安定化剤含有層用塗布液A1を調製した。
[1. Preparation of coating solution A1 for light stabilizer-containing layer]
To 100 parts by mass of a urethane resin solution (DM-677: manufactured by DIC), 50 parts by mass of toluene and 1 part by mass of [NH] type hindered amine light stabilizer (CHIMASSORB 944, manufactured by BASF) are added and stirred. A coating solution A1 for a light stabilizer-containing layer was prepared.
[2.光安定化剤含有層15の形成]
 誘電体多層膜13上に、グラビアコーターを用いて光安定化剤含有層用塗布液A1を塗布し、乾燥処理を行うことにより、乾燥膜厚が10μmの光安定化剤含有層15を形成した。
[2. Formation of light stabilizer-containing layer 15]
A light stabilizer-containing layer 15 having a dry film thickness of 10 μm was formed on the dielectric multilayer film 13 by applying the light stabilizer-containing layer coating solution A1 using a gravure coater and performing a drying treatment. .
[3.粘着層用塗布液Bの調整]
 粘着剤(N-2147、日本合成社製)100質量部、溶媒(酢酸エチル)100質量部、イソシアネート系硬化剤(コロネートHL、東ソー社製)1.0質量部を混合し、粘着層用塗布液Bを調整した。
[3. Adjustment of adhesive layer coating liquid B]
100 parts by weight of an adhesive (N-2147, manufactured by Nihon Gosei Co., Ltd.), 100 parts by weight of a solvent (ethyl acetate), 1.0 part by weight of an isocyanate curing agent (Coronate HL, manufactured by Tosoh Corporation) are mixed and applied for an adhesive layer. Liquid B was prepared.
[4.粘着層17の形成]
 粘着層塗布液Bを、剥離紙(中本パックス製セパレータ NS23MA)のシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層17を形成した。次いで、剥離紙上の粘着層17を、樹脂基材11上の光安定化剤含有層15に対して貼り合わせ、剥離紙付きの実施例1の光反射フィルム1を作製した。
[4. Formation of adhesive layer 17]
The adhesive layer coating solution B is applied to the silicone release surface of the release paper (Nakamoto Pax separator NS23MA) with a comma coater so that the dry film thickness is 10 μm, and dried at 90 ° C. for 1 minute. Thus, an adhesive layer 17 was formed. Next, the pressure-sensitive adhesive layer 17 on the release paper was bonded to the light stabilizer-containing layer 15 on the resin base material 11 to produce the light reflecting film 1 of Example 1 with release paper.
<実施例2~実施例4(図1の構成)>
 実施例1で説明した光安定化剤含有層用塗布液A1の調整において、[NH]型ヒンダードアミン系光安定化剤に換えて、下記のヒンダードアミン系光安定化剤を用いたこと以外は実施例1と同様にして、剥離紙付きの実施例2~実施例4の光反射フィルム1を作製した。
 実施例2…[NOR]型:Tinuvin123(BASF社製)
 実施例3…[NR]型:Tinuvin144(BASF社製)
 実施例4…[NR]型:Tinuvin292(BASF社製)
<Example 2 to Example 4 (Configuration of FIG. 1)>
In the preparation of the coating solution A1 for the light stabilizer-containing layer described in Example 1, the following example was used except that the following hindered amine light stabilizer was used instead of the [NH] type hindered amine light stabilizer. In the same manner as in Example 1, the light reflecting films 1 of Examples 2 to 4 with release paper were produced.
Example 2 ... [NOR] type: Tinuvin 123 (manufactured by BASF)
Example 3 [NR] type: Tinuvin 144 (manufactured by BASF)
Example 4 ... [NR] type: Tinuvin 292 (BASF)
<実施例5(図1の構成)>
 実施例1で説明した光安定化剤含有層用塗布液A1を、アクリル樹脂を用いて下記のように調整した光安定化剤含有層用塗布液A2に変更した以外は、実施例1と同様にして剥離紙付きの実施例5の光反射フィルム1を作製した。
<Example 5 (configuration of FIG. 1)>
The same as in Example 1 except that the light stabilizer-containing layer coating solution A1 described in Example 1 was changed to a light stabilizer-containing layer coating solution A2 that was prepared as follows using an acrylic resin. Thus, the light reflecting film 1 of Example 5 with release paper was produced.
