WO2018043564A1 - Optical filter and device using optical filter - Google Patents

Optical filter and device using optical filter Download PDF

Info

Publication number
WO2018043564A1
WO2018043564A1 PCT/JP2017/031156 JP2017031156W WO2018043564A1 WO 2018043564 A1 WO2018043564 A1 WO 2018043564A1 JP 2017031156 W JP2017031156 W JP 2017031156W WO 2018043564 A1 WO2018043564 A1 WO 2018043564A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
compound
optical filter
substrate
Prior art date
Application number
PCT/JP2017/031156
Other languages
French (fr)
Japanese (ja)
Inventor
達也 葛西
勝也 長屋
正子 堀内
大介 重岡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020197005541A priority Critical patent/KR102388961B1/en
Priority to KR1020217038932A priority patent/KR102434709B1/en
Priority to JP2018537346A priority patent/JP6791251B2/en
Priority to CN202110181464.7A priority patent/CN112946804B/en
Priority to CN201780052711.5A priority patent/CN109642973B/en
Publication of WO2018043564A1 publication Critical patent/WO2018043564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing a compound having absorption in a specific wavelength region, and a solid-state imaging device and a camera module using the optical filter.
  • a solid-state image pickup device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state image pickup device for a color image.
  • Silicon photodiodes that are sensitive to near infrared rays that cannot be sensed by the eyes are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye.
  • Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
  • a near-infrared cut filter those manufactured by various methods are conventionally used.
  • a near-infrared cut filter in which a transparent resin is used as a substrate and a near-infrared absorbing pigment is contained in the transparent resin is known (see, for example, Patent Document 1).
  • the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
  • Patent Document 2 proposes a near-infrared cut filter having both a wide viewing angle and a high visible light transmittance.
  • Patent Document 3 discloses a near-infrared cut filter that uses a phthalocyanine dye having a specific structure to achieve both a high visible light transmittance and a long absorption maximum wavelength, both of which have been the conventional problems. It is described that can be obtained.
  • the applied base material has a sufficiently strong absorption band in the vicinity of 700 nm, but the near-infrared wavelength region of 900 to 1200 nm, for example. Has almost no absorption. For this reason, light in the near-infrared wavelength region is cut almost only by the reflection of the dielectric multilayer film, but in such a configuration, slight stray light due to internal reflection in the optical filter and reflection between the optical filter and the lens is obtained.
  • ghosts and flares may occur.
  • Patent Document 4 As an optical filter using a substrate having a wide absorption in the near-infrared wavelength region, an infrared shielding filter as in Patent Document 4 has been proposed.
  • a broad absorption in the near-infrared wavelength region is achieved mainly by applying a compound having a dithiolene structure, but the absorption intensity near 700 nm is not sufficient.
  • image degradation may occur due to color shading.
  • Patent Document 5 discloses a near-infrared cut filter having a near-infrared absorbing glass substrate and a layer containing a near-infrared absorbing pigment, but the color shading is sufficiently improved even with the configuration described in Patent Document 5.
  • FIG. 5 of Patent Document 5 shows an optical characteristic graph when incident at 0 degrees and incident at 30 degrees. However, the visible light transmission band is also observed when incident at 30 degrees. A large wavelength shift is observed in the skirt region (630 to 700 nm).
  • the present inventors have a base material that has an absorption band with sufficient intensity in the vicinity of a wavelength of 700 nm and a wide absorption band in the near-infrared wavelength region of 900 nm or more.
  • an optical filter capable of achieving the intended near-infrared cut characteristics, visible light transmittance, color shading suppression effect and ghost suppression effect can be obtained, and the present invention has been completed. Examples of embodiments of the present invention are shown below.
  • An optical filter having a substrate that satisfies the following requirements (a), (b), and (c), and that satisfies the following requirements (d) and (e): (A) having a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm to 760 nm; (B) The difference (X 2 ⁇ X 1 ) between the shortest wavelength (X 1 ) with a transmittance of 10% and the second shortest wavelength (X 2 ) in the wavelength region of 640 nm or more is 50 nm or more; (C) The transmittance at a wavelength of 900 nm, the transmittance at a wavelength of 1000 nm, and the transmittance at a wavelength of 1100 nm are all 65% or less; (D) In the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the optical filter is 75% or more; (E) In the wavelength region of 1100 nm to 1200
  • R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h , wherein R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L e It represents either, R i represents any of the following L a ⁇ L e, (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3
  • the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, At least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms, Adjacent R 3 may form a ring which may have a substituent L, n represents an integer of 0 to 4, X represents an anion necessary to neutralize the charge, M represents a metal atom, Z represents D (R i ) 4 , D represents a nitrogen atom, a phosphorus atom or a bismuth atom; y represents 0 or 1.
  • the transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate.
  • Resin polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, Item characterized by being at least one resin selected from the group consisting of an allyl ester curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin [ [2] to [8] Optical filter.
  • optical filter according to any one of items [1] to [10], which is for a solid-state imaging device.
  • a solid-state imaging device comprising the optical filter according to any one of items [1] to [11].
  • an optical filter that has excellent near-infrared cut characteristics, little incident angle dependency, and excellent transmittance characteristics in the visible wavelength region, color shading suppression effect, and ghost suppression effect.
  • FIGS. 1A and 1B are schematic views showing examples of preferable configurations of the optical filter of the present invention.
  • FIG. 2A is a schematic diagram illustrating a method for measuring the transmittance when measured from the vertical direction of the optical filter.
  • FIG. 2B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
  • FIG. 3 is a spectral transmission spectrum of the substrate obtained in Example 1.
  • FIG. 4 is a spectral transmission spectrum of the optical filter obtained in Example 1.
  • FIG. 5 is a spectral transmission spectrum of the substrate obtained in Example 2.
  • FIG. 6 is a spectral transmission spectrum of the substrate obtained in Example 6.
  • FIG. 7 is a spectral transmission spectrum of the base material obtained in Example 7.
  • FIG. 1A is a schematic diagram illustrating a method for measuring the transmittance when measured from the vertical direction of the optical filter.
  • FIG. 2B is a schematic diagram illustrating a method of
  • FIG. 8 is a spectral transmission spectrum of the base material (near infrared absorbing glass substrate) used in Comparative Example 3.
  • FIG. 9 is a spectral transmission spectrum of the base material obtained in Comparative Example 4.
  • FIG. 10 is a spectral transmission spectrum of the base material obtained in Comparative Example 5. It is a schematic diagram for demonstrating the color shading evaluation of the camera image performed in the Example and the comparative example. It is a schematic diagram for demonstrating the ghost evaluation of the camera image performed in the Example and the comparative example.
  • the optical filter of the present invention is characterized by having a base material that satisfies the requirements (a), (b), and (c) described later, and that satisfies the requirements (d) and (e) described later.
  • the optical filter of the present invention preferably has a dielectric multilayer film on at least one surface of the substrate.
  • the substrate used in the present invention satisfies the following requirements (a), (b) and (c); (A) having a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm to 760 nm; (B) The difference (X 2 ⁇ X 1 ) between the shortest wavelength (X 1 ) with a transmittance of 10% and the second shortest wavelength (X 2 ) in the wavelength region of 640 nm or more is 50 nm or more; (C) The transmittance (c1) at a wavelength of 900 nm, the transmittance (c2) at a wavelength of 1000 nm, and the transmittance (c3) at a wavelength of 1100 nm are all 65% or less.
  • the substrate preferably further satisfies at least one of the following requirements (f) to (h):
  • the component constituting the layer containing the compound (A) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like.
  • a transparent resin is preferable from the viewpoint of compatibility with A).
  • the compound (A) is not particularly limited as long as it has a maximum absorption in the wavelength region of 650 nm or more and 760 nm or less, but is preferably a solvent-soluble dye compound, and is a squarylium compound, a phthalocyanine compound, and a cyanine compound. It is more preferable that it is at least one selected from the group consisting of compounds, it is more preferable that a squarylium compound is included, and it is particularly preferable that there are two or more compounds including a squarylium compound.
  • the compound (A) is two or more types including a squarylium compound, two or more types of squarylium compounds having different structures may be used, or a combination of a squarylium compound and another compound (A) may be used.
  • the other compound (A) a phthalocyanine compound and a cyanine compound are particularly preferable.
  • the squarylium-based compound has excellent visible light permeability, steep absorption characteristics, and a high molar extinction coefficient, but may generate fluorescence that causes scattered light during light absorption. In such a case, an optical filter with less scattered light and better camera image quality can be obtained by using a combination of the squarylium compound and the other compound (A).
  • the absorption maximum wavelength of the compound (A) is preferably 660 nm or more and 755 nm or less, more preferably 670 nm or more and 750 nm or less, and further preferably 680 nm or more and 745 nm or less.
  • the difference between the absorption maximum wavelengths of the compound (A) to be applied having the shortest absorption maximum wavelength and the longest absorption maximum wavelength is preferably 10 to The thickness is 60 nm, more preferably 15 to 55 nm, still more preferably 20 to 50 nm. It is preferable that the difference in absorption maximum wavelength is in the above-mentioned range because scattered light due to fluorescence can be sufficiently reduced and a wide absorption band near 700 nm and an excellent visible light transmittance can be compatible.
  • the total content of the compound (A) is, for example, a base material made of a transparent resin substrate containing the compound (A) or a curable resin on the transparent resin substrate containing the compound (A).
  • a base material on which a resin layer such as an overcoat layer made of, etc. is used it is preferably 0.04 to 2.0 parts by weight, more preferably 0.06 to 2.0 parts by weight with respect to 100 parts by weight of the transparent resin. 1.5 parts by weight, more preferably 0.08 to 1.0 part by weight, and the compound (A) is contained as a base on a support such as a glass support or a resin support as a base.
  • a base material on which a transparent resin layer such as an overcoat layer made of a curable resin or the like is used it is preferably 0.1% with respect to 100 parts by weight of the resin forming the transparent resin layer containing the compound (A). 4 to 5.0 parts by weight, more preferably 0 6 to 4.0 parts by weight, more preferably 0.8 to 3.5 parts by weight.
  • the difference (X 2 ⁇ X 1 ) between the wavelengths X 1 and X 2 is preferably 53 nm or more, more preferably 55 nm or more, and further preferably 58 nm or more.
  • an upper limit is not specifically limited, Since a visible transmittance
  • the difference (X 2 ⁇ X 1 ) is in the above range, it has an absorption band with sufficient intensity (width) in the near-infrared wavelength region close to the visible region. It is preferable because color shading can be suppressed even under such a large incident angle condition.
  • the value of the wavelength (X 1 + X 2 ) / 2 between X 1 and X 2 can be said to be the center wavelength of the absorption band in the near infrared wavelength region close to the visible region, preferably 670 nm or more and 740 nm or less. Is 680 nm to 730 nm, more preferably 690 nm to 720 nm. It is preferable that the value of the wavelength represented by (X 1 + X 2 ) / 2 be in the above range because light in the wavelength region near the long wavelength end of the visible region can be cut more efficiently.
  • X 1 preferably has a wavelength of 650 nm to 720 nm, more preferably a wavelength of 655 nm to 710 nm, and still more preferably a wavelength of 660 nm to 700 nm.
  • X 1 in such a range is preferable because it tends to provide a camera image with less noise and excellent color reproducibility.
  • All of the transmittances (c1), (c2) and (c3) are preferably 60% or less, more preferably 55% or less, and even more preferably 50% or less.
  • the lower limit is not particularly limited, but depending on the properties of the near-infrared absorber, if the transmittance value in the near-infrared wavelength region is too low, the visible transmittance may decrease, or the thickness of the substrate may become extremely thick. For example, it is preferably 5% or more. It is preferable that the transmittances (c1), (c2), and (c3) are in the above ranges because a ghost suppressing effect at a practically sufficient level can be obtained.
  • the substrate may be a single layer or a multilayer as long as it has a layer containing the compound (A).
  • the substrate preferably contains a near infrared absorber, and the near infrared absorber is contained in a different layer even if it is contained in the same layer as the compound (A). It may be.
  • the layer containing the compound (A) and the layer containing the near-infrared absorber are the same, for example, a base material composed of a transparent resin substrate containing the compound (A) and the near-infrared absorber, the compound (A) and the near-infrared absorber A compound (on a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on a transparent resin substrate containing an infrared absorber, a glass support or a base resin support)
  • an overcoat layer made of a curable resin containing the compound (A) on the transparent resin substrate containing the near infrared absorber for example, an overcoat layer made of a curable resin containing the compound (A) on the transparent resin substrate containing the near infrared absorber, etc.
  • Base material on which a resin layer is laminated base material on which a resin layer such as an overcoat layer made of a curable resin containing a near infrared absorber is laminated on a transparent resin substrate containing the compound (A), a glass support
  • An overcoat layer made of a curable resin containing the compound (A) and an overcoat layer made of a curable resin containing a near infrared absorber are laminated on a support such as a resin support as a body or a base.
  • the near-infrared absorber is not particularly limited as long as it has a wide absorption in the wavelength range of 900 to 1200 nm.
  • the near-infrared absorbing dye, the near-infrared absorbing fine particles, the conductive metal oxide, and the phosphate glass Examples thereof include transition metal components therein.
  • T 1 is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less. If T 1 is in the above range, it can be said that the transmittance cut of the absorption band is sufficient, and flare around the light source can be suppressed in the camera image, which is preferable.
  • the substrate of the present invention preferably contains a near-infrared absorber, but when the near-infrared absorber is the compound (S), the absorption intensity and visible transmittance in the near-infrared wavelength region can be compatible at a high level. It is preferable because of its tendency.
  • the compound (S) is not particularly limited as long as it has an absorption maximum in a wavelength region of 1050 nm or more and 1200 nm or less, but is preferably a solvent-soluble dye compound, more preferably a diimonium compound or a metal dithiolate complex system. At least one compound selected from the group consisting of compounds, pyrrolopyrrole compounds, cyanine compounds, croconium compounds and naphthalocyanine compounds, more preferably selected from the group consisting of diimonium compounds and metal dithiolate complex compounds, more preferably selected from the group consisting of diimonium compounds and metal dithiolate complex compounds, more preferably selected from the group consisting of diimonium compounds and metal dithiolate complex compounds, more preferably selected from the group consisting of diimonium compounds and metal dithiolate complex compounds At least one compound selected from the group consisting of a diimonium compound represented by the following formula (I) and a metal dithiolate complex compound represented by the following formula (II
  • R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h , wherein R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L e It represents either, R i represents any of the following L a ⁇ L e, (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3
  • the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, At least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms, Adjacent R 3 may form a ring which may have a substituent L, n represents an integer of 0 to 4, X represents an anion necessary to neutralize the charge, M represents a metal atom, Z represents D (R i ) 4 , D represents a nitrogen atom, a phosphorus atom or a bismuth atom, y represents 0 or 1.
  • R 1 is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, adamantyl group, trifluoromethyl group.
  • R 2 is preferably a chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group, hydroxyl group , Amino group, dimethylamino group, cyano group, nitro group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino Group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexylinoylamino group, n-butylsulfonyl group, methylthio group, ethylthio group, n-propylthio
  • X is an anion necessary for neutralizing the electric charge, and one molecule is required when the anion is divalent, and two molecules are required when the anion is monovalent.
  • the two anions may be the same or different, but are preferably the same from the viewpoint of synthesis.
  • X will not be restrict
  • X is (X-10), (X-16), (X-17), (X-21), (X-21) in Table 1 above from the viewpoint of heat resistance, light resistance and spectral properties of the diimonium compound.
  • X-22), (X-24) and (X-28) are particularly preferred.
  • Examples of the diimonium compound represented by the above formula (I) include those listed in Tables 2-1 to 2-4 below.
  • R 3 is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, phenyl group, methylthio group, ethylthio group, n-propylthio group, n-butylthio group, phenylthio group, benzylthio group, adjacent R When 3 forms a ring, it is preferably a heterocyclic ring in which at least one sulfur atom or nitrogen atom is contained in the ring.
  • the M is preferably a transition metal, more preferably Ni, Pd, or Pt.
  • the D is preferably a nitrogen atom or a phosphorus atom
  • the R i is preferably an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or an n-pentyl group.
  • the absorption maximum wavelength of the compound (S) is preferably from 1060 nm to 1190 nm, more preferably from 1070 nm to 1180 nm, still more preferably from 1080 nm to 1170 nm.
  • the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near-infrared rays can be efficiently cut, and an excellent ghost suppression effect can be obtained.
  • the compound (S) may be synthesized by a generally known method.
  • Japanese Patent No. 4168031 Japanese Patent No. 4225296, JP-T 2010-516823, JP-A 63-165392 Etc. can be synthesized with reference to the methods described in the above.
  • the content of the compound (S) is, for example, a base material made of a transparent resin substrate containing the compound (A) and the compound (S) or a transparent resin substrate containing the compound (S) as the base material.
  • a substrate on which a resin layer such as an overcoat layer made of a curable resin containing the compound (A) is laminated it is preferably 0.01-2. 0 parts by weight, more preferably 0.02 to 1.5 parts by weight, particularly preferably 0.03 to 1.0 parts by weight.
  • the substrate include a glass support and a resin support as a base.
  • a transparent resin layer such as an overcoat layer composed of a curable resin containing the compound (A) and the compound (S) is laminated on a support, or on a transparent resin substrate containing the compound (A)
  • Curable resin containing compound (S) in
  • a base material on which a resin layer such as an overcoat layer is used it is preferably 0.1 to 5.0 with respect to 100 parts by weight of the resin forming the transparent resin layer containing the compound (A). Parts by weight, more preferably 0.2 to 4.0 parts by weight, particularly preferably 0.3 to 3.0 parts by weight.
  • an optical filter having both good near infrared absorption characteristics and high visible light transmittance can be obtained.
  • Xc is preferably 630 to 655 nm, more preferably 632 to 652 nm, and still more preferably 634 to 650 nm. If Xc is less than 628 nm, the transmittance in the wavelength region corresponding to red tends to be low, and color reproducibility tends to decrease. If it exceeds 658 nm, sufficient absorption intensity cannot be ensured, and the camera image Color shading tends to occur.
  • Xc represents a wavelength that satisfies a predetermined condition when the spectral transmittance is evaluated from the short wavelength side toward the long wavelength side.
  • the average transmittance of the substrate in the wavelength region of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more.
  • a substrate having such transmission characteristics is used, high light transmission characteristics can be achieved in the visible range, and a highly sensitive camera function can be achieved.
  • the thickness of the substrate can be appropriately selected according to the desired application and is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 180 ⁇ m, and further preferably 25 to 150 ⁇ m.
  • an optical filter using the substrate can be reduced in thickness and weight, and can be suitably used for various applications such as a solid-state imaging device.
  • a base material made of the transparent resin substrate is used in a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
  • the transparent resin used for the transparent resin layer, the transparent resin substrate and the resin support constituting the base material is not particularly limited as long as it does not impair the effects of the present invention.
  • thermal stability and film Glass transition temperature (Tg) is preferably 110 to 380 ° C., in order to obtain a film capable of forming a dielectric multilayer film by high temperature vapor deposition performed at a vapor deposition temperature of 100 ° C. or higher while ensuring moldability to
  • a resin having a temperature of 110 to 370 ° C., more preferably 120 to 360 ° C. is used.
  • the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
  • the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, More preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000.
  • the average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
  • transparent resins examples include cyclic polyolefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, and polysulfones.
  • ester-based curable resins examples include ester-based curable resins, silsesquioxane-based ultraviolet curable resins, acrylic-based ultraviolet curable resins, and vinyl-based ultraviolet curable resins.
  • Transparent resins may be used alone or in combination of two or more.
  • the cyclic polyolefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ).
  • a resin and a resin obtained by hydrogenating the resin are preferable.
  • R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
  • R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
  • Ix ′ A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
  • R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently, represent 0 or a positive integer.
  • the aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represents an integer of 0 to 4.
  • R 1 ⁇ R 4 and a ⁇ d independently has the same meaning as R 1 ⁇ R 4 and a ⁇ d of the formula (1)
  • Y represents a single bond
  • -SO 2 -Or> C O
  • R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group
  • g and h each independently represent 0 to 4
  • m represents 0 or 1.
  • R 7 is not a cyano group.
  • the aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
  • R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms
  • Z represents a single bond, —O—, —S—, —SO 2 —,> C ⁇ O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms
  • e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
  • R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).
  • the polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit.
  • the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.
  • the fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194.
  • the fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety.
  • the fluorene polyester resin can be synthesized by the method described in JP 2010-285505 A or JP 2011-197450 A. Can do.
  • the fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond.
  • the polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
  • the acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned.
  • the acrylic ultraviolet curable resin is a base material in which a transparent resin layer containing a compound (A) and a curable resin is laminated on a glass support or a resin support as a base, or a compound ( When using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing A), it can be particularly preferably used as the curable resin.
  • Epoxy resin Although it does not restrict
  • the ultraviolet curable epoxy resin for example, synthesized from a composition containing a compound having one or more epoxy groups in the molecule and a compound that generates an acid by ultraviolet rays (hereinafter also referred to as “photo acid generator”).
  • thermosetting epoxy resins include those synthesized from a composition containing one or more epoxy groups in the molecule and an acid anhydride. Can do.
  • the epoxy ultraviolet curable resin contains, as the base material, a base material obtained by laminating a transparent resin layer containing the compound (A) on a glass support or a base resin support, and the compound (A). In the case of using a base material in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate to be used, it can be particularly suitably used as the curable resin.
  • cyclic polyolefin resins examples include Arton manufactured by JSR Corporation, ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation.
  • polyethersulfone resins examples include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd.
  • polyimide resins examples include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited.
  • Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd.
  • Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER.
  • Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
  • the base material may further contain other dye (X) that does not correspond to the compound (A) and the compound (S).
  • the other dye (X) is not particularly limited as long as it has a maximum absorption wavelength in the region of wavelength less than 650 nm or more than 760 nm and less than 1050 nm, but a dye having an absorption maximum wavelength in the region of more than 760 nm and less than 1050 nm is preferable.
  • examples of such dyes include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds, octaphyrin compounds, diimonium compounds, pyrrolopyrrole compounds, and boron dipyrromethene (BODIPY). And at least one compound selected from the group consisting of a compound, a perylene compound, and a metal dithiolate compound.
  • the content of the other pigment (X) is, for example, when a substrate made of a transparent resin substrate containing the other pigment (X) is used as the substrate, with respect to 100 parts by weight of the transparent resin.
  • the amount is preferably 0.005 to 1.0 part by weight, more preferably 0.01 to 0.9 part by weight, particularly preferably 0.02 to 0.8 part by weight.
  • It contains a base material in which a transparent resin layer such as an overcoat layer made of a curable resin containing other dye (X) is laminated on a support such as a resin support, or a compound (A).
  • a transparent resin containing other pigment (X) When using a base material in which a resin layer such as an overcoat layer made of a curable resin containing other pigment (X) is laminated on a transparent resin substrate, a transparent resin containing other pigment (X) For 100 parts by weight of the resin forming the layer, 0.05 to 4.0 parts by weight preferred, and more preferably from 0.1 to 3.0 parts by weight, particularly preferably 0.2 to 2.0 parts by weight.
  • the base material may further contain an antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and the like as other components as long as the effects of the present invention are not impaired. These other components may be used alone or in combination of two or more.
  • Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, triazine compounds, and the like.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (2,4-di-t-butylphenyl) phosphite and the like.
  • these other components may be mixed with a resin or the like when producing a substrate, or may be added when a resin is synthesized.
  • the addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.
  • the transparent resin substrate can be formed by, for example, melt molding or cast molding, and further, if necessary, After molding, a substrate on which an overcoat layer is laminated can be produced by coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent.
  • a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent.
  • the base material is an overcoat comprising a curable resin containing the compound (A) on a support such as a glass support or a base resin support or a transparent resin substrate containing no compound (A).
  • a support such as a glass support or a base resin support or a transparent resin substrate containing no compound (A).
  • the resin solution containing the compound (A) is melt-molded or cast-molded on the support or the transparent resin substrate, preferably spin After coating by a method such as coating, slit coating or ink jetting, the solvent is dried and removed, and if necessary, further irradiation with light or heating is performed, whereby the compound (A) is formed on the support or the transparent resin substrate.
  • the base material in which the transparent resin layer containing this was formed can be manufactured.
  • melt molding a method of melt molding a pellet obtained by melt-kneading a resin, a compound (A) and other components as necessary; a resin, a compound (A) and a necessary
  • Examples include a method of melt-molding pellets.
  • the melt molding method include injection molding, melt extrusion molding, and blow molding.
  • ⁇ Cast molding As the cast molding, a method of removing a solvent by casting a resin composition containing a compound (A), a resin, a solvent and other components as required on a suitable support; or a compound (A) and After removing a solvent by casting a curable composition containing a photocurable resin and / or a thermosetting resin and other components as necessary on an appropriate support, ultraviolet irradiation, heating, etc. It can also be produced by a method of curing by an appropriate method.
