WO2017043288A1 - Optical reflection film - Google Patents

Optical reflection film Download PDF

Info

Publication number
WO2017043288A1
WO2017043288A1 PCT/JP2016/074211 JP2016074211W WO2017043288A1 WO 2017043288 A1 WO2017043288 A1 WO 2017043288A1 JP 2016074211 W JP2016074211 W JP 2016074211W WO 2017043288 A1 WO2017043288 A1 WO 2017043288A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
ultraviolet
film
base material
Prior art date
Application number
PCT/JP2016/074211
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 畠沢
一仁 伊原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017043288A1 publication Critical patent/WO2017043288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor

Definitions

  • the present invention relates to an optical reflective film having an infrared reflective laminate formed by alternately laminating layers having different refractive indexes.
  • an optical reflective film is attached to a window glass or the like via an adhesive layer, and a method of protecting the reflective layer from the external environment by placing the reflective layer between the adhesive layer and the substrate is used.
  • a structure having an infrared reflection laminate (reflection layer) in which layers having different refractive indexes are alternately laminated on a base material has been proposed (for example, a patent).
  • Reference 1 This infrared reflective laminate is composed of a high refractive index layer in which metal oxide fine particles such as titanium oxide are dispersed in a water-soluble resin, and a low refractive index layer in which particles of silicon dioxide and the like are dispersed.
  • an ultraviolet absorber is introduced into the adhesive layer to block ultraviolet rays incident from the window surface side and prevent deterioration of the base material and the reflective layer.
  • the base material breaks due to deterioration when the optical reflective film is peeled off for replacement after long-term use. If the base material is broken, workability at the time of replacement or the like deteriorates.
  • the present invention provides an optical reflection film in which deterioration of a substrate is suppressed.
  • the optical reflective film of the present invention includes a base material, a reflective layer provided on the base material, and a first ultraviolet absorbing layer provided on the reflective layer. And an ultraviolet absorber is included in at least any one of a base material and the layer provided on the surface on the opposite side to the surface in which the reflective layer of the base material was formed.
  • Embodiment of optical reflection film (first embodiment) 2.
  • Embodiment of optical reflection film (second embodiment)
  • the optical reflective film includes a base material, a reflective layer, and a first ultraviolet absorbing layer.
  • the reflective layer is provided in a form sandwiched between the base material and the first ultraviolet absorbing layer.
  • an optical reflection film is provided with the layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber on the opposite side to a 1st ultraviolet absorption layer with respect to a reflection layer.
  • Examples of such a second ultraviolet absorbing layer include a configuration in which the base material itself contains an ultraviolet absorber, so that the base material becomes the second ultraviolet absorbing layer.
  • the structure which comprises the layer which contains a ultraviolet absorber on the outer side (opposite side of a reflection layer) of a base material, and makes this layer a 2nd ultraviolet absorption layer is mentioned.
  • the hard-coat layer provided in order to protect the surface of a base material, the anchor coat layer provided between a base material and a hard-coat layer, etc. are mentioned, for example.
  • layers other than a hard-coat layer and an anchor-coat layer may be sufficient, and if it is the structure which can hold
  • the optical reflective film preferably has an average spectral reflectance at a wavelength of 1000 to 1200 nm of 30% or more and less than 90%, and a maximum spectral transmittance at a wavelength of 300 to 380 nm of 50% or less.
  • the reflectance, transmittance, and refractive index of the optical reflection film and each component can be determined according to the following method. First, an optical reflection film to be measured or a sample formed of a single layer of each layer is prepared using a substrate such as glass or a resin film as necessary, and the prepared sample is cut into 10 cm ⁇ 10 cm. And the back side of the measurement side of each sample is roughened, and light absorption processing is performed with a black spray to prevent reflection of light on the back side.
  • Examples of the ultraviolet absorber contained in the second ultraviolet absorbing layer include benzotriazole compounds, triazine compounds, and benzophenone compounds. It is preferable that a 2nd ultraviolet absorption layer contains at least 1 or more types chosen from said ultraviolet absorber. Moreover, it is preferable that a 1st ultraviolet absorption layer also contains at least 1 type or more chosen from said ultraviolet absorber.
  • the reflective layer preferably contains a polymer compound having a glass transition temperature of 0 ° C. or less in a layer (high refractive index layer or low refractive index layer) provided on the most base side (lowermost layer). Furthermore, the polymer compound having a glass transition temperature of 0 ° C. or lower preferably has a urethane bond.
  • FIG. 1 shows a schematic configuration of the optical reflection film.
  • the optical reflective film 10 shown in FIG. 1 includes a base material 11, a reflective layer 12, and a first ultraviolet absorption layer 13.
  • the optical reflection film 10 has a first ultraviolet absorption layer 13 side bonded to a window glass or the like, and the first ultraviolet absorption layer 13 side is directed to the optical reflection film 10 mainly for reflection on the reflection layer.
  • the light including the wavelength is incident.
  • the surface on the first ultraviolet absorption layer 13 side of the optical reflection film 10 is referred to as “front surface”
  • the surface on the base material 11 side of the optical reflection film 10 is referred to as “back surface”.
  • the reflective layer 12 has a configuration in which high refractive index layers and low refractive index layers are alternately laminated.
  • the first ultraviolet absorbing layer 13 is provided on the main surface opposite to the base material 11 with respect to the reflective layer 12 provided on the base material 11.
  • the base material 11 itself is comprised as a 2nd ultraviolet absorption layer because the base material 11 contains an ultraviolet absorber.
  • the optical reflective film 10 has a configuration in which the reflective layer 12 is sandwiched between the first ultraviolet absorbing layer 13 and the substrate 11 which is the second ultraviolet absorbing layer.
  • the reflective layer 12 is sandwiched between the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer (base material 11), so that the ultraviolet rays from the surface side of the optical reflecting film 10 are changed to It can be absorbed by the ultraviolet absorbing layer 13.
  • the ultraviolet rays from the back surface side of the optical reflection film 10 can be absorbed by the base material 11 which is the second ultraviolet absorption layer. For this reason, the ultraviolet irradiation to the reflective layer 12 is suppressed, and the influence of the deterioration of the optical characteristics of the optical reflective film 10 caused by the deterioration of the reflective layer 12 due to the ultraviolet light is suppressed.
  • the ultraviolet rays applied to the substrate 11 can be suppressed by absorbing the ultraviolet rays from the surface side of the optical reflecting film 10 by the first ultraviolet absorbing layer 13. Furthermore, the ultraviolet absorber from the back surface side of the optical reflection film 10 can be absorbed by the ultraviolet absorber contained in the substrate 11 by including the ultraviolet absorber in the substrate 11 itself. As a result, deterioration (decomposition) of the base material 11 due to ultraviolet rays is suppressed. Therefore, when performing the replacement
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 60%.
  • the reflective layer 12 of the optical reflective film 10 has an alternate stack of high refractive index layers and low refractive index layers.
  • the reflection layer 12 includes at least one laminate (unit) in which high refractive index layers and low refractive index layers having different refractive indexes are alternately laminated so that intrusion of heat rays (infrared rays) can be prevented. It is.
  • the “high refractive index layer” and the “low refractive index layer” are obtained by comparing the refractive index difference between two adjacent layers with the higher refractive index layer as the higher refractive index layer and the lower refractive layer as the lower refractive index layer.
  • a low refractive index layer is used. Therefore, the high refractive index layer and the low refractive index layer in the reflective layer 12 are determined by comparing the refractive indexes of two adjacent layers in each layer constituting the reflective layer 12. For this reason, the names of these structures are replaced as needed depending on the structure of the laminate and the refractive index relationship with the layer to be compared. Further, the “high refractive index layer” and the “low refractive index layer” can be applied to all forms except for the case where two adjacent layers have the same refractive index in each layer constituting the film.
  • the reflection layer 12 includes a polymer that is a main component of the layer.
  • the reflective layer 12 is mainly composed of a polymer, the flexibility of the layer is improved with respect to the reflective layer of the inorganic film formed only of the metal oxide material. For this reason, a film crack can be prevented effectively. Moreover, the adhesiveness between each layer can be improved.
  • the reflective layer 12 preferably has at least one laminate (unit) in which a high refractive index layer containing a polymer and a low refractive index layer containing a polymer are laminated.
  • the reflective layer 12 may include other substances such as metal oxides (particles) and other additives.
  • the reflective layer 12 can be produced using a liquid phase film forming method such as a coating method. For this reason, uniform and large-area film formation can be easily performed. Moreover, since the film-forming speed can be increased by using the liquid phase film-forming method, the manufacturing cost and mass productivity are excellent. Furthermore, by using a coating method or the like, it becomes easy to control the thicknesses of the high refractive index layer and the low refractive index layer to arbitrary thicknesses.
  • the liquid phase film forming method does not require film formation at a high temperature. For this reason, the selection range of a base material spreads. Since the reflective layer containing a polymer is excellent in flexibility as described above, even when the optical reflective film 10 is bent, the occurrence of cracks and peeling at the bent portion can be suppressed by using a flexible resin film. . Furthermore, it suppresses peeling between layers due to a difference in shrinkage ratio between the reflective layer 12 and other layers due to temperature change, or between the high refractive index layer and the low refractive index layer constituting the reflective layer 12. Can do.
  • a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer and the low refractive index layer.
  • the high refractive index layer includes a set of portions in which the components constituting the high refractive index layer are 50% by mass or more in the mixed layer, thereby forming the low refractive index layer.
  • a group of sites where the component to be added exceeds 50 mass% is included in the low refractive index layer.
  • the metal oxide particles (first metal oxide particles) contained in the low refractive index layer, and the high refractive index layer The metal oxide particles (second metal oxide particles) contained in the mixture are mixed at the interface between the two layers, and a mixed layer including the first metal oxide particles and the second metal oxide particles is formed.
  • the low refractive index layer means that the first metal oxide particles are 50 to 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles.
  • the high refractive index layer means that the second metal oxide particles are more than 50% by mass and less than 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles.
  • the type and amount of metal oxide particles contained in each layer can be analyzed by energy dispersive X-ray spectroscopy (EDX).
  • the reflective layer 12 may be a laminate in which a high refractive index layer containing a polymer and a low refractive index layer containing a polymer are alternately laminated, and the number (total number) of the high refractive index layer and the low refractive index layer is There is no particular limitation. Preferably, it is in the range of 10 to 50 layers, preferably 13 to 39 layers. If the number of laminated layers is 10 or more, a desired infrared reflectance is obtained, and if it is 13 or more, a higher infrared reflectance is obtained and the heat shielding effect is improved.
  • the reflective layer 12 is not easily broken and excellent in that sufficient weather resistance can be obtained, for example, the edge peeling can be suppressed. Furthermore, if the number of laminated layers is 39 or less, high weather resistance is obtained, such as preventing the reflective layer 12 from cracking and preventing edge peeling.
  • the reflective layer 12 has a high refractive index layer, a low refractive index, and the lowermost layer (most layer on the side of the base material 11) and the outermost layer (most layer on the side opposite to the base material 11). Any of the rate layers may be used.
  • the lowermost layer and the outermost layer of the reflective layer 12 are low refractive index layers, adhesion to the adjacent layer (for example, the base material 11) of the lowermost layer and blowing resistance of the outermost layer are likely to be improved.
  • the reflective layer 12 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer and low refractive index layer increases.
  • the high refractive index layer preferably has a higher refractive index.
  • the refractive index of the high refractive index layer is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20.
  • the low refractive index layer preferably has a lower refractive index.
  • the refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
  • At least one pair of refractive index difference between adjacent high refractive index layer and low refractive index layer is 0.1 or more, 0.2 or more More preferably, it is more preferably 0.25 or more.
  • the refractive index difference is within the preferred range in all layers.
  • the outermost layer and the lowermost layer of the reflective layer 12 may have a configuration outside the above preferred range.
  • the reflectance of the specific wavelength region in the reflective layer 12 is determined by the refractive index difference between the two adjacent layers (the high refractive index layer and the low refractive index layer) and the number of stacked layers. Rate is obtained.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance (infrared shielding ratio) of 90% or more, if the difference in refractive index is smaller than 0.1, lamination exceeding 100 layers is required, and transparency is lowered. For this reason, the refractive index difference between adjacent layers is preferably 0.1 or more. Particularly preferably, it is 0.3 or more, more preferably 0.4 or more. From the viewpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index between the adjacent high refractive index layer and low refractive index layer, but it is substantially about 1.4.
  • n ⁇ d ⁇ / 4
  • d the physical film thickness of the layer
  • n ⁇ d the optical film thickness
  • the wavelength
  • the reflection layer 12 can control reflection of each wavelength by using the optical path difference. That is, the reflectance of a specific wavelength such as visible light or near infrared light can be controlled by controlling the refractive index and film thickness of each layer using the relationship represented by the above formula. For example, the reflectance in a specific wavelength region can be improved by controlling the refractive index, film thickness, and lamination state of each layer. As a result, the reflectance at a specific wavelength ⁇ can be increased.
  • a specific wavelength such as visible light or near infrared light
  • the reflectance in a specific wavelength region can be improved by controlling the refractive index, film thickness, and lamination state of each layer.
  • the optical reflective film 10 preferably has an average spectral reflectance at a wavelength of 1000 to 1200 nm of 30% or more and less than 90%.
  • the optical reflection film 10 can reflect heat rays (infrared light) more effectively as the average spectral reflectance at a wavelength of 1000 to 1200 nm is higher.
  • the optical reflective film 10 preferably has a maximum spectral transmittance at a wavelength of 300 to 380 nm of 50% or less.
  • the optical reflective film 10 is more transparent as the transmittance in the visible light region with a wavelength of 300 to 380 nm is higher. Therefore, the optical reflective film 10 is suitable as an optical film to be bonded to a window glass or the like with less decrease in visible light region or discoloration of transmitted light. ing.
  • the optical reflective film 10 adjusts the reflectance and transmittance of each wavelength in the reflective layer 12 by adjusting the thickness of the reflective layer 12 and the thickness of the high refractive index layer and the low refractive index layer. Can be adjusted.
  • the total number of high refractive index layers and low refractive index layers constituting the reflective layer 12 is N layers, and the layer closest to the base material 11 of the reflective layer 12 (lowermost layer) Is the first layer and the farthest layer (the outermost layer) is the Nth layer, at least one layer between the (N / 4) to (N / 2) layers is made thicker than the adjacent layers It is preferable.
  • any one of the high refractive index layers between the (N / 4) to (N / 2) layers is preferably formed thicker than the adjacent layers, and is 1.2 times or more of the adjacent layers. It is more preferable to set it as the thickness.
  • the reflective layer 12 composed of a low refractive index layer containing SiO 2 and a high refractive index layer containing TiO 2
  • the (N / 4) to (N / 2) layers are the 5th to 11th layers (the number of layers is rounded off to the nearest decimal place).
  • a layer formed thicker than the adjacent layer is a tenth high refractive index layer (thickness 230 nm). Further, the film thicknesses of the ninth layer and the eleventh layer adjacent thereto are set to 150 nm or the like.
  • all the low refractive index layers have the same thickness (150 nm), and all the high refractive index layers other than the thickly formed layer (10th layer) have the same thickness (120 nm).
  • the above-described average spectral reflectance at a wavelength of 1000 to 1200 nm and maximum spectral transmittance at a wavelength of 300 to 380 nm can be achieved.
  • the layer (lowermost layer) provided closest to the substrate 11 preferably contains a polymer compound having a glass transition temperature of 0 ° C. or lower.
  • a polymer compound having a urethane bond (urethane resin) is preferably used as the polymer compound having a glass transition temperature of 0 ° C. or lower.
  • a high Tg polymer compound such as urethane resin has higher adhesion to various materials than other resins.
  • these polymer compounds are more deteriorated by ultraviolet rays than other resins. For this reason, in an optical reflective film using a polymer compound having a low Tg such as urethane resin, the optical reflective film is likely to break due to long-term use.
  • the reflective layer 12 is disposed between the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer (base material 11). For this reason, in the optical reflection film 10, ultraviolet rays from the front surface side are absorbed by the first ultraviolet absorption layer 13, and ultraviolet rays from the back surface side are absorbed by the substrate 11 (second ultraviolet absorption layer). It is possible to greatly suppress the deterioration of the polymer compound due to. That is, in the configuration of the optical reflection film 10, by suppressing the light deterioration of the low Tg polymer compound in the reflection layer 12, the effect of improving the adhesion between the base material 11 and the reflection layer 12 by the low Tg polymer compound is obtained. It can be maintained over a long period of time.
  • the substrate 11 and the reflective layer 12 with the low Tg polymer compound are used. High adhesion is maintained. For this reason, in the replacement
  • the thickness of the reflective layer 12 composed of alternating layers of high refractive index layers and low refractive index layers is not particularly limited, and is preferably 10 ⁇ m or less, more preferably 5.5 ⁇ m or less, and particularly preferably 1.0 to 4.
  • the range is 0 ⁇ m.
  • the thickness of the reflective layer is 10 ⁇ m or less, particularly 5.5 ⁇ m or less, it is easy to perform construction on a window or the like.
  • the film thickness of the reflective layer 12 within the above range, it is possible to effectively prevent the film from being bent even when the weather resistance, in particular, the optical reflective film 10 repeats thermal expansion and thermal contraction. Later, it is possible to prevent peeling of the end portion for a long period of time.
  • the thickness (thickness after drying) of the high refractive index layer and the low refractive index layer constituting the reflective layer 12 is preferably 20 to 1000 nm, more preferably 50 to 500 nm, More preferably, it is 100 to 300 nm, and particularly preferably 100 to 200 nm.
  • the thicknesses of the high refractive index layer and the low refractive index layer may be the same or different.
  • the thickness per layer of each layer can be confirmed by, for example, cutting the manufactured reflective layer 12 and observing the cut surface with an electron microscope. At this time, when the interface between the two layers cannot be clearly observed, the interface can be determined by the XPS profile in the thickness direction obtained by an XPS (X-ray Photoelectron Spectroscopy) surface analyzer.
  • the high refractive index layer contains a polymer and metal oxide fine particles. Further, the high refractive index layer preferably contains titanium oxide as metal oxide fine particles. The high refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles other than titanium oxide together with titanium oxide.
  • Water-soluble polymer As the polymer contained in the high refractive index layer, it is preferable to use a water-soluble polymer that functions as a binder. When the high refractive index layer contains a water-soluble polymer, it is possible to form a layer that suppresses the use of an organic solvent, and to solve environmental problems due to the organic solvent. Moreover, a softness
  • a liquid layer deposition method such as coating or spin coating can be applied to the formation of the high refractive index layer.
  • the liquid layer film forming method is simpler than the gas phase film forming method, and is effective for the production of the optical reflective film 10 using a resin film because the heat resistance of the substrate is not questioned. Further, by using a coating method, a mass production method such as a roll-to-roll method can be adopted, which is advantageous in terms of cost and process time.
  • the water-soluble polymer examples include polyvinyl alcohol and derivatives thereof (polyvinyl alcohol resin), gelatin, thickening polysaccharides, and the like. From the viewpoint of coating unevenness and film thickness uniformity (haze), the high refractive index layer preferably contains polyvinyl alcohol or a derivative thereof as a polymer.
  • the polyvinyl alcohol resin examples include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • a polymer may be used independently and may be used in combination of 2 or more type.
  • the polymer may be a synthetic product or a commercially available product.
  • the polymer used for the high refractive index layer is not limited to the above-mentioned materials, for example, known polymers described in International Publication Nos. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Polymers can also be used.
  • Polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
  • JP-45 degree of polymerization 4500, degree of saponification 88 mol% manufactured by Nippon Vinegar Poval can be used.
  • modified polyvinyl alcohol examples include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • vinyl acetate resin for example, “Exeval” manufactured by Kuraray Co., Ltd.
  • polyvinyl acetal resin obtained by reacting polyvinyl alcohol with aldehyde for example, “S Lecque” manufactured by Sekisui Chemical Co., Ltd.
  • silanol-modified polyvinyl having silanol group Alcohol for example, “R-1130” manufactured by Kuraray Co., Ltd.
  • modified polyvinyl alcohol resin having an acetoacetyl group in the molecule for example, “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Etc. are also included in the modified polyvinyl alcohol.
  • anion-modified polyvinyl alcohol examples include polyvinyl alcohols having an anionic group described in JP-A-1-206088, vinyl alcohols described in JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer with a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives in which a polyalkylene oxide group described in JP-A No. 7-9758 is added to a part of vinyl alcohol, and hydrophobic properties described in JP-A No. 8-25795.
  • examples thereof include a block copolymer of a vinyl compound having a group and vinyl alcohol, a silanol-modified polyvinyl alcohol having a silanol group, and a reactive group-modified polyvinyl alcohol having a reactive group such as an acetoacetyl group, a carbonyl group, or a carboxyl group.
  • polyvinyl alcohol for example, polyvinyl alcohol having a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol. And can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • ethylene-modified polyvinyl alcohol for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used.
  • commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
  • vinyl alcohol polymer examples include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • polyvinyl alcohol may be used alone or in combination of two or more.
  • Polyvinyl alcohol may be a synthetic product or a commercial product.
  • the weight average molecular weight of polyvinyl alcohol is preferably 1000 to 200000, more preferably 3000 to 60000.
  • the value measured by the static light scattering method, the gel permeation chromatograph method (GPC), TOFMASS, etc. can be employ
  • the content of the water-soluble polymer in the high refractive index layer is preferably 5 to 75% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the high refractive index layer.
  • the content of the water-soluble polymer is 5% by mass or more, when a high refractive index layer is formed by a wet film forming method, it is possible to suppress a decrease in transparency due to disturbance of the film surface when the coating film is dried.
  • the content of the water-soluble polymer is 75% by mass or less, a suitable range is obtained when the metal oxide particles are contained in the high refractive index layer.
  • content of water-soluble polymer is calculated
  • the optical reflection film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight.
  • the water-soluble polymer is polyvinyl alcohol. It can be determined that
  • a curing agent can be used to cure the water-soluble polymer.
  • Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc., aldehyde curing agents (formaldehyde, glyoxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active vinyl Examples of such compounds include 1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, aluminum alum and borax.
  • the high refractive index layer may contain a surfactant for adjusting the surface tension during coating.
  • a surfactant for adjusting the surface tension during coating.
  • an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, or the like can be used as the surfactant.
  • an anionic surfactant is preferably used, and one containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule is preferable.
  • the content of the surfactant in the high refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the high refractive index layer.
  • the surfactant for example, Newcol series (manufactured by Nippon Emulsifier Co., Ltd.) can be used.
  • the high refractive index layer preferably contains titanium oxide particles as metal oxide fine particles.
  • the high refractive index layer may contain fine metal oxide particles other than titanium oxide together with titanium oxide.
  • the high refractive index layer preferably has the largest proportion of titanium oxide as metal oxide fine particles.
  • titanium oxide titanium dioxide is preferable because a transparent and higher refractive index layer having a higher refractive index can be formed.
  • rutile (tetragonal) titanium oxide particles are preferably used.
  • the content of the metal oxide particles in the high refractive index layer is preferably 20 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer from the viewpoint of heat ray shielding and color unevenness reduction. 30 to 75% by mass is more preferable, and 40 to 70% by mass is more preferable.
  • metal oxide fine particles examples include Ti, Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, and Nb. , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals Metal oxides can be used. One kind or two or more kinds of metal oxide particles may be used.
  • metal oxide particles used in the high refractive index layer examples include zirconium oxide (ZrO 2 ), zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, and ferric oxide.
  • Iron black copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide (Ta 2 O 5 ), barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, Examples thereof include tin oxide, lead oxide, and double oxides thereof such as lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ).
  • rare earth oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, and oxide. Thulium, ytterbium oxide, lutetium oxide, or the like can be used.
  • the metal oxide particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more.
  • Examples of the metal oxide particles having a refractive index of 1.90 or more include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide.
  • the metal oxide particles used in the high refractive index layer a structure in which aluminum, silicon, zirconium or the like is supported on the surface of the metal oxide particles in an island shape having a three-dimensional barrier can be used.
  • the titanium oxide fine particles may be core-shell particles coated with a silicon-containing hydrated oxide.
  • the core-shell particle has a structure in which a shell layer of silicon-containing hydrated oxide is coated on the surface of metal oxide particles (titanium oxide particles) serving as a core.
  • the “coating” indicates a state in which the silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with the silicon-containing hydrated oxide, and the silicon-containing hydrated oxide adheres to a part of the surface of the titanium oxide particles. It may be in a state. Since the refractive index of the core-shell particles is affected by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. In the following, such coated titanium oxide core-shell particles are also referred to as “silica-attached titanium dioxide sol”.
  • titanium oxide particles with a silicon-containing hydrated oxide As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007- The method described in Japanese Patent No. 246351 can be applied.
  • the volume average particle size of the metal oxide particles used for the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less.
  • the volume average particle diameter is preferably 1 to 30 nm, more preferably 1 to 20 nm.
  • the volume average particle diameter is an average value obtained by measuring the particle diameters of 1000 arbitrary particles by a method of observing the particles themselves.
  • a laser diffraction scattering method for example, a laser diffraction scattering method, a dynamic light scattering method, a method of observing using an electron microscope, or a method of observing a particle image appearing on a cross section or surface of a layer with an electron microscope.
  • the average particle size mv the value represented by ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇ The diameter.
  • the low refractive index layer includes a polymer. Further, the low refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles as necessary.
  • the polymer contained in the low refractive index layer examples include the same polymers as those described in the description of the high refractive index layer. Further, the polymer contained in the low refractive index layer is preferably a water-soluble polymer as in the above-described high refractive index layer. The polymer contained in the low refractive index layer may be the same component as the high refractive index layer or may be a different component, but is preferably different. Further, the low refractive index layer may contain a curing agent for curing the water-soluble polymer and a surfactant. Also for these, the same material as the above-described high refractive index layer can be used.
  • the low refractive index layer may be configured to include fine particles (inorganic fine particles) such as inorganic oxide fine particles, metal compound fine particles, and metal oxide fine particles together with the water-soluble polymer. Since the high refractive index layer and the low refractive index layer both contain inorganic fine particles, the refractive index can be easily adjusted. For this reason, it is possible to increase the refractive index of the high refractive index layer, the low refractive index layer, and the thickness of the reflective layer 12 by reducing the number of stacked layers. By reducing the number of layers of the reflective layer 12, productivity can be improved and a decrease in transparency due to scattering at the stack interface can be suppressed.
  • fine particles inorganic fine particles
  • Examples of the inorganic oxide particles and metal compound fine particles used for the low refractive index layer include silicon dioxide (SiO 2 ), magnesium fluoride (MgF 2 ), etc., preferably using silicon dioxide, particularly using colloidal silica. It is particularly preferred.
  • Examples of the metal oxide fine particles used for the low refractive index layer include the same materials as the metal oxide fine particles described for the high refractive index layer.
  • the inorganic fine particles contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle size of the inorganic fine particles dispersed in the primary particle state is more preferably 3 to 50 nm, further preferably 3 to 40 nm, particularly preferably 3 to 20 nm. Most preferred is ⁇ 10 nm.
  • grains 30 nm or less is preferable from a viewpoint with few hazes and being excellent in visible light transmittance
  • the average particle size of the inorganic fine particles in the low refractive index layer is determined by observing the particles themselves or particles appearing on the cross section or surface of the low refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. And it calculates
  • the particle size of each particle is a circle diameter (area circle equivalent diameter) when a circle having an area equal to the projected area of the particle is assumed.
  • the content of the inorganic fine particles in the low refractive index layer is preferably 5 to 70% by mass and preferably 10 to 50% by mass with respect to the solid content of the low refractive index layer from the viewpoint of refractive index. Further preferred.
  • Colloidal silica is obtained by heat-ripening a silica sol obtained by metathesis with an acid such as sodium silicate or passing through an ion exchange resin layer.
  • Colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-219084, JP-A-61-20792, JP-A-61-188183.
  • colloidal silica may be a synthetic product or a commercially available product.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • each layer is composed of, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192.
  • Anti-fading agent described in JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, diethylene glycol, etc.
  • Lubricants, preservatives, anti-static agents may also contain various known additives such as a matting agent. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the low refractive index layer.
  • the first ultraviolet absorption layer 13 includes an ultraviolet absorber.
  • the first ultraviolet absorbing layer 13 includes a polymer material that serves as a binder for the ultraviolet absorber in addition to the ultraviolet absorber.
  • the polymer material that becomes the binder of the first ultraviolet absorption layer 13 the water-soluble polymer that constitutes the reflection layer 12 described above can be used.
  • the first ultraviolet absorbing layer 13 preferably contains 0.05 to 15% by mass of an ultraviolet absorber. Further, it is preferable that 1 to 10% by mass of an ultraviolet absorber is contained.
  • the thickness of the first ultraviolet absorbing layer 13 is preferably 1 ⁇ m to 30 ⁇ m. By setting the thickness to 1 ⁇ m or more, the film forming property of the first ultraviolet absorbing layer 13 can be improved, and the ultraviolet absorbing ability required for the first ultraviolet absorbing layer 13 can be easily added. On the other hand, when the thickness exceeds 30 ⁇ m, not only the cost becomes high, but also a time is required for the drying process in the production, and the production becomes difficult.
  • the 1st ultraviolet absorption layer 13 can also be set as the structure which serves as the adhesion layer of the optical reflection film 10 by including materials which have adhesiveness, such as an adhesive.
  • an adhesive material can be used as a binder.
  • the well-known release paper may further be provided on the adhesion layer.
  • the adhesive material examples include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent.
  • an adhesion layer contains an adhesive as an adhesive material.
  • adhesives include acrylic adhesives, silicone adhesives, urethane adhesives, polyvinyl butyral adhesives, polyester resins, polyvinyl acetate resins, nitrile rubber, and ethylene-vinyl acetate adhesives. Can do.
  • the so-called water bonding method is preferable. Used for. For this reason, it is preferable to use an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
  • the thickness is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 5 to 20 ⁇ m. Since the adhesive force depends on the thickness of the adhesive layer, the adhesive layer needs to have a certain thickness. When the pressure-sensitive adhesive layer is less than 1.0 ⁇ m, for example, partial contact with an adhesive surface with glass or the like becomes insufficient, and it is difficult to obtain a necessary pressure-sensitive adhesive force. Further, when the thickness of the adhesive layer exceeds 30 ⁇ m, not only the cost becomes high, but also after being attached to glass and then peeled off, cohesive failure occurs between the adhesive layers, and the adhesive remains.
  • UV absorber The ultraviolet absorber used for the 1st ultraviolet absorption layer 13 is not specifically limited, A well-known ultraviolet absorber can be used.
  • benzophenone compounds such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone, 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3) Benzotriazole compounds such as', 5'-di-t-butylphenyl) benzotriazole, phenyl salicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxy Salicylic acid phenyl compounds such as benzoate, hindered amine compounds such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) ) -1,3,5-triazine, 2,4-diphenyl-6- (2
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet light into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
  • an ultraviolet absorber individually or in mixture of 2 or more types.
  • a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 477, Tinuvin (registered trademark) 1577, and Tinuvin (registered trademark) 622.
  • ADK STAB registered trademark LA-31 (above, manufactured by ADEKA CORPORATION)
  • SEESORB registered trademark 102
  • SESORB registered trademark
  • SEESORB registered trademark
  • the base material 11 is configured as the second ultraviolet absorption layer of the optical reflection film 10 by including an ultraviolet absorber in the base material 11.
  • the ultraviolet absorber contained in the substrate 11 the ultraviolet absorber described in the first ultraviolet absorbing layer 13 can be used.
  • the substrate 11 By causing the substrate 11 to function as the second ultraviolet absorbing layer, not only direct light incident from the first ultraviolet absorbing layer 13 side but also light incident from the substrate 11 side due to irregular reflection or the like.
  • the incidence of ultraviolet rays into the optical reflection film 10 can be suppressed.
  • sandwiching the reflective layer 12 with a layer containing an ultraviolet absorber it is possible to suppress deterioration of the reflective layer 12 and the substrate 11 due to ultraviolet rays, and to suppress discoloration of the reflective layer 12. Is possible.
  • the base material 11 is not particularly limited as long as it is a base material formed of a transparent organic material.
  • the substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent Examples of resin materials such as cellulose nanofiber film can be given. Furthermore, two or more layers of these resin materials can be laminated and used.
  • a polyester film is preferably used as the substrate 11.
  • dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol
  • a film-forming property having a diol component as a main constituent.
  • the base material 11 containing an ultraviolet absorber a commercially available product can be used.
  • Teijin Tetron film HB registered trademark manufactured by Teijin DuPont Films, Inc. can be used.
  • the substrate 11 may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the thickness of the substrate is preferably in the range of 5 to 200 ⁇ m, more preferably 15 to 150 ⁇ m.
  • the base material 11 preferably has a visible light region transmittance of 85% or more as shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the substrate 11, the minimum transmittance of the optical reflective film 10 at a wavelength of 420 to 780 nm can be increased.
  • the base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • a stretched film may be prepared from an unstretched resin base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. It can.
  • the draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably in the range of 2 to 6%.
  • the base material 11 subjected to the relaxation treatment is improved in heat resistance by performing off-line heat treatment, and further has good dimensional stability.
  • the optical reflective film 10 includes a step of forming the reflective layer 12 on the substrate 11 and a step of forming the first ultraviolet absorbing layer 13.
  • the base material 11 containing an ultraviolet absorber is prepared.
  • the base material 11 containing the ultraviolet absorber is prepared by mixing and melting the above-described resin applicable to the base material 11 and the above-described ultraviolet absorber, and further processing the resin containing the ultraviolet absorber into a pellet, It can produce by processing in a shape.
  • the polyester when polyester is used as the substrate 11, the polyester is produced by directly esterifying a dicarboxylic acid component and a glycol component.
  • the polyester when a dialkyl ester of a dicarboxylic acid component is used, the polyester is prepared by transesterification with a glycol component and heating this under reduced pressure to remove excess glycol component. At this time, a transesterification catalyst or a polymerization catalyst is used as necessary.
  • stabilizers such as a phosphorus compound, can be added. Further, the obtained polyester is heated and melted at a temperature equal to or higher than the melting point of the polyester using a known melt extrusion apparatus represented by an extruder.
  • the molten polymer is continuously extruded from the slit-shaped base, and is forcedly cooled to produce the base material 11.
  • the UV absorber is mixed at any stage from polymer production to extrusion.
  • other additives such as a crystal nucleating agent, an antioxidant, an anti-coloring agent, a pigment, a dye, a release agent, a lubricant, a flame retardant, an antistatic agent, and particles can be mixed at any stage.
  • the reflective layer 12 is formed on the base material 11 containing an ultraviolet absorber.
  • the method for forming the reflective layer 12 is not particularly limited. For example, there is a method for forming the reflective layer 12 by alternately applying and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer. Can be mentioned.
  • the adjustment method of the coating liquid for the high refractive index layer is not particularly limited, and there is a method in which the water-soluble polymer, the metal oxide fine particles, the solvent, and other additives added as necessary are stirred and mixed. Can be mentioned.
  • the method for adjusting the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and, if necessary, inorganic fine particles and other additives. .
  • the order of addition of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time.
  • Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the solvent for adjusting each coating liquid is not particularly limited, but it is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • the organic solvent used in each coating solution examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. , Ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the standpoint of environment and ease of operation, the solvent for the coating solution is preferably a mixed solvent of water and methanol, ethanol, and ethyl acetate.
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99. More preferably, it is 5 mass%.
  • the water content is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99. More preferably, it is 5 mass%.
  • each prepared coating liquid is applied onto the substrate 11 and dried.
  • a reflective layer can be formed from the coating film.
  • the coating method is not particularly limited and may be either a sequential coating method or a simultaneous multilayer coating, but is preferably a simultaneous multilayer coating from the viewpoint of productivity and the like.
  • a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method, and the like are preferably used.
  • the temperature of each coating solution when performing simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., more preferably a temperature range of 30 to 45 ° C.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method when used, it is preferably in the range of 5 to 100 mPa ⁇ s, preferably in the range of 10 to 50 mPa ⁇ s, in the preferable temperature range of each of the above coating liquids. More preferred.
  • the curtain coating method when used, it is preferably in the range of 5 to 1200 mPa ⁇ s, and more preferably in the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating liquid. . If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity at 15 ° C. of each coating solution is preferably 100 mPa ⁇ s or more, more preferably 100 to 30000 mPa ⁇ s, still more preferably 3000 to 30000 mPa ⁇ s, and most preferably 10,000 to 30000 mPa ⁇ s. It is.
  • the reflective layer 12 is formed by the sequential coating method, either the low refractive index layer coating solution or the high refractive index layer coating solution heated to 30 to 60 ° C. is used as the base layer. After coating and drying on the material 11 to form a layer, the other coating liquid is coated on this layer and dried to form a layer.
  • the reflection layer 12 is formed by repeating this sequentially so that the number of layers necessary for expressing the desired reflection performance is obtained.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.).
  • hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the decreasing rate drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11.
  • the temperature of the formed coating film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • a cooling system immediately after coating it is preferable to carry out by a horizontal set system from a viewpoint of the improvement of the uniformity of the formed coating film.
  • the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. It means a process to be performed.
  • the state in which the finger is no longer held is defined as the state of completion of setting.
  • the temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes.
  • the lower limit time is not particularly limited, but is preferably 45 seconds or more.
  • the set time includes various known concentrations such as gelatin, pectin, agar, carrageenan, gellan gum, as well as changing the concentration of water-soluble polymer contained in each coating solution and the concentration of metal oxide fine particles. It can be adjusted by adding other components such as a gelling agent.
  • the first ultraviolet absorbing layer 13 can be prepared by adjusting the ultraviolet absorbing layer coating solution and then coating and drying the coating solution.
  • the method for adjusting the ultraviolet absorbing layer coating liquid is not particularly limited, and the above-described ultraviolet absorbing material, water-soluble polymer, solvent, and additives and pressure-sensitive adhesives that are added as necessary are stirred and mixed. Is mentioned.
  • the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time.
  • Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
  • the solvent for adjusting the coating liquid is not particularly limited, and a solvent similar to the solvent used for forming the reflective layer 12 described above can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • a method for applying the ultraviolet absorbing layer coating solution a known method can be used.
  • a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coat method, a dip coat method, and the like are preferable, and these can be used alone or in combination.
  • the wet coating method that can be used for forming the reflective layer 12 may be used to directly coat the reflective layer 12.
  • the first ultraviolet absorbing layer 13 also serves as an adhesive layer, in addition to coating directly on the reflective layer 12, the first ultraviolet absorbing layer 13 is once coated on release paper and dried. The layer 13 may be transferred onto the reflective layer 12.
  • the drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the first ultraviolet absorption layer 13 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes. Moreover, when an adhesive is contained in the ultraviolet absorbing layer coating liquid, curing is necessary to obtain a stable adhesive force because the adhesive has fluidity. In general, when heated at room temperature for about one week or longer, for example, at about 50 ° C., three days or longer is preferable. In the case of heating, since the flatness of the base material 11 may deteriorate if the temperature is raised too much, it is preferable to carry out at a low temperature.
  • the optical reflective film 10A shown in FIG. 2 includes a second ultraviolet absorbing layer 14, a base material 11A, a reflecting layer 12, and a first ultraviolet absorbing layer 13.
  • the optical reflection film 10A is a side on which the first ultraviolet absorption layer 13 side is bonded to a window glass or the like, and the optical reflection film 10A from the first ultraviolet absorption layer 13 side mainly reflects on the reflection layer. The light including the wavelength is incident.
  • the optical reflective film 10A shown in FIG. 2 differs from the optical reflective film 10 of the first embodiment described above (see FIG. 1) only in that it includes the configuration of the base 11A and the second ultraviolet absorbing layer 14. Other configurations are the same as those in the first embodiment.
  • the substrate 11A is different from the optical reflecting film 10 (see FIG. 1) of the first embodiment only in that it does not need to contain an ultraviolet absorber.
  • the optical reflective film 10A includes a second ultraviolet absorbing layer 14 on the back side of the base 11A. For this reason, even when the ultraviolet absorbent is not included in the substrate 11A, the ultraviolet rays from the back surface side can be absorbed by the second ultraviolet absorbing layer 14. As a result, deterioration (decomposition) of the base material 11A due to ultraviolet rays, deterioration of the reflective layer 12, and the like are suppressed, and breakage of the base material 11A when the optical reflective film 10A is exchanged can be suppressed.
  • the base material 11A may contain an ultraviolet absorber.
  • the substrate 11 ⁇ / b> A also functions as an ultraviolet absorbing layer (third ultraviolet absorbing layer) together with the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer 14.
  • an effect of suppressing breakage due to deterioration (decomposition) or the like of the base material 11A can be further expected.
  • the same composition as the above-mentioned 1st ultraviolet absorption layer 13 is applicable. That is, the second ultraviolet absorbing layer 14 can be configured using the same ultraviolet absorbent, polymer, or the like as the first ultraviolet absorbing layer 13 described above. Furthermore, it is good also as a layer provided with functions other than ultraviolet absorption using an adhesive.
  • the second ultraviolet absorbing layer 14 for example, a hard coat layer provided to protect the surface of the base material 11A, an anchor coat layer provided between the base material 11A and the hard coat layer, or the like is used. be able to. Further, the second ultraviolet absorbing layer 14 may be a layer other than the hard coat layer and the anchor coat layer, and is not particularly limited as long as the ultraviolet absorbing material can be held.
  • the optical reflective film 10A can be manufactured by the same method as in the first embodiment described above.
  • the second ultraviolet absorbing layer 14 is produced on the one surface (back surface) side of the substrate 11 by the same method as the method of producing the first ultraviolet absorbing layer 13 described above.
  • the second ultraviolet absorbing layer 14 is an anchor coat layer or a hard coat layer
  • the anchor coat layer or the hard coat layer is formed on the back surface side of the base material 11A by a conventionally known method, It can be produced by mixing a UV absorber with the coating solution.
  • the reflective layer 12 and the first ultraviolet absorbing layer 13 are formed on the other surface (front surface) side of the base 11A by the same method as in the first embodiment. To do. Thereby, the optical reflective film 10A provided with the 2nd ultraviolet absorption layer 14, the base material 11A, the reflection layer 12, and the 1st ultraviolet absorption layer 13 is producible.
  • Embodiment of Optical Reflective Film (Second Embodiment)> Next, a second embodiment of the optical reflection film will be described. A schematic configuration of the optical reflective film of the second embodiment is shown in FIG.
  • the optical reflection film of 2nd Embodiment can apply the structure similar to the optical reflection film of the above-mentioned 1st Embodiment except that the form of lamination
  • the optical reflective film 20 shown in FIG. 3 includes a first substrate 21 (second ultraviolet absorbing layer) containing an ultraviolet absorber, an adhesive layer 22, a reflective layer 23, a second substrate 24, and a first substrate.
  • An ultraviolet absorbing layer 25 is provided.
  • the optical reflection film 20 has a side on which the first ultraviolet absorption layer 25 is bonded to a window glass or the like, and the reflection from the first ultraviolet absorption layer 25 to the optical reflection film 20 is mainly intended for reflection on the reflection layer.
  • the light including the wavelength is incident.
  • the surface on the first ultraviolet absorption layer 13 side of the optical reflecting film 20 is referred to as “front surface”
  • the surface on the first base material 21 side of the optical reflecting film 20 is referred to as “back surface”.
  • the reflective layer 23 is provided between the first base material 21 and the first ultraviolet absorbing layer 25.
  • the optical reflection film 20 includes a first base 21 (second ultraviolet absorption layer) containing an ultraviolet absorber on the opposite side of the reflective layer 23 from the first ultraviolet absorption layer 25.
  • the optical reflection film 20 bonds the second substrate 24 including the reflection layer 23 and the first ultraviolet absorption layer 25 and the first substrate 11 including the ultraviolet absorber via the adhesive layer 22.
  • the first ultraviolet absorbing layer 25 is formed on one surface (back surface) of the second substrate 24.
  • the reflective layer 23 is formed on the other surface (surface) of the second substrate 24.
  • the adhesive layer 22 is formed on the reflective layer 23.
  • the 1st base material 21 containing an ultraviolet absorber is pasted together to the 2nd base material 24 via adhesion layer 22. Thereby, the 1st base material 21 (2nd ultraviolet absorption layer) containing a ultraviolet absorber, adhesion layer 22, reflective layer 23, 2nd substrate 24, and the 1st ultraviolet absorption layer 25 are arranged in this order.
  • the optical reflection film 20 provided can be produced.
  • Examples of the ultraviolet absorber contained in the second ultraviolet absorbing layer include benzotriazole compounds, triazine compounds, and benzophenone compounds. It is preferable that a 2nd ultraviolet absorption layer contains at least 1 or more types chosen from said ultraviolet absorber. Moreover, it is preferable that the 1st ultraviolet absorption layer 25 also contains at least 1 type or more chosen from said ultraviolet absorber.
  • the reflective layer 23 preferably contains a polymer compound having a glass transition temperature of 0 ° C. or lower in a layer (lowermost layer) formed on and in contact with the second substrate 24 in contact with the reflective layer 23. Furthermore, the polymer compound having a glass transition temperature of 0 ° C. or lower preferably has a urethane bond.
  • the first ultraviolet absorption layer 25 and the reflection layer 23 provided on the light incident side can have the same configuration as in the first embodiment.
  • the first ultraviolet absorbing layer 25 may be provided with an adhesive layer and other functions as in the first embodiment.
  • the 1st base material 21 used as the 2nd ultraviolet absorption layer provided in the backmost side is the group containing the ultraviolet absorber in the optical reflection film of the above-mentioned 1st Embodiment. A configuration similar to that of the material can be applied.
  • the 2nd base material 24 can apply the structure which does not contain an ultraviolet absorber from the above-mentioned 1st base material 21.
  • the adhesive layer 22 may be configured to include a material having adhesive properties such as an adhesive in the above-described first ultraviolet absorbing layer 25 and not including an ultraviolet absorber.
  • the 2nd base material 24 and the adhesion layer 22 may apply the structure containing the ultraviolet absorber like the 1st base material 21 and the 1st ultraviolet absorption layer 25 as it is.
  • FIG. 4 schematic structure of the optical reflection film of the modification of 2nd Embodiment is shown.
  • the modification of the optical reflection film of 2nd Embodiment is the same as the optical reflection film of the above-mentioned 2nd Embodiment except providing the 2nd ultraviolet absorption layer 26 on the back surface side of 21 A of 1st base materials. It is.
  • the optical reflective film 20A shown in FIG. 4 includes a second ultraviolet absorbing layer 26, a first base material 21A, an adhesive layer 22, a reflective layer 23, a second base material 24, and a first ultraviolet absorbing layer 25.
  • the optical reflection film 20A is a side on which the first ultraviolet absorption layer 25 side is bonded to a window glass or the like, and the optical reflection film 20A from the first ultraviolet absorption layer 25 side mainly reflects on the reflection layer. The light including the wavelength is incident.
  • the optical reflection film 20A differs from the optical reflection film 20 (see FIG. 3) of the above-described second embodiment only in that it includes the configuration of the first base material 21A and the second ultraviolet absorption layer 26, and others.
  • the configuration is the same as that of the second embodiment described above.
  • the first base 21A is different from the optical reflective film 20 (see FIG. 1) of the second embodiment only in that it does not need to contain an ultraviolet absorber.
  • the optical reflective film 20A includes a second ultraviolet absorbing layer 26 on the back side of the first base 21A. For this reason, even when the first base 21 ⁇ / b> A does not contain an ultraviolet absorber, the second ultraviolet absorbing layer 26 can absorb the ultraviolet rays from the back surface side. As a result, deterioration (decomposition) or the like of the first base material 21A and the second base material 24 due to ultraviolet rays is suppressed, and the first base material 21A when the optical reflecting film 20A is exchanged or the like is performed. And the fracture
  • the first base material 21A may contain an ultraviolet absorber.
  • the first base 21A also functions as an ultraviolet absorbing layer (third ultraviolet absorbing layer) together with the first ultraviolet absorbing layer 25 and the second ultraviolet absorbing layer 26.
  • an effect of suppressing breakage due to deterioration (decomposition) or the like of the first base material 21A and the second base material 24 can be further expected.
  • the second ultraviolet absorbing layer 26 provided on the back surface side of the first base 21A of the optical reflecting film 20A, the same configuration as the first ultraviolet absorbing layer 25 described above can be applied. That is, the second ultraviolet absorbing layer 26 can be configured using the same ultraviolet absorbent, polymer, or the like as the first ultraviolet absorbing layer 25. Furthermore, it is good also as a layer provided with functions other than ultraviolet absorption using an adhesive.
  • the 2nd ultraviolet absorption layer 26 for example, it is provided between the hard coat layer provided in order to protect the surface of 21 A of 1st base materials, and the 1st base material 21A and a hard coat layer.
  • An anchor coat layer or the like can be used.
  • the second ultraviolet absorbing layer 26 may be a layer other than the hard coat layer and the anchor coat layer, and is not particularly limited as long as it can hold the ultraviolet absorbing material.
  • Sample 101 comprising an anchor coat layer (second ultraviolet absorption layer) containing an ultraviolet absorber, a substrate, a reflective layer A1, and an adhesive layer (first ultraviolet absorption layer) containing an ultraviolet absorber by the following method.
  • An optical reflection film was prepared.
  • the base material provided with the anchor coat layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber with the following method was produced.
  • LR1730 manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin
  • solid content 100% 17 parts by mass
  • ethyl 2-cyano-3,3-diphenyl acrylate product name: SEESORB 501, made by Cypro Kasei Co., Ltd.
  • SEESORB 501 made by Cypro Kasei Co., Ltd.
  • an anchor coat layer coating solution is applied to one surface (back surface) of a polyethylene terephthalate film (A4300 manufactured by Toyobo A4300: double-sided easy adhesion layer, width 160 mm, thickness 50 ⁇ m) so that the dry layer thickness becomes 2.0 ⁇ m. And applied using a wire bar. Furthermore, the coating film was dried to form an anchor coat layer, and a base material having an anchor coat layer (second ultraviolet absorption layer) containing an ultraviolet absorber was produced.
  • A4300 manufactured by Toyobo A4300: double-sided easy adhesion layer, width 160 mm, thickness 50 ⁇ m so that the dry layer thickness becomes 2.0 ⁇ m.
  • the coating film was dried to form an anchor coat layer, and a base material having an anchor coat layer (second ultraviolet absorption layer) containing an ultraviolet absorber was produced.
  • [Preparation of coating solution for high refractive index layer] (Preparation of silica-attached titanium dioxide sol) 15.0% by mass of titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.) is added to 2 parts by mass of pure water and heated to 90 ° C. did. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration is 0.5 mass%) is gradually added and mixed. Furthermore, heat treatment was performed at 175 ° C. for 18 hours in an autoclave.
  • SRD-W volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.
  • Titanium dioxide sol (hereinafter referred to as silica-attached titanium dioxide sol) in which SiO 2 having a solid content concentration of 6% by mass was attached to the surface (volume average particle size: 9 nm) Got.
  • a coating solution for a low refractive index layer was prepared as follows. 31 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution is added.
  • an acidic colloidal silica 10% by mass aqueous solution Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • a water-soluble resin 39 parts by mass of a polyvinyl alcohol 6 mass% aqueous solution (PVA-224, polymerization degree: 2400, saponification degree: 87 mol%, manufactured by Kuraray Co., Ltd.) and 1 part by mass of a surfactant 5
  • a mass% aqueous solution (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 40 ° C. to prepare a low refractive index layer coating solution.
  • the layer formed using the low refractive index layer coating solution had a refractive index of 1.50.
  • the high refractive index layer coating solution and the low refractive index layer coating solution prepared above were each adjusted to 40 ° C. using a slide hopper coating device capable of six-layer multilayer coating. Then, on the other surface (surface) of the base material having the anchor coat layer (second ultraviolet absorption layer) containing the above-described ultraviolet absorber heated to 40 ° C., the outermost layer and the lowermost layer have a low refractive index. As the layers, a high refractive index layer and a low refractive index layer were alternately applied, and a total of 6 layers [low / low / high / low / high / low] were simultaneously applied.
  • the low refractive index layer was 150 nm after drying, and the high refractive index layer was 130 nm after drying.
  • the reflective layer A1 After setting (thickening) 10 ° C. cold air immediately after coating, 60 ° C. warm air was blown and dried to produce a reflective layer A1.
  • Each layer constituting the reflective layer is to determine the abundance of the high refractive index material cutting surface to cut the optical reflection film samples by XPS surface analyzer (TiO 2) and the low refractive index material (SiO 2) Thus, it was confirmed that the film thickness of each of the above layers was secured.
  • An adhesive layer coating solution was prepared according to the following formulation.
  • -Adhesive N2147 manufactured by Nippon Synthetic Chemical Industry (solid content 35% by mass) 100 parts by mass-UV absorber manufactured by BASF Tinuvin 477 (solid content 80% by mass) 2.1 parts by mass-Isocyanate-based curing agent manufactured by Nippon Polyurethane Industry Coronate L55E (solid content 55% by mass) 5 parts by mass
  • the above-mentioned adhesive layer coating solution was used as a separator SP-PET (brand: PET-O2-BU) (made by Mitsui Chemicals, Inc.), which is a release film (release layer).
  • the surface was coated with a comma coater so that the dry film thickness was 10 ⁇ m, and dried at 80 ° C. for 1 minute. And the peeling film which apply
  • the base material (2nd ultraviolet absorption layer) containing an ultraviolet absorber was produced with the following method. Then, a reflective layer A1 and a pressure-sensitive adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber are produced on the substrate in the same manner as the above-described sample 101, and the substrate containing the ultraviolet absorber.
  • the obtained polyester was melted at 230 ° C. by a 40 mm diameter extruder, and casted electrostatically on a metal drum whose surface was maintained at 15 ° C. from a T die having a length of 160 mm and an interval of 1 mm. Then, the substrate was cooled and solidified to prepare a base material containing a UV absorber and made of a polyester film having a thickness of 25 ⁇ m.
  • the anchor coat layer containing the UV absorber (secondary) is prepared in the same manner as the preparation of the optical reflective film of the sample 101 described above except that the base material containing the UV absorber prepared in the sample 102 is used as the substrate.
  • Optical absorption of the sample 103 consisting of a base material (third ultraviolet absorption layer), a reflective layer A1, and an adhesive layer (first ultraviolet absorption layer) containing an ultraviolet absorber. A film was prepared.
  • Optical Reflective Film of Sample 104 The base material which has the hard-coat layer (2nd ultraviolet absorption layer) which contains a ultraviolet absorber on the back side by the following method was produced. Then, on the surface of the base material, a reflective layer A1 and an adhesive layer containing a UV absorber (first UV absorber layer) are prepared in the same manner as in the preparation of the sample 101, and the UV absorber is added.
  • An optical reflective film of sample 104 was prepared, which was composed of a hard coat layer (second ultraviolet absorbing layer), a base material, a reflective layer A1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber.
  • the base material provided with the hard-coat layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber with the following method was produced.
  • the hard coat layer coating solution HC1 was applied with a gravure coater and dried at 90 ° C. for 1 minute.
  • a hard coat layer is formed by irradiating ultraviolet rays from the coated surface side using an ultraviolet lamp under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. did.
  • the thickness of the hard coat layer was adjusted to 2 ⁇ m.
  • a coating solution for a low refractive index layer containing a low Tg resin was prepared as follows. 13 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) was heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution was added.
  • an acidic colloidal silica 10% by mass aqueous solution Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • PVA-224 polyvinyl alcohol
  • AE120A, Tg ⁇ 10 ° C., manufactured by Etec
  • surfactant Softafazoline LSB-R, manufactured by Kawaken Fine Chemicals
  • the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer A2 was produced in the same manner as the sample 101.
  • Optical Reflective Film of Sample 106 An anchor coat containing an ultraviolet absorber in the same manner as in the preparation of the sample 101 described above, except that the reflective layer B1 is prepared by the following method and the thickness of the adhesive layer (first ultraviolet absorbing layer) is 10 ⁇ m.
  • Each layer constituting the reflective layer is to determine the abundance of the high refractive index material cutting surface to cut the optical reflection film samples by XPS surface analyzer (TiO 2) and the low refractive index material (SiO 2) Thus, it was confirmed that the film thickness of each of the above layers was secured.
  • the reflective layer B1 was prepared in the same manner as the sample 106, and the ultraviolet absorber was changed in the same manner as in the preparation of the sample 102 except that the thickness of the adhesive layer (first ultraviolet absorbing layer) was 10 ⁇ m.
  • An optical reflective film of Sample 107 which was composed of a base material (second ultraviolet absorbing layer) containing, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber, was prepared.
  • Optical Reflective Film of Sample 108 Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 20 ⁇ m, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 106 described above. An optical reflective film of Sample 108 composed of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
  • Optical Reflective Film of Sample 109 Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 20 ⁇ m, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 107 described above. An optical reflective film of Sample 109 made of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
  • Optical Reflective Film of Sample 110 Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 30 ⁇ m, the base material containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 107 described above. An optical reflective film of Sample 110 made of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
  • Optical Reflective Film of Sample 111 Except for the thickness of the substrate (second ultraviolet absorbing layer) being 50 ⁇ m, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are the same as in the preparation of the sample 109 described above.
  • the base material (second ultraviolet absorbing layer) containing the ultraviolet absorber, the reflective layer B2, and the ultraviolet absorbing material are the same as those of the sample 111 described above except that the reflecting layer B2 is manufactured by the following method.
  • An optical reflective film of Sample 112 composed of an adhesive layer (first ultraviolet absorbing layer) containing an agent was prepared.
  • the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer B2 was produced in the same manner as the reflective layer B1 of the sample 106.
  • ADEKA STAB LA-29 (2- (2H-Benzotriazol-2-yl) -4- (manufactured by Adeka), which is a benzotriazole-based ultraviolet absorber. Except that 1,1,3,3-tetramethylbutyl) phen) was used in the same amount, a base material containing a UV absorber (second UV absorbing layer) in the same manner as in the preparation of Sample 111 described above, An optical reflective film of Sample 113 composed of the reflective layer B1 and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber was produced.
  • the UV absorber is the same as that of the above-described sample 111 except that ASF Tinuvin 477, which is a triazine UV absorber, is used as the UV absorber used for the substrate (second UV absorbing layer).
  • An optical reflective film of Sample 114 was prepared, which was composed of a base material (second ultraviolet absorbing layer) containing, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber.
  • Optical Reflective Film of Sample 115 Preparation of sample 111 as described above, except that SEESORB100 (2,4-dihydroxybenzophenone) made by Cypro Kasei, which is a benzophenone-based UV absorber, was used as the UV absorber used for the base material (second UV absorbing layer).
  • the optical reflective film of sample 115 comprising a base material (second ultraviolet absorbing layer) containing an ultraviolet absorber, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber. was made.
  • a coating solution for a low refractive index layer containing a low Tg resin was prepared as follows. 13 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) was heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution was added.
  • an acidic colloidal silica 10% by mass aqueous solution Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • PVA-224 polyvinyl alcohol
  • saponification degree: 87 mol% manufactured by Kuraray Co., Ltd.
  • a 6% by weight aqueous solution of water-dispersed urethane resin 3 parts
  • the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer B3 was produced in the same manner as the reflective layer B1 of the sample 106.
  • Optical Reflective Film of Sample 119 On a polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer, width 160 mm, thickness 50 ⁇ m), in the same manner as the sample 101 described above, the reflective layer A1 and an adhesive layer containing an ultraviolet absorber (first An ultraviolet absorbing layer) was prepared, and a sample 119 including a base material (not including an ultraviolet absorber), a reflective layer A1, and an adhesive layer (first ultraviolet absorbing layer) was prepared.
  • a polyethylene terephthalate film Toyobo A4300: double-sided easy-adhesion layer, width 160 mm, thickness 50 ⁇ m
  • a sample 120 made of a first ultraviolet absorbing layer was prepared.
  • [Weather resistance peel test] It implemented with the form of only a reflective layer and a base material. After carrying out the following weather resistance test (however, the base material is closer to the light source than the reflective layer, the test piece holder is an open type), and the reflective layer surface is used as the upper surface as specified in JIS 5600K-5-6. After performing a tape peel test once according to a certain cross-cut method, and further performing a tape peel test at the same location four times, and after performing a total of five tape peels, according to JIS 5600K-5-6 The test results were classified.
  • Table 1 shows each configuration and each evaluation result of the optical reflection films of Samples 101 to 123.
  • the samples 118 to 123 that do not have the second UV absorbing layer have the same initial peel test as the samples 101 to 117 that have the second UV absorbing layer. Nevertheless, the results of the weathering peel test and the weathering peel test are getting worse. From this result, it can be seen that by having not only the first ultraviolet absorbing layer (light incident side) but also the second ultraviolet absorbing layer (back side), breakage of the optical reflective film can be suppressed even after long-term use.
  • the first ultraviolet absorbing layer is provided on the surface of one surface (for example, the light incident side) of the optical reflecting film, and the second ultraviolet absorbing layer (for example, on the back surface side) of the optical reflecting film is provided.
  • the back surface side By having the back surface side), it is possible to suppress degradation of the base material and the reflective layer due to ultraviolet rays, and it is possible to suppress breakage of the optical reflective film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optical reflection film which is provided with: a base; a reflective layer that is provided on the base; and a first ultraviolet absorbing layer that is provided on the reflective layer. This optical reflection film is configured such that an ultraviolet absorbent is contained in the base and/or in a layer that is provided on a surface of the base, said surface being on the reverse side of the surface on which the reflective layer is formed, so that deterioration of the base is suppressed.

Description

光学反射フィルムOptical reflective film
 本発明は、屈折率の異なる層を交互に積層して構成された赤外反射積層体を有する光学反射フィルムに係わる。 The present invention relates to an optical reflective film having an infrared reflective laminate formed by alternately laminating layers having different refractive indexes.
 近年、省エネルギー対策への関心が高まり、建築用ガラスや車両用ガラスにおいて、室内又は車内に入る太陽輻射エネルギーを遮蔽し、温度上昇、冷房負荷を低減する目的で、赤外線の遮蔽性を有する断熱ガラスが採用されている。また、屈折率の異なる層を積層して形成した光学反射フィルムをガラスに貼付し、太陽光の中の熱線の透過を遮断する方法が、より簡便な方法として注目されている。 In recent years, interest in energy-saving measures has increased, and heat insulation glass with infrared shielding properties for the purpose of shielding solar radiant energy entering indoors or in vehicles and reducing temperature rise and cooling load in architectural glass and vehicle glass. Is adopted. In addition, a method of attaching an optical reflection film formed by laminating layers having different refractive indexes to glass and blocking the transmission of heat rays in sunlight has attracted attention as a simpler method.
 一般的に、光学反射フィルムは、粘着層を介して窓ガラス等に貼られ、反射層を粘着層と基材の間に配置することで、反射層を外部環境から保護する方法が用いられている。
 赤外線を反射する光学反射フィルムとしては、基材上に、屈折率の異なる層が交互に積層されて形成された赤外反射積層体(反射層)を有する構成が提案されている(例えば、特許文献1参照)。この赤外反射積層体は、水溶性樹脂中に酸化チタン等の金属酸化物微粒子が分散された高屈折率層と、二酸化ケイ素等の粒子が分散された低屈折率層とから構成されている。また、光学反射フィルムにおいては、粘着層に紫外線吸収剤を投入することで、窓面側から入射する紫外線を遮断し、基材や反射層の劣化を防ぐ方法が用いられている。
In general, an optical reflective film is attached to a window glass or the like via an adhesive layer, and a method of protecting the reflective layer from the external environment by placing the reflective layer between the adhesive layer and the substrate is used. Yes.
As an optical reflection film that reflects infrared rays, a structure having an infrared reflection laminate (reflection layer) in which layers having different refractive indexes are alternately laminated on a base material has been proposed (for example, a patent). Reference 1). This infrared reflective laminate is composed of a high refractive index layer in which metal oxide fine particles such as titanium oxide are dispersed in a water-soluble resin, and a low refractive index layer in which particles of silicon dioxide and the like are dispersed. . In addition, in the optical reflection film, a method is used in which an ultraviolet absorber is introduced into the adhesive layer to block ultraviolet rays incident from the window surface side and prevent deterioration of the base material and the reflective layer.
特開2012-131130号公報JP 2012-131130 A
 しかしながら、長期間使用した後、交換等のために光学反射フィルムをはがす際、劣化によって基材が破断する問題が発生する。基材が破断してしまうと、交換等の際の作業性が悪化してしまう。 However, there is a problem that the base material breaks due to deterioration when the optical reflective film is peeled off for replacement after long-term use. If the base material is broken, workability at the time of replacement or the like deteriorates.
 上述した問題の解決のため、本発明においては、基材の劣化を抑制した光学反射フィルムを提供するものである。 In order to solve the above-described problems, the present invention provides an optical reflection film in which deterioration of a substrate is suppressed.
 本発明の光学反射フィルムは、基材と、基材上に設けられた反射層と、反射層上に設けられた第1の紫外線吸収層とを備える。そして、基材、及び、基材の反射層が形成された面と反対側の面上に設けられる層の少なくともいずれか一方に紫外線吸収剤を含む。 The optical reflective film of the present invention includes a base material, a reflective layer provided on the base material, and a first ultraviolet absorbing layer provided on the reflective layer. And an ultraviolet absorber is included in at least any one of a base material and the layer provided on the surface on the opposite side to the surface in which the reflective layer of the base material was formed.
 本発明によれば、基材の劣化を抑制した光学反射フィルムを提供することができる。 According to the present invention, it is possible to provide an optical reflective film in which deterioration of the substrate is suppressed.
第1実施形態の光学反射フィルムの概略断面図を示す図である。It is a figure which shows the schematic sectional drawing of the optical reflection film of 1st Embodiment. 第1実施形態の変形例の光学反射フィルムの概略断面図を示す図である。It is a figure which shows the schematic sectional drawing of the optical reflection film of the modification of 1st Embodiment. 第2実施形態の光学反射フィルムの概略断面図を示す図である。It is a figure which shows schematic sectional drawing of the optical reflection film of 2nd Embodiment. 第2実施形態の変形例の光学反射フィルムの概略断面図を示す図である。It is a figure which shows schematic sectional drawing of the optical reflection film of the modification of 2nd Embodiment.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.光学反射フィルムの実施形態(第1実施形態)
2.光学反射フィルムの実施形態(第2実施形態)
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment of optical reflection film (first embodiment)
2. Embodiment of optical reflection film (second embodiment)
〈1.光学反射フィルムの実施形態(第1実施形態)〉
 以下本発明の光学反射フィルムの具体的な実施の形態について説明する。
 光学反射フィルムは、基材と、反射層と、第1の紫外線吸収層とを備える。反射層は、基材と、第1の紫外線吸収層とに挟持された形で設けられている。そして、光学反射フィルムは、反射層に対して第1の紫外線吸収層と逆側に、紫外線吸収剤を含む層(第2の紫外線吸収層)を備える。
<1. Embodiment of Optical Reflective Film (First Embodiment)>
Hereinafter, specific embodiments of the optical reflective film of the present invention will be described.
The optical reflective film includes a base material, a reflective layer, and a first ultraviolet absorbing layer. The reflective layer is provided in a form sandwiched between the base material and the first ultraviolet absorbing layer. And an optical reflection film is provided with the layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber on the opposite side to a 1st ultraviolet absorption layer with respect to a reflection layer.
 このような第2の紫外線吸収層としては、基材自体が紫外線吸収剤を含むことにより、基材を第2の紫外線吸収層とする構成が挙げられる。また、基材の外側(反射層と反対側)に紫外線吸収剤を含む層を備え、この層を第2の紫外線吸収層とする構成が挙げられる。基材の外側に設けられる層としては、例えば、基材の表面を保護するために設けられるハードコート層や、基材とハードコート層との間に設けられるアンカーコート層等が挙げられる。また、基材の外側に設けられる層としては、ハードコート層やアンカーコート層以外の層であってもよく、紫外吸収材を保持することができる構成であれば特に限定されない。 Examples of such a second ultraviolet absorbing layer include a configuration in which the base material itself contains an ultraviolet absorber, so that the base material becomes the second ultraviolet absorbing layer. Moreover, the structure which comprises the layer which contains a ultraviolet absorber on the outer side (opposite side of a reflection layer) of a base material, and makes this layer a 2nd ultraviolet absorption layer is mentioned. As a layer provided in the outer side of a base material, the hard-coat layer provided in order to protect the surface of a base material, the anchor coat layer provided between a base material and a hard-coat layer, etc. are mentioned, for example. Moreover, as a layer provided in the outer side of a base material, layers other than a hard-coat layer and an anchor-coat layer may be sufficient, and if it is the structure which can hold | maintain an ultraviolet absorber, it will not specifically limit.
 また、光学反射フィルムは、波長1000~1200nmの平均分光反射率が30%以上90%未満であり、波長300~380nmの最大分光透過率が50%以下であることが好ましい。光学反射フィルム及び各構成の反射率、透過率、及び、屈折率は、次の方法に従って求めることができる。まず、必要に応じてガラスや樹脂フィルム等の基板を用いて、計測する光学反射フィルム、又は、各層の単層で形成したサンプルを作製し、作製したサンプルを10cm×10cmに断裁する。そして、各サンプルの測定側の裏面を粗面化処理し、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止する。この後、分光光度計(積分球使用、日立製作所社製、U-4100)を用いて、5度正反射の条件で可視光領域(波長400nm~700nm)の反射率を25点測定した平均値から、平均屈折率を求める。また、各波長での光学反射フィルムの反射率(例えば、波長1000~1200nm、波長380~750nm)を測定し、平均反射率、透過率を計算することにより求める。 Further, the optical reflective film preferably has an average spectral reflectance at a wavelength of 1000 to 1200 nm of 30% or more and less than 90%, and a maximum spectral transmittance at a wavelength of 300 to 380 nm of 50% or less. The reflectance, transmittance, and refractive index of the optical reflection film and each component can be determined according to the following method. First, an optical reflection film to be measured or a sample formed of a single layer of each layer is prepared using a substrate such as glass or a resin film as necessary, and the prepared sample is cut into 10 cm × 10 cm. And the back side of the measurement side of each sample is roughened, and light absorption processing is performed with a black spray to prevent reflection of light on the back side. Thereafter, using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4100), the average value obtained by measuring the reflectance in the visible light region (wavelength 400 nm to 700 nm) at 25 points under the condition of regular reflection at 5 degrees. From this, the average refractive index is obtained. Further, the reflectance (for example, wavelength 1000 to 1200 nm, wavelength 380 to 750 nm) of the optical reflection film at each wavelength is measured, and the average reflectance and transmittance are calculated.
 第2の紫外線吸収層に含まれる紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、及び、ベンゾフェノン系化合物が挙げられる。第2の紫外線吸収層は、上記の紫外線吸収剤から選ばれる少なくとも一種以上を含むことが好ましい。また、第1の紫外線吸収層も、上記の紫外線吸収剤から選ばれる少なくとも一種以上を含むことが好ましい。 Examples of the ultraviolet absorber contained in the second ultraviolet absorbing layer include benzotriazole compounds, triazine compounds, and benzophenone compounds. It is preferable that a 2nd ultraviolet absorption layer contains at least 1 or more types chosen from said ultraviolet absorber. Moreover, it is preferable that a 1st ultraviolet absorption layer also contains at least 1 type or more chosen from said ultraviolet absorber.
 また、反射層は、最も基材側(最下層)に設けられる層(高屈折率層、又は、低屈折率層)に、ガラス転移温度が0℃以下の高分子化合物を含むことが好ましい。さらに、このガラス転移温度が0℃以下の高分子化合物が、ウレタン結合を有することが好ましい。 The reflective layer preferably contains a polymer compound having a glass transition temperature of 0 ° C. or less in a layer (high refractive index layer or low refractive index layer) provided on the most base side (lowermost layer). Furthermore, the polymer compound having a glass transition temperature of 0 ° C. or lower preferably has a urethane bond.
[光学反射フィルムの構成]
 図1に光学反射フィルムの概略構成を示す。図1に示す光学反射フィルム10は、基材11と、反射層12と、第1の紫外線吸収層13とを備える。光学反射フィルム10は、第1の紫外線吸収層13側が、窓ガラス等に貼り合わされる側であり、第1の紫外線吸収層13側から光学反射フィルム10に、主に反射層での反射を目的とする波長を含む光が入射する。以下の説明では、光学反射フィルム10の第1の紫外線吸収層13側の表面を「表面」とし、光学反射フィルム10の基材11側の表面を「裏面」と表記する。
[Configuration of optical reflection film]
FIG. 1 shows a schematic configuration of the optical reflection film. The optical reflective film 10 shown in FIG. 1 includes a base material 11, a reflective layer 12, and a first ultraviolet absorption layer 13. The optical reflection film 10 has a first ultraviolet absorption layer 13 side bonded to a window glass or the like, and the first ultraviolet absorption layer 13 side is directed to the optical reflection film 10 mainly for reflection on the reflection layer. The light including the wavelength is incident. In the following description, the surface on the first ultraviolet absorption layer 13 side of the optical reflection film 10 is referred to as “front surface”, and the surface on the base material 11 side of the optical reflection film 10 is referred to as “back surface”.
 光学反射フィルム10において、反射層12は、高屈折率層と低屈折率層とが交互に積層された構成を有する。第1の紫外線吸収層13は、基材11上に設けられた反射層12に対して、基材11と逆側の主面上に設けられている。そして、光学反射フィルム10では、基材11に紫外線吸収剤が含まれることにより、基材11自体が第2の紫外線吸収層として構成されている。 In the optical reflective film 10, the reflective layer 12 has a configuration in which high refractive index layers and low refractive index layers are alternately laminated. The first ultraviolet absorbing layer 13 is provided on the main surface opposite to the base material 11 with respect to the reflective layer 12 provided on the base material 11. And in the optical reflection film 10, the base material 11 itself is comprised as a 2nd ultraviolet absorption layer because the base material 11 contains an ultraviolet absorber.
 従って、光学反射フィルム10は、反射層12が、第1の紫外線吸収層13と、第2の紫外線吸収層である基材11とに挟持された構成となる。このように、反射層12が第1の紫外線吸収層13と第2の紫外線吸収層(基材11)とに挟持されることにより、光学反射フィルム10の表面側からの紫外線を、第1の紫外線吸収層13で吸収することができる。さらに、光学反射フィルム10の裏面側からの紫外線を、第2の紫外線吸収層である基材11により吸収することができる。このため、反射層12への紫外線照射が抑制され、紫外線による反射層12の劣化等に起因する光学反射フィルム10の光学特性の低下の影響が抑制される。 Therefore, the optical reflective film 10 has a configuration in which the reflective layer 12 is sandwiched between the first ultraviolet absorbing layer 13 and the substrate 11 which is the second ultraviolet absorbing layer. In this way, the reflective layer 12 is sandwiched between the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer (base material 11), so that the ultraviolet rays from the surface side of the optical reflecting film 10 are changed to It can be absorbed by the ultraviolet absorbing layer 13. Furthermore, the ultraviolet rays from the back surface side of the optical reflection film 10 can be absorbed by the base material 11 which is the second ultraviolet absorption layer. For this reason, the ultraviolet irradiation to the reflective layer 12 is suppressed, and the influence of the deterioration of the optical characteristics of the optical reflective film 10 caused by the deterioration of the reflective layer 12 due to the ultraviolet light is suppressed.
 さらに、光学反射フィルム10の表面側からの紫外線を第1の紫外線吸収層13で吸収することにより、基材11へ照射される紫外線を抑制することができる。さらに、基材11自体に紫外線吸収剤が含まれることにより、光学反射フィルム10の裏面側からの紫外線を、基材11に含まれる紫外線吸収剤で吸収することができる。この結果、紫外線による基材11の劣化(分解)等が抑制される。従って、光学反射フィルム10の交換作業等を行なう際に、基材11の破断を抑制することができ、作業性の低下を抑制することができる。 Furthermore, the ultraviolet rays applied to the substrate 11 can be suppressed by absorbing the ultraviolet rays from the surface side of the optical reflecting film 10 by the first ultraviolet absorbing layer 13. Furthermore, the ultraviolet absorber from the back surface side of the optical reflection film 10 can be absorbed by the ultraviolet absorber contained in the substrate 11 by including the ultraviolet absorber in the substrate 11 itself. As a result, deterioration (decomposition) of the base material 11 due to ultraviolet rays is suppressed. Therefore, when performing the replacement | exchange operation | work etc. of the optical reflection film 10, the fracture | rupture of the base material 11 can be suppressed and the fall of workability | operativity can be suppressed.
 以下、光学反射フィルム10の各構成について説明する。なお、以下の説明において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~60%の条件で測定する。 Hereinafter, each configuration of the optical reflection film 10 will be described. In the following description, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 60%.
[反射層]
 光学反射フィルム10の反射層12は、高屈折率層と低屈折率層との交互積層を有する。反射層12は、熱線(赤外線)の侵入を防ぐことができるように、屈折率の異なる高屈折率層と低屈折率層とが交互に積層された積層体(ユニット)を少なくとも1つ有する構成である。
[Reflective layer]
The reflective layer 12 of the optical reflective film 10 has an alternate stack of high refractive index layers and low refractive index layers. The reflection layer 12 includes at least one laminate (unit) in which high refractive index layers and low refractive index layers having different refractive indexes are alternately laminated so that intrusion of heat rays (infrared rays) can be prevented. It is.
 なお、「高屈折率層」及び「低屈折率層」は、隣接した2層の屈折率差を比較した場合に、屈折率の高い方の層を高屈折率層とし、低い方の層を低屈折率層とする。従って、反射層12における高屈折率層及び低屈折率層は、反射層12を構成する各層において、隣接する2つの層の屈折率の比較により決められる。このため、これらの構成の名称は、積層体の構成や比較対象となる層との屈折率の関係により随時置き換えられる。また、「高屈折率層」及び「低屈折率層」とは、フィルムを構成する各層において、隣接する2つ層が同じ屈折率を有する場合を除く、すべての形態に適用することができる。 The “high refractive index layer” and the “low refractive index layer” are obtained by comparing the refractive index difference between two adjacent layers with the higher refractive index layer as the higher refractive index layer and the lower refractive layer as the lower refractive index layer. A low refractive index layer is used. Therefore, the high refractive index layer and the low refractive index layer in the reflective layer 12 are determined by comparing the refractive indexes of two adjacent layers in each layer constituting the reflective layer 12. For this reason, the names of these structures are replaced as needed depending on the structure of the laminate and the refractive index relationship with the layer to be compared. Further, the “high refractive index layer” and the “low refractive index layer” can be applied to all forms except for the case where two adjacent layers have the same refractive index in each layer constituting the film.
 反射層12は、層の主体となるポリマーを含んで構成される。反射層12がポリマーを主体とすることにより、金属酸化物材料のみで形成される無機膜の反射層に対して層の柔軟性が向上する。このため、膜割れを有効に防ぐことができる。また、各層間の密着性を向上させることができる。 The reflection layer 12 includes a polymer that is a main component of the layer. When the reflective layer 12 is mainly composed of a polymer, the flexibility of the layer is improved with respect to the reflective layer of the inorganic film formed only of the metal oxide material. For this reason, a film crack can be prevented effectively. Moreover, the adhesiveness between each layer can be improved.
 反射層12は、好ましくは、ポリマーを含む高屈折率層と、ポリマーを含む低屈折率層とが積層された積層体(ユニット)を少なくとも1つ有する。また、反射層12は、ポリマーに加えて、例えば、金属酸化物(粒子)、その他の添加剤等の他の物質を含んでもよい。 The reflective layer 12 preferably has at least one laminate (unit) in which a high refractive index layer containing a polymer and a low refractive index layer containing a polymer are laminated. In addition to the polymer, the reflective layer 12 may include other substances such as metal oxides (particles) and other additives.
 さらに、ポリマーを主体として反射層12を形成することにより、塗布法等の液相成膜法を用いて反射層12を作製することができる。このため、均一且つ大面積な製膜を容易に行なうことができる。また、液相成膜法を用いることにより、製膜速度を上げることができるため、製造コストや量産性に優れる。さらに、塗布法等を用いることにより、高屈折率層及び低屈折率層の厚さを任意の厚さに制御することが容易となる。 Furthermore, by forming the reflective layer 12 mainly with a polymer, the reflective layer 12 can be produced using a liquid phase film forming method such as a coating method. For this reason, uniform and large-area film formation can be easily performed. Moreover, since the film-forming speed can be increased by using the liquid phase film-forming method, the manufacturing cost and mass productivity are excellent. Furthermore, by using a coating method or the like, it becomes easy to control the thicknesses of the high refractive index layer and the low refractive index layer to arbitrary thicknesses.
 さらに、液相成膜法では、気相成膜法と異なり高温で製膜する必要がない。このため、基材の選択範囲が広がる。ポリマーを含む反射層は上述のように柔軟性に優れるため、柔軟な樹脂フィルムを用いることにより、光学反射フィルム10を折り曲げた際にも、曲げ部分等での割れや剥離等の発生を抑制できる。
 さらに、温度変化による反射層12と他の層との間、又は、反射層12を構成する高屈折率層と低屈折率層と間の収縮率差に起因する、層間で剥離を抑制することができる。
Furthermore, unlike the vapor phase film forming method, the liquid phase film forming method does not require film formation at a high temperature. For this reason, the selection range of a base material spreads. Since the reflective layer containing a polymer is excellent in flexibility as described above, even when the optical reflective film 10 is bent, the occurrence of cracks and peeling at the bent portion can be suppressed by using a flexible resin film. .
Furthermore, it suppresses peeling between layers due to a difference in shrinkage ratio between the reflective layer 12 and other layers due to temperature change, or between the high refractive index layer and the low refractive index layer constituting the reflective layer 12. Can do.
 また、反射層12においては、高屈折率層と低屈折率層の界面において、各層を構成する成分が混在する混合層が形成される場合がある。このような混合層が存在する場合には、混合層中において、高屈折率層を構成する成分が50質量%以上である部位の集合が高屈折率層に含まれ、低屈折率層を構成する成分が50質量%を超える部位の集合が低屈折率層に含まれる。 In the reflective layer 12, a mixed layer in which components constituting each layer are mixed may be formed at the interface between the high refractive index layer and the low refractive index layer. When such a mixed layer exists, the high refractive index layer includes a set of portions in which the components constituting the high refractive index layer are 50% by mass or more in the mixed layer, thereby forming the low refractive index layer. A group of sites where the component to be added exceeds 50 mass% is included in the low refractive index layer.
 具体的には、高屈折率層と低屈折率層がそれぞれ金属酸化物粒子を含む場合、低屈折率層に含まれる金属酸化物粒子(第1の金属酸化物粒子)と、高屈折率層に含まれる金属酸化物粒子(第2の金属酸化物粒子)とが2つの層の界面で混合され、第1の金属酸化物粒子と第2の金属酸化物粒子とを含む混合層が形成される場合がある。この場合、第1の金属酸化物粒子と第2の金属酸化物粒子との存在比により低屈折率層又は高屈折率層とみなす。具体的には、低屈折率層とは、第1の金属酸化物粒子と第2の金属酸化物粒子との合計質量に対して、第1の金属酸化物粒子が、50~100質量%で含まれる層を意味する。高屈折率層とは、第1の金属酸化物粒子と第2の金属酸化物粒子との合計質量に対して、第2の金属酸化物粒子が、50質量%を超えて100質量%以下で含まれる層を意味する。なお、各層に含まれる金属酸化物粒子の種類及び量は、エネルギー分散型X線分光法(EDX)により分析できる。 Specifically, when each of the high refractive index layer and the low refractive index layer contains metal oxide particles, the metal oxide particles (first metal oxide particles) contained in the low refractive index layer, and the high refractive index layer The metal oxide particles (second metal oxide particles) contained in the mixture are mixed at the interface between the two layers, and a mixed layer including the first metal oxide particles and the second metal oxide particles is formed. There is a case. In this case, it is regarded as a low refractive index layer or a high refractive index layer depending on the abundance ratio of the first metal oxide particles and the second metal oxide particles. Specifically, the low refractive index layer means that the first metal oxide particles are 50 to 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved. The high refractive index layer means that the second metal oxide particles are more than 50% by mass and less than 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved. The type and amount of metal oxide particles contained in each layer can be analyzed by energy dispersive X-ray spectroscopy (EDX).
 なお、反射層12は、ポリマーを含む高屈折率層とポリマーを含む低屈折率層が交互に積層された積層体であればよく、高屈折率層及び低屈折率層の数(総数)は、特に制限はない。好ましくは、10~50層の範囲であり、好ましくは13~39層である。積層数が10層以上であれば、所望の赤外反射率が得られ、13層以上であるとより高い赤外反射率が得られ、遮熱性効果が向上する。また、積層数が50層以下であれば反射層12が割れ難く、端部剥がれも抑制できるなど十分な耐候性が得られる点で優れている。さらに、積層数が39層以下であれば、反射層12の割れを防止し、端部剥がれも防止できるなど、高い耐候性が得られる。 The reflective layer 12 may be a laminate in which a high refractive index layer containing a polymer and a low refractive index layer containing a polymer are alternately laminated, and the number (total number) of the high refractive index layer and the low refractive index layer is There is no particular limitation. Preferably, it is in the range of 10 to 50 layers, preferably 13 to 39 layers. If the number of laminated layers is 10 or more, a desired infrared reflectance is obtained, and if it is 13 or more, a higher infrared reflectance is obtained and the heat shielding effect is improved. Further, if the number of laminated layers is 50 or less, the reflective layer 12 is not easily broken and excellent in that sufficient weather resistance can be obtained, for example, the edge peeling can be suppressed. Furthermore, if the number of laminated layers is 39 or less, high weather resistance is obtained, such as preventing the reflective layer 12 from cracking and preventing edge peeling.
 また、反射層12は、反射層12を構成する積層体の最下層(最も基材11側の層)及び最表層(最も基材11と反対側の層)は、高屈折率層、低屈折率層のいずれでもよい。反射層12の最下層及び最表層が低屈折率層であると、最下層の隣接層(例えば、基材11)への密着性、最表層の吹かれ耐性が向上しやすい。 The reflective layer 12 has a high refractive index layer, a low refractive index, and the lowermost layer (most layer on the side of the base material 11) and the outermost layer (most layer on the side opposite to the base material 11). Any of the rate layers may be used. When the lowermost layer and the outermost layer of the reflective layer 12 are low refractive index layers, adhesion to the adjacent layer (for example, the base material 11) of the lowermost layer and blowing resistance of the outermost layer are likely to be improved.
 反射層12は、隣接する高屈折率層と低屈折率層との屈折率の差が大きいほど、少ない層数で赤外反射率を高くすることができる。
 反射層12において、高屈折率層は、より高い屈折率を有することが好ましい。高屈折率層の屈折率は、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらに好ましくは1.90~2.20である。
 また、反射層12において、低屈折率層は、より低い屈折率を有することが好ましい。低屈折率層の屈折率は、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらに好ましくは1.30~1.50である。
The reflective layer 12 can increase the infrared reflectance with a smaller number of layers as the difference in refractive index between the adjacent high refractive index layer and low refractive index layer increases.
In the reflective layer 12, the high refractive index layer preferably has a higher refractive index. The refractive index of the high refractive index layer is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, and even more preferably 1.90 to 2.20.
In the reflective layer 12, the low refractive index layer preferably has a lower refractive index. The refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1.30 to 1.50.
 高屈折率層及び低屈折率層からなる積層体において、隣接する高屈折率層と低屈折率層との少なくとも1組の屈折率差が0.1以上であることが好ましく、0.2以上であることがより好ましく、0.25以上であることがさらに好ましい。反射層12が複数の高屈折率層及び低屈折率層を有する場合には、全ての層において屈折率差が上記好適な範囲内にあることが好ましい。ただし、反射層12の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In a laminate composed of a high refractive index layer and a low refractive index layer, it is preferable that at least one pair of refractive index difference between adjacent high refractive index layer and low refractive index layer is 0.1 or more, 0.2 or more More preferably, it is more preferably 0.25 or more. In the case where the reflective layer 12 has a plurality of high refractive index layers and low refractive index layers, it is preferable that the refractive index difference is within the preferred range in all layers. However, the outermost layer and the lowermost layer of the reflective layer 12 may have a configuration outside the above preferred range.
 反射層12における特定波長領域の反射率は、隣接する2層(高屈折率層及び低屈折率層)の屈折率差と積層数で決まり、屈折率差が大きいほど、少ない層数で高い反射率が得られる。屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率(赤外遮蔽率)90%以上を得るためには、屈折率差が0.1より小さいと、100層を超える積層が必要になり、透明性が低下する。このため、隣接する層の屈折率差は、0.1以上であることが好ましい。特に好ましくは0.3以上であり、更に好ましくは0.4以上である。反射率の向上と層数を少なくする観点からは、隣接する高屈折率層と低屈折率層との屈折率差に上限はないが、実質的には1.4程度である。 The reflectance of the specific wavelength region in the reflective layer 12 is determined by the refractive index difference between the two adjacent layers (the high refractive index layer and the low refractive index layer) and the number of stacked layers. Rate is obtained. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance (infrared shielding ratio) of 90% or more, if the difference in refractive index is smaller than 0.1, lamination exceeding 100 layers is required, and transparency is lowered. For this reason, the refractive index difference between adjacent layers is preferably 0.1 or more. Particularly preferably, it is 0.3 or more, more preferably 0.4 or more. From the viewpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index between the adjacent high refractive index layer and low refractive index layer, but it is substantially about 1.4.
 また、単層膜において、層表面での反射光と層底部での反射光との光路差が[n・d=λ/4]で表される関係になると、この特定の波長λの反射を、位相差によって強めることができる。なお、nは屈折率、dは層の物理膜厚、n・dは光学膜厚、λは波長である。 Further, in the single layer film, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is expressed by [n · d = λ / 4], the reflection at the specific wavelength λ is reduced. , Can be strengthened by the phase difference. Here, n is the refractive index, d is the physical film thickness of the layer, n · d is the optical film thickness, and λ is the wavelength.
 このように、反射層12では、光路差を利用することで、各波長の反射を制御できる。即ち、上記式で表される関係を利用して、各層の屈折率と膜厚を制御することにより、可視光や近赤外光等の特定の波長の反射率を制御することができる。例えば、各層の屈折率、膜厚及び積層状態を制御することにより、特定波長領域の反射率を向上させることができる。この結果、特定の波長λの反射率を上げることができる。 As described above, the reflection layer 12 can control reflection of each wavelength by using the optical path difference. That is, the reflectance of a specific wavelength such as visible light or near infrared light can be controlled by controlling the refractive index and film thickness of each layer using the relationship represented by the above formula. For example, the reflectance in a specific wavelength region can be improved by controlling the refractive index, film thickness, and lamination state of each layer. As a result, the reflectance at a specific wavelength λ can be increased.
 光学反射フィルム10は、波長1000~1200nmの平均分光反射率が30%以上90%未満であることが好ましい。光学反射フィルム10は、波長1000~1200nmの平均分光反射率が高いほど、熱線(赤外光)を効果的に反射することができる。 The optical reflective film 10 preferably has an average spectral reflectance at a wavelength of 1000 to 1200 nm of 30% or more and less than 90%. The optical reflection film 10 can reflect heat rays (infrared light) more effectively as the average spectral reflectance at a wavelength of 1000 to 1200 nm is higher.
 また、光学反射フィルム10は、波長300~380nmの最大分光透過率が50%以下であることが好ましい。光学反射フィルム10は、波長300~380nmの可視光域の透過率が高いほど透明性に優れるため、可視光域の低下や透過光の変色等が少なく、窓ガラス等に貼り合せる光学フィルムとして適している。 Further, the optical reflective film 10 preferably has a maximum spectral transmittance at a wavelength of 300 to 380 nm of 50% or less. The optical reflective film 10 is more transparent as the transmittance in the visible light region with a wavelength of 300 to 380 nm is higher. Therefore, the optical reflective film 10 is suitable as an optical film to be bonded to a window glass or the like with less decrease in visible light region or discoloration of transmitted light. ing.
 上述のように、光学反射フィルム10は、反射層12の膜厚や、高屈折率層と低屈折率層の膜厚を調整することにより、反射層12における各波長の反射率や透過率を調整することができる。反射層12における膜厚調整方法としては、反射層12を構成する高屈折率層と低屈折率層との合計総数をN層とし、反射層12の基材11に最も近い層(最下層)を1層目とし、最も遠い層(最表層)をN層目とした場合に、(N/4)~(N/2)層目の間の少なくとも1層を、隣接する層よりも厚くすることが好ましい。特に好ましくは、(N/4)~(N/2)層目の間の高屈折率層のいずれか1層を隣接する層よりも厚く形成することが好ましく、隣接層の1.2倍以上の厚さとすることがより好ましい。 As described above, the optical reflective film 10 adjusts the reflectance and transmittance of each wavelength in the reflective layer 12 by adjusting the thickness of the reflective layer 12 and the thickness of the high refractive index layer and the low refractive index layer. Can be adjusted. As a method of adjusting the film thickness in the reflective layer 12, the total number of high refractive index layers and low refractive index layers constituting the reflective layer 12 is N layers, and the layer closest to the base material 11 of the reflective layer 12 (lowermost layer) Is the first layer and the farthest layer (the outermost layer) is the Nth layer, at least one layer between the (N / 4) to (N / 2) layers is made thicker than the adjacent layers It is preferable. Particularly preferably, any one of the high refractive index layers between the (N / 4) to (N / 2) layers is preferably formed thicker than the adjacent layers, and is 1.2 times or more of the adjacent layers. It is more preferable to set it as the thickness.