[光安定化剤含有層用塗布液A2の調整]
 アクリル樹脂溶液(アクリディックA-165:DIC社製)100質量部に、トルエン50質量部、n-ブタノール50質量部、[NR]型ヒンダードアミン光安定化剤(Tinuvin144、BASF社製)1質量部を加え、撹拌混合して光安定化剤含有層用塗布液A2を調製した。
[Preparation of coating solution A2 for light stabilizer-containing layer]
100 parts by mass of an acrylic resin solution (Acridic A-165: manufactured by DIC), 50 parts by mass of toluene, 50 parts by mass of n-butanol, 1 part by mass of [NR] type hindered amine light stabilizer (Tinuvin 144, manufactured by BASF) The mixture was stirred and mixed to prepare a coating solution A2 for a light stabilizer-containing layer.
<実施例6(図2の構成)>
 上述のようにして樹脂基材11の一主面上に形成した誘電体多層膜13上に、以下のようにして光安定化剤含有ハードコート層21を形成し、さらに樹脂基材11の他主面上に粘着層17を形成して光反射フィルム2を作製した。
<Example 6 (configuration of FIG. 2)>
On the dielectric multilayer film 13 formed on one main surface of the resin base 11 as described above, the light stabilizer-containing hard coat layer 21 is formed as follows. An adhesive layer 17 was formed on the main surface to produce a light reflecting film 2.
[1.光安定化剤含有ハードコート層用塗布液Cの調整]
 紫外線硬化性樹脂(アロニックスM-305:東亞合成社製)100質量部、溶媒(メチルエチルケトン)100質量部、[NR]型ヒンダードアミン光安定化剤(Tinuvin144:BASF社製)1質量部、重合開始剤(Irgacure819:BASFジャパン株式会社製)5質量部、フッ素系界面活性剤(フタージェント650A:株式会社ネオス製)0.1質量部を加え、撹拌混合して光安定化剤含有ハードコート層用塗布液
Cを調製した。
[1. Preparation of coating solution C for hard coat layer containing light stabilizer]
UV curable resin (Aronix M-305: manufactured by Toagosei Co., Ltd.), 100 parts by mass of solvent (methyl ethyl ketone), [NR] type hindered amine light stabilizer (Tinuvin 144: manufactured by BASF), 1 part by mass, polymerization initiator (Irgacure 819: manufactured by BASF Japan Ltd.) 5 parts by mass, fluorine-based surfactant (Furgent 650A: manufactured by Neos Co., Ltd.) 0.1 part by mass was added and mixed by stirring to apply a light stabilizer-containing hard coat layer. Liquid C was prepared.
[2.光安定化剤含有ハードコート層21の形成]
 誘電体多層膜13上に、グラビアコーターを用いて光安定化剤含有ハードコート層用塗布液Cを塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で、光安定化剤含有ハードコート層用塗布液Cを塗布した側から紫外線を照射することにより、塗布膜を硬化させて光安定化剤含有ハードコート層21を形成した。
[2. Formation of light stabilizer-containing hard coat layer 21]
On the dielectric multilayer film 13, the light stabilizer-containing coating liquid C for hard coat layer was applied using a gravure coater, and dried at 90 ° C. for 1 minute. Next, using an ultraviolet lamp, ultraviolet rays were applied from the side where the light stabilizer-containing hard coat layer coating liquid C was applied under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. By irradiating, the coating film was cured and the light stabilizer-containing hard coat layer 21 was formed.
[3.粘着層17の形成]
 実施例1で説明したように調整した粘着層塗布液Bを、剥離紙(中本パックス製セパレータ NS23MA)のシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層17を形成した。次いで、剥離紙上の粘着層17を、樹脂基材11の他主面側に貼り合わせ、剥離紙付きの実施例6の光反射フィルム2を作製した。
[3. Formation of adhesive layer 17]
The adhesive layer coating solution B prepared as described in Example 1 was applied to the silicone release surface of the release paper (Nakamoto Packs separator NS23MA) with a comma coater so that the dry film thickness was 10 μm. The adhesive layer 17 was formed by drying at 90 ° C. for 1 minute. Next, the pressure-sensitive adhesive layer 17 on the release paper was bonded to the other main surface side of the resin base material 11 to prepare the light reflecting film 2 of Example 6 with release paper.
<実施例7(図3の構成)>
 上述のようにして樹脂基材11の一主面上に形成した誘電体多層膜13上に、以下のようにして光安定化剤含有粘着層31を形成して光反射フィルム3を作製した。
<Example 7 (configuration of FIG. 3)>
On the dielectric multilayer film 13 formed on one main surface of the resin substrate 11 as described above, the light stabilizer-containing adhesive layer 31 was formed as follows to produce the light reflecting film 3.
[1.光安定化剤含有粘着層用塗布液Dの調整]
 粘着剤(N-2147、日本合成社製)を100質量部、溶媒(酢酸エチル)100質量部、[NR]型ヒンダードアミン光安定化剤(Tinuvin144、BASF社製)1質量部、イソシアネート系硬化剤(コロネートHL、東ソー社製)1.0質量部を、撹拌混合して光安定化剤含有粘着層用塗布液Dを調整した。
[1. Adjustment of coating solution D for light stabilizer-containing adhesive layer]
100 parts by weight of an adhesive (N-2147, manufactured by Nihon Gosei Co., Ltd.), 100 parts by weight of a solvent (ethyl acetate), 1 part by weight of [NR] type hindered amine light stabilizer (Tinuvin 144, manufactured by BASF), an isocyanate curing agent 1.0 part by mass (Coronate HL, manufactured by Tosoh Corporation) was stirred and mixed to prepare a coating solution D for the light stabilizer-containing adhesive layer.
[2.光安定化剤含有粘着層31の形成]
 光安定化剤含有粘着層用塗布液Dを、剥離紙(中本パックス製セパレータ NS23MA)のシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して光安定化剤含有粘着層31を形成した。次いで、剥離紙上の光安定化剤含有粘着層31を、樹脂基材11上の誘電体多層膜13に対して貼り合わせ、剥離紙付きの実施例7の光反射フィルム3を作製した。
[2. Formation of light stabilizer-containing adhesive layer 31]
The light stabilizer-containing adhesive layer coating solution D was applied to the silicone release surface of release paper (Nakamoto Packs separator NS23MA) with a comma coater so that the dry film thickness was 10 μm. The light stabilizer-containing adhesive layer 31 was formed by drying at 1 ° C. for 1 minute. Next, the light stabilizer-containing adhesive layer 31 on the release paper was bonded to the dielectric multilayer film 13 on the resin base material 11, and the light reflecting film 3 of Example 7 with release paper was produced.
<実施例8(図3の構成)>
 実施例7で説明した光安定化剤含有粘着層用塗布液Dの調整において、さらに波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収剤となるトリアジン化合物(Tinuvin477、BASF社製)5重量部を加えたこと以外は、実施例7と同様にして剥離紙付きの実施例8の光反射フィルム3を作製した。
<Example 8 (configuration of FIG. 3)>
In the preparation of the light stabilizer-containing adhesive layer coating solution D described in Example 7, a triazine compound (Tinuvin 477, manufactured by BASF) that further serves as an ultraviolet absorber having an absorption region shorter than a wavelength of 380 to 400 nm. Except having added 5 weight part, it carried out similarly to Example 7, and produced the light reflection film 3 of Example 8 with a release paper.