  • the base material is a base material made of a transparent resin substrate containing the compound (A)
  • the base material can be obtained by peeling the coating film from the support after cast molding
  • the base material is made of a curable resin containing the compound (A) on a support such as a glass support or a base resin support or a transparent resin substrate containing no compound (A).
  • the substrate can be obtained by not peeling the coating film after cast molding.
  • the support examples include phosphates containing copper components such as near-infrared absorbing glass plates (for example, “BS-11” manufactured by Matsunami Glass Industrial Co., Ltd. and “NF-50T” manufactured by AGC-Techno Glass Co., Ltd.). Glass plate), transparent glass plate (for example, non-alkali glass plate such as “OA-10G” manufactured by Nippon Electric Glass Co., Ltd., “AN100” manufactured by Asahi Glass Co., Ltd.), steel belt, steel drum, and transparent resin (for example, polyester) Film, cyclic olefin resin film) support.
  • BS-11 manufactured by Matsunami Glass Industrial Co., Ltd. and “NF-50T” manufactured by AGC-Techno Glass Co., Ltd.
  • Glass plate for example, non-alkali glass plate such as “OA-10G” manufactured by Nippon Electric Glass Co., Ltd., “AN100” manufactured by Asahi Glass Co., Ltd.
  • steel belt for example, steel drum
  • transparent resin for example,
  • the optical component such as glass plate, quartz or transparent plastic is coated with the resin composition and the solvent is dried, or the curable composition is coated and cured and dried.
  • a transparent resin layer can also be formed on the component.
  • the amount of residual solvent in the transparent resin layer (transparent resin substrate) obtained by the above method should be as small as possible.
  • the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight with respect to the weight of the transparent resin layer (transparent resin substrate). It is as follows. When the amount of residual solvent is in the above range, a transparent resin layer (transparent resin substrate) that can easily exhibit a desired function, in which deformation and characteristics hardly change can be obtained.
  • the optical filter according to the present invention has a base material that satisfies the requirements (a), (b), and (c), and satisfies the following requirements (d) and (e): (D) In the wavelength range of 430 to 580 nm, the average value (d1) of transmittance when measured from the vertical direction of the optical filter is 75% or more; (E) In the wavelength region of 1100 nm to 1200 nm, the average value (e1) of transmittance when measured from the vertical direction of the optical filter is 5% or less.
  • the optical filter of the present invention satisfies the above requirements (d) and (e), it has excellent transmittance characteristics and near-infrared cut characteristics in the visible wavelength region, has little incident angle dependency, has a color shading suppression effect, and a ghost. It is an optical filter with excellent suppression effect.
  • the average value (d1) of the transmittance in the requirement (d) is preferably 78% or more, more preferably 80% or more, and further preferably 82% or more.
  • the average value (d1) of the transmittance is in this range, excellent imaging sensitivity can be achieved when the optical filter of the present invention is used as a solid-state imaging device.
  • the average value (e1) of the transmittance in requirement (e) is preferably 4% or less, more preferably 3% or less, and even more preferably 2% or less. When the average value (e1) of the transmittance is within this range, good black reproducibility can be achieved near the center of the camera image.
  • the optical filter of the present invention has the base material, the incident angle dependency of the optical characteristics can be reduced even in the form having the dielectric multilayer film.
  • of the difference from the wavelength value (Xb) at which the transmittance when measured from the angle is 50% is preferably less than 20 nm, more preferably less than 15 nm, and even more preferably less than 10 nm. is there.
  • the thickness of the optical filter of the present invention is preferably thin in consideration of the recent trend of thinner and lighter solid-state imaging devices. Since the optical filter of the present invention includes the substrate, it can be thinned.
  • the thickness of the optical filter of the present invention is preferably 210 ⁇ m or less, more preferably 190 ⁇ m or less, further preferably 160 ⁇ m or less, particularly preferably 130 ⁇ m or less, and the lower limit is not particularly limited, but is preferably 20 ⁇ m or more.
  • the optical filter of the present invention preferably has a dielectric multilayer film on at least one surface of the substrate.
  • the dielectric multilayer film in the present invention is a film having the ability to reflect near-infrared rays or a film having an antireflection effect in the visible range. By having a dielectric multilayer film, a better visible light transmittance and near-infrared radiation are obtained. Cut characteristics can be achieved.
  • the dielectric multilayer film may be provided on one side of the substrate or on both sides.
  • the optical filter When it is provided on one side, it is possible to obtain an optical filter that is excellent in production cost and manufacturability and has high strength and is less likely to warp or twist when provided on both sides.
  • the optical filter When the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter is less warped or twisted. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the resin substrate.
  • the dielectric multilayer film preferably has reflection characteristics over the entire wavelength range of 700 to 1100 nm, more preferably 700 to 1150 nm, and even more preferably 700 to 1200 nm.
  • the first optical layer mainly having a reflection characteristic in the vicinity of a wavelength of 700 to 950 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter is used.
  • a configuration (see FIG. 1 (a)) having a second optical layer on one side of the material and having a reflection characteristic mainly in the vicinity of 900 nm to 1150 nm on the other side of the substrate, and the vertical direction of the optical filter
  • the fourth optical layer having a third optical layer having a reflection characteristic mainly in the vicinity of a wavelength of 700 to 1150 nm on one side of the substrate and having an antireflection characteristic in the visible range.
  • the form (refer FIG.1 (b)) which has on the other surface of material is mentioned.
  • Examples of the dielectric multilayer film include those in which a high refractive index material layer and a low refractive index material layer are alternately laminated.
  • a material constituting the high refractive index material layer a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected.
  • Such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight based on the main component) can be used.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected.
  • examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
  • the method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed.
  • a multilayer film can be formed.
  • each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1 ⁇ to 0.5 ⁇ , where ⁇ (nm) is the near infrared wavelength to be blocked.
  • the value of ⁇ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm.
  • the optical thickness obtained by multiplying the refractive index (n) by the thickness (d) (n ⁇ d) by ⁇ / 4 the high refractive index material layer, and the low refractive index.
  • the thicknesses of the respective layers of the refractive index material layer are almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
  • the total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, more preferably 20 to 60 layers, as a whole. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.
  • the thickness of each layer of the rate material layer, the order of stacking, and the number of stacks it has sufficient light cut characteristics in the near infrared wavelength region while ensuring sufficient transmittance in the visible region, In addition, it is possible to reduce the reflectance when near infrared rays are incident from an oblique direction.
  • optical thin film design software for example, manufactured by Essential Macleod, Thin Film Center Co., Ltd.
  • optical thin film design software for example, manufactured by Essential Macleod, Thin Film Center Co., Ltd.
  • the target transmittance at a wavelength of 400 to 700 nm is set to 100%
  • the target Tolerance value is set to 1
  • the target transmittance at a wavelength of 705 to 950 nm is set to 0%.
  • Parameter setting method such as setting Target Tolerance value to 0.5 can be mentioned.
  • These parameters can change the value of Target Tolerance by further finely dividing the wavelength range according to various characteristics of the substrate (i).
  • the optical filter of the present invention is within the range not impairing the effects of the present invention, between the base material and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film is provided, or the dielectric multilayer film.
  • an anti-reflection film On the opposite side of the surface of the film where the substrate is provided, an anti-reflection film, a hard layer is used for the purpose of improving the surface hardness of the substrate or the dielectric multilayer film, improving the chemical resistance, antistatic and scratching.
  • Functional films such as a coating film and an antistatic film can be provided as appropriate.
  • the optical filter of the present invention may include one layer made of the functional film or two or more layers.
  • the optical filter of the present invention may include two or more similar layers or two or more different layers.
  • the method of laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melt-molded or cast in the same manner as described above on a base material or a dielectric multilayer film. Examples of the method include molding.
  • it can also be produced by applying a curable composition containing the coating agent or the like on a substrate or a dielectric multilayer film with a bar coater or the like and then curing it by ultraviolet irradiation or the like.
  • the coating agent examples include ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins. Specifically, vinyl compounds, urethanes, urethane acrylates, acrylates, epoxy And epoxy acrylate resins. Examples of the curable composition containing these coating agents include vinyl, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate curable compositions.
  • UV ultraviolet
  • EB electron beam
  • the curable composition may contain a polymerization initiator.
  • a polymerization initiator a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination.
  • a polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the blending ratio of the polymerization initiator in the curable composition is preferably 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, when the total amount of the curable composition is 100% by weight. More preferably, it is 1 to 5% by weight.
  • a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.
  • organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used.
  • organic solvents include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone.
  • solvents may be used alone or in combination of two or more.
  • the thickness of the functional film is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, and particularly preferably 0.7 to 5 ⁇ m.
  • the corona is applied to the surface of the base material, the functional film or the dielectric multilayer film.
  • Surface treatment such as treatment or plasma treatment may be performed.
  • the optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, TVs, car navigation systems, personal digital assistants, video game machines, and portable game machines It is useful for fingerprint authentication system, digital music player, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
  • the solid-state imaging device of the present invention includes the optical filter of the present invention.
  • the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor.
  • a digital still camera a camera for a smartphone, a camera for a mobile phone, a camera for a wearable device, a digital camera It can be used for applications such as video cameras.
  • the camera module of the present invention includes the optical filter of the present invention.
  • Parts means “parts by weight” unless otherwise specified.
  • the measurement method of each physical property value and the evaluation method of the physical property are as follows.
  • the molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
  • GPC gel permeation chromatography
  • Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgel ⁇ -M, developing solvent: THF) manufactured by Tosoh Corporation.
  • the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the said method.
  • (C) A part of the polyimide resin solution was added to anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer.
  • 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity ( ⁇ ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
  • ⁇ ln (t s / t 0) ⁇ / C t 0 : Flowing time of solvent t s : Flowing time of dilute polymer solution C: 0.5 g / dL ⁇ Glass transition temperature (Tg)> Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.
  • the transmittance when measured from the vertical direction of the optical filter the light transmitted perpendicular to the filter is measured as shown in FIG. 2A, and the angle is 30 ° with respect to the vertical direction of the optical filter.
  • the transmittance when measured from the above the light transmitted at an angle of 30 ° with respect to the vertical direction of the filter as shown in FIG. 2B was measured.
  • this transmittance is measured using the spectrophotometer under the condition that light is perpendicularly incident on the substrate and the filter, except when measuring (Xb).
  • it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter.
  • ⁇ Camera image color shading evaluation> The color shading evaluation when the optical filter was incorporated in the camera module was performed by the following method.
  • a camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and a white plate having a size of 300 mm ⁇ 400 mm is formed using the created camera module as a D65 light source (standard light source device “Macbeth Judge II” manufactured by X-Rite) Images were taken below, and the difference in color between the center and edge of the white plate in the camera image was evaluated according to the following criteria.
  • the positional relationship between the white plate 112 and the camera module was adjusted so that the white plate 112 occupied 90% or more of the area in the camera image 111 when shooting.
  • Ghost evaluation when the optical filter was incorporated in the camera module was performed by the following method.
  • a camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and the camera module is used to take a picture under a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room.
  • a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room.
  • the degree of ghost generation around the light source in the image was evaluated according to the following criteria.
  • DCM dodec-3-ene
  • ⁇ Resin synthesis example 2> In a 3 L four-necked flask, 35.12 g of 2,6-difluorobenzonitrile, 87.60 g of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate, N, N-dimethylacetamide (hereinafter referred to as “DMAc”). 443 g and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean Stark tube and a cooling tube were attached to the four-necked flask.
  • DMAc N, N-dimethylacetamide
  • the obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
  • ⁇ Resin synthesis example 3> In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, dropping funnel with side tube, Dean-Stark tube and condenser tube, 1,4-bis (4-amino- ⁇ , ⁇ -Dimethylbenzyl) benzene (27.66 g) and 4,4'-bis (4-aminophenoxy) biphenyl (7.38 g) were added and dissolved in ⁇ -butyrolactone (68.65 g) and N, N-dimethylacetamide (17.16 g). The resulting solution was cooled to 5 ° C.
  • resin C A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide.
  • the IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed.
  • Resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
  • Example 1 an optical filter having a base material made of a transparent resin substrate was prepared according to the following procedure and conditions.
  • the peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a base material composed of a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
  • the spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in FIG. 3 and Table 5-1.
  • a dielectric multilayer film (I) is formed as a first optical layer on one side of the obtained base material, and a dielectric multilayer film (II) is formed as a second optical layer on the other side of the base material.
  • an optical filter having a thickness of about 0.105 mm was obtained.
  • the dielectric multilayer film (I) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total).
  • the dielectric multilayer film (II) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (20 layers in total).
  • the silica layer and the titania layer are in order of the titania layer, the silica layer, the titania layer,..., The silica layer, the titania layer, and the silica layer from the substrate side.
  • the outermost layer of the optical filter was a silica layer.
  • the dielectric multilayer films (I) and (II) were designed as follows.
  • the wavelength-dependent characteristics of the base material refractive index and the applied compound (S) and compound (in order to achieve the antireflection effect in the visible range and the selective transmission / reflection performance in the near infrared range Optimization was performed using optical thin film design software (Essential Macleod, Thin Film Center) according to the absorption characteristics of A).
  • optical thin film design software Essential Macleod, Thin Film Center
  • the input parameters (Target values) to the software are as shown in Table 3 below.
  • the dielectric multilayer film (I) is formed by alternately stacking a silica layer having a film thickness of 31 to 157 nm and a titania layer having a film thickness of 10 to 95 nm.
  • the dielectric multi-layer film (II) is a multi-layer vapor-deposited film having 20 layers, in which a silica layer having a thickness of 37 to 194 nm and a titania layer having a thickness of 12 to 114 nm are alternately stacked. It was.
  • An example of the optimized film configuration is shown in Table 4 below.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • the results are shown in FIG. 4 and Table 5-1.
  • the average value of transmittance at a wavelength of 430 to 580 nm was 84%
  • the average value of transmittance at a wavelength of 1100 to 1200 nm was 1% or less
  • Example 2 an optical filter having a base material made of a transparent resin substrate was prepared according to the following procedure and conditions.
  • Example 1 0.04 part of the compound (A-3) represented by the following formula (a-3) (absorption maximum wavelength 703 nm in dichloromethane) as the compound (A) and the following formula (a-4) Compound (a-4) (absorption maximum wavelength in dichloromethane 736 nm) 0.08 part was used, and compound (s-8) described in Table 2-3 above as compound (S) (in dichloromethane) 0.06 parts of absorption maximum wavelength (1096 nm) and other dye (X) represented by the following formula (X-1) (X-1) (absorption maximum wavelength in dichloromethane: 887 nm)
  • X-1 absorption maximum wavelength in dichloromethane: 887 nm
  • a base material made of a transparent resin substrate containing the compound (A) and the compound (S) was obtained in the same procedure and conditions as in Example 1 except that 0.01 part was used. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • the multilayer film (III) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as the second optical layer on the other surface of the base material (20 layers in total).
  • a dielectric multilayer film (IV) was formed to obtain an optical filter having a thickness of about 0.105 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependency of the base material refractive index.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 3 an optical filter having a base material composed of a transparent resin substrate having a resin layer on both sides was prepared according to the following procedure and conditions.
  • Example 1 0.06 part of compound (a-4) as compound (A) and compound (a-5) represented by the following formula (a-5) (absorption maximum wavelength in dichloromethane: 713 nm) 0.06 Example 1 except that 0.08 part of the compound (s-13) described in Table 2-4 (maximum absorption wavelength 1096 nm in dichloromethane) was used as the compound (S). A transparent resin substrate containing the compound (A) and the compound (S) was obtained in the same procedure and conditions.
  • a resin composition (1) having the following composition was applied to one side of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 2 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 2 ⁇ m. Next, it exposed using the conveyor type exposure machine (exposure amount 500mJ / cm ⁇ 2 >, 200mW), the resin composition (1) was hardened, and the resin layer was formed on the substrate made from transparent resin. Similarly, a resin layer made of the resin composition (1) is formed on the other surface of the transparent resin substrate, and the resin layers are provided on both surfaces of the transparent resin substrate containing the compound (A) and the compound (S). A substrate was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in Table 5-1.
  • Resin composition (1) 60 parts by weight of tricyclodecane dimethanol diacrylate, 40 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent, solid content concentration (TSC): 30% )
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • a dielectric multilayer film (VI) was formed to obtain an optical filter having a thickness of about 0.109 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 4 an optical filter having a substrate formed by forming a transparent resin layer containing the compound (A) on both surfaces of a resin support was prepared according to the following procedure and conditions.
  • Resin A obtained in Resin Synthesis Example 1 and methylene chloride were added to a container to prepare a solution having a resin concentration of 20% by weight, and the resin substrate of Example 1 was used except that the obtained solution was used.
  • a resin support was prepared in the same manner as the preparation.
  • Example 3 In the same manner as in Example 3, a resin layer made of the resin composition (2) having the following composition was formed on both surfaces of the obtained resin support, and the compound (A) and the compound ( A base material formed by forming a transparent resin layer containing S) was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in Table 5-1.
  • Resin composition (2) 100 parts by weight of tricyclodecane dimethanol diacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.10 parts by weight of compound (a-1), 0.10 parts by weight of compound (a-2) Parts, 1.75 parts by weight of compound (s-6), methyl ethyl ketone (solvent, TSC: 25%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • a dielectric multilayer film (VIII) was formed to obtain an optical filter having a thickness of about 0.109 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 5 an optical filter having a base material composed of a transparent glass substrate having a transparent resin layer containing the compound (A) on one side was prepared by the following procedure and conditions.
  • a resin composition (3) having the following composition was applied with a spin coater.
  • the solvent was volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes.
  • coating conditions of the spin coater were adjusted so that the thickness after drying might be set to 2 micrometers.
  • Resin composition (3) 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.20 part by weight of compound (a-1), compound (A-2) 0.20 part by weight, compound (s-6) 3.50 part by weight, methyl ethyl ketone (solvent, TSC: 35%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • a multilayer film (IX) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a second optical layer on the other surface of the base material (20 layers in total)
  • a dielectric multilayer film (X) was formed to obtain an optical filter having a thickness of about 0.107 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 6 an optical filter having a base material composed of a near-infrared absorbing glass substrate having a transparent resin layer containing the compound (A) on one side was prepared by the following procedure and conditions.
  • a resin composition (4) having the following composition was applied on a near infrared absorbing glass substrate “BS-11 (thickness 120 ⁇ m)” (manufactured by Matsunami Glass Industry Co., Ltd.) cut to a size of 60 mm in length and 60 mm in width with a spin coater. Then, the solvent was volatilized and removed by heating at 80 ° C. for 2 minutes on a hot plate. Under the present circumstances, the application
  • Resin composition (4) 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.15 part by weight of compound (a-3), compound (A-4) 0.30 part by weight, methyl ethyl ketone (solvent, TSC: 35%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • a multilayer film (XI) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a second optical layer on the other surface of the substrate (20 layers in total).
  • a dielectric multilayer film (XII) was formed to obtain an optical filter having a thickness of about 0.107 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 7 an optical filter having a base material made of a transparent resin substrate containing the compound (A) and having a transparent resin layer containing near-infrared absorbing fine particles on both surfaces was prepared according to the following procedure and conditions.
  • Example 2 a transparent resin substrate containing compound (A) was obtained by the same procedure and conditions as in Example 2 except that compound (S-8) and the other dye (X-1) were not used. It was.
  • a base material made of a transparent resin substrate containing (A) was obtained.
  • the spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined.
  • the results are shown in FIG. 7 and Table 5-1.
  • Resin composition (5) 100 parts by weight of tricyclodecane dimethanol diacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 35 parts by weight of near-infrared absorbing fine particle dispersion (YMF-02A manufactured by Sumitomo Metal Mining Co., Ltd.) About 10 parts by weight in terms of solid content), methyl ethyl ketone (solvent, TSC: 30%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total).
  • a dielectric multilayer film (XIV) was formed to obtain an optical filter having a thickness of about 0.109 mm.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 8 to 13 Resin, solvent, drying conditions of resin substrate, compound (A), compound (S), and other dye (X) were changed in the same manner as in Example 3 except for changing as shown in Table 5-1. Materials and optical filters were made. The optical properties of the obtained substrate and optical filter are shown in Table 5-1. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
  • Example 1 In Example 1, except that the compound (S) and the compound (A) were not used, a substrate and an optical filter were prepared in the same manner as in Example 1, and optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 1 exhibits relatively good visible light transmittance, the optical property has a large incident angle dependency, and the base material has no absorption in the vicinity of 700 nm or in the near infrared wavelength region. Therefore, it was confirmed that the color shading suppression effect and the ghost suppression effect were inferior.
  • Comparative Example 2 An optical filter was prepared and the optical characteristics were evaluated in the same manner as in Example 1 except that a transparent glass substrate “OA-10G (thickness 150 ⁇ m)” (manufactured by Nippon Electric Glass Co., Ltd.) was used as the substrate. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 2 shows relatively good visible light transmittance, the optical property has a large incident angle dependency, and the base material has no absorption in the vicinity of 700 nm or near infrared wavelength region. Therefore, it was confirmed that the color shading suppression effect and the ghost suppression effect were inferior.
  • OA-10G thickness 150 ⁇ m
  • Example 3 An optical filter was prepared in the same manner as in Example 1 except that a near-infrared absorbing glass substrate “BS-11 (thickness 120 ⁇ m)” (manufactured by Matsunami Glass Industry Co., Ltd.) was used as a base material, and optical characteristics were evaluated. did. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. The spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 3 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was poor.
  • BS-11 thickness 120 ⁇ m
  • Example 4 In Example 3, 0.08 part of compound (a-4) and 0.06 part of compound (a-5) were used as compound (A) without using compound (S), and dye (X— 1) Except having used 0.01 part, the base material and the optical filter were created like Example 3, and the optical characteristic was evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. The spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 5 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the near-infrared wavelength region of the substrate was not sufficient and the ghost suppression effect was inferior.
  • Example 6 a substrate and an optical filter were prepared in the same manner as in Example 6 except that the resin composition (6) having the following composition was used instead of the resin composition (4).
  • Resin composition (6) 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.15 part by weight of compound (a-1), methyl ethyl ketone (Solvent, TSC: 35%)
  • the optical properties of the obtained substrate and optical filter were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2.
  • the spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 5 showed relatively good optical properties, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was poor.
  • Example 6 In Example 3, 0.04 part of the compound (a-3) and 0.08 part of the compound (a-4) were used as the compound (A), and 0.01% of the compound (s-6) was used as the compound (S). A substrate and an optical filter were prepared in the same manner as in Example 3 except that the parts were used, and the optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 6 showed relatively good optical properties, it was confirmed that the absorption intensity in the near infrared wavelength region of the substrate was not sufficient and the ghost suppression effect was inferior.
  • Example 3 except that 0.04 part of the compound (a-1) was used as the compound (A) and 0.07 part of the compound (s-6) was used as the compound (S) in Example 3.
  • a substrate and an optical filter were prepared in the same manner as described above, and the optical characteristics were evaluated.
  • a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2.
  • the optical filter obtained in Comparative Example 7 showed relatively good optical properties, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was inferior.
  • Example 8 In Example 3, 0.04 part of compound (a-1) was used as compound (A), and compound (s-14) described in Table 2-4 above (absorption in dichloromethane) was used as compound (S). A substrate and an optical filter were prepared in the same manner as in Example 3 except that 0.45 part of the maximum wavelength (1097 nm) was used, and the optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 8 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was inferior.
  • Optical filter 2 Spectrophotometer 3: Light 10: Base material 11: First optical layer 12: Second optical layer 13: Third optical layer 14: Fourth optical layer 111: Camera image 112: White plate 113: Example of the center of the white plate 114: Example of the edge of the white plate 121: Camera image 122: Light source 123: Example of ghost around the light source

