JP2006301489A - Near-infrared ray cut filter - Google Patents

Near-infrared ray cut filter Download PDF

Info

Publication number
JP2006301489A
JP2006301489A JP2005126175A JP2005126175A JP2006301489A JP 2006301489 A JP2006301489 A JP 2006301489A JP 2005126175 A JP2005126175 A JP 2005126175A JP 2005126175 A JP2005126175 A JP 2005126175A JP 2006301489 A JP2006301489 A JP 2006301489A
Authority
JP
Japan
Prior art keywords
film
optical multilayer
resin
multilayer film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005126175A
Other languages
Japanese (ja)
Inventor
Koki Kunii
弘毅 国井
Kazutoshi Mukai
和俊 迎
Junichi Igarashi
純一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2005126175A priority Critical patent/JP2006301489A/en
Publication of JP2006301489A publication Critical patent/JP2006301489A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near-infrared ray cut filter which can be made thin, has high transparency in a visible light region and has excellent interception ability in a near-infrared ray region. <P>SOLUTION: The near-infrared ray cut filter is composed of a transparent substrate 1, optical multilayer films 2, 3 formed on a half surface or both surfaces of the substrate 1 and at least one layer of resin absorption film 4 formed on at least a half surface of the substrate 1. The optical multilayer films 2, 3 are made by alternately laminating at least two kinds of thin films H, L having different refractive indexes, exhibits high transmission characteristic on visible light region and exhibits low transmission characteristic on near-infrared ray region. The resin absorption film 4 is made by applying resin material to which dye or pigment is added into a film shape, wherein the dye or pigment has absorption in near-infrared ray region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カメラやビデオなどのデジタル撮像光学系に使用する近赤外線カットフィルタに関する。   The present invention relates to a near-infrared cut filter used for a digital imaging optical system such as a camera or a video.

ビデオカメラや電子スチルカメラなどでは、光学的画像データを電気信号に変換する為にカラーCCD素子が使用されている。CCD素子は人間の目の感度(一般に人間の可視領域は400nm〜700nmである)とは異なり、近赤外線領域の1100nm付近まで高い感度を有している。したがって人間の目で見た色調バランスを再現する為には不要光となる近赤外線をカットし、可視光線を取り出すフィルタを用いて光のトリミングを行う必要がある。この様な目的で近赤外線カットフィルタが用いられる。   In video cameras and electronic still cameras, color CCD elements are used to convert optical image data into electrical signals. Unlike the sensitivity of the human eye (generally, the visible region of the human being is 400 nm to 700 nm), the CCD element has a high sensitivity up to about 1100 nm in the near infrared region. Therefore, in order to reproduce the color balance as seen by the human eye, it is necessary to trim the light using a filter that cuts off near-infrared light that becomes unnecessary light and extracts visible light. A near-infrared cut filter is used for this purpose.

赤外線カットフィルタは様々な構造が開発されているが、大別すると3種類に分けられる。第1に、ガラスまたは樹脂からなる基材に金属錯体を保持し、その吸収を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献1及び2に記載がある。第2に、透明な基材の表面に屈折率の異なる2種以上の誘電体薄膜を交互に積層配置してなる光学多層膜を形成し、この光学多層膜による光の干渉効果を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献3及び4に記載がある。第3に、染料あるいは顔料の吸収を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献5及び6に記載がある。
特開平07‐281021号公報 特開平11‐160529号公報 特開2000‐314808公報 特開2003‐029027公報 特開2001‐133623公報 特開2003‐227922公報
Infrared cut filters have been developed in various structures, but can be roughly divided into three types. First, a near-infrared cut filter using a metal complex held on a substrate made of glass or resin and utilizing its absorption is known, for example, described in Patent Documents 1 and 2 below. Second, an optical multilayer film formed by alternately laminating two or more kinds of dielectric thin films having different refractive indexes on the surface of a transparent substrate is formed, and the optical interference effect by the optical multilayer film is utilized. Infrared cut filters are known, and are described, for example, in Patent Documents 3 and 4 below. Thirdly, near-infrared cut filters using absorption of dyes or pigments are known, and are described, for example, in Patent Documents 5 and 6 below.
Japanese Patent Application Laid-Open No. 07-281021 JP-A-11-160529 JP 2000-314808 A JP 2003-029027 A JP 2001-133623 A JP 2003-227922 A

近年、携帯用途を中心として、撮像光学系を小型化、薄型化及び軽量化したいという市場での要望が益々強くなり、使用する光学部品の全てにわたって同様の事が求められている。近赤外線カットフィルタでもその薄型化及び軽量化が望まれているが、上述した従来の3つの方式では市場の要求に対する対応が困難となりつつある。   In recent years, there has been an increasing demand in the market for reducing the size, thickness and weight of imaging optical systems, mainly in portable applications, and the same is required for all optical components used. Even near-infrared cut filters are desired to be thinner and lighter, but the three conventional methods described above are becoming difficult to meet market demands.

金属錯体の吸収を利用した第1の方式は、基材上に保持できる金属錯体の濃度に限界があり、必要な光学特性を出す為には、0.4mm程度以上の厚みが必要であり、薄型化の障害となっている。特許文献1及び2はいずれも金属錯体としてリン酸化合物をベースに用いている為、環境上でも問題がある。   The first method using the absorption of the metal complex has a limit to the concentration of the metal complex that can be held on the substrate, and in order to obtain the necessary optical characteristics, a thickness of about 0.4 mm or more is required. It is an obstacle to thinning. Since Patent Documents 1 and 2 both use a phosphoric acid compound as a metal complex, there is a problem in the environment.

透明誘電体薄膜を積層した光学多層膜を利用する第2の方式は、使用する誘電体材料の屈折率差が最大でも1程度である為、要求される光学特性を実現するには、誘電体薄膜の積層数が40程度必要になる。このため膜応力の調整が困難であり、基材の反りや膜の剥離などが発生しやすい。基材の反りを防止する為には必然的に基材の厚みを大きくせざるを得ず、薄型化の障害となっている。またガラス基材に代えて樹脂基材を用いた場合、変形、膜剥離、クラックなどが多発する為、軽量化に対する障害となっている。また作成コストも大きなものになる。   In the second method using the optical multilayer film in which the transparent dielectric thin films are laminated, the difference in refractive index of the dielectric material to be used is about 1 at most. About 40 thin films are required. For this reason, it is difficult to adjust the film stress, and the substrate is likely to warp or peel off. In order to prevent the warpage of the base material, the thickness of the base material is inevitably increased, which is an obstacle to thinning. In addition, when a resin base material is used instead of the glass base material, deformation, film peeling, cracks, and the like frequently occur, which is an obstacle to weight reduction. Also, the production cost will be large.