<実施例9(図3の構成)>
 実施例7で説明した光安定化剤含有粘着層用塗布液Dの調整において、さらに波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収剤となるトリアジン化合物(Tinuvin477、BASF社製)5重量部と、波長380~400nmに吸収領域を有する紫外線吸収剤となるインドール化合物(BONASORB3912、オリエント化学工業社製)3質量部とを加えたこと以外は、実施例7と同様にして剥離紙付きの実施例9の光反射フィルム3を作製した。
<Example 9 (configuration of FIG. 3)>
In the preparation of the light stabilizer-containing adhesive layer coating solution D described in Example 7, a triazine compound (Tinuvin 477, manufactured by BASF) that further serves as an ultraviolet absorber having an absorption region shorter than a wavelength of 380 to 400 nm. Release paper in the same manner as in Example 7 except that 5 parts by weight and 3 parts by mass of an indole compound (BONASORB 3912, manufactured by Orient Chemical Industries) serving as an ultraviolet absorber having an absorption region at a wavelength of 380 to 400 nm were added. The light reflection film 3 of Example 9 with a mark was produced.
<比較例1(図3参照)>
 実施例7で形成した光安定化剤含有粘着層31に換えて、光安定化剤を含有しない粘着層を形成したこと以外は、実施例7と同様にして剥離紙付きの光反射フィルムを作製した。粘着層の形成には、実施例1で説明した粘着層用塗布液Bを用い、実施例7で説明した光安定化剤含有粘着層31の形成と同様にして粘着層を形成した。
<Comparative Example 1 (see FIG. 3)>
A light-reflective film with release paper was produced in the same manner as in Example 7 except that an adhesive layer containing no light stabilizer was formed instead of the light stabilizer-containing adhesive layer 31 formed in Example 7. did. For the formation of the adhesive layer, the adhesive layer coating solution B described in Example 1 was used, and the adhesive layer was formed in the same manner as the formation of the light stabilizer-containing adhesive layer 31 described in Example 7.
<比較例2(図3参照)>
 比較例1の粘着層の形成において、粘着層用塗布液Bに対して、さらに波長380~400nmよりも短波長側に吸収領域を有する紫外線吸収剤となるトリアジン化合物(Tinuvin477、BASF社製)5重量部と、波長380~400nmに吸収領域を有する紫外線吸収剤となるインドール化合物(BONASORB3912、オリエント化学工業社製)3質量部とを加えたこと以外は、比較例1と同様にして剥離紙付きの光反射フィルムを作製した。
<Comparative Example 2 (see FIG. 3)>
In the formation of the adhesive layer of Comparative Example 1, the triazine compound (Tinuvin 477, manufactured by BASF) 5 serving as an ultraviolet absorber having an absorption region shorter than the wavelength 380 to 400 nm with respect to the adhesive layer coating solution B 5 With release paper as in Comparative Example 1, except that 3 parts by weight of an indole compound (BONASORB 3912, manufactured by Orient Chemical Industries) serving as an ultraviolet absorber having an absorption region at a wavelength of 380 to 400 nm was added. A light reflecting film was prepared.
<評価-1>
 実施例および比較例の光反射フィルムについて、下記の耐熱性試験を行い、下記のように試験前後のヘイズ値を測定した。その結果を下記表1に示す。
<Evaluation-1>
About the light reflection film of an Example and a comparative example, the following heat resistance test was done and the haze value before and behind a test was measured as follows. The results are shown in Table 1 below.
[耐熱性試験]
 85℃、85%RHの恒温槽に、剥離紙を付けたままの状態の光反射フィルムを500時間保持した。
[Heat resistance test]
The light reflecting film with the release paper attached thereto was kept in a constant temperature bath at 85 ° C. and 85% RH for 500 hours.
[ヘイズ値の測定]
 ヘイズメーター(日本電色工業社製のNDH2000型)を用いてヘイズを測定し、光学反射フィルム試料10枚の平均値を算出した。また、耐熱性試験前後のヘイズ値の差(ΔH)を算出した。なお、光学反射フィルムの耐熱性試験前の初期ヘイズ値としては、1.5%以下であると好ましい。また耐熱性試験後のヘイズ値としては3.0%以下であると好ましい。
[Measurement of haze value]
The haze was measured using a haze meter (NDH2000 type manufactured by Nippon Denshoku Industries Co., Ltd.), and the average value of 10 optical reflective film samples was calculated. Moreover, the difference ((DELTA) H) of the haze value before and behind a heat resistance test was computed. In addition, as an initial haze value before the heat resistance test of an optical reflection film, it is preferable in it being 1.5% or less. The haze value after the heat resistance test is preferably 3.0% or less.