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

The present invention addresses the problem of providing an optical filter that achieves, at a high level, both color shading suppression and ghost suppression in a camera image, both of which cannot be sufficiently achieved by conventional optical filters. This optical filter is characterized by having a substrate satisfying requirements (a) to (c): (a) the substrate has a layer containing a compound (A) having an absorption maximum in a wavelength region of 650-760 nm inclusive; (b) a difference (X2-X1) between the shortest wavelength (X1) and the second shortest wavelength (X2) at which transmissivity becomes 10% in a wavelength region of 640 nm or more is 50 nm or more; and (c) transmissivities at wavelengths of 900 nm, 1000 nm, and 1100 nm are each 65% or less.

Description

光学フィルターおよび光学フィルターを用いた装置Optical filter and device using optical filter
 本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、特定の波長領域に吸収を有する化合物を含む光学フィルター、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。 The present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing a compound having absorption in a specific wavelength region, and a solid-state imaging device and a camera module using the optical filter.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されているが、これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。 A solid-state image pickup device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state image pickup device for a color image. Silicon photodiodes that are sensitive to near infrared rays that cannot be sensed by the eyes are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye. Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
 このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、基材として透明樹脂を用い、透明樹脂中に近赤外線吸収色素を含有させた近赤外線カットフィルターが知られている(例えば特許文献1参照)。しかしながら、特許文献1に記載された近赤外線カットフィルターは、近赤外線吸収特性が必ずしも充分ではない場合があった。 As such a near-infrared cut filter, those manufactured by various methods are conventionally used. For example, a near-infrared cut filter in which a transparent resin is used as a substrate and a near-infrared absorbing pigment is contained in the transparent resin is known (see, for example, Patent Document 1). However, the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
 本出願人は、鋭意検討の結果、特定の波長領域に吸収極大がある近赤外線吸収色素を含有する透明樹脂製基板を用いることで、入射角度を変化させても光学特性の変化が少ない近赤外線カットフィルターが得られることを見出し、特許文献2にて広い視野角および高い可視光透過率を兼ね備えた近赤外線カットフィルターを提案している。また、特許文献3では、特定の構造を有するフタロシアニン系色素を用いることで、従来の課題であった優れた可視透過率と吸収極大波長の長波長化とを高いレベルで両立した近赤外線カットフィルターを得ることができる旨が記載されている。しかし、特許文献2および3に記載の近赤外線カットフィルターでは、適用されている基材が、700nm付近には十分な強度の吸収帯を持っているものの、例えば900~1200nmといった近赤外波長領域にはほぼ吸収を持たない。そのため、近赤外波長領域の光線は、ほぼ誘電体多層膜の反射でのみカットしているが、このような構成では光学フィルター中の内部反射や、光学フィルターとレンズ間の反射によるわずかな迷光が、暗い環境下で撮影を行う際にゴーストやフレアの原因となる場合があった。特に、近年はスマートフォンなどのモバイル機器であってもカメラの高画質化が強く求められており、従来の光学フィルターでは好適に使用できない場合があった。 As a result of intensive studies, the applicant has used a transparent resin substrate containing a near-infrared-absorbing dye having an absorption maximum in a specific wavelength region, so that the near-infrared light has little change in optical characteristics even when the incident angle is changed. It has been found that a cut filter can be obtained, and Patent Document 2 proposes a near-infrared cut filter having both a wide viewing angle and a high visible light transmittance. Patent Document 3 discloses a near-infrared cut filter that uses a phthalocyanine dye having a specific structure to achieve both a high visible light transmittance and a long absorption maximum wavelength, both of which have been the conventional problems. It is described that can be obtained. However, in the near-infrared cut filters described in Patent Documents 2 and 3, the applied base material has a sufficiently strong absorption band in the vicinity of 700 nm, but the near-infrared wavelength region of 900 to 1200 nm, for example. Has almost no absorption. For this reason, light in the near-infrared wavelength region is cut almost only by the reflection of the dielectric multilayer film, but in such a configuration, slight stray light due to internal reflection in the optical filter and reflection between the optical filter and the lens is obtained. However, when shooting in a dark environment, ghosts and flares may occur. In particular, in recent years, there has been a strong demand for high-quality cameras even for mobile devices such as smartphones, and conventional optical filters may not be used favorably.
 一方、近赤外波長領域に幅広い吸収をもつ基材を用いた光学フィルターとして、特許文献4のような赤外線遮蔽フィルタが提案されている。特許文献4では、主にジチオレン構造を有する化合物を適用することで近赤外波長領域の幅広い吸収を達成しているが、700nm付近の吸収強度は十分ではない。特に、近年のカメラモジュール低背化に伴う高入射角条件(例えば45度入射)での使用では、色シェーディングによる画像劣化が起こる場合があった。 On the other hand, as an optical filter using a substrate having a wide absorption in the near-infrared wavelength region, an infrared shielding filter as in Patent Document 4 has been proposed. In Patent Document 4, a broad absorption in the near-infrared wavelength region is achieved mainly by applying a compound having a dithiolene structure, but the absorption intensity near 700 nm is not sufficient. In particular, when the camera module is used under a high incident angle condition (for example, 45 degree incidence) accompanying a recent reduction in the height of the camera module, image degradation may occur due to color shading.
 また、特許文献5には、近赤外線吸収ガラス基材と近赤外線吸収色素を含有する層とを有する近赤外線カットフィルタが開示されているが、特許文献5に記載の構成でも色シェーディングを十分改良することができない場合があった(例えば、特許文献5の図5には、0度入射時と30度入射時の光学特性グラフが示されているが、30度入射時においても可視光透過帯の裾部分の領域(630~700nm)で大きな波長シフトが観測されている)。 Further, Patent Document 5 discloses a near-infrared cut filter having a near-infrared absorbing glass substrate and a layer containing a near-infrared absorbing pigment, but the color shading is sufficiently improved even with the configuration described in Patent Document 5. (For example, FIG. 5 of Patent Document 5 shows an optical characteristic graph when incident at 0 degrees and incident at 30 degrees. However, the visible light transmission band is also observed when incident at 30 degrees. A large wavelength shift is observed in the skirt region (630 to 700 nm).
特開平6-200113号公報Japanese Patent Laid-Open No. 6-200113 特開2011-100084号公報JP 2011-100084 A 国際公開2015/025779号パンフレットInternational Publication No. 2015/025779 Pamphlet 国際公開2014/168190号パンフレットInternational Publication No. 2014/168190 Pamphlet 国際公開2014/030628号パンフレットInternational Publication 2014/030628 Pamphlet
 本発明は、従来の光学フィルターでは十分になし得なかった、カメラ画像の色シェーディング抑制とゴースト抑制を高いレベルで両立可能な光学フィルターを提供することを課題とする。 It is an object of the present invention to provide an optical filter that can achieve a high level of color shading suppression and ghost suppression of camera images, which cannot be sufficiently achieved with conventional optical filters.
 本発明者らは、前記課題を解決するために鋭意検討した結果、波長700nm付近に十分な強度の吸収帯を有し、且つ、900nm以上の近赤外波長領域に幅広い吸収帯を有する基材を適用することにより、目的とする近赤外線カット特性、可視光透過率、色シェーディング抑制効果およびゴースト抑制効果を達成可能な光学フィルターが得られることを見出し、本発明を完成するに至った。本発明の態様の例を以下に示す。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have a base material that has an absorption band with sufficient intensity in the vicinity of a wavelength of 700 nm and a wide absorption band in the near-infrared wavelength region of 900 nm or more. Has been found that an optical filter capable of achieving the intended near-infrared cut characteristics, visible light transmittance, color shading suppression effect and ghost suppression effect can be obtained, and the present invention has been completed. Examples of embodiments of the present invention are shown below.
 [1] 下記要件(a)、(b)および(c)を満たす基材を有し、かつ、下記要件(d)および(e)を満たすことを特徴とする光学フィルター:
(a)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する;
(b)波長640nm以上の領域において透過率が10%となる一番短い波長(X1)と二番目に短い波長(X2)との差(X2-X1)が50nm以上である;
(c)波長900nmにおける透過率、波長1000nmにおける透過率、および波長1100nmにおける透過率がいずれも65%以下である;
(d)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上である;
(e)波長1100nm~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下である。
[1] An optical filter having a substrate that satisfies the following requirements (a), (b), and (c), and that satisfies the following requirements (d) and (e):
(A) having a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm to 760 nm;
(B) The difference (X 2 −X 1 ) between the shortest wavelength (X 1 ) with a transmittance of 10% and the second shortest wavelength (X 2 ) in the wavelength region of 640 nm or more is 50 nm or more;
(C) The transmittance at a wavelength of 900 nm, the transmittance at a wavelength of 1000 nm, and the transmittance at a wavelength of 1100 nm are all 65% or less;
(D) In the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the optical filter is 75% or more;
(E) In the wavelength region of 1100 nm to 1200 nm, the average transmittance when measured from the vertical direction of the optical filter is 5% or less.
 [2] 前記化合物(A)を含む層が透明樹脂層であることを特徴とする、項[1]に記載の光学フィルター。 [2] The optical filter according to item [1], wherein the layer containing the compound (A) is a transparent resin layer.
 [3] 前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする、項[1]または[2]に記載の光学フィルター。 [3] The optical filter according to item [1] or [2], wherein a dielectric multilayer film is provided on at least one surface of the substrate.
 [4] 前記基材が、さらに下記要件(f)を満たすことを特徴とする、項[1]~[3]のいずれか一項に記載の光学フィルター:
(f)波長690~720nmの領域における透過率の最小値(T1)が5%以下である。
[4] The optical filter according to any one of items [1] to [3], wherein the base material further satisfies the following requirement (f):
(F) The minimum transmittance (T 1 ) in the wavelength range of 690 to 720 nm is 5% or less.
 [5] 前記基材が、さらに下記要件(g)を満たすことを特徴とする、項[1]~[4]のいずれに一項に記載の光学フィルター:
(g)波長1050nm以上1200nm以下の領域に吸収極大を有する化合物(S)を含む。
[5] The optical filter according to any one of items [1] to [4], wherein the substrate further satisfies the following requirement (g):
(G) A compound (S) having an absorption maximum in a wavelength region of 1050 nm to 1200 nm is included.
 [6] 前記化合物(S)が、下記式(I)および(II)で表される化合物からなる群より
選ばれる少なくとも1種の化合物であることを特徴とする、項[5]に記載の光学フィルター。
[6] The item [5], wherein the compound (S) is at least one compound selected from the group consisting of compounds represented by the following formulas (I) and (II): Optical filter.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 式(I)および式(II)中、
 R1~R3は、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数2~14の複素環基
(Lf)炭素数1~12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~12のアシル基、
(Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
 置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
 隣り合うR3同士は、置換基Lを有してもよい環を形成してもよく、
 nは0~4の整数を表し、
 Xは電荷を中和させるのに必要なアニオンを表し、
 Mは金属原子を表し、
 ZはD(Ri4を表し、Dは窒素原子、リン原子またはビスマス原子を表し、
 yは0もしくは1を表す。
Figure JPOXMLDOC01-appb-C000004
In formula (I) and formula (II),
R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h , wherein R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L e It represents either, R i represents any of the following L a ~ L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L 1 to 12 acyl groups,
(L h ) an alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, At least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms,
Adjacent R 3 may form a ring which may have a substituent L,
n represents an integer of 0 to 4,
X represents an anion necessary to neutralize the charge,
M represents a metal atom,
Z represents D (R i ) 4 , D represents a nitrogen atom, a phosphorus atom or a bismuth atom;
y represents 0 or 1.
 [7] 前記誘電体多層膜が前記基材の両面に形成されていることを特徴とする項[3]~[6]のいずれか1項に記載の光学フィルター。 [7] The optical filter according to any one of items [3] to [6], wherein the dielectric multilayer film is formed on both surfaces of the base material.
 [8] 前記化合物(A)が、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であることを特徴とする項[1]~[7]のいずれか1項に記載の光学フィルター。 [8] The item [1] to [7], wherein the compound (A) is at least one compound selected from the group consisting of squarylium compounds, phthalocyanine compounds, and cyanine compounds. The optical filter according to item 1.
 [9] 前記透明樹脂層を構成する透明樹脂が、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂であることを特徴とする項[2]~[8]のいずれか1項に記載の光学フィルター。 [9] The transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate. Resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, Item characterized by being at least one resin selected from the group consisting of an allyl ester curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin [ [2] to [8] Optical filter.
 [10] 前記基材が、化合物(A)および化合物(S)を含む透明樹脂製基板を含有することを特徴とする項[1]~[9]のいずれか1項に記載の光学フィルター。 [10] The optical filter according to any one of items [1] to [9], wherein the base material contains a transparent resin substrate containing the compound (A) and the compound (S).
 [11] 固体撮像装置用である項[1]~[10]のいずれか1項に記載の光学フィルター。 [11] The optical filter according to any one of items [1] to [10], which is for a solid-state imaging device.
 [12] 項[1]~[11]のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 [12] A solid-state imaging device comprising the optical filter according to any one of items [1] to [11].
 [13] 項[1]~[11]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 [13] A camera module including the optical filter according to any one of items [1] to [11].
 本発明によれば、近赤外線カット特性に優れ、入射角依存性が少なく、可視波長域での透過率特性、色シェーディング抑制効果およびゴースト抑制効果に優れた光学フィルターを提供することができる。 According to the present invention, it is possible to provide an optical filter that has excellent near-infrared cut characteristics, little incident angle dependency, and excellent transmittance characteristics in the visible wavelength region, color shading suppression effect, and ghost suppression effect.
図1(a)、(b)は、本発明の光学フィルターの好ましい構成の例を示した模式図である。FIGS. 1A and 1B are schematic views showing examples of preferable configurations of the optical filter of the present invention. 図2(a)は、光学フィルターの垂直方向から測定した場合の透過率を測定する方法を示す概略図である。図2(b)は、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率を測定する方法を示す概略図である。FIG. 2A is a schematic diagram illustrating a method for measuring the transmittance when measured from the vertical direction of the optical filter. FIG. 2B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter. 図3は、実施例1で得られた基材の分光透過スペクトルである。FIG. 3 is a spectral transmission spectrum of the substrate obtained in Example 1. 図4は、実施例1で得られた光学フィルターの分光透過スペクトルである。FIG. 4 is a spectral transmission spectrum of the optical filter obtained in Example 1. 図5は、実施例2で得られた基材の分光透過スペクトルである。FIG. 5 is a spectral transmission spectrum of the substrate obtained in Example 2. 図6は、実施例6で得られた基材の分光透過スペクトルである。FIG. 6 is a spectral transmission spectrum of the substrate obtained in Example 6. 図7は、実施例7で得られた基材の分光透過スペクトルである。FIG. 7 is a spectral transmission spectrum of the base material obtained in Example 7. 図8は、比較例3で用いた基材(近赤外線吸収ガラス基板)の分光透過スペクトルである。FIG. 8 is a spectral transmission spectrum of the base material (near infrared absorbing glass substrate) used in Comparative Example 3. 図9は、比較例4で得られた基材の分光透過スペクトルである。FIG. 9 is a spectral transmission spectrum of the base material obtained in Comparative Example 4. 図10は、比較例5で得られた基材の分光透過スペクトルである。FIG. 10 is a spectral transmission spectrum of the base material obtained in Comparative Example 5. 実施例および比較例で行ったカメラ画像の色シェーディング評価を説明するための模式図である。It is a schematic diagram for demonstrating the color shading evaluation of the camera image performed in the Example and the comparative example. 実施例および比較例で行ったカメラ画像のゴースト評価を説明するための模式図である。It is a schematic diagram for demonstrating the ghost evaluation of the camera image performed in the Example and the comparative example.
 以下、本発明に係る光学フィルターおよび該光学フィルターを用いた装置について詳細に説明する。 Hereinafter, the optical filter according to the present invention and an apparatus using the optical filter will be described in detail.
 本発明の光学フィルターは、後述する要件(a)、(b)および(c)を満たす基材を有し、かつ、後述する要件(d)および(e)を満たすことを特徴とする。また、本発明の光学フィルターは、前記基材の少なくとも一方の面に誘電体多層膜を有することが好ましい。 The optical filter of the present invention is characterized by having a base material that satisfies the requirements (a), (b), and (c) described later, and that satisfies the requirements (d) and (e) described later. The optical filter of the present invention preferably has a dielectric multilayer film on at least one surface of the substrate.
 [基材]
 本発明で用いられる基材は、下記要件(a)、(b)および(c)を満たす;
(a)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する;
(b)波長640nm以上の領域において透過率が10%となる一番短い波長(X1)と二番目に短い波長(X2)との差(X2-X1)が50nm以上である;
(c)波長900nmにおける透過率(c1)、波長1000nmにおける透過率(c2)、および波長1100nmにおける透過率(c3)がいずれも65%以下である。
[Base material]
The substrate used in the present invention satisfies the following requirements (a), (b) and (c);
(A) having a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm to 760 nm;
(B) The difference (X 2 −X 1 ) between the shortest wavelength (X 1 ) with a transmittance of 10% and the second shortest wavelength (X 2 ) in the wavelength region of 640 nm or more is 50 nm or more;
(C) The transmittance (c1) at a wavelength of 900 nm, the transmittance (c2) at a wavelength of 1000 nm, and the transmittance (c3) at a wavelength of 1100 nm are all 65% or less.
 また、前記基材は、下記要件(f)~(h)の少なくとも一つの要件をさらに満たすことが好ましい:
(f)波長690~720nmの領域における透過率の最小値(T1)が5%以下である;
(g)波長1050nm以上1200nm以下の領域に吸収極大を有する化合物(S)を含む;
(h)波長600nm以上の領域において透過率が50%超から50%以下となる際の透過率が50%となる最も短い波長(Xc)が波長628~658nmの範囲にある。
The substrate preferably further satisfies at least one of the following requirements (f) to (h):
(F) The minimum transmittance (T 1 ) in the wavelength region of 690 to 720 nm is 5% or less;
(G) including a compound (S) having an absorption maximum in a wavelength region of 1050 nm to 1200 nm;
(H) In the region where the wavelength is 600 nm or more, the shortest wavelength (Xc) at which the transmittance is 50% when the transmittance is more than 50% to 50% or less is in the wavelength range of 628 to 658 nm.
 以下、各要件について説明する。 The following describes each requirement.
 <要件(a)>
 要件(a)において、化合物(A)を含む層を構成する成分は特に限定されないが、例えば、透明樹脂、ゾルゲル材料、低温硬化ガラス材料などが挙げられるが、取扱いが容易であることや化合物(A)との相溶性の観点から透明樹脂であることが好ましい。
<Requirement (a)>
In the requirement (a), the component constituting the layer containing the compound (A) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like. A transparent resin is preferable from the viewpoint of compatibility with A).
 ≪化合物(A)≫
 化合物(A)は、波長650nm以上760nm以下の領域に吸収極大を有する化合物であれば特に制限されないが、溶剤可溶型の色素化合物であることが好ましく、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であることがより好ましく、スクアリリウム系化合物を含むことがさらに好ましく、スクアリリウム系化合物を含む2種以上であることが特に好ましい。化合物(A)がスクアリリウム系化合物を含む2種以上である場合、構造の異なるスクアリリウム系化合物が2種以上でもよく、スクアリリウム系化合物とその他の化合物(A)との組み合わせでもよい。その他の化合物(A)としては、フタロシアニン系化合物およびシアニン系化合物が特に好ましい。
<< Compound (A) >>
The compound (A) is not particularly limited as long as it has a maximum absorption in the wavelength region of 650 nm or more and 760 nm or less, but is preferably a solvent-soluble dye compound, and is a squarylium compound, a phthalocyanine compound, and a cyanine compound. It is more preferable that it is at least one selected from the group consisting of compounds, it is more preferable that a squarylium compound is included, and it is particularly preferable that there are two or more compounds including a squarylium compound. When the compound (A) is two or more types including a squarylium compound, two or more types of squarylium compounds having different structures may be used, or a combination of a squarylium compound and another compound (A) may be used. As the other compound (A), a phthalocyanine compound and a cyanine compound are particularly preferable.
 スクアリリウム系化合物は、優れた可視光透過性、急峻な吸収特性および高いモル吸光係数を有するが、光線吸収時に散乱光の原因となる蛍光を発生させる場合がある。そのような場合、スクアリリウム系化合物とその他の化合物(A)とを組み合わせて使用することにより、散乱光が少なくカメラ画質がより良好な光学フィルターを得ることができる。 The squarylium-based compound has excellent visible light permeability, steep absorption characteristics, and a high molar extinction coefficient, but may generate fluorescence that causes scattered light during light absorption. In such a case, an optical filter with less scattered light and better camera image quality can be obtained by using a combination of the squarylium compound and the other compound (A).
 化合物(A)の吸収極大波長は、好ましくは660nm以上755nm以下、より好ましくは670nm以上750nm以下、さらに好ましくは680nm以上745nm以下である。 The absorption maximum wavelength of the compound (A) is preferably 660 nm or more and 755 nm or less, more preferably 670 nm or more and 750 nm or less, and further preferably 680 nm or more and 745 nm or less.
 化合物(A)が2種以上の化合物の組み合わせである場合、適用する化合物(A)のうち最も吸収極大波長が短いものと最も吸収極大波長の長いものの吸収極大波長の差は、好ましくは10~60nm、より好ましくは15~55nm、さらに好ましくは20~50nmである。吸収極大波長の差が上記範囲にあると、蛍光による散乱光を十分低減できるとともに、700nm付近の幅広い吸収帯と優れた可視光透過率を両立できるため好ましい。 When the compound (A) is a combination of two or more kinds of compounds, the difference between the absorption maximum wavelengths of the compound (A) to be applied having the shortest absorption maximum wavelength and the longest absorption maximum wavelength is preferably 10 to The thickness is 60 nm, more preferably 15 to 55 nm, still more preferably 20 to 50 nm. It is preferable that the difference in absorption maximum wavelength is in the above-mentioned range because scattered light due to fluorescence can be sufficiently reduced and a wide absorption band near 700 nm and an excellent visible light transmittance can be compatible.
 化合物(A)全体の含有量は、前記基材として、例えば、化合物(A)を含有する透明樹脂製基板からなる基材や、化合物(A)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.04~2.0重量部、より好ましくは0.06~1.5重量部、さらに好ましくは0.08~1.0重量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上に化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、化合物(A)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.4~5.0重量部、より好ましくは0.6~4.0重量部、さらに好ましくは0.8~3.5重量部である。 The total content of the compound (A) is, for example, a base material made of a transparent resin substrate containing the compound (A) or a curable resin on the transparent resin substrate containing the compound (A). In the case of using a base material on which a resin layer such as an overcoat layer made of, etc. is used, it is preferably 0.04 to 2.0 parts by weight, more preferably 0.06 to 2.0 parts by weight with respect to 100 parts by weight of the transparent resin. 1.5 parts by weight, more preferably 0.08 to 1.0 part by weight, and the compound (A) is contained as a base on a support such as a glass support or a resin support as a base. In the case of using a base material on which a transparent resin layer such as an overcoat layer made of a curable resin or the like is used, it is preferably 0.1% with respect to 100 parts by weight of the resin forming the transparent resin layer containing the compound (A). 4 to 5.0 parts by weight, more preferably 0 6 to 4.0 parts by weight, more preferably 0.8 to 3.5 parts by weight.
 <要件(b)>
 前記波長X1とX2との差(X2-X1)は、好ましくは53nm以上、より好ましくは55nm以上、さらに好ましくは58nm以上である。上限は特に限定されないが、化合物(A)やその他の近赤外線吸収剤の特性によっては値が大きすぎると可視透過率が低下する場合があるため、例えば100nm以下であることが好ましい。前記差(X2-X1)が上記のような範囲にあると、可視領域に近い近赤外波長領域において十分な強度(幅)の吸収帯を有することとなり、例えば入射角度45度などのような入射角度が大きい条件においても色シェーディングを抑制できるため好ましい。
<Requirement (b)>
The difference (X 2 −X 1 ) between the wavelengths X 1 and X 2 is preferably 53 nm or more, more preferably 55 nm or more, and further preferably 58 nm or more. Although an upper limit is not specifically limited, Since a visible transmittance | permeability may fall when a value is too large depending on the characteristic of a compound (A) and other near-infrared absorbers, it is preferable that it is 100 nm or less, for example. When the difference (X 2 −X 1 ) is in the above range, it has an absorption band with sufficient intensity (width) in the near-infrared wavelength region close to the visible region. It is preferable because color shading can be suppressed even under such a large incident angle condition.
 X1とX2の中間にあたる波長の値(X1+X2)/2は、可視領域に近い近赤外波長領域における吸収帯の中心波長ということができ、好ましくは670nm以上740nm以下、より好ましくは680nm以上730nm以下、さらに好ましくは690nm以上720nm以下である。(X1+X2)/2で表される波長の値が上記範囲にあると、可視領域の長波長端付近の波長領域の光をより効率的にカットできるため好ましい。 The value of the wavelength (X 1 + X 2 ) / 2 between X 1 and X 2 can be said to be the center wavelength of the absorption band in the near infrared wavelength region close to the visible region, preferably 670 nm or more and 740 nm or less. Is 680 nm to 730 nm, more preferably 690 nm to 720 nm. It is preferable that the value of the wavelength represented by (X 1 + X 2 ) / 2 be in the above range because light in the wavelength region near the long wavelength end of the visible region can be cut more efficiently.
 前記X1は、好ましくは波長650nm以上720nm以下、より好ましくは波長655nm以上710nm以下、さらに好ましくは波長660nm以上700nm以下である。X1がこのような範囲にあると、ノイズが少なく色再現性に優れたカメラ画像を得られる傾向にあるため好ましい。 X 1 preferably has a wavelength of 650 nm to 720 nm, more preferably a wavelength of 655 nm to 710 nm, and still more preferably a wavelength of 660 nm to 700 nm. X 1 in such a range is preferable because it tends to provide a camera image with less noise and excellent color reproducibility.
 <要件(c)>
 前記透過率(c1)、(c2)および(c3)はいずれも、好ましくは60%以下、より好ましくは55%以下、さらに好ましくは50%以下である。下限は特に限定されないが、近赤外線吸収剤の特性によっては近赤外波長領域の透過率の値が低すぎると可視透過率が低下したり、基材の厚みが極端に厚くなってしまう場合があるため、例えば5%以上であることが好ましい。前記透過率(c1)、(c2)および(c3)が上記範囲にあれば、実用上十分なレベルのゴースト抑制効果を得ることができるため好ましい。
<Requirement (c)>
All of the transmittances (c1), (c2) and (c3) are preferably 60% or less, more preferably 55% or less, and even more preferably 50% or less. The lower limit is not particularly limited, but depending on the properties of the near-infrared absorber, if the transmittance value in the near-infrared wavelength region is too low, the visible transmittance may decrease, or the thickness of the substrate may become extremely thick. For example, it is preferably 5% or more. It is preferable that the transmittances (c1), (c2), and (c3) are in the above ranges because a ghost suppressing effect at a practically sufficient level can be obtained.
 前記基材は、化合物(A)を含む層を有していれば、単層であっても多層であってもよい。また、要件(C)を満たすために、前記基材は近赤外線吸収剤を含有することが好ましく、該近赤外線吸収剤は化合物(A)と同一の層に含まれていても異なる層に含まれていてもよい。 The substrate may be a single layer or a multilayer as long as it has a layer containing the compound (A). In order to satisfy the requirement (C), the substrate preferably contains a near infrared absorber, and the near infrared absorber is contained in a different layer even if it is contained in the same layer as the compound (A). It may be.
 化合物(A)を含む層と近赤外線吸収剤を含む層とが同一である場合、例えば、化合物(A)および近赤外線吸収剤を含む透明樹脂製基板からなる基材、化合物(A)および近赤外線吸収剤を含む透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、ガラス支持体やベースとなる樹脂製支持体などの支持体上に化合物(A)および近赤外線吸収剤を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を挙げることができる。 When the layer containing the compound (A) and the layer containing the near-infrared absorber are the same, for example, a base material composed of a transparent resin substrate containing the compound (A) and the near-infrared absorber, the compound (A) and the near-infrared absorber A compound (on a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on a transparent resin substrate containing an infrared absorber, a glass support or a base resin support) Examples thereof include a substrate on which a transparent resin layer such as an overcoat layer made of a curable resin containing A) and a near-infrared absorber is laminated.
 化合物(A)を含む層と近赤外線吸収剤を含む層とが異なる場合、例えば、近赤外線吸収剤を含む透明樹脂製基板上に化合物(A)を含む硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、化合物(A)を含む透明樹脂製基板上に近赤外線吸収剤を含む硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、ガラス支持体やベースとなる樹脂製支持体などの支持体上に化合物(A)を含む硬化性樹脂等からなるオーバーコート層と近赤外線吸収剤を含む硬化性樹脂等からなるオーバーコート層とが積層された基材、近赤外線吸収剤を含むガラス基板上に化合物(A)を含む硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材などを挙げることができる。 When the layer containing the compound (A) is different from the layer containing the near infrared absorber, for example, an overcoat layer made of a curable resin containing the compound (A) on the transparent resin substrate containing the near infrared absorber, etc. Base material on which a resin layer is laminated, base material on which a resin layer such as an overcoat layer made of a curable resin containing a near infrared absorber is laminated on a transparent resin substrate containing the compound (A), a glass support An overcoat layer made of a curable resin containing the compound (A) and an overcoat layer made of a curable resin containing a near infrared absorber are laminated on a support such as a resin support as a body or a base. And a base material obtained by laminating a resin layer such as an overcoat layer made of a curable resin containing the compound (A) on a glass substrate containing a near infrared absorber.
 近赤外線吸収剤としては、900~1200nmの波長領域に幅広い吸収を有していれば特に限定されないが、例えば、近赤外線吸収色素、近赤外線吸収微粒子、導電性金属酸化物、およびリン酸系ガラス中の遷移金属成分などを挙げることができる。 The near-infrared absorber is not particularly limited as long as it has a wide absorption in the wavelength range of 900 to 1200 nm. For example, the near-infrared absorbing dye, the near-infrared absorbing fine particles, the conductive metal oxide, and the phosphate glass Examples thereof include transition metal components therein.
 <要件(f)>
 前記T1は、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下である。T1が上記の範囲にあれば、吸収帯の透過率カットが十分であるということができ、カメラ画像において光源周辺のフレアを抑制することができるため好ましい。
<Requirement (f)>
The T 1 is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less. If T 1 is in the above range, it can be said that the transmittance cut of the absorption band is sufficient, and flare around the light source can be suppressed in the camera image, which is preferable.
 <要件(g)>
 本発明の基材は近赤外線吸収剤を含むことが好ましいが、該近赤外線吸収剤が前記化合物(S)であると、近赤外線波長領域の吸収強度と可視透過率とを高いレベルで両立できる傾向にあるため好ましい。
<Requirement (g)>
The substrate of the present invention preferably contains a near-infrared absorber, but when the near-infrared absorber is the compound (S), the absorption intensity and visible transmittance in the near-infrared wavelength region can be compatible at a high level. It is preferable because of its tendency.
 ≪化合物(S)≫
 化合物(S)は、波長1050nm以上1200nm以下の領域に吸収極大を有していれば特に制限されないが、好ましくは溶剤可溶型の色素化合物であり、より好ましくはジイモニウム系化合物、金属ジチオラート錯体系化合物、ピロロピロール系化合物、シアニン系化合物、クロコニウム系化合物およびナフタロシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であり、さらに好ましくはジイモニウム系化合物および金属ジチオラート錯体系化合物からなる群より選ばれる少なくとも1種の化合物であり、特に好ましくは下記式(I)で表されるジイモニウム系化合物および下記式(II)で表される金属ジチオラート錯体系化合物からなる群より選ばれる少なくとも1種である。このような化合物(S)を用いることにより、良好な近赤外線吸収特性と優れた可視光透過率を達成することができる。
≪Compound (S) ≫