染料や顔料の吸収を利用した第3の方式は、比較的低温での形成が可能であり、樹脂基材へも対応可能である。しかしながら、阻止域(近赤外線領域)の透過率を低くすると透過域(可視領域)の透過率も共に低くなる事が問題である。   The third method using absorption of dyes and pigments can be formed at a relatively low temperature and can be applied to a resin base material. However, when the transmittance in the blocking region (near infrared region) is lowered, the transmittance in the transmission region (visible region) is also lowered.

以上のように第1ないし第3の方式はいずれも一長一短があり、現在の市場の要求を満たす事ができない。そこで本発明は、異なった方式を組み合わせる事で、薄型化が可能になり且つ可視光線領域で高い透明性を有すると共に、近赤外線領域で優れた阻止能を有する近赤外線カットフィルタを提供する事を課題とする。   As described above, each of the first to third methods has advantages and disadvantages and cannot meet the current market demand. Therefore, the present invention provides a near-infrared cut filter that can be thinned by combining different methods, has high transparency in the visible light region, and has excellent blocking power in the near-infrared region. Let it be an issue.

上述した従来の技術の課題を解決する為に以下の手段を講じた。即ち本発明にかかる近赤外線カットフィルタは、透明な基材と、該基材の片面又は両面に形成された光学多層膜と、該基材の少なくとも片面に形成された少なくとも一層の樹脂吸収膜とからなり、前記光学多層膜は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すとともに近赤外線領域で低透過特性を示し、前記樹脂吸収膜は、染料又は顔料を添加した樹脂材料を膜状に塗工してなり、該染料又は顔料は近赤外線領域に吸収を有することを特徴とする。   In order to solve the above-mentioned problems of the prior art, the following measures were taken. That is, the near-infrared cut filter according to the present invention includes a transparent base material, an optical multilayer film formed on one or both sides of the base material, and at least one resin absorption film formed on at least one side of the base material. The optical multilayer film is formed by alternately laminating two or more types of thin films having different refractive indexes, exhibits high transmission characteristics in the visible light region and low transmission characteristics in the near infrared region, Is characterized in that a resin material to which a dye or pigment is added is applied in the form of a film, and the dye or pigment has absorption in the near infrared region.

好ましくは、前記樹脂吸収膜が阻止する近赤外線の波長範囲は、該光学多層膜が阻止する近赤外線の波長範囲と一部重なるか、あるいは該光学多層膜が阻止する近赤外線の範囲に全て含まれている。又前記基材は樹脂フィルムからなる。   Preferably, the near-infrared wavelength range blocked by the resin absorbing film partially overlaps with the near-infrared wavelength range blocked by the optical multilayer film or included in the near-infrared range blocked by the optical multilayer film. It is. The substrate is made of a resin film.

本発明によれば、近赤外線カットフィルタは光学多層膜と樹脂吸収膜を組み合わせた構成となっている。光学多層膜は可視光線領域で高い透過特性を示すと共に、近赤外線領域では優れた阻止性能を有する。これに、近赤外線領域で吸収を有する染料または顔料を添加した樹脂吸収膜を重ねる事で、近赤外線領域における赤外線阻止能を改善する事ができる。光学多層膜単独で近赤外線カットフィルタを構成する場合に比べ、樹脂吸収膜を併用することで、光学多層膜の層数を減らす事ができる。光学多層膜の層数を削減する事で膜応力の調整が容易となり、基材の反りや膜の剥離を抑える事ができる。この為、従来に比較し基材を薄型化する事ができる。一方、可視光線領域では、樹脂吸収膜が若干可視光線を吸収する場合がある。しかしながら、可視光線領域で高透過特性を示す光学多層膜と組み合わせる事で、可視光線領域における吸収を少なくする事が可能である。樹脂吸収膜だけで赤外線カットフィルタを構成する場合に比べ、光学多層膜を組み合わせる事でその分樹脂吸収膜に含まれる染料もしくは顔料の濃度を抑えられる。これにより可視光線領域における不要な吸収を抑える事が可能である。   According to the present invention, the near infrared cut filter has a configuration in which an optical multilayer film and a resin absorption film are combined. The optical multilayer film exhibits high transmission characteristics in the visible light region and has excellent blocking performance in the near infrared region. By overlapping this with a resin absorption film to which a dye or pigment having absorption in the near infrared region is added, the infrared ray blocking ability in the near infrared region can be improved. Compared with the case where a near-infrared cut filter is constituted by an optical multilayer film alone, the number of layers of the optical multilayer film can be reduced by using a resin absorption film in combination. By reducing the number of layers of the optical multilayer film, it becomes easy to adjust the film stress, and it is possible to suppress warping of the substrate and peeling of the film. For this reason, a base material can be made thin compared with the past. On the other hand, in the visible light region, the resin absorbing film may absorb some visible light. However, it is possible to reduce absorption in the visible light region by combining with an optical multilayer film exhibiting high transmission characteristics in the visible light region. Compared with the case where an infrared cut filter is constituted only by the resin absorption film, the concentration of the dye or pigment contained in the resin absorption film can be reduced by combining the optical multilayer film. Thereby, unnecessary absorption in the visible light region can be suppressed.

以下図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明にかかる近赤外線カットフィルタの構成を示す模式的な断面図である。図示するように、本近赤外線カットフィルタは、基本的に透明な基材1と、この基材1の片面または両面に形成された光学多層膜2,3と、この基材1の少なくとも片面に形成された少なくとも1層の樹脂吸収膜4とからなる。光学多層膜2,3は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すと共に近赤外線領域で低透過特性を示す。図示の例では、高屈折率材料Hの薄膜と低屈折率材料Lの薄膜を交互に積層して光学多層膜2,3としている。一方樹脂吸収膜4は染料または顔料を吸収した樹脂材料を膜状に塗工したものであり、染料または顔料は近赤外線領域に吸収を有する。好ましくは、樹脂吸収膜4が阻止する近赤外線の波長範囲は、光学多層膜2,3が阻止する近赤外線の波長範囲と一部重なるか、あるいは光学多層膜2または3が阻止する近赤外線の範囲に全て含まれる。また基材1は、PETなどの樹脂フィルムからなる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a configuration of a near-infrared cut filter according to the present invention. As shown in the figure, the near-infrared cut filter includes a basically transparent substrate 1, optical multilayer films 2 and 3 formed on one or both surfaces of the substrate 1, and at least one surface of the substrate 1. It is composed of at least one formed resin absorption film 4. The optical multilayer films 2 and 3 are formed by alternately laminating two or more kinds of thin films having different refractive indexes, and exhibit high transmission characteristics in the visible light region and low transmission characteristics in the near infrared region. In the illustrated example, thin films of high refractive index material H and thin films of low refractive index material L are alternately laminated to form optical multilayer films 2 and 3. On the other hand, the resin absorption film 4 is obtained by coating a resin material that has absorbed a dye or pigment in the form of a film, and the dye or pigment has absorption in the near infrared region. Preferably, the near-infrared wavelength range blocked by the resin absorption film 4 partially overlaps the near-infrared wavelength range blocked by the optical multilayer films 2 and 3, or the near-infrared wavelength range blocked by the optical multilayer film 2 or 3 All included in the range. The substrate 1 is made of a resin film such as PET.

以下基材1、光学多層膜2及び3、樹脂吸収膜4などの各構成要素につき、詳細に説明する。まず基材1であるが、本実施形態では厚みが0.1mmのPETフィルムを用いている。但し本発明はこれに限られるものではなく、PETフィルムに代えて、PC,PEN,ポリオレフィン系など他の透明樹脂フィルムを使用してもよい。場合によっては、ガラス基材の使用も可能である。   Hereinafter, each component such as the substrate 1, the optical multilayer films 2 and 3, the resin absorption film 4 and the like will be described in detail. First, the base material 1 is a PET film having a thickness of 0.1 mm in this embodiment. However, the present invention is not limited to this, and other transparent resin films such as PC, PEN, and polyolefin may be used instead of the PET film. In some cases, a glass substrate can be used.

次に光学多層膜2であるが、図示するように透明基材1の表面に形成されており、高屈折率材料Hからなる透明薄膜と低屈折率材料Lからなる透明薄膜とを交互に複数積層したものである。本実施形態では、基材1の表面から数えて奇数層目が低屈折率材料Lで、偶数層目が高屈折率材料Hからなり、合計で11層重ねられている。本実施形態では、高屈折率材料Hに二酸化チタン(TiO)を用い、低屈折率材料Lに二酸化ケイ素(SiO)を用いている。これらの透明薄膜は、図1に示す物理膜厚となるように、透明基材1の表面から二酸化ケイ素薄膜と二酸化チタン薄膜が交互に11層まで重ねられて光学多層膜2を形成している。 Next, the optical multilayer film 2 is formed on the surface of the transparent substrate 1 as shown in the figure, and a plurality of transparent thin films made of the high refractive index material H and transparent thin films made of the low refractive index material L are alternately arranged. Laminated. In the present embodiment, the odd-numbered layers counted from the surface of the substrate 1 are made of the low-refractive index material L and the even-numbered layers are made of the high-refractive index material H, and a total of 11 layers are stacked. In the present embodiment, a high refractive index material H in titanium dioxide (TiO 2), are made of a low refractive index material L to silicon dioxide (SiO 2). These transparent thin films form an optical multilayer film 2 by alternately stacking up to 11 layers of silicon dioxide thin films and titanium dioxide thin films from the surface of the transparent substrate 1 so as to have the physical film thickness shown in FIG. .

この様に光学多層膜2は、二酸化チタンなどの高屈折率材料Hからなる透明薄膜と二酸化ケイ素などの低屈折率材料Lからなる透明薄膜とを交互に複数積層したものであり、透明薄膜による光の干渉を利用して近赤外線波長域の光を選択的に阻止するものである。各波長における光透過率は、交互に積層する各透明薄膜の光学膜厚(薄膜の屈折率と薄膜の物理膜厚の積)で決まり、近赤外線波長域の光を阻止するように、積層する透明薄膜の屈折率、膜厚及び積層数を設計している。   As described above, the optical multilayer film 2 is formed by alternately laminating a plurality of transparent thin films made of a high refractive index material H such as titanium dioxide and transparent thin films made of a low refractive index material L such as silicon dioxide. It uses light interference to selectively block light in the near-infrared wavelength region. The light transmittance at each wavelength is determined by the optical film thickness (the product of the refractive index of the thin film and the physical film thickness of the thin film) of each transparent thin film that is alternately laminated, and is laminated so as to block light in the near infrared wavelength region. The refractive index, film thickness, and number of layers of the transparent thin film are designed.

なお本実施形態では高屈折率材料としてTiOを用い、低屈折率材料としてSiOを用いているが、これに限られるものではない。他の誘電体薄膜材料として、MgF、Al、ZrO、Ta、Nbなども適用可能である。 In this embodiment, TiO 2 is used as the high refractive index material and SiO 2 is used as the low refractive index material. However, the present invention is not limited to this. As other dielectric thin film materials, MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , Nb 2 O 3 and the like are also applicable.

基材1の裏面側に形成された光学多層膜3も、基本的には光学多層膜2と同様である。光学多層膜3は合計11層からなり、基本的には高屈折率材料Hと低屈折率材料Lを交互に11層積層して、所望の透過特性を得ている。但し、各薄膜の物理膜厚を適宜調整する事で、近赤外線領域における透過特性が光学多層膜2と異なるように設計されている。光学多層膜2と光学多層膜3を総合する事で近赤外線領域における所望の阻止特性を得ている。   The optical multilayer film 3 formed on the back side of the substrate 1 is basically the same as the optical multilayer film 2. The optical multilayer film 3 is composed of a total of 11 layers. Basically, 11 layers of high refractive index material H and low refractive index material L are alternately laminated to obtain desired transmission characteristics. However, the optical film thickness is designed to be different from that of the optical multilayer film 2 by appropriately adjusting the physical film thickness of each thin film. By combining the optical multilayer film 2 and the optical multilayer film 3, desired blocking characteristics in the near infrared region are obtained.

樹脂吸収膜4は、基本的に染料または顔料を添加した樹脂材料を膜状に塗工したものである。添加する染料または顔料は特に近赤外線領域に吸収を有しており、上述した光学多層膜2及び3と組み合わせる事で、ほぼ理想的な近赤外線阻止能を得る事ができる。本実施形態では、有機溶媒中にアクリル系の透明樹脂および染料を溶解した塗液を作成し、これを光学多層膜3の上に10μmの厚みでコーティングしたものである。このとき用いた染料はSANDS社製の製品番号No.8630である。なお、樹脂吸収膜4の樹脂材料は、アクリル系以外でも可視域にて透明であればどのようなベース材を使用してもよく、例えばポリエステル系の樹脂も好ましい。また樹脂に添加する染料は、基本的に可視域で透明性が高く近赤外域で吸収のある材料が好ましい。例えばフタロシアニン系、チオール金属錯体系、アゾ化合物系、ポリメチン系、ジフェニルメタン系、トリフェニルメタン系、キノン系、ジイモニウム系などの単体または混合物を使用する事ができる。顔料の場合も、可視光線領域で透明性が高く、近赤外線領域で吸収を有する材料が選択される。例えばインジウムとスズの複合酸化物であるITOを微粒子化したものを顔料に用いる事ができる。ITOは液晶ディスプレイなどの透明電極に多用されており、可視域ではほぼ透明であるが、近赤外域に吸収を有する。撮像系に適用する近赤外線カットフィルタの場合、画像のぼやけなどが発生しない程度の粒径に顔料を微細化する必要がある。その粒径は例えば数10nm以下である。   The resin absorption film 4 is basically a film obtained by coating a resin material with a dye or pigment added thereto. The added dye or pigment has absorption particularly in the near infrared region, and by combining with the optical multilayer films 2 and 3 described above, an almost ideal near infrared ray blocking ability can be obtained. In the present embodiment, a coating liquid in which an acrylic transparent resin and a dye are dissolved in an organic solvent is prepared, and this is coated on the optical multilayer film 3 with a thickness of 10 μm. The dye used at this time was a product number no. 8630. The resin material of the resin absorbing film 4 may be any base material other than an acrylic material as long as it is transparent in the visible range, and for example, a polyester resin is also preferable. The dye added to the resin is basically preferably a material that is highly transparent in the visible region and absorbs in the near infrared region. For example, phthalocyanine-based, thiol metal complex-based, azo compound-based, polymethine-based, diphenylmethane-based, triphenylmethane-based, quinone-based, diimonium-based, or the like can be used. Also in the case of a pigment, a material having high transparency in the visible light region and absorption in the near infrared region is selected. For example, fine particles of ITO, which is a composite oxide of indium and tin, can be used for the pigment. ITO is widely used for transparent electrodes such as liquid crystal displays, and is almost transparent in the visible range, but has absorption in the near infrared range. In the case of a near-infrared cut filter applied to an imaging system, it is necessary to refine the pigment to a particle size that does not cause blurring of the image. The particle size is, for example, several tens of nm or less.

引き続き図1を参照して、本近赤外線カットフィルタの製造方法の一例を説明する。本例では、PETフィルム基材1に二酸化チタンと二酸化ケイ素を交互に真空蒸着して製造する。基材1の温度は例えば100℃に保持してある。但し本成膜方法は真空蒸着法に限られるものではなく、イオンプレーティング法、イオンアシスト法、スパッタ法などの手法を利用する事が可能である。まずフィルム基材1を真空蒸着装置の真空容器内に装填すると共に、ペレット状または粒状の二酸化チタン及び二酸化ケイ素をこの真空容器内に設けられた2つの電子ビーム蒸着源に別々に入れ、真空容器を排気する。   With reference to FIG. 1, an example of the manufacturing method of the near infrared cut filter will be described. In this example, titanium dioxide and silicon dioxide are alternately deposited on the PET film substrate 1 by vacuum deposition. The temperature of the substrate 1 is maintained at 100 ° C., for example. However, the film forming method is not limited to the vacuum deposition method, and a method such as an ion plating method, an ion assist method, or a sputtering method can be used. First, the film substrate 1 is loaded into a vacuum container of a vacuum deposition apparatus, and pellet-like or granular titanium dioxide and silicon dioxide are separately put into two electron beam deposition sources provided in the vacuum container. Exhaust.

真空容器内の圧力が1×10−3Pa以下になったら、電子ビーム蒸着源に電子ビームを照射して二酸化チタンと二酸化ケイ素をそれぞれ加熱して蒸発させる。2つの電子ビーム蒸着源の直上には、それぞれ開閉可能なシャッターが設けられており、二酸化チタンの蒸着時は二酸化チタン側のシャッターを開いて二酸化ケイ素側のシャッターを閉じ、二酸化ケイ素の蒸着時は二酸化チタン側のシャッターを閉じ二酸化ケイ素側のシャッターを開いて、フィルム基材1上に二酸化チタンと二酸化ケイ素の透明薄膜を交互に積層する。この様にしてフィルム基材1の表面側に光学多層膜2を形成したら、フィルム基材1を裏返しにして再び真空蒸着処理を行い光学多層膜3を形成する。即ち、二酸化チタンと二酸化ケイ素の蒸着を所望の層数繰り返して光学多層膜3を完成する。 When the pressure in the vacuum container becomes 1 × 10 −3 Pa or less, the electron beam evaporation source is irradiated with an electron beam to heat and evaporate titanium dioxide and silicon dioxide, respectively. Opening and closing shutters are provided directly above the two electron beam evaporation sources. When depositing titanium dioxide, the shutter on the titanium dioxide side is opened and the shutter on the silicon dioxide side is closed. When depositing silicon dioxide, The titanium dioxide side shutter is closed and the silicon dioxide side shutter is opened, and transparent thin films of titanium dioxide and silicon dioxide are alternately laminated on the film substrate 1. When the optical multilayer film 2 is formed on the surface side of the film substrate 1 in this manner, the optical multilayer film 3 is formed by performing the vacuum deposition process again with the film substrate 1 turned over. That is, vapor deposition of titanium dioxide and silicon dioxide is repeated for a desired number of layers to complete the optical multilayer film 3.

なお各透明薄膜の膜厚は、膜厚モニターで蒸着の間測定されており、所定の膜厚でシャッターを閉じるようにして膜厚を制御している。所定の層数まで蒸着されたら、電子ビーム蒸着源の動作を停止し、真空容器の排気をやめて大気圧に戻す。蒸着が終わったフィルム基材は、真空容器から取り出し、次のコーティング処理を行なう。   The film thickness of each transparent thin film is measured during deposition by a film thickness monitor, and the film thickness is controlled by closing the shutter at a predetermined film thickness. When the predetermined number of layers is deposited, the operation of the electron beam deposition source is stopped, the vacuum vessel is evacuated, and the pressure is returned to atmospheric pressure. The film base material after vapor deposition is taken out of the vacuum container and subjected to the next coating treatment.

樹脂吸収膜を形成する為のコーティング処理では、まず分散媒となるベースポリエステルを製作する。作成したベースポリエステルをバインダー樹脂とし、これに所望の赤外線吸収色素及び溶剤を添加し、フラスコに入れて加熱しながら撹拌し、色素及びバインダー樹脂を溶解する。なお溶剤としてはメチルエチルケトン、テトラヒドロフラン、トルエンなどの単体もしくは混合物を用いる。この様にして溶解した樹脂を前工程で光学多層膜2,3が形成されたPETフィルム基材の一面に、ギャップが例えば50μmのアプリケーターを用いてコーティングし、乾燥温度90℃で1時間乾燥させる。このとき得られたコーティング厚みは10μmである。なおコーティング法は実施例に限られるものではなく、ディップ法、グラビア法、リップ法、CAPコート法、スプレー法、スピンコート法などいずれも利用可能である。   In the coating process for forming the resin absorbing film, first, a base polyester serving as a dispersion medium is manufactured. The prepared base polyester is used as a binder resin, a desired infrared absorbing dye and a solvent are added thereto, and the mixture is placed in a flask and stirred while heating to dissolve the dye and the binder resin. As a solvent, a simple substance or a mixture of methyl ethyl ketone, tetrahydrofuran, toluene or the like is used. The thus-dissolved resin is coated on one surface of the PET film substrate on which the optical multilayer films 2 and 3 are formed in the previous step using an applicator having a gap of 50 μm, for example, and dried at a drying temperature of 90 ° C. for 1 hour. . The coating thickness obtained at this time is 10 μm. The coating method is not limited to the examples, and any of a dipping method, a gravure method, a lip method, a CAP coating method, a spray method, a spin coating method, and the like can be used.

図2は、本発明にかかる近赤外線カットフィルタの光学特性を示すグラフである。縦軸に透過率を取り、横軸に波長を取ってある。□のプロットは基材1の表面に光学多層膜2のみを形成した場合の光学特性を示し、△のプロットは基材の裏面に光学多層膜3のみをコートした場合の光学特性を示し、○のプロットは基材の片面に樹脂吸収膜4のみをコートした場合の光学特性を表している。グラフから明らかなように、光学多層膜2は波長が650nm〜950nmの範囲で大きな阻止能を有している。光学多層膜2の阻止能は大部分が反射に依存している。一方光学多層膜3は波長が800nm以上の範囲で近赤外線の阻止能を有している。これらに、光学多層膜2と光学多層膜3は近赤外線領域で異なる透過特性を備えており、基本的には両者を組み合わせる事で所定の近赤外線領域700〜1100nmを阻止するように設計されている。   FIG. 2 is a graph showing optical characteristics of the near-infrared cut filter according to the present invention. The vertical axis represents transmittance, and the horizontal axis represents wavelength. The plot of □ shows the optical characteristics when only the optical multilayer film 2 is formed on the surface of the substrate 1, the plot of Δ shows the optical characteristics when only the optical multilayer film 3 is coated on the back surface of the substrate, These plots represent the optical characteristics when only one side of the substrate is coated with the resin absorbing film 4. As is apparent from the graph, the optical multilayer film 2 has a large stopping power in the wavelength range of 650 nm to 950 nm. Most of the stopping power of the optical multilayer film 2 depends on reflection. On the other hand, the optical multilayer film 3 has a near-infrared blocking ability in the wavelength range of 800 nm or more. In addition, the optical multilayer film 2 and the optical multilayer film 3 have different transmission characteristics in the near-infrared region, and are basically designed to block a predetermined near-infrared region 700 to 1100 nm by combining both. Yes.

一方樹脂吸収膜4は波長が400nm〜700nmの可視領域で、光学多層膜2,3に比べるとやや透過率が低く若干の吸収を有している。波長700nmを超えたところから透過率が徐々に低下し、900nm当たりで最大の吸収となり、さらに波長がこれより長くなると再び透過率が高くなる。グラフから明らかなように、近赤外線領域における樹脂吸収膜4の吸収特性は、光学多層膜3が阻止する近赤外線の波長範囲と一部重なっている。また樹脂吸収膜4が阻止する近赤外線の波長範囲は、他の光学多層膜2が阻止する近赤外線の範囲に全て含まれている。   On the other hand, the resin absorption film 4 has a visible region with a wavelength of 400 nm to 700 nm, a slightly lower transmittance than the optical multilayer films 2 and 3, and a slight absorption. When the wavelength exceeds 700 nm, the transmittance gradually decreases and becomes maximum absorption around 900 nm. Further, when the wavelength is longer than this, the transmittance is increased again. As is apparent from the graph, the absorption characteristics of the resin absorption film 4 in the near infrared region partially overlap with the near infrared wavelength range blocked by the optical multilayer film 3. The near-infrared wavelength range blocked by the resin absorption film 4 is all included in the near-infrared range blocked by the other optical multilayer film 2.

*のプロットは、光学多層膜2と光学多層膜3を組み合わせた場合の光学特性を表している。図2のグラフから明らかなように、両者を組み合わせると、波長700nmを超えた近赤外線領域で透過率が10%以下となっており、ほぼ実用レベルである。続いて◆のプロットは光学多層膜2及び3に加えて樹脂吸収膜4を重ねた場合の光学特性を示している。図2のグラフから明らかなように、この樹脂吸収膜4を本発明にしたがって追加する事で、特に波長が800nm〜900nmにかけての近赤外線阻止能を一段と改善する事ができ、透過率は5%以下である。この範囲の近赤外線を強力に遮断することで、撮像系に使った場合優れた色再現性を得る事ができる。仮に樹脂吸収膜4を用いる事なく光学多層膜2,3のみで800〜900nmにおける透過率を5%程度まで下げようとすると、光学多層膜の全層数が40層程度に達し、基材の反りや膜の剥離が問題となる。これに対し本発明では樹脂吸収膜4を追加することで光学多層膜側の層数を削減する事が可能となり、基材の反りや膜の剥離を抑える事ができる。このため従来に比較し基材を薄型化する事が可能である。   The plot of * represents the optical characteristics when the optical multilayer film 2 and the optical multilayer film 3 are combined. As is apparent from the graph of FIG. 2, when both are combined, the transmittance is 10% or less in the near infrared region exceeding the wavelength of 700 nm, which is almost a practical level. Subsequently, the ♦ plot shows optical characteristics when the resin absorption film 4 is stacked in addition to the optical multilayer films 2 and 3. As apparent from the graph of FIG. 2, the addition of the resin absorbing film 4 according to the present invention can further improve the near-infrared ray blocking ability particularly in the wavelength range from 800 nm to 900 nm, and the transmittance is 5%. It is as follows. By powerfully blocking near infrared rays in this range, excellent color reproducibility can be obtained when used in an imaging system. If it is attempted to reduce the transmittance at 800 to 900 nm to about 5% using only the optical multilayer films 2 and 3 without using the resin absorbing film 4, the total number of layers of the optical multilayer film reaches about 40 layers. Warpage and film peeling become a problem. On the other hand, in the present invention, it is possible to reduce the number of layers on the optical multilayer film side by adding the resin absorbing film 4, and it is possible to suppress warpage of the substrate and peeling of the film. For this reason, it is possible to make a base material thin compared with the past.

一方可視光線領域においても、樹脂吸収膜4を追加した場合、その透過率は90%のレベルを維持でき、実用上問題ない。仮に樹脂吸収膜4のみで近赤外線カットフィルタを構成すると、可視光域における透過率が80%程度まで低下し、用途によっては問題となる。これに対し、樹脂吸収膜4よりも可視光線領域で透明性の高い光学多層膜2及び3を組み合わせる事で、近赤外線カットフィルタの可視光線領域における透明性を90%程度まで高める事ができる。   On the other hand, even in the visible light region, when the resin absorbing film 4 is added, the transmittance can be maintained at a level of 90%, and there is no practical problem. If a near-infrared cut filter is constituted only by the resin absorption film 4, the transmittance in the visible light region is reduced to about 80%, which causes a problem depending on the application. In contrast, by combining the optical multilayer films 2 and 3 having higher transparency in the visible light region than the resin absorbing film 4, the transparency in the visible light region of the near-infrared cut filter can be increased to about 90%.

図3は本発明にかかる近赤外線カットフィルタの種々の変形例を示す模式的な断面図である。(A)に示す例は、基材1の表面側に光学多層膜2を形成する一方、基材1の裏面側に樹脂吸収膜4を形成している。最も単純な構成であり、安価に近赤外線カットフィルタを製造する事ができる。   FIG. 3 is a schematic cross-sectional view showing various modifications of the near-infrared cut filter according to the present invention. In the example shown in (A), the optical multilayer film 2 is formed on the front surface side of the base material 1, while the resin absorption film 4 is formed on the back surface side of the base material 1. It has the simplest configuration and can produce a near infrared cut filter at a low cost.

(B)に示す例は、基材1の表面側のみに樹脂吸収膜4及び光学多層膜2を形成したものである。基材1の片面側のみに光学多層膜2及び樹脂吸収膜4が配される為、製造及び取り扱いが容易になるという利点がある。   In the example shown in (B), the resin absorption film 4 and the optical multilayer film 2 are formed only on the surface side of the substrate 1. Since the optical multilayer film 2 and the resin absorption film 4 are disposed only on one side of the base material 1, there is an advantage that manufacture and handling become easy.

(C)に示す例は、基材1の裏面側に樹脂吸収膜4を形成する一方、基材1の表面側に別の樹脂吸収膜5と光学多層膜2を形成している。近赤外線領域における吸収特性が異なる樹脂吸収膜4,5を組み合わせる事で、所望の近赤外線阻止能が得られる。   In the example shown in (C), the resin absorption film 4 is formed on the back surface side of the substrate 1, while another resin absorption film 5 and the optical multilayer film 2 are formed on the surface side of the substrate 1. By combining the resin absorption films 4 and 5 having different absorption characteristics in the near infrared region, a desired near infrared ray blocking ability can be obtained.

(D)に示した例は、基材1の表面側に樹脂吸収膜5及び光学多層膜2を順に形成する一方、基材1の裏面側に樹脂吸収膜4及び光学多層膜3を順に形成している。基材1の表面と裏面にそれぞれ樹脂吸収膜及び光学多層膜を形成する事で、膜応力の均衡を図る事ができる。これにより、薄いガラス基材や樹脂フィルム基材を用いた場合でも、反り、膜剥離及びクラックなどを防ぐ事ができる。   In the example shown in (D), the resin absorption film 5 and the optical multilayer film 2 are sequentially formed on the front surface side of the substrate 1, while the resin absorption film 4 and the optical multilayer film 3 are sequentially formed on the back surface side of the substrate 1. is doing. By forming the resin absorption film and the optical multilayer film on the front surface and the back surface of the base material 1, respectively, the film stress can be balanced. Thereby, even when a thin glass substrate or a resin film substrate is used, it is possible to prevent warping, film peeling and cracks.

(E)に示した例は、基材1の表面側に光学多層膜2を形成する一方、基材1の裏面側に光学多層膜3及び樹脂吸収膜4を形成している。これは丁度図1で説明した構成と同じであり、これ以上の詳細な説明は省略する。   In the example shown in (E), the optical multilayer film 2 is formed on the front surface side of the substrate 1, while the optical multilayer film 3 and the resin absorption film 4 are formed on the back surface side of the substrate 1. This is exactly the same as the configuration described with reference to FIG. 1, and further detailed description thereof is omitted.

(F)に示した例は、基材1の表側に光学多層膜2を形成する一方、基材1の裏側に光学多層膜3を形成している。光学多層膜2の表面を保護するように樹脂吸収膜5を形成している。同じく基材1の裏面側に形成された光学多層膜3を保護するように樹脂吸収膜4が形成されている。この様にする事で、信頼性に優れた近赤外線カットフィルタを提供する事ができる。   In the example shown in (F), the optical multilayer film 2 is formed on the front side of the substrate 1, while the optical multilayer film 3 is formed on the back side of the substrate 1. A resin absorbing film 5 is formed so as to protect the surface of the optical multilayer film 2. Similarly, a resin absorbing film 4 is formed so as to protect the optical multilayer film 3 formed on the back surface side of the substrate 1. By doing in this way, the near-infrared cut filter excellent in reliability can be provided.

本発明にかかる近赤外線カットフィルタの構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the near-infrared cut off filter concerning this invention. 本発明にかかる近赤外線カットフィルタの光学特性を示すグラフである。It is a graph which shows the optical characteristic of the near-infrared cut off filter concerning this invention. 本発明にかかる近赤外線カットフィルタの様々な変形例を示す模式的な断面図である。It is typical sectional drawing which shows the various modifications of the near-infrared cut off filter concerning this invention.

符号の説明Explanation of symbols

1・・・基材、2・・・光学多層膜、3・・・光学多層膜、4・・・樹脂吸収膜、5・・・樹脂吸収膜   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Optical multilayer film, 3 ... Optical multilayer film, 4 ... Resin absorption film, 5 ... Resin absorption film

Claims (3)

透明な基材と、該基材の片面又は両面に形成された光学多層膜と、該基材の少なくとも片面に形成された少なくとも一層の樹脂吸収膜とからなり、
前記光学多層膜は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すとともに近赤外線領域で低透過特性を示し、 前記樹脂吸収膜は、染料又は顔料を添加した樹脂材料を膜状に塗工してなり、該染料又は顔料は近赤外線領域に吸収を有することを特徴とする近赤外線カットフィルタ。
A transparent base material, an optical multilayer film formed on one side or both sides of the base material, and at least one resin absorption film formed on at least one side of the base material,
The optical multilayer film is formed by alternately laminating two or more types of thin films having different refractive indexes, exhibits high transmission characteristics in the visible light region and low transmission characteristics in the near infrared region, and the resin absorption film comprises a dye Alternatively, a near-infrared cut filter, which is formed by coating a resin material to which a pigment is added into a film, and the dye or pigment has absorption in the near-infrared region.
前記樹脂吸収膜が阻止する近赤外線の波長範囲は、該光学多層膜が阻止する近赤外線の波長範囲と一部重なるか、あるいは該光学多層膜が阻止する近赤外線の範囲に全て含まれることを特徴とする請求項1に記載の近赤外線カットフィルタ。   The near-infrared wavelength range blocked by the resin absorption film partially overlaps the near-infrared wavelength range blocked by the optical multilayer film, or is included in the near-infrared wavelength range blocked by the optical multilayer film. The near-infrared cut filter according to claim 1. 前記基材は樹脂フィルムからなることを特徴とする請求項1に記載の近赤外線カットフィルタ。   The near-infrared cut filter according to claim 1, wherein the substrate is made of a resin film.
JP2005126175A 2005-04-25 2005-04-25 Near-infrared ray cut filter Pending JP2006301489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126175A JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126175A JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Publications (1)

Publication Number Publication Date
JP2006301489A true JP2006301489A (en) 2006-11-02

Family

ID=37469809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126175A Pending JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Country Status (1)

Country Link
JP (1) JP2006301489A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075984A (en) * 2009-10-01 2011-04-14 Sony Corp Imaging optical system and imaging apparatus
JP2011104830A (en) * 2009-11-16 2011-06-02 Konica Minolta Holdings Inc Dielectric film laminate and method of manufacturing dielectric film laminate
JP2012103340A (en) * 2010-11-08 2012-05-31 Jsr Corp Near-infrared cut filter, solid-state imaging sensor and solid-state imager equipped with the same
JP2012137651A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
JP2014142629A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Curable resin composition, infrared cut filter, and solid imaging device using infrared cut filter
CN104101930A (en) * 2013-04-09 2014-10-15 日本板硝子株式会社 Infrared cut filter and imaging apparatus
JP2015011319A (en) * 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
US20150138369A1 (en) * 2012-07-27 2015-05-21 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2015148643A (en) * 2014-02-04 2015-08-20 東海光学株式会社 Optical product as well as spectacle lenses and glasses
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2016042196A (en) * 2015-11-12 2016-03-31 旭硝子株式会社 Light absorber, and imaging apparatus using the same
JP2016212340A (en) * 2015-05-13 2016-12-15 旭硝子株式会社 Near-infrared cut filter
JP2017120433A (en) * 2017-01-26 2017-07-06 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
JP2019109526A (en) * 2019-02-06 2019-07-04 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter
EP2406828B1 (en) * 2009-03-12 2019-07-10 OSRAM Opto Semiconductors GmbH Radiation-receiving semiconductor component and optoelectronic device
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
US10408979B2 (en) 2013-12-26 2019-09-10 AGC Inc. Optical filter
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
WO2020090615A1 (en) * 2018-10-31 2020-05-07 日本電気硝子株式会社 Band-pass filter and manufacturing method therefor
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235115A (en) * 1999-02-15 2000-08-29 Toray Ind Inc Front face filter for plasma display
JP2002281515A (en) * 2001-03-19 2002-09-27 Canon Inc Optical image pickup system and image pickup device
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2003060176A (en) * 2001-08-08 2003-02-28 Toppan Printing Co Ltd Solid state imaging element
JP2003101001A (en) * 2001-09-26 2003-04-04 Toppan Printing Co Ltd Solid-state image pickup element and manufacturing method therefor
JP2004233641A (en) * 2003-01-30 2004-08-19 Nippon Kayaku Co Ltd Near-infrared ray absorption film
WO2005022212A1 (en) * 2003-09-01 2005-03-10 Dai Nippon Printing Co., Ltd. Antireflection film for plasma display
JP2005070724A (en) * 2003-08-05 2005-03-17 Asahi Glass Co Ltd Optical filter for plasma display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235115A (en) * 1999-02-15 2000-08-29 Toray Ind Inc Front face filter for plasma display
JP2002281515A (en) * 2001-03-19 2002-09-27 Canon Inc Optical image pickup system and image pickup device
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2003060176A (en) * 2001-08-08 2003-02-28 Toppan Printing Co Ltd Solid state imaging element
JP2003101001A (en) * 2001-09-26 2003-04-04 Toppan Printing Co Ltd Solid-state image pickup element and manufacturing method therefor
JP2004233641A (en) * 2003-01-30 2004-08-19 Nippon Kayaku Co Ltd Near-infrared ray absorption film
JP2005070724A (en) * 2003-08-05 2005-03-17 Asahi Glass Co Ltd Optical filter for plasma display panel
WO2005022212A1 (en) * 2003-09-01 2005-03-10 Dai Nippon Printing Co., Ltd. Antireflection film for plasma display

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2406828B1 (en) * 2009-03-12 2019-07-10 OSRAM Opto Semiconductors GmbH Radiation-receiving semiconductor component and optoelectronic device
JP2011075984A (en) * 2009-10-01 2011-04-14 Sony Corp Imaging optical system and imaging apparatus
JP2011104830A (en) * 2009-11-16 2011-06-02 Konica Minolta Holdings Inc Dielectric film laminate and method of manufacturing dielectric film laminate
JP2012103340A (en) * 2010-11-08 2012-05-31 Jsr Corp Near-infrared cut filter, solid-state imaging sensor and solid-state imager equipped with the same
JP2012137651A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
US9753196B2 (en) 2011-06-06 2017-09-05 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter
US20150138369A1 (en) * 2012-07-27 2015-05-21 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
JP2014142629A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Curable resin composition, infrared cut filter, and solid imaging device using infrared cut filter
JP2014203044A (en) * 2013-04-09 2014-10-27 日本板硝子株式会社 Infrared cut filter and image capturing device
CN104101930A (en) * 2013-04-09 2014-10-15 日本板硝子株式会社 Infrared cut filter and imaging apparatus
JP2015011319A (en) * 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
US10408979B2 (en) 2013-12-26 2019-09-10 AGC Inc. Optical filter
JP2015148643A (en) * 2014-02-04 2015-08-20 東海光学株式会社 Optical product as well as spectacle lenses and glasses
US10031349B2 (en) 2014-02-04 2018-07-24 Tokai Optical Co., Ltd. Optical product, and spectacle lens and spectacles
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
US10745572B2 (en) 2015-02-18 2020-08-18 AGC Inc. Squarylium-based dye for near-infrared optical filter
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
JP2016212340A (en) * 2015-05-13 2016-12-15 旭硝子株式会社 Near-infrared cut filter
JP2016042196A (en) * 2015-11-12 2016-03-31 旭硝子株式会社 Light absorber, and imaging apparatus using the same
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter
JPWO2018043564A1 (en) * 2016-08-31 2019-06-24 Jsr株式会社 Optical filter and apparatus using the optical filter
JP2017120433A (en) * 2017-01-26 2017-07-06 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter
WO2020090615A1 (en) * 2018-10-31 2020-05-07 日本電気硝子株式会社 Band-pass filter and manufacturing method therefor
JP2020071375A (en) * 2018-10-31 2020-05-07 日本電気硝子株式会社 Band-pass filter and manufacturing method of the same
CN112714881A (en) * 2018-10-31 2021-04-27 日本电气硝子株式会社 Band-pass filter and method for manufacturing the same
JP7251099B2 (en) 2018-10-31 2023-04-04 日本電気硝子株式会社 Bandpass filter and manufacturing method thereof
CN112714881B (en) * 2018-10-31 2023-12-19 日本电气硝子株式会社 Band-pass filter and method for manufacturing the same
JP2019109526A (en) * 2019-02-06 2019-07-04 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter

Similar Documents

Publication Publication Date Title
JP2006301489A (en) Near-infrared ray cut filter
JP3206578U (en) Absorption near-infrared filter and image sensor
JP6087464B1 (en) Infrared cut filter and imaging optical system
JP5741283B2 (en) Infrared light transmission filter and imaging apparatus using the same
JP3213654U (en) Absorption near-infrared filter and image sensor
JP5849719B2 (en) Light absorber and imaging device using the same
JP2008051985A (en) Near infrared ray absorbing filter
JP5823119B2 (en) Optical filter for UV-IR cut
JP5759717B2 (en) Imaging optical system for surveillance cameras
CN105122095A (en) Infrared shielding filter, solid-state imaging element, and imaging/display device
US20190250316A1 (en) Optical filter
JP2012137649A (en) Optical filter
CN110095831A (en) Cutoff filter and photographic device
JP2006301487A (en) Near-infrared ray cut filter
TW202113424A (en) Optical member and camera module to provide an optical member which selectively reflects visible light in a specific wavelength region but suppresses the reflection of light in a specific wavelength region
JP2006106570A (en) Light absorbing filter
CN107430226B (en) Optical filter and imaging device comprising same
JP2006301488A (en) Near-infrared ray cut filter for imaging optical system and its manufacturing method
JP2017167557A (en) Light absorber and image capturing device using the same
JP6136661B2 (en) Near-infrared cut filter
US20130120823A1 (en) Lens module with infrared absorbing filter
JP6595220B2 (en) Optical filter and camera equipped with optical filter
JP2005070724A (en) Optical filter for plasma display panel
JP2002277612A (en) Nd filter, method for manufacturing nd filter, device for controlling light quantity, and image pickup device
JP2017003842A (en) Optical filter, light intensity adjustment device having optical filter mounted therein, and imaging optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Effective date: 20100804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A02