<評価-2>
 実施例および比較例の光反射フィルムについて、下記耐光性試験を行い、下記のように試験前後の透過光を測定し、その差異から色差(ΔE)を計算した。その結果を下記表1に示す。
<Evaluation-2>
About the light reflection film of an Example and a comparative example, the following light resistance test was done, the transmitted light before and behind a test was measured as follows, and the color difference ((DELTA) E) was calculated from the difference. The results are shown in Table 1 below.
[耐光性試験]
 作製した各光反射フィルムから剥離紙を剥離し、厚さ3mmの青色ガラスに貼り付けた。30℃、60%RHの条件下において、キセノンウェザーメーター(スガ試験機社製;太陽光に極めて近似した光を発する)を用い、青色ガラスを介して各光反射フィルムに対して、100W/mの強度のキセノン光を1000時間照射した。
[Light resistance test]
The release paper was peeled off from each of the produced light reflecting films and attached to blue glass having a thickness of 3 mm. 100 W / m with respect to each light reflecting film through blue glass using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emits light very close to sunlight) under the conditions of 30 ° C. and 60% RH. Xenon light having an intensity of 2 was irradiated for 1,000 hours.
[透過光の測定]
 JIS R3106-1998に準拠した方法により、分光光度計U-4000型(積分球使用、日立製作所社製)を用いて波長200~2000nmの領域光の透過率を測定した。耐光性試験の前後での透過光の差異から算出した色差(ΔE)は、値が小さいほど、キセノン光曝露による着色の程度が小さいことを意味する。
[Measurement of transmitted light]
Using a spectrophotometer U-4000 type (using an integrating sphere, manufactured by Hitachi, Ltd.), the transmittance of region light having a wavelength of 200 to 2000 nm was measured by a method according to JIS R3106-1998. The smaller the value of the color difference (ΔE) calculated from the difference in transmitted light before and after the light resistance test, the smaller the degree of coloring due to exposure to xenon light.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<評価結果>
 表1に示すように、誘電体多層膜13に隣接する層として、ヒンダードアミン系の光安定化剤を含有する各層を設けた実施例1~実施例9の光反射フィルムのヘイズ差(ΔH)は、このような構成ではない比較例1および比較例2のヘイズ差(ΔH)よりも低く抑えられていることがわかる。これにより、水溶性高分子を用いた誘電体多層膜13に隣接させて、ヒンダードアミン系の光安定化剤を含有する層を設けた構成とすることにより、長期の使用において透明性を維持できることが確認された。
<Evaluation results>
As shown in Table 1, the haze difference (ΔH) of the light reflecting films of Examples 1 to 9 in which each layer containing a hindered amine light stabilizer is provided as a layer adjacent to the dielectric multilayer film 13 is It can be seen that the haze difference (ΔH) of Comparative Example 1 and Comparative Example 2 which are not configured as described above is suppressed to be lower. This makes it possible to maintain transparency in long-term use by providing a layer containing a hindered amine light stabilizer adjacent to the dielectric multilayer film 13 using a water-soluble polymer. confirmed.
 また、実施例1~実施例4の、ヒンダードアミン系の光安定化剤の種類のみを変更した構成を比較すると、遅効性・低失活性型の[NR]型または[NOR]型のヒンダードアミン系光安定化剤を用いた実施例2~実施例4のヘイズ差(ΔH)が、[NH]型のヒンダードアミン系光安定化剤を用いた実施例1のヘイズ差(ΔH)よりも低く抑えられていることがわかる。これにより、誘電体多層膜13に隣接する層には、光安定化剤として、[NR]型または[NOR]型のヒンダードアミン系光安定化剤を含有させることで、さらに耐候性の向上が図られることが確認された。 Further, comparing the configurations of Examples 1 to 4 with only the kind of the hindered amine light stabilizer being changed, a slow-acting and low-activation type [NR] type or [NOR] type hindered amine type light is used. The haze difference (ΔH) of Examples 2 to 4 using the stabilizer is suppressed to be lower than the haze difference (ΔH) of Example 1 using the [NH] type hindered amine light stabilizer. I understand that. Thereby, the layer adjacent to the dielectric multilayer film 13 contains a [NR] type or [NOR] type hindered amine light stabilizer as the light stabilizer, thereby further improving the weather resistance. It was confirmed that
 また、実施例3と実施例5の、光安定化剤含有層15のバインダーのみを変更した構成を比較すると、バインダーとしてアクリル樹脂を用いた実施例5の耐光性(変色ΔE)は、バインダーとしてウレタン系樹脂を用いた実施例3の耐光性(変色ΔE)よりも低く抑えられていることがわかる。これにより、誘電体多層膜13に隣接して設けた光安定化剤を含有する層は、バインダーとしてアクリル樹脂を用いることにより、耐光性の向上が図られることが確認された。また、実施例5の初期ヘイズ値が、実施例3の初期ヘイズ値よりも低く抑えられていることから、アクリル樹脂を用いることにより、透明性の向上が図られることが確認された。 Moreover, when the structure which only the binder of the light stabilizer content layer 15 of Example 3 and Example 5 was changed is compared, the light resistance (color change ΔE) of Example 5 using an acrylic resin as a binder is as a binder. It turns out that it is restrained lower than the light resistance (discoloration (DELTA) E) of Example 3 using a urethane-type resin. Thereby, it was confirmed that the layer containing the light stabilizer provided adjacent to the dielectric multilayer film 13 is improved in light resistance by using an acrylic resin as a binder. Moreover, since the initial haze value of Example 5 was restrained lower than the initial haze value of Example 3, it was confirmed that transparency was improved by using an acrylic resin.
 また、実施例6の、誘電体多層膜13に隣接する層として、ヒンダードアミン系の光安定化剤を含有する光安定化剤含有ハードコート層21を設けた構成の評価結果は、実施例5の構成の評価結果と同程度であることがわかる。これにより、ヒンダードアミン系の光安定化剤を含有する層として、特別な層を設ける必要はなく、誘電体多層膜13に隣接する既存の層に対してヒンダードアミン系の光安定化剤を含有させることにより、本発明の効果が得られることが確認された。 In addition, as a layer adjacent to the dielectric multilayer film 13 of Example 6, the evaluation result of the configuration in which the light stabilizer-containing hard coat layer 21 containing a hindered amine-based light stabilizer is provided is as in Example 5. It turns out that it is comparable with the evaluation result of a structure. Thereby, it is not necessary to provide a special layer as a layer containing a hindered amine light stabilizer, and a hindered amine light stabilizer is contained in an existing layer adjacent to the dielectric multilayer film 13. Thus, it was confirmed that the effects of the present invention can be obtained.
 また、実施例7の、誘電体多層膜13に隣接する層として、ヒンダードアミン系の光安定化剤を含有する光安定化剤含有粘着層31を設けた構成の評価結果は、実施例5の構成の評価結果と比較して、ヘイズ差(ΔH)および耐光性(変色ΔE)ともに低く抑えられていることが分かる。これにより、ヒンダードアミン系の光安定化剤を含有する層を、バインダーとして粘着剤を用いた粘着層とする効果が確認された。 Moreover, the evaluation result of the structure which provided the light stabilizer containing adhesion layer 31 containing a hindered amine type light stabilizer as a layer adjacent to the dielectric multilayer film 13 of Example 7 is the structure of Example 5. It can be seen that both the haze difference (ΔH) and the light resistance (discoloration ΔE) are suppressed to be lower than those of the evaluation results. Thereby, the effect which makes the layer containing a hindered amine light stabilizer the adhesive layer which used the adhesive as a binder was confirmed.
 また実施例7~実施例9の、光安定化剤含有粘着層31に含有させる紫外線吸収剤のみを変更した構成を比較すると、紫外線吸収剤を含有させた実施例8および実施例9の耐光性(変色ΔE)が、紫外線吸収剤の含有がない実施例7の耐光性(変色ΔE)よりも低く抑えられていることが分かる。しかも、紫外線吸収剤として、波長の吸収領域が異なるトリアジンとインドールとを含有する実施例9の耐光性(変色ΔE)が、特に低く抑えられていることが分かる。これにより、誘電体多層膜13に隣接する層に、紫外線吸収剤を含有させる効果、および紫外線吸収剤としてインドール系化合物を含有させる効果が確認された。 Further, comparing the configurations of Example 7 to Example 9 in which only the ultraviolet absorber contained in the light stabilizer-containing adhesive layer 31 was changed, the light resistance of Examples 8 and 9 containing the ultraviolet absorber was compared. It can be seen that (color change ΔE) is suppressed to be lower than the light resistance (color change ΔE) of Example 7 in which no ultraviolet absorber was contained. In addition, it can be seen that the light resistance (discoloration ΔE) of Example 9 containing triazine and indole having different wavelength absorption regions as the UV absorber is particularly low. Thereby, the effect of containing an ultraviolet absorber in the layer adjacent to the dielectric multilayer film 13 and the effect of containing an indole compound as the ultraviolet absorber were confirmed.
 1,2,3…光反射フィルム
  13…誘電体多層膜
   13H…高屈折率層
   13L…低屈折率層
  15…光安定化剤含有層
  21…光安定化剤含有ハードコート層
  31…光安定化剤含有粘着層
DESCRIPTION OF SYMBOLS 1, 2, 3 ... Light reflection film 13 ... Dielectric multilayer film 13H ... High refractive index layer 13L ... Low refractive index layer 15 ... Light stabilizer containing layer 21 ... Light stabilizer containing hard-coat layer 31 ... Light stabilization Agent-containing adhesive layer

Claims (7)

  1.  水溶性高分子を含む高屈折率層と水溶性高分子を含む低屈折率層とが交互に積層された誘電体多層膜と、
     ヒンダードアミン系の光安定化剤を含有し前記誘電体多層膜に隣接して設けられた光安定化剤含有層とを有する
     光反射フィルム。
    A dielectric multilayer film in which a high refractive index layer containing a water-soluble polymer and a low refractive index layer containing a water-soluble polymer are alternately laminated;
    A light reflecting film comprising a hindered amine-based light stabilizer and a light stabilizer-containing layer provided adjacent to the dielectric multilayer film.
  2.  前記高屈折率層は、ルチル型の酸化チタンを含有する
     請求項1に記載の光反射フィルム。
    The light reflecting film according to claim 1, wherein the high refractive index layer contains rutile type titanium oxide.
  3.  前記ヒンダードアミン系の光安定化剤は、ピペリジン環の窒素原子に対して直接または酸素原子を介して有機基が結合した化合物である
     請求項1または2に記載の光反射フィルム。
    The light reflecting film according to claim 1, wherein the hindered amine light stabilizer is a compound in which an organic group is bonded to a nitrogen atom of a piperidine ring directly or via an oxygen atom.
  4.  前記光安定化剤含有層は、バインダーとしてアクリル樹脂を含む
     請求項1~3の何れか1項に記載の光反射フィルム。
    The light reflecting film according to any one of claims 1 to 3, wherein the light stabilizer-containing layer contains an acrylic resin as a binder.
  5.  前記光安定化剤含有層は、バインダーとして粘着剤を用いた光安定化剤含有粘着層である
     請求項1~4の何れか1項に記載の光反射フィルム。
    The light reflecting film according to any one of claims 1 to 4, wherein the light stabilizer-containing layer is a light stabilizer-containing adhesive layer using an adhesive as a binder.
  6.  前記光安定化剤含有層は、紫外線吸収剤を含む
     請求項1~5の何れか1項に記載の光反射フィルム。
    The light reflecting film according to any one of claims 1 to 5, wherein the light stabilizer-containing layer contains an ultraviolet absorber.
  7.  前記光安定化剤含有層は、紫外線吸収剤としてインドール系化合物を含む
     請求項1~6の何れか1項に記載の光反射フィルム。
    The light reflecting film according to any one of claims 1 to 6, wherein the light stabilizer-containing layer contains an indole compound as an ultraviolet absorber.
PCT/JP2016/079743 2015-11-04 2016-10-06 Light reflecting film WO2017077810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216331 2015-11-04
JP2015-216331 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077810A1 true WO2017077810A1 (en) 2017-05-11

Family

ID=58661858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079743 WO2017077810A1 (en) 2015-11-04 2016-10-06 Light reflecting film

Country Status (1)

Country Link
WO (1) WO2017077810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022300A1 (en) * 2018-07-24 2020-01-30 コニカミノルタ株式会社 Gate cover
CN111393698A (en) * 2020-04-29 2020-07-10 浙江龙游道明光学有限公司 Manufacturing method of high-weather-resistance soft film for reflective material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226779A (en) * 1999-02-08 2000-08-15 Mitsubishi Rayon Co Ltd Wall paper with improved weatherability
WO2010140688A1 (en) * 2009-06-05 2010-12-09 旭硝子株式会社 Substrate with laminate film and manufacturing method thereof
WO2014199990A1 (en) * 2013-06-14 2014-12-18 コニカミノルタ株式会社 Derivative multilayer film
JP2015011271A (en) * 2013-07-01 2015-01-19 コニカミノルタ株式会社 Light-reflecting film, and light-reflecting body and light-reflecting device using the same
JP2015025932A (en) * 2013-07-26 2015-02-05 アキレス株式会社 Heat-ray shielding film for windows
JP2015125168A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Dielectric multilayer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226779A (en) * 1999-02-08 2000-08-15 Mitsubishi Rayon Co Ltd Wall paper with improved weatherability
WO2010140688A1 (en) * 2009-06-05 2010-12-09 旭硝子株式会社 Substrate with laminate film and manufacturing method thereof
WO2014199990A1 (en) * 2013-06-14 2014-12-18 コニカミノルタ株式会社 Derivative multilayer film
JP2015011271A (en) * 2013-07-01 2015-01-19 コニカミノルタ株式会社 Light-reflecting film, and light-reflecting body and light-reflecting device using the same
JP2015025932A (en) * 2013-07-26 2015-02-05 アキレス株式会社 Heat-ray shielding film for windows
JP2015125168A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Dielectric multilayer film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022300A1 (en) * 2018-07-24 2020-01-30 コニカミノルタ株式会社 Gate cover
JPWO2020022300A1 (en) * 2018-07-24 2021-08-12 コニカミノルタ株式会社 Gate cover
CN111393698A (en) * 2020-04-29 2020-07-10 浙江龙游道明光学有限公司 Manufacturing method of high-weather-resistance soft film for reflective material

Similar Documents

Publication Publication Date Title
JP6443341B2 (en) Light reflecting film and light reflector using the same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
WO2017010280A1 (en) Heat ray shielding film
WO2013089066A1 (en) Optical laminated film, infrared shielding film and infrared shielding body
JP6064911B2 (en) Infrared shielding film and infrared shielding body using the same
JPWO2014069507A1 (en) Optical reflection film, infrared shielding film and method for producing the same
WO2018207563A1 (en) Light-reflecting film and method for producing light-reflecting film
JP2018124300A (en) Infrared shielding body
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2016194560A1 (en) Infrared-shielding film
WO2017110651A1 (en) Optical reflection film
CN107615117B (en) Optical reflective film
WO2016017513A1 (en) Infrared reflective film and laminated glass
WO2017077810A1 (en) Light reflecting film
WO2016133022A1 (en) Heat shielding film
JP2015125168A (en) Dielectric multilayer film
JP2016155256A (en) Heat shielding film, and method for producing the same
JP6759697B2 (en) Roll-shaped optical reflective film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP2017096990A (en) Method for producing light reflection film
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
CN108885288B (en) Optical reflective film
WO2017043288A1 (en) Optical reflection film
JP2016083903A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP