JP2012137646A - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP2012137646A
JP2012137646A JP2010290427A JP2010290427A JP2012137646A JP 2012137646 A JP2012137646 A JP 2012137646A JP 2010290427 A JP2010290427 A JP 2010290427A JP 2010290427 A JP2010290427 A JP 2010290427A JP 2012137646 A JP2012137646 A JP 2012137646A
Authority
JP
Japan
Prior art keywords
wavelength region
light
optical filter
infrared
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010290427A
Other languages
Japanese (ja)
Other versions
JP2012137646A5 (en
JP5823119B2 (en
Inventor
Shinji Uchiyama
真志 内山
Michio Yanagi
道男 柳
Yasuhiro Sato
安紘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46675102&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012137646(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2010290427A priority Critical patent/JP5823119B2/en
Publication of JP2012137646A publication Critical patent/JP2012137646A/en
Publication of JP2012137646A5 publication Critical patent/JP2012137646A5/ja
Application granted granted Critical
Publication of JP5823119B2 publication Critical patent/JP5823119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce occurrence of ghost light and to realize thickness reduction and low cost.SOLUTION: A light absorbing structure 3 formed with a resin layer, into which a dye absorbing light having a predetermined wavelength is dispersed, and a near infrared light reflecting structure 4a being formed by laminating a plurality of inorganic thin films so as to reflect the light having the predetermined wavelength are deposited on one surface of a transparent substrate 2. A similar near infrared light reflecting structure 4b is deposited on an opposite surface thereof. Transmission of a light beam in any wavelength region is limited. At least a part of an absorbing wavelength region of the light absorbing structure 3 is overlapped with an inside of a transition wavelength region of near infrared light that transits from a transmitting wavelength region formed with near infrared light reflecting structures 4a and 4b to a non-transmitting wavelength region.

Description

本発明は、所定の波長領域の光の透過を制限する光学フィルタに関するものである。   The present invention relates to an optical filter that restricts transmission of light in a predetermined wavelength region.

ビデオカメラ等の撮像装置に使用される固体撮像素子は、人眼の感度特性に対応させるために、分光透過率等の光学特性を調節するフィルタと組み合わせて使用されることがある。具体的には、近赤外線カットフィルタや紫外線カットフィルタ、又はこれらを1枚のフィルタで実現した紫外赤外線カットフィルタ等がある。   A solid-state imaging device used in an imaging apparatus such as a video camera may be used in combination with a filter that adjusts optical characteristics such as spectral transmittance in order to correspond to the sensitivity characteristics of the human eye. Specifically, there are a near-infrared cut filter, an ultraviolet cut filter, or an ultraviolet / infrared cut filter in which these are realized by a single filter.

これらの光学フィルタは所望の波長領域の光の透過を制限するために、光学フィルタの基材内に特定の波長の光を吸収する材料を練り込んだり、基材上に塗布したりすることにより特定の波長の光を吸収している。このような吸収タイプの光学フィルタとしては、特許文献1〜4に示すように、金属イオンや色素等を基材に練り込んだり、樹脂バインダ中に特定波長の光を吸収する特性を有する色素等を分散させた有機薄膜を基材上に塗布する方法が提案されている。   In order to limit the transmission of light in a desired wavelength region, these optical filters are prepared by kneading or applying a material that absorbs light of a specific wavelength into the base material of the optical filter. Absorbs light of a specific wavelength. As such an absorption type optical filter, as shown in Patent Documents 1 to 4, a dye having a characteristic of kneading a metal ion, a dye, or the like into a substrate, or absorbing light of a specific wavelength in a resin binder, etc. There has been proposed a method of applying an organic thin film in which is dispersed on a substrate.

また特許文献5には、基材上に屈折率の異なる2種類以上の薄膜を積層し、薄膜の干渉を利用し特定の波長の光を反射させるものが開示されている。この反射タイプの赤外線カットフィルタは、透過波長領域における透過率を高く、かつ平坦に作製可能なため色再現性が良く、また吸収タイプの赤外線カットフィルタと比較すると、薄く作製できると云う利点を有している。   Patent Document 5 discloses a technique in which two or more kinds of thin films having different refractive indexes are laminated on a base material, and light of a specific wavelength is reflected by using interference of the thin films. This reflection type infrared cut filter has the advantage that it has a high transmittance in the transmission wavelength region and can be made flat, so that color reproducibility is good, and it can be made thinner than an absorption type infrared cut filter. is doing.

反射タイプの光学フィルタは、真空蒸着法やIAD法、イオンプレーティング法、スパッタ法等により透明基板上に多層膜を積層することにより作製され、近年では軽量化や任意形状への加工等の要望に伴い、合成樹脂透明基板も用いられてきている。   Reflective type optical filters are manufactured by laminating a multilayer film on a transparent substrate by vacuum deposition, IAD, ion plating, sputtering, etc. Recently, demands for weight reduction and processing to any shape are desired. Accordingly, synthetic resin transparent substrates have also been used.

特許文献6、7では、光学フィルタの薄型化のために、複数の薄膜の積層体である近赤外光反射構造体と、赤外波長領域に吸収帯を有する色素をバインダに分散させた有機薄膜による光吸収構造体とを組合わせたハイブリッドタイプが提案されている。この構成により、反射構造体の赤外波長領域の反射率を小さく設計することができるため、反射構造体の積層数が少なくなり、薄型化を達成することができる。   In Patent Documents 6 and 7, in order to reduce the thickness of an optical filter, an organic material in which a near-infrared light reflecting structure, which is a laminate of a plurality of thin films, and a dye having an absorption band in the infrared wavelength region are dispersed in a binder. A hybrid type combining a light absorbing structure using a thin film has been proposed. With this configuration, since the reflectance in the infrared wavelength region of the reflective structure can be designed to be small, the number of reflective structures stacked can be reduced, and a reduction in thickness can be achieved.

特開2001−133623号公報JP 2001-133623 A 特開2005−99820号公報JP 2005-99820 A 特開2000−7870号公報JP 2000-7870 A 特開2002−303720号公報JP 2002-303720 A 特開2003−161831号公報JP 2003-161831 A 特開2006−301489号公報JP 2006-301894A 特開2008−51985号公報JP 2008-51985 A 特開2005−62430号公報JP 2005-62430 A 特開2005−148283号公報JP 2005-148283 A 特開平5−134113号公報Japanese Patent Laid-Open No. 5-134113

特許文献5に示すような反射タイプの光学フィルタは構成上、光を透過させる透過波長領域と、透過を妨げる不透過波長領域と、透過波長領域から不透過波長領域へと遷移する遷移波長領域とを備えており、透過率と反射率が共に約50%となる波長を有している。このうち、遷移波長領域の帯域は波長領域で0nm、つまり存在しないことが望ましいが、実際に実現は困難であるため、例えば50nm程度の波長領域の間で、透過率を理想的には100→0%、又は0→100%へと変化させている。   The reflection-type optical filter as shown in Patent Document 5 is structurally configured to transmit a light transmission wavelength region, a non-transmission wavelength region that prevents transmission, and a transition wavelength region that transitions from a transmission wavelength region to a non-transmission wavelength region. And has a wavelength at which both transmittance and reflectance are about 50%. Of these, it is desirable that the band of the transition wavelength region is 0 nm in the wavelength region, that is, it does not exist. However, since it is actually difficult to realize, for example, the transmittance is ideally changed to 100 → between the wavelength region of about 50 nm. 0% or 0 → 100%.

上述の反射タイプのフィルタをビデオカメラ等の撮像光学系において使用すると、入射した入射光のうち、遷移波長領域に該当する波長の一部がフィルタを透過した後に撮像素子等で反射し、その一部が再度撮像素子側から光学フィルタ面に入射してしまう。反射タイプの光学フィルタにおいては、この再入射光の一部が再度光学フィルタで反射され、その反射光が撮像素子に再び到達することにより、ゴースト光が発生し、画像を劣化させてしまうことがある。   When the above-described reflection type filter is used in an imaging optical system such as a video camera, a part of the incident light incident on the transition wavelength region is reflected by the imaging element after passing through the filter. Part again enters the optical filter surface from the image sensor side. In the reflection type optical filter, a part of the re-incident light is reflected again by the optical filter, and the reflected light reaches the image sensor again, thereby generating ghost light and degrading the image. is there.

ゴースト光が問題となる場合には、吸収材料を使用した吸収タイプの光学フィルタを使用することが好ましい。銅イオンや赤外吸収機能を有する色素を用いた赤外線カットフィルタは反射率が小さく、反射タイプのようにゴースト光が問題となることは殆どない。しかし、色素のみで赤外波長領域光を遮蔽する吸収タイプの光学フィルタによって、カメラやビデオカメラ等の撮像光学系に利用できるような分光を得るものは、現在のところ開発されていない。   When ghost light is a problem, it is preferable to use an absorption type optical filter using an absorbing material. An infrared cut filter using copper ions or a dye having an infrared absorption function has a low reflectance, and ghost light hardly poses a problem unlike the reflection type. However, an absorption type optical filter that shields light in the infrared wavelength region with only a dye has not been developed so far to obtain a spectrum that can be used in an imaging optical system such as a camera or a video camera.

前述したように特許文献1〜4の吸収タイプの光学フィルタにおいては、吸収成分のみで700〜1100nm又は1200nm程度まで近赤外光領域に渡る不透過波長領域の透過率を制限している。しかし、理想的な0%に近付けると、透過波長領域である可視波長領域の透過率まで低下したり、透過波長領域に大きなリップルが発生する問題がある。更に、吸収層に相応の厚みを必要とし、特に基板内に吸収剤を分散させたような場合には、概ね0.3〜0.5mm以上の厚みの基板が必要となり、近年の光学フィルタの薄型化・小型化への要望を達成することが困難となる。   As described above, in the absorption type optical filters of Patent Documents 1 to 4, the transmittance in the non-transmission wavelength region over the near infrared light region is limited to only about 700 to 1100 nm or 1200 nm with only the absorption component. However, when approaching the ideal 0%, there is a problem that the transmittance in the visible wavelength region, which is the transmission wavelength region, is reduced or a large ripple is generated in the transmission wavelength region. Furthermore, when the absorbing layer needs to have a suitable thickness, especially when the absorbent is dispersed in the substrate, a substrate with a thickness of about 0.3 to 0.5 mm or more is required. It becomes difficult to achieve the demand for thinning and miniaturization.

特許文献6、7のようなハイブリッドタイプの光学フィルタであっても、可視波長領域の透過率を高くすると、概ね可視波長領域の一部と重なる遷移波長領域、特に無機薄膜で形成された近赤外側の半値波長において、大きな吸収を得ることができない。そのため、この波長領域の反射を大きく低減することはできず、上述の赤外線によるゴースト光の強度を低減することが困難となる。   Even in the hybrid type optical filter as disclosed in Patent Documents 6 and 7, when the transmittance in the visible wavelength region is increased, the transition wavelength region that overlaps with a part of the visible wavelength region, particularly a near red formed by an inorganic thin film. Large absorption cannot be obtained at the outer half-value wavelength. For this reason, the reflection in this wavelength region cannot be greatly reduced, and it becomes difficult to reduce the intensity of the ghost light by the infrared rays.

更に、特許文献6、7で用いられるような赤外線吸収用の色素は、一般に紫外線の影響で分光特性が変化し易いという問題を有する場合がある。色素の紫外線に対する対策としては、特許文献8で基板に紫外線吸収剤を含有させ、色素を含む赤外線吸収層に紫外線が入射することを防止する赤外線カットフィルタが開示されている。しかし、この特許文献8のような構成においては、赤外線吸収層の片方の面のみしか紫外光吸収効果がないため、赤外線カットフィルタの配置方向に限定が生ずる。   Further, infrared absorbing dyes such as those used in Patent Documents 6 and 7 may have a problem that spectral characteristics are likely to change due to the influence of ultraviolet rays. As a countermeasure against the ultraviolet rays of the dye, Patent Document 8 discloses an infrared cut filter that contains an ultraviolet absorber in a substrate and prevents the ultraviolet rays from entering the infrared absorbing layer containing the dye. However, in the configuration as in Patent Document 8, since only one side of the infrared absorption layer has an ultraviolet light absorption effect, the arrangement direction of the infrared cut filter is limited.

特許文献9には、上記問題がある場合にこれを解決するため、色素を含む赤外線吸収層の両面に紫外線吸収層を設けた赤外線カットフィルタが開示されている。しかし、この特許文献9の赤外線カットフィルタの分光特性は色素にのみよって決定されており、上述のようにカメラやビデオカメラの撮像光学系に求められるような赤外線カットフィルタを色素のみで作製することは困難である。具体的には、赤外線を十分に遮蔽しようとすると、透過波長領域の透過率が低下してしまうことになる。   Patent Document 9 discloses an infrared cut filter in which an ultraviolet absorption layer is provided on both sides of an infrared absorption layer containing a dye in order to solve the above problem when there is the above problem. However, the spectral characteristic of the infrared cut filter of Patent Document 9 is determined only by the dye, and as described above, an infrared cut filter as required for an imaging optical system of a camera or a video camera is produced only by the dye. It is difficult. Specifically, if the infrared rays are sufficiently shielded, the transmittance in the transmission wavelength region is lowered.

また同様に、特許文献10に開示されているように、紫外線吸収層にカーボンナノチューブを利用した場合には、カーボンナノチューブの吸収特性を考慮すると、可視波長領域にまで吸収が発生し、可視波長領域の透過率まで低減してしまい、コスト的にも問題がある。   Similarly, as disclosed in Patent Document 10, in the case where carbon nanotubes are used for the ultraviolet absorption layer, in consideration of absorption characteristics of the carbon nanotubes, absorption occurs in the visible wavelength region, and the visible wavelength region Therefore, there is a problem in terms of cost.

本発明の第1の目的は、上述の問題点を解消し、薄型化を妨げることなく、ゴースト光の発生を低減し赤外線遮蔽機能を有する光学フィルタを提供することにある。   A first object of the present invention is to provide an optical filter that eliminates the above-mentioned problems and reduces the generation of ghost light and has an infrared shielding function without hindering the reduction in thickness.

本発明の第2の目的は、第1の目的に加えて、紫外線遮蔽機能を有する光学フィルタを提供することにある。   A second object of the present invention is to provide an optical filter having an ultraviolet shielding function in addition to the first object.

上記目的を達成するための本発明に係る光学フィルタは、透明基板上に、樹脂層により形成し所定の吸収波長領域を有する光吸収構造体と、複数の無機薄膜を積層し少なくとも近赤外波長領域の一部を反射する少なくとも1つの近赤外光反射構造体とを有し、前記少なくとも1つの近赤外光反射構造体は光の透過波長領域から不透過波長領域に遷移する遷移波長領域を有し、前記光吸収構造体の前記吸収波長領域の少なくとも一部は前記遷移波長領域と重なることを特徴とする。   In order to achieve the above object, an optical filter according to the present invention includes a light absorption structure formed of a resin layer and having a predetermined absorption wavelength region on a transparent substrate and a plurality of inorganic thin films, and at least a near infrared wavelength. A transition wavelength region having at least one near-infrared light reflecting structure that reflects a part of the region, wherein the at least one near-infrared light reflecting structure transitions from a light transmission wavelength region to a non-transmission wavelength region And at least a part of the absorption wavelength region of the light absorption structure overlaps with the transition wavelength region.

また、本発明に係る光学フィルタは、透明基板上に、樹脂層により形成し所定の吸収波長領域を有する光吸収構造体と、複数の無機薄膜を積層し少なくとも近赤外波長領域の一部を反射する少なくとも1つの近赤外光反射構造体と、紫外光反射構造体又は紫外光吸収構造体とを有し、前記近赤外光反射構造体は、近赤外光の透過波長領域から不透過波長領域に遷移する遷移波長領域を有し、前記光吸収構造体の前記吸収波長領域の少なくとも一部は前記遷移波長領域と重なることを特徴とする。   The optical filter according to the present invention includes a light absorption structure formed of a resin layer and having a predetermined absorption wavelength region on a transparent substrate and a plurality of inorganic thin films, and at least a part of the near infrared wavelength region. It has at least one near-infrared light reflecting structure that reflects and an ultraviolet light reflecting structure or an ultraviolet light absorbing structure, and the near-infrared light reflecting structure is not visible from the transmission wavelength region of near-infrared light. It has a transition wavelength region that transitions to a transmission wavelength region, and at least a part of the absorption wavelength region of the light absorption structure overlaps with the transition wavelength region.

本発明に係る光学フィルタによれば、近赤外線反射機能に加えて、近赤外線遮蔽機能を近赤外吸収色素を含有した樹脂層による光の吸収により実現するため、薄型化が可能で、ゴースト光を低減することができる。また、所望の吸収特性を得るために、複数の吸収材料を組合わせる必要が少ないために、透過波長領域でリップルを発生させる虞れが低く、コストを低減することができる。   According to the optical filter of the present invention, in addition to the near-infrared reflecting function, the near-infrared shielding function is realized by light absorption by the resin layer containing the near-infrared absorbing dye, so that the thickness can be reduced, and the ghost light Can be reduced. In addition, since it is less necessary to combine a plurality of absorbing materials in order to obtain desired absorption characteristics, there is a low possibility of generating ripples in the transmission wavelength region, and costs can be reduced.

また、本発明に係る光学フィルタによれば、上述の効果に加えて、紫外線遮蔽機能を有し、紫外光による赤外線吸収層の光学特性の変化を少なくできる。   Moreover, according to the optical filter which concerns on this invention, in addition to the above-mentioned effect, it has an ultraviolet-ray shielding function and can reduce the change of the optical characteristic of the infrared rays absorption layer by ultraviolet light.

実施例1の光学フィルタの構成図である。2 is a configuration diagram of an optical filter according to Embodiment 1. FIG. 近赤外光反射構造体による分光透過率のグラフ図である。It is a graph figure of the spectral transmittance by a near-infrared-light reflection structure. 光吸収構造体の分光吸収率のグラフ図である。It is a graph of the spectral absorptance of a light absorption structure. 赤外線カットフィルタの分光特性のグラフ図である。It is a graph of the spectral characteristics of an infrared cut filter. 従来例の有機薄膜層によるフィルタの分光透過率のグラフ図である。It is a graph of the spectral transmittance of the filter by the organic thin film layer of a prior art example. 他の近赤外光反射構造体の分光透過率のグラフ図である。It is a graph of the spectral transmittance of another near-infrared light reflecting structure. 他の光吸収構造体に使用する色素の分光透過率のグラフ図である。It is a graph of the spectral transmittance | permeability of the pigment | dye used for another light absorption structure. 実施例2の光学フィルタの構成図である。6 is a configuration diagram of an optical filter of Example 2. FIG. 実施例3の光学フィルタの構成図である。6 is a configuration diagram of an optical filter according to Embodiment 3. FIG. 実施例4の光学フィルタの構成図である。FIG. 6 is a configuration diagram of an optical filter of Example 4. 変形例1の光学フィルタの構成図である。FIG. 10 is a configuration diagram of an optical filter according to Modification 1. 変形例2の光学フィルタの構成図である。FIG. 10 is a configuration diagram of an optical filter according to Modification 2. 実施例5の撮像装置の光学的構成図である。FIG. 6 is an optical configuration diagram of an imaging apparatus according to Embodiment 5. 実施例6の光量絞り装置の斜視図である。It is a perspective view of the light quantity diaphragming device of Example 6.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は少なくとも近赤外光領域の光の透過を制限する赤外線カットフィルタとして機能する実施例1の光学フィルタ1の構成図を示している。この光学フィルタ1においては、透明基板2上に、所望の波長領域に吸収を有する色素を樹脂バインダ中に分散させて構成した有機薄膜から成る光吸収構造体3が成膜されている。また、この光吸収構造体3上には、複数の蒸着膜を積層することにより構成した無機薄膜から成る近赤外光反射構造体4aが成膜されている。更に、透明基板2の反対の面には、同様に無機薄膜から成る近赤外光反射構造体4bが設けられている。   FIG. 1 shows a configuration diagram of an optical filter 1 of Example 1 that functions as an infrared cut filter that restricts transmission of light in at least the near-infrared light region. In this optical filter 1, a light absorption structure 3 made of an organic thin film formed by dispersing a dye having absorption in a desired wavelength region in a resin binder is formed on a transparent substrate 2. On the light absorbing structure 3, a near infrared light reflecting structure 4a made of an inorganic thin film formed by laminating a plurality of vapor deposition films is formed. Further, on the opposite surface of the transparent substrate 2, a near-infrared light reflecting structure 4b made of an inorganic thin film is provided.

透明基板2は合成樹脂材から成る例えば板厚0.1mmのノルボルネン系材料であるArton(JSR製、製品名)フィルムが使用されている。Artonフィルムはガラス転移温度(Tg)が100℃以上あり、曲げ弾性率が約3000MPa程度と比較的高く、透明基板2の割れやうねりを低減できる。実施例1においてはArtonフィルムを使用したが、この他にポリイミド系の樹脂フィルム等も好適な材料の1つである。更には、可視波長領域において透明性を有するものであれば、例えばPET、PEN、ポリエステル系、アクリル系、アラミド系、PC(ポリカーボネート)、アセテート、ポリ塩化ビニル、PVA(ポリビニルアルコール)等の使用が可能である。   The transparent substrate 2 is made of, for example, an Arton (product name) film made of synthetic resin, which is a norbornene-based material having a thickness of 0.1 mm. The Arton film has a glass transition temperature (Tg) of 100 ° C. or higher and a flexural modulus of about 3000 MPa, which is relatively high, and can reduce cracks and undulations of the transparent substrate 2. In Example 1, an Arton film was used, but in addition to this, a polyimide resin film or the like is also a suitable material. Furthermore, if it has transparency in the visible wavelength region, for example, use of PET, PEN, polyester, acrylic, aramid, PC (polycarbonate), acetate, polyvinyl chloride, PVA (polyvinyl alcohol), etc. Is possible.

光吸収構造体3は色素を分散させた樹脂層を、例えばスピンコート法により塗工することにより形成されている。光吸収構造体3を構成する樹脂バインダにはアクリル系樹脂を用いているが、このアクリル系樹脂は透明基板2と樹脂層との密着の観点から、一部にスチレンを含有しているアクリル−スチレン共重合樹脂を選択している。   The light absorbing structure 3 is formed by applying a resin layer in which a pigment is dispersed, for example, by a spin coating method. An acrylic resin is used for the resin binder constituting the light absorbing structure 3, and this acrylic resin is an acrylic resin partially containing styrene from the viewpoint of adhesion between the transparent substrate 2 and the resin layer. Styrene copolymer resin is selected.

なお、アクリル系樹脂以外にも可視波長領域において透光性が高ければ、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、フッ素樹脂、、PC系樹脂、ポリイミド系樹脂、、ポリオレフィン系樹脂等が考えられる。これらの樹脂は単体又は2種類以上を混合して用いてもよく、また共重合体として用いることもできる。つまり、可視波長領域における吸収が小さい材料であればよく、透明基板2となる材料や、前後のプロセス、フィルタに要求される特性、色素との相性等の様々な要素を考慮し、最適な樹脂バインダを選択すればよい。   In addition to acrylic resins, polystyrene resin, polyester resin, polyurethane resin, fluororesin, PC resin, polyimide resin, polyolefin resin, etc. can be considered if they have high translucency in the visible wavelength region. It is done. These resins may be used alone or in admixture of two or more, or may be used as a copolymer. In other words, any material that absorbs less light in the visible wavelength region may be used, and an optimal resin is considered in consideration of various factors such as the material to be the transparent substrate 2, the preceding and following processes, the characteristics required for the filter, and compatibility with the dye. What is necessary is just to select a binder.

樹脂バインダは透明基板2との屈折率差が小さいものがより好ましい。透明基板2と光吸収構造体3とが隣接する場合に、屈折率差を小さくすることで、透明基板2と樹脂の界面での反射を小さくし、膜厚を薄くしても干渉効果による影響をより小さくすることが可能である。また同様の理由から、透明基板2と光吸収構造体3との間に接着層や応力緩和層等の機能膜層を挿入する場合であっても、透明基板2、機能膜層、光吸収構造体3の三者の屈折率が近いものがより好ましい。   More preferably, the resin binder has a small refractive index difference from the transparent substrate 2. When the transparent substrate 2 and the light-absorbing structure 3 are adjacent to each other, the refractive index difference is reduced to reduce the reflection at the interface between the transparent substrate 2 and the resin, and the influence of the interference effect even if the film thickness is reduced. Can be made smaller. For the same reason, even when a functional film layer such as an adhesive layer or a stress relaxation layer is inserted between the transparent substrate 2 and the light absorbing structure 3, the transparent substrate 2, the functional film layer, the light absorbing structure It is more preferable that the three members of the body 3 have similar refractive indexes.

光吸収構造体3の塗工はスピンコート法に限らず、ディップコート法、グラビアコート法、スプレーコート法、キスコート法、ダイコート法、ナイフコート法、ブレードコート法、バーコータ法等であっても、同様の膜を形成することができる。つまり、所望の分光を満足する膜厚や、形状、生産性等を考慮して、最適な成膜方法を選択すればよい。   The coating of the light absorbing structure 3 is not limited to the spin coat method, and may be a dip coat method, a gravure coat method, a spray coat method, a kiss coat method, a die coat method, a knife coat method, a blade coat method, a bar coater method, Similar films can be formed. That is, an optimum film formation method may be selected in consideration of a film thickness, shape, productivity, and the like that satisfy a desired spectrum.

光吸収構造体3の樹脂層が乾燥することで発生する硬化収縮に起因する応力に関しては、光吸収構造体3の膜厚を薄くすることで低減することが可能である。この際に、所望の吸収特性を維持するために、色素の濃度調整や、例えばスピンコート法であれば回転速度等の塗工プロセスの調整が必要となる。   The stress caused by curing shrinkage that occurs when the resin layer of the light absorption structure 3 is dried can be reduced by reducing the film thickness of the light absorption structure 3. At this time, in order to maintain the desired absorption characteristics, it is necessary to adjust the concentration of the dye and, for example, the coating process such as the rotation speed in the case of the spin coating method.

有機薄膜により構成された光吸収構造体3の場合に、色素成分は水分に弱いため、樹脂バインダ中に分散させても、特に温度や湿度等の周囲環境から、樹脂が少なからず吸水してしまい、色素成分がその影響を受けて光学特性が変化してしまうことがある。このため、光吸収構造体3よりも表層側に近赤外光反射構造体4aを配置している。   In the case of the light-absorbing structure 3 composed of an organic thin film, the dye component is weak in moisture, so even if dispersed in a resin binder, the resin absorbs water notably from the surrounding environment such as temperature and humidity. In some cases, the optical properties of the pigment component may change due to the influence of the pigment component. For this reason, the near-infrared-light reflecting structure 4a is arranged on the surface layer side of the light absorbing structure 3.

近赤外光反射構造体4a、4bはそれぞれ少なくとも2種類以上の無機薄膜を積層して成膜され、反射構造体4a、4bは1つの薄膜積層構造体として機能し、或る波長領域の透過を制限している。   Each of the near-infrared light reflecting structures 4a and 4b is formed by laminating at least two kinds of inorganic thin films, and the reflecting structures 4a and 4b function as one thin film laminated structure and transmit in a certain wavelength region. Is limiting.

透明基板2に合成樹脂材を使用した場合には、近赤外光反射構造体4a、4bの成膜プロセスに起因する熱の問題が発生する。ガラス透明基板と比較して、ガラス転移温度が極端に低い樹脂透明基板の場合には、透明基板2と膜との線膨張係数の差に起因する透明基板2の反りや、この反りに伴う膜面のクラックの発生等が考えられる。そこで、成膜中に発生する熱への施策が必要である。具体的には、透明基板2としてガラス転移温度の高い材料を選択したり、成膜中での低温プロセスを採用することが考えられる。   When a synthetic resin material is used for the transparent substrate 2, a heat problem due to the film forming process of the near-infrared light reflecting structures 4a and 4b occurs. In the case of a resin transparent substrate having an extremely low glass transition temperature compared to a glass transparent substrate, the warp of the transparent substrate 2 due to the difference in the linear expansion coefficient between the transparent substrate 2 and the film, and the film accompanying this warp The occurrence of cracks on the surface can be considered. Therefore, measures for heat generated during film formation are necessary. Specifically, it is conceivable to select a material having a high glass transition temperature as the transparent substrate 2 or to employ a low-temperature process during film formation.

近赤外光反射構造体4a、4bの成膜においては成膜装置に吸熱機構を設け、放射冷却効果により成膜中に透明基板2に発生する熱を除去する手法を選択した。その際に、成膜プロセスで到達する透明基板2上の最高温度を予め測定し、その温度に耐え得る材料を選択する必要がある。実施例1では、成膜プロセスの安定性を考慮し、先に実験した到達最高温度に或る程度の許容値を加味し、ガラス転移温度を適性判断のパラメータとし、約70℃以上のガラス転移温度を有する透明基板2を選択している。   In the film formation of the near-infrared light reflecting structures 4a and 4b, a method of providing a heat absorption mechanism in the film forming apparatus and removing heat generated in the transparent substrate 2 during film formation by a radiation cooling effect was selected. At that time, it is necessary to measure in advance the maximum temperature on the transparent substrate 2 reached in the film forming process and select a material that can withstand that temperature. In Example 1, considering the stability of the film forming process, a certain allowable value is added to the maximum temperature reached in the experiment, and the glass transition temperature is used as a parameter for determining the suitability. A transparent substrate 2 having a temperature is selected.

また、近赤外光反射構造体4a、4bの成膜中の温度を通常の成膜温度の場合よりも、何らかのアシストを付加したり、スパッタ等の比較的に高エネルギで成膜し、膜密度が高くなるプロセスを選択することがより好ましい。具体的には、スパッタ法、IAD法、イオンプレーティング法、IBS法、クラスタ蒸着法等の膜厚を比較的正確に制御でき、再現性の高い膜を得ることができる成膜法であればよい。蒸着以外の物理的又は化学的成膜方法で形成してもよいし、ゾルゲル法などのウェットプロセスで成膜してもよく、必要とされる膜の性質や、透明基板2を含めた各材料の制約条件等から最適な方法を選択すればよい。   Further, the temperature during the film formation of the near-infrared light reflecting structures 4a and 4b is added with some assistance compared to the case of the normal film formation temperature, or the film is formed with relatively high energy such as sputtering. It is more preferable to select a process that increases the density. Specifically, any film forming method capable of relatively accurately controlling the film thickness, such as a sputtering method, an IAD method, an ion plating method, an IBS method, and a cluster vapor deposition method, to obtain a highly reproducible film. Good. It may be formed by a physical or chemical film formation method other than vapor deposition, or may be formed by a wet process such as a sol-gel method. The required film properties and various materials including the transparent substrate 2 An optimal method may be selected based on the constraint conditions.

図2は板厚0.1mmのArtonフィルムから成る透明基板2に、近赤外光反射構造体4a、4bのみを成膜した場合の反射タイプのフィルタの分光透過率特性のグラフ図である。このフィルタは可視波長領域で透過率が高く、紫外波長領域から可視波長領域にかけての領域の波長の透過を防止する第1阻止波長領域W1、可視波長領域から近赤外波長領域にかけての波長領域に第2阻止波長領域W2を有している。更に、第2阻止波長領域W2から近赤外波長にかけての波長領域に第3阻止波長領域W3を有し、3つの阻止波長領域W1〜W3により構成されている。   FIG. 2 is a graph showing the spectral transmittance characteristics of the reflection type filter when only the near-infrared light reflecting structures 4a and 4b are formed on the transparent substrate 2 made of Arton film having a thickness of 0.1 mm. This filter has a high transmittance in the visible wavelength region, a first blocking wavelength region W1 that prevents transmission of wavelengths in the ultraviolet wavelength region to the visible wavelength region, and a wavelength region in the visible wavelength region to the near infrared wavelength region. A second blocking wavelength region W2 is provided. Further, the third blocking wavelength region W3 is provided in the wavelength region from the second blocking wavelength region W2 to the near-infrared wavelength, and is constituted by three blocking wavelength regions W1 to W3.

ここで、1つの阻止波長領域を構成する薄膜積層構造を1つのブロックとして考えると、第1〜第3阻止波長領域W1〜W3を形成する3つのブロックにより形成される。それぞれを第1〜3スタックとすると、3つのスタックはそれぞれ異なる中心波長を有する。この中心波長をλとした場合に、高屈折率材料と低屈折率材料とを、それぞれ交互にλ/4ずつ積層した構成を基本とし、所望の光学特性を得るために、各層の膜厚に概ね0.7〜1.3倍程度の微調を加えて積層する。   Here, when the thin film laminated structure constituting one blocking wavelength region is considered as one block, it is formed by three blocks forming the first to third blocking wavelength regions W1 to W3. If each is the first to third stacks, the three stacks have different center wavelengths. When this central wavelength is λ, the basic structure is a structure in which high refractive index materials and low refractive index materials are alternately laminated by λ / 4, and in order to obtain desired optical characteristics, the film thickness of each layer is set. Laminate with a fine adjustment of about 0.7 to 1.3 times.

近赤外光反射構造体4a、4bの薄膜積層構造は、IAD法により複数層の無機質から成る誘電体膜を順次に積層することにより形成している。一般に、このような多層膜においては膜応力が非常に大きくなり、光学系の薄型化の観点から透明基板2の板厚を薄くした場合には、透明基板2に反りが生ずる虞れがある。この対策として、図1に示すように透明基板2の両面に反射構造体4a、4bをそれぞれ成膜すると、理想的には透明基板2の両面に同じ材料、膜厚、膜質で積層することになり、膜応力を低減できることになる。   The thin film laminated structure of the near-infrared light reflecting structures 4a and 4b is formed by sequentially laminating a plurality of dielectric films made of inorganic materials by the IAD method. Generally, in such a multilayer film, the film stress becomes very large, and if the thickness of the transparent substrate 2 is reduced from the viewpoint of reducing the thickness of the optical system, the transparent substrate 2 may be warped. As a countermeasure, when the reflective structures 4a and 4b are respectively formed on both surfaces of the transparent substrate 2 as shown in FIG. 1, ideally, the same material, film thickness, and film quality are laminated on both surfaces of the transparent substrate 2. Thus, the film stress can be reduced.

しかし、その場合には膜の構成設計が困難となり、透明基板2の片面に設計した場合と同じ積層数となるように膜設計を行うと、光学特性が大きく犠牲となる虞れがある。また、光学特性と膜応力の緩和を同時に満足させるためには、積層数が増加し、フィルタ製作の工数アップの要因となる。膜応力による透明基板2の反りが問題となる場合には、図1に示すように薄膜積層構造体を透明基板2の両面に分割して配置することが好適な手法となる。   However, in that case, the structural design of the film becomes difficult, and if the film design is performed so that the number of stacked layers is the same as that in the case of designing on one side of the transparent substrate 2, the optical characteristics may be greatly sacrificed. In addition, in order to satisfy both the optical characteristics and the relaxation of the film stress at the same time, the number of layers increases, which increases the number of steps for manufacturing the filter. When warping of the transparent substrate 2 due to film stress becomes a problem, it is preferable to divide and arrange the thin film laminated structure on both surfaces of the transparent substrate 2 as shown in FIG.

以上の説明は透明基板2に近赤外光反射構造体4a、4bのみを配置した場合であるが、加えて実施例1では、光吸収構造体3と近赤外光反射構造体4a、4bとの応力バランスを加味することも必要となる。それぞれの応力を予め測定しておき、透明基板2の両面への配置を最適化することにより、透明基板2の両面の応力バランスを取ることが好ましい。   Although the above description is a case where only the near-infrared light reflecting structures 4a and 4b are disposed on the transparent substrate 2, in addition, in Example 1, the light-absorbing structure 3 and the near-infrared light reflecting structures 4a and 4b are used. It is also necessary to take into account the stress balance. It is preferable to balance the stresses on both sides of the transparent substrate 2 by measuring each stress in advance and optimizing the arrangement on both sides of the transparent substrate 2.

従って、実施例1では透明基板2上に先ず光吸収構造体3を形成し、その上層に近赤外光反射構造体4aによる29層の薄膜を成膜し、その後に透明基板2の反対の面に近赤外光反射構造体4bによる21層の薄膜を成膜している。このような反射構造体4a、4bから成る誘電体膜の材料には、高屈折率材料にはTiO2、低屈折率材料にはSiO2を使用し、TiO2とSiO2を交互に積層した。 Therefore, in Example 1, the light absorption structure 3 is first formed on the transparent substrate 2, and a 29-layer thin film of the near-infrared light reflection structure 4 a is formed thereon, and then the opposite of the transparent substrate 2. A 21-layer thin film made of the near-infrared light reflecting structure 4b is formed on the surface. The material for such a reflective structure 4a, a dielectric film made of 4b, TiO 2 in the high refractive index material, the low refractive index material using SiO 2, were laminated TiO 2 and SiO 2 alternately .

この他に、成膜手法によっても異なるが、一般的に高屈折率材料にはNb25、ZrO2、Ta25等が使用され、低屈折率材用にはMgF2を使用する場合もある。設計上や成膜上の理由から、中間屈折率材料であるAl23等を一部の層で使用する場合もあるが、適宜に最適な材料の組合わせを選択すればよい。 In addition, although it depends on the film forming method, generally Nb 2 O 5 , ZrO 2 , Ta 2 O 5 or the like is used for the high refractive index material, and MgF 2 is used for the low refractive index material. In some cases. For reasons of design and film formation, Al 2 O 3 or the like, which is an intermediate refractive index material, may be used in some layers, but an optimal combination of materials may be selected as appropriate.

ただし、透明基板2や空気との界面の層と、中心波長λが異なる各スタック同士が隣接している層等においては、微調の範囲を超えることがあり、例えば0.5倍のλ/4程度の膜厚になることがある。更に、全層の中で上述した界面層とは別に数層、例えば全層が40層であれば1〜3層程度、微調の範囲を超える層がある場合もある。また、設計によっては中間屈折率材料を加えた3種類以上の材料により構成されることもある。   However, the layer at the interface with the transparent substrate 2 or air and the layer in which the stacks having different center wavelengths λ are adjacent to each other may exceed the fine adjustment range, for example, 0.5 times λ / 4 The film thickness may be about the same. Furthermore, in addition to the interface layer described above, there may be several layers, for example, about 1 to 3 layers if the total number of layers is 40, and there may be layers exceeding the fine adjustment range. Further, depending on the design, it may be composed of three or more kinds of materials including an intermediate refractive index material.

このように、無機薄膜だけで形成された近赤外光反射構造体4a、4bによる赤外線カットフィルタは、遷移波長領域の赤外光半値波長でゴースト光の強度が最大となるので、光吸収構造体3を用いて赤外光半値波長の光を吸収させることが好ましい。   As described above, since the infrared cut filter using the near-infrared light reflecting structures 4a and 4b formed only of the inorganic thin film has the maximum ghost light intensity at the half-wavelength of infrared light in the transition wavelength region, the light absorption structure It is preferable that the body 3 is used to absorb light having a half-wavelength of infrared light.

一般に、近赤外光反射構造体のみで赤外線カットフィルタを構成した場合に、図2に示すようにこの赤外光半値波長は、可視波長領域の一部であり遷移波長領域の600〜750nmの範囲内に形成されることが多い。また、前述のような光吸収構造体3を含んで赤外線カットフィルタを構成する場合は、光吸収構造体3の光吸収特性も考慮して、図4に示すように近赤外光反射構造体の遷移波長領域を赤外側にシフトさせてもよい。つまり、赤外光半値波長を650〜750nm範囲の遷移波長領域内に形成するようにしてもよい。   In general, when an infrared cut filter is composed of only a near-infrared light reflecting structure, as shown in FIG. 2, this half-wavelength of infrared light is a part of the visible wavelength region and is 600 to 750 nm in the transition wavelength region. Often formed within a range. Further, when an infrared cut filter is configured including the light absorbing structure 3 as described above, the near infrared light reflecting structure as shown in FIG. 4 is also considered in consideration of the light absorption characteristics of the light absorbing structure 3. The transition wavelength region may be shifted to the infrared side. That is, you may make it form an infrared-light half-value wavelength in the transition wavelength area | region of 650-750 nm range.

このように、赤外光半値波長が形成される遷移波長領域が600〜750nmの間において、光吸収構造体3は吸収波長領域を有することが好ましい。更には、可視波長領域から近赤外波長領域である400〜1200nm程度までの波長領域において、上述の半値波長を含む650〜800nm程度の波長領域中に、最大の吸収特性を有することがより好ましい。これは650nmよりも短い波長に吸収のピークを有する特性であると、本来必要とする透過波長領域の光も大きく吸収してしまうためである。また、800nmよりも長い波長において吸収ピークを有する特性であると、遷移波長領域で十分な吸収を得ることができない虞れがある。   Thus, it is preferable that the light absorption structure 3 has an absorption wavelength region when the transition wavelength region where the half-wavelength of infrared light is formed is between 600 and 750 nm. Furthermore, in the wavelength region from the visible wavelength region to the near-infrared wavelength region of about 400 to 1200 nm, it is more preferable to have the maximum absorption characteristic in the wavelength region of about 650 to 800 nm including the above half-value wavelength. . This is because if the characteristic has an absorption peak at a wavelength shorter than 650 nm, light in the transmission wavelength region that is originally required is also largely absorbed. In addition, if the characteristic has an absorption peak at a wavelength longer than 800 nm, there is a possibility that sufficient absorption cannot be obtained in the transition wavelength region.

また、実施例1の光学フィルタ1のように、ハイブリッドタイプのフィルタの場合には、有機薄膜による吸収と無機薄膜による反射を考慮し、所望の波長が赤外光半値波長となるように、予め調整することが必要となる場合がある。   Moreover, in the case of a hybrid type filter like the optical filter 1 of Example 1, the absorption by the organic thin film and the reflection by the inorganic thin film are taken into consideration so that the desired wavelength becomes the half-wavelength of infrared light in advance. It may be necessary to adjust.

図3は光吸収構造体3のシアニン系の色素をアクリル系の樹脂バインダ中に分散させた場合の所定の吸収波長領域を有する分光特性を示し、所望の吸収を得られるように色素の濃度及び膜厚を調整し、膜状に塗工して形成している。このように分散された色素は、近赤外光反射構造体4a、4bにより形成された近赤外光を透過する透過波長領域から不透過波長領域に遷移する遷移波長領域の分光透過率の赤外光半値波長を含む波長近傍に吸収帯を有している。   FIG. 3 shows spectral characteristics having a predetermined absorption wavelength region when the cyanine dye of the light absorption structure 3 is dispersed in an acrylic resin binder, and the concentration of the dye and the dye so as to obtain a desired absorption. It is formed by adjusting the film thickness and coating it into a film. The pigment dispersed in this manner is red in the spectral transmittance in the transition wavelength region where the near-infrared light formed by the near-infrared light reflecting structures 4a and 4b transitions from the transmission wavelength region that transmits the near-infrared light to the non-transmission wavelength region. It has an absorption band in the vicinity of the wavelength including the external light half-value wavelength.

光吸収構造体3には赤外光吸収色素としてシアニン系の色素を用いたが、これに限定されることはない。例えば、アゾ系やフタロシアニン系、ナフタロシアニン系、ジイモニウム系、ポリメチン系、アンスラキノン系、ナフトキノン系、トリフェニルメタン系、アミニウム系、ピリリウム系、スクワリリウム系等の色素を単体又は混合して用いることができる。ただし、赤外線カットフィルタの色再現性を考慮し、透過波長領域における吸収が小さく、透過波長領域における透過率が平坦又は連続的に変化する色素が好ましい。   The light absorbing structure 3 uses a cyanine dye as an infrared light absorbing dye, but is not limited thereto. For example, azo dyes, phthalocyanine dyes, naphthalocyanine dyes, diimonium dyes, polymethine dyes, anthraquinone dyes, naphthoquinone dyes, triphenylmethane dyes, aminium dyes, pyrylium dyes, squarylium dyes may be used alone or in combination. it can. However, in consideration of the color reproducibility of the infrared cut filter, a dye having a small absorption in the transmission wavelength region and a flat or continuously changing transmittance in the transmission wavelength region is preferable.

この際に、メチルエチルケトン(MEK)やトルエン、メチルイソブチルケトン(MIBK)等の溶剤を添加し、塗工後に乾燥工程を経て揮発させることが一般的であるが、色素や樹脂バインダ、塗工法等の関係から最適な溶剤を適宜に選択すればよい。例えば、溶媒はケトン系に限らず、シクロヘキサン、トルエン等の炭化水素系、酢酸メチル、酢酸エチル等のエステル系、ジエチルエーテル、テトラヒドロフラン等のエーテル系、メタノール、エタノール等のアルコール系、ジメチルホルムアミド等のアミン系の溶媒や水を、色素・樹脂バインダの溶解性や揮発性等を考慮し、単体又は2種類以上の混合物として最適な組合わせになるように選択すればよい。   At this time, it is common to add a solvent such as methyl ethyl ketone (MEK), toluene, methyl isobutyl ketone (MIBK), and volatilize it through a drying process after coating. What is necessary is just to select the optimal solvent suitably from a relationship. For example, the solvent is not limited to ketones, but hydrocarbons such as cyclohexane and toluene, esters such as methyl acetate and ethyl acetate, ethers such as diethyl ether and tetrahydrofuran, alcohols such as methanol and ethanol, dimethylformamide, etc. The amine solvent or water may be selected so as to be an optimum combination as a single substance or a mixture of two or more kinds in consideration of the solubility and volatility of the pigment / resin binder.

また、光吸収構造体3に酸化防止剤を添加することで、色素の劣化を低減することができる場合もある。酸化防止剤としては、フェノール系、ビンダードフェノール系、アミン系、ビンダードアミン系、硫黄系、リン酸系、亜リン酸系等が挙げられる。   In addition, by adding an antioxidant to the light absorption structure 3, deterioration of the pigment may be reduced in some cases. Examples of the antioxidant include phenol-based, binderd phenol-based, amine-based, binderd amine-based, sulfur-based, phosphoric acid-based, phosphorous acid-based and the like.

図4は上述の方法により製作された光学フィルタ1の分光透過率特性のグラフ図を示し、図2に示す近赤外光反射構造体4a、4b、図3に示す光吸収構造体3の分光特性を合成したものとなる。赤外線カットフィルタによるゴースト光の強度は、簡易的には(赤外線カットフィルタの分光透過率)・(赤外線カットフィルタの分光反射率)で計算された値が目安となる。光学フィルタを無機薄膜のみで構成した場合に、ゴースト光の強度は赤外光半値波長で最大となり、透過率50%、反射率50%と仮定すると、その値は概ね25%程度となる。   FIG. 4 is a graph showing the spectral transmittance characteristics of the optical filter 1 manufactured by the above-described method. The spectral characteristics of the near-infrared light reflecting structures 4a and 4b shown in FIG. 2 and the light absorbing structure 3 shown in FIG. It is a composite of characteristics. The intensity of the ghost light by the infrared cut filter is simply a value calculated by (spectral transmittance of the infrared cut filter) / (spectral reflectance of the infrared cut filter). When the optical filter is composed of only an inorganic thin film, the intensity of the ghost light is maximum at the half-wavelength of infrared light, and assuming that the transmittance is 50% and the reflectance is 50%, the value is about 25%.

実用的には、ゴースト光の強度は少なくとも15〜16%程度までは低減する必要がある。従って、例えば強度を16%以下にまで低減するには、光吸収構造体3を組合わせた場合に、少なくとも透過率40%、反射率40%となるように光吸収構造体3の、前記した赤外光半値波長での吸収率は20%程度以上が必要となる。   Practically, it is necessary to reduce the intensity of ghost light to at least about 15 to 16%. Therefore, for example, in order to reduce the strength to 16% or less, when the light absorption structure 3 is combined, the light absorption structure 3 is at least 40% transmittance and 40% reflectance. The absorptance at the half-wavelength of infrared light needs to be about 20% or more.

簡易的な計算では、近赤外光反射構造体4a、4bのみでのゴースト光の最大強度が上述の25%程度であるのに対し、実施例1で作製した光学フィルタ1の遷移波長領域でのゴースト光の最大強度は8%以下となる。ゴースト光に関しては、撮像素子の感度特性、遷移波長領域から不透過波長領域において発生する不要光の合計値などによってもその影響は異なる。しかし、実施例1で作製された光学フィルタ1は遷移波長領域での最大強度を3割以上低減しており、多くの光学系でゴースト光の発生を低減することができる。   In a simple calculation, the maximum intensity of the ghost light with only the near-infrared light reflecting structures 4a and 4b is about 25% as described above, but in the transition wavelength region of the optical filter 1 manufactured in Example 1. The maximum intensity of the ghost light is 8% or less. The effect of ghost light also varies depending on the sensitivity characteristics of the image sensor, the total value of unnecessary light generated from the transition wavelength region to the non-transmission wavelength region, and the like. However, the optical filter 1 manufactured in Example 1 reduces the maximum intensity in the transition wavelength region by 30% or more, and can reduce the generation of ghost light in many optical systems.

透明基板2の全面に上述した光吸収構造体3、近赤外光反射構造体4a、4bを成膜した後に、所望の形状に打ち抜くことで10mmの正方形状に加工する。なお、成膜時に透明基板2上にマスクを施すことで、所望の範囲を部分的に成膜し、成膜後にそれぞれを切り抜く方法でも、同様のフィルタを作製することができる。   After the light absorption structure 3 and the near infrared light reflection structures 4a and 4b described above are formed on the entire surface of the transparent substrate 2, it is processed into a 10 mm square shape by punching into a desired shape. It is to be noted that a similar filter can be produced by a method in which a mask is formed on the transparent substrate 2 at the time of film formation, and a desired range is partially formed and then cut out after film formation.

図5は比較のために、特許文献7を基に作製した比較例の光学フィルタの分光透過率のグラフ図である。図5(a)は有機薄膜層によるグラフ図、図5(b)は基板の両面に分割し配置した2つの無機薄膜層によるグラフ図、図5(c)はこれらの有機薄膜層と無機薄膜層とにより作製されたグラフ図を示している。   FIG. 5 is a graph showing the spectral transmittance of an optical filter of a comparative example produced based on Patent Document 7 for comparison. FIG. 5A is a graph of an organic thin film layer, FIG. 5B is a graph of two inorganic thin film layers arranged on both sides of the substrate, and FIG. 5C is an organic thin film layer and an inorganic thin film. Fig. 2 shows a graph produced by layers.

図5(b)から無機薄膜層で形成される赤外光半値波長は、650nm付近の波長であることが分かる。また、図5(c)から有機薄膜層と無機薄膜層を構成した場合であっても、赤外光半値波長は650nm付近であり、図5(b)とほぼ同様の波長となっていることが分かる。また、図5(a)に示された有機薄膜層の特性から、特許文献7で提示されている有機薄膜層の遷移波長領域での吸収率、特に赤外光半値波長における吸収率は、最大でも10%程度と極めて小さい値となっていることが予測される。   It can be seen from FIG. 5B that the half-wavelength of infrared light formed by the inorganic thin film layer is a wavelength around 650 nm. Moreover, even if it is a case where an organic thin film layer and an inorganic thin film layer are comprised from FIG.5 (c), an infrared-light half value wavelength is 650 nm vicinity, and has become the wavelength similar to FIG.5 (b). I understand. Further, from the characteristics of the organic thin film layer shown in FIG. 5 (a), the absorption rate in the transition wavelength region of the organic thin film layer presented in Patent Document 7, in particular, the absorption rate at the half-value wavelength of infrared light is maximum. However, it is expected to be an extremely small value of about 10%.

透過波長領域、不透過波長領域においては、透過率又は反射率の何れかが0に近付くため、上述のように簡易的にはゴースト光の強度は遷移波長領域での透過率と反射率とを乗じた値が支配的となる。従って、この遷移波長領域に十分な吸収を得ることができない場合には、透過率が低いと反射率が高くなり、反射率が低いと透過率が高くなるため、ゴースト光の強度を低減することは極めて困難である。   In the transmission wavelength region and the non-transmission wavelength region, either the transmittance or the reflectance approaches 0. Therefore, as described above, the intensity of the ghost light simply represents the transmittance and the reflectance in the transition wavelength region. The multiplied value becomes dominant. Therefore, when sufficient absorption cannot be obtained in this transition wavelength region, if the transmittance is low, the reflectance is high, and if the reflectance is low, the transmittance is high, thereby reducing the intensity of the ghost light. Is extremely difficult.

撮像素子の感度特性やフィルタの配置位置等、光学系全体での構成によってもゴースト光の影響は微妙に異なるが、特許文献7で得られる図5(a)のような光学特性では、ゴースト光を十分に低減することは困難である。   The influence of the ghost light is slightly different depending on the configuration of the entire optical system, such as the sensitivity characteristics of the image sensor and the arrangement position of the filter. However, in the optical characteristics as shown in FIG. It is difficult to reduce sufficiently.

実施例1では光吸収構造体3の成膜後の硬化方法として熱硬化法を用いているが、他の活性エネルギ線、例えば可視光線、電子線、プラズマ、赤外線、紫外線等を用いてもよい。活性エネルギ線の照射量は樹脂組成物の硬化が進行するエネルギ量であればよく、必要に応じて光重合開始剤や酸化防止剤を添加すればよい。   In Example 1, the thermosetting method is used as the curing method after the light absorbing structure 3 is formed, but other active energy rays such as visible light, electron beam, plasma, infrared rays, ultraviolet rays, etc. may be used. . The irradiation amount of active energy rays should just be an energy amount which the hardening of a resin composition advances, and what is necessary is just to add a photoinitiator and antioxidant as needed.

光重合開始剤としては、例えばベンゾフェノン、ベンジル、4,4−ジメチルアミノベンゾフェノン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルジメチルケタール、2−ヒドロキシ−2−メチルプロピオフェノン、1−ヒドロキシシクヘキシルフェニルケトン、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、ヒドラゾン、α−アシロキシムエステル等が挙げられるが、これらに限定されるものでなく、単独又は複数で用いてもよい。   Examples of the photopolymerization initiator include benzophenone, benzyl, 4,4-dimethylaminobenzophenone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzyldimethyl ketal, 2-hydroxy-2- Examples include, but are not limited to, methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, hydrazone, α-acyloxime ester. It may be used.

電子線硬化開始剤としては、ベンゾフェノン、2−エチルアントラキノン、2,4−ジエチルチオキサントン、メチルオルソベンゾイルベンゾエート、イソプロピルチオキサントン、ジエトキシアセトフェノン、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシル−フェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス−フェニルホスフィンオキサイド、メチルベンゾイルホルメート、1,7−ビスアクリジニルヘプタン、9−フェニルアクリジン等が挙げられるが、これらに限定されるものでなく、単独又は複数で用いてもよい。   Examples of electron beam curing initiators include benzophenone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, methyl orthobenzoylbenzoate, isopropylthioxanthone, diethoxyacetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, benzoin methyl ether, Benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis-phenylphosphine oxide, methylbenzoylformate, 1,7-bisacridinylheptane, 9-phenylacridine, etc. However, it is not limited to these, You may use individually or in plurality.

熱重合開始剤としては、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2−メチルブチロニトリル)、1,1−アゾビス(シクロヘキサン−1−カルボニル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、4,4−アゾビス(4−シアノバレリック酸)等が挙げられるが、これらに限定されるものでなく、単独又は複数で用いてもよい。   Thermal polymerization initiators include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethoxyethyl) peroxydicarbonate. , T-butyl peroxyneodecanoate, t-butyl peroxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide, 2,2-azobisisobutyro Nitrile, 2,2-azobis (2-methylbutyronitrile), 1,1-azobis (cyclohexane-1-carbonyl), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2 2- azobis (2-methyl propionate), 4,4-azobis (4-cyanovaleric acid) and others as mentioned, not limited to these, may be used singly or a plurality.

図6は他の近赤外光反射構造体4a、4bの分光特性を示し、近赤外光反射構造体4a、4bは共に紫外線における第1阻止波長領域W4を有し、近赤外光反射構造体4aは少なくとも第2阻止波長領域W5を遮蔽し、他方の近赤外光反射構造体4bは少なくとも第3阻止波長領域W6を遮蔽するように設計されている。   FIG. 6 shows the spectral characteristics of other near-infrared light reflecting structures 4a and 4b. Both near-infrared light reflecting structures 4a and 4b have a first blocking wavelength region W4 for ultraviolet rays, and reflect near-infrared light. The structure 4a is designed to shield at least the second blocking wavelength region W5, and the other near-infrared light reflecting structure 4b is designed to shield at least the third blocking wavelength region W6.

光吸収構造体3は図7に示すような分光透過率を有するシアニン系の色素と、アクリル−スチレン共重合樹脂から成る樹脂バインダと、メチルエチルケトン(MEK)とメチルイソブチルケトン(MIBK)を1:9(重量比)の割合で混合した溶媒とから成る塗布溶液を使用する。この塗布溶液をスピンコート法により、所望の分光を得られる厚さに成膜し、乾燥炉で乾燥・硬化させる。   The light-absorbing structure 3 is a 1: 9 mixture of a cyanine dye having a spectral transmittance as shown in FIG. 7, a resin binder made of acrylic-styrene copolymer resin, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). A coating solution comprising a solvent mixed at a ratio of (weight ratio) is used. This coating solution is formed into a thickness that provides a desired spectrum by spin coating, and is dried and cured in a drying furnace.

この光吸収構造体3上に、第1阻止波長領域W4と第2阻止波長領域W5とを遮蔽する近赤外光反射構造体4aが真空蒸着法により成膜されている。次に、透明基板2の反対面に、第1阻止波長領域W4と第3阻止波長領域W6とを遮蔽する近赤外光反射構造体4bを真空蒸着法で成膜している。   On this light absorption structure 3, the near-infrared-light reflection structure 4a which shields the 1st stop wavelength region W4 and the 2nd stop wavelength region W5 is formed into a film by the vacuum evaporation method. Next, a near infrared light reflecting structure 4b that shields the first blocking wavelength region W4 and the third blocking wavelength region W6 is formed on the opposite surface of the transparent substrate 2 by vacuum evaporation.

実施例1の光学フィルタ1はゴースト光を低減すると共に、透明基板2の両面に配置した紫外線遮蔽機能を有する近赤外光反射構造体4a、4bにより、光吸収構造体3に紫外線が何れの面からも入射することを防止している。   The optical filter 1 according to the first embodiment reduces ghost light, and the near-infrared light reflecting structures 4a and 4b having an ultraviolet shielding function arranged on both surfaces of the transparent substrate 2 allow any ultraviolet light to be applied to the light absorption structure 3. The incident from the surface is also prevented.

図8は紫外赤外線カットフィルタ又は赤外線カットフィルタとして機能する実施例2の光学フィルタ11の構成図を示している。透明基板12の片面に光吸収構造体13と近赤外光反射構造体14が積層され、その反対の面には例えば裏面からの反射を防止し、可視波長領域における透過率を高くするための複数の無機薄膜を積層した反射防止構造体15が成膜されている。なお、この反射防止構造体15には、光吸収構造体13と近赤外光反射構造体14を配置した反対面との応力を平衡させる機能を持たせている。   FIG. 8 shows a configuration diagram of the optical filter 11 of Example 2 that functions as an ultraviolet-infrared cut filter or an infrared cut filter. A light absorbing structure 13 and a near-infrared light reflecting structure 14 are laminated on one side of the transparent substrate 12, and on the opposite side, for example, reflection from the back side is prevented and the transmittance in the visible wavelength region is increased. An antireflection structure 15 in which a plurality of inorganic thin films are stacked is formed. The antireflection structure 15 has a function of balancing the stress between the light absorption structure 13 and the opposite surface on which the near infrared light reflection structure 14 is disposed.

なお、樹脂層である光吸収構造体13が表層に露出すると、表層での反射率が問題となる場合があるので、光吸収構造体13を表層に配置するような場合にはこのような反射防止構造体15を光吸収構造体13上に成膜することで改善することができる。   In addition, when the light absorption structure 13 which is a resin layer is exposed to the surface layer, the reflectance on the surface layer may become a problem. Therefore, when the light absorption structure 13 is arranged on the surface layer, such reflection is performed. This can be improved by forming the prevention structure 15 on the light absorption structure 13.

近赤外光反射構造体14は実施例1のように透過波長領域から不透過波長領域に遷移する遷移波長領域を有し、光吸収構造体13が吸収する波長の一部と遷移波長領域が重なることが必要である。   The near-infrared light reflecting structure 14 has a transition wavelength region that transitions from the transmission wavelength region to the non-transmission wavelength region as in the first embodiment, and a part of the wavelength absorbed by the light absorption structure 13 and the transition wavelength region are It is necessary to overlap.

そして、近赤外光反射構造体14が紫外線に対する遮蔽機能を有していれば、実施例2の光学フィルタ11は近赤外光反射構造体14側から入射する紫外光に対し、光吸収構造体13に入射する紫外線を低減する紫外線遮蔽機能をすることになる。   If the near-infrared light reflecting structure 14 has a function of shielding ultraviolet rays, the optical filter 11 according to the second embodiment has a light absorbing structure for ultraviolet light incident from the near-infrared light reflecting structure 14 side. The ultraviolet ray shielding function for reducing the ultraviolet ray incident on the body 13 is performed.

図9は紫外赤外線カットフィルタとして機能する実施例3の光学フィルタ21の構成図を示し、紫外光反射構造体が使用されている。透明基板22には例えば板厚0.1mmのArtonフィルムを使用している。   FIG. 9 shows a configuration diagram of the optical filter 21 of Example 3 functioning as an ultraviolet and infrared cut filter, and an ultraviolet light reflecting structure is used. For example, an Arton film having a thickness of 0.1 mm is used for the transparent substrate 22.

図9(a)の光学フィルタ21aは透明基板22の片面側に、透明基板22側から光吸収構造体23、近赤外光反射構造体24が形成され、透明基板22の反対の面に紫外光反射構造体25が成膜されている。光吸収構造体23、反射構造体24は実施例1の光吸収構造体3、近赤外光反射構造体4a、4bと同様にして形成され、近赤外光反射構造体24は紫外線遮蔽機能を有している。   In the optical filter 21 a of FIG. 9A, a light absorbing structure 23 and a near infrared light reflecting structure 24 are formed on one side of the transparent substrate 22 from the transparent substrate 22 side, and ultraviolet light is formed on the opposite surface of the transparent substrate 22. A light reflecting structure 25 is formed. The light absorption structure 23 and the reflection structure 24 are formed in the same manner as the light absorption structure 3 and the near infrared light reflection structures 4a and 4b of the first embodiment, and the near infrared light reflection structure 24 has an ultraviolet shielding function. have.

透明基板22の波長589nmでの屈折率は1.52程度であり、光吸収構造体23のアクリル−スチレン共重合樹脂の屈折率は1.49程度であり、比較的屈折率差が小さい材料を組み合わせる構成としている。   The transparent substrate 22 has a refractive index of about 1.52 at a wavelength of 589 nm, the refractive index of the acrylic-styrene copolymer resin of the light absorption structure 23 is about 1.49, and a material having a relatively small refractive index difference. The composition is combined.

この光学フィルタ21aは実施例1で説明した図4に示すような分光透過率特性を有するように設計がされ、更に紫外光反射構造体25が設けられている側の面からの紫外線の入射を制限し、両面からの紫外線の入射を阻止している。   This optical filter 21a is designed to have the spectral transmittance characteristic as shown in FIG. 4 described in the first embodiment, and further, the ultraviolet light is incident from the surface on which the ultraviolet light reflecting structure 25 is provided. Limiting and preventing the incidence of ultraviolet rays from both sides.

このように、光吸収構造体23を表層に配置する場合に、図9(b)の光学フィルタ21bに示すように、更にその表層側に紫外光反射構造体26を配置することもできる。   As described above, when the light absorbing structure 23 is arranged on the surface layer, the ultraviolet light reflecting structure 26 can be further arranged on the surface layer side as shown in the optical filter 21b of FIG. 9B.

図9(c)、(d)の光学フィルタ21c、21dにおいては、透明基板22の片面に光吸収構造体23、近赤外光反射構造体24が形成され、反対の面に紫外線遮蔽機能を有しない近赤外光反射構造体27、紫外光反射構造体25が形成されている。なお、光学フィルタ21cにおいては紫外光反射構造体25が最表層に、光学フィルタ21dにおいては近赤外光反射構造体27が最表層に配置されている。   In the optical filters 21c and 21d shown in FIGS. 9C and 9D, the light absorbing structure 23 and the near infrared light reflecting structure 24 are formed on one surface of the transparent substrate 22, and the ultraviolet shielding function is provided on the opposite surface. The near-infrared light reflecting structure 27 and the ultraviolet light reflecting structure 25 that are not provided are formed. In the optical filter 21c, the ultraviolet light reflecting structure 25 is disposed on the outermost layer, and in the optical filter 21d, the near-infrared light reflecting structure 27 is disposed on the outermost layer.

図9(e)、(f)の光学フィルタ21e、21fにおいては、透明基板22の片面には近赤外光反射構造体24が形成され、反対の面には光吸収構造体23、近赤外光反射構造体27、紫外光反射構造体25が形成されている。光学フィルタ21eと21fでは近赤外光反射構造体27と紫外光反射構造体25が入れ換わっている。   In the optical filters 21e and 21f of FIGS. 9E and 9F, a near-infrared light reflecting structure 24 is formed on one surface of the transparent substrate 22, and a light absorbing structure 23 and a near-red light are formed on the opposite surface. An external light reflecting structure 27 and an ultraviolet light reflecting structure 25 are formed. In the optical filters 21e and 21f, the near-infrared light reflecting structure 27 and the ultraviolet light reflecting structure 25 are interchanged.

このようにして、何れの光学フィルタ21a〜21fにおいても、ゴースト光を低減し、両面から光吸収構造体23への紫外線の入射を防止している。   In this manner, in any of the optical filters 21a to 21f, ghost light is reduced and ultraviolet light is prevented from entering the light absorbing structure 23 from both sides.

図10は紫外赤外線カットフィルタとして機能する実施例4の光学フィルタ31の構成図を示し、紫外光吸収構造体が使用されている。透明基板32の一方の面に、透明基板32側から光吸収構造体33と紫外線遮蔽機能を有する近赤外光反射構造体34が形成されている。透明基板32の反対の面に、透明基板32側から紫外光吸収構造体35と紫外線遮蔽機能を有しない近赤外光反射構造体36とが形成されている。   FIG. 10 shows a configuration diagram of the optical filter 31 of Example 4 functioning as an ultraviolet and infrared cut filter, and an ultraviolet light absorbing structure is used. A light absorbing structure 33 and a near-infrared light reflecting structure 34 having an ultraviolet shielding function are formed on one surface of the transparent substrate 32 from the transparent substrate 32 side. An ultraviolet light absorbing structure 35 and a near infrared light reflecting structure 36 having no ultraviolet shielding function are formed on the opposite surface of the transparent substrate 32 from the transparent substrate 32 side.

紫外光吸収構造体35はスチレン樹脂と、スチレン樹脂に対して1.0wt%のベンゾフェノン系の紫外線吸収剤である2,4−ジヒドロキシベンゾフェノンとスチレン樹脂から成る樹脂バインダとMIBKとから成る塗布溶液を、スピンコート法により成膜して、乾燥炉で乾燥・硬化させる。   The ultraviolet light absorbing structure 35 is a coating solution comprising a styrene resin, a resin binder made of 2,4-dihydroxybenzophenone, which is a 1.0 wt% benzophenone ultraviolet absorber, and a styrene resin, and MIBK. Then, a film is formed by a spin coating method, and dried and cured in a drying furnace.

次に、光吸収構造体33上に、低屈折率材料であるSiO2と高屈折率材料であるTiO2とから成り、図6の第1阻止波長領域W4と第2阻止波長領域W5とを遮蔽する近赤外光反射構造体34を真空蒸着法で成膜する。また、紫外光吸収構造体35上に第3阻止波長領域W6を遮蔽する近赤外光反射構造体36を同様に成膜する。 Next, on the light absorption structure 33, the first blocking wavelength region W4 and the second blocking wavelength region W5 shown in FIG. 6 are made of SiO 2 that is a low refractive index material and TiO 2 that is a high refractive index material. The near-infrared light reflecting structure 34 to be shielded is formed by vacuum deposition. Further, a near-infrared light reflecting structure 36 that shields the third blocking wavelength region W6 is similarly formed on the ultraviolet light absorbing structure 35.

紫外線吸収剤として、2,4−ジヒドロキシベンゾフェノンを用いたが、これ以外にも、2−ヒドロキシ−4−メトキシ−ベンゾフェノン、2−ヒドロキシ−4−n−オクトキシ−ベンゾフェノン等のベンゾフェノン系や、2−(2'−ヒドロキシ−5'−t−ブチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−メチルフェニル)−エンゾトリアゾール、2−(2'−ヒドロキシ−5'−t−オクチルフェニル)ベンゾトリアゾール、2−(3',5'−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール等のベンゾトリアゾール系や、2,4−ジ−t−ブチルフェニル3,5−ジ−t−ブチルー4−ヒドロキシベンゾエート、4−t−ブチルフェニル−2−ヒドロキシベンゾエート、フェニル−2−ヒドロキシベンゾエート等のベンゾエート系等を利用できるが、これらに限定されたものではない。また、これらの紫外線吸収剤は単独又は複数を混合して用いてもよい。   Although 2,4-dihydroxybenzophenone was used as the ultraviolet absorber, other than this, benzophenone series such as 2-hydroxy-4-methoxy-benzophenone and 2-hydroxy-4-n-octoxy-benzophenone, 2- (2'-hydroxy-5'-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) -enzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) ) Benzotriazoles such as benzotriazole and 2- (3 ′, 5′-di-t-amyl-2-hydroxyphenyl) benzotriazole, and 2,4-di-t-butylphenyl 3,5-di-t -Butyl-4-hydroxybenzoate, 4-t-butylphenyl-2-hydroxybenzoate, phenyl-2-hydroxybenzoate A benzoate system such as a salt can be used, but is not limited thereto. Moreover, you may use these ultraviolet absorbers individually or in mixture.

近赤外光反射構造体34、36を双方共に紫外線を遮蔽するように膜設計すると、所望の分光次第では両面で膜応力を均衡させることが難しく、光学フィルタ31の反りを低減できない場合がある。   If the near-infrared light reflecting structures 34 and 36 are both designed to shield ultraviolet rays, it is difficult to balance the film stress on both sides depending on the desired spectroscopy, and the warping of the optical filter 31 may not be reduced. .

実施例4では、近赤外光反射構造体36は紫外線遮蔽機能を有しないが、反射構造体36と透明基板32の間に紫外光吸収構造体35が配置されており、光学フィルタ31の両面において、光吸収構造体33に紫外線が入射することを防止できる。   In the fourth embodiment, the near-infrared light reflecting structure 36 does not have an ultraviolet shielding function, but the ultraviolet light absorbing structure 35 is disposed between the reflecting structure 36 and the transparent substrate 32, and both surfaces of the optical filter 31 are disposed. In this case, it is possible to prevent ultraviolet rays from entering the light absorbing structure 33.

光吸収構造体33、近赤外光反射構造体34、36、紫外光吸収構造体35の硬化や成膜時に熱が発生し、膜応力・熱応力による変形、水分による分光の変化等が生じ易い。このことから、透明基板32は耐熱性つまりガラス転移点Tgが高く、曲げ弾性率が大きく、吸水率が小さいことが好ましい。   Heat is generated during curing or film formation of the light absorption structure 33, near infrared light reflection structures 34 and 36, and ultraviolet light absorption structure 35, and deformation due to film stress / thermal stress, changes in spectrum due to moisture, and the like occur. easy. Therefore, it is preferable that the transparent substrate 32 has high heat resistance, that is, a glass transition point Tg, a large flexural modulus, and a low water absorption rate.

図11は実施例4の変形例1の光学フィルタ31’を示している。このように、透明基板32の片面に光吸収構造体33、紫外光吸収構造体35、近赤外光反射構造体36を順次に成膜し、反対の面に近赤外光反射構造体34を設けた構成としてもよい。   FIG. 11 shows an optical filter 31 ′ according to the first modification of the fourth embodiment. Thus, the light absorption structure 33, the ultraviolet light absorption structure 35, and the near infrared light reflection structure 36 are sequentially formed on one surface of the transparent substrate 32, and the near infrared light reflection structure 34 is formed on the opposite surface. It is good also as a structure which provided.

また、図12は変形例2の光学フィルタ31”を示している。透明基板32の片面に紫外光吸収構造体35、光吸収構造体33、近赤外光反射構造体34を順次に設け、その反対の面に近赤外光反射構造体36を配置した構成とすることもできる。   12 shows an optical filter 31 ″ of Modification 2. An ultraviolet light absorbing structure 35, a light absorbing structure 33, and a near infrared light reflecting structure 34 are sequentially provided on one surface of the transparent substrate 32. It can also be set as the structure which has arrange | positioned the near-infrared-light reflection structure 36 on the opposite surface.

このようにして、ゴースト光を低減すると共に、光学フィルタ31の配置方向に関係なく、光吸収構造体33に紫外線が入射せず、光吸収構造体33の分光変化が少ない光学フィルタ31、31’、31”が得られる。   In this way, the ghost light is reduced, and the optical filters 31 and 31 ′ are configured such that the ultraviolet rays are not incident on the light absorption structure 33 and the spectral change of the light absorption structure 33 is small regardless of the arrangement direction of the optical filter 31. , 31 ″ are obtained.

図13は実施例1〜4による光学フィルタを用いた実施例5のビデオカメラ等の撮像装置の光学的構成図を示している。光路に沿って対物レンズ41、絞り羽根42を有する光量絞り装置43、レンズ44〜46、光学フィルタ部47、固体撮像素子48が配列されている。対物レンズ41、光量絞り装置43、レンズ44〜46から成る撮像光学系49を透過した被写界による光線を、光学フィルタ部47でCCDやCMOSセンサから成る固体撮像素子48の特性に合わせて制限し、適正な画像を得るようになっている。   FIG. 13 shows an optical configuration diagram of an imaging apparatus such as a video camera of the fifth embodiment using the optical filter according to the first to fourth embodiments. An objective lens 41, a light amount diaphragm device 43 having diaphragm blades 42, lenses 44 to 46, an optical filter unit 47, and a solid-state imaging device 48 are arranged along the optical path. The optical filter unit 47 restricts the light rays from the object field transmitted through the imaging optical system 49 including the objective lens 41, the light amount diaphragm device 43, and the lenses 44 to 46 in accordance with the characteristics of the solid-state imaging device 48 including a CCD or CMOS sensor. And it is supposed to obtain a proper image.

例えば、実施例1で作製された光学フィルタ1を光学フィルタ部47に配置し、撮像装置に組み込んで使用することにより、紫外線、赤外線を遮蔽すると共にゴースト光の発生が低減され、画像の高精度化を実現できる。また、光学フィルタ部47を配置する際に、光学フィルタ1の反射によるゴースト光をより低減できるように、近赤外光反射構造体4aに対し光吸収構造体3の位置を固体撮像素子48に近い位置になるようにする。   For example, the optical filter 1 manufactured in Example 1 is arranged in the optical filter unit 47 and is used by being incorporated in an imaging device, thereby shielding ultraviolet rays and infrared rays and reducing the generation of ghost light, thereby achieving high image accuracy. Can be realized. In addition, when the optical filter unit 47 is disposed, the position of the light absorption structure 3 with respect to the near-infrared light reflection structure 4a is set to the solid-state imaging device 48 so that ghost light due to reflection of the optical filter 1 can be further reduced. Try to be close.

具体的には、撮像光学系49を透過して固体撮像素子48に結像した光量を判断して、駆動部材により光学フィルタ部47を駆動する。被写界の光量が通常の撮影に十分な量であるときは、固体撮像素子48を覆うように光学フィルタ部47を移動させ、光量が不十分なときは固体撮像素子48にかからないように光学フィルタ部47を光路外に退避させる。   Specifically, the amount of light that has passed through the imaging optical system 49 and formed on the solid-state imaging device 48 is determined, and the optical filter unit 47 is driven by the driving member. When the amount of light in the object field is sufficient for normal shooting, the optical filter unit 47 is moved so as to cover the solid-state image sensor 48, and when the amount of light is insufficient, the optical element is not applied to the solid-state image sensor 48. The filter unit 47 is retracted out of the optical path.

光学フィルタ部47の光学フィルタ1の有無により、結像する光線に光路差が発生し、画像が劣化してしまうことがあるが、このような場合には光学フィルタ1の透明基板2と同じ材質の透明基板2をダミーとして挿入することにより、画像劣化を低減できる。   Depending on the presence or absence of the optical filter 1 in the optical filter unit 47, an optical path difference may occur in the light beam to be imaged, and the image may be deteriorated. In such a case, the same material as the transparent substrate 2 of the optical filter 1 is used. By inserting the transparent substrate 2 as a dummy, image deterioration can be reduced.

また、従来においてはゴースト光を低減するために、光路に対して光学フィルタを傾けて配置することがあったが、本発明では光学フィルタ1によりゴースト光が低減するので、傾けた配置が不要となり、撮影光学系の小型化に対応することが可能である。   Further, in the past, in order to reduce ghost light, the optical filter was sometimes inclined with respect to the optical path. However, in the present invention, the ghost light is reduced by the optical filter 1, so that the inclined arrangement is not necessary. It is possible to cope with downsizing of the photographing optical system.

また、実施例2、3、4で作製された光学フィルタ11、21、31を光学フィルタ部47として配置し、組み込んで使用することにより、同様に紫外線、赤外線による光学特性の変化を著しく低減した撮像装置を得ることが可能である。また、光学フィルタの何れの面から光が入射しても、紫外線が吸収構造体3に至るまでに遮蔽されるような構成となっていれば、光学フィルタを撮像光学系に配置する際に、何れの面を入射光側に向けてもよく、作業性が向上する。   Further, by arranging the optical filters 11, 21, and 31 produced in Examples 2, 3, and 4 as the optical filter portion 47 and using them, the change in optical characteristics due to ultraviolet rays and infrared rays was significantly reduced. An imaging device can be obtained. In addition, even if light is incident from any surface of the optical filter, if the configuration is such that ultraviolet rays are shielded before reaching the absorption structure 3, when the optical filter is disposed in the imaging optical system, Any surface may be directed to the incident light side, and workability is improved.

図14は実施例5のビデオカメラ、デジタルスチルカメラ等の撮像装置の撮影光学系に使用するのに適した光量絞り装置の斜視図を示している。光量絞り装置51は図13に示す固体撮像素子48への入射光量を制御するために設けられており、被写界の光量が大きくなるに従って、絞り羽根42が小さく絞り込まれてゆく構造とされている。   FIG. 14 is a perspective view of a light quantity stop device suitable for use in a photographing optical system of an image pickup apparatus such as a video camera or a digital still camera according to the fifth embodiment. The light quantity diaphragm 51 is provided to control the amount of light incident on the solid-state image sensor 48 shown in FIG. 13, and has a structure in which the diaphragm blades 42 are narrowed down as the quantity of light in the object field increases. Yes.

このとき、絞り羽根42の小絞り状態時に発生する干渉等による像性能の劣化対策として、絞り羽根42の近傍にND(Neutral Density)フィルタ52が配置されている。これにより被写界の明るさが大きくても、絞り羽根42の開口が極端に小さくなることを防止している。   At this time, an ND (Neutral Density) filter 52 is disposed in the vicinity of the diaphragm blade 42 as a countermeasure against image performance deterioration due to interference or the like generated when the diaphragm blade 42 is in a small diaphragm state. This prevents the aperture of the aperture blade 42 from becoming extremely small even if the brightness of the object scene is large.

被写界からの入射光はこの光量絞り装置51を通過し、撮像光学系49を経て固体撮像素子48に到達することにより、電気信号に変換され画像が生成される。   Incident light from the object field passes through the light amount diaphragm 51 and reaches the solid-state image sensor 48 through the imaging optical system 49, thereby being converted into an electrical signal and generating an image.

この光量絞り装置51内に、実施例1〜4で作製された光学フィルタ1、11、21、31の何れかが配置されている。また、NDフィルタ52の位置に、NDフィルタ52の代りに光学フィルタ1、11、21、31を配置することも可能であるし、絞り羽根42を支持する絞り羽根支持板53に固定するように配置することもできる。   Any one of the optical filters 1, 11, 21, and 31 produced in Examples 1 to 4 is disposed in the light quantity diaphragm device 51. In addition, the optical filters 1, 11, 21, and 31 can be disposed at the position of the ND filter 52 instead of the ND filter 52, and are fixed to the diaphragm blade support plate 53 that supports the diaphragm blade 42. It can also be arranged.

この場合に、光学フィルタの位置や光量絞り装置51の機械的な機構にも依存するが、光学フィルタは最適な形状に切断すればよく、この光学フィルタを撮像光学系49に配置することにより、画像のより高精度化を寄与することができる。このように作製された光量絞り装置51は、ゴースト光の発生を著しく低減することが可能となる。   In this case, although depending on the position of the optical filter and the mechanical mechanism of the light quantity diaphragm 51, the optical filter may be cut into an optimal shape, and by placing the optical filter in the imaging optical system 49, This can contribute to higher accuracy of the image. The light quantity restricting device 51 thus manufactured can significantly reduce the generation of ghost light.

1、11、21a〜21f、31、31’、31” 光学フィルタ
2、12、22、32 透明基板
3、13、23、33 光吸収構造体
4a、4b、14、24、27、34、36 近赤外光反射構造体
15 反射防止構造体
25 紫外光反射構造体
35 紫外光吸収構造体
42 絞り羽根
43、51 光量絞り装置
47 光学フィルタ部
48 固体撮像素子
49 撮像光学系
52 NDフィルタ
1, 11, 21a to 21f, 31, 31 ', 31 "Optical filter 2, 12, 22, 32 Transparent substrate 3, 13, 23, 33 Light absorbing structure 4a, 4b, 14, 24, 27, 34, 36 Near-infrared light reflection structure 15 Antireflection structure 25 Ultraviolet light reflection structure 35 Ultraviolet light absorption structure 42 Diaphragm blade 43, 51 Light quantity diaphragm device 47 Optical filter section 48 Solid-state imaging device 49 Imaging optical system 52 ND filter

Claims (16)

透明基板上に、樹脂層により形成し所定の吸収波長領域を有する光吸収構造体と、複数の無機薄膜を積層し少なくとも近赤外波長領域の一部を反射する少なくとも1つの近赤外光反射構造体とを有し、前記少なくとも1つの近赤外光反射構造体は光の透過波長領域から不透過波長領域に遷移する遷移波長領域を有し、前記光吸収構造体の前記吸収波長領域の少なくとも一部は前記遷移波長領域と重なることを特徴とする光学フィルタ。   A light-absorbing structure formed of a resin layer on a transparent substrate and having a predetermined absorption wavelength region, and a plurality of inorganic thin films are laminated, and at least one near-infrared light reflection that reflects at least part of the near-infrared wavelength region The at least one near-infrared light reflecting structure has a transition wavelength region transitioning from a light transmission wavelength region to a non-transmission wavelength region, and the light absorption structure has an absorption wavelength region. At least a part of the optical filter overlaps the transition wavelength region. 可視波長領域から近赤外波長領域の間の波長領域において前記光吸収構造体が吸収する波長のピークは、前記遷移波長領域内にあることを特徴とする請求項1に記載の光学フィルタ。   2. The optical filter according to claim 1, wherein a peak of a wavelength absorbed by the light absorbing structure in a wavelength region between a visible wavelength region and a near infrared wavelength region is in the transition wavelength region. 前記光吸収構造体が吸収する波長のピークは650〜800nmの波長領域内にあることを特徴とする請求項2に記載の光学フィルタ。   The optical filter according to claim 2, wherein a peak of a wavelength absorbed by the light absorbing structure is in a wavelength region of 650 to 800 nm. 前記近赤外光反射構造体の少なくとも1つは、波長600〜750nmの間に透過率が50%となる赤外光半値波長を有することを特徴とする請求項1〜3の何れか1つの請求項に記載の光学フィルタ。   The at least one of the near-infrared light reflecting structures has an infrared light half-value wavelength having a transmittance of 50% between wavelengths of 600 to 750 nm. The optical filter according to claim. 前記近赤外光反射構造体の透過率が前記遷移波長領域内で50%となる波長において、前記光吸収構造体の吸収率は20%以上であることを特徴とする請求項4に記載の光学フィルタ。   5. The light absorption structure according to claim 4, wherein the light absorption structure has an absorptance of 20% or more at a wavelength at which the transmittance of the near infrared light reflection structure is 50% in the transition wavelength region. Optical filter. 前記光吸収構造体は近赤外波長領域の波長の一部に前記吸収波長領域を有する色素を分散した樹脂層により形成したことを特徴とする請求項1〜5の何れか1つの請求項に記載の光学フィルタ。   The said light absorption structure was formed of the resin layer which disperse | distributed the pigment | dye which has the said absorption wavelength area to a part of wavelength of a near-infrared wavelength range, The claim in any one of Claims 1-5 characterized by the above-mentioned. The optical filter described. 前記透明基板の両面に前記近赤外光反射構造体を積層したことを特徴とする請求項1〜6の何れか1つの請求項に記載の光学フィルタ。   The optical filter according to any one of claims 1 to 6, wherein the near-infrared light reflecting structures are laminated on both surfaces of the transparent substrate. 透明基板上に、樹脂層により形成し所定の吸収波長領域を有する光吸収構造体と、複数の無機薄膜を積層し少なくとも近赤外波長領域の一部を反射する少なくとも1つの近赤外光反射構造体と、紫外光反射構造体又は紫外光吸収構造体とを有し、前記近赤外光反射構造体は、光の透過波長領域から不透過波長領域に遷移する遷移波長領域を有し、前記光吸収構造体の前記吸収波長領域の少なくとも一部は前記遷移波長領域と重なることを特徴とする光学フィルタ。   A light-absorbing structure formed of a resin layer on a transparent substrate and having a predetermined absorption wavelength region, and a plurality of inorganic thin films are laminated, and at least one near-infrared light reflection that reflects at least part of the near-infrared wavelength region A structure, and an ultraviolet light reflecting structure or an ultraviolet light absorbing structure, the near infrared light reflecting structure has a transition wavelength region that transitions from a light transmission wavelength region to a non-transmission wavelength region, An optical filter, wherein at least part of the absorption wavelength region of the light absorption structure overlaps with the transition wavelength region. 前記紫外光反射構造体は前記近赤外光反射構造体との間に前記光吸収構造体を挟んで配置したことを特徴とする請求項8に記載の光学フィルタ。   9. The optical filter according to claim 8, wherein the ultraviolet light reflecting structure is disposed with the light absorbing structure sandwiched between the near infrared light reflecting structure. 前記近赤外光反射構造体の少なくとも1つは紫外線遮蔽機能を有することを特徴とする請求項1〜9の何れか1つの請求項に記載の光学フィルタ。   The optical filter according to claim 1, wherein at least one of the near-infrared light reflecting structures has an ultraviolet shielding function. 前記紫外光反射構造体は複数の無機薄膜を積層したことを特徴とする請求項8又は9に記載の光学フィルタ。   The optical filter according to claim 8 or 9, wherein the ultraviolet light reflecting structure is formed by laminating a plurality of inorganic thin films. 前記紫外光吸収構造体は紫外線を吸収する紫外線吸収剤を分散した樹脂層により形成したことを特徴とする請求項8に記載の光学フィルタ。   9. The optical filter according to claim 8, wherein the ultraviolet light absorbing structure is formed of a resin layer in which an ultraviolet absorber that absorbs ultraviolet rays is dispersed. 前記透明基板に対し何れの面からも前記光吸収構造体に入射する紫外線を遮蔽するようにしたことを特徴とする請求項1〜12の何れか1つの請求項に記載の光学フィルタ。   The optical filter according to any one of claims 1 to 12, wherein ultraviolet light incident on the light absorbing structure is shielded from any surface with respect to the transparent substrate. 撮像光学系と、請求項1〜13に記載の光学フィルタと、前記撮像光学系に入射して前記光学フィルタを透過した光を電気信号に変換する撮像素子とから成ることを特徴とする撮像装置。   An imaging apparatus comprising: an imaging optical system; the optical filter according to claim 1; and an imaging element that converts light that has entered the imaging optical system and has passed through the optical filter into an electrical signal. . 前記光学フィルタの前記光吸収構造体は前記遷移波長領域を有する前記近赤外光反射構造体よりも前記撮像素子側に配置したことを特徴とする請求項14に記載の撮像装置。   The imaging device according to claim 14, wherein the light absorption structure of the optical filter is disposed closer to the imaging element than the near-infrared light reflection structure having the transition wavelength region. 前記撮像光学系中に、前記光学フィルタを駆動する駆動部材を備えた請求項14又は15に記載の撮像装置。   The imaging apparatus according to claim 14, further comprising a driving member that drives the optical filter in the imaging optical system.
JP2010290427A 2010-12-27 2010-12-27 Optical filter for UV-IR cut Active JP5823119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290427A JP5823119B2 (en) 2010-12-27 2010-12-27 Optical filter for UV-IR cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290427A JP5823119B2 (en) 2010-12-27 2010-12-27 Optical filter for UV-IR cut

Publications (3)

Publication Number Publication Date
JP2012137646A true JP2012137646A (en) 2012-07-19
JP2012137646A5 JP2012137646A5 (en) 2014-02-20
JP5823119B2 JP5823119B2 (en) 2015-11-25

Family

ID=46675102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290427A Active JP5823119B2 (en) 2010-12-27 2010-12-27 Optical filter for UV-IR cut

Country Status (1)

Country Link
JP (1) JP5823119B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163405A1 (en) * 2013-04-04 2014-10-09 주식회사 엘엠에스 Near-infrared cut filter and solid-state image pickup device including same
CN104977642A (en) * 2014-04-02 2015-10-14 奥普特光学有限公司 Method for manufacturing optical filtering element
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
KR20160045690A (en) * 2013-08-20 2016-04-27 제이에스알 가부시끼가이샤 Optical filter and device using optical filter
JP2016142750A (en) * 2015-01-29 2016-08-08 京セラ株式会社 Optical filter, and package for optical element
WO2016148518A1 (en) * 2015-03-17 2016-09-22 주식회사 엘엠에스 Optical filter and imaging device comprising same
WO2017043288A1 (en) * 2015-09-09 2017-03-16 コニカミノルタ株式会社 Optical reflection film
KR101833622B1 (en) 2016-06-27 2018-04-13 부산대학교 산학협력단 Non-power wavelength conversion device converting infrared or ultraviolet light into visible light
CN108072928A (en) * 2016-11-16 2018-05-25 京瓷株式会社 Optical filter and packaging body used for optical elements
KR101876229B1 (en) * 2016-05-04 2018-07-09 플래티넘 옵틱스 테크놀로지 인코포레이티드 Near-infrared absorbing filter and image sensor
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
CN109932772A (en) * 2017-12-19 2019-06-25 白金光学科技(苏州)有限公司 Absorption near infrared ray optical filter
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
US10408979B2 (en) 2013-12-26 2019-09-10 AGC Inc. Optical filter
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
JP2003161831A (en) * 2001-11-29 2003-06-06 Daishinku Corp Ray cut filter
JP2003241090A (en) * 2001-12-13 2003-08-27 Nikon Corp Optical system equipped with wavelength selecting element
JP2005109196A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Color solid-state imaging element and solid-state imaging device using it, and digital camera
JP2005148283A (en) * 2003-11-13 2005-06-09 Dainippon Printing Co Ltd Optical filter and display using the same
JP2008051985A (en) * 2006-08-24 2008-03-06 Nidec Copal Corp Near infrared ray absorbing filter
JP2008112033A (en) * 2006-10-31 2008-05-15 Canon Electronics Inc Optical filter
JP2009217138A (en) * 2008-03-12 2009-09-24 Canon Electronics Inc Optical filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
JP2003161831A (en) * 2001-11-29 2003-06-06 Daishinku Corp Ray cut filter
JP2003241090A (en) * 2001-12-13 2003-08-27 Nikon Corp Optical system equipped with wavelength selecting element
JP2005109196A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Color solid-state imaging element and solid-state imaging device using it, and digital camera
JP2005148283A (en) * 2003-11-13 2005-06-09 Dainippon Printing Co Ltd Optical filter and display using the same
JP2008051985A (en) * 2006-08-24 2008-03-06 Nidec Copal Corp Near infrared ray absorbing filter
JP2008112033A (en) * 2006-10-31 2008-05-15 Canon Electronics Inc Optical filter
JP2009217138A (en) * 2008-03-12 2009-09-24 Canon Electronics Inc Optical filter

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9753196B2 (en) 2011-06-06 2017-09-05 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
KR101527821B1 (en) * 2013-04-04 2015-06-16 주식회사 엘엠에스 Near infrared ray cut filter and solid state imaging device comprising the same
CN105074513A (en) * 2013-04-04 2015-11-18 株式会社Lms Near-infrared cut filter and solid-state image pickup device including same
WO2014163405A1 (en) * 2013-04-04 2014-10-09 주식회사 엘엠에스 Near-infrared cut filter and solid-state image pickup device including same
US10082610B2 (en) 2013-04-04 2018-09-25 Lms Co., Ltd. Near-infrared cut filter and solid-state image pickup device including same
KR102205190B1 (en) 2013-08-20 2021-01-20 제이에스알 가부시끼가이샤 Optical filter and device using optical filter
KR20160045690A (en) * 2013-08-20 2016-04-27 제이에스알 가부시끼가이샤 Optical filter and device using optical filter
US10408979B2 (en) 2013-12-26 2019-09-10 AGC Inc. Optical filter
CN104977642A (en) * 2014-04-02 2015-10-14 奥普特光学有限公司 Method for manufacturing optical filtering element
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
JP2016142750A (en) * 2015-01-29 2016-08-08 京セラ株式会社 Optical filter, and package for optical element
US10745572B2 (en) 2015-02-18 2020-08-18 AGC Inc. Squarylium-based dye for near-infrared optical filter
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
WO2016148518A1 (en) * 2015-03-17 2016-09-22 주식회사 엘엠에스 Optical filter and imaging device comprising same
US20180074241A1 (en) * 2015-03-17 2018-03-15 Lms Co.,Ltd Optical filter and imaging device comprising same
US10725215B2 (en) 2015-03-17 2020-07-28 Lms Co., Ltd Optical filter and imaging device comprising same
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
WO2017043288A1 (en) * 2015-09-09 2017-03-16 コニカミノルタ株式会社 Optical reflection film
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
KR101876229B1 (en) * 2016-05-04 2018-07-09 플래티넘 옵틱스 테크놀로지 인코포레이티드 Near-infrared absorbing filter and image sensor
US10184827B2 (en) 2016-05-04 2019-01-22 Platinum Optics Technology Inc. Near-infrared absorbing filter and image sensor
KR101833622B1 (en) 2016-06-27 2018-04-13 부산대학교 산학협력단 Non-power wavelength conversion device converting infrared or ultraviolet light into visible light
CN108072928A (en) * 2016-11-16 2018-05-25 京瓷株式会社 Optical filter and packaging body used for optical elements
CN109932772A (en) * 2017-12-19 2019-06-25 白金光学科技(苏州)有限公司 Absorption near infrared ray optical filter
US11378727B2 (en) 2017-12-19 2022-07-05 Ptot (Suzhou) Inc. Absorption type near infrared filter
CN109932772B (en) * 2017-12-19 2022-08-09 白金光学科技(苏州)有限公司 Absorption type near infrared ray filter
US11971565B2 (en) 2017-12-19 2024-04-30 Ptot (Suzhou) Inc. Absorption type near infrared filter

Also Published As

Publication number Publication date
JP5823119B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5823119B2 (en) Optical filter for UV-IR cut
JP5789373B2 (en) Optical filter
JP5819063B2 (en) Optical filter
JP5693949B2 (en) Optical filter
JP5759717B2 (en) Imaging optical system for surveillance cameras
JP2012137649A (en) Optical filter
JP6087464B1 (en) Infrared cut filter and imaging optical system
JP6241419B2 (en) Near-infrared cut filter
KR101931072B1 (en) Optical filter, solid-state imaging element, imaging device lens and imaging device
WO2012157719A1 (en) Optical filter and optical device
WO2012157706A1 (en) Optical filter, optical device, electronic device, and antireflection complex
JP2006301489A (en) Near-infrared ray cut filter
JP2012137651A (en) Optical filter
TW202113424A (en) Optical member and camera module to provide an optical member which selectively reflects visible light in a specific wavelength region but suppresses the reflection of light in a specific wavelength region
JP6808355B2 (en) Optical filter and optical system with it, imaging device
JP4801442B2 (en) ND filter for diaphragm
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP6053352B2 (en) Optical filter, optical device, and optical filter manufacturing method.
JP2017003842A (en) Optical filter, light intensity adjustment device having optical filter mounted therein, and imaging optical system
JP6595220B2 (en) Optical filter and camera equipped with optical filter
JP5942472B2 (en) Light intensity adjustment device
JP2016071278A (en) Optical filter and light quantity adjusting device, and imaging apparatus
JP2018180430A (en) Optical filter
JP6955343B2 (en) Infrared cut filter and imaging optical system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5823119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250