JP2006301489A - Near-infrared ray cut filter - Google Patents

Near-infrared ray cut filter Download PDF

Info

Publication number
JP2006301489A
JP2006301489A JP2005126175A JP2005126175A JP2006301489A JP 2006301489 A JP2006301489 A JP 2006301489A JP 2005126175 A JP2005126175 A JP 2005126175A JP 2005126175 A JP2005126175 A JP 2005126175A JP 2006301489 A JP2006301489 A JP 2006301489A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
film
near
substrate
optical multilayer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005126175A
Other languages
Japanese (ja)
Inventor
Junichi Igarashi
Koki Kunii
Kazutoshi Mukai
純一 五十嵐
弘毅 国井
和俊 迎
Original Assignee
Nidec Copal Corp
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a near-infrared ray cut filter which can be made thin, has high transparency in a visible light region and has excellent interception ability in a near-infrared ray region.
SOLUTION: The near-infrared ray cut filter is composed of a transparent substrate 1, optical multilayer films 2, 3 formed on a half surface or both surfaces of the substrate 1 and at least one layer of resin absorption film 4 formed on at least a half surface of the substrate 1. The optical multilayer films 2, 3 are made by alternately laminating at least two kinds of thin films H, L having different refractive indexes, exhibits high transmission characteristic on visible light region and exhibits low transmission characteristic on near-infrared ray region. The resin absorption film 4 is made by applying resin material to which dye or pigment is added into a film shape, wherein the dye or pigment has absorption in near-infrared ray region.
COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カメラやビデオなどのデジタル撮像光学系に使用する近赤外線カットフィルタに関する。 The present invention relates to a near infrared cut filter used in the digital imaging optical system such as a camera or video.

ビデオカメラや電子スチルカメラなどでは、光学的画像データを電気信号に変換する為にカラーCCD素子が使用されている。 Such as a video camera or an electronic still camera, a color CCD element is used to convert the optical image data into electric signals. CCD素子は人間の目の感度(一般に人間の可視領域は400nm〜700nmである)とは異なり、近赤外線領域の1100nm付近まで高い感度を有している。 CCD element is different from the human eye sensitivity (generally human visible region is 400 nm to 700 nm), has high sensitivity to near 1100nm in the near infrared region. したがって人間の目で見た色調バランスを再現する為には不要光となる近赤外線をカットし、可視光線を取り出すフィルタを用いて光のトリミングを行う必要がある。 Thus cutting near infrared rays unnecessary light in order to reproduce the color balance as seen by the human eye, it is necessary to perform the trimming of light using a filter for extracting the visible light. この様な目的で近赤外線カットフィルタが用いられる。 The near-infrared cut filter is used in such a purpose.

赤外線カットフィルタは様々な構造が開発されているが、大別すると3種類に分けられる。 Although the infrared cut filter are various structures have been developed, they are divided into three types roughly classified into. 第1に、ガラスまたは樹脂からなる基材に金属錯体を保持し、その吸収を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献1及び2に記載がある。 First, holding the metal complex to a substrate made of glass or resin, the absorption near infrared cut filter is known using, for example, the following Patent Document 1 and 2. 第2に、透明な基材の表面に屈折率の異なる2種以上の誘電体薄膜を交互に積層配置してなる光学多層膜を形成し、この光学多層膜による光の干渉効果を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献3及び4に記載がある。 Second, to form an optical multilayer film formed by stacking arrangement of two or more of the dielectric thin films having different refractive indexes on the surface of the transparent substrate alternately, utilizing the interference effect of light by the optical multilayer film near infrared cut filter are known, for example, is described in Patent documents 3 and 4 below. 第3に、染料あるいは顔料の吸収を利用した近赤外線カットフィルタが知られており、例えば以下の特許文献5及び6に記載がある。 Thirdly, it is known near infrared cut filter utilizing absorption of dye or pigment, for example, the following Patent Document 5 and 6.
特開平07‐281021号公報 JP 07-281021 discloses 特開平11‐160529号公報 JP 11-160529 discloses 特開2000‐314808公報 JP 2000-314808 Laid 特開2003‐029027公報 JP 2003-029027 Laid 特開2001‐133623公報 JP 2001-133623 Laid 特開2003‐227922公報 JP 2003-227922 Laid

近年、携帯用途を中心として、撮像光学系を小型化、薄型化及び軽量化したいという市場での要望が益々強くなり、使用する光学部品の全てにわたって同様の事が求められている。 Recently, about a mobile application, size of the imaging optical system, demands in the market desire to thickness and weight reduction becomes increasingly stronger, that the same across all of the optical components used are required. 近赤外線カットフィルタでもその薄型化及び軽量化が望まれているが、上述した従来の3つの方式では市場の要求に対する対応が困難となりつつある。 Although even the thickness and weight reduction in near infrared cut filter is desired, it is becoming difficult to cope with the market demand in the conventional three methods described above.

金属錯体の吸収を利用した第1の方式は、基材上に保持できる金属錯体の濃度に限界があり、必要な光学特性を出す為には、0.4mm程度以上の厚みが必要であり、薄型化の障害となっている。 First method using absorption of the metal complex, there is a limit to the concentration of the metal complex that can be retained on the substrate, in order to give the required optical characteristics, it is necessary to 0.4mm approximately thickness or more, It has become an obstacle to the thinner. 特許文献1及び2はいずれも金属錯体としてリン酸化合物をベースに用いている為、環境上でも問題がある。 Because of using a phosphoric acid compound to the base both Patent Documents 1 and 2 as the metal complex, there are problems also on the environment.

透明誘電体薄膜を積層した光学多層膜を利用する第2の方式は、使用する誘電体材料の屈折率差が最大でも1程度である為、要求される光学特性を実現するには、誘電体薄膜の積層数が40程度必要になる。 Second method using the optical multilayer film obtained by laminating a transparent dielectric thin film, since the refractive index difference of the dielectric material used is about one at most, to achieve the optical characteristics required, the dielectric the number of stacked thin films are required about 40. このため膜応力の調整が困難であり、基材の反りや膜の剥離などが発生しやすい。 Therefore it is difficult to adjust the film stress is likely to occur, such as peeling of the warp or film substrate. 基材の反りを防止する為には必然的に基材の厚みを大きくせざるを得ず、薄型化の障害となっている。 Inevitably inevitably causes increasing the thickness of the substrate in order to prevent warping of the substrate, has become an obstacle to thinning. またガラス基材に代えて樹脂基材を用いた場合、変形、膜剥離、クラックなどが多発する為、軽量化に対する障害となっている。 In the case of using a resin substrate instead of the glass substrate, deformation, delamination, because cracks occur frequently, which is an obstacle for the weight reduction. また作成コストも大きなものになる。 Also creating cost is a big thing.

染料や顔料の吸収を利用した第3の方式は、比較的低温での形成が可能であり、樹脂基材へも対応可能である。 Third method using absorption of dyes and pigments is capable of relatively low temperature in the formation of a possible corresponding to the resin substrate. しかしながら、阻止域(近赤外線領域)の透過率を低くすると透過域(可視領域)の透過率も共に低くなる事が問題である。 However, a stopband transmission region and to reduce the transmittance of the (near infrared region) transmittance also be both lowered problems (visible region).

以上のように第1ないし第3の方式はいずれも一長一短があり、現在の市場の要求を満たす事ができない。 Both the first to third methods as described above have advantages and disadvantages, can not meet current market requirements. そこで本発明は、異なった方式を組み合わせる事で、薄型化が可能になり且つ可視光線領域で高い透明性を有すると共に、近赤外線領域で優れた阻止能を有する近赤外線カットフィルタを提供する事を課題とする。 The present invention, by combining different method, which has a high transparency in and visible region enables thinning and to provide a near-infrared cut filter having excellent stopping power at the near-infrared region an object of the present invention.

上述した従来の技術の課題を解決する為に以下の手段を講じた。 It took the following means to solve the problems of the prior art described above. 即ち本発明にかかる近赤外線カットフィルタは、透明な基材と、該基材の片面又は両面に形成された光学多層膜と、該基材の少なくとも片面に形成された少なくとも一層の樹脂吸収膜とからなり、前記光学多層膜は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すとともに近赤外線領域で低透過特性を示し、前記樹脂吸収膜は、染料又は顔料を添加した樹脂材料を膜状に塗工してなり、該染料又は顔料は近赤外線領域に吸収を有することを特徴とする。 That near-infrared cut filter according to the present invention includes a transparent substrate, and the optical multilayer film formed on one surface or both surfaces of the substrate, and at least one layer of resin-absorbent film formed on at least one surface of the substrate made, the optical multilayer film, the two or more thin films having different refractive index formed by laminating alternately, exhibit low transmission characteristics in the near infrared region with exhibits high transmission characteristics in the visible light range, the resin absorption film is made by coating a resin material obtained by adding a dye or pigment in a film form, the dye or pigment is characterized by having an absorption in the near infrared region.

好ましくは、前記樹脂吸収膜が阻止する近赤外線の波長範囲は、該光学多層膜が阻止する近赤外線の波長範囲と一部重なるか、あるいは該光学多層膜が阻止する近赤外線の範囲に全て含まれている。 Preferably, the wavelength range of near infrared to the resin-absorbent membrane rejects are all included in the scope of the near infrared or partially overlaps the wavelength range of near-infrared optical multilayer membrane rejects, or the optical multilayer membrane rejects It has been. 又前記基材は樹脂フィルムからなる。 Also, the substrate is made of a resin film.

本発明によれば、近赤外線カットフィルタは光学多層膜と樹脂吸収膜を組み合わせた構成となっている。 According to the present invention, near infrared cut filter has a structure that combines the optical multilayer film and the resin-absorbing film. 光学多層膜は可視光線領域で高い透過特性を示すと共に、近赤外線領域では優れた阻止性能を有する。 The optical multilayer film exhibit both high transmission characteristics in the visible region, has excellent blocking performance in the near infrared region. これに、近赤外線領域で吸収を有する染料または顔料を添加した樹脂吸収膜を重ねる事で、近赤外線領域における赤外線阻止能を改善する事ができる。 Thereto, by superimposing a resin absorption film added with dye or pigment having an absorption in the near infrared region, it is possible to improve the infrared blocking ability in the near infrared region. 光学多層膜単独で近赤外線カットフィルタを構成する場合に比べ、樹脂吸収膜を併用することで、光学多層膜の層数を減らす事ができる。 Compared with the case of constituting the near-infrared cut filter in the optical multilayer film alone, by combining the resin absorption film, it is possible to reduce the number of layers of the optical multilayer film. 光学多層膜の層数を削減する事で膜応力の調整が容易となり、基材の反りや膜の剥離を抑える事ができる。 It is easy to adjust the film stress by reducing the number of layers of the optical multilayer film, it can be suppressed peeling warpage or film substrate. この為、従来に比較し基材を薄型化する事ができる。 For this reason, it is possible to reduce the thickness of the substrate compared with the prior art. 一方、可視光線領域では、樹脂吸収膜が若干可視光線を吸収する場合がある。 On the other hand, in the visible region, there is a case where the resin absorption film absorbs little visible light. しかしながら、可視光線領域で高透過特性を示す光学多層膜と組み合わせる事で、可視光線領域における吸収を少なくする事が可能である。 However, by combining the optical multilayer film exhibiting high transmission characteristics in the visible region, it is possible to reduce the absorption in the visible light region. 樹脂吸収膜だけで赤外線カットフィルタを構成する場合に比べ、光学多層膜を組み合わせる事でその分樹脂吸収膜に含まれる染料もしくは顔料の濃度を抑えられる。 Only the resin absorption film compared with the case of constituting the infrared cut filter, it is suppressed a dye or pigment concentration contained in that amount the resin absorption film by combining the optical multilayer film. これにより可視光線領域における不要な吸収を抑える事が可能である。 Thus it is possible to suppress the unwanted absorption in the visible light region.