 例えば、SiOを含む低屈折率層と、TiOを含む高屈折率層とからなる21層(層数N=21)の反射層12では、1層目を低屈折率層とした場合、(N/4)~(N/2)層目は5~11層目(層数のため小数点以下を四捨五入)となる。そして、隣接する層よりも厚く形成する層を10層目の高屈折率層(膜厚230nm)とする。さらに、これに隣接する9層目及び11層目の膜厚を150nm等にする。この際、各低屈折率層を全て同じ厚さ(150nm)とし、厚く形成する層(10層目)以外の各高屈折率層を全て同じ厚さ(120nm)とする。このように、反射層12を形成することにより、上述の波長1000~1200nmの平均分光反射率、及び、波長300~380nmの最大分光透過率を達成することできる。 For example, in the case of 21 layers (number of layers N = 21) of the reflective layer 12 composed of a low refractive index layer containing SiO 2 and a high refractive index layer containing TiO 2 , when the first layer is a low refractive index layer, The (N / 4) to (N / 2) layers are the 5th to 11th layers (the number of layers is rounded off to the nearest decimal place). A layer formed thicker than the adjacent layer is a tenth high refractive index layer (thickness 230 nm). Further, the film thicknesses of the ninth layer and the eleventh layer adjacent thereto are set to 150 nm or the like. At this time, all the low refractive index layers have the same thickness (150 nm), and all the high refractive index layers other than the thickly formed layer (10th layer) have the same thickness (120 nm). Thus, by forming the reflective layer 12, the above-described average spectral reflectance at a wavelength of 1000 to 1200 nm and maximum spectral transmittance at a wavelength of 300 to 380 nm can be achieved.
 また、反射層12において、最も基材11側に設けられる層(最下層)は、ガラス転移温度が0℃以下の高分子化合物を含むことが好ましい。特に、ガラス転移温度が0℃以下の高分子化合物として、ウレタン結合を有する高分子化合物(ウレタン樹脂)を用いることが好ましい。最も基材11側の層に、ガラス転移温度が0℃以下の高分子化合物を含むことにより、耐光性試験後でも基材11と反射層12の密着性が良好なまま維持される。 Further, in the reflective layer 12, the layer (lowermost layer) provided closest to the substrate 11 preferably contains a polymer compound having a glass transition temperature of 0 ° C. or lower. In particular, a polymer compound having a urethane bond (urethane resin) is preferably used as the polymer compound having a glass transition temperature of 0 ° C. or lower. By including a polymer compound having a glass transition temperature of 0 ° C. or less in the layer closest to the base material 11, the adhesion between the base material 11 and the reflective layer 12 is maintained even after the light resistance test.
 一般的に、ウレタン樹脂等の低Tgの高分子化合物は、他の樹脂に比べて各種素材と密着性が高いことが従来から知られている。しかしながら、これらの高分子化合物は紫外線による劣化が他の樹脂よりも大きい。このため、ウレタン樹脂等の低Tgの高分子化合物を用いた光学反射フィルムでは、長期間の使用による光学反射フィルムの破断が発生しやすくなる。 Generally, it has been conventionally known that a high Tg polymer compound such as urethane resin has higher adhesion to various materials than other resins. However, these polymer compounds are more deteriorated by ultraviolet rays than other resins. For this reason, in an optical reflective film using a polymer compound having a low Tg such as urethane resin, the optical reflective film is likely to break due to long-term use.
 これに対し、光学反射フィルム10の構成では、第1の紫外線吸収層13と、第2の紫外線吸収層(基材11)との間に反射層12が配置されている。このため、光学反射フィルム10において、表面側からの紫外線を第1の紫外線吸収層13で吸収し、裏面側からの紫外線を基材11(第2の紫外線吸収層)で吸収することにより、紫外線による高分子化合物の劣化を大幅に抑制することができる。すなわち、光学反射フィルム10の構成では、反射層12における低Tg高分子化合物の光劣化が抑制されることにより、低Tg高分子化合物による基材11と反射層12の密着性の向上効果を、長期間にわたって維持することが可能となる。 On the other hand, in the configuration of the optical reflective film 10, the reflective layer 12 is disposed between the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer (base material 11). For this reason, in the optical reflection film 10, ultraviolet rays from the front surface side are absorbed by the first ultraviolet absorption layer 13, and ultraviolet rays from the back surface side are absorbed by the substrate 11 (second ultraviolet absorption layer). It is possible to greatly suppress the deterioration of the polymer compound due to. That is, in the configuration of the optical reflection film 10, by suppressing the light deterioration of the low Tg polymer compound in the reflection layer 12, the effect of improving the adhesion between the base material 11 and the reflection layer 12 by the low Tg polymer compound is obtained. It can be maintained over a long period of time.
 従って、反射層12の最下層にウレタン樹脂等の低Tgの高分子化合物を用いることにより、長期使用後の光学反射フィルム10においても、低Tg高分子化合物による基材11と反射層12との高い密着性が維持される。このため、光学反射フィルム10の交換作業等において、基材11と反射層12との密着性の低下による、光学反射フィルム10を剥離する際の基材11と反射層12との剥離を抑制し、光学反射フィルム10の破断を抑制することができる。 Therefore, by using a low Tg polymer compound such as urethane resin in the lowermost layer of the reflective layer 12, even in the optical reflective film 10 after long-term use, the substrate 11 and the reflective layer 12 with the low Tg polymer compound are used. High adhesion is maintained. For this reason, in the replacement | exchange operation | work of the optical reflection film 10, etc., the peeling with the base material 11 and the reflection layer 12 at the time of peeling the optical reflection film 10 by the adhesive fall of the base material 11 and the reflection layer 12 is suppressed. The breakage of the optical reflective film 10 can be suppressed.
 高屈折率層と低屈折率層との交互積層からなる反射層12の膜厚は、特に限定されず、好ましくは10μm以下、より好ましくは5.5μm以下、特に好ましくは1.0~4.0μmの範囲である。反射層の膜厚が10μm以下、特に5.5μm以下であれば、窓等への施工を行いやすい。また、反射層12の膜厚を上記範囲とすることにより、耐候性、特に光学反射フィルム10が熱膨張・熱収縮を繰り返した場合でも、フィルムの湾曲を効果的に防止することができ、施工後も長期間において端部剥がれを防止することができる。 The thickness of the reflective layer 12 composed of alternating layers of high refractive index layers and low refractive index layers is not particularly limited, and is preferably 10 μm or less, more preferably 5.5 μm or less, and particularly preferably 1.0 to 4. The range is 0 μm. When the thickness of the reflective layer is 10 μm or less, particularly 5.5 μm or less, it is easy to perform construction on a window or the like. Moreover, by making the film thickness of the reflective layer 12 within the above range, it is possible to effectively prevent the film from being bent even when the weather resistance, in particular, the optical reflective film 10 repeats thermal expansion and thermal contraction. Later, it is possible to prevent peeling of the end portion for a long period of time.
 反射層12を構成する高屈折率層と低屈折率層の1層あたりの厚さ(乾燥後の厚さ)は、20~1000nmであることが好ましく、50~500nmであることがより好ましく、100~300nmであることがさらにより好ましく、100~200nmであることが特に好ましい。高屈折率層と低屈折率層の厚さは、同じでもよく、また、異なっていてもよい。また、各層の1層あたりの厚さは、例えば、製造した反射層12を切断し、その切断面を電子顕微鏡により観察することで確認することができる。この際、2つの層間の界面を明確に観測することができない場合には、XPS(X-ray Photoelectron Spectroscopy)表面分析装置により得た厚さ方向のXPSプロファイルにより界面を決定することができる。 The thickness (thickness after drying) of the high refractive index layer and the low refractive index layer constituting the reflective layer 12 is preferably 20 to 1000 nm, more preferably 50 to 500 nm, More preferably, it is 100 to 300 nm, and particularly preferably 100 to 200 nm. The thicknesses of the high refractive index layer and the low refractive index layer may be the same or different. Moreover, the thickness per layer of each layer can be confirmed by, for example, cutting the manufactured reflective layer 12 and observing the cut surface with an electron microscope. At this time, when the interface between the two layers cannot be clearly observed, the interface can be determined by the XPS profile in the thickness direction obtained by an XPS (X-ray Photoelectron Spectroscopy) surface analyzer.
[高屈折率層]
 高屈折率層は、ポリマー、及び、金属酸化物微粒子を含有する。さらに、高屈折率層は、金属酸化物微粒子として、酸化チタンを含むことが好ましい。また、高屈折率層は、酸化チタンと共に、酸化チタン以外の金属酸化物微粒子や無機酸化物微粒子が含まれていてもよい。
[High refractive index layer]
The high refractive index layer contains a polymer and metal oxide fine particles. Further, the high refractive index layer preferably contains titanium oxide as metal oxide fine particles. The high refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles other than titanium oxide together with titanium oxide.
(水溶性高分子)
 高屈折率層に含まれるポリマーとしては、バインダとして機能する水溶性高分子を用いることが好ましい。高屈折率層が、水溶性高分子を含むことにより、有機溶剤の使用を抑えた層形成が可能となり、有機溶剤による環境上の問題を解決することができる。また、水溶性高分子を用いることにより、塗膜に柔軟性を付与することができる。
(Water-soluble polymer)
As the polymer contained in the high refractive index layer, it is preferable to use a water-soluble polymer that functions as a binder. When the high refractive index layer contains a water-soluble polymer, it is possible to form a layer that suppresses the use of an organic solvent, and to solve environmental problems due to the organic solvent. Moreover, a softness | flexibility can be provided to a coating film by using water-soluble polymer.
 高屈折率層に含まれるポリマーとして水溶性高分子を用いる場合、高屈折率層の形成に塗布やスピンコートなどの液層成膜法を適用することできる。液層成膜法は、気相成膜法に比べて簡便であり、基材の耐熱性を問わないため樹脂フィルムを用いた光学反射フィルム10の作製に有効である。また、塗布法を用いることにより、ロール・ツー・ロール法等の大量生産方式が採用できるため、コスト面やプロセス時間面で有利となる。 When a water-soluble polymer is used as the polymer contained in the high refractive index layer, a liquid layer deposition method such as coating or spin coating can be applied to the formation of the high refractive index layer. The liquid layer film forming method is simpler than the gas phase film forming method, and is effective for the production of the optical reflective film 10 using a resin film because the heat resistance of the substrate is not questioned. Further, by using a coating method, a mass production method such as a roll-to-roll method can be adopted, which is advantageous in terms of cost and process time.
 水溶性高分子としては、例えば、ポリビニルアルコール、及び、その誘導体(ポリビニルアルコール系樹脂)、ゼラチン、並びに、増粘多糖類等が挙げられる。塗布ムラや膜厚均一性(ヘイズ)等の観点からは、高屈折率層は、ポリマーとしてポリビニルアルコール又はその誘導体を含むことが好ましい。ポリビニルアルコール系樹脂としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他、各種の変性ポリビニルアルコールも含まれる。ポリマーは、単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、ポリマーは、合成品を用いてもよいし、市販品を用いてもよい。 Examples of the water-soluble polymer include polyvinyl alcohol and derivatives thereof (polyvinyl alcohol resin), gelatin, thickening polysaccharides, and the like. From the viewpoint of coating unevenness and film thickness uniformity (haze), the high refractive index layer preferably contains polyvinyl alcohol or a derivative thereof as a polymer. Examples of the polyvinyl alcohol resin include various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. A polymer may be used independently and may be used in combination of 2 or more type. The polymer may be a synthetic product or a commercially available product.
 なお、高屈折率層に用いられるポリマーは上述の材料に制限されず、例えば、国際公開第2012/128109号、特開2013-121567号公報、特開2013-148849号公報等に記載の公知のポリマーを使用することもできる。 Incidentally, the polymer used for the high refractive index layer is not limited to the above-mentioned materials, for example, known polymers described in International Publication Nos. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Polymers can also be used.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上であることが好ましく、平均重合度が1500~5000であることが特に好ましい。また、ケン化度は、70~100モル%であることが好ましく、80~99.9モル%であることが特に好ましい。このようなポリビニルアルコールとしては、例えば、日本酢ビ・ポバール社製のJP-45(重合度4500、ケン化度88モル%)等を用いることもできる。 Polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization of 1500 to 5000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%. As such polyvinyl alcohol, for example, JP-45 (degree of polymerization 4500, degree of saponification 88 mol%) manufactured by Nippon Vinegar Poval can be used.
 変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。また、酢酸ビニル系樹脂(例えば、クラレ社製「エクセバール」)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学工業社製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、クラレ社製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)等も変性ポリビニルアルコールに含まれる。 Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers. In addition, vinyl acetate resin (for example, “Exeval” manufactured by Kuraray Co., Ltd.), polyvinyl acetal resin obtained by reacting polyvinyl alcohol with aldehyde (for example, “S Lecque” manufactured by Sekisui Chemical Co., Ltd.), silanol-modified polyvinyl having silanol group Alcohol (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol resin having an acetoacetyl group in the molecule (for example, “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Etc. are also included in the modified polyvinyl alcohol.
 アニオン変性ポリビニルアルコールとしては、例えば、特開平1-206088号公報に記載のアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び特開昭63-307979号公報に記載のビニルアルコールと水溶性基を有するビニル化合物との共重合体、特開平7-285265号公報に記載の水溶性基を有する変性ポリビニルアルコールが挙げられる。 Examples of the anion-modified polyvinyl alcohol include polyvinyl alcohols having an anionic group described in JP-A-1-206088, vinyl alcohols described in JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer with a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載のポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載の疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基等の反応性基を有する反応性基変性ポリビニルアルコールが挙げられる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives in which a polyalkylene oxide group described in JP-A No. 7-9758 is added to a part of vinyl alcohol, and hydrophobic properties described in JP-A No. 8-25795. Examples thereof include a block copolymer of a vinyl compound having a group and vinyl alcohol, a silanol-modified polyvinyl alcohol having a silanol group, and a reactive group-modified polyvinyl alcohol having a reactive group such as an acetoacetyl group, a carbonyl group, or a carboxyl group.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載の第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールが挙げられ、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 As the cation-modified polyvinyl alcohol, for example, polyvinyl alcohol having a primary to tertiary amino group or a quaternary ammonium group described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol. And can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%であることが好ましく、0.2~5モル%であることがより好ましい。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is preferably 0.1 to 10 mol%, more preferably 0.2 to 5 mol%, relative to vinyl acetate.
 エチレン変性ポリビニルアルコールとしては、例えば、特開2009-107324号公報、特開2003-248123号公報、特開2003-342322号公報等に記載のものが使用できる。または、エクセバール(商品名:株式会社クラレ製)等の市販品を使用してもよい。 As the ethylene-modified polyvinyl alcohol, for example, those described in JP2009-107324A, JP2003-248123A, JP2003-342322A, and the like can be used. Alternatively, commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
 ビニルアルコール系ポリマーとしては、エクセバール(商品名:株式会社クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業株式会社製)等が挙げられる。 Examples of the vinyl alcohol polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 なお、上述のポリビニルアルコールは、単独で用いても、2種以上を組み合わせて用いてもよい。また、ポリビニルアルコールは合成品を用いてもよいし、市販品を用いてもよい。 In addition, the above-mentioned polyvinyl alcohol may be used alone or in combination of two or more. Polyvinyl alcohol may be a synthetic product or a commercial product.
 ポリビニルアルコールの重量平均分子量は、1000~200000であることが好ましく、3000~60000であることがより好ましい。なお、「重量平均分子量」の値は、静的光散乱法、ゲルパーミエーションクロマトグラフ法(GPC)、TOFMASS等によって測定した値を採用することができる。水溶性高分子の重量平均分子量が上記範囲内であると、塗布法の適用が可能となり、生産性を向上させることができる。 The weight average molecular weight of polyvinyl alcohol is preferably 1000 to 200000, more preferably 3000 to 60000. In addition, the value measured by the static light scattering method, the gel permeation chromatograph method (GPC), TOFMASS, etc. can be employ | adopted for the value of a "weight average molecular weight". When the weight average molecular weight of the water-soluble polymer is within the above range, the application method can be applied and the productivity can be improved.
 高屈折率層における水溶性高分子の含有量は、高屈折率層の全固形分に対して、5~75質量%であることが好ましく、10~70質量%であることがより好ましい。水溶性高分子の含有量が5質量%以上であると、湿式製膜法で高屈折率層を形成する場合に、塗膜の乾燥時の膜面の乱れによる透明性の低下を抑制できる。一方、水溶性高分子の含有量が75質量%以下であると、高屈折率層中に金属酸化物粒子を含有する場合の好適な範囲となる。 The content of the water-soluble polymer in the high refractive index layer is preferably 5 to 75% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the high refractive index layer. When the content of the water-soluble polymer is 5% by mass or more, when a high refractive index layer is formed by a wet film forming method, it is possible to suppress a decrease in transparency due to disturbance of the film surface when the coating film is dried. On the other hand, when the content of the water-soluble polymer is 75% by mass or less, a suitable range is obtained when the metal oxide particles are contained in the high refractive index layer.
 なお、水溶性高分子の含有量は、蒸発乾固法の残固形分から求められる。具体的には、光学反射フィルムを95℃の熱水に2時間浸し、残ったフィルムを除去した後、熱水を蒸発させ、得られた固形物の量を水溶性高分子量とする。この際、IR(赤外分光)スペクトルにおいて1700~1800cm-1、900~1000cm-1、および800~900cm-1の領域にそれぞれ1つずつピークが見られる場合、その水溶性高分子はポリビニルアルコールであると断定することができる。 In addition, content of water-soluble polymer is calculated | required from the residual solid content of an evaporation-drying method. Specifically, the optical reflection film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight. At this time, when one peak is observed in each of the regions of 1700 to 1800 cm −1 , 900 to 1000 cm −1 , and 800 to 900 cm −1 in the IR (infrared spectroscopy) spectrum, the water-soluble polymer is polyvinyl alcohol. It can be determined that
 高屈折率層が水溶性高分子を含む場合には、水溶性高分子を硬化させるために、硬化剤を使用することもできる。硬化剤としては、ホウ酸及びその塩、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬、ホウ砂等が挙げられる。高屈折率層における硬化剤の含有量は、高屈折率層の固形分に対して、1~10質量%であることが好ましい。 When the high refractive index layer contains a water-soluble polymer, a curing agent can be used to cure the water-soluble polymer. Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc., aldehyde curing agents (formaldehyde, glyoxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active vinyl Examples of such compounds include 1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, aluminum alum and borax. The content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass with respect to the solid content of the high refractive index layer.
 高屈折率層は、塗布時の表面張力を調整するための界面活性剤を含んでもよい。ここで、界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等を用いることができる。界面活性剤としては、アニオン系界面活性剤を用いることが好ましく、1分子中に炭素数8~30の疎水性基とスルホン酸基又はその塩を含有するものが好ましい。高屈折率層における界面活性剤の含有量は、高屈折率層の固形分に対して、0.01~5質量%であることが好ましい。界面活性剤としては、例えば、ニューコールシリーズ(日本乳化剤株式会社製)等を用いることができる。 The high refractive index layer may contain a surfactant for adjusting the surface tension during coating. Here, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, or the like can be used as the surfactant. As the surfactant, an anionic surfactant is preferably used, and one containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule is preferable. The content of the surfactant in the high refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the high refractive index layer. As the surfactant, for example, Newcol series (manufactured by Nippon Emulsifier Co., Ltd.) can be used.
(金属酸化物微粒子;高屈折率層)
 高屈折率層は、金属酸化物微粒子として酸化チタン粒子を含むことが好ましい。また、高屈折率層は、酸化チタンと共に、酸化チタン以外の金属酸化物微粒子が含まれていてもよい。高屈折率層は、金属酸化物微粒子として、酸化チタンを最も多い比率で有していることが好ましい。好ましくは、全粒子中において、酸化チタンを50質量%以上含むことが好ましく、さらに、酸化チタンを70質量%以上含むことが好ましく、酸化チタンを80質量%以上含むことがより好ましい。酸化チタンとしては、透明でより屈折率の高い高屈折率層を形成することができることから、二酸化チタンが好ましく、特にルチル型(正方晶形)酸化チタン粒子を用いることが好ましい。
(Metal oxide fine particles; high refractive index layer)
The high refractive index layer preferably contains titanium oxide particles as metal oxide fine particles. The high refractive index layer may contain fine metal oxide particles other than titanium oxide together with titanium oxide. The high refractive index layer preferably has the largest proportion of titanium oxide as metal oxide fine particles. Preferably, in all the particles, it is preferable to contain 50% by mass or more of titanium oxide, more preferably 70% by mass or more of titanium oxide, and more preferably 80% by mass or more of titanium oxide. As the titanium oxide, titanium dioxide is preferable because a transparent and higher refractive index layer having a higher refractive index can be formed. In particular, rutile (tetragonal) titanium oxide particles are preferably used.
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の固形分100質量%に対して、熱線遮蔽性や色ムラ低減の観点から、20~80質量%であることが好ましく、30~75質量%であることがより好ましく、40~70質量%であることがさらに好ましい。 The content of the metal oxide particles in the high refractive index layer is preferably 20 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer from the viewpoint of heat ray shielding and color unevenness reduction. 30 to 75% by mass is more preferable, and 40 to 70% by mass is more preferable.
 金属酸化物微粒子としては、例えば、Ti、Li、Na、Mg、Al、Si、K、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種又は2種以上の金属の酸化物を用いることができる。金属酸化物粒子は、1種でもよく、2種以上でもよい。 Examples of the metal oxide fine particles include Ti, Li, Na, Mg, Al, Si, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, and Nb. , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals Metal oxides can be used. One kind or two or more kinds of metal oxide particles may be used.
 高屈折率層に用いる金属酸化物粒子としては、例えば、酸化ジルコニウム(ZrO)、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ハフニウム、酸化ニオブ、酸化タンタル(Ta)、酸化バリウム、酸化インジウム、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、及び、酸化鉛、並びに、これらの複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、及び、アルミニウム・マグネシウム酸化物(MgAl)等が挙げられる。 Examples of the metal oxide particles used in the high refractive index layer include zirconium oxide (ZrO 2 ), zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, and ferric oxide. , Iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide (Ta 2 O 5 ), barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, Examples thereof include tin oxide, lead oxide, and double oxides thereof such as lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ).
 また、希土類酸化物としては、例えば、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等を用いることができる。 Examples of rare earth oxides include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, and oxide. Thulium, ytterbium oxide, lutetium oxide, or the like can be used.
 高屈折率層に用いられる金属酸化物粒子としては、屈折率が1.90以上の金属酸化物粒子が好ましい。屈折率が1.90以上の金属酸化物粒子としては、例えば、酸化ジルコニウム、酸化セリウム、酸化チタン、酸化亜鉛等を挙げることができる。 The metal oxide particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more. Examples of the metal oxide particles having a refractive index of 1.90 or more include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide.
 また、高屈折率層に用いられる金属酸化物粒子としては、金属酸化物粒子の表面にアルミニウム、珪素、ジルコニウム等が立体的障壁のある島状に担持した構成を用いることができる。例えば、酸化チタン微粒子が、含ケイ素水和酸化物で被覆されたコアシェル粒子であってもよい。コアシェル粒子は、コアとなる金属酸化物粒子(酸化チタン粒子)の表面に、含ケイ素水和酸化物のシェル層が被覆した構造を有する。このようなコアシェル粒子を高屈折率層に用いることで、シェル層の含ケイ素水和酸化物と水溶性樹脂との相互作用により、隣接する層界面での混合が抑制される。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素水和酸化物が付着した状態を示す。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素水和酸化物で覆われた状態でもよく、酸化チタン粒子の表面の一部に含ケイ素水和酸化物が付着した状態でもよい。コアシェル粒子の屈折率は、含ケイ素水和酸化物の被覆量に影響を受けるため、酸化チタン粒子の表面の一部が含ケイ素水和酸化物で被覆されていることが好ましい。以下ではこのような被覆された酸化チタンのコアシェル粒子を「シリカ付着二酸化チタンゾル」とも称する。酸化チタン粒子を含ケイ素水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された方法を適用することができる。 Further, as the metal oxide particles used in the high refractive index layer, a structure in which aluminum, silicon, zirconium or the like is supported on the surface of the metal oxide particles in an island shape having a three-dimensional barrier can be used. For example, the titanium oxide fine particles may be core-shell particles coated with a silicon-containing hydrated oxide. The core-shell particle has a structure in which a shell layer of silicon-containing hydrated oxide is coated on the surface of metal oxide particles (titanium oxide particles) serving as a core. By using such core-shell particles for the high refractive index layer, mixing at the interface between adjacent layers is suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. Here, the “coating” indicates a state in which the silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with the silicon-containing hydrated oxide, and the silicon-containing hydrated oxide adheres to a part of the surface of the titanium oxide particles. It may be in a state. Since the refractive index of the core-shell particles is affected by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. In the following, such coated titanium oxide core-shell particles are also referred to as “silica-attached titanium dioxide sol”. As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007- The method described in Japanese Patent No. 246351 can be applied.
 高屈折率層に用いられる金属酸化物粒子の体積平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましい。特に、ヘイズ値が低く、可視光透過率に優れることから、体積平均粒径が1~30nmであることが好ましく、1~20nmであることがより好ましい。 The volume average particle size of the metal oxide particles used for the high refractive index layer is preferably 100 nm or less, and more preferably 50 nm or less. In particular, since the haze value is low and the visible light transmittance is excellent, the volume average particle diameter is preferably 1 to 30 nm, more preferably 1 to 20 nm.
 なお、ここで体積平均粒径は、粒子そのものを観察する方法で1000個の任意の粒子の粒径を測定し、平均した値である。粒径の測定には、例えば、レーザー回折散乱法、動的光散乱法、又は、電子顕微鏡を用いて観察する方法や、層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法を用いる。そして、これらの方法により測定された1000個の任意の粒子について、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子が、それぞれn1、n2・・・ni・・・nk個存在する集団において、粒子1個当りの体積をviとした場合に、平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される値を、上述の体積平均粒径とする。 Here, the volume average particle diameter is an average value obtained by measuring the particle diameters of 1000 arbitrary particles by a method of observing the particles themselves. For the measurement of particle size, for example, a laser diffraction scattering method, a dynamic light scattering method, a method of observing using an electron microscope, or a method of observing a particle image appearing on a cross section or surface of a layer with an electron microscope. Use. And about 1000 arbitrary particles measured by these methods, there are n1, n2,..., Ni, nk particles having particle diameters of d1, d2,. In the existing population, when the volume per particle is vi, the average particle size mv = the value represented by {Σ (vi · di)} / {Σ (vi)} The diameter.
[低屈折率層]
 低屈折率層は、ポリマーを含んで構成される。また、低屈折率層は、必要に応じて、金属酸化物微粒子や無機酸化物微粒子を含んでいてもよい。
[Low refractive index layer]
The low refractive index layer includes a polymer. Further, the low refractive index layer may contain metal oxide fine particles and inorganic oxide fine particles as necessary.
 低屈折率層に含まれるポリマーとしては、上述の高屈折率層の説明に記載のポリマーと同様のポリマーを挙げることができる。また、低屈折率層に含まれるポリマーは、上述の高屈折率層と同様に水溶性高分子であることが好ましい。なお、低屈折率層に含有されるポリマーは、高屈折率層と同じ構成成分であってもよく、異なる構成成分であってもよいが、異なることが好ましい。また、低屈折率層には、水溶性高分子を硬化させるための硬化剤や、界面活性剤が含まれていてもよい。これらも、上述の高屈折率層と同様の材料を用いることができる。 Examples of the polymer contained in the low refractive index layer include the same polymers as those described in the description of the high refractive index layer. Further, the polymer contained in the low refractive index layer is preferably a water-soluble polymer as in the above-described high refractive index layer. The polymer contained in the low refractive index layer may be the same component as the high refractive index layer or may be a different component, but is preferably different. Further, the low refractive index layer may contain a curing agent for curing the water-soluble polymer and a surfactant. Also for these, the same material as the above-described high refractive index layer can be used.
(無機微粒子;低屈折率層)
 低屈折率層は、水溶性高分子とともに、無機酸化物微粒子、金属化合物微粒子、及び、金属酸化物微粒子等の微粒子(無機微粒子)を含んで構成されていてもよい。高屈折率層と低屈折率層とがともに無機微粒子を含有することにより、屈折率の調整が容易となる。このため、高屈折率層と低屈折率層と屈折率を大きくすることも可能となり、積層数を低減して反射層12を薄くすることができる。反射層12の層数を減らすことで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。
(Inorganic fine particles; low refractive index layer)
The low refractive index layer may be configured to include fine particles (inorganic fine particles) such as inorganic oxide fine particles, metal compound fine particles, and metal oxide fine particles together with the water-soluble polymer. Since the high refractive index layer and the low refractive index layer both contain inorganic fine particles, the refractive index can be easily adjusted. For this reason, it is possible to increase the refractive index of the high refractive index layer, the low refractive index layer, and the thickness of the reflective layer 12 by reducing the number of stacked layers. By reducing the number of layers of the reflective layer 12, productivity can be improved and a decrease in transparency due to scattering at the stack interface can be suppressed.
 低屈折率層に用いられる無機酸化物粒子及び金属化合物微粒子としては、二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)等が挙げられ、二酸化ケイ素を用いることが好ましく、特にコロイダルシリカを用いることが特に好ましい。また、低屈折率層に用いられる金属酸化物微粒子としては、上述の高屈折率層で説明した金属酸化物微粒子と同様の材料を挙げることができる。 Examples of the inorganic oxide particles and metal compound fine particles used for the low refractive index layer include silicon dioxide (SiO 2 ), magnesium fluoride (MgF 2 ), etc., preferably using silicon dioxide, particularly using colloidal silica. It is particularly preferred. Examples of the metal oxide fine particles used for the low refractive index layer include the same materials as the metal oxide fine particles described for the high refractive index layer.
 低屈折率層に含まれる無機微粒子は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された無機微粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmがより好ましく、3~40nmがさらに好ましく、3~20nmが特に好ましく、4~10nmが最も好ましい。また、二次粒子の平均粒径としては、30nm以下が、ヘイズが少なく可視光透過性に優れる観点で好ましい。低屈折率層中の無機微粒子の平均粒径は、粒子自体、又は、低屈折率層の断面や表面に現れた粒子を、電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求める。ここで個々の粒子の粒径は、粒子の投影面積と等しい面積の円を仮定したときの、円の直径(面積円相当径)である。 The inorganic fine particles contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle size of the inorganic fine particles dispersed in the primary particle state (particle size in the dispersion state before coating) is more preferably 3 to 50 nm, further preferably 3 to 40 nm, particularly preferably 3 to 20 nm. Most preferred is ˜10 nm. Moreover, as an average particle diameter of secondary particle | grains, 30 nm or less is preferable from a viewpoint with few hazes and being excellent in visible light transmittance | permeability. The average particle size of the inorganic fine particles in the low refractive index layer is determined by observing the particles themselves or particles appearing on the cross section or surface of the low refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. And it calculates | requires as the simple average value (number average). Here, the particle size of each particle is a circle diameter (area circle equivalent diameter) when a circle having an area equal to the projected area of the particle is assumed.
 低屈折率層における無機微粒子の含有量としては、低屈折率層の固形分に対して、屈折率の観点から、5~70質量%であることが好ましく、10~50質量%であることがさらに好ましい。 The content of the inorganic fine particles in the low refractive index layer is preferably 5 to 70% by mass and preferably 10 to 50% by mass with respect to the solid content of the low refractive index layer from the viewpoint of refractive index. Further preferred.
 コロイダルシリカは、珪酸ナトリウム等の酸による複分解や、イオン交換樹脂層を通過させて得られるシリカゾルを、加熱熟成して得られる。コロイダルシリカは、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、及び、国際公開第94/26530号等に記載されている製法及び構成を適用することができる。この様なコロイダルシリカは、合成品を用いてもよく、市販品を用いてもよい。コロイダルシリカは、その表面がカチオン変性されていてもよく、Al、Ca、Mg又はBa等で処理されていてもよい。 Colloidal silica is obtained by heat-ripening a silica sol obtained by metathesis with an acid such as sodium silicate or passing through an ion exchange resin layer. Colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-219084, JP-A-61-20792, JP-A-61-188183. JP-A-63-17807, JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, Manufacturing methods and configurations described in JP-A-7-81214, JP-A-7-101142, JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530 Can be applied. Such colloidal silica may be a synthetic product or a commercially available product. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 各層は、上記以外にも、例えば、特開昭57-74193号公報、特開昭57-87988号公報および特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報および特開平3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。これらの添加物の含有量は、低屈折率層の固形分に対して、0.1~10質量%であることが好ましい。 In addition to the above, each layer is composed of, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A 57-87989, JP-A 60-72785, JP-A 61-14659, JP-A-1-95091, JP-A-3-13376, etc. Anti-fading agent, described in JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, diethylene glycol, etc. Lubricants, preservatives, anti-static agents may also contain various known additives such as a matting agent. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the low refractive index layer.
[第1の紫外線吸収層]
 第1の紫外線吸収層13は、紫外線吸収剤を含む。また、第1の紫外線吸収層13には、紫外線吸収剤の他に、紫外線吸収剤のバインダとなる高分子材料を含む。第1の紫外線吸収層13のバインダとなる高分子材料としては、上述の反射層12を構成する水溶性高分子を用いることができる。
[First UV absorbing layer]
The first ultraviolet absorption layer 13 includes an ultraviolet absorber. The first ultraviolet absorbing layer 13 includes a polymer material that serves as a binder for the ultraviolet absorber in addition to the ultraviolet absorber. As the polymer material that becomes the binder of the first ultraviolet absorption layer 13, the water-soluble polymer that constitutes the reflection layer 12 described above can be used.
 第1の紫外線吸収層13には、0.05~15質量%の紫外線吸収剤が含まれることが好ましい。さらに、1~10質量%の紫外線吸収剤が含まれることが好ましい。
 第1の紫外線吸収層13の厚さは、1μm~30μmであることが好ましい。厚さを1μm以上とすることにより、第1の紫外線吸収層13の成膜性が向上するとともに、第1の紫外線吸収層13に要求される紫外線の吸収能力を容易に付加することができる。また、厚さが30μmを超えると、コストが高くなるだけでなく、作製の際の乾燥工程において時間がかかり、製造が困難になる。
The first ultraviolet absorbing layer 13 preferably contains 0.05 to 15% by mass of an ultraviolet absorber. Further, it is preferable that 1 to 10% by mass of an ultraviolet absorber is contained.
The thickness of the first ultraviolet absorbing layer 13 is preferably 1 μm to 30 μm. By setting the thickness to 1 μm or more, the film forming property of the first ultraviolet absorbing layer 13 can be improved, and the ultraviolet absorbing ability required for the first ultraviolet absorbing layer 13 can be easily added. On the other hand, when the thickness exceeds 30 μm, not only the cost becomes high, but also a time is required for the drying process in the production, and the production becomes difficult.
 また、第1の紫外線吸収層13は、粘着剤等の粘着性を有する材料を含むことにより、光学反射フィルム10の粘着層を兼ねる構成とすることもできる。第1の紫外線吸収層13を粘着層として機能させる場合には、粘着性を有する材料をバインダとして用いることもできる。また、第1の紫外線吸収層13を粘着層として機能させる場合には、公知の剥離紙が粘着層上にさらに設けられていてもよい。 Moreover, the 1st ultraviolet absorption layer 13 can also be set as the structure which serves as the adhesion layer of the optical reflection film 10 by including materials which have adhesiveness, such as an adhesive. In the case where the first ultraviolet absorbing layer 13 functions as an adhesive layer, an adhesive material can be used as a binder. Moreover, when making the 1st ultraviolet absorption layer 13 function as an adhesion layer, the well-known release paper may further be provided on the adhesion layer.
 粘着性を有する材料としては、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等を挙げることができる。なかでも、粘着層は、粘着性を有する材料として粘着剤を含むことが好ましい。粘着剤としては、アクリル系粘着剤、シリコン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、ポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ニトリルゴム、エチレン-酢酸ビニル系粘着剤等を挙げることができる。特に、光学反射フィルム10を窓ガラスに貼り合わせて用いる用途においては、窓に水を吹き付け、濡れた状態のガラス面に光学反射フィルム10の粘着層側を貼り合わせる方法、いわゆる水貼り法が好適に用いられる。そのため、水が存在する湿潤下で粘着力が弱いアクリル系粘着剤を用いることが好ましい。 Examples of the adhesive material include a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, and a hot melt agent. Especially, it is preferable that an adhesion layer contains an adhesive as an adhesive material. Examples of adhesives include acrylic adhesives, silicone adhesives, urethane adhesives, polyvinyl butyral adhesives, polyester resins, polyvinyl acetate resins, nitrile rubber, and ethylene-vinyl acetate adhesives. Can do. In particular, in applications where the optical reflective film 10 is bonded to a window glass, a method in which water is sprayed on the window and the adhesive layer side of the optical reflective film 10 is bonded to a wet glass surface, the so-called water bonding method is preferable. Used for. For this reason, it is preferable to use an acrylic pressure-sensitive adhesive having a low adhesive strength in the presence of water.
 第1の紫外線吸収層13が粘着層を兼ねる場合には、厚さが1~30μmの範囲であることが好ましく、5~20μmの範囲がさらに好ましい。粘着力は粘着層の厚みに依存するため、粘着層の厚みはある程度必要である。粘着層が1.0μm未満であると、例えば部分的にガラス等との接着面での接触が不十分となり、必要な粘着力が得られにくい。また、粘着層の厚みが30μmを越える場合には、コストが高くなるだけでなく、ガラスに貼り付けた後、剥がした時に粘着層間で凝集破壊が生じ、粘着剤が残ってしまう。 When the first ultraviolet absorbing layer 13 also serves as an adhesive layer, the thickness is preferably in the range of 1 to 30 μm, more preferably in the range of 5 to 20 μm. Since the adhesive force depends on the thickness of the adhesive layer, the adhesive layer needs to have a certain thickness. When the pressure-sensitive adhesive layer is less than 1.0 μm, for example, partial contact with an adhesive surface with glass or the like becomes insufficient, and it is difficult to obtain a necessary pressure-sensitive adhesive force. Further, when the thickness of the adhesive layer exceeds 30 μm, not only the cost becomes high, but also after being attached to glass and then peeled off, cohesive failure occurs between the adhesive layers, and the adhesive remains.
(紫外線吸収剤)
 第1の紫外線吸収層13に用いる紫外線吸収剤は、特に限定されず、公知の紫外線吸収剤を使用できる。例えば、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン等のベンゾフェノン系化合物、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系化合物、フェニルサリチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のサリチル酸フェニル系化合物、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等のヒンダードアミン系化合物、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン等のトリアジン系化合物等が挙げられる。
 特に、紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、及び、ベンゾフェノン系化合物から選ばれる少なくとも一種以上を含むことが好ましい。
(UV absorber)
The ultraviolet absorber used for the 1st ultraviolet absorption layer 13 is not specifically limited, A well-known ultraviolet absorber can be used. For example, benzophenone compounds such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone, 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3) Benzotriazole compounds such as', 5'-di-t-butylphenyl) benzotriazole, phenyl salicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxy Salicylic acid phenyl compounds such as benzoate, hindered amine compounds such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) ) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphene) And triazine compounds such as (nyl) -1,3,5-triazine.
In particular, the ultraviolet absorber preferably contains at least one selected from benzotriazole compounds, triazine compounds, and benzophenone compounds.
 紫外線吸収剤としては、上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet light into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
 なお、紫外線吸収剤は、単独でもまたは2種以上混合して用いてもよい。また、紫外線吸収剤は、合成品を用いてもよいし市販品を用いてもよい。市販品の例としては、例えば、Tinuvin(登録商標)320、Tinuvin(登録商標)328、Tinuvin(登録商標)234、Tinuvin(登録商標)477、Tinuvin(登録商標)1577、Tinuvin(登録商標)622(以上、BASFジャパン株式会社製)、アデカスタブ(登録商標)LA-31(以上、株式会社アデカ製)、SEESORB(登録商標)102、SEESORB(登録商標)103、SEESORB(登録商標)501(以上、シプロ化成株式会社製)などが挙げられる。 In addition, you may use an ultraviolet absorber individually or in mixture of 2 or more types. Moreover, as the ultraviolet absorber, a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 477, Tinuvin (registered trademark) 1577, and Tinuvin (registered trademark) 622. (Above, manufactured by BASF Japan Ltd.), ADK STAB (registered trademark) LA-31 (above, manufactured by ADEKA CORPORATION), SEESORB (registered trademark) 102, SESORB (registered trademark) 103, SEESORB (registered trademark) 501 (or more, Cipro Kasei Co., Ltd.).
[基材(第2の紫外線吸収層)]
 光学反射フィルム10では、基材11に紫外線吸収剤が含まれることにより、基材11が光学反射フィルム10の第2の紫外線吸収層として構成される。基材11に含まれる紫外線吸収剤としては、上述の第1の紫外線吸収層13で説明した紫外線吸収剤を用いることができる。
[Base material (second ultraviolet absorbing layer)]
In the optical reflection film 10, the base material 11 is configured as the second ultraviolet absorption layer of the optical reflection film 10 by including an ultraviolet absorber in the base material 11. As the ultraviolet absorber contained in the substrate 11, the ultraviolet absorber described in the first ultraviolet absorbing layer 13 can be used.
 基材11を第2の紫外線吸収層として機能させることにより、第1の紫外線吸収層13側から入射する直接的な光だけでなく、乱反射等により基材11側から入射する光に対しても、光学反射フィルム10内への紫外線の入射を抑制することができる。このように、紫外線吸収剤を含む層で反射層12を挟持することにより、これにより、反射層12や基材11の紫外線による劣化を抑制することができ、反射層12の変色を抑制することが可能となる。 By causing the substrate 11 to function as the second ultraviolet absorbing layer, not only direct light incident from the first ultraviolet absorbing layer 13 side but also light incident from the substrate 11 side due to irregular reflection or the like. The incidence of ultraviolet rays into the optical reflection film 10 can be suppressed. In this way, by sandwiching the reflective layer 12 with a layer containing an ultraviolet absorber, it is possible to suppress deterioration of the reflective layer 12 and the substrate 11 due to ultraviolet rays, and to suppress discoloration of the reflective layer 12. Is possible.
 光学反射フィルム10において、基材11は、透明の有機材料で形成された基材であれば、特に限定されるものではない。基材11としては、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等の各樹脂材料を挙げることができる。さらに、これらの樹脂材料を2層以上積層して用いることもできる。 In the optical reflective film 10, the base material 11 is not particularly limited as long as it is a base material formed of a transparent organic material. Examples of the substrate 11 include polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent Examples of resin materials such as cellulose nanofiber film can be given. Furthermore, two or more layers of these resin materials can be laminated and used.
 基材11としては、ポリエステルフィルムを用いることが好ましい。特に、ポリエステルフィルムの中でも透明性、機械的強度、寸法安定性などの観点から、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分とを主要な構成成分とするフィルム形成性を有することが好ましい。具体的には、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステル、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールとからなる共重合ポリエステル、及び、これらのポリエステルの2種以上の混合物を主要な構成成分とすることが好ましい。 As the substrate 11, a polyester film is preferably used. In particular, from the viewpoint of transparency, mechanical strength, dimensional stability among polyester films, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and ethylene glycol and 1,4-cyclohexanedimethanol It is preferable to have a film-forming property having a diol component as a main constituent. Specifically, a polyester mainly composed of polyethylene terephthalate or polyethylene naphthalate, a copolymer polyester composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more kinds of these polyesters It is preferable that the mixture is a major constituent.
 紫外線吸収剤を含む基材11としては、市販品を用いることもできる。例えば、帝人デュポンフィルム社製のテイジンテトロンフィルムHB(登録商標)等を用いることができる。 As the base material 11 containing an ultraviolet absorber, a commercially available product can be used. For example, Teijin Tetron film HB (registered trademark) manufactured by Teijin DuPont Films, Inc. can be used.
 また、基材11は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。
 基材の厚さは5~200μmの範囲が好ましく、更に好ましくは15~150μmである。
 基材11は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材11の透過率を高めることにより、光学反射フィルム10の波長420~780nmの最小透過率を高めることができる。
The substrate 11 may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
The thickness of the substrate is preferably in the range of 5 to 200 μm, more preferably 15 to 150 μm.
The base material 11 preferably has a visible light region transmittance of 85% or more as shown in JIS R3106-1998, and particularly preferably 90% or more. By increasing the transmittance of the substrate 11, the minimum transmittance of the optical reflective film 10 at a wavelength of 420 to 780 nm can be increased.
 基材11は、従来公知の一般的な方法により製造することが可能である。例えば、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。また、未延伸の樹脂基材から、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法を用いて、延伸フィルムを作製することもできる。この場合の延伸倍率は、原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 The base material 11 can be manufactured by a conventionally known general method. For example, it can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. In addition, a stretched film may be prepared from an unstretched resin base material using a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. it can. The draw ratio in this case can be appropriately selected according to the resin as a raw material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、基材11は、寸法安定性の点で弛緩処理、オフライン熱処理が行われていてもよい。弛緩処理は、ポリエステルフィルムの延伸製膜工程中で熱固定した後、横延伸のテンター内、又は、テンターを出た後の巻き取りまでの工程で行うことが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、弛緩率が2~6%の範囲で行われることがより好ましい。弛緩処理された基材11は、オフライン熱処理を施すことにより耐熱性が向上し、更に寸法安定性が良好になる。 Further, the base material 11 may be subjected to a relaxation treatment or an offline heat treatment in terms of dimensional stability. The relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably in the range of 2 to 6%. The base material 11 subjected to the relaxation treatment is improved in heat resistance by performing off-line heat treatment, and further has good dimensional stability.
[光学反射フィルムの製造方法]
 次に、上述の光学反射フィルム10の製造方法について説明する。光学反射フィルム10は、基材11上に、反射層12を形成する工程と、第1の紫外線吸収層13を形成する工程とからなる。
[Method for producing optical reflection film]
Next, the manufacturing method of the above-mentioned optical reflective film 10 is demonstrated. The optical reflective film 10 includes a step of forming the reflective layer 12 on the substrate 11 and a step of forming the first ultraviolet absorbing layer 13.
(基材準備)
 まず、紫外線吸収剤を含む基材11を準備する。紫外線吸収剤を含む基材11は、基材11に適用可能な上述の樹脂と上述の紫外線吸収剤とを混合して溶融し、さらに、紫外線吸収剤含む樹脂をペレット状に加工した後、フィルム状に加工することにより作製することができる。また、基材11としては、市販の紫外線吸収剤を含む樹脂基材を用いてもよい。
(Base material preparation)
First, the base material 11 containing an ultraviolet absorber is prepared. The base material 11 containing the ultraviolet absorber is prepared by mixing and melting the above-described resin applicable to the base material 11 and the above-described ultraviolet absorber, and further processing the resin containing the ultraviolet absorber into a pellet, It can produce by processing in a shape. Moreover, as the base material 11, you may use the resin base material containing a commercially available ultraviolet absorber.
 例えば、基材11としてポリエステルを用いる場合には、ジカルボン酸成分とグリコール成分とを直接エステル化反応することでポリエステルを作製する。或いは、ジカルボン酸成分のジアルキルエステルを用いる場合はグリコール成分とでエステル交換し、これを減圧下に加熱して余剰のグリコール成分を除去することにより、ポリエステルを作製する。この際、必要に応じてエステル交換反応触媒又は重合触媒を用いる。また、リン化合物等の安定剤を添加することができる。
 さらに、得られたポリエステルを、エクストルーダに代表される周知の溶融押出装置を用いて、ポリエステルの融点以上の温度に加熱して溶融する。そして、溶融したポリマーを、スリット状の口金から連続的に押出し、強制的に冷却して基材11を作製する。
 紫外線吸収剤は、ポリマーの製造から押出までの任意の段階で混合する。また、結晶核剤、酸化防止剤、着色防止剤、顔料、染料、離型剤、易滑剤、難燃剤、帯電防止剤、粒子等の他の添加剤も任意の段階で混合することができる。
For example, when polyester is used as the substrate 11, the polyester is produced by directly esterifying a dicarboxylic acid component and a glycol component. Alternatively, when a dialkyl ester of a dicarboxylic acid component is used, the polyester is prepared by transesterification with a glycol component and heating this under reduced pressure to remove excess glycol component. At this time, a transesterification catalyst or a polymerization catalyst is used as necessary. Moreover, stabilizers, such as a phosphorus compound, can be added.
Further, the obtained polyester is heated and melted at a temperature equal to or higher than the melting point of the polyester using a known melt extrusion apparatus represented by an extruder. Then, the molten polymer is continuously extruded from the slit-shaped base, and is forcedly cooled to produce the base material 11.
The UV absorber is mixed at any stage from polymer production to extrusion. In addition, other additives such as a crystal nucleating agent, an antioxidant, an anti-coloring agent, a pigment, a dye, a release agent, a lubricant, a flame retardant, an antistatic agent, and particles can be mixed at any stage.
(反射層形成工程)
 次に、紫外線吸収剤を含む基材11上に、反射層12を形成する。反射層12を形成する方法は、特に限定されないが、例えば、高屈折率層用塗工液、及び、低屈折率層用塗工液を、交互に塗工及び乾燥させることによって形成する方法が挙げられる。
(Reflective layer forming process)
Next, the reflective layer 12 is formed on the base material 11 containing an ultraviolet absorber. The method for forming the reflective layer 12 is not particularly limited. For example, there is a method for forming the reflective layer 12 by alternately applying and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer. Can be mentioned.
 高屈折率層用塗工液の調整方法は、特に制限されず、水溶性高分子、金属酸化物微粒子、溶媒、及び、必要に応じて添加されるその他の添加剤を、撹拌混合する方法が挙げられる。また、低屈折率層用塗工液の調整方法は、特に制限されず、水溶性高分子、溶媒、及び、必要に応じて無機微粒子や、その他の添加剤を、撹拌混合する方法が挙げられる。この撹拌混合の際、各成分の添加順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗工液は、溶媒の量を調整することにより、適当な粘度に調整する。 The adjustment method of the coating liquid for the high refractive index layer is not particularly limited, and there is a method in which the water-soluble polymer, the metal oxide fine particles, the solvent, and other additives added as necessary are stirred and mixed. Can be mentioned. The method for adjusting the coating solution for the low refractive index layer is not particularly limited, and examples thereof include a method of stirring and mixing a water-soluble polymer, a solvent, and, if necessary, inorganic fine particles and other additives. . At the time of this stirring and mixing, the order of addition of each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 ここで、各塗工液を調整するための溶媒は、特に制限されないが、水、有機溶媒、又は、これらの混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、又は、水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。 Here, the solvent for adjusting each coating liquid is not particularly limited, but it is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
 各塗工液に用いる有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノール等のアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン等のアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類挙げられる。これら有機溶媒は、単独でも2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗工液の溶媒としては、水と、メタノール、エタノール、及び、酢酸エチルとの混合溶媒が好ましい。 Examples of the organic solvent used in each coating solution include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, and esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. , Ethers such as diethyl ether, propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the standpoint of environment and ease of operation, the solvent for the coating solution is preferably a mixed solvent of water and methanol, ethanol, and ethyl acetate.
 水と少量の有機溶媒との混合溶媒を用いる際、混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。水の含有量を80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、塗膜形成の操作性が向上する。また、水の含有量を99.9質量%以下にすることで、塗工液の均質性が増し、塗工液の物性が安定する。 When a mixed solvent of water and a small amount of organic solvent is used, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99. More preferably, it is 5 mass%. By setting the water content to 80% by mass or more, volume fluctuation due to volatilization of the solvent can be reduced, and the operability of coating film formation is improved. Moreover, the homogeneity of a coating liquid increases by making content of water 99.9 mass% or less, and the physical property of a coating liquid is stabilized.
 次に、調製した各塗工液を基材11上に塗工し、乾燥させる。この塗工工程と乾燥工程とを行なうことにより、塗工膜から反射層を形成することができる。
 塗工方法としては、特に限定されず、逐次塗工法、同時重層塗工のいずれであってもよいが、生産性等の観点から同時重層塗工であることが好ましい。塗工方式としては、例えば、カーテン塗工方法、米国特許第2761419号、米国特許第2761791号に記載のホッパーを使用するスライドビード塗工方法、エクストルージョンコート法等が好ましく用いられる。
Next, each prepared coating liquid is applied onto the substrate 11 and dried. By performing the coating process and the drying process, a reflective layer can be formed from the coating film.
The coating method is not particularly limited and may be either a sequential coating method or a simultaneous multilayer coating, but is preferably a simultaneous multilayer coating from the viewpoint of productivity and the like. As the coating method, for example, a curtain coating method, a slide bead coating method using a hopper described in US Pat. No. 2,761,419, and US Pat. No. 2,761791, an extrusion coating method, and the like are preferably used.
 同時重層塗工を行う際の各塗工液の温度は、スライドビード塗工方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗工方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 When the slide bead coating method is used, the temperature of each coating solution when performing simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., more preferably a temperature range of 30 to 45 ° C. When using the curtain coating method, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗工を行う際の各塗工液の粘度は、特に制限されない。例えば、スライドビード塗工方式を用いる場合には、上記の各塗工液の好ましい温度の範囲において、5~100mPa・sの範囲であることが好ましく、10~50mPa・sの範囲であることがより好ましい。また、カーテン塗工方式を用いる場合には、上記の塗工液の好ましい温度の範囲において、5~1200mPa・sの範囲であることが好ましく、25~500mPa・sの範囲であることがより好ましい。このような粘度の範囲であれば、効率よく同時重層塗工を行うことができる。 The viscosity of each coating solution when performing simultaneous multilayer coating is not particularly limited. For example, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, preferably in the range of 10 to 50 mPa · s, in the preferable temperature range of each of the above coating liquids. More preferred. When the curtain coating method is used, it is preferably in the range of 5 to 1200 mPa · s, and more preferably in the range of 25 to 500 mPa · s, in the preferable temperature range of the coating liquid. . If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、各塗工液の15℃における粘度としては、100mPa・s以上が好ましく、100~30000mPa・sがより好ましく、さらに好ましくは3000~30000mPa・sであり、最も好ましいのは10000~30000mPa・sである。 The viscosity at 15 ° C. of each coating solution is preferably 100 mPa · s or more, more preferably 100 to 30000 mPa · s, still more preferably 3000 to 30000 mPa · s, and most preferably 10,000 to 30000 mPa · s. It is.
 逐次塗工法で反射層12を形成する場合には、30~60℃に加温した低屈折率層用塗工液又は高屈折率層用塗工液のいずれか一方の塗工液を、基材11上に塗工、乾燥して層を形成した後、他方の塗工液をこの層上に塗工、乾燥して層を形成する。これを所望の反射性能を発現するために必要な層数となるように逐次を繰り返して、反射層12を形成する。 When the reflective layer 12 is formed by the sequential coating method, either the low refractive index layer coating solution or the high refractive index layer coating solution heated to 30 to 60 ° C. is used as the base layer. After coating and drying on the material 11 to form a layer, the other coating liquid is coated on this layer and dried to form a layer. The reflection layer 12 is formed by repeating this sequentially so that the number of layers necessary for expressing the desired reflection performance is obtained.
 乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥することが好ましく、例えば、40~85℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスでの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にすることがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。 When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. In addition, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the decreasing rate drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗工で反射層12を形成する場合には、各塗工液を30~60℃に加温して、基材11上に各塗工液の同時重層塗工を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗工直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 When the reflective layer 12 is formed by simultaneous multilayer coating, each coating solution is heated to 30 to 60 ° C., and after the simultaneous multilayer coating of each coating solution is performed on the substrate 11. The temperature of the formed coating film is preferably cooled (set) to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling system immediately after coating, it is preferable to carry out by a horizontal set system from a viewpoint of the improvement of the uniformity of the formed coating film.
 ここで、上記セットとは、冷風等を塗工膜の表面に当てて温度を下げる等の手段により、塗膜組成物の粘度を高め、各層の物質の流動性の低下、又は、ゲル化を行う工程を意味する。塗工膜の表面に指を押し付けたときに、指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the above set means that the viscosity of the coating composition is increased by reducing the temperature by applying cold air or the like to the surface of the coating film, and the fluidity of the substances in each layer is reduced or gelled. It means a process to be performed. When the finger is pressed against the surface of the coating film, the state in which the finger is no longer held is defined as the state of completion of setting.
 セット工程において使用される冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 塗膜形成から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上とすることが好ましい。セット時間を一定以上設けることで、層中の成分が十分に混合する。一方、セット時間を短時間とすることにより、金属酸化物微粒子の層間拡散を防止し、高屈折率層と低屈折率層とに所望の屈折率差を設けることができる。なお、高屈折率層と低屈折率層との間の境界面において高弾性化が素早く起こる場合には、セット工程を設けなくとも好適な界面を形成することができる。 The time (setting time) from the formation of the coating film to the completion of the setting by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. The lower limit time is not particularly limited, but is preferably 45 seconds or more. By providing a set time or longer, the components in the layer are sufficiently mixed. On the other hand, by setting the set time short, the interlayer diffusion of the metal oxide fine particles can be prevented, and a desired refractive index difference can be provided between the high refractive index layer and the low refractive index layer. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
 なお、セット時間は、各塗工液に含まれる水溶性高分子の濃度や、金属酸化物微粒子の濃度を変更することの他、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など他の成分を添加することにより調整することができる。 The set time includes various known concentrations such as gelatin, pectin, agar, carrageenan, gellan gum, as well as changing the concentration of water-soluble polymer contained in each coating solution and the concentration of metal oxide fine particles. It can be adjusted by adding other components such as a gelling agent.
(紫外線吸収層形成工程)
 第1の紫外線吸収層13は、紫外線吸収層塗工液を調整した後、塗工液を塗工、及び、乾燥させることにより作製することができる。
(Ultraviolet absorption layer forming process)
The first ultraviolet absorbing layer 13 can be prepared by adjusting the ultraviolet absorbing layer coating solution and then coating and drying the coating solution.
 紫外線吸収層塗工液の調整方法は、特に制限されず、上述の紫外線吸収材料、水溶性高分子、溶媒、及び、必要に応じて添加される添加剤や粘着剤等を、撹拌混合する方法が挙げられる。混合の際、各成分の添加順は特に限定されず、撹拌しながら各成分を順次混合してもよいし、一度に混合して撹拌してもよい。これらの各塗工液は、溶媒の量を調整することにより、適当な粘度に調整する。 The method for adjusting the ultraviolet absorbing layer coating liquid is not particularly limited, and the above-described ultraviolet absorbing material, water-soluble polymer, solvent, and additives and pressure-sensitive adhesives that are added as necessary are stirred and mixed. Is mentioned. At the time of mixing, the order of adding each component is not particularly limited, and each component may be sequentially mixed while stirring, or may be mixed and stirred at one time. Each of these coating liquids is adjusted to an appropriate viscosity by adjusting the amount of the solvent.
 塗工液を調整するための溶媒は、特に制限されず、上述の反射層12の形成に用いる溶媒と同様の溶媒を用いることができる。水、有機溶媒、又は、これらの混合溶媒を用いることが好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、又は、水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。 The solvent for adjusting the coating liquid is not particularly limited, and a solvent similar to the solvent used for forming the reflective layer 12 described above can be used. It is preferable to use water, an organic solvent, or a mixed solvent thereof. In consideration of environmental aspects due to scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
 紫外線吸収層塗工液の塗工方法としては、公知の方法が使用できる。例えば、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、デップコート法等が好ましく挙げられ、単独または組合せて用いることができる。また、紫外線吸収層塗工液の塗工方法としては、反射層12の形成に用いることのできる湿式塗工方式を用いて、直接反射層12上に塗工してもよい。 As a method for applying the ultraviolet absorbing layer coating solution, a known method can be used. For example, a die coater method, a gravure roll coater method, a blade coater method, a spray coater method, an air knife coat method, a dip coat method, and the like are preferable, and these can be used alone or in combination. Moreover, as a coating method of the ultraviolet absorbing layer coating liquid, the wet coating method that can be used for forming the reflective layer 12 may be used to directly coat the reflective layer 12.
 また、第1の紫外線吸収層13が粘着層を兼ねる構成の場合には、直接反射層12上に塗工する他に、一度剥離紙に塗工して乾燥させた後、第1の紫外線吸収層13を反射層12上に転写させてもよい。 In the case where the first ultraviolet absorbing layer 13 also serves as an adhesive layer, in addition to coating directly on the reflective layer 12, the first ultraviolet absorbing layer 13 is once coated on release paper and dried. The layer 13 may be transferred onto the reflective layer 12.
 塗工膜の乾燥は、乾燥温度や時間は特定されないが、乾燥後の第1の紫外線吸収層13に残留する溶剤は少ない方が好ましい。このため、50~150℃の温度で、10秒~5分の乾燥を行なうことが好ましい。また、紫外線吸収層塗工液に粘着剤が含まれる場合には、粘着剤が流動性を有するため、安定した粘着力を得るために養生が必要である。一般的に、室温では約1週間以上、加熱した場合には、例えば50℃位であると3日以上が好ましい。加熱の場合、温度を上げすぎると基材11の平面性が悪化することがあるため、低温で行なうことが好ましい。 The drying temperature and time of the coating film are not specified, but it is preferable that the amount of the solvent remaining in the first ultraviolet absorption layer 13 after drying is small. For this reason, it is preferable to perform drying at a temperature of 50 to 150 ° C. for 10 seconds to 5 minutes. Moreover, when an adhesive is contained in the ultraviolet absorbing layer coating liquid, curing is necessary to obtain a stable adhesive force because the adhesive has fluidity. In general, when heated at room temperature for about one week or longer, for example, at about 50 ° C., three days or longer is preferable. In the case of heating, since the flatness of the base material 11 may deteriorate if the temperature is raised too much, it is preferable to carry out at a low temperature.
[光学反射フィルムの変形例]
 次に、上述の第1実施形態の光学反射フィルムの変形例について説明する。図2に、第1実施形態の変形例の光学反射フィルムの概略構成を示す。
[Modification of optical reflection film]
Next, a modification of the optical reflection film of the first embodiment will be described. In FIG. 2, schematic structure of the optical reflection film of the modification of 1st Embodiment is shown.
 図2に示す光学反射フィルム10Aは、第2の紫外線吸収層14と、基材11Aと、反射層12と、第1の紫外線吸収層13とを備える。光学反射フィルム10Aは、第1の紫外線吸収層13側が、窓ガラス等に貼り合わされる側であり、第1の紫外線吸収層13側から光学反射フィルム10Aに、主に反射層での反射を目的とする波長を含む光が入射する。 The optical reflective film 10A shown in FIG. 2 includes a second ultraviolet absorbing layer 14, a base material 11A, a reflecting layer 12, and a first ultraviolet absorbing layer 13. The optical reflection film 10A is a side on which the first ultraviolet absorption layer 13 side is bonded to a window glass or the like, and the optical reflection film 10A from the first ultraviolet absorption layer 13 side mainly reflects on the reflection layer. The light including the wavelength is incident.
 図2に示す光学反射フィルム10Aは、上述の第1実施形態の光学反射フィルム10(図1参照)から、基材11Aの構成、及び、第2の紫外線吸収層14を備えることのみが異なり、その他の構成は上述の第1実施形態と同様である。 The optical reflective film 10A shown in FIG. 2 differs from the optical reflective film 10 of the first embodiment described above (see FIG. 1) only in that it includes the configuration of the base 11A and the second ultraviolet absorbing layer 14. Other configurations are the same as those in the first embodiment.
 基材11Aは、紫外線吸収剤を含まなくてもよいことのみが、上述の第1実施形態の光学反射フィルム10(図1参照)と異なる。光学反射フィルム10Aは、基材11Aよりも裏面側に、第2の紫外線吸収層14を備える。このため、基材11Aに紫外線吸収剤が含まれていない場合にも、裏面側からの紫外線を第2の紫外線吸収層14で吸収することができる。この結果、紫外線による基材11Aの劣化(分解)や反射層12の劣化等が抑制され、光学反射フィルム10Aの交換作業等を行なう際の、基材11Aの破断を抑制することができる。 The substrate 11A is different from the optical reflecting film 10 (see FIG. 1) of the first embodiment only in that it does not need to contain an ultraviolet absorber. The optical reflective film 10A includes a second ultraviolet absorbing layer 14 on the back side of the base 11A. For this reason, even when the ultraviolet absorbent is not included in the substrate 11A, the ultraviolet rays from the back surface side can be absorbed by the second ultraviolet absorbing layer 14. As a result, deterioration (decomposition) of the base material 11A due to ultraviolet rays, deterioration of the reflective layer 12, and the like are suppressed, and breakage of the base material 11A when the optical reflective film 10A is exchanged can be suppressed.
 なお、基材11Aには、紫外線吸収剤が含まれていてもよい。この場合には、基材11Aも、第1の紫外線吸収層13、第2の紫外線吸収層14とともに、紫外線吸収層(第3の紫外線吸収層)として機能する。このような構成では、基材11Aの劣化(分解)等による破断を抑制する効果をより期待できる。 The base material 11A may contain an ultraviolet absorber. In this case, the substrate 11 </ b> A also functions as an ultraviolet absorbing layer (third ultraviolet absorbing layer) together with the first ultraviolet absorbing layer 13 and the second ultraviolet absorbing layer 14. In such a configuration, an effect of suppressing breakage due to deterioration (decomposition) or the like of the base material 11A can be further expected.
 光学反射フィルム10Aの基材11Aの裏面側に設けられる第2の紫外線吸収層14としては、上述の第1の紫外線吸収層13と同様の構成を適用することができる。すなわち、第2の紫外線吸収層14は、上述の第1の紫外線吸収層13と同様の紫外線吸収剤や、ポリマー等を用いて構成することができる。さらに、粘着剤等を用いて紫外線吸収以外の機能を備える層としてもよい。 As the 2nd ultraviolet absorption layer 14 provided in the back side of substrate 11A of optical reflective film 10A, the same composition as the above-mentioned 1st ultraviolet absorption layer 13 is applicable. That is, the second ultraviolet absorbing layer 14 can be configured using the same ultraviolet absorbent, polymer, or the like as the first ultraviolet absorbing layer 13 described above. Furthermore, it is good also as a layer provided with functions other than ultraviolet absorption using an adhesive.
 また、第2の紫外線吸収層14としては、例えば、基材11Aの表面を保護するために設けられるハードコート層や、基材11Aとハードコート層との間に設けられるアンカーコート層等を用いることができる。また、第2の紫外線吸収層14としては、ハードコート層やアンカーコート層以外の層であってもよく、紫外吸収材を保持することができる構成であれば特に限定されない。 Further, as the second ultraviolet absorbing layer 14, for example, a hard coat layer provided to protect the surface of the base material 11A, an anchor coat layer provided between the base material 11A and the hard coat layer, or the like is used. be able to. Further, the second ultraviolet absorbing layer 14 may be a layer other than the hard coat layer and the anchor coat layer, and is not particularly limited as long as the ultraviolet absorbing material can be held.
 また、光学反射フィルム10Aは、上述の第1実施形態と同様の方法で作製することができる。例えば、基材11の一方の面(裏面)側に、上述の第1の紫外線吸収層13を作製する方法と同様の方法で、第2の紫外線吸収層14を作製する。また、第2の紫外線吸収層14が、アンカーコート層やハードコート層の場合には、基材11Aの裏面側に従来公知の方法でアンカーコート層やハードコート層を形成する際に、これらの塗工液に紫外線吸収剤を混合することにより作製することができる。 Further, the optical reflective film 10A can be manufactured by the same method as in the first embodiment described above. For example, the second ultraviolet absorbing layer 14 is produced on the one surface (back surface) side of the substrate 11 by the same method as the method of producing the first ultraviolet absorbing layer 13 described above. Further, when the second ultraviolet absorbing layer 14 is an anchor coat layer or a hard coat layer, when the anchor coat layer or the hard coat layer is formed on the back surface side of the base material 11A by a conventionally known method, It can be produced by mixing a UV absorber with the coating solution.
 さらに、第2の紫外線吸収層14を形成した後、基材11Aの他方の面(表面)側に上述の第1実施形態と同様の方法で反射層12及び第1の紫外線吸収層13を作製する。これにより、第2の紫外線吸収層14と、基材11Aと、反射層12と、第1の紫外線吸収層13とを備える、光学反射フィルム10Aを作製することができる。 Further, after forming the second ultraviolet absorbing layer 14, the reflective layer 12 and the first ultraviolet absorbing layer 13 are formed on the other surface (front surface) side of the base 11A by the same method as in the first embodiment. To do. Thereby, the optical reflective film 10A provided with the 2nd ultraviolet absorption layer 14, the base material 11A, the reflection layer 12, and the 1st ultraviolet absorption layer 13 is producible.
〈2.光学反射フィルムの実施形態(第2実施形態)〉
 次に、光学反射フィルムの第2実施形態について説明する。第2実施形態の光学反射フィルムの概略構成を図3に示す。なお、第2実施形態の光学反射フィルムは、積層の形態が異なることを除き、上述の第1実施形態の光学反射フィルムと同様の構成を適用することができる。
<2. Embodiment of Optical Reflective Film (Second Embodiment)>
Next, a second embodiment of the optical reflection film will be described. A schematic configuration of the optical reflective film of the second embodiment is shown in FIG. In addition, the optical reflection film of 2nd Embodiment can apply the structure similar to the optical reflection film of the above-mentioned 1st Embodiment except that the form of lamination | stacking differs.
 図3に示す光学反射フィルム20は、紫外線吸収剤を含む第1の基材21(第2の紫外線吸収層)、粘着層22、反射層23、第2の基材24、及び、第1の紫外線吸収層25を備える。光学反射フィルム20は、第1の紫外線吸収層25側が、窓ガラス等に貼り合わされる側であり、第1の紫外線吸収層25側から光学反射フィルム20に、主に反射層での反射を目的とする波長を含む光が入射する。以下の説明では、光学反射フィルム20の第1の紫外線吸収層13側の表面を「表面」とし、光学反射フィルム20の第1の基材21側の表面を「裏面」と表記する。 The optical reflective film 20 shown in FIG. 3 includes a first substrate 21 (second ultraviolet absorbing layer) containing an ultraviolet absorber, an adhesive layer 22, a reflective layer 23, a second substrate 24, and a first substrate. An ultraviolet absorbing layer 25 is provided. The optical reflection film 20 has a side on which the first ultraviolet absorption layer 25 is bonded to a window glass or the like, and the reflection from the first ultraviolet absorption layer 25 to the optical reflection film 20 is mainly intended for reflection on the reflection layer. The light including the wavelength is incident. In the following description, the surface on the first ultraviolet absorption layer 13 side of the optical reflecting film 20 is referred to as “front surface”, and the surface on the first base material 21 side of the optical reflecting film 20 is referred to as “back surface”.
 光学反射フィルム20において、反射層23は、第1の基材21と、第1の紫外線吸収層25との間に設けられている。さらに、光学反射フィルム20は、反射層23に対して第1の紫外線吸収層25と逆側に、紫外線吸収剤を含む第1の基材21(第2の紫外線吸収層)を備える。 In the optical reflective film 20, the reflective layer 23 is provided between the first base material 21 and the first ultraviolet absorbing layer 25. Further, the optical reflection film 20 includes a first base 21 (second ultraviolet absorption layer) containing an ultraviolet absorber on the opposite side of the reflective layer 23 from the first ultraviolet absorption layer 25.
 光学反射フィルム20は、反射層23と第1の紫外線吸収層25とを備える第2の基材24と、紫外線吸収剤を含む第1の基材11とを、粘着層22を介して貼り合せることにより作製することができる。例えば、第2の基材24の一方の面(裏面)に、第1の紫外線吸収層25を形成する。また、第2の基材24の他方の面(表面)に、反射層23を形成する。さらに、反射層23上に粘着層22を形成する。そして、粘着層22を介して、第2の基材24に、紫外線吸収剤を含む第1の基材21を貼り合わせる。これにより、紫外線吸収剤を含む第1の基材21(第2の紫外線吸収層)、粘着層22、反射層23、第2の基材24、及び、第1の紫外線吸収層25をこの順に備える光学反射フィルム20を作製することができる。 The optical reflection film 20 bonds the second substrate 24 including the reflection layer 23 and the first ultraviolet absorption layer 25 and the first substrate 11 including the ultraviolet absorber via the adhesive layer 22. Can be produced. For example, the first ultraviolet absorbing layer 25 is formed on one surface (back surface) of the second substrate 24. In addition, the reflective layer 23 is formed on the other surface (surface) of the second substrate 24. Further, the adhesive layer 22 is formed on the reflective layer 23. And the 1st base material 21 containing an ultraviolet absorber is pasted together to the 2nd base material 24 via adhesion layer 22. Thereby, the 1st base material 21 (2nd ultraviolet absorption layer) containing a ultraviolet absorber, adhesion layer 22, reflective layer 23, 2nd substrate 24, and the 1st ultraviolet absorption layer 25 are arranged in this order. The optical reflection film 20 provided can be produced.
 第2の紫外線吸収層に含まれる紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、及び、ベンゾフェノン系化合物が挙げられる。第2の紫外線吸収層は、上記の紫外線吸収剤から選ばれる少なくとも一種以上を含むことが好ましい。また、第1の紫外線吸収層25も、上記の紫外線吸収剤から選ばれる少なくとも一種以上を含むことが好ましい。 Examples of the ultraviolet absorber contained in the second ultraviolet absorbing layer include benzotriazole compounds, triazine compounds, and benzophenone compounds. It is preferable that a 2nd ultraviolet absorption layer contains at least 1 or more types chosen from said ultraviolet absorber. Moreover, it is preferable that the 1st ultraviolet absorption layer 25 also contains at least 1 type or more chosen from said ultraviolet absorber.
 反射層23は、この反射層23と接する第2の基材24上に接して形成される層(最下層)に、ガラス転移温度が0℃以下の高分子化合物を含むことが好ましい。さらに、このガラス転移温度が0℃以下の高分子化合物が、ウレタン結合を有することが好ましい。 The reflective layer 23 preferably contains a polymer compound having a glass transition temperature of 0 ° C. or lower in a layer (lowermost layer) formed on and in contact with the second substrate 24 in contact with the reflective layer 23. Furthermore, the polymer compound having a glass transition temperature of 0 ° C. or lower preferably has a urethane bond.
 光学反射フィルム20において、光入射側に設けられている第1の紫外線吸収層25、及び、反射層23は、上述の第1実施形態と同様の構成とすることができる。第1の紫外線吸収層25は、上述の第1実施形態と同様に、粘着層やその他の機能が付与されていてもよい。また、光学反射フィルム20において、最も裏面側に設けられている第2の紫外線吸収層となる第1の基材21は、上述の第1実施形態の光学反射フィルムにおける、紫外線吸収剤を含む基材と同様の構成を適用することができる。 In the optical reflection film 20, the first ultraviolet absorption layer 25 and the reflection layer 23 provided on the light incident side can have the same configuration as in the first embodiment. The first ultraviolet absorbing layer 25 may be provided with an adhesive layer and other functions as in the first embodiment. Moreover, in the optical reflection film 20, the 1st base material 21 used as the 2nd ultraviolet absorption layer provided in the backmost side is the group containing the ultraviolet absorber in the optical reflection film of the above-mentioned 1st Embodiment. A configuration similar to that of the material can be applied.
 第2の基材24は、上述の第1の基材21から、紫外線吸収剤を含まない構成を適用することができる。また、粘着層22は、上述の第1の紫外線吸収層25において、粘着剤等の粘着性を有する材料を含み、紫外線吸収剤を含まない構成を適用とすればよい。なお、第2の基材24や粘着層22は、第1の基材21や第1の紫外線吸収層25と同様に、紫外線吸収剤が含まれている構成をそのまま適用してもよい。 The 2nd base material 24 can apply the structure which does not contain an ultraviolet absorber from the above-mentioned 1st base material 21. FIG. In addition, the adhesive layer 22 may be configured to include a material having adhesive properties such as an adhesive in the above-described first ultraviolet absorbing layer 25 and not including an ultraviolet absorber. In addition, the 2nd base material 24 and the adhesion layer 22 may apply the structure containing the ultraviolet absorber like the 1st base material 21 and the 1st ultraviolet absorption layer 25 as it is.
[光学反射フィルムの変形例]
 次に、上述の第2実施形態の光学反射フィルムの変形例について説明する。図4に、第2実施形態の変形例の光学反射フィルムの概略構成を示す。なお、第2実施形態の光学反射フィルムの変形例は、第2の紫外線吸収層26を第1の基材21Aの裏面側に備えることを除き、上述の第2実施形態の光学反射フィルムと同様である。
[Modification of optical reflection film]
Next, a modification of the optical reflection film of the second embodiment will be described. In FIG. 4, schematic structure of the optical reflection film of the modification of 2nd Embodiment is shown. In addition, the modification of the optical reflection film of 2nd Embodiment is the same as the optical reflection film of the above-mentioned 2nd Embodiment except providing the 2nd ultraviolet absorption layer 26 on the back surface side of 21 A of 1st base materials. It is.
 図4に示す光学反射フィルム20Aは、第2の紫外線吸収層26、第1の基材21A、粘着層22、反射層23、第2の基材24、及び、第1の紫外線吸収層25を備える。光学反射フィルム20Aは、第1の紫外線吸収層25側が、窓ガラス等に貼り合わされる側であり、第1の紫外線吸収層25側から光学反射フィルム20Aに、主に反射層での反射を目的とする波長を含む光が入射する。 The optical reflective film 20A shown in FIG. 4 includes a second ultraviolet absorbing layer 26, a first base material 21A, an adhesive layer 22, a reflective layer 23, a second base material 24, and a first ultraviolet absorbing layer 25. Prepare. The optical reflection film 20A is a side on which the first ultraviolet absorption layer 25 side is bonded to a window glass or the like, and the optical reflection film 20A from the first ultraviolet absorption layer 25 side mainly reflects on the reflection layer. The light including the wavelength is incident.
 光学反射フィルム20Aは、上述の第2実施形態の光学反射フィルム20(図3参照)から、第1の基材21Aの構成、及び、第2の紫外線吸収層26を備えることのみが異なり、その他の構成は上述の第2実施形態と同様である。 The optical reflection film 20A differs from the optical reflection film 20 (see FIG. 3) of the above-described second embodiment only in that it includes the configuration of the first base material 21A and the second ultraviolet absorption layer 26, and others. The configuration is the same as that of the second embodiment described above.
 第1の基材21Aは、紫外線吸収剤を含まなくてもよいことのみが、上述の第2実施形態の光学反射フィルム20(図1参照)と異なる。光学反射フィルム20Aは、第1の基材21Aよりも裏面側に、第2の紫外線吸収層26を備える。このため、第1の基材21Aに紫外線吸収剤が含まれていない場合にも、裏面側からの紫外線を第2の紫外線吸収層26で吸収することができる。この結果、紫外線による第1の基材21A、及び、第2の基材24の劣化(分解)等が抑制され、光学反射フィルム20Aの交換作業等を行なう際の、第1の基材21A、及び、第2の基材24の破断を抑制することができる。 The first base 21A is different from the optical reflective film 20 (see FIG. 1) of the second embodiment only in that it does not need to contain an ultraviolet absorber. The optical reflective film 20A includes a second ultraviolet absorbing layer 26 on the back side of the first base 21A. For this reason, even when the first base 21 </ b> A does not contain an ultraviolet absorber, the second ultraviolet absorbing layer 26 can absorb the ultraviolet rays from the back surface side. As a result, deterioration (decomposition) or the like of the first base material 21A and the second base material 24 due to ultraviolet rays is suppressed, and the first base material 21A when the optical reflecting film 20A is exchanged or the like is performed. And the fracture | rupture of the 2nd base material 24 can be suppressed.
 なお、第1の基材21Aには、紫外線吸収剤が含まれていてもよい。この場合には、第1の基材21Aも、第1の紫外線吸収層25、第2の紫外線吸収層26とともに、紫外線吸収層(第3の紫外線吸収層)として機能する。このような構成では、第1の基材21A、及び、第2の基材24の劣化(分解)等による破断を抑制する効果をより期待できる。 Note that the first base material 21A may contain an ultraviolet absorber. In this case, the first base 21A also functions as an ultraviolet absorbing layer (third ultraviolet absorbing layer) together with the first ultraviolet absorbing layer 25 and the second ultraviolet absorbing layer 26. In such a configuration, an effect of suppressing breakage due to deterioration (decomposition) or the like of the first base material 21A and the second base material 24 can be further expected.
 光学反射フィルム20Aの第1の基材21Aの裏面側に設けられる、第2の紫外線吸収層26としては、上述の第1の紫外線吸収層25と同様の構成を適用することができる。すなわち、第2の紫外線吸収層26は、第1の紫外線吸収層25と同様の紫外線吸収剤や、ポリマー等を用いて構成することができる。さらに、粘着剤等を用いて紫外線吸収以外の機能を備える層としてもよい。 As the second ultraviolet absorbing layer 26 provided on the back surface side of the first base 21A of the optical reflecting film 20A, the same configuration as the first ultraviolet absorbing layer 25 described above can be applied. That is, the second ultraviolet absorbing layer 26 can be configured using the same ultraviolet absorbent, polymer, or the like as the first ultraviolet absorbing layer 25. Furthermore, it is good also as a layer provided with functions other than ultraviolet absorption using an adhesive.
 また、第2の紫外線吸収層26としては、例えば、第1の基材21Aの表面を保護するために設けられるハードコート層や、第1の基材21Aとハードコート層との間に設けられるアンカーコート層等を用いることができる。また、第2の紫外線吸収層26としては、ハードコート層やアンカーコート層以外の層であってもよく、紫外吸収材を保持することができる構成であれば特に限定されない。 Moreover, as the 2nd ultraviolet absorption layer 26, for example, it is provided between the hard coat layer provided in order to protect the surface of 21 A of 1st base materials, and the 1st base material 21A and a hard coat layer. An anchor coat layer or the like can be used. Further, the second ultraviolet absorbing layer 26 may be a layer other than the hard coat layer and the anchor coat layer, and is not particularly limited as long as it can hold the ultraviolet absorbing material.
〈試料101の光学反射フィルムの作製〉
 以下の方法により、紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)、基材、反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料101の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 101>
Sample 101 comprising an anchor coat layer (second ultraviolet absorption layer) containing an ultraviolet absorber, a substrate, a reflective layer A1, and an adhesive layer (first ultraviolet absorption layer) containing an ultraviolet absorber by the following method. An optical reflection film was prepared.
[基材の作製]
 以下の方法で、紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)を備える基材を作製した。
 LR1730(三菱レイヨン株式会社製、アクリル樹脂)を(固形分100%)を17質量部、エチル2-シアノ-3,3-ジフェニルアクリレート(製品名:SEESORB 501、シプロ化成株式会社製)を3質量部、エタノールを80質量部加え溶解して、アンカーコート層塗布液を調製した。
 次に、ポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層、幅160mm、厚さ50μm)の一方の面(裏面)上に、アンカーコート層塗布液を、乾燥層厚が2.0μmになるように、ワイヤーバーを用いて塗布した。さらに、塗膜を乾燥してアンカーコート層を形成し、紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)を有する基材を作製した。
[Production of substrate]
The base material provided with the anchor coat layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber with the following method was produced.
LR1730 (manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin) (solid content 100%) 17 parts by mass, ethyl 2-cyano-3,3-diphenyl acrylate (product name: SEESORB 501, made by Cypro Kasei Co., Ltd.) 3 masses Part and 80 parts by mass of ethanol were added and dissolved to prepare an anchor coat layer coating solution.
Next, an anchor coat layer coating solution is applied to one surface (back surface) of a polyethylene terephthalate film (A4300 manufactured by Toyobo A4300: double-sided easy adhesion layer, width 160 mm, thickness 50 μm) so that the dry layer thickness becomes 2.0 μm. And applied using a wire bar. Furthermore, the coating film was dried to form an anchor coat layer, and a base material having an anchor coat layer (second ultraviolet absorption layer) containing an ultraviolet absorber was produced.
[高屈折率層塗布液の作製]
(シリカ付着二酸化チタンゾルの作製)
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次に、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に加えて混合し、さらに、オートクレーブにおいて、175℃で18時間の加熱処理を行った。そして、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒径:9nm)を得た。
[Preparation of coating solution for high refractive index layer]
(Preparation of silica-attached titanium dioxide sol)
15.0% by mass of titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.) is added to 2 parts by mass of pure water and heated to 90 ° C. did. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration is 0.5 mass%) is gradually added and mixed. Furthermore, heat treatment was performed at 175 ° C. for 18 hours in an autoclave. And after cooling, it concentrates with an ultrafiltration membrane, Titanium dioxide sol (hereinafter referred to as silica-attached titanium dioxide sol) in which SiO 2 having a solid content concentration of 6% by mass was attached to the surface (volume average particle size: 9 nm) Got.
(高屈折率層塗布液の調整)
 得られたシリカ付着二酸化チタンゾル(20質量%)113質量部に対し、クエン酸水溶液(1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(クラレ社製、エクセバールRS-2117、鹸化度:97.5~99モル%、エチレン変性度:3.0mol%、重合度:1700、粘度(4%、20℃):23.0~30.0(mPa・s)、8質量%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)0.4質量部を加えて、高屈折率層塗布液を作製した。
 上記高屈折率層塗布液を用いて形成した層の屈折率は1.80であった。なお、屈折率の測定方法は後述する(他の層も同様)。
(Adjustment of high refractive index layer coating solution)
To 113 parts by mass of the silica-attached titanium dioxide sol (20% by mass), 48 parts by mass of an aqueous citric acid solution (1.92% by mass) was added, and ethylene modified polyvinyl alcohol (Kuraray Co., Ltd. Exval RS-2117, saponification) was added. Degree: 97.5 to 99 mol%, ethylene modification degree: 3.0 mol%, polymerization degree: 1700, viscosity (4%, 20 ° C.): 23.0 to 30.0 (mPa · s), 8% by mass) Was added and stirred, and finally 0.4 parts by mass of a 5% by weight aqueous surfactant solution (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added to prepare a high refractive index layer coating solution.
The refractive index of the layer formed using the high refractive index layer coating solution was 1.80. The method for measuring the refractive index will be described later (the same applies to other layers).
[低屈折率層用塗布液の作製]
 低屈折率層用塗布液を以下のようにして調製した。
 31質量部の酸性コロイダルシリカの10質量%水溶液(スノーテックスOXS、一次粒子径:5.4nm、日産化学工業株式会社製)を40℃に加熱し、ホウ酸3質量%水溶液3質量部を加え、さらに水溶性樹脂として39質量部のポリビニルアルコールの6質量%水溶液(PVA-224、重合度:2400、鹸化度:87モル%、クラレ株式会社製)と、1質量部の界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)とを40℃でこの順に添加し、低屈折率層塗布液を調製した。
 上記低屈折率層塗布液を用いて形成した層の屈折率は1.50であった。
[Preparation of coating solution for low refractive index layer]
A coating solution for a low refractive index layer was prepared as follows.
31 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution is added. Further, as a water-soluble resin, 39 parts by mass of a polyvinyl alcohol 6 mass% aqueous solution (PVA-224, polymerization degree: 2400, saponification degree: 87 mol%, manufactured by Kuraray Co., Ltd.) and 1 part by mass of a surfactant 5 A mass% aqueous solution (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 40 ° C. to prepare a low refractive index layer coating solution.
The layer formed using the low refractive index layer coating solution had a refractive index of 1.50.
[反射層A1の作製]
 6層重層塗布可能なスライドホッパー塗布装置を用いて、上記で調製した高屈折率層塗布液、及び、低屈折率層塗布液を、それぞれ40℃に調節した。そして、40℃に加温した上述の紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)を有する基材の他方の面(表面)上に、最表層と最下層とを低屈折率層として、高屈折率層と低屈折率層をそれぞれ交互に、計6層[低/低/高/低/高/低]の同時重層塗布を行った。同時重層塗布では、低屈折率層は乾燥後の厚さが150nmとなるように、高屈折率層は乾燥後の厚さが130nmになるように行なった。
 次に、塗布直後に10℃の冷風を吹き付けてセット(増粘)した後、60℃の温風を吹き付けて乾燥させて反射層A1を作製した。なお、反射層を構成する各層は、光学反射フィルム試料を切断して切断面をXPS表面分析装置で高屈折率材料(TiO)と低屈折率材料(SiO)の存在量を測定することで、上記各層の膜厚が確保されていることを確認した。
[Production of Reflective Layer A1]
The high refractive index layer coating solution and the low refractive index layer coating solution prepared above were each adjusted to 40 ° C. using a slide hopper coating device capable of six-layer multilayer coating. Then, on the other surface (surface) of the base material having the anchor coat layer (second ultraviolet absorption layer) containing the above-described ultraviolet absorber heated to 40 ° C., the outermost layer and the lowermost layer have a low refractive index. As the layers, a high refractive index layer and a low refractive index layer were alternately applied, and a total of 6 layers [low / low / high / low / high / low] were simultaneously applied. In the simultaneous multilayer coating, the low refractive index layer was 150 nm after drying, and the high refractive index layer was 130 nm after drying.
Next, after setting (thickening) 10 ° C. cold air immediately after coating, 60 ° C. warm air was blown and dried to produce a reflective layer A1. Each layer constituting the reflective layer is to determine the abundance of the high refractive index material cutting surface to cut the optical reflection film samples by XPS surface analyzer (TiO 2) and the low refractive index material (SiO 2) Thus, it was confirmed that the film thickness of each of the above layers was secured.
[粘着層の形成]
 下記の処方で粘着層塗布液を作製した。
 ・粘着剤:日本合成化学工業製 N-2147(固形分35質量%) 100質量部
 ・BASF製UV吸収剤 Tinuvin477(固形分80質量%) 2.1質量部
 ・イソシアネート系硬化剤 日本ポリウレタン工業製 コロネートL55E(固形分55質量%) 5質量部
 上記粘着層塗布液を、剥離フィルム(剥離層)であるセパレーターSP-PET(銘柄:PET-O2-BU)(三井化学東セロ株式会社製)のシリコン面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、80℃、1分間乾燥した。そして、反射層A1上に対して、粘着層塗布液を塗工した剥離フィルムをラミネートし、反射層A1上に、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)を形成した。
[Formation of adhesive layer]
An adhesive layer coating solution was prepared according to the following formulation.
-Adhesive: N2147 manufactured by Nippon Synthetic Chemical Industry (solid content 35% by mass) 100 parts by mass-UV absorber manufactured by BASF Tinuvin 477 (solid content 80% by mass) 2.1 parts by mass-Isocyanate-based curing agent manufactured by Nippon Polyurethane Industry Coronate L55E (solid content 55% by mass) 5 parts by mass The above-mentioned adhesive layer coating solution was used as a separator SP-PET (brand: PET-O2-BU) (made by Mitsui Chemicals, Inc.), which is a release film (release layer). The surface was coated with a comma coater so that the dry film thickness was 10 μm, and dried at 80 ° C. for 1 minute. And the peeling film which apply | coated the adhesion layer coating liquid was laminated | stacked with respect to reflective layer A1, and the adhesion layer (1st ultraviolet absorption layer) containing a ultraviolet absorber was formed on reflective layer A1.
〈試料102の光学反射フィルムの作製〉
 以下の方法により、紫外線吸収剤を含む基材(第2の紫外線吸収層)を作製した。そして、この基材上に、上述の試料101と同様の方法で反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)を作製して、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料102の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 102>
The base material (2nd ultraviolet absorption layer) containing an ultraviolet absorber was produced with the following method. Then, a reflective layer A1 and a pressure-sensitive adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber are produced on the substrate in the same manner as the above-described sample 101, and the substrate containing the ultraviolet absorber. An optical reflective film of the sample 102 including the (second ultraviolet absorbing layer), the reflective layer A1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber was produced.
[基材の作製]
 ポリブチレンテレフタレート・ドデカンジカルボン酸共重合体樹脂10kgを150℃、3時間真空乾燥した後、エチル2-シアノ-3,3-ジフェニルアクリレート(シアノアクリレート系紫外線吸収剤、製品名SEESORB 501、シプロ化成株式会社製)300gを加え、異方向回転二軸押出機に供給して310℃で溶融した。そして、3mmφの口金から押出し急冷後、ペレット状に切断して、紫外線吸収材入りポリエステルを得た。さらに、得られたポリエステルを、40mm径のエクストルーダによって230℃で溶融し、長さ160mm、間隔1mmの直線状口金を有するTダイから、表面を15℃に保った金属ドラム上に静電印加キャストして冷却固化し、厚さ25μmのポリエステルフィルムからなる、紫外線吸収剤を含む基材を作製した。
[Production of substrate]
After 10 kg of polybutylene terephthalate / dodecanedicarboxylic acid copolymer resin was vacuum dried at 150 ° C. for 3 hours, ethyl 2-cyano-3,3-diphenyl acrylate (cyanoacrylate UV absorber, product name SEESORB 501, Cipro Kasei Co., Ltd.) (Manufactured by the company) 300 g was added and fed to a different-direction rotating twin-screw extruder and melted at 310 ° C. Then, it was extruded from a 3 mmφ die, quenched, and then cut into pellets to obtain a polyester containing an ultraviolet absorber. Furthermore, the obtained polyester was melted at 230 ° C. by a 40 mm diameter extruder, and casted electrostatically on a metal drum whose surface was maintained at 15 ° C. from a T die having a length of 160 mm and an interval of 1 mm. Then, the substrate was cooled and solidified to prepare a base material containing a UV absorber and made of a polyester film having a thickness of 25 μm.
〈試料103の光学反射フィルムの作製〉
 基材として上述の試料102で作製した紫外線吸収剤を含む基材を用いた以外は、上述の試料101の光学反射フィルムの作製と同様の方法で、紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)、紫外線吸収剤を含む基材(第3の紫外線吸収層)、反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料103の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 103>
The anchor coat layer containing the UV absorber (secondary) is prepared in the same manner as the preparation of the optical reflective film of the sample 101 described above except that the base material containing the UV absorber prepared in the sample 102 is used as the substrate. Optical absorption of the sample 103 consisting of a base material (third ultraviolet absorption layer), a reflective layer A1, and an adhesive layer (first ultraviolet absorption layer) containing an ultraviolet absorber. A film was prepared.