The compound (S) is not particularly limited as long as it has an absorption maximum in a wavelength region of 1050 nm or more and 1200 nm or less, but is preferably a solvent-soluble dye compound, more preferably a diimonium compound or a metal dithiolate complex system. At least one compound selected from the group consisting of compounds, pyrrolopyrrole compounds, cyanine compounds, croconium compounds and naphthalocyanine compounds, more preferably selected from the group consisting of diimonium compounds and metal dithiolate complex compounds At least one compound selected from the group consisting of a diimonium compound represented by the following formula (I) and a metal dithiolate complex compound represented by the following formula (II). . By using such a compound (S), good near-infrared absorption characteristics and excellent visible light transmittance can be achieved.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(I)および式(II)中、
 R1~R3は、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数2~14の複素環基
(Lf)炭素数1~12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~12のアシル基、
(Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
 置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
 隣り合うR3同士は置換基Lを有してもよい環を形成してもよく、
 nは0~4の整数を表し、
 Xは電荷を中和させるのに必要なアニオンを表し、
 Mは金属原子を表し、
 ZはD(Ri4を表し、 Dは窒素原子、リン原子またはビスマス原子を表し、
 yは0もしくは1を表す。
Figure JPOXMLDOC01-appb-C000006
In formula (I) and formula (II),
R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h , wherein R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L e It represents either, R i represents any of the following L a ~ L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L 1 to 12 acyl groups,
(L h ) an alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, At least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms,
Adjacent R 3 may form a ring which may have a substituent L,
n represents an integer of 0 to 4,
X represents an anion necessary to neutralize the charge,
M represents a metal atom,
Z represents D (R i ) 4 , D represents a nitrogen atom, a phosphorus atom or a bismuth atom,
y represents 0 or 1.
 前記R1としては、好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、アダマンチル基、トリフルオロメチル基、ペンタフルオロエチル基、3-ピリジニル基、エポキシ基、フェニル基、ベンジル基、フルオレニル基であり、より好ましくはイソプロピル基、sec-ブチル基、tert-ブチル基、ベンジル基である。 R 1 is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, adamantyl group, trifluoromethyl group. , A pentafluoroethyl group, a 3-pyridinyl group, an epoxy group, a phenyl group, a benzyl group, and a fluorenyl group, and more preferably an isopropyl group, a sec-butyl group, a tert-butyl group, and a benzyl group.
 前記R2としては、好ましくは塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert-ブタノイルアミノ基、シクロヘキシノイルアミノ基、n-ブチルスルホニル基、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基であり、より好ましくは塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、水酸基、ジメチルアミノ基、メトキシ基、エトキシ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert-ブタノイルアミノ基、シクロヘキシノイルアミノ基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。同じ芳香環に結合しているR2の数(nの値)は、0~4であれば特に制限されないが、0もしくは1であることが好ましい。 R 2 is preferably a chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group, hydroxyl group , Amino group, dimethylamino group, cyano group, nitro group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino Group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexylinoylamino group, n-butylsulfonyl group, methylthio group, ethylthio group, n-propylthio group, n-butylthio group, more preferably chlorine Atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl Group, tert-butyl group, hydroxyl group, dimethylamino group, methoxy group, ethoxy group, acetylamino group, propionylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexyl group A cynoylamino group, particularly preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. The number of R 2 (n value) bonded to the same aromatic ring is not particularly limited as long as it is 0 to 4, but is preferably 0 or 1.
 前記Xは電荷を中和するのに必要なアニオンであり、アニオンが2価である場合には1分子、アニオンが1価の場合には2分子が必要となる。後者の場合は2つのアニオンが同一であっても異なっていてもよいが、合成上の観点から同一である方が好ましい。Xはこのようなアニオンであれば特に制限されないが、一例として、下記表1に記載のものを挙げることができる。 X is an anion necessary for neutralizing the electric charge, and one molecule is required when the anion is divalent, and two molecules are required when the anion is monovalent. In the latter case, the two anions may be the same or different, but are preferably the same from the viewpoint of synthesis. Although X will not be restrict | limited especially if it is such an anion, The thing of following Table 1 can be mentioned as an example.
Figure JPOXMLDOC01-appb-T000007
 Xとしては、ジイモニウム系化合物の耐熱性、耐光性および分光特性の観点から、上記表1中の(X-10)、(X-16)、(X-17)、(X-21)、(X-22)、(X-24)、(X-28)が特に好ましい。
Figure JPOXMLDOC01-appb-T000007
X is (X-10), (X-16), (X-17), (X-21), (X-21) in Table 1 above from the viewpoint of heat resistance, light resistance and spectral properties of the diimonium compound. X-22), (X-24) and (X-28) are particularly preferred.
 上記式(I)で表されるジイモニウム系化合物としては、例えば、下記表2-1~2-4に記載のものを挙げることができる。 Examples of the diimonium compound represented by the above formula (I) include those listed in Tables 2-1 to 2-4 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 前記R3としては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、フェニル基、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、フェニルチオ基、ベンジルチオ基であり、隣り合うR3同士が環を形成する場合、環の中に少なくとも一つ以上の硫黄原子もしくは窒素原子が含まれる複素環であることが好ましい。
Figure JPOXMLDOC01-appb-T000011
R 3 is preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, phenyl group, methylthio group, ethylthio group, n-propylthio group, n-butylthio group, phenylthio group, benzylthio group, adjacent R When 3 forms a ring, it is preferably a heterocyclic ring in which at least one sulfur atom or nitrogen atom is contained in the ring.
 前記Mとしては、好ましくは遷移金属であり、より好ましくはNi,Pd,Ptである。 The M is preferably a transition metal, more preferably Ni, Pd, or Pt.
 前記Dは、好ましくは窒素原子、リン原子であり、前記Riは、好ましくはエチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、フェニル基である。 The D is preferably a nitrogen atom or a phosphorus atom, and the R i is preferably an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or an n-pentyl group. Group, n-hexyl group, n-heptyl group and phenyl group.
 化合物(S)の吸収極大波長は、好ましくは1060nm以上1190nm以下、より好ましくは1070nm以上1180nm以下、さらに好ましくは1080nm以上1170nm以下である。化合物(S)の吸収極大波長がこのような範囲にあると、不要な近赤外線を効率よくカットすることができ、優れたゴースト抑制効果を得ることができる。 The absorption maximum wavelength of the compound (S) is preferably from 1060 nm to 1190 nm, more preferably from 1070 nm to 1180 nm, still more preferably from 1080 nm to 1170 nm. When the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near-infrared rays can be efficiently cut, and an excellent ghost suppression effect can be obtained.
 化合物(S)は、一般的に知られている方法で合成すればよく、例えば、特許第4168031号公報、特許第4252961号公報、特表2010-516823号公報、特開昭63-165392号公報等に記載されている方法などを参照して合成することができる。 The compound (S) may be synthesized by a generally known method. For example, Japanese Patent No. 4168031, Japanese Patent No. 4225296, JP-T 2010-516823, JP-A 63-165392 Etc. can be synthesized with reference to the methods described in the above.
 化合物(S)の含有量は、前記基材として、例えば、化合物(A)および化合物(S)を含有する透明樹脂製基板からなる基材や、化合物(S)を含有する透明樹脂製基板上に化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01~2.0重量部、より好ましくは0.02~1.5重量部、特に好ましくは0.03~1.0重量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上に化合物(A)および化合物(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上に化合物(S)を含有する硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、化合物(A)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1~5.0重量部、より好ましくは0.2~4.0重量部、特に好ましくは0.3~3.0重量部である。化合物(S)の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率とを両立した光学フィルターを得ることができる。 The content of the compound (S) is, for example, a base material made of a transparent resin substrate containing the compound (A) and the compound (S) or a transparent resin substrate containing the compound (S) as the base material. In the case of using a substrate on which a resin layer such as an overcoat layer made of a curable resin containing the compound (A) is laminated, it is preferably 0.01-2. 0 parts by weight, more preferably 0.02 to 1.5 parts by weight, particularly preferably 0.03 to 1.0 parts by weight. Examples of the substrate include a glass support and a resin support as a base. On a substrate on which a transparent resin layer such as an overcoat layer composed of a curable resin containing the compound (A) and the compound (S) is laminated on a support, or on a transparent resin substrate containing the compound (A) Curable resin containing compound (S) in When a base material on which a resin layer such as an overcoat layer is used is used, it is preferably 0.1 to 5.0 with respect to 100 parts by weight of the resin forming the transparent resin layer containing the compound (A). Parts by weight, more preferably 0.2 to 4.0 parts by weight, particularly preferably 0.3 to 3.0 parts by weight. When the content of the compound (S) is within the above range, an optical filter having both good near infrared absorption characteristics and high visible light transmittance can be obtained.
 <要件(h)>
 前記Xcは、好ましくは630~655nm、より好ましくは632~652nm、さらに好ましくは634~650nmである。Xcが628nm未満であると、赤色に相当する波長領域の透過率が低くなり、色再現性が低下する傾向にあり、658nm超であると、十分な強度の吸収強度を確保できず、カメラ画像に色シェーディングが発生してしまう傾向にある。
<Requirement (h)>
Xc is preferably 630 to 655 nm, more preferably 632 to 652 nm, and still more preferably 634 to 650 nm. If Xc is less than 628 nm, the transmittance in the wavelength region corresponding to red tends to be low, and color reproducibility tends to decrease. If it exceeds 658 nm, sufficient absorption intensity cannot be ensured, and the camera image Color shading tends to occur.
 前記基材が前記要件(h)を満たす場合、基材上に誘電体多層膜を製膜した際でも、可視波長~近赤外波長域付近における光学特性の入射角依存性を低減することができ、赤色の再現性と色シェーディング抑制効果を高いレベルで両立できるため好ましい。なお、Xcは短波長側から長波長側に向かって分光透過率を評価した際に、所定の条件を満たす波長を示すものである。 When the base material satisfies the requirement (h), even when a dielectric multilayer film is formed on the base material, it is possible to reduce the incident angle dependency of the optical characteristics in the vicinity of the visible wavelength to near infrared wavelength region. This is preferable because red reproducibility and color shading suppression effect can be achieved at a high level. Xc represents a wavelength that satisfies a predetermined condition when the spectral transmittance is evaluated from the short wavelength side toward the long wavelength side.
 <その他の特性および物性>
 波長430~580nmの領域における基材の平均透過率は、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上である。このような透過特性を有する基材を用いると、可視域において高い光線透過特性を達成でき、高感度なカメラ機能を達成することができる。
<Other properties and physical properties>
The average transmittance of the substrate in the wavelength region of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more. When a substrate having such transmission characteristics is used, high light transmission characteristics can be achieved in the visible range, and a highly sensitive camera function can be achieved.
 基材の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、好ましくは10~200μm、より好ましくは20~180μm、さらに好ましくは25~150μmである。基材の厚みが前記範囲にあると、該基材を用いた光学フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記透明樹脂製基板からなる基材をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。 The thickness of the substrate can be appropriately selected according to the desired application and is not particularly limited, but is preferably 10 to 200 μm, more preferably 20 to 180 μm, and further preferably 25 to 150 μm. When the thickness of the substrate is in the above range, an optical filter using the substrate can be reduced in thickness and weight, and can be suitably used for various applications such as a solid-state imaging device. In particular, when a base material made of the transparent resin substrate is used in a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
 <透明樹脂>
 前記基材を構成する透明樹脂層、透明樹脂製基板および樹脂製支持体に用いられる透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。
<Transparent resin>
The transparent resin used for the transparent resin layer, the transparent resin substrate and the resin support constituting the base material is not particularly limited as long as it does not impair the effects of the present invention. For example, thermal stability and film Glass transition temperature (Tg) is preferably 110 to 380 ° C., in order to obtain a film capable of forming a dielectric multilayer film by high temperature vapor deposition performed at a vapor deposition temperature of 100 ° C. or higher while ensuring moldability to Preferably, a resin having a temperature of 110 to 370 ° C., more preferably 120 to 360 ° C. is used. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
 透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板を形成した場合に、この樹脂板の全光線透過率(JIS K7105)が、好ましくは75~95%、より好ましくは78~95%、さらに好ましくは80~95%となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基板は光学フィルムとして良好な透明性を示す。 As a transparent resin, when a resin plate made of the resin having a thickness of 0.1 mm is formed, the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, More preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
 透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり、数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。 The weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000. The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
 透明樹脂としては、例えば、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂を挙げることができる。 Examples of transparent resins include cyclic polyolefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, and polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples thereof include ester-based curable resins, silsesquioxane-based ultraviolet curable resins, acrylic-based ultraviolet curable resins, and vinyl-based ultraviolet curable resins.
 透明樹脂は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 Transparent resins may be used alone or in combination of two or more.
 ≪環状ポリオレフィン系樹脂≫
 環状ポリオレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
≪Cyclic polyolefin resin≫
The cyclic polyolefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin and a resin obtained by hydrogenating the resin are preferable.
Figure JPOXMLDOC01-appb-C000012
 式(X0)中、Rx1~Rx4はそれぞれ独立に、下記(i')~(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0または正の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
Figure JPOXMLDOC01-appb-C000012
In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom 30 to 30 hydrocarbon group (v ′) substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (iv ′))
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are independently the above (i ′ )-(Vi ′) represents an atom or group selected from.
(Viii ′) R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
Figure JPOXMLDOC01-appb-C000013
 式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')~(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0または正の整数を表す。
Figure JPOXMLDOC01-appb-C000013
In the formula (Y 0 ), R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently, represent 0 or a positive integer.
 ≪芳香族ポリエーテル系樹脂≫
 芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
≪Aromatic polyether resin≫
The aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
 式(1)中、R1~R4はそれぞれ独立に、炭素数1~12の1価の有機基を示し、a~dはそれぞれ独立に、0~4の整数を示す。
Figure JPOXMLDOC01-appb-C000014
In formula (1), R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000015
 式(2)中、R1~R4およびa~dはそれぞれ独立に、前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または>C=Oを示し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhはそれぞれ独立に、0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
Figure JPOXMLDOC01-appb-C000015
In the formula (2), in each of R 1 ~ R 4 and a ~ d independently has the same meaning as R 1 ~ R 4 and a ~ d of the formula (1), Y represents a single bond, -SO 2 -Or> C = O, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represent 0 to 4 And m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.
 また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 The aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
Figure JPOXMLDOC01-appb-C000016
 式(3)中、R5およびR6はそれぞれ独立に、炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、>C=O、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfはそれぞれ独立に、0~4の整数を示し、nは0または1を示す。
Figure JPOXMLDOC01-appb-C000016
In the formula (3), R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms, Z represents a single bond, —O—, —S—, —SO 2 —,> C═O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
Figure JPOXMLDOC01-appb-C000017
 式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
Figure JPOXMLDOC01-appb-C000017
In formula (4), R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).
 ≪ポリイミド系樹脂≫
 ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。
≪Polyimide resin≫
The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit. For example, the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.
 ≪フルオレンポリカーボネート系樹脂≫
 フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば、特開2008-163194号公報に記載されている方法で合成することができる。
≪Fluorene polycarbonate resin≫
The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194.
 ≪フルオレンポリエステル系樹脂≫
 フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば、特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。
≪Fluorene polyester resin≫
The fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety. For example, the fluorene polyester resin can be synthesized by the method described in JP 2010-285505 A or JP 2011-197450 A. Can do.
 ≪フッ素化芳香族ポリマー系樹脂≫
 フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば特開2008-181121号公報に記載されている方法で合成することができる。
≪Fluorinated aromatic polymer resin≫
The fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond. The polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
 ≪アクリル系紫外線硬化型樹脂≫
 アクリル系紫外線硬化型樹脂としては、特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。アクリル系紫外線硬化型樹脂は、前記基材として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(A)および硬化性樹脂を含む透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
≪Acrylic UV curable resin≫
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned. The acrylic ultraviolet curable resin is a base material in which a transparent resin layer containing a compound (A) and a curable resin is laminated on a glass support or a resin support as a base, or a compound ( When using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing A), it can be particularly preferably used as the curable resin.
 ≪エポキシ系樹脂≫
 エポキシ系樹脂としては、特に制限されないが、紫外線硬化型と熱硬化型に大別することができる。紫外線硬化型エポキシ系樹脂としては、例えば、分子内に一つ以上のエポキシ基を有する化合物と、紫外線によって酸を発生させる化合物(以下「光酸発生剤」ともいう)を含有する組成物から合成されるものを挙げることができ、熱硬化型エポキシ系樹脂としては、例えば、分子内に一つ以上のエポキシ基を有する化合物と、酸無水物を含有する組成物から合成されるものを挙げることができる。エポキシ系紫外線硬化型樹脂は、前記基材として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(A)を含む透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
≪Epoxy resin≫
Although it does not restrict | limit especially as an epoxy-type resin, it can divide roughly into an ultraviolet curing type and a thermosetting type. As the ultraviolet curable epoxy resin, for example, synthesized from a composition containing a compound having one or more epoxy groups in the molecule and a compound that generates an acid by ultraviolet rays (hereinafter also referred to as “photo acid generator”). Examples of thermosetting epoxy resins include those synthesized from a composition containing one or more epoxy groups in the molecule and an acid anhydride. Can do. The epoxy ultraviolet curable resin contains, as the base material, a base material obtained by laminating a transparent resin layer containing the compound (A) on a glass support or a base resin support, and the compound (A). In the case of using a base material in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate to be used, it can be particularly suitably used as the curable resin.
 ≪市販品≫
 透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状ポリオレフィン系樹脂の市販品としては、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学(株)製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学(株)製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人(株)製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学(株)製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル(株)製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、(株)日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、新日鐵化学(株)製シルプラスなどを挙げることができる。
≪Commercial product≫
The following commercial products etc. can be mentioned as a commercial item of transparent resin. Examples of commercially available cyclic polyolefin resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER. Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
 <その他の色素(X)>
 前記基材には、さらに、化合物(A)および化合物(S)に該当しない、その他の色素(X)が含まれていてもよい。
<Other dye (X)>
The base material may further contain other dye (X) that does not correspond to the compound (A) and the compound (S).
 その他の色素(X)としては、吸収極大波長が波長650nm未満もしくは波長760nm超1050nm未満の領域にある色素であれば特に制限されないが、吸収極大波長が760nm超1050nm未満の領域にある色素が好ましい。このような色素としては、例えば、スクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、オクタフィリン系化合物、ジイモニウム系化合物、ピロロピロール系化合物、ボロンジピロメテン(BODIPY)系化合物、ペリレン系化合物および金属ジチオラート系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。 The other dye (X) is not particularly limited as long as it has a maximum absorption wavelength in the region of wavelength less than 650 nm or more than 760 nm and less than 1050 nm, but a dye having an absorption maximum wavelength in the region of more than 760 nm and less than 1050 nm is preferable. . Examples of such dyes include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds, octaphyrin compounds, diimonium compounds, pyrrolopyrrole compounds, and boron dipyrromethene (BODIPY). And at least one compound selected from the group consisting of a compound, a perylene compound, and a metal dithiolate compound.
 その他の色素(X)の含有量は、前記基材として、例えば、その他の色素(X)を含有する透明樹脂製基板からなる基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.005~1.0重量部、より好ましくは0.01~0.9重量部、特に好ましくは0.02~0.8重量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上にその他の色素(X)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上にその他の色素(X)を含有する硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、その他の色素(X)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.05~4.0重量部、より好ましくは0.1~3.0重量部、特に好ましくは0.2~2.0重量部である。 The content of the other pigment (X) is, for example, when a substrate made of a transparent resin substrate containing the other pigment (X) is used as the substrate, with respect to 100 parts by weight of the transparent resin. The amount is preferably 0.005 to 1.0 part by weight, more preferably 0.01 to 0.9 part by weight, particularly preferably 0.02 to 0.8 part by weight. It contains a base material in which a transparent resin layer such as an overcoat layer made of a curable resin containing other dye (X) is laminated on a support such as a resin support, or a compound (A). When using a base material in which a resin layer such as an overcoat layer made of a curable resin containing other pigment (X) is laminated on a transparent resin substrate, a transparent resin containing other pigment (X) For 100 parts by weight of the resin forming the layer, 0.05 to 4.0 parts by weight preferred, and more preferably from 0.1 to 3.0 parts by weight, particularly preferably 0.2 to 2.0 parts by weight.
 <その他成分>
 前記基材は、本発明の効果を損なわない範囲において、その他成分として、さらに酸化防止剤、近紫外線吸収剤および蛍光消光剤などを含有してもよい。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Other ingredients>
The base material may further contain an antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and the like as other components as long as the effects of the present invention are not impaired. These other components may be used alone or in combination of two or more.
 前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物などが挙げられる。 Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, triazine compounds, and the like.
 前記酸化防止剤としては、例えば2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、およびトリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが挙げられる。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (2,4-di-t-butylphenyl) phosphite and the like.
 なお、これらその他成分は、基材を製造する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100重量部に対して、通常0.01~5.0重量部、好ましくは0.05~2.0重量部である。 In addition, these other components may be mixed with a resin or the like when producing a substrate, or may be added when a resin is synthesized. The addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.
 <基材の製造方法>
 前記基材が、化合物(A)を含有する透明樹脂製基板を含む基材である場合、該透明樹脂製基板は、例えば、溶融成形またはキャスト成形により形成することができ、さらに、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングすることで、オーバーコート層が積層された基材を製造することができる。
<Manufacturing method of substrate>
When the substrate is a substrate including a transparent resin substrate containing the compound (A), the transparent resin substrate can be formed by, for example, melt molding or cast molding, and further, if necessary, After molding, a substrate on which an overcoat layer is laminated can be produced by coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent.
 前記基材が、ガラス支持体やベースとなる樹脂製支持体などの支持体上または化合物(A)を含有しない透明樹脂製基板上に化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合、例えば、前記支持体または前記透明樹脂製基板上に化合物(A)を含む樹脂溶液を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、前記支持体または前記透明樹脂製基板上に化合物(A)を含む透明樹脂層が形成された基材を製造することができる。 The base material is an overcoat comprising a curable resin containing the compound (A) on a support such as a glass support or a base resin support or a transparent resin substrate containing no compound (A). In the case of a substrate on which a transparent resin layer such as a layer is laminated, for example, the resin solution containing the compound (A) is melt-molded or cast-molded on the support or the transparent resin substrate, preferably spin After coating by a method such as coating, slit coating or ink jetting, the solvent is dried and removed, and if necessary, further irradiation with light or heating is performed, whereby the compound (A) is formed on the support or the transparent resin substrate. The base material in which the transparent resin layer containing this was formed can be manufactured.
 ≪溶融成形≫
 前記溶融成形としては、具体的には、樹脂と化合物(A)と必要に応じて他の成分とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と化合物(A)と必要応じて他の成分とを含有する樹脂組成物を溶融成形する方法;または、化合物(A)、樹脂、溶剤および必要に応じて他の成分を含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
≪Melt molding≫
Specifically, as the melt molding, a method of melt molding a pellet obtained by melt-kneading a resin, a compound (A) and other components as necessary; a resin, a compound (A) and a necessary A method of melt-molding a resin composition containing other components as required; or obtained by removing the solvent from the resin composition containing compound (A), resin, solvent and other components as necessary Examples include a method of melt-molding pellets. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.
 ≪キャスト成形≫
 前記キャスト成形としては、化合物(A)、樹脂、溶剤および必要に応じて他の成分を含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;または化合物(A)と、光硬化性樹脂および/または熱硬化性樹脂と、必要に応じて他の成分とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などにより製造することもできる。
≪Cast molding≫
As the cast molding, a method of removing a solvent by casting a resin composition containing a compound (A), a resin, a solvent and other components as required on a suitable support; or a compound (A) and After removing a solvent by casting a curable composition containing a photocurable resin and / or a thermosetting resin and other components as necessary on an appropriate support, ultraviolet irradiation, heating, etc. It can also be produced by a method of curing by an appropriate method.
 前記基材が、化合物(A)を含有する透明樹脂製基板からなる基材である場合には、該基材は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材が、ガラス支持体やベースとなる樹脂製支持体などの支持体上または化合物(A)を含有しない透明樹脂製基板上に化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合には、該基材は、キャスト成形後、塗膜を剥離しないことで得ることができる。 When the base material is a base material made of a transparent resin substrate containing the compound (A), the base material can be obtained by peeling the coating film from the support after cast molding, The base material is made of a curable resin containing the compound (A) on a support such as a glass support or a base resin support or a transparent resin substrate containing no compound (A). In the case of a substrate on which a transparent resin layer such as an overcoat layer is laminated, the substrate can be obtained by not peeling the coating film after cast molding.
 前記支持体としては、例えば、近赤外吸収ガラス板(例えば、松浪硝子工業社製「BS-11」やAGC テクノグラス社製「NF-50T」などのような銅成分を含有するリン酸塩系ガラス板)、透明ガラス板(例えば、日本電気硝子社製「OA-10G」や旭硝子社製「AN100」などのような無アルカリガラス板)、スチールベルト、スチールドラムおよび透明樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)製支持体が挙げられる。 Examples of the support include phosphates containing copper components such as near-infrared absorbing glass plates (for example, “BS-11” manufactured by Matsunami Glass Industrial Co., Ltd. and “NF-50T” manufactured by AGC-Techno Glass Co., Ltd.). Glass plate), transparent glass plate (for example, non-alkali glass plate such as “OA-10G” manufactured by Nippon Electric Glass Co., Ltd., “AN100” manufactured by Asahi Glass Co., Ltd.), steel belt, steel drum, and transparent resin (for example, polyester) Film, cyclic olefin resin film) support.
 さらに、ガラス板、石英または透明プラスチック製等の光学部品に、前記樹脂組成物をコーティングして溶剤を乾燥させる方法、または、前記硬化性組成物をコーティングして硬化および乾燥させる方法などにより、光学部品上に透明樹脂層を形成することもできる。 Further, the optical component such as glass plate, quartz or transparent plastic is coated with the resin composition and the solvent is dried, or the curable composition is coated and cured and dried. A transparent resin layer can also be formed on the component.
 前記方法で得られた透明樹脂層(透明樹脂製基板)中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、透明樹脂層(透明樹脂製基板)の重さに対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる透明樹脂層(透明樹脂製基板)が得られる。 The amount of residual solvent in the transparent resin layer (transparent resin substrate) obtained by the above method should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight with respect to the weight of the transparent resin layer (transparent resin substrate). It is as follows. When the amount of residual solvent is in the above range, a transparent resin layer (transparent resin substrate) that can easily exhibit a desired function, in which deformation and characteristics hardly change can be obtained.
 [光学フィルター]
 本発明に係る光学フィルターは、前記要件(a)、(b)および(c)を満たす基材を有し、かつ、下記要件(d)および(e)を満たすことを特徴とする:
(d)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値(d1)が75%以上である;
(e)波長1100nm~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値(e1)が5%以下である。
[Optical filter]
The optical filter according to the present invention has a base material that satisfies the requirements (a), (b), and (c), and satisfies the following requirements (d) and (e):
(D) In the wavelength range of 430 to 580 nm, the average value (d1) of transmittance when measured from the vertical direction of the optical filter is 75% or more;
(E) In the wavelength region of 1100 nm to 1200 nm, the average value (e1) of transmittance when measured from the vertical direction of the optical filter is 5% or less.
 本発明の光学フィルターは、前記要件(d)および(e)を満たすことから、可視波長域での透過率特性および近赤外線カット特性に優れ、入射角依存性が少なく、色シェーディング抑制効果およびゴースト抑制効果に優れた光学フィルターである。 Since the optical filter of the present invention satisfies the above requirements (d) and (e), it has excellent transmittance characteristics and near-infrared cut characteristics in the visible wavelength region, has little incident angle dependency, has a color shading suppression effect, and a ghost. It is an optical filter with excellent suppression effect.
 <要件(d)>
 要件(d)における前記透過率の平均値(d1)は、好ましくは78%以上、より好ましくは80%以上、さらに好ましくは82%以上である。前記透過率の平均値(d1)がこの範囲にあると、本発明の光学フィルターを固体撮像素子用途として使用した場合、優れた撮像感度を達成することができる。
<Requirement (d)>
The average value (d1) of the transmittance in the requirement (d) is preferably 78% or more, more preferably 80% or more, and further preferably 82% or more. When the average value (d1) of the transmittance is in this range, excellent imaging sensitivity can be achieved when the optical filter of the present invention is used as a solid-state imaging device.
 <要件(e)>
 要件(e)における前記透過率の平均値(e1)は、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下である。前記透過率の平均値(e1)がこの範囲にあると、カメラ画像の中心付近において良好な黒色再現性を達成することができる。
<Requirement (e)>
The average value (e1) of the transmittance in requirement (e) is preferably 4% or less, more preferably 3% or less, and even more preferably 2% or less. When the average value (e1) of the transmittance is within this range, good black reproducibility can be achieved near the center of the camera image.
 <その他の特性および物性>
 本発明の光学フィルターは、前記基材を有するため、誘電体多層膜を有する形態においても光学特性の入射角依存を低減することができる。具体的には、波長600~800nmの範囲において、光学フィルターの垂直方向から測定した時の透過率が50%となる最も短い波長の値(Xa)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が50%となる波長の値(Xb)との差の絶対値|Xa-Xb|は、好ましくは20nm未満、より好ましくは15nm未満、さらに好ましくは10nm未満である。
<Other properties and physical properties>
Since the optical filter of the present invention has the base material, the incident angle dependency of the optical characteristics can be reduced even in the form having the dielectric multilayer film. Specifically, in the wavelength range of 600 to 800 nm, the shortest wavelength value (Xa) at which the transmittance when measured from the vertical direction of the optical filter is 50%, and 30 ° with respect to the vertical direction of the optical filter. The absolute value | Xa−Xb | of the difference from the wavelength value (Xb) at which the transmittance when measured from the angle is 50% is preferably less than 20 nm, more preferably less than 15 nm, and even more preferably less than 10 nm. is there.
 本発明の光学フィルターの厚みは、近年の固体撮像装置の薄型化、軽量化等の流れを考慮すると、薄いことが好ましい。本発明の光学フィルターは、前記基材を含むため、薄型化が可能である。 The thickness of the optical filter of the present invention is preferably thin in consideration of the recent trend of thinner and lighter solid-state imaging devices. Since the optical filter of the present invention includes the substrate, it can be thinned.
 本発明の光学フィルターの厚みは、好ましくは210μm以下、より好ましくは190μm以下、さらに好ましくは160μm以下、特に好ましくは130μm以下であり、下限は特に制限されないが、20μm以上であることが好ましい。 The thickness of the optical filter of the present invention is preferably 210 μm or less, more preferably 190 μm or less, further preferably 160 μm or less, particularly preferably 130 μm or less, and the lower limit is not particularly limited, but is preferably 20 μm or more.
 [誘電体多層膜]
 本発明の光学フィルターは、前記基材の少なくとも一方の面に誘電体多層膜を有することが好ましい。本発明における誘電体多層膜とは、近赤外線を反射する能力を有する膜または可視域における反射防止効果を有する膜であり、誘電体多層膜を有することでより優れた可視光透過率と近赤外線カット特性を達成することができる。
[Dielectric multilayer film]
The optical filter of the present invention preferably has a dielectric multilayer film on at least one surface of the substrate. The dielectric multilayer film in the present invention is a film having the ability to reflect near-infrared rays or a film having an antireflection effect in the visible range. By having a dielectric multilayer film, a better visible light transmittance and near-infrared radiation are obtained. Cut characteristics can be achieved.
 本発明では、誘電体多層膜は前記基材の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りやねじれが生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に適用する場合、光学フィルターの反りやねじれが小さい方が好ましいことから、誘電体多層膜を樹脂製基板の両面に設けることが好ましい。 In the present invention, the dielectric multilayer film may be provided on one side of the substrate or on both sides. When it is provided on one side, it is possible to obtain an optical filter that is excellent in production cost and manufacturability and has high strength and is less likely to warp or twist when provided on both sides. When the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter is less warped or twisted. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the resin substrate.
 前記誘電体多層膜は、好ましくは波長700~1100nm、より好ましくは波長700~1150nm、さらに好ましくは700~1200nmの範囲全体にわたって反射特性を有することが望ましい。 The dielectric multilayer film preferably has reflection characteristics over the entire wavelength range of 700 to 1100 nm, more preferably 700 to 1150 nm, and even more preferably 700 to 1200 nm.
 基材の両面に誘電体多層膜を有する形態として、光学フィルターの垂直方向に対して5°の角度から測定した場合に、主に波長700~950nm付近に反射特性を有する第一光学層を基材の片面に有し、主に900nm~1150nm付近に反射特性を有する第二光学層を基材の他方の面上に有する形態(図1(a)参照)や、光学フィルターの垂直方向に対して5°の角度から測定した場合に、主に波長700~1150nm付近に反射特性を有する第三光学層を基材の片面に有し、可視域の反射防止特性を有する第四光学層を基材の他方の面上に有する形態(図1(b)参照)などが挙げられる。 As a form having a dielectric multilayer film on both surfaces of the base material, the first optical layer mainly having a reflection characteristic in the vicinity of a wavelength of 700 to 950 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter is used. A configuration (see FIG. 1 (a)) having a second optical layer on one side of the material and having a reflection characteristic mainly in the vicinity of 900 nm to 1150 nm on the other side of the substrate, and the vertical direction of the optical filter The fourth optical layer having a third optical layer having a reflection characteristic mainly in the vicinity of a wavelength of 700 to 1150 nm on one side of the substrate and having an antireflection characteristic in the visible range. The form (refer FIG.1 (b)) which has on the other surface of material is mentioned.
 誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが挙げられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10重量%)含有させたものが挙げられる。 Examples of the dielectric multilayer film include those in which a high refractive index material layer and a low refractive index material layer are alternately laminated. As a material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected. Examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight based on the main component) can be used.
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。 As the material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
 高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、基材上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。 The method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a dielectric in which high-refractive index material layers and low-refractive index material layers are alternately stacked directly on a substrate by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating. A multilayer film can be formed.
 高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ~0.5λの厚さが好ましい。λ(nm)の値としては、例えば700~1400nm、好ましくは750~1300nmである。厚さがこの範囲であると、屈折率(n)と膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と、高屈折率材料層および低屈折率材料層の各層の厚さとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。 The thickness of each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1λ to 0.5λ, where λ (nm) is the near infrared wavelength to be blocked. The value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness is within this range, the optical thickness obtained by multiplying the refractive index (n) by the thickness (d) (n × d) by λ / 4, the high refractive index material layer, and the low refractive index. The thicknesses of the respective layers of the refractive index material layer are almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
 誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として16~70層であることが好ましく、20~60層であることがより好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。 The total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, more preferably 20 to 60 layers, as a whole. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.
 本発明では、化合物(A)や化合物(S)などの近赤外線吸収剤の吸収特性に合わせて高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、可視域に十分な透過率を確保した上で近赤外波長域に十分な光線カット特性を有し、且つ、斜め方向から近赤外線が入射した際の反射率を低減することができる。 In the present invention, the material types constituting the high refractive index material layer and the low refractive index material layer, the high refractive index material layer, and the low refractive index in accordance with the absorption characteristics of the near infrared absorbers such as the compound (A) and the compound (S). By appropriately selecting the thickness of each layer of the rate material layer, the order of stacking, and the number of stacks, it has sufficient light cut characteristics in the near infrared wavelength region while ensuring sufficient transmittance in the visible region, In addition, it is possible to reduce the reflectance when near infrared rays are incident from an oblique direction.
 ここで、前記条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、可視域の反射防止効果と近赤外域の光線カット効果を両立できるようにパラメーターを設定すればよい。上記ソフトの場合、例えば第一光学層の設計にあたっては、波長400~700nmの目標透過率を100%、Target Toleranceの値を1とした上で、波長705~950nmの目標透過率を0%、Target Toleranceの値を0.5にするなどのパラメーター設定方法が挙げられる。これらのパラメーターは基材(i)の各種特性などに合わせて波長範囲をさらに細かく区切ってTarget Toleranceの値を変えることもできる。 Here, in order to optimize the conditions, for example, optical thin film design software (for example, manufactured by Essential Macleod, Thin Film Center Co., Ltd.) can be used to achieve both an antireflection effect in the visible region and a light cut effect in the near infrared region. You can set the parameters as follows. In the case of the above-mentioned software, for example, in designing the first optical layer, the target transmittance at a wavelength of 400 to 700 nm is set to 100%, the target Tolerance value is set to 1, and the target transmittance at a wavelength of 705 to 950 nm is set to 0%. Parameter setting method such as setting Target Tolerance value to 0.5 can be mentioned. These parameters can change the value of Target Tolerance by further finely dividing the wavelength range according to various characteristics of the substrate (i).
 [その他の機能膜]
 本発明の光学フィルターは、本発明の効果を損なわない範囲において、基材と誘電体多層膜との間、基材の誘電体多層膜が設けられた面と反対側の面、または誘電体多層膜の基材が設けられた面と反対側の面に、基材や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。
[Other functional membranes]
The optical filter of the present invention is within the range not impairing the effects of the present invention, between the base material and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film is provided, or the dielectric multilayer film. On the opposite side of the surface of the film where the substrate is provided, an anti-reflection film, a hard layer is used for the purpose of improving the surface hardness of the substrate or the dielectric multilayer film, improving the chemical resistance, antistatic and scratching. Functional films such as a coating film and an antistatic film can be provided as appropriate.
 本発明の光学フィルターは、前記機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが前記機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。 The optical filter of the present invention may include one layer made of the functional film or two or more layers. When the optical filter of the present invention includes two or more layers made of the functional film, it may include two or more similar layers or two or more different layers.
 機能膜を積層する方法としては、特に制限されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。 The method of laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melt-molded or cast in the same manner as described above on a base material or a dielectric multilayer film. Examples of the method include molding.
 また、前記コーティング剤などを含む硬化性組成物をバーコーター等で基材または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。 Further, it can also be produced by applying a curable composition containing the coating agent or the like on a substrate or a dielectric multilayer film with a bar coater or the like and then curing it by ultraviolet irradiation or the like.
 前記コーティング剤としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。 Examples of the coating agent include ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins. Specifically, vinyl compounds, urethanes, urethane acrylates, acrylates, epoxy And epoxy acrylate resins. Examples of the curable composition containing these coating agents include vinyl, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate curable compositions.
 また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Moreover, the curable composition may contain a polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination. A polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
 前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100重量%とした場合、好ましくは0.1~10重量%、より好ましくは0.5~10重量%、さらに好ましくは1~5重量%である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。 The blending ratio of the polymerization initiator in the curable composition is preferably 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, when the total amount of the curable composition is 100% by weight. More preferably, it is 1 to 5% by weight. When the blending ratio of the polymerization initiator is within the above range, it is possible to obtain a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.
 さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類を挙げることができる。 Furthermore, an organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used. Specific examples of organic solvents include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone.
 これら溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 These solvents may be used alone or in combination of two or more.
 前記機能膜の厚さは、好ましくは0.1~20μm、さらに好ましくは0.5~10μm、特に好ましくは0.7~5μmである。 The thickness of the functional film is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm.
 また、基材と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。 Further, in order to improve the adhesion between the base material and the functional film and / or the dielectric multilayer film, and the adhesion between the functional film and the dielectric multilayer film, the corona is applied to the surface of the base material, the functional film or the dielectric multilayer film. Surface treatment such as treatment or plasma treatment may be performed.
 [光学フィルターの用途]
 本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。
[Use of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, TVs, car navigation systems, personal digital assistants, video game machines, and portable game machines It is useful for fingerprint authentication system, digital music player, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
 [固体撮像装置]
 本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等の用途に用いることができる。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備する。
[Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor. Specifically, a digital still camera, a camera for a smartphone, a camera for a mobile phone, a camera for a wearable device, a digital camera It can be used for applications such as video cameras. For example, the camera module of the present invention includes the optical filter of the present invention.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. “Parts” means “parts by weight” unless otherwise specified. Moreover, the measurement method of each physical property value and the evaluation method of the physical property are as follows.
 <分子量>
 樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウォターズ(WATERS)社製のゲルパーミエ-ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー社製GPC装置(HLC-8220型、カラム:TSKgelα‐M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
<Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
(A) Weight average molecular weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus manufactured by WATERS (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) (Mw) and number average molecular weight (Mn) were measured.
(B) Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgelα-M, developing solvent: THF) manufactured by Tosoh Corporation.
 なお、後述する樹脂合成例3で合成した樹脂については、上記方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。
(c)ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体から分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解し、キャノン-フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
In addition, about the resin synthesize | combined in the resin synthesis example 3 mentioned later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the said method.
(C) A part of the polyimide resin solution was added to anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer. 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity (μ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
 μ={ln(ts/t0)}/C
 t0:溶媒の流下時間
 ts:希薄高分子溶液の流下時間
 C:0.5g/dL
 <ガラス転移温度(Tg)>
 エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
μ = {ln (t s / t 0)} / C
t 0 : Flowing time of solvent t s : Flowing time of dilute polymer solution C: 0.5 g / dL
<Glass transition temperature (Tg)>
Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.
 <分光透過率>
 基材の各波長における透過率、(T1)、(X1)、(X2)および(Xc)、ならびに、光学フィルターの各波長域における透過率、(Xa)および(Xb)は、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。
<Spectral transmittance>
The transmittance at each wavelength of the substrate, (T 1 ), (X 1 ), (X 2 ) and (Xc), and the transmittance at each wavelength region of the optical filter, (Xa) and (Xb) Measurement was performed using a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation.
 ここで、光学フィルターの垂直方向から測定した場合の透過率では、図2(a)のようにフィルターに対して垂直に透過した光を測定し、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率では、図2(b)のようにフィルターの垂直方向に対して30°の角度で透過した光を測定した。 Here, with respect to the transmittance when measured from the vertical direction of the optical filter, the light transmitted perpendicular to the filter is measured as shown in FIG. 2A, and the angle is 30 ° with respect to the vertical direction of the optical filter. As for the transmittance when measured from the above, the light transmitted at an angle of 30 ° with respect to the vertical direction of the filter as shown in FIG. 2B was measured.
 なお、この透過率は、(Xb)を測定する場合を除き、光が基板およびフィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。(Xb)を測定する場合には、光がフィルターの垂直方向に対して30°の角度で入射する条件で該分光光度計を使用して測定したものである。 Note that this transmittance is measured using the spectrophotometer under the condition that light is perpendicularly incident on the substrate and the filter, except when measuring (Xb). In the case of measuring (Xb), it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter.
 <カメラ画像の色シェーディング評価>
 光学フィルターをカメラモジュールに組み込んだ際の色シェーディング評価は下記の方法で行った。特開2016-110067号公報と同様の方法でカメラモジュールを作成し、作成したカメラモジュールを用いて300mm×400mmサイズの白色板をD65光源(X-Rite社製標準光源装置「マクベスジャッジII」)下で撮影し、カメラ画像における白色板の中央部と端部における色目の違いを以下の基準で評価した。
<Camera image color shading evaluation>
The color shading evaluation when the optical filter was incorporated in the camera module was performed by the following method. A camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and a white plate having a size of 300 mm × 400 mm is formed using the created camera module as a D65 light source (standard light source device “Macbeth Judge II” manufactured by X-Rite) Images were taken below, and the difference in color between the center and edge of the white plate in the camera image was evaluated according to the following criteria.
 全く問題がなく許容可能なレベルをA、若干色目の違いは認められるが高画質カメラモジュールとして実用上問題がなく許容可能なレベルをB、色目の違いが有り高画質カメラモジュール用途としては許容不可能なレベルをC、明らかな色目の違いが有り一般的なカメラモジュール用途としても許容不可能なレベルをDと判定した。 There is no problem at all and an acceptable level is A, and a slight difference in color is recognized, but there is no problem in practical use as a high-quality camera module. The possible level was determined as C, and the level unacceptable for general camera module applications with a clear color difference was determined as D.
 なお、図11に示すように、撮影を行う際はカメラ画像111の中で白色板112が面積の90%以上を占めるように白色板112とカメラモジュールの位置関係を調節した。 As shown in FIG. 11, the positional relationship between the white plate 112 and the camera module was adjusted so that the white plate 112 occupied 90% or more of the area in the camera image 111 when shooting.
 <カメラ画像のゴースト評価>
 光学フィルターをカメラモジュールに組み込んだ際のゴースト評価は下記の方法で行った。特開2016-110067号公報と同様の方法でカメラモジュールを作成し、作成したカメラモジュールを用いて暗室中ハロゲンランプ光源(林時計工業社製「ルミナーエースLA-150TX」)下で撮影し、カメラ画像における光源周辺のゴースト発生具合を以下の基準で評価した。
<Ghost evaluation of camera images>
Ghost evaluation when the optical filter was incorporated in the camera module was performed by the following method. A camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and the camera module is used to take a picture under a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room. The degree of ghost generation around the light source in the image was evaluated according to the following criteria.
 全く問題がなく許容可能なレベルをA、若干のゴーストは認められるが高画質カメラモジュールとして実用上問題がなく許容可能なレベルをB、ゴーストが発生しており高画質カメラモジュール用途としては許容不可能なレベルをC、ゴーストの度合いがひどく一般的なカメラモジュール用途としても許容不可能なレベルをDと判定した。 Acceptable level with no problem at all, A slight ghost is recognized, but acceptable as a high-quality camera module, practically acceptable level is B, ghost is generated and unacceptable for high-quality camera module application The possible level was determined as C, and the level of ghosts was determined to be unacceptable for general camera module applications as D.
 なお、図12に示すように、撮影を行う際は、光源122がカメラ画像121の右上端部となるように調節した。 Note that, as shown in FIG. 12, when shooting, the light source 122 was adjusted to be the upper right end of the camera image 121.
 [合成例]
 下記実施例で用いた化合物(A)および化合物(S)は、一般的に知られている方法で合成した。一般的合成方法としては、例えば、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報などに記載されている方法を挙げることができる。
[Synthesis example]
Compound (A) and compound (S) used in the following examples were synthesized by a generally known method. As general synthesis methods, for example, JP-A-60-228448, JP-A-1-14684, JP-A-1-228960, JP-A-4081149, “phthalocyanine -chemistry and function-” (I PC, 1997), Japanese Patent Application Laid-Open No. 2009-108267, Japanese Patent Application Laid-Open No. 2010-241873, Japanese Patent No. 3699464, Japanese Patent No. 4740631, and the like.
 <樹脂合成例1>
 下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100g、1-ヘキセン(分子量調節剤)18gおよびトルエン(開環重合反応用溶媒)300gを、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2gと、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9gとを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。
<Resin synthesis example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (hereinafter also referred to as “DNM”) 100 g, 1-hexene (molecular weight regulator) 18 g and toluene (ring-opening polymerization solvent) 300 g were charged into a nitrogen-substituted reaction vessel. The solution was heated to 80 ° C. Next, 0.2 g of a toluene solution of triethylaluminum (0.6 mol / liter) and 0.9 g of a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) were used as a polymerization catalyst. And the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
Figure JPOXMLDOC01-appb-C000018
 このようにして得られた開環重合体溶液1,000gをオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12g添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。
Figure JPOXMLDOC01-appb-C000018
1,000 g of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 g of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C., the hydrogenation reaction was performed by heating and stirring for 3 hours. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, and dried to obtain a hydrogenated polymer (hereinafter also referred to as “resin A”). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
 <樹脂合成例2>
 3Lの4つ口フラスコに2,6-ジフルオロベンゾニトリル35.12g、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g、炭酸カリウム41.46g、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。
<Resin synthesis example 2>
In a 3 L four-necked flask, 35.12 g of 2,6-difluorobenzonitrile, 87.60 g of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate, N, N-dimethylacetamide (hereinafter referred to as “DMAc”). 443 g and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean Stark tube and a cooling tube were attached to the four-necked flask. Next, after the atmosphere in the flask was replaced with nitrogen, the resulting solution was reacted at 140 ° C. for 3 hours, and water produced was removed from the Dean-Stark tube as needed. When no more water was observed, the temperature was gradually raised to 160 ° C. and reacted at that temperature for 6 hours. After cooling to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filtrate was vacuum-dried overnight at 60 ° C. to obtain a white powder (hereinafter also referred to as “resin B”) (yield 95%). The obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
 <樹脂合成例3>
 温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66gおよび4,4’-ビス(4-アミノフェノキシ)ビフェニル7.38gを入れて、γ―ブチロラクトン68.65g及びN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62gおよびイミド化触媒としてトリエチルアミン0.50gを一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却し、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎいれてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。
<Resin synthesis example 3>
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, dropping funnel with side tube, Dean-Stark tube and condenser tube, 1,4-bis (4-amino-α, α -Dimethylbenzyl) benzene (27.66 g) and 4,4'-bis (4-aminophenoxy) biphenyl (7.38 g) were added and dissolved in γ-butyrolactone (68.65 g) and N, N-dimethylacetamide (17.16 g). The resulting solution was cooled to 5 ° C. using an ice water bath, and while maintaining the same temperature, 22.62 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 0.50 g of triethylamine as an imidation catalyst were added. Added all at once. After completion of the addition, the temperature was raised to 180 ° C. and refluxed for 6 hours while distilling off the distillate as needed. After completion of the reaction, the reaction solution was air-cooled until the internal temperature reached 100 ° C., diluted by adding 143.6 g of N, N-dimethylacetamide, cooled with stirring, and 264.16 g of a polyimide resin solution having a solid content concentration of 20% by weight. Got. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. Resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
 [実施例1]
 実施例1では、透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 1]
In Example 1, an optical filter having a base material made of a transparent resin substrate was prepared according to the following procedure and conditions.
 容器に、樹脂合成例1で得られた樹脂A 100部、化合物(A)として下記式(a-1)で表わされる化合物(a-1)(ジクロロメタン中での吸収極大波長698nm)0.04部および下記式(a-2)で表わされる化合物(a-2)(ジクロロメタン中での吸収極大波長733nm)0.04部、化合物(S)として上記表2-2に記載の化合物(s-6)(ジクロロメタン中での吸収極大波長1093nm)0.07部、および塩化メチレンを加えて樹脂濃度が20重量%の溶液を調製した。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの透明樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を図3および表5-1に示す。 In a container, 100 parts of resin A obtained in Resin Synthesis Example 1, compound (A-1) represented by the following formula (a-1) as compound (A) (maximum absorption wavelength 698 nm in dichloromethane) 0.04 And 0.04 parts of the compound (a-2) (absorption maximum wavelength 733 nm in dichloromethane) represented by the following formula (a-2), and the compound (s- 6) 0.07 part (absorption maximum wavelength in dichloromethane of 1093 nm) and methylene chloride were added to prepare a solution having a resin concentration of 20% by weight. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a base material composed of a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in FIG. 3 and Table 5-1.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 続いて、得られた基材の片面に第一光学層として誘電体多層膜(I)を形成し、さらに基材のもう一方の面に第二光学層として誘電体多層膜(II)を形成し、厚さ約0.105mmの光学フィルターを得た。
Figure JPOXMLDOC01-appb-C000020
Subsequently, a dielectric multilayer film (I) is formed as a first optical layer on one side of the obtained base material, and a dielectric multilayer film (II) is formed as a second optical layer on the other side of the base material. Thus, an optical filter having a thickness of about 0.105 mm was obtained.
 誘電体多層膜(I)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)。誘電体多層膜(II)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)。誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層は、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。 The dielectric multilayer film (I) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total). The dielectric multilayer film (II) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (20 layers in total). In both of the dielectric multilayer films (I) and (II), the silica layer and the titania layer are in order of the titania layer, the silica layer, the titania layer,..., The silica layer, the titania layer, and the silica layer from the substrate side. The outermost layer of the optical filter was a silica layer.
 誘電体多層膜(I)および(II)の設計は、以下のようにして行った。 The dielectric multilayer films (I) and (II) were designed as follows.
 各層の厚さと層数については、可視域の反射防止効果と近赤外域の選択的な透過・反射性能を達成できるよう基材屈折率の波長依存特性や、適用した化合物(S)および化合物(A)の吸収特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメーター(Target値)を下記表3の通りとした。 Regarding the thickness and the number of layers of each layer, the wavelength-dependent characteristics of the base material refractive index and the applied compound (S) and compound (in order to achieve the antireflection effect in the visible range and the selective transmission / reflection performance in the near infrared range, Optimization was performed using optical thin film design software (Essential Macleod, Thin Film Center) according to the absorption characteristics of A). When performing optimization, in this example, the input parameters (Target values) to the software are as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000021
 膜構成最適化の結果、実施例1では、誘電体多層膜(I)は、膜厚31~157nmのシリカ層と膜厚10~95nmのチタニア層とが交互に積層されてなる、積層数26の多層蒸着膜となり、誘電体多層膜(II)は、膜厚37~194nmのシリカ層と膜厚12~114nmのチタニア層とが交互に積層されてなる、積層数20の多層蒸着膜となった。最適化を行った膜構成の一例を下記表4に示す。
Figure JPOXMLDOC01-appb-T000021
As a result of the optimization of the film configuration, in Example 1, the dielectric multilayer film (I) is formed by alternately stacking a silica layer having a film thickness of 31 to 157 nm and a titania layer having a film thickness of 10 to 95 nm. The dielectric multi-layer film (II) is a multi-layer vapor-deposited film having 20 layers, in which a silica layer having a thickness of 37 to 194 nm and a titania layer having a thickness of 12 to 114 nm are alternately stacked. It was. An example of the optimized film configuration is shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000022
 得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。結果を図4および表5-1に示す。波長430~580nmにおける透過率の平均値は84%、波長1100~1200nmにおける透過率の平均値は1%以下、絶対値|Xa-Xb|は2nmであった。
Figure JPOXMLDOC01-appb-T000022
The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in FIG. 4 and Table 5-1. The average value of transmittance at a wavelength of 430 to 580 nm was 84%, the average value of transmittance at a wavelength of 1100 to 1200 nm was 1% or less, and the absolute value | Xa−Xb | was 2 nm.
 また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。得られたカメラ画像は色シェーディングおよびゴーストにおいて良好な結果であった。 Also, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1. The obtained camera images had good results in color shading and ghosting.
 [実施例2]
 実施例2では、透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 2]
In Example 2, an optical filter having a base material made of a transparent resin substrate was prepared according to the following procedure and conditions.
 実施例1において、化合物(A)として下記式(a-3)で表わされる化合物(a-3)(ジクロロメタン中での吸収極大波長703nm)0.04部および下記式(a-4)で表わされる化合物(a-4)(ジクロロメタン中での吸収極大波長736nm)0.08部を用いたこと、化合物(S)として上記表2-3に記載の化合物(s-8)(ジクロロメタン中での吸収極大波長1096nm)0.06部を用いたこと、ならびにその他の色素(X)として下記式(X-1)で表される色素(X-1)(ジクロロメタン中での吸収極大波長887nm)0.01部を用いたこと以外は、実施例1と同様の手順および条件で化合物(A)および化合物(S)を含む透明樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を図5および表5-1に示す。 In Example 1, 0.04 part of the compound (A-3) represented by the following formula (a-3) (absorption maximum wavelength 703 nm in dichloromethane) as the compound (A) and the following formula (a-4) Compound (a-4) (absorption maximum wavelength in dichloromethane 736 nm) 0.08 part was used, and compound (s-8) described in Table 2-3 above as compound (S) (in dichloromethane) 0.06 parts of absorption maximum wavelength (1096 nm) and other dye (X) represented by the following formula (X-1) (X-1) (absorption maximum wavelength in dichloromethane: 887 nm) A base material made of a transparent resin substrate containing the compound (A) and the compound (S) was obtained in the same procedure and conditions as in Example 1 except that 0.01 part was used. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in FIG. 5 and Table 5-1.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(III)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(IV)を形成し、厚さ約0.105mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Figure JPOXMLDOC01-appb-C000025
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). The multilayer film (III) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as the second optical layer on the other surface of the base material (20 layers in total). A dielectric multilayer film (IV) was formed to obtain an optical filter having a thickness of about 0.105 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependency of the base material refractive index. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例3]
 実施例3では、両面に樹脂層を有する透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 3]
In Example 3, an optical filter having a base material composed of a transparent resin substrate having a resin layer on both sides was prepared according to the following procedure and conditions.
 実施例1において、化合物(A)として化合物(a-4)0.06部および下記式(a-5)で表わされる化合物(a-5)(ジクロロメタン中での吸収極大波長713nm)0.06部を用いたこと、化合物(S)として上記表2-4に記載の化合物(s-13)(ジクロロメタン中での吸収極大波長1096nm)0.08部を用いたこと以外は、実施例1と同様の手順および条件で化合物(A)および化合物(S)を含む透明樹脂製基板を得た。 In Example 1, 0.06 part of compound (a-4) as compound (A) and compound (a-5) represented by the following formula (a-5) (absorption maximum wavelength in dichloromethane: 713 nm) 0.06 Example 1 except that 0.08 part of the compound (s-13) described in Table 2-4 (maximum absorption wavelength 1096 nm in dichloromethane) was used as the compound (S). A transparent resin substrate containing the compound (A) and the compound (S) was obtained in the same procedure and conditions.
Figure JPOXMLDOC01-appb-C000026
 得られた透明樹脂製基板の片面に、下記組成の樹脂組成物(1)をバーコーターで塗布し、オーブン中70℃で2分間加熱し、溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、バーコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(1)を硬化させ、透明樹脂製基板上に樹脂層を形成した。同様に、透明樹脂製基板のもう一方の面にも樹脂組成物(1)からなる樹脂層を形成し、化合物(A)および化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を表5-1に示す。
Figure JPOXMLDOC01-appb-C000026
A resin composition (1) having the following composition was applied to one side of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 2 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 2 μm. Next, it exposed using the conveyor type exposure machine (exposure amount 500mJ / cm < 2 >, 200mW), the resin composition (1) was hardened, and the resin layer was formed on the substrate made from transparent resin. Similarly, a resin layer made of the resin composition (1) is formed on the other surface of the transparent resin substrate, and the resin layers are provided on both surfaces of the transparent resin substrate containing the compound (A) and the compound (S). A substrate was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in Table 5-1.
 樹脂組成物(1):トリシクロデカンジメタノールジアクリレート 60重量部、ジペンタエリスリトールヘキサアクリレート 40重量部、1-ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤、固形分濃度(TSC):30%)
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(V)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(VI)を形成し、厚さ約0.109mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Resin composition (1): 60 parts by weight of tricyclodecane dimethanol diacrylate, 40 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent, solid content concentration (TSC): 30% )
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). And a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as the second optical layer on the other surface of the substrate (20 layers in total). A dielectric multilayer film (VI) was formed to obtain an optical filter having a thickness of about 0.109 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例4]
 実施例4では、樹脂製支持体の両面に化合物(A)を含む透明樹脂層を形成してなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 4]
In Example 4, an optical filter having a substrate formed by forming a transparent resin layer containing the compound (A) on both surfaces of a resin support was prepared according to the following procedure and conditions.
 容器に、樹脂合成例1で得られた樹脂Aおよび塩化メチレンを加えて樹脂濃度が20重量%の溶液を調製し、得られた溶液を用いたこと以外は、実施例1の樹脂製基板の作成と同様にして樹脂製支持体を作成した。 Resin A obtained in Resin Synthesis Example 1 and methylene chloride were added to a container to prepare a solution having a resin concentration of 20% by weight, and the resin substrate of Example 1 was used except that the obtained solution was used. A resin support was prepared in the same manner as the preparation.
 得られた樹脂製支持体の両面に、実施例3と同様にして、下記組成の樹脂組成物(2)からなる樹脂層を形成し、樹脂製支持体の両面に化合物(A)および化合物(S)を含む透明樹脂層を形成してなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を表5-1に示す。 In the same manner as in Example 3, a resin layer made of the resin composition (2) having the following composition was formed on both surfaces of the obtained resin support, and the compound (A) and the compound ( A base material formed by forming a transparent resin layer containing S) was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in Table 5-1.
 樹脂組成物(2):トリシクロデカンジメタノールジアクリレート 100重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(a-1)0.10重量部、化合物(a-2)0.10重量部、化合物(s-6)1.75重量部、メチルエチルケトン(溶剤、TSC:25%)
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(VII)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(VIII)を形成し、厚さ約0.109mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Resin composition (2): 100 parts by weight of tricyclodecane dimethanol diacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.10 parts by weight of compound (a-1), 0.10 parts by weight of compound (a-2) Parts, 1.75 parts by weight of compound (s-6), methyl ethyl ketone (solvent, TSC: 25%)
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). And a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as the second optical layer on the other surface of the base material (total 20 layers). A dielectric multilayer film (VIII) was formed to obtain an optical filter having a thickness of about 0.109 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例5]
 実施例5では、片面に化合物(A)を含む透明樹脂層を有する透明ガラス基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 5]
In Example 5, an optical filter having a base material composed of a transparent glass substrate having a transparent resin layer containing the compound (A) on one side was prepared by the following procedure and conditions.
 縦60mm、横60mmの大きさにカットした透明ガラス基板「OA-10G(厚み150um)」(日本電気硝子(株)製)上に下記組成の樹脂組成物(3)をスピンコーターで塗布し、ホットプレート上80℃で2分間加熱して溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、スピンコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(3)を硬化させ、化合物(A)および化合物(S)を含む透明樹脂層を有する透明ガラス基板からなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を表5-1に示す。 On a transparent glass substrate “OA-10G (thickness 150 μm)” (manufactured by Nippon Electric Glass Co., Ltd.) cut to a size of 60 mm in length and 60 mm in width, a resin composition (3) having the following composition was applied with a spin coater. The solvent was volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes. Under the present circumstances, the application | coating conditions of the spin coater were adjusted so that the thickness after drying might be set to 2 micrometers. Next, exposure (exposure amount: 500 mJ / cm 2 , 200 mW) is carried out using a conveyor type exposure machine, the resin composition (3) is cured, and a transparent resin layer containing the compound (A) and the compound (S) is provided. A base material made of a transparent glass substrate was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in Table 5-1.
 樹脂組成物(3):トリシクロデカンジメタノールジアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(a-1)0.20重量部、化合物(a-2)0.20重量部、化合物(s-6)3.50重量部、メチルエチルケトン(溶剤、TSC:35%)
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(IX)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(X)を形成し、厚さ約0.107mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Resin composition (3): 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.20 part by weight of compound (a-1), compound (A-2) 0.20 part by weight, compound (s-6) 3.50 part by weight, methyl ethyl ketone (solvent, TSC: 35%)
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). A multilayer film (IX) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a second optical layer on the other surface of the base material (20 layers in total) A dielectric multilayer film (X) was formed to obtain an optical filter having a thickness of about 0.107 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例6]
 実施例6では、片面に化合物(A)を含む透明樹脂層を有する近赤外線吸収ガラス基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 6]
In Example 6, an optical filter having a base material composed of a near-infrared absorbing glass substrate having a transparent resin layer containing the compound (A) on one side was prepared by the following procedure and conditions.
 縦60mm、横60mmの大きさにカットした近赤外線吸収ガラス基板「BS-11(厚み120μm)」(松浪硝子工業(株)製)上に下記組成の樹脂組成物(4)をスピンコーターで塗布し、ホットプレート上80℃で2分間加熱して溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、スピンコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(4)を硬化させ、化合物(A)を含む透明樹脂層を有する近赤外線吸収ガラス基板からなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を図6および表5-1に示す。 A resin composition (4) having the following composition was applied on a near infrared absorbing glass substrate “BS-11 (thickness 120 μm)” (manufactured by Matsunami Glass Industry Co., Ltd.) cut to a size of 60 mm in length and 60 mm in width with a spin coater. Then, the solvent was volatilized and removed by heating at 80 ° C. for 2 minutes on a hot plate. Under the present circumstances, the application | coating conditions of the spin coater were adjusted so that the thickness after drying might be set to 2 micrometers. Next, exposure (exposure amount: 500 mJ / cm 2 , 200 mW) is carried out using a conveyor type exposure machine, the resin composition (4) is cured, and the near-infrared absorbing glass substrate having a transparent resin layer containing the compound (A) A substrate consisting of The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in FIG. 6 and Table 5-1.
 樹脂組成物(4):トリシクロデカンジメタノールジアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(a-3)0.15重量部、化合物(a-4)0.30重量部、メチルエチルケトン(溶剤、TSC:35%)
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(XI)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XII)を形成し、厚さ約0.107mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Resin composition (4): 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.15 part by weight of compound (a-3), compound (A-4) 0.30 part by weight, methyl ethyl ketone (solvent, TSC: 35%)
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). A multilayer film (XI) is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a second optical layer on the other surface of the substrate (20 layers in total). A dielectric multilayer film (XII) was formed to obtain an optical filter having a thickness of about 0.107 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例7]
 実施例7では、両面に近赤外線吸収微粒子を含む透明樹脂層を有する、化合物(A)を含む透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 7]
In Example 7, an optical filter having a base material made of a transparent resin substrate containing the compound (A) and having a transparent resin layer containing near-infrared absorbing fine particles on both surfaces was prepared according to the following procedure and conditions.
 実施例2において、化合物(S-8)とその他の色素(X-1)を用いなかったこと以外は、実施例2と同様の手順および条件で化合物(A)を含む透明樹脂製基板を得た。 In Example 2, a transparent resin substrate containing compound (A) was obtained by the same procedure and conditions as in Example 2 except that compound (S-8) and the other dye (X-1) were not used. It was.
 得られた樹脂製基板の両面に、実施例3と同様にして、下記組成の樹脂組成物(5)からなる樹脂層を形成し、両面に近赤外線吸収微粒子を含む透明樹脂層を有する、化合物(A)を含む透明樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(T1)、(X1)、(X2)、(Xc)および各波長における透過率を求めた。結果を図7および表5-1に示す。 The compound which forms the resin layer which consists of a resin composition (5) of the following composition on both surfaces of the obtained resin board | substrate like Example 3, and has a transparent resin layer containing near-infrared absorption fine particles on both surfaces A base material made of a transparent resin substrate containing (A) was obtained. The spectral transmittance of this substrate was measured, and the transmittance at (T 1 ), (X 1 ), (X 2 ), (Xc) and each wavelength was determined. The results are shown in FIG. 7 and Table 5-1.
 樹脂組成物(5):トリシクロデカンジメタノールジアクリレート 100重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、近赤外線吸収微粒子分散液(住友金属鉱山(株)製YMF-02A)35重量部(固形分換算で約10重量部)、メチルエチルケトン(溶剤、TSC:30%)
 続いて、実施例1と同様に、得られた基材の片面に第一光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)誘電体多層膜(XIII)を形成し、さらに基材のもう一方の面に第二光学層としてシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XIV)を形成し、厚さ約0.109mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。得られた光学フィルターの垂直方向および垂直方向から30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
Resin composition (5): 100 parts by weight of tricyclodecane dimethanol diacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 35 parts by weight of near-infrared absorbing fine particle dispersion (YMF-02A manufactured by Sumitomo Metal Mining Co., Ltd.) About 10 parts by weight in terms of solid content), methyl ethyl ketone (solvent, TSC: 30%)
Subsequently, in the same manner as in Example 1, a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a first optical layer on one side of the obtained base material (26 layers in total). And a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated as a second optical layer on the other surface of the base material (total 20 layers). A dielectric multilayer film (XIV) was formed to obtain an optical filter having a thickness of about 0.109 mm. The dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter and an angle of 30 ° from the vertical direction was measured, and the optical characteristics in each wavelength region were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [実施例8~13]
 樹脂、溶媒、樹脂製基板の乾燥条件、化合物(A)、化合物(S)およびその他の色素(X)を表5-1に示すように変更したこと以外は、実施例3と同様にして基材および光学フィルターを作成した。得られた基材および光学フィルターの光学特性を表5-1に示す。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-1に示す。
[Examples 8 to 13]
Resin, solvent, drying conditions of resin substrate, compound (A), compound (S), and other dye (X) were changed in the same manner as in Example 3 except for changing as shown in Table 5-1. Materials and optical filters were made. The optical properties of the obtained substrate and optical filter are shown in Table 5-1. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-1.
 [比較例1]
 実施例1において、化合物(S)および化合物(A)を用いなかったこと以外は、実施例1と同様にして基材および光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。比較例1で得られた光学フィルターは、比較的良好な可視光透過率を示すものの、光学特性の入射角依存性が大きく、基材が700nm付近や近赤外波長領域に吸収を持たないことから、色シェーディング抑制効果やゴースト抑制効果に劣ることが確認された。
[Comparative Example 1]
In Example 1, except that the compound (S) and the compound (A) were not used, a substrate and an optical filter were prepared in the same manner as in Example 1, and optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 1 exhibits relatively good visible light transmittance, the optical property has a large incident angle dependency, and the base material has no absorption in the vicinity of 700 nm or in the near infrared wavelength region. Therefore, it was confirmed that the color shading suppression effect and the ghost suppression effect were inferior.
 [比較例2]
 基材として透明ガラス基板「OA-10G(厚み150um)」(日本電気硝子(株)製)を用いたこと以外は、実施例1と同様にして光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。比較例2で得られた光学フィルターは、比較的良好な可視光透過率を示すものの、光学特性の入射角依存性が大きく、基材が700nm付近や近赤外波長領域に吸収を持たないことから、色シェーディング抑制効果やゴースト抑制効果に劣ることが確認された。
[Comparative Example 2]
An optical filter was prepared and the optical characteristics were evaluated in the same manner as in Example 1 except that a transparent glass substrate “OA-10G (thickness 150 μm)” (manufactured by Nippon Electric Glass Co., Ltd.) was used as the substrate. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 2 shows relatively good visible light transmittance, the optical property has a large incident angle dependency, and the base material has no absorption in the vicinity of 700 nm or near infrared wavelength region. Therefore, it was confirmed that the color shading suppression effect and the ghost suppression effect were inferior.
 [比較例3]
 基材として近赤外線吸収ガラス基板「BS-11(厚み120um)」(松浪硝子工業(株)製)を用いたこと以外は、実施例1と同様にして光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。また、基材の分光透過スペクトルを図8に示す。比較例3で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の700nm付近の吸収強度が十分でなく、色シェーディング抑制効果に劣ることが確認された。
[Comparative Example 3]
An optical filter was prepared in the same manner as in Example 1 except that a near-infrared absorbing glass substrate “BS-11 (thickness 120 μm)” (manufactured by Matsunami Glass Industry Co., Ltd.) was used as a base material, and optical characteristics were evaluated. did. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. The spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 3 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was poor.
 [比較例4]
 実施例3において、化合物(S)を用いずに、化合物(A)として化合物(a-4)0.08部および化合物(a-5)0.06部を用いたこと、ならびに色素(X-1)0.01部を用いたこと以外は、実施例3と同様にして基材および光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。また、基材の分光透過スペクトルを図9に示す。比較例5で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の近赤外波長領域における吸収強度が十分でなく、ゴースト抑制効果に劣ることが確認された。
[Comparative Example 4]
In Example 3, 0.08 part of compound (a-4) and 0.06 part of compound (a-5) were used as compound (A) without using compound (S), and dye (X— 1) Except having used 0.01 part, the base material and the optical filter were created like Example 3, and the optical characteristic was evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. The spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 5 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the near-infrared wavelength region of the substrate was not sufficient and the ghost suppression effect was inferior.
 [比較例5]
 実施例6において、樹脂組成物(4)の代わりに下記組成の樹脂組成物(6)を用いたこと以外は、実施例6と同様にして基材および光学フィルターを作成した。
[Comparative Example 5]
In Example 6, a substrate and an optical filter were prepared in the same manner as in Example 6 except that the resin composition (6) having the following composition was used instead of the resin composition (4).
 樹脂組成物(6):トリシクロデカンジメタノールジアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(a-1)0.15重量部、メチルエチルケトン(溶剤、TSC:35%)
 得られた基材および光学フィルターの光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。また、基材の分光透過スペクトルを図10に示す。比較例5で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の700nm付近の吸収強度が十分でなく、色シェーディング抑制効果に劣ることが確認された。
Resin composition (6): 20 parts by weight of tricyclodecane dimethanol diacrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.15 part by weight of compound (a-1), methyl ethyl ketone (Solvent, TSC: 35%)
The optical properties of the obtained substrate and optical filter were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. The spectral transmission spectrum of the substrate is shown in FIG. Although the optical filter obtained in Comparative Example 5 showed relatively good optical properties, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was poor.
 [比較例6]
 実施例3において、化合物(A)として化合物(a-3)0.04部および化合物(a-4)0.08部を用いたこと、化合物(S)として化合物(s-6)0.01部を用いたこと以外は、実施例3と同様にして基材および光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。比較例6で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の近赤外波長領域における吸収強度が十分でなく、ゴースト抑制効果に劣ることが確認された。
[Comparative Example 6]
In Example 3, 0.04 part of the compound (a-3) and 0.08 part of the compound (a-4) were used as the compound (A), and 0.01% of the compound (s-6) was used as the compound (S). A substrate and an optical filter were prepared in the same manner as in Example 3 except that the parts were used, and the optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 6 showed relatively good optical properties, it was confirmed that the absorption intensity in the near infrared wavelength region of the substrate was not sufficient and the ghost suppression effect was inferior.
 [比較例7]
 実施例3において、化合物(A)として化合物(a-1)0.04部を用いたこと、化合物(S)として化合物(s-6)0.07部を用いたこと以外は、実施例3と同様にして基材および光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。比較例7で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の700nm付近の吸収強度が十分でなく、色シェーディング抑制効果に劣ることが確認された。
[Comparative Example 7]
Example 3 except that 0.04 part of the compound (a-1) was used as the compound (A) and 0.07 part of the compound (s-6) was used as the compound (S) in Example 3. A substrate and an optical filter were prepared in the same manner as described above, and the optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 7 showed relatively good optical properties, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was inferior.
 [比較例8]
 実施例3において、化合物(A)として化合物(a-1)0.04部を用いたこと、化合物(S)として上記表2-4に記載の化合物(s-14)(ジクロロメタン中での吸収極大波長1097nm)0.45部を用いたこと以外は、実施例3と同様にして基材および光学フィルターを作成し、光学特性を評価した。また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5-2に示す。比較例8で得られた光学フィルターは、比較的良好な光学特性を示すものの、基材の700nm付近の吸収強度が十分でなく、色シェーディング抑制効果に劣ることが確認された。
[Comparative Example 8]
In Example 3, 0.04 part of compound (a-1) was used as compound (A), and compound (s-14) described in Table 2-4 above (absorption in dichloromethane) was used as compound (S). A substrate and an optical filter were prepared in the same manner as in Example 3 except that 0.45 part of the maximum wavelength (1097 nm) was used, and the optical characteristics were evaluated. In addition, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5-2. Although the optical filter obtained in Comparative Example 8 showed relatively good optical characteristics, it was confirmed that the absorption intensity in the vicinity of 700 nm of the substrate was not sufficient and the color shading suppression effect was inferior.
 実施例および比較例で適用した基材の構成、各種化合物などは下記の通りである。 The construction of the base material and various compounds applied in the examples and comparative examples are as follows.
 <基材の形態>
 形態(1):化合物(A)を含む透明樹脂製基板
 形態(2):化合物(A)を含む透明樹脂製基板の両面に樹脂層を有する
 形態(3):樹脂製支持体の両面に化合物(A)を含む透明樹脂層を有する
 形態(4):透明ガラス基板の片方の面に化合物(A)を含む透明樹脂層を有する
 形態(5):近赤外線吸収ガラス基板の片方の面に化合物(A)を含む透明樹脂層を有する
 形態(6):化合物(A)を含む透明樹脂製基板の両面に近赤外線吸収微粒子を含む透明樹脂層を有する
 形態(7):化合物(A)を含まない透明樹脂製基板(比較例)
 形態(8):透明ガラス基板(比較例)
 形態(9):近赤外線吸収ガラス基板(比較例)
 <透明樹脂>
 樹脂A:環状ポリオレフィン系樹脂(樹脂合成例1)
 樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
 樹脂C:ポリイミド系樹脂(樹脂合成例3)
 樹脂D:環状オレフィン系樹脂「ゼオノア 1420R」(日本ゼオン(株)製)
 <ガラス基板>
 ガラス基板(1):縦60mm、横60mmの大きさにカットした透明ガラス基板「OA-10G(厚み150μm)」(日本電気硝子(株)製)
 ガラス基板(2):縦60mm、横60mmの大きさにカットした近赤外線吸収ガラス基板「BS-11(厚み120μm)」(松浪硝子工業(株)製)
 <近赤外線吸収色素>
 ≪化合物(A)≫
 化合物(a-1):上記の化合物(a-1)(ジクロロメタン中での吸収極大波長698nm)
 化合物(a-2):上記の化合物(a-2)(ジクロロメタン中での吸収極大波長733nm)
 化合物(a-3):上記の化合物(a-3)(ジクロロメタン中での吸収極大波長703nm)
 化合物(a-4):上記の化合物(a-4)(ジクロロメタン中での吸収極大波長736nm)
 化合物(a-5):上記の化合物(a-5)(ジクロロメタン中での吸収極大波長713nm)
 化合物(a-6):下記式(a-6)で表されるシアニン系化合物(ジクロロメタン中での吸収極大波長681nm)
<Form of substrate>
Form (1): Transparent resin substrate containing compound (A) Form (2): Transparent resin substrate containing compound (A) has resin layers on both sides Form (3): Compound on both sides of resin support Form (4): having a transparent resin layer containing compound (A) on one side of the transparent glass substrate Form (5): compound on one side of the near-infrared absorbing glass substrate Form (6): having transparent resin layer containing near-infrared absorbing fine particles on both sides of transparent resin substrate containing compound (A) Form (7): containing compound (A) Transparent resin substrate (comparative example)
Form (8): Transparent glass substrate (comparative example)
Form (9): Near-infrared absorbing glass substrate (comparative example)
<Transparent resin>
Resin A: Cyclic polyolefin resin (resin synthesis example 1)
Resin B: Aromatic polyether resin (resin synthesis example 2)
Resin C: Polyimide resin (resin synthesis example 3)
Resin D: Cyclic olefin resin “Zeonor 1420R” (manufactured by Nippon Zeon Co., Ltd.)
<Glass substrate>
Glass substrate (1): Transparent glass substrate “OA-10G (thickness 150 μm)” cut to 60 mm length and 60 mm width (manufactured by Nippon Electric Glass Co., Ltd.)
Glass substrate (2): Near-infrared absorbing glass substrate “BS-11 (thickness 120 μm)” cut to a size of 60 mm length and 60 mm width (manufactured by Matsunami Glass Industry Co., Ltd.)
<Near-infrared absorbing dye>
<< Compound (A) >>
Compound (a-1): Compound (a-1) above (absorption maximum wavelength in dichloromethane 698 nm)
Compound (a-2): Compound (a-2) above (absorption maximum wavelength in dichloromethane: 733 nm)
Compound (a-3): Compound (a-3) described above (maximum absorption wavelength 703 nm in dichloromethane)
Compound (a-4): Compound (a-4) above (absorption maximum wavelength in dichloromethane 736 nm)
Compound (a-5): Compound (a-5) above (absorption maximum wavelength in dichloromethane of 713 nm)
Compound (a-6): A cyanine compound represented by the following formula (a-6) (absorption maximum wavelength in dichloromethane: 681 nm)
Figure JPOXMLDOC01-appb-C000027
 ≪化合物(S)≫
 化合物(s-6):上記の化合物(s-6)(ジクロロメタン中での吸収極大波長1093nm)
 化合物(s-8):上記の化合物(s-8)(ジクロロメタン中での吸収極大波長1096nm)
 化合物(s-13):上記の化合物(s-14)(ジクロロメタン中での吸収極大波長1096nm)
 化合物(s-14):上記の化合物(s-15)(ジクロロメタン中での吸収極大波長1097nm)
 ≪その他の色素(X)≫
 色素(X-1):上記の色素(X-1)(ジクロロメタン中での吸収極大波長887nm)
 色素(X-2):下記式(X-2)で表される色素(ジクロロメタン中での吸収極大波長811nm)
Figure JPOXMLDOC01-appb-C000027
≪Compound (S) ≫
Compound (s-6): Compound (s-6) above (absorption maximum wavelength in dichloromethane of 1093 nm)
Compound (s-8): Compound (s-8) above (absorption maximum wavelength in dichloromethane of 1096 nm)
Compound (s-13): Compound (s-14) above (absorption maximum wavelength in dichloromethane of 1096 nm)
Compound (s-14): Compound (s-15) above (absorption maximum wavelength in dichloromethane of 1097 nm)
≪Other dye (X) ≫
Dye (X-1): the above dye (X-1) (absorption maximum wavelength in dichloromethane: 887 nm)
Dye (X-2): Dye represented by the following formula (X-2) (absorption maximum wavelength in dichloromethane: 811 nm)
Figure JPOXMLDOC01-appb-C000028
 <溶媒>
 溶媒(1):塩化メチレン
 溶媒(2):N,N-ジメチルアセトアミド
 溶媒(3):シクロヘキサン/キシレン(重量比:7/3)
 表5-1および表5-2における、実施例および比較例の(透明)樹脂製基板の乾燥条件は以下の通りである。なお、減圧乾燥前に、塗膜をガラス板から剥離した。
Figure JPOXMLDOC01-appb-C000028
<Solvent>
Solvent (1): Methylene chloride Solvent (2): N, N-dimethylacetamide Solvent (3): Cyclohexane / xylene (weight ratio: 7/3)
In Tables 5-1 and 5-2, the drying conditions of the (transparent) resin substrates of Examples and Comparative Examples are as follows. In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
 <フィルム乾燥条件>
 条件(1):20℃/8hr→減圧下 100℃/8hr
 条件(2):60℃/8hr→80℃/8hr→減圧下 140℃/8hr
 条件(3):60℃/8hr→80℃/8hr→減圧下 100℃/24hr
<Film drying conditions>
Condition (1): 20 ° C./8 hr → under reduced pressure 100 ° C./8 hr
Condition (2): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 140 ° C./8 hr
Condition (3): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 100 ° C./24 hr
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
1:光学フィルター
2:分光光度計
3:光
10:基材
11:第一光学層
12:第二光学層
13:第三光学層
14:第四光学層
111:カメラ画像
112:白色板
113:白色板の中央部の例
114:白色板の端部の例
121:カメラ画像
122:光源
123:光源周辺のゴーストの例
1: Optical filter 2: Spectrophotometer 3: Light 10: Base material 11: First optical layer 12: Second optical layer 13: Third optical layer 14: Fourth optical layer 111: Camera image 112: White plate 113: Example of the center of the white plate 114: Example of the edge of the white plate 121: Camera image 122: Light source 123: Example of ghost around the light source

Claims (13)

  1.  下記要件(a)、(b)および(c)を満たす基材を有し、かつ、下記要件(d)および(e)を満たすことを特徴とする光学フィルター:
    (a)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する;
    (b)波長640nm以上の領域において透過率が10%となる一番短い波長(X1)と二番目に短い波長(X2)との差(X2-X1)が50nm以上である;
    (c)波長900nmにおける透過率、波長1000nmにおける透過率、および波長1100nmにおける透過率がいずれも65%以下である;
    (d)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上である;
    (e)波長1100nm~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下である。
    An optical filter having a substrate satisfying the following requirements (a), (b) and (c) and satisfying the following requirements (d) and (e):
    (A) having a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm to 760 nm;
    (B) The difference (X 2 −X 1 ) between the shortest wavelength (X 1 ) with a transmittance of 10% and the second shortest wavelength (X 2 ) in the wavelength region of 640 nm or more is 50 nm or more;
    (C) The transmittance at a wavelength of 900 nm, the transmittance at a wavelength of 1000 nm, and the transmittance at a wavelength of 1100 nm are all 65% or less;
    (D) In the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the optical filter is 75% or more;
    (E) In the wavelength region of 1100 nm to 1200 nm, the average transmittance when measured from the vertical direction of the optical filter is 5% or less.
  2.  前記化合物(A)を含む層が透明樹脂層であることを特徴とする、請求項1に記載の光学フィルター。 The optical filter according to claim 1, wherein the layer containing the compound (A) is a transparent resin layer.
  3.  前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする、請求項1または2に記載の光学フィルター。 3. The optical filter according to claim 1, further comprising a dielectric multilayer film on at least one surface of the substrate.
  4.  前記基材が、さらに下記要件(f)を満たすことを特徴とする、請求項1~3のいずれか一項に記載の光学フィルター:
    (f)波長690~720nmの領域における透過率の最小値(T1)が5%以下である。
    The optical filter according to any one of claims 1 to 3, wherein the substrate further satisfies the following requirement (f):
    (F) The minimum transmittance (T 1 ) in the wavelength range of 690 to 720 nm is 5% or less.
  5.  前記基材が、さらに下記要件(g)を満たすことを特徴とする、請求項1~4のいずれに一項に記載の光学フィルター:
    (g)波長1050nm以上1200nm以下の領域に吸収極大を有する化合物(S)を含む。
    The optical filter according to any one of claims 1 to 4, wherein the substrate further satisfies the following requirement (g):
    (G) A compound (S) having an absorption maximum in a wavelength region of 1050 nm to 1200 nm is included.
  6.  前記化合物(S)が、下記式(I)および(II)で表される化合物からなる群より選ばれる
    少なくとも1種の化合物であることを特徴とする、請求項5に記載の光学フィルター。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [式(I)および式(II)中、
     R1~R3は、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
    (La)炭素数1~12の脂肪族炭化水素基
    (Lb)炭素数1~12のハロゲン置換アルキル基
    (Lc)炭素数3~14の脂環式炭化水素基
    (Ld)炭素数6~14の芳香族炭化水素基
    (Le)炭素数2~14の複素環基
    (Lf)炭素数1~12のアルコキシ基
    (Lg)置換基Lを有してもよい炭素数1~12のアシル基、
    (Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
     置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
     隣り合うR3同士は、置換基Lを有してもよい環を形成してもよく、
     nは0~4の整数を表し、
     Xは電荷を中和させるのに必要なアニオンを表し、
     Mは金属原子を表し、
     ZはD(Ri4を表し、Dは窒素原子、リン原子またはビスマス原子を表し、
     yは0もしくは1を表す。)
    The optical filter according to claim 5, wherein the compound (S) is at least one compound selected from the group consisting of compounds represented by the following formulas (I) and (II).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (I) and Formula (II),
    R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h , wherein R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L e It represents either, R i represents any of the following L a ~ L e,
    (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L 1 to 12 acyl groups,
    (L h ) an alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, At least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms,
    Adjacent R 3 may form a ring which may have a substituent L,
    n represents an integer of 0 to 4,
    X represents an anion necessary to neutralize the charge,
    M represents a metal atom,
    Z represents D (R i ) 4 , D represents a nitrogen atom, a phosphorus atom or a bismuth atom;
    y represents 0 or 1. )
  7.  前記誘電体多層膜が前記基材の両面に形成されていることを特徴とする請求項3~6のいずれか1項に記載の光学フィルター。 7. The optical filter according to claim 3, wherein the dielectric multilayer film is formed on both surfaces of the base material.
  8.  前記化合物(A)が、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項1~7のいずれか1項に記載の光学フィルター。 The optical system according to any one of claims 1 to 7, wherein the compound (A) is at least one compound selected from the group consisting of squarylium compounds, phthalocyanine compounds, and cyanine compounds. filter.
  9.  前記透明樹脂層を構成する透明樹脂が、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂であることを特徴とする請求項2~8のいずれか1項に記載の光学フィルター。 The transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester resin 9. At least one resin selected from the group consisting of a curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin. The optical film according to any one of Over.
  10.  前記基材が、化合物(A)および化合物(S)を含む透明樹脂製基板を含有することを特徴とする請求項1~9のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 9, wherein the substrate contains a transparent resin substrate containing the compound (A) and the compound (S).
  11.  固体撮像装置用である請求項1~10のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 10, which is used for a solid-state imaging device.
  12.  請求項1~11のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 A solid-state imaging device comprising the optical filter according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 A camera module comprising the optical filter according to any one of claims 1 to 11.
PCT/JP2017/031156 2016-08-31 2017-08-30 Optical filter and device using optical filter WO2018043564A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197005541A KR102388961B1 (en) 2016-08-31 2017-08-30 Optical filters and devices using optical filters
KR1020217038932A KR102434709B1 (en) 2016-08-31 2017-08-30 Optical filter and device using optical filter
JP2018537346A JP6791251B2 (en) 2016-08-31 2017-08-30 Optical filter and equipment using optical filter
CN202110181464.7A CN112946804B (en) 2016-08-31 2017-08-30 Optical filter and device using the same
CN201780052711.5A CN109642973B (en) 2016-08-31 2017-08-30 Optical filter and device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169260 2016-08-31
JP2016-169260 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043564A1 true WO2018043564A1 (en) 2018-03-08

Family

ID=61300840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031156 WO2018043564A1 (en) 2016-08-31 2017-08-30 Optical filter and device using optical filter

Country Status (4)

Country Link
JP (2) JP6791251B2 (en)
KR (2) KR102434709B1 (en)
CN (2) CN112946804B (en)
WO (1) WO2018043564A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004237A (en) * 2018-07-03 2020-01-13 주식회사 엘엠에스 Optical disc for fingerprint recognition sensor and optical filter including the same
JP2020037719A (en) * 2018-09-03 2020-03-12 日本電気硝子株式会社 Method for producing glass article, and frame member
WO2020054718A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent composition, method for manufacturing liquid dispersion, film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
WO2020054695A1 (en) * 2018-09-12 2020-03-19 Jsr株式会社 Optical filter and use thereof
WO2020196051A1 (en) * 2019-03-28 2020-10-01 Agc株式会社 Optical filter
CN111983743A (en) * 2019-05-21 2020-11-24 Jsr株式会社 Optical filter, imaging device, and camera module
WO2020241535A1 (en) 2019-05-31 2020-12-03 富士フイルム株式会社 Optical sensor and sensing device
WO2020255927A1 (en) * 2019-06-20 2020-12-24 Agc株式会社 Optical filter, imaging device, and optical sensor
CN112147731A (en) * 2019-06-27 2020-12-29 Jsr株式会社 Optical filter, solid-state imaging device, camera module, biometric authentication device, and resin layer for optical filter
WO2021256116A1 (en) * 2020-06-15 2021-12-23 富士フイルム株式会社 Infrared-absorbing composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022085636A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Optical filter
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
JP7415815B2 (en) 2020-06-22 2024-01-17 Agc株式会社 optical filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009271A (en) * 2019-07-03 2021-01-28 Jsr株式会社 Camera module and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
JP2006301489A (en) * 2005-04-25 2006-11-02 Nidec Copal Corp Near-infrared ray cut filter
JP2007131748A (en) * 2005-11-10 2007-05-31 Nippon Shokubai Co Ltd Pressure-sensitive adhesive composition comprising near infrared light absorber and use thereof
WO2012169447A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2014059550A (en) * 2012-08-23 2014-04-03 Asahi Glass Co Ltd Near-infrared cut filter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163813B2 (en) 1992-12-28 2001-05-08 日本ゼオン株式会社 Near-infrared absorbing resin composition and molded article
JP4736373B2 (en) * 2004-08-03 2011-07-27 日油株式会社 Near infrared absorbing material and display device using the same
JP5489669B2 (en) 2008-11-28 2014-05-14 Jsr株式会社 Near-infrared cut filter and device using near-infrared cut filter
KR101414139B1 (en) 2012-09-03 2014-08-06 장 제임스 Snap Ring having Multi Roller
JP6263843B2 (en) 2013-02-28 2018-01-24 株式会社リコー Communication management system, communication management method, and program
WO2014168190A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared shielding filter, solid-state imaging element, and imaging/display device
JP6443329B2 (en) * 2013-04-10 2018-12-26 Agc株式会社 Infrared shielding filter and imaging device
KR101590137B1 (en) 2013-08-30 2016-02-01 주식회사 솔켐 Styrene-based copolymer containing dicyanophenyl functional groups and phthalocyanine-based compound synthesized from the copolymer
JP5884953B2 (en) * 2013-10-17 2016-03-15 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
JP6170515B2 (en) * 2014-01-31 2017-07-26 富士フイルム株式会社 Green colored composition for color filter, colored film, color filter, solid-state imaging device
JP2015200878A (en) * 2014-03-31 2015-11-12 富士フイルム株式会社 Infrared sensor, near infrared absorption composition, cured film, near infrared absorption filter, image sensor, camera module and compound
JP6358114B2 (en) * 2015-02-02 2018-07-18 Jsr株式会社 Optical filter and device using optical filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
JP2006301489A (en) * 2005-04-25 2006-11-02 Nidec Copal Corp Near-infrared ray cut filter
JP2007131748A (en) * 2005-11-10 2007-05-31 Nippon Shokubai Co Ltd Pressure-sensitive adhesive composition comprising near infrared light absorber and use thereof
WO2012169447A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2014059550A (en) * 2012-08-23 2014-04-03 Asahi Glass Co Ltd Near-infrared cut filter

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158811B1 (en) 2018-07-03 2020-09-22 주식회사 엘엠에스 Optical disc for fingerprint recognition sensor and optical filter including the same
KR20200004237A (en) * 2018-07-03 2020-01-13 주식회사 엘엠에스 Optical disc for fingerprint recognition sensor and optical filter including the same
JP2020037719A (en) * 2018-09-03 2020-03-12 日本電気硝子株式会社 Method for producing glass article, and frame member
TWI753299B (en) * 2018-09-12 2022-01-21 日商Jsr股份有限公司 Optical filters and their uses
WO2020054695A1 (en) * 2018-09-12 2020-03-19 Jsr株式会社 Optical filter and use thereof
CN112585508B (en) * 2018-09-12 2023-02-28 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
JP7255600B2 (en) 2018-09-12 2023-04-11 Jsr株式会社 Optical filter and its use
CN112585508A (en) * 2018-09-12 2021-03-30 Jsr株式会社 Optical filter and use thereof
JPWO2020054695A1 (en) * 2018-09-12 2021-08-30 Jsr株式会社 Optical filters and their uses
JPWO2020054718A1 (en) * 2018-09-14 2021-09-30 富士フイルム株式会社 Near-infrared absorbing composition, method for producing dispersion, film, optical filter, pattern forming method, laminate, solid-state image sensor, image display device and infrared sensor
WO2020054718A1 (en) * 2018-09-14 2020-03-19 富士フイルム株式会社 Near-infrared-absorbent composition, method for manufacturing liquid dispersion, film, optical filter, pattern formation method, layered body, solid-state imaging element, image display device, and infrared sensor
KR102566220B1 (en) * 2018-09-14 2023-08-11 후지필름 가부시키가이샤 Near-infrared absorbing composition, method for producing dispersion, film, optical filter, pattern formation method, laminate, solid-state imaging device, image display device, and infrared sensor
JP7142711B2 (en) 2018-09-14 2022-09-27 富士フイルム株式会社 Near-infrared absorbing composition, method for producing dispersion liquid, film, optical filter, pattern forming method, laminate, solid-state imaging device, image display device, and infrared sensor
KR20210033506A (en) * 2018-09-14 2021-03-26 후지필름 가부시키가이샤 Near-infrared absorbing composition, manufacturing method of dispersion, film, optical filter, pattern forming method, laminate, solid-state imaging device, image display device, and infrared sensor
JP7347498B2 (en) 2019-03-28 2023-09-20 Agc株式会社 optical filter
CN113573888A (en) * 2019-03-28 2021-10-29 Agc株式会社 Optical filter
JPWO2020196051A1 (en) * 2019-03-28 2020-10-01
CN113573888B (en) * 2019-03-28 2023-02-28 Agc株式会社 Optical filter
WO2020196051A1 (en) * 2019-03-28 2020-10-01 Agc株式会社 Optical filter
CN111983743B (en) * 2019-05-21 2024-02-27 Jsr株式会社 Optical filter, image pickup device, and camera module
CN111983743A (en) * 2019-05-21 2020-11-24 Jsr株式会社 Optical filter, imaging device, and camera module
WO2020241535A1 (en) 2019-05-31 2020-12-03 富士フイルム株式会社 Optical sensor and sensing device
WO2020255927A1 (en) * 2019-06-20 2020-12-24 Agc株式会社 Optical filter, imaging device, and optical sensor
JP7484911B2 (en) 2019-06-20 2024-05-16 Agc株式会社 Optical filter, imaging device and optical sensor
CN112147731A (en) * 2019-06-27 2020-12-29 Jsr株式会社 Optical filter, solid-state imaging device, camera module, biometric authentication device, and resin layer for optical filter
CN112147731B (en) * 2019-06-27 2023-12-05 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
JPWO2021256116A1 (en) * 2020-06-15 2021-12-23
WO2021256116A1 (en) * 2020-06-15 2021-12-23 富士フイルム株式会社 Infrared-absorbing composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
JP7397195B2 (en) 2020-06-15 2023-12-12 富士フイルム株式会社 Infrared absorbing compositions, films, optical filters, solid-state imaging devices, image display devices, and infrared sensors
JP7415815B2 (en) 2020-06-22 2024-01-17 Agc株式会社 optical filter
WO2022085636A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Optical filter
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor

Also Published As

Publication number Publication date
JP7088261B2 (en) 2022-06-21
CN109642973A (en) 2019-04-16
CN109642973B (en) 2021-06-08
KR102388961B1 (en) 2022-04-22
CN112946804A (en) 2021-06-11
KR20210150591A (en) 2021-12-10
CN112946804B (en) 2023-03-24
KR102434709B1 (en) 2022-08-22
JP6791251B2 (en) 2020-11-25
KR20190040973A (en) 2019-04-19
JPWO2018043564A1 (en) 2019-06-24
JP2021028726A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7088261B2 (en) Optical filters and devices using optical filters
JP6627864B2 (en) Optical filter and device using optical filter
JP6358114B2 (en) Optical filter and device using optical filter
JP7163918B2 (en) Near-infrared cut filter and device using the near-infrared cut filter
WO2017213047A1 (en) Optical filter and optical sensor device
JP7405228B2 (en) Resin compositions for optical filters, optical filters, camera modules and electronic devices
WO2014002864A1 (en) Solid-state image capture element optical filter and application thereof
WO2017164024A1 (en) Optical filter and apparatus using optical filter
JP6578718B2 (en) Optical filter and device using optical filter
WO2015022892A1 (en) Optical filter and device using optical filter
JP2017032685A (en) Optical filter and device with optical filter
CN112180487A (en) Camera module and electronic device
JP6693585B2 (en) Optical filter and device using optical filter
JP7207395B2 (en) Optical filters and devices using optical filters
JP2019053157A (en) Optical filter and device using optical filter
JP7505259B2 (en) Optical filters and their uses
KR102673502B1 (en) Near-infrared cut filters and devices using the near-infrared cut filters
JP2021120733A (en) Optical filter and application of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537346

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005541

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846568

Country of ref document: EP

Kind code of ref document: A1