以下図面を参照して本発明の実施の形態を詳細に説明する。 With reference to the drawings illustrating the embodiments of the present invention in detail. 図1は本発明にかかる近赤外線カットフィルタの構成を示す模式的な断面図である。 Figure 1 is a schematic sectional view showing a configuration of a near-infrared cut filter according to the present invention. 図示するように、本近赤外線カットフィルタは、基本的に透明な基材1と、この基材1の片面または両面に形成された光学多層膜2,3と、この基材1の少なくとも片面に形成された少なくとも1層の樹脂吸収膜4とからなる。 As illustrated, the near-infrared cut filter, an essentially transparent substrate 1, an optical multilayer films 2 and 3 formed on one surface or both surfaces of the substrate 1, on at least one surface of the substrate 1 consisting formed at least one layer of the resin-absorbent layer 4. 光学多層膜2,3は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すと共に近赤外線領域で低透過特性を示す。 Optical multilayer films 2 and 3 is made of two or more kinds of thin films having different refractive indexes are alternately laminated, exhibit low transmission characteristics in the near infrared region with exhibits high transmission characteristics in the visible region. 図示の例では、高屈折率材料Hの薄膜と低屈折率材料Lの薄膜を交互に積層して光学多層膜2,3としている。 In the illustrated example, the optical multilayer films 2 and 3 by laminating a film of the thin film and the low refractive index material L having a high refractive index material H alternately. 一方樹脂吸収膜4は染料または顔料を吸収した樹脂材料を膜状に塗工したものであり、染料または顔料は近赤外線領域に吸収を有する。 Meanwhile resin absorbent layer 4 is obtained by applying a resin material which has absorbed dye or pigment in a film shape, a dye or pigment having absorption in the near infrared region. 好ましくは、樹脂吸収膜4が阻止する近赤外線の波長範囲は、光学多層膜2,3が阻止する近赤外線の波長範囲と一部重なるか、あるいは光学多層膜2または3が阻止する近赤外線の範囲に全て含まれる。 Preferably, the wavelength range of near infrared to the resin absorption film 4 prevents, either partially overlaps the wavelength range of near infrared to optical multilayer films 2 and 3 prevents, or near-infrared optical multilayer film 2 or 3 is prevented all the range is included. また基材1は、PETなどの樹脂フィルムからなる。 The substrate 1 is made of a resin film such as PET.

以下基材1、光学多層膜2及び3、樹脂吸収膜4などの各構成要素につき、詳細に説明する。 Hereinafter the substrate 1, the optical multilayer film 2 and 3, for each component such as the resin absorption film 4, will be described in detail. まず基材1であるが、本実施形態では厚みが0.1mmのPETフィルムを用いている。 It is first a substrate 1, but the thickness in the present embodiment is a PET film of 0.1 mm. 但し本発明はこれに限られるものではなく、PETフィルムに代えて、PC,PEN,ポリオレフィン系など他の透明樹脂フィルムを使用してもよい。 However, the present invention is not limited thereto, instead of the PET film, PC, PEN, may use other transparent resin film such as polyolefin. 場合によっては、ガラス基材の使用も可能である。 In some cases, the use of glass substrates is also possible.

次に光学多層膜2であるが、図示するように透明基材1の表面に形成されており、高屈折率材料Hからなる透明薄膜と低屈折率材料Lからなる透明薄膜とを交互に複数積層したものである。 Next it is a optical multilayer film 2, a plurality is formed on the transparent substrate 1 of the surface as shown, and a transparent thin film made of a high refractive index material H and a transparent thin film made of a low refractive index material L alternately it is laminated. 本実施形態では、基材1の表面から数えて奇数層目が低屈折率材料Lで、偶数層目が高屈折率材料Hからなり、合計で11層重ねられている。 In this embodiment, the odd-th layer counting from the surface of the substrate 1 with a low refractive index material L, even-th layer made of a high refractive index material H, are stacked 11 layers in total. 本実施形態では、高屈折率材料Hに二酸化チタン(TiO )を用い、低屈折率材料Lに二酸化ケイ素(SiO )を用いている。 In the present embodiment, a high refractive index material H in titanium dioxide (TiO 2), are made of a low refractive index material L to silicon dioxide (SiO 2). これらの透明薄膜は、図1に示す物理膜厚となるように、透明基材1の表面から二酸化ケイ素薄膜と二酸化チタン薄膜が交互に11層まで重ねられて光学多層膜2を形成している。 These transparent films, such that the physical thickness shown in FIG. 1, the surface of a silicon thin film and the titanium dioxide film dioxide of the transparent base 1 is stacked up alternately 11 layers to form an optical multilayer film 2 .

この様に光学多層膜2は、二酸化チタンなどの高屈折率材料Hからなる透明薄膜と二酸化ケイ素などの低屈折率材料Lからなる透明薄膜とを交互に複数積層したものであり、透明薄膜による光の干渉を利用して近赤外線波長域の光を選択的に阻止するものである。 Optical multilayer film 2 in this manner, is obtained by stacking a plurality of the transparent thin film made of a low refractive index material L such as a transparent thin film and the silicon dioxide comprising a high refractive index material H such as titanium dioxide alternately, by a transparent film it is to selectively block light in the near infrared wavelength region by using interference of light. 各波長における光透過率は、交互に積層する各透明薄膜の光学膜厚(薄膜の屈折率と薄膜の物理膜厚の積)で決まり、近赤外線波長域の光を阻止するように、積層する透明薄膜の屈折率、膜厚及び積層数を設計している。 Light transmittance at each wavelength is determined by the optical thickness of each transparent thin film alternately stacking (the product of the physical thickness of the refractive index and thin films), so as to block light in the near infrared wavelength range are stacked refractive index of the transparent film, has designed a film thickness and number of layers.

なお本実施形態では高屈折率材料としてTiO を用い、低屈折率材料としてSiO を用いているが、これに限られるものではない。 Note the TiO 2 used as the high refractive index material in the present embodiment uses a SiO 2 as a low refractive index material is not limited thereto. 他の誘電体薄膜材料として、MgF 、Al 、ZrO 、Ta 、Nb なども適用可能である。 Other dielectric thin film material, such as MgF 2, Al 2 O 3, ZrO 2, Ta 2 O 5, Nb 2 O 3 is also applicable.

基材1の裏面側に形成された光学多層膜3も、基本的には光学多層膜2と同様である。 The optical multilayer film 3 formed on the back surface side of the substrate 1 is also basically the same as the optical multilayer film 2. 光学多層膜3は合計11層からなり、基本的には高屈折率材料Hと低屈折率材料Lを交互に11層積層して、所望の透過特性を得ている。 The optical multilayer film 3 is made of a total of 11 layers, essentially stacked 11 layers of high refractive index material H and low refractive index material L alternately, to obtain the desired transmission properties. 但し、各薄膜の物理膜厚を適宜調整する事で、近赤外線領域における透過特性が光学多層膜2と異なるように設計されている。 However, by appropriately adjusting the physical thickness of each thin film, transmission characteristics in the near infrared region is designed so as to be different from the optical multilayer film 2. 光学多層膜2と光学多層膜3を総合する事で近赤外線領域における所望の阻止特性を得ている。 To obtain the desired inhibition characteristics in the near infrared region that comprehensively the optical multilayer film 2 and the optical multilayer film 3.

樹脂吸収膜4は、基本的に染料または顔料を添加した樹脂材料を膜状に塗工したものである。 Resin absorption film 4 is obtained by applying the basic resin material obtained by adding a dye or pigment in a film form. 添加する染料または顔料は特に近赤外線領域に吸収を有しており、上述した光学多層膜2及び3と組み合わせる事で、ほぼ理想的な近赤外線阻止能を得る事ができる。 Dye or pigment added is particularly has absorption in the near infrared region, by combining with the optical multilayer film 2 and 3 described above, it is possible to obtain substantially the ideal near-infrared blocking ability. 本実施形態では、有機溶媒中にアクリル系の透明樹脂および染料を溶解した塗液を作成し、これを光学多層膜3の上に10μmの厚みでコーティングしたものである。 In the present embodiment, in which to create a coating solution prepared by dissolving a transparent resin and dye acrylic in an organic solvent, which was coated with a thickness of 10μm on the optical multilayer film 3. このとき用いた染料はSANDS社製の製品番号No. Dye used this time SANDS manufactured product number No. 8630である。 It is 8630. なお、樹脂吸収膜4の樹脂材料は、アクリル系以外でも可視域にて透明であればどのようなベース材を使用してもよく、例えばポリエステル系の樹脂も好ましい。 The resin material of the resin-absorbent layer 4 may be used whatever the base material be transparent in the visible region other than acrylic, also for example, a polyester-based resin. また樹脂に添加する染料は、基本的に可視域で透明性が高く近赤外域で吸収のある材料が好ましい。 The dyes to be added to the resin material that is absorbed by the essentially transparent high near-infrared region in the visible region is preferable. 例えばフタロシアニン系、チオール金属錯体系、アゾ化合物系、ポリメチン系、ジフェニルメタン系、トリフェニルメタン系、キノン系、ジイモニウム系などの単体または混合物を使用する事ができる。 For example phthalocyanine, thiol metal complex, an azo compound type, polymethine dyes, diphenylmethane dyes, triphenylmethane dyes, quinone, can be used a single or a mixture of such diimmonium-based. 顔料の場合も、可視光線領域で透明性が高く、近赤外線領域で吸収を有する材料が選択される。 In the case of pigments, high transparency in the visible light region, the material is selected that has an absorption in the near infrared region. 例えばインジウムとスズの複合酸化物であるITOを微粒子化したものを顔料に用いる事ができる。 For example, ITO, which is a composite oxide of indium and tin obtained by fine particles can be used in the pigment. ITOは液晶ディスプレイなどの透明電極に多用されており、可視域ではほぼ透明であるが、近赤外域に吸収を有する。 ITO is frequently used in a transparent electrode such as a liquid crystal display, in the visible region is substantially transparent, having absorption in the near infrared region. 撮像系に適用する近赤外線カットフィルタの場合、画像のぼやけなどが発生しない程度の粒径に顔料を微細化する必要がある。 For near-infrared cut filter to be applied to an imaging system, it is necessary to miniaturize the pigment particle size to the extent that such blurring of the image does not occur. その粒径は例えば数10nm以下である。 The particle size is several 10nm or less, for example.

引き続き図1を参照して、本近赤外線カットフィルタの製造方法の一例を説明する。 With continued reference to FIG. 1, an example of a manufacturing method of the present near-infrared cut filter. 本例では、PETフィルム基材1に二酸化チタンと二酸化ケイ素を交互に真空蒸着して製造する。 In this example, prepared by vacuum evaporation on a PET film substrate 1 alternately titanium and silicon dioxide. 基材1の温度は例えば100℃に保持してある。 Temperature of the substrate 1 are held for example 100 ° C.. 但し本成膜方法は真空蒸着法に限られるものではなく、イオンプレーティング法、イオンアシスト法、スパッタ法などの手法を利用する事が可能である。 However, the present deposition method is not limited to the vacuum vapor deposition method, an ion plating method, it is possible to use a technique such as ion assist method, a sputtering method. まずフィルム基材1を真空蒸着装置の真空容器内に装填すると共に、ペレット状または粒状の二酸化チタン及び二酸化ケイ素をこの真空容器内に設けられた2つの電子ビーム蒸着源に別々に入れ、真空容器を排気する。 First, the film substrate 1 with loading into the vacuum chamber of the vacuum evaporation apparatus separately placed in two electron beam evaporation sources provided with pellets or granular titanium dioxide and silicon dioxide in the vacuum container, the vacuum container the evacuated.

真空容器内の圧力が1×10 −3 Pa以下になったら、電子ビーム蒸着源に電子ビームを照射して二酸化チタンと二酸化ケイ素をそれぞれ加熱して蒸発させる。 When the pressure in the vacuum chamber is equal to or less than 1 × 10 -3 Pa, by irradiating an electron beam to the electron beam evaporation source is evaporated by heating, respectively of titanium and silicon dioxide. 2つの電子ビーム蒸着源の直上には、それぞれ開閉可能なシャッターが設けられており、二酸化チタンの蒸着時は二酸化チタン側のシャッターを開いて二酸化ケイ素側のシャッターを閉じ、二酸化ケイ素の蒸着時は二酸化チタン側のシャッターを閉じ二酸化ケイ素側のシャッターを開いて、フィルム基材1上に二酸化チタンと二酸化ケイ素の透明薄膜を交互に積層する。 Immediately above the two electron beam evaporation source is provided with a respective openable shutters, during deposition of the titanium dioxide closes the shutter of the silicon dioxide side open the shutter of the titanium dioxide side, during deposition of silicon dioxide open the shutter of silicon dioxide side closing the shutter of the titanium dioxide side, on the film substrate 1 is laminated a transparent thin film of titanium and silicon dioxide are alternately. この様にしてフィルム基材1の表面側に光学多層膜2を形成したら、フィルム基材1を裏返しにして再び真空蒸着処理を行い光学多層膜3を形成する。 When such a the optical multilayer film 2 is formed on the surface side of the film substrate 1, to form an optical multilayer film 3 was vacuum-deposited again Turn the film substrate 1. 即ち、二酸化チタンと二酸化ケイ素の蒸着を所望の層数繰り返して光学多層膜3を完成する。 That is, to complete the optical multilayer film 3 deposition of the silicon dioxide titanium dioxide repeated a desired number of layers.

なお各透明薄膜の膜厚は、膜厚モニターで蒸着の間測定されており、所定の膜厚でシャッターを閉じるようにして膜厚を制御している。 Note the thickness of each transparent thin film is measured during the deposition at a film thickness monitor, and controlling the thickness so as to close the shutters at a predetermined thickness. 所定の層数まで蒸着されたら、電子ビーム蒸着源の動作を停止し、真空容器の排気をやめて大気圧に戻す。 Once deposited up to a predetermined number of layers, and stops the operation of the electron beam evaporation source, back to atmospheric pressure stop evacuation of the vacuum vessel. 蒸着が終わったフィルム基材は、真空容器から取り出し、次のコーティング処理を行なう。 Deposition is finished film substrate was taken out from the vacuum vessel, performs subsequent coating process.

樹脂吸収膜を形成する為のコーティング処理では、まず分散媒となるベースポリエステルを製作する。 In the coating process for forming a resin absorption film, to fabricate a base polyester is first a dispersion medium. 作成したベースポリエステルをバインダー樹脂とし、これに所望の赤外線吸収色素及び溶剤を添加し、フラスコに入れて加熱しながら撹拌し、色素及びバインダー樹脂を溶解する。 The base polyester created as a binder resin, to which was added the desired infrared absorbing dye and a solvent, and stirred while heating a flask to dissolve the dye and the binder resin. なお溶剤としてはメチルエチルケトン、テトラヒドロフラン、トルエンなどの単体もしくは混合物を用いる。 Note The solvent methyl ethyl ketone, tetrahydrofuran, used alone or a mixture such as toluene. この様にして溶解した樹脂を前工程で光学多層膜2,3が形成されたPETフィルム基材の一面に、ギャップが例えば50μmのアプリケーターを用いてコーティングし、乾燥温度90℃で1時間乾燥させる。 On one surface of a PET film substrate which optical multilayer films 2 and 3 is formed in the preceding step a resin dissolved in this way was coated with an applicator gap, for example 50 [mu] m, dried for 1 hour at a drying temperature of 90 ° C. . このとき得られたコーティング厚みは10μmである。 At this time resulting coating thickness is 10 [mu] m. なおコーティング法は実施例に限られるものではなく、ディップ法、グラビア法、リップ法、CAPコート法、スプレー法、スピンコート法などいずれも利用可能である。 Note coating method is not limited to the embodiment, a dipping method, a gravure method, a lip method, CAP coating, spraying, either a spin coating method are available.

図2は、本発明にかかる近赤外線カットフィルタの光学特性を示すグラフである。 Figure 2 is a graph showing the optical properties of the near infrared cut filter according to the present invention. 縦軸に透過率を取り、横軸に波長を取ってある。 Take the transmittance on the vertical axis, it is taking a wavelength on the horizontal axis. □のプロットは基材1の表面に光学多層膜2のみを形成した場合の光学特性を示し、△のプロットは基材の裏面に光学多層膜3のみをコートした場合の光学特性を示し、○のプロットは基材の片面に樹脂吸収膜4のみをコートした場合の光学特性を表している。 □ plots show the optical characteristics in the case of forming only the optical multilayer film 2 on the surface of the substrate 1, the plot of △ indicates optical characteristics when coated with only the optical multilayer film 3 on the back surface of the base material, ○ plot represents the optical characteristics when coated with only the resin absorption film 4 on one side of the substrate. グラフから明らかなように、光学多層膜2は波長が650nm〜950nmの範囲で大きな阻止能を有している。 As is apparent from the graph, the optical multilayer film 2 wavelength has a great stopping power in the range of 650Nm~950nm. 光学多層膜2の阻止能は大部分が反射に依存している。 Stopping power of the optical multilayer film 2 is largely dependent on the reflection. 一方光学多層膜3は波長が800nm以上の範囲で近赤外線の阻止能を有している。 On the other hand optical multilayer film 3 has a stopping power of the near-infrared range wavelength above 800 nm. これらに、光学多層膜2と光学多層膜3は近赤外線領域で異なる透過特性を備えており、基本的には両者を組み合わせる事で所定の近赤外線領域700〜1100nmを阻止するように設計されている。 To, the optical multilayer film 2 and the optical multilayer film 3 is provided with different transmission characteristics in the near infrared region, it is basically designed to prevent the predetermined near infrared region 700~1100nm by combining both there.

一方樹脂吸収膜4は波長が400nm〜700nmの可視領域で、光学多層膜2,3に比べるとやや透過率が低く若干の吸収を有している。 On the other hand the resin absorption film 4 in the visible region of wavelengths 400 nm to 700 nm, a little permeability than the optical multilayer films 2 and 3 has a slight absorption low. 波長700nmを超えたところから透過率が徐々に低下し、900nm当たりで最大の吸収となり、さらに波長がこれより長くなると再び透過率が高くなる。 Transmittance gradually decreased from beyond the wavelength 700 nm, a maximum absorption per 900 nm, the transmittance increases further again as the wavelength becomes longer than this. グラフから明らかなように、近赤外線領域における樹脂吸収膜4の吸収特性は、光学多層膜3が阻止する近赤外線の波長範囲と一部重なっている。 As is apparent from the graph, the absorption properties of the resin absorbent layer 4 is in the near infrared region, which partly overlaps the wavelength range of near-infrared optical multilayer film 3 is prevented. また樹脂吸収膜4が阻止する近赤外線の波長範囲は、他の光学多層膜2が阻止する近赤外線の範囲に全て含まれている。 The wavelength range of near infrared to the resin absorption film 4 prevents are all included in the scope of the near infrared other optical multilayer film 2 is prevented.

*のプロットは、光学多層膜2と光学多層膜3を組み合わせた場合の光学特性を表している。 * Plots represents the optical characteristics when combined with optical multilayer film 2 and the optical multilayer film 3. 図2のグラフから明らかなように、両者を組み合わせると、波長700nmを超えた近赤外線領域で透過率が10%以下となっており、ほぼ実用レベルである。 As apparent from the graph of FIG. 2, the combination of both the near infrared region transmittance has become 10% or less beyond the wavelength 700 nm, is substantially practical level. 続いて◆のプロットは光学多層膜2及び3に加えて樹脂吸収膜4を重ねた場合の光学特性を示している。 Subsequently ◆ plots show the optical characteristics when superposed resin-absorbing film 4 in addition to the optical multilayer film 2 and 3. 図2のグラフから明らかなように、この樹脂吸収膜4を本発明にしたがって追加する事で、特に波長が800nm〜900nmにかけての近赤外線阻止能を一段と改善する事ができ、透過率は5%以下である。 As apparent from the graph of FIG. 2, the resin absorption film 4 By adding according to the present invention, in particular wavelength can be improved further near infrared blocking ability over the 800 nm to 900 nm, the transmittance is 5% less. この範囲の近赤外線を強力に遮断することで、撮像系に使った場合優れた色再現性を得る事ができる。 By blocking the near-infrared this range strongly, it is possible to obtain an excellent color reproducibility when using an imaging system. 仮に樹脂吸収膜4を用いる事なく光学多層膜2,3のみで800〜900nmにおける透過率を5%程度まで下げようとすると、光学多層膜の全層数が40層程度に達し、基材の反りや膜の剥離が問題となる。 If the transmittance at 800~900nm only optical multilayer films 2 and 3 without using the resin-absorbing film 4 attempts to decrement to about 5%, the total number of layers of the optical multilayer film reaches about 40 layers, of the substrate peeling of the warp and the film becomes a problem. これに対し本発明では樹脂吸収膜4を追加することで光学多層膜側の層数を削減する事が可能となり、基材の反りや膜の剥離を抑える事ができる。 In contrast it is possible to reduce the number of layers of the optical multilayer film side by adding a resin absorption film 4 in the present invention, it is possible to suppress the peeling of the warp or film substrate. このため従来に比較し基材を薄型化する事が可能である。 The order in comparison with the conventional substrate it is possible to thin.

一方可視光線領域においても、樹脂吸収膜4を追加した場合、その透過率は90%のレベルを維持でき、実用上問題ない。 On the other hand even in the visible light region, if you add a resin absorption film 4, the transmittance can maintain the level of 90%, no practical problem. 仮に樹脂吸収膜4のみで近赤外線カットフィルタを構成すると、可視光域における透過率が80%程度まで低下し、用途によっては問題となる。 Assuming that constitute a near-infrared cut filter only resin-absorbing film 4, the transmittance in the visible light region is decreased to about 80%, a problem in some applications. これに対し、樹脂吸収膜4よりも可視光線領域で透明性の高い光学多層膜2及び3を組み合わせる事で、近赤外線カットフィルタの可視光線領域における透明性を90%程度まで高める事ができる。 In contrast, by combining the optical multilayer film 2 and 3 highly transparent in the visible region than the resin-absorbent layer 4, the transparency in the visible region of the near infrared cut filter can be increased to about 90%.

図3は本発明にかかる近赤外線カットフィルタの種々の変形例を示す模式的な断面図である。 Figure 3 is a schematic cross-sectional views showing various modifications of the near infrared cut filter according to the present invention. (A)に示す例は、基材1の表面側に光学多層膜2を形成する一方、基材1の裏面側に樹脂吸収膜4を形成している。 Example shown in (A), while forming the optical multilayer film 2 on the surface side of the substrate 1, to form a resin-absorbent layer 4 on the back surface side of the substrate 1. 最も単純な構成であり、安価に近赤外線カットフィルタを製造する事ができる。 Is the most simple configuration, can be produced at low cost near-infrared cut filter.

(B)に示す例は、基材1の表面側のみに樹脂吸収膜4及び光学多層膜2を形成したものである。 Example shown in (B) is only on the surface side of the substrate 1 to form a resin absorbent layer 4 and the optical multilayer film 2. 基材1の片面側のみに光学多層膜2及び樹脂吸収膜4が配される為、製造及び取り扱いが容易になるという利点がある。 Since only one surface side of the substrate 1 optical multilayer film 2 and the resin absorption film 4 is disposed, there is an advantage that the manufacturing and handling is facilitated.

(C)に示す例は、基材1の裏面側に樹脂吸収膜4を形成する一方、基材1の表面側に別の樹脂吸収膜5と光学多層膜2を形成している。 Example shown in (C), while forming the resin absorption film 4 on the back surface side of the substrate 1, and forming another resin-absorbent layer 5 and the optical multilayer film 2 on the surface side of the substrate 1. 近赤外線領域における吸収特性が異なる樹脂吸収膜4,5を組み合わせる事で、所望の近赤外線阻止能が得られる。 Absorption characteristics in the near infrared region by combining the different resin absorbing films 4 and 5, the desired near infrared blocking ability can be obtained.

(D)に示した例は、基材1の表面側に樹脂吸収膜5及び光学多層膜2を順に形成する一方、基材1の裏面側に樹脂吸収膜4及び光学多層膜3を順に形成している。 Example shown in (D) is formed while forming the resin absorption film 5 and the optical multilayer film 2 in this order on the surface side of the substrate 1, a resin absorption film 4 and the optical multilayer film 3 on the back surface side of the substrate 1 in this order are doing. 基材1の表面と裏面にそれぞれ樹脂吸収膜及び光学多層膜を形成する事で、膜応力の均衡を図る事ができる。 Respectively on the front and back surfaces of the substrate 1 by forming a resin absorption film and the optical multilayer film, it is possible to balance the film stress. これにより、薄いガラス基材や樹脂フィルム基材を用いた場合でも、反り、膜剥離及びクラックなどを防ぐ事ができる。 Accordingly, even when a thin glass substrate or a resin film substrate, it is possible to prevent warpage, delamination and cracks and the like.

(E)に示した例は、基材1の表面側に光学多層膜2を形成する一方、基材1の裏面側に光学多層膜3及び樹脂吸収膜4を形成している。 Example shown in (E), while forming the optical multilayer film 2 on the surface side of the substrate 1, to form an optical multilayer film 3 and the resin absorption film 4 on the back surface side of the substrate 1. これは丁度図1で説明した構成と同じであり、これ以上の詳細な説明は省略する。 This is just the same as the configuration described in FIG. 1, it is omitted more detailed description.

(F)に示した例は、基材1の表側に光学多層膜2を形成する一方、基材1の裏側に光学多層膜3を形成している。 Example shown in (F), while forming the optical multilayer film 2 on the front side of the base 1 to form an optical multilayer film 3 on the back side of the substrate 1. 光学多層膜2の表面を保護するように樹脂吸収膜5を形成している。 Forming a resin absorption film 5 so as to protect the surface of the optical multilayer film 2. 同じく基材1の裏面側に形成された光学多層膜3を保護するように樹脂吸収膜4が形成されている。 Resin absorption film 4 is formed so as also to protect the optical multilayer film 3 formed on the back side of the substrate 1. この様にする事で、信頼性に優れた近赤外線カットフィルタを提供する事ができる。 By this way, it is possible to provide a near-infrared cut filter which is excellent in reliability.

本発明にかかる近赤外線カットフィルタの構成を示す模式的な断面図である。 It is a schematic sectional view showing a configuration of a near-infrared cut filter according to the present invention. 本発明にかかる近赤外線カットフィルタの光学特性を示すグラフである。 Is a graph showing the optical properties of the near infrared cut filter according to the present invention. 本発明にかかる近赤外線カットフィルタの様々な変形例を示す模式的な断面図である。 Various modifications of the near infrared cut filter according to the present invention is a schematic cross-sectional view illustrating.

符号の説明 DESCRIPTION OF SYMBOLS

1・・・基材、2・・・光学多層膜、3・・・光学多層膜、4・・・樹脂吸収膜、5・・・樹脂吸収膜 1 ... substrate, 2 ... optical multilayer film, 3 ... optical multilayer film, 4 ... resin absorption film, 5 ... resin absorbent layer

Claims (3)

  1. 透明な基材と、該基材の片面又は両面に形成された光学多層膜と、該基材の少なくとも片面に形成された少なくとも一層の樹脂吸収膜とからなり、 Consists of a transparent substrate, and the optical multilayer film formed on one surface or both surfaces of the substrate, and at least one layer of the resin absorption film is formed on at least one surface of the substrate,
    前記光学多層膜は、屈折率の異なる2種以上の薄膜を交互に積層してなり、可視光線領域で高透過特性を示すとともに近赤外線領域で低透過特性を示し、 前記樹脂吸収膜は、染料又は顔料を添加した樹脂材料を膜状に塗工してなり、該染料又は顔料は近赤外線領域に吸収を有することを特徴とする近赤外線カットフィルタ。 The optical multilayer film is composed of two or more kinds of thin films having different refractive indexes are laminated alternately, exhibit low transmission characteristics in the near infrared region with exhibits high transmission characteristics in the visible light range, the resin absorption film, the dye or a resin material obtained by adding pigment becomes by coating in a film shape, the near-infrared cut filter dye or pigment characterized by having an absorption in the near infrared region.
  2. 前記樹脂吸収膜が阻止する近赤外線の波長範囲は、該光学多層膜が阻止する近赤外線の波長範囲と一部重なるか、あるいは該光学多層膜が阻止する近赤外線の範囲に全て含まれることを特徴とする請求項1に記載の近赤外線カットフィルタ。 Wavelength range of near infrared to the resin absorption film prevents, either partially overlaps the wavelength range of near-infrared optical multilayer membrane rejects, or to be included all the range of near infrared optical multilayer membrane rejects near infrared cut filter according to claim 1, wherein.
  3. 前記基材は樹脂フィルムからなることを特徴とする請求項1に記載の近赤外線カットフィルタ。 Near infrared cut filter of claim 1 wherein the substrate is characterized by comprising a resin film.
JP2005126175A 2005-04-25 2005-04-25 Near-infrared ray cut filter Pending JP2006301489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126175A JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126175A JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Publications (1)

Publication Number Publication Date
JP2006301489A true true JP2006301489A (en) 2006-11-02

Family

ID=37469809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126175A Pending JP2006301489A (en) 2005-04-25 2005-04-25 Near-infrared ray cut filter

Country Status (1)

Country Link
JP (1) JP2006301489A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075984A (en) * 2009-10-01 2011-04-14 Sony Corp Imaging optical system and imaging apparatus
JP2011104830A (en) * 2009-11-16 2011-06-02 Konica Minolta Holdings Inc Dielectric film laminate and method of manufacturing dielectric film laminate
JP2012103340A (en) * 2010-11-08 2012-05-31 Jsr Corp Near-infrared cut filter, solid-state imaging sensor and solid-state imager equipped with the same
JP2012137651A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
JP2014142629A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Curable resin composition, infrared cut filter, and solid imaging device using infrared cut filter
CN104101930A (en) * 2013-04-09 2014-10-15 日本板硝子株式会社 Infrared cut filter and imaging apparatus
JP2015011319A (en) * 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
US20150138369A1 (en) * 2012-07-27 2015-05-21 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2015148643A (en) * 2014-02-04 2015-08-20 東海光学株式会社 Optical product as well as spectacle lenses and glasses
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2016042196A (en) * 2015-11-12 2016-03-31 旭硝子株式会社 Light absorber, and imaging apparatus using the same
JP2017120433A (en) * 2017-01-26 2017-07-06 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235115A (en) * 1999-02-15 2000-08-29 Toray Ind Inc Front face filter for plasma display
JP2002281515A (en) * 2001-03-19 2002-09-27 Canon Inc Optical image pickup system and image pickup device
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2003060176A (en) * 2001-08-08 2003-02-28 Toppan Printing Co Ltd Solid state imaging element
JP2003101001A (en) * 2001-09-26 2003-04-04 Toppan Printing Co Ltd Solid-state image pickup element and manufacturing method therefor
JP2004233641A (en) * 2003-01-30 2004-08-19 Nippon Kayaku Co Ltd Near-infrared ray absorption film
WO2005022212A1 (en) * 2003-09-01 2005-03-10 Dai Nippon Printing Co., Ltd. Antireflection film for plasma display
JP2005070724A (en) * 2003-08-05 2005-03-17 Asahi Glass Co Ltd Optical filter for plasma display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235115A (en) * 1999-02-15 2000-08-29 Toray Ind Inc Front face filter for plasma display
JP2002281515A (en) * 2001-03-19 2002-09-27 Canon Inc Optical image pickup system and image pickup device
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2003060176A (en) * 2001-08-08 2003-02-28 Toppan Printing Co Ltd Solid state imaging element
JP2003101001A (en) * 2001-09-26 2003-04-04 Toppan Printing Co Ltd Solid-state image pickup element and manufacturing method therefor
JP2004233641A (en) * 2003-01-30 2004-08-19 Nippon Kayaku Co Ltd Near-infrared ray absorption film
JP2005070724A (en) * 2003-08-05 2005-03-17 Asahi Glass Co Ltd Optical filter for plasma display panel
WO2005022212A1 (en) * 2003-09-01 2005-03-10 Dai Nippon Printing Co., Ltd. Antireflection film for plasma display

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075984A (en) * 2009-10-01 2011-04-14 Sony Corp Imaging optical system and imaging apparatus
JP2011104830A (en) * 2009-11-16 2011-06-02 Konica Minolta Holdings Inc Dielectric film laminate and method of manufacturing dielectric film laminate
JP2012103340A (en) * 2010-11-08 2012-05-31 Jsr Corp Near-infrared cut filter, solid-state imaging sensor and solid-state imager equipped with the same
JP2012137651A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
US9268072B2 (en) 2011-06-06 2016-02-23 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
US9753196B2 (en) 2011-06-06 2017-09-05 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter
US20150138369A1 (en) * 2012-07-27 2015-05-21 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
JP2014142629A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Curable resin composition, infrared cut filter, and solid imaging device using infrared cut filter
CN104101930A (en) * 2013-04-09 2014-10-15 日本板硝子株式会社 Infrared cut filter and imaging apparatus
JP2014203044A (en) * 2013-04-09 2014-10-27 日本板硝子株式会社 Infrared cut filter and image capturing device
JP2015011319A (en) * 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
JP2015148643A (en) * 2014-02-04 2015-08-20 東海光学株式会社 Optical product as well as spectacle lenses and glasses
US10031349B2 (en) 2014-02-04 2018-07-24 Tokai Optical Co., Ltd. Optical product, and spectacle lens and spectacles
JP2016042196A (en) * 2015-11-12 2016-03-31 旭硝子株式会社 Light absorber, and imaging apparatus using the same
JP2017120433A (en) * 2017-01-26 2017-07-06 日本板硝子株式会社 Infrared cut filter, imaging apparatus and method of manufacturing infrared cut filter

Similar Documents

Publication Publication Date Title
WO2012169447A1 (en) Optical filter, solid-state imaging element, imaging device lens and imaging device
US5450238A (en) Four-layer antireflection coating for deposition in in-like DC sputtering apparatus
WO1999039224A1 (en) Infrared interference filter
US20050185267A1 (en) Metal-dielectric coating for image sensor lids
US6104534A (en) Antireflection coating with electromagnetic wave shielding effect and optical member having the antireflection coating
CN101276005A (en) Novel anti-reflection conductive film
JP2008051985A (en) Near infrared ray absorbing filter
JP2002071940A (en) Optical filter, front plate and picture display device using the same
JP2000314808A (en) Infrared ray shielding filter
JPH11126024A (en) Front surface plate for display
JP2000266930A (en) Optical selective filter
JP2007094150A (en) Antireflection coating and optical component having the same
JP2004361662A (en) Conductive transparent layered body
WO2014030628A1 (en) Near-infrared cut filter and solid-state imaging device
JP2000111702A (en) Antireflection film
JP2004258308A (en) Anti-reflection film
JP2003094548A (en) Reflection-proof film
JP2002323860A (en) Optical filter for display and display device and protective plate for display using the same
US20090316262A1 (en) Transmission type polarizing element, and composite polarizing plate using the element
JPH11142603A (en) Antireflection film
JPH09258004A (en) Antireflection multilayered film and its film formation, as well as its film forming device
JP2000081510A (en) Ir absorbing filter
JP2004012657A (en) Antireflection film
JP2008225210A (en) Reflection prevention film and optical component having the same
JP2008070827A (en) Infrared ray shielding filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Effective date: 20100804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A02