〈試料104の光学反射フィルムの作製〉
 以下の方法により、裏面側に紫外線吸収剤を含むハードコート層(第2の紫外線吸収層)を有する基材を作製した。そして、この基材の表面上に、上述の試料101の作製と同様の方法で反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)を作製し、紫外線吸収剤を含むハードコート層(第2の紫外線吸収層)、基材、反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料104の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 104>
The base material which has the hard-coat layer (2nd ultraviolet absorption layer) which contains a ultraviolet absorber on the back side by the following method was produced. Then, on the surface of the base material, a reflective layer A1 and an adhesive layer containing a UV absorber (first UV absorber layer) are prepared in the same manner as in the preparation of the sample 101, and the UV absorber is added. An optical reflective film of sample 104 was prepared, which was composed of a hard coat layer (second ultraviolet absorbing layer), a base material, a reflective layer A1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber.
[基材の作製]
 以下の方法で、紫外線吸収剤を含むハードコート層(第2の紫外線吸収層)を備える基材を作製した。
[Production of substrate]
The base material provided with the hard-coat layer (2nd ultraviolet absorption layer) containing an ultraviolet absorber with the following method was produced.
[ハードコート層の作製]
(ハードコート層用塗布液HC1の調製)
 以下の各成分を混合して、塗布液HC1を調製した。
・YMF-02A(18質量%Cs0.33WO分散液、分散剤10質量%、平均粒径50nm、住友金属鉱山株式会社製) 300質量部
・アロニックス(登録商標)M-402(5、6官能アクリレート、5官能成分35質量%、東亞合成株式会社製) 100質量部
・Irgacure(登録商標)184(BASFジャパン株式会社製) 3質量部
・Irgacure(登録商標)819(BASFジャパン株式会社製) 3質量部
・エチル2-シアノ-3,3-ジフェニルアクリレート(製品名:SEESORB 501、シプロ化成株式会社製) 3質量部
・溶媒:MIBK(メチルイソブチルケトン) 165質量部
[Preparation of hard coat layer]
(Preparation of hard coat layer coating solution HC1)
The following components were mixed to prepare a coating liquid HC1.
YMF-02A (18 mass% Cs 0.33 WO 3 dispersion, dispersant 10 mass%, average particle size 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 300 mass parts Aronix (registered trademark) M-402 (5, 6 functional acrylates, 5 functional components 35% by mass, manufactured by Toagosei Co., Ltd.) 100 parts by mass / Irgacure (registered trademark) 184 (manufactured by BASF Japan) 3 parts by mass / Irgacure (registered trademark) 819 (manufactured by BASF Japan) 3 parts by mass / ethyl 2-cyano-3,3-diphenyl acrylate (product name: SEESORB 501, manufactured by Cypro Kasei Co., Ltd.) 3 parts by mass / solvent: 165 parts by mass of MIBK (methyl isobutyl ketone)
(ハードコート層の形成)
 基材の一方の面(裏面)上に、ハードコート層用塗布液HC1を、グラビアコーターで塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で塗布面側から紫外線を照射して塗膜を硬化させてハードコート層を形成した。ハードコート層の厚みは2μmになるよう調整した。
(Formation of hard coat layer)
On one surface (back surface) of the substrate, the hard coat layer coating solution HC1 was applied with a gravure coater and dried at 90 ° C. for 1 minute. Next, a hard coat layer is formed by irradiating ultraviolet rays from the coated surface side using an ultraviolet lamp under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm. did. The thickness of the hard coat layer was adjusted to 2 μm.
〈試料105の光学反射フィルムの作製〉
 以下の方法により、反射層A2を作製した以外は、上述の試料102の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層A2、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料105の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 105>
Except that the reflective layer A2 was produced by the following method, the base material (second ultraviolet absorbent layer) containing the ultraviolet absorbent, the reflective layer A2, and the ultraviolet absorbent was the same as the production of the sample 102 described above. An optical reflective film of Sample 105 consisting of an adhesive layer (first ultraviolet absorbing layer) containing an agent was prepared.
[反射層A2]
(低Tg樹脂含有低屈折率層塗布液[1]の作製)
 低Tg樹脂を含む低屈折率層用塗布液を、以下のように調製した。
 13質量部の酸性コロイダルシリカの10質量%水溶液(スノーテックスOXS、一次粒子径:5.4nm、日産化学工業株式会社製)を40℃に加熱し、ホウ酸3質量%水溶液を3質量部加え、さらに、水溶性樹脂としてポリビニルアルコールの6質量%水溶液(PVA-224、平均重合度:2400、鹸化度:87モル%、クラレ株式会社製)35質量部と、水分散アクリル樹脂6質量%水溶液(AE120A、Tg=-10℃、イーテック社製)3質量部と、界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)1質量部とを、40℃でこの順に添加し、低Tg樹脂含有低屈折率層塗布液[1]を調製した。
[Reflection layer A2]
(Preparation of low Tg resin-containing low refractive index layer coating solution [1])
A coating solution for a low refractive index layer containing a low Tg resin was prepared as follows.
13 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) was heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution was added. Furthermore, as a water-soluble resin, 35 parts by mass of a 6% by weight aqueous solution of polyvinyl alcohol (PVA-224, average degree of polymerization: 2400, degree of saponification: 87 mol%, manufactured by Kuraray Co., Ltd.) and a 6% by weight aqueous solution of water-dispersed acrylic resin 3 parts by weight (AE120A, Tg = −10 ° C., manufactured by Etec) and 1 part by weight of a 5% by weight aqueous solution of surfactant (Softafazoline LSB-R, manufactured by Kawaken Fine Chemicals) were added in this order at 40 ° C. A low Tg resin-containing low refractive index layer coating solution [1] was prepared.
(反射層A2の作製)
 6層重層塗布可能なスライドホッパー塗布装置を用いて、上述の試料101で調製した高屈折率層塗布液及び低屈折率層塗布液、並びに、上記の方法で調整した低Tg樹脂含有低屈折率層塗布液[1]を、それぞれ40℃に調節した。そして、40℃に加温した基材の他方の面(表面)上に、最下層を低Tg樹脂含有低屈折率層とし、この上に高屈折率層と低屈折率層とをそれぞれ交互に、計6層[低(低Tg)/低/高/低/高/低]の同時重層塗布を行った。同時重層塗布では、低屈折率層(低Tg樹脂含有低屈折率層含む)は乾燥後の厚さが150nmとなるように、高屈折率層は乾燥後の厚さが130nmになるように行なった。以降は、試料101と同様の方法で反射層A2を作製した。
(Preparation of reflective layer A2)
Using a slide hopper coating apparatus capable of six-layer coating, the high refractive index layer coating solution and the low refractive index layer coating solution prepared in the above-described sample 101, and the low refractive index containing low Tg resin adjusted by the above method The layer coating solution [1] was adjusted to 40 ° C., respectively. Then, on the other surface (surface) of the base material heated to 40 ° C., the lowermost layer is a low Tg resin-containing low refractive index layer, and a high refractive index layer and a low refractive index layer are alternately formed thereon. A total of 6 layers [low (low Tg) / low / high / low / high / low] were simultaneously applied. In the simultaneous multilayer coating, the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer A2 was produced in the same manner as the sample 101.
〈試料106の光学反射フィルムの作製〉
 以下の方法により反射層B1を作製し、粘着層(第1の紫外線吸収層)の厚さを10μmとした以外は、上述の試料101の作製と同様の方法で、紫外線吸収剤を含むアンカーコート層(第2の紫外線吸収層)、基材、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料106の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 106>
An anchor coat containing an ultraviolet absorber in the same manner as in the preparation of the sample 101 described above, except that the reflective layer B1 is prepared by the following method and the thickness of the adhesive layer (first ultraviolet absorbing layer) is 10 μm. An optical reflective film of Sample 106 composed of a layer (second ultraviolet absorbing layer), a base material, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber was produced.
[反射層B1]
 19層重層塗布可能なスライドホッパー塗布装置を用いて、上述の試料101で調製した高屈折率層塗布液、及び、低屈折率層塗布液を、それぞれ40℃に調節した。そして、40℃に加温した基材の他方の面(表面)上に、最表層と最下層とを低屈折率層として、高屈折率層と低屈折率層をそれぞれ交互に、計19層の同時重層塗布を行った。同時重層塗布では、低屈折率層は乾燥後の厚さが150nmとなるように、高屈折率層は乾燥後の厚さが130nmになるように行なった。
 次に、塗布直後に10℃の冷風を吹き付けてセット(増粘)した後、60℃の温風を吹き付けて乾燥させて反射層B1を作製した。なお、反射層を構成する各層は、光学反射フィルム試料を切断して切断面をXPS表面分析装置で高屈折率材料(TiO)と低屈折率材料(SiO)の存在量を測定することで、上記各層の膜厚が確保されていることを確認した。
[Reflection layer B1]
The high refractive index layer coating solution and the low refractive index layer coating solution prepared in the above-described sample 101 were each adjusted to 40 ° C. using a slide hopper coating apparatus capable of 19 layer multilayer coating. Then, on the other surface (surface) of the substrate heated to 40 ° C., the outermost layer and the lowermost layer are used as the low refractive index layer, and the high refractive index layer and the low refractive index layer are alternately arranged, for a total of 19 layers. The simultaneous multilayer coating was performed. In the simultaneous multilayer coating, the low refractive index layer was 150 nm after drying, and the high refractive index layer was 130 nm after drying.
Next, immediately after application, 10 ° C. cold air was blown to set (thickening), and then 60 ° C. hot air was blown to dry to produce a reflective layer B1. Each layer constituting the reflective layer is to determine the abundance of the high refractive index material cutting surface to cut the optical reflection film samples by XPS surface analyzer (TiO 2) and the low refractive index material (SiO 2) Thus, it was confirmed that the film thickness of each of the above layers was secured.
〈試料107の光学反射フィルムの作製〉
 試料106と同様の方法で反射層B1を作製し、粘着層(第1の紫外線吸収層)の厚さを10μmとした以外は、上述の試料102の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料107の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 107>
The reflective layer B1 was prepared in the same manner as the sample 106, and the ultraviolet absorber was changed in the same manner as in the preparation of the sample 102 except that the thickness of the adhesive layer (first ultraviolet absorbing layer) was 10 μm. An optical reflective film of Sample 107, which was composed of a base material (second ultraviolet absorbing layer) containing, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber, was prepared.
〈試料108の光学反射フィルムの作製〉
 粘着層(第1の紫外線吸収層)の厚さを20μmとした以外は、上述の試料106の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料108の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 108>
Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 20 μm, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 106 described above. An optical reflective film of Sample 108 composed of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
〈試料109の光学反射フィルムの作製〉
 粘着層(第1の紫外線吸収層)の厚さを20μmとした以外は、上述の試料107の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料109の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 109>
Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 20 μm, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 107 described above. An optical reflective film of Sample 109 made of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
〈試料110の光学反射フィルムの作製〉
 粘着層(第1の紫外線吸収層)の厚さを30μmとした以外は、上述の試料107の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料110の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 110>
Except for the thickness of the adhesive layer (first ultraviolet absorbing layer) being 30 μm, the base material containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are produced in the same manner as in the preparation of the sample 107 described above. An optical reflective film of Sample 110 made of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
〈試料111の光学反射フィルムの作製〉
 基材(第2の紫外線吸収層)の厚さを50μmとした以外は、上述の試料109の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料111の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 111>
Except for the thickness of the substrate (second ultraviolet absorbing layer) being 50 μm, the substrate containing the ultraviolet absorber (second ultraviolet absorbing layer) and the reflective layer are the same as in the preparation of the sample 109 described above. An optical reflective film of Sample 111 made of an adhesive layer (first ultraviolet absorbing layer) containing B1 and an ultraviolet absorber was produced.
〈試料112の光学反射フィルムの作製〉
 以下の方法により、反射層B2を作製した以外は、上述の試料111の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B2、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料112の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 112>
The base material (second ultraviolet absorbing layer) containing the ultraviolet absorber, the reflective layer B2, and the ultraviolet absorbing material are the same as those of the sample 111 described above except that the reflecting layer B2 is manufactured by the following method. An optical reflective film of Sample 112 composed of an adhesive layer (first ultraviolet absorbing layer) containing an agent was prepared.
[反射層B2]
 19層重層塗布可能なスライドホッパー塗布装置を用いて、上述の試料101で調製した高屈折率層塗布液及び低屈折率層塗布液、並びに、上述の試料105で調整した低Tg樹脂含有低屈折率層塗布液[1]を、それぞれ、40℃に調節した。そして、40℃に加温した基材の他方の面(表面)上に、最下層を低Tg樹脂含有低屈折率層とし、この上に高屈折率層と低屈折率層とをそれぞれ交互に積層し、最表層を低屈折率層とした、計19層の同時重層塗布を行った。同時重層塗布では、低屈折率層(低Tg樹脂含有低屈折率層含む)は乾燥後の厚さが150nmとなるように、高屈折率層は乾燥後の厚さが130nmになるように行なった。以降は、試料106の反射層B1と同様の方法で反射層B2を作製した。
[Reflection layer B2]
Using a slide hopper coating apparatus capable of 19-layer multilayer coating, the high refractive index layer coating solution and the low refractive index layer coating solution prepared in Sample 101 described above, and the low Tg resin-containing low refractive index prepared in Sample 105 described above The rate layer coating solution [1] was adjusted to 40 ° C., respectively. Then, on the other surface (surface) of the base material heated to 40 ° C., the lowermost layer is a low Tg resin-containing low refractive index layer, and a high refractive index layer and a low refractive index layer are alternately formed thereon. A total of 19 simultaneous multilayer coatings were carried out, with the outermost layer being a low refractive index layer. In the simultaneous multilayer coating, the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer B2 was produced in the same manner as the reflective layer B1 of the sample 106.
〈試料113の光学反射フィルムの作製〉
 基材(第2の紫外線吸収層)に用いる紫外線吸収剤として、ベンゾトリアゾール系の紫外線吸収剤であるアデカ社製のアデカスタブLA-29(2-(2H-Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phen)を同じ配合量で用いた以外は、上述の試料111の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料113の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 113>
As an ultraviolet absorber used for the substrate (second ultraviolet absorbing layer), ADEKA STAB LA-29 (2- (2H-Benzotriazol-2-yl) -4- (manufactured by Adeka), which is a benzotriazole-based ultraviolet absorber. Except that 1,1,3,3-tetramethylbutyl) phen) was used in the same amount, a base material containing a UV absorber (second UV absorbing layer) in the same manner as in the preparation of Sample 111 described above, An optical reflective film of Sample 113 composed of the reflective layer B1 and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber was produced.
〈試料114の光学反射フィルムの作製〉
 基材(第2の紫外線吸収層)に用いる紫外線吸収剤として、トリアジン系の紫外線吸収剤であるASF製のTinuvin477を用いた以外は、上述の試料111の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料114の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 114>
The UV absorber is the same as that of the above-described sample 111 except that ASF Tinuvin 477, which is a triazine UV absorber, is used as the UV absorber used for the substrate (second UV absorbing layer). An optical reflective film of Sample 114 was prepared, which was composed of a base material (second ultraviolet absorbing layer) containing, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber.
〈試料115の光学反射フィルムの作製〉
 基材(第2の紫外線吸収層)に用いる紫外線吸収剤として、ベンゾフェノン系の紫外線吸収剤であるシプロ化成製のSEESORB100(2,4-dihydroxybenzophenone)を用いた以外は、上述の試料111の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料115の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 115>
Preparation of sample 111 as described above, except that SEESORB100 (2,4-dihydroxybenzophenone) made by Cypro Kasei, which is a benzophenone-based UV absorber, was used as the UV absorber used for the base material (second UV absorbing layer). In the same manner, the optical reflective film of sample 115 comprising a base material (second ultraviolet absorbing layer) containing an ultraviolet absorber, a reflective layer B1, and an adhesive layer (first ultraviolet absorbing layer) containing an ultraviolet absorber. Was made.
〈試料116の光学反射フィルムの作製〉
 反射層B2を作製した以外は、上述の試料114の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B2、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料116の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 116>
Except that the reflective layer B2 was produced, the base material containing the ultraviolet absorber (second ultraviolet absorbent layer), the reflective layer B2, and the adhesive layer containing the ultraviolet absorber were prepared in the same manner as in the production of the sample 114 described above. An optical reflective film of Sample 116 made of (first ultraviolet absorbing layer) was produced.
〈試料117の光学反射フィルムの作製〉
 下記の方法で反射層B3を作製した以外は、上述の試料114の作製と同様の方法で、紫外線吸収剤を含む基材(第2の紫外線吸収層)、反射層B2、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)からなる試料117の光学反射フィルムを作製した。
<Preparation of Optical Reflective Film of Sample 117>
Except that the reflective layer B3 was produced by the following method, a base material (second ultraviolet absorbent layer) containing the ultraviolet absorbent, the reflective layer B2, and the ultraviolet absorbent was produced in the same manner as in the production of the sample 114 described above. An optical reflective film of Sample 117 made of an adhesive layer (first ultraviolet absorption layer) containing
[反射層B3]
(低Tg樹脂含有低屈折率層塗布液[2]の作製)
 低Tg樹脂を含む低屈折率層用塗布液を、以下のように調製した。
 13質量部の酸性コロイダルシリカの10質量%水溶液(スノーテックスOXS、一次粒子径:5.4nm、日産化学工業株式会社製)を40℃に加熱し、ホウ酸3質量%水溶液を3質量部加え、さらに水溶性樹脂としてポリビニルアルコールの6質量%水溶液(PVA-224、平均重合度:2400、鹸化度:87モル%、クラレ株式会社製)35質量部と、水分散ウレタン樹脂6質量%水溶液(ETERNACOLL UW-1005E、Tg=-30℃、宇部興産株式会社製)3質量部と、界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル社製)1質量部とを、40℃でこの順に添加し、低Tg樹脂含有低屈折率層塗布液[2]を調製した。
[Reflection layer B3]
(Preparation of low Tg resin-containing low refractive index layer coating solution [2])
A coating solution for a low refractive index layer containing a low Tg resin was prepared as follows.
13 parts by mass of an acidic colloidal silica 10% by mass aqueous solution (Snowtex OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) was heated to 40 ° C., and 3 parts by mass of boric acid 3% by mass aqueous solution was added. Furthermore, as a water-soluble resin, 35 parts by mass of a 6% by weight aqueous solution of polyvinyl alcohol (PVA-224, average polymerization degree: 2400, saponification degree: 87 mol%, manufactured by Kuraray Co., Ltd.) and a 6% by weight aqueous solution of water-dispersed urethane resin ( 3 parts by mass of ETERNACOLL UW-1005E, Tg = -30 ° C., manufactured by Ube Industries, Ltd.) and 1 part by mass of a 5% by weight aqueous solution of surfactant (Softazoline LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) Were added in this order to prepare a low Tg resin-containing low refractive index layer coating solution [2].
(反射層B3の作製)
 19層重層塗布可能なスライドホッパー塗布装置を用いて、上述の試料101で調製した高屈折率層塗布液及び低屈折率層塗布液、並びに、上述の方法で調整した低Tg樹脂含有低屈折率層塗布液[2]を、それぞれ、40℃に調節した。そして、40℃に加温した基材の他方の面(表面)上に、最下層を低Tg樹脂含有低屈折率層とし、この上に高屈折率層と低屈折率層とをそれぞれ交互に積層し、最表層を低屈折率層とした、計19層の同時重層塗布を行った。同時重層塗布では、低屈折率層(低Tg樹脂含有低屈折率層含む)は乾燥後の厚さが150nmとなるように、高屈折率層は乾燥後の厚さが130nmになるように行なった。以降は、試料106の反射層B1と同様の方法で反射層B3を作製した。
(Preparation of reflective layer B3)
Using a slide hopper coating apparatus capable of 19-layer multilayer coating, the high refractive index layer coating solution and the low refractive index layer coating solution prepared in the above-mentioned sample 101, and the low refractive index containing low Tg resin adjusted by the above method The layer coating solution [2] was adjusted to 40 ° C., respectively. Then, on the other surface (surface) of the base material heated to 40 ° C., the lowermost layer is a low Tg resin-containing low refractive index layer, and a high refractive index layer and a low refractive index layer are alternately formed thereon. A total of 19 simultaneous multilayer coatings were carried out, with the outermost layer being a low refractive index layer. In the simultaneous multilayer coating, the low refractive index layer (including the low refractive index layer containing low Tg resin) is 150 nm after drying, and the high refractive index layer is 130 nm after drying. It was. Thereafter, the reflective layer B3 was produced in the same manner as the reflective layer B1 of the sample 106.
〈試料118(リファレンス)の作製〉
 リファレンス用の試料として、ポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層、幅160mm、厚さ50μm)上に、上述の試料101と同様の方法で紫外線吸収剤を含む粘着層(第1の紫外線吸収層)のみを作製し、基材(紫外線吸収剤を含まない)と、粘着層(第1の紫外線吸収層)とからなる試料118を作製した。
<Preparation of Sample 118 (Reference)>
As a reference sample, an adhesive layer (first ultraviolet ray) containing a polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesive layer, width 160 mm, thickness 50 μm) and containing an ultraviolet absorber in the same manner as the sample 101 described above. Only an absorption layer) was produced, and a sample 118 composed of a base material (not including an ultraviolet absorber) and an adhesive layer (first ultraviolet absorption layer) was produced.
〈試料119の光学反射フィルムの作製〉
 ポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層、幅160mm、厚さ50μm)上に、上述の試料101と同様の方法で、反射層A1、及び、紫外線吸収剤を含む粘着層(第1の紫外線吸収層)を作製し、基材(紫外線吸収剤を含まない)、反射層A1、及び、粘着層(第1の紫外線吸収層)からなる試料119を作製した。
<Preparation of Optical Reflective Film of Sample 119>
On a polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer, width 160 mm, thickness 50 μm), in the same manner as the sample 101 described above, the reflective layer A1 and an adhesive layer containing an ultraviolet absorber (first An ultraviolet absorbing layer) was prepared, and a sample 119 including a base material (not including an ultraviolet absorber), a reflective layer A1, and an adhesive layer (first ultraviolet absorbing layer) was prepared.
〈試料120の光学反射フィルムの作製〉
 粘着層(第1の紫外線吸収層)の厚さを10μmとした以外は、上述の試料119と同様の方法で、基材(紫外線吸収剤を含まない)、反射層A1、及び、粘着層(第1の紫外線吸収層)からなる試料120を作製した。
<Preparation of optical reflection film of sample 120>
Except for the thickness of the pressure-sensitive adhesive layer (first ultraviolet absorbing layer) being 10 μm, the substrate (not including the ultraviolet absorber), the reflective layer A1, and the pressure-sensitive adhesive layer (including the ultraviolet absorbing agent) are the same as the above-described sample 119. A sample 120 made of a first ultraviolet absorbing layer was prepared.
〈試料121の光学反射フィルムの作製〉
 反射層A2を作製した以外は、上述の試料120と同様の方法で、基材(紫外線吸収剤を含まない)、反射層A2、及び、粘着層(第1の紫外線吸収層)からなる試料121を作製した。
<Preparation of Optical Reflective Film of Sample 121>
Except that the reflective layer A2 was produced, a sample 121 composed of a base material (not including an ultraviolet absorber), the reflective layer A2, and an adhesive layer (first ultraviolet absorber layer) was produced in the same manner as the sample 120 described above. Was made.
〈試料122の光学反射フィルムの作製〉
 反射層A3を作製した以外は、上述の試料120と同様の方法で、基材(紫外線吸収剤を含まない)、反射層A3、及び、粘着層(第1の紫外線吸収層)からなる試料122を作製した。
<Preparation of Optical Reflective Film of Sample 122>
Except that the reflective layer A3 was prepared, a sample 122 composed of a base material (not including an ultraviolet absorber), the reflective layer A3, and an adhesive layer (first ultraviolet absorber layer) was produced in the same manner as the sample 120 described above. Was made.
〈試料123の光学反射フィルムの作製〉
 反射層B1を作製した以外は、上述の試料119と同様の方法で、基材(紫外線吸収剤を含まない)、反射層B1、及び、粘着層(第1の紫外線吸収層)からなる試料123を作製した。
<Preparation of Optical Reflective Film of Sample 123>
Except that the reflective layer B1 was produced, a sample 123 composed of a base material (not including an ultraviolet absorber), the reflective layer B1, and an adhesive layer (first ultraviolet absorber layer) was produced in the same manner as the sample 119 described above. Was made.
〈評価〉
[赤外反射率、可視光透過率の測定]
 作製した光学反射フィルムの各試料からセパレーターSP-PET(剥離フィルム)を剥がして、ガラスに粘着層を介して光学反射フィルムを貼り付けた。そして、分光光度計(積分球使用、日立製作所社製、U-4100)を用い、各光学反射フィルムの赤外反射率(1000~1200nm)を測定し、平均反射率を計算した。また、紫外線透過率(300~380nm)も測定した。
<Evaluation>
[Measurement of infrared reflectance and visible light transmittance]
Separator SP-PET (peeling film) was peeled off from each sample of the produced optical reflecting film, and the optical reflecting film was attached to glass via an adhesive layer. Then, using a spectrophotometer (using an integrating sphere, manufactured by Hitachi, Ltd., U-4100), the infrared reflectance (1000 to 1200 nm) of each optical reflective film was measured, and the average reflectance was calculated. Further, the ultraviolet transmittance (300 to 380 nm) was also measured.
[初期剥離試験]
 反射層と基材のみの形態で実施した。反射層面を上面としてJIS 5600K-5-6に規定してあるクロスカット法に則り試験を一回実施後、同じ場所に対してテープ剥離試験を4回実施し、計5回のテープ剥離を実施したのちの、JIS 5600K-5-6に則り試験結果を分類した。
[Initial peel test]
It implemented with the form of only a reflective layer and a base material. After performing the test once according to the cross-cut method specified in JIS 5600K-5-6 with the reflective layer surface as the upper surface, the tape peeling test is performed four times at the same location, and the tape peeling is performed five times in total. After that, the test results were classified according to JIS 5600K-5-6.
[耐候性剥離試験]
 反射層と基材のみの形態で実施した。下記の耐候性試験(但し基材が反射層よりも光源側となる方向で試験片ホルダは開放型を使用する)を実施した後、反射層面を上面としてJIS 5600K-5-6に規定してあるクロスカット法に則りテープ剥離試験を一回実施後、さらに同じ場所に対してテープ剥離試験を4回実施し、計5回のテープ剥離を実施したのちの、JIS 5600K-5-6に則り試験結果を分類した。
[Weather resistance peel test]
It implemented with the form of only a reflective layer and a base material. After carrying out the following weather resistance test (however, the base material is closer to the light source than the reflective layer, the test piece holder is an open type), and the reflective layer surface is used as the upper surface as specified in JIS 5600K-5-6. After performing a tape peel test once according to a certain cross-cut method, and further performing a tape peel test at the same location four times, and after performing a total of five tape peels, according to JIS 5600K-5-6 The test results were classified.
[耐候性ピール試験]
 粘着層、紫外線吸収層を付与したサンプルで実施。下記の耐候性試験(但し試験片ホルダは開放型を使用する)を実施した後、180度剥離試験を実施し、破断又は剥離するまでの距離を測定した。
[Weather resistance peel test]
Implemented on samples with an adhesive layer and UV absorbing layer. After carrying out the following weather resistance test (however, the test piece holder uses an open mold), a 180 degree peel test was carried out, and the distance until breaking or peeling was measured.
(耐候性試験方法)
 作製した光学反射フィルムの各試料からセパレーターSP-PET(剥離フィルム)を剥がし、6cm×12cmのガラスに粘着層を介して光学反射フィルムを貼り付けた。そして、キセノンウェザーメーター(スガ試験機 SX-75)を用い、ガラス側が光入射側になるように配置して、JIS K 7350-2に則って試験を5000時間実施した。
(Weather resistance test method)
Separator SP-PET (peeling film) was peeled off from each sample of the produced optical reflecting film, and the optical reflecting film was attached to 6 cm × 12 cm glass via an adhesive layer. Then, using a xenon weather meter (Suga Tester SX-75), the glass side was placed on the light incident side, and the test was carried out for 5000 hours in accordance with JIS K 7350-2.
 試料101~123の光学反射フィルムについて、各構成、及び、各評価結果を表1に示す。 Table 1 shows each configuration and each evaluation result of the optical reflection films of Samples 101 to 123.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第2の紫外線吸収層を有していない試料118~123は、第2の紫外線吸収層を有している試料101~117に比べて、初期剥離試験が同程度であるにもかかわらず、耐候性剥離試験と耐候性ピール試験の結果が悪化している。この結果から、第1の紫外線吸収層(光入射側)だけでなく、第2の紫外線吸収層(裏面側)を有することにより、長期使用後も光学反射フィルムの破断を抑制できることがわかる。 As shown in Table 1, the samples 118 to 123 that do not have the second UV absorbing layer have the same initial peel test as the samples 101 to 117 that have the second UV absorbing layer. Nevertheless, the results of the weathering peel test and the weathering peel test are getting worse. From this result, it can be seen that by having not only the first ultraviolet absorbing layer (light incident side) but also the second ultraviolet absorbing layer (back side), breakage of the optical reflective film can be suppressed even after long-term use.
 また、試料101~117を比較すると、傾向として第2の紫外線吸収層(裏面側)の厚さが大きくなるほど、耐候性剥離試験に良好な結果が得られた。これは、第2の紫外線吸収層(裏面側)の厚さが大きくなるほど、含まれる紫外線吸収剤の量が増えることに起因すると考えられる。 Further, when samples 101 to 117 were compared, as the tendency of the thickness of the second ultraviolet absorbing layer (back surface side) to increase, a better result was obtained in the weather resistance peel test. This is considered to be due to the fact that the amount of the ultraviolet absorbent contained increases as the thickness of the second ultraviolet absorbing layer (back side) increases.
 また、反射層の最下層に低Tg樹脂を含む試料では、初期剥離試験と共に耐候性剥離試験も、特に良好な結果が得られた。これは、反射層の最下層に低Tg樹脂を含む層を形成することにより、基材と反射層との密着性や接着強度が向上すること、及び、第2の紫外線吸収層を有することにより、低Tg樹脂の劣化が抑制され、初期の高い密着性や接着強度が維持されたためと考えられる。 Moreover, in the sample containing the low Tg resin in the lowermost layer of the reflective layer, particularly good results were obtained in the weather resistance peel test as well as the initial peel test. This is because by forming a layer containing a low Tg resin in the lowermost layer of the reflective layer, the adhesion and adhesive strength between the substrate and the reflective layer are improved, and by having a second ultraviolet absorbing layer This is probably because the deterioration of the low Tg resin was suppressed and the initial high adhesion and adhesive strength were maintained.
 従って、光学反射フィルムの一方の面(例えば光入射側)の表面に第1の紫外線吸収層を有し、光学反射フィルムの他方の面(例えば裏面側)の表面に第2の紫外線吸収層(裏面側)を有することにより、紫外線による基材や反射層の劣化を抑制することができ、光学反射フィルムの破断を抑制することができる。 Accordingly, the first ultraviolet absorbing layer is provided on the surface of one surface (for example, the light incident side) of the optical reflecting film, and the second ultraviolet absorbing layer (for example, on the back surface side) of the optical reflecting film is provided. By having the back surface side), it is possible to suppress degradation of the base material and the reflective layer due to ultraviolet rays, and it is possible to suppress breakage of the optical reflective film.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,10A,20,20A・・・光学反射フィルム、11,11A・・・基材、12,23・・・反射層、13,25・・・第1の紫外線吸収層、14,26・・・第2の紫外線吸収層、21,21A・・・第1の基材、22・・・粘着層、24・・・第2の基材 10, 10A, 20, 20A ... optical reflective film, 11, 11A ... base material, 12, 23 ... reflective layer, 13, 25 ... first ultraviolet absorbing layer, 14, 26 ... -2nd ultraviolet absorption layer, 21, 21A ... 1st base material, 22 ... adhesion layer, 24 ... 2nd base material

Claims (6)

  1.  基材と、
     前記基材上に設けられた反射層と、
     前記反射層上に設けられた第1の紫外線吸収層と、を備え、
     前記基材、及び、前記基材の前記反射層が形成された面と反対側の面上に設けられる層の少なくともいずれか一方に紫外線吸収剤を含む
     光学反射フィルム。
    A substrate;
    A reflective layer provided on the substrate;
    A first ultraviolet absorbing layer provided on the reflective layer,
    An optical reflective film comprising an ultraviolet absorber in at least one of the base material and a layer provided on a surface of the base material opposite to the surface on which the reflective layer is formed.
  2.  波長1000~1200nmの平均分光反射率が30%以上90%未満であり、波長300~380nmの最大分光透過率が50%以下である請求項1に記載の光学反射フィルム。 The optical reflective film according to claim 1, wherein the average spectral reflectance at a wavelength of 1000 to 1200 nm is 30% or more and less than 90%, and the maximum spectral transmittance at a wavelength of 300 to 380 nm is 50% or less.
  3.  前記紫外線吸収剤が、ベンゾトリアゾール系化合物、トリアジン系化合物、及び、ベンゾフェノン系化合物から選ばれる少なくとも一種以上を含む請求項1に記載の光学反射フィルム。 The optical reflective film according to claim 1, wherein the ultraviolet absorber contains at least one selected from a benzotriazole compound, a triazine compound, and a benzophenone compound.
  4.  前記反射層の最も前記基材側に設けられる層に、ガラス転移温度が0℃以下の高分子化合物を含む請求項1に記載の光学反射フィルム。 The optical reflective film according to claim 1, wherein the layer provided on the most base side of the reflective layer contains a polymer compound having a glass transition temperature of 0 ° C or lower.
  5.  前記高分子化合物がウレタン結合を有する請求項4に記載の光学反射フィルム。 The optical reflective film according to claim 4, wherein the polymer compound has a urethane bond.
  6.  第1の基材と、
     前記第1の基材上に設けられた粘着層と、
     前記粘着層上に設けられた反射層と、
     前記反射層上に設けられた第2の基材と、
     前記第2の基材上に設けられた第1の紫外線吸収層と、を備え、
     前記第1の基材、及び、前記第1の基材の前記反射層が形成された面と反対側の面上に設けられる層の少なくともいずれか一方に、紫外線吸収剤を含む
     光学反射フィルム。
    A first substrate;
    An adhesive layer provided on the first substrate;
    A reflective layer provided on the adhesive layer;
    A second substrate provided on the reflective layer;
    A first ultraviolet absorbing layer provided on the second substrate,
    An optical reflective film comprising an ultraviolet absorber in at least one of the first base material and a layer provided on the surface of the first base material opposite to the surface on which the reflective layer is formed.
PCT/JP2016/074211 2015-09-09 2016-08-19 Optical reflection film WO2017043288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015177195 2015-09-09
JP2015-177195 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017043288A1 true WO2017043288A1 (en) 2017-03-16

Family

ID=58239638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074211 WO2017043288A1 (en) 2015-09-09 2016-08-19 Optical reflection film

Country Status (1)

Country Link
WO (1) WO2017043288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210138879A1 (en) * 2019-11-08 2021-05-13 Mockstar, Inc. Uv protection screen for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093481A (en) * 2010-10-26 2012-05-17 Konica Minolta Holdings Inc Near-infrared light reflection film and near-infrared light reflector having the same
JP2012137646A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
WO2013183544A1 (en) * 2012-06-06 2013-12-12 コニカミノルタ株式会社 Infrared-shielding film and infrared-shielding body
WO2014199990A1 (en) * 2013-06-14 2014-12-18 コニカミノルタ株式会社 Derivative multilayer film
JP2015125168A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Dielectric multilayer film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093481A (en) * 2010-10-26 2012-05-17 Konica Minolta Holdings Inc Near-infrared light reflection film and near-infrared light reflector having the same
JP2012137646A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
WO2013183544A1 (en) * 2012-06-06 2013-12-12 コニカミノルタ株式会社 Infrared-shielding film and infrared-shielding body
WO2014199990A1 (en) * 2013-06-14 2014-12-18 コニカミノルタ株式会社 Derivative multilayer film
JP2015125168A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Dielectric multilayer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210138879A1 (en) * 2019-11-08 2021-05-13 Mockstar, Inc. Uv protection screen for vehicles

Similar Documents

Publication Publication Date Title
JP6443341B2 (en) Light reflecting film and light reflector using the same
WO2013099564A1 (en) Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2017010280A1 (en) Heat ray shielding film
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
WO2016006388A1 (en) Optical film
WO2018207563A1 (en) Light-reflecting film and method for producing light-reflecting film
JP6428608B2 (en) Infrared shielding film, infrared shielding film installation method and infrared shielding film iris prevention method
JP2014201450A (en) Heat-ray shielding laminated glass and method for manufacturing heat-ray shielding laminated glass
WO2016194560A1 (en) Infrared-shielding film
CN107615117B (en) Optical reflective film
WO2016017513A1 (en) Infrared reflective film and laminated glass
JP2015125168A (en) Dielectric multilayer film
WO2017043288A1 (en) Optical reflection film
WO2017077810A1 (en) Light reflecting film
JP6759697B2 (en) Roll-shaped optical reflective film
JP2016088042A (en) Antistatic heat shielding film and method for producing antistatic heat shielding film
US10328454B2 (en) Method for producing optical film
JP6414081B2 (en) Optical reflective film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP2017090714A (en) Infrared shielding film, and infrared reflection body
JP2018041000A (en) Optical reflection film
WO2017169810A1 (en) Optical reflection film
JP6672984B2 (en) Optical reflection film, method for manufacturing optical reflection film, and optical reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP