WO2020255927A1 - Optical filter, imaging device, and optical sensor - Google Patents

Optical filter, imaging device, and optical sensor Download PDF

Info

Publication number
WO2020255927A1
WO2020255927A1 PCT/JP2020/023450 JP2020023450W WO2020255927A1 WO 2020255927 A1 WO2020255927 A1 WO 2020255927A1 JP 2020023450 W JP2020023450 W JP 2020023450W WO 2020255927 A1 WO2020255927 A1 WO 2020255927A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
dye
transmittance
group
carbon atoms
Prior art date
Application number
PCT/JP2020/023450
Other languages
French (fr)
Japanese (ja)
Inventor
さゆり 山田
和彦 塩野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080044620.9A priority Critical patent/CN114008494B/en
Priority to JP2021528231A priority patent/JP7484911B2/en
Publication of WO2020255927A1 publication Critical patent/WO2020255927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B53/00Quinone imides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to an optical filter that transmits light in the visible wavelength region and shields light in the near-infrared wavelength region, and an image pickup device and an optical sensor provided with the optical filter.
  • An image sensor using a solid-state image sensor transmits light in the visible region (hereinafter also referred to as “visible light”) and transmits light in the near infrared region (hereinafter “near red”) in order to reproduce color tones well and obtain a clear image.
  • An optical filter that blocks also called “outside light" is used.
  • the optical filter includes a near-infrared cut filter in which an absorption layer containing a near-infrared absorbing dye and a resin and a reflecting layer made of a dielectric multilayer film that shields near-infrared light are provided on a glass substrate.
  • Such a near-infrared cut filter is used for applications such as an ambient light sensor, in which case it absorbs light in a specific long wavelength region of near-infrared light and has a high transmittance in the visible light region. Was required.
  • Patent Document 1 discloses an optical filter using a dye having an absorption ability in a wavelength range of 850 to 1050 nm, which is a long wavelength range of near infrared light.
  • Patent Document 2 instead of the absorbing glass having absorption in the long wavelength region of near infrared light, a shape having good absorption characteristics in the wavelength region and a small size and a thin wall can be easily obtained. Moreover, the technology of the near-infrared cut filter, which is less likely to generate minute defects during polishing and is excellent in cost and productivity, is described. Patent Document 2 discloses a technique for obtaining a near-infrared cut filter having the above characteristics by using an optical film containing a transparent resin and a dye that combines a diimonium dye, a cyanine dye, and an onium salt.
  • the present invention can effectively block light in the long wavelength range of near-infrared light, particularly in the wavelength range of 850 to 1100 nm, and maintains a sufficiently high transmittance of visible light, particularly green and red. It is an object of the present invention to provide an optical filter capable of the present invention, and an image pickup device and an optical sensor having excellent color reproducibility using the optical filter.
  • the optical filter according to one aspect of the present invention contains a transparent resin having a glass transition point of 130 ° C. or higher and a near-infrared absorbing dye (A) that satisfies all of the following requirements (1-1) to (1-6). It has an absorbing layer and a reflective layer made of a dielectric multilayer film.
  • (1-1) In the spectral transmittance curve SC TR having a wavelength of 350 to 1200 nm measured by containing the near-infrared absorbing dye (A) in the transparent resin, the maximum absorption wavelength ⁇ max (A) TR is 850 to 1100 nm. It is in the wavelength range of.
  • the spectral transmittance curve SC TR has an internal transmittance of 50% in a wavelength region of 650 to 1150 nm, where the internal transmittance at the maximum absorption wavelength ⁇ max (A) TR is 10%. It has two wavelengths, and the width between the two wavelengths is 180 nm or more.
  • the present invention also provides an image pickup apparatus and an optical sensor provided with the optical filter of the present invention.
  • the present invention it is possible to effectively block light in the long wavelength range of near-infrared light, particularly in the wavelength range of 850 to 1100 nm, and to sufficiently reduce the transmittance of visible light, particularly the transmittance of green and red. It is possible to provide an optical filter that can be maintained at a high level, and an image pickup device and an optical sensor that use the optical filter and have excellent color reproducibility.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 5 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 6 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 7 is a diagram showing spectral transmittance curves of the dye (A1a-5NS) in Test Example 2 in the transparent resin P and dichloromethane.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 8 is a diagram showing spectral transmittance curves of the dye (A1a-5NS) in Test Example 19 in a transparent resin other than the transparent resin P and in dichloromethane.
  • FIG. 9 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 1; Example).
  • FIG. 10 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 1; Example).
  • FIG. 11 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 4; Example).
  • FIG. 12 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 4; Example).
  • FIG. 9 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 1; Example).
  • FIG. 10 is a diagram showing a spectral transmittance curve of
  • FIG. 13 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 6; Example).
  • FIG. 14 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 6; Example).
  • FIG. 15 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 8; comparative example).
  • FIG. 16 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 8; comparative example).
  • the near-infrared absorbing dye may be abbreviated as "NIR dye” and the ultraviolet absorbing dye may be abbreviated as “UV dye”.
  • the compound represented by the formula (A1) is referred to as a compound (A1).
  • the dye composed of the compound (A1) is also referred to as a dye (A1), and the same applies to other dyes.
  • a group represented by the formula (1x) is also described as a group (1x), and the same applies to a group represented by another formula.
  • the internal transmittance is a transmittance obtained by subtracting the influence of interfacial reflection from the actually measured transmittance, which is represented by the formula of measured transmittance / (100-reflectance).
  • the transmittance of a transparent substrate made of a resin and the spectroscopy of the transmittance of a resin layer including the case where a dye such as an absorption layer is contained in the resin are all described as "transmittance”.
  • the transmittance measured by dissolving the dye in a solvent such as dichloromethane and the transmittance of the optical filter having the dielectric multilayer film are the measured transmittance.
  • a transmittance of 90% or more means that the transmittance does not fall below 90% in the entire wavelength region, that is, the minimum transmittance is 90% or more in the wavelength region.
  • a transmittance of 1% or less means that the transmittance does not exceed 1% in the entire wavelength region, that is, the maximum transmittance is 1% or less in the wavelength region. ..
  • the average transmittance and the average internal transmittance in a specific wavelength region are arithmetic means of the transmittance and internal transmittance for each 1 nm in the wavelength region.
  • "-" representing a numerical range includes upper and lower limits.
  • the optical filter of one embodiment of the present invention is a transparent resin (hereinafter, transparent resin (P)) having a glass transition point (hereinafter, also referred to as “Tg”) of 130 ° C. or higher. It also has an absorption layer containing the NIR dye (A) that satisfies all the following requirements (1-1) to (1-6), and a reflection layer made of a dielectric multilayer film.
  • transparent resin hereinafter, transparent resin (P)
  • Tg glass transition point
  • the maximum absorption wavelength ⁇ max (A) TR is 850 to 1100 nm. It is in the wavelength range.
  • Spectral Transmittance Curve The average internal transmittance of light with a wavelength of 490 to 560 nm when the internal transmittance at the maximum absorption wavelength ⁇ max (A) TR is 10% in the SC TR T AVE490-560 (A). ) TR is 90% or more.
  • the spectral transmittance curve SC TR has an internal transmittance of 50% in the wavelength region of 650 to 1150 nm when the internal transmittance at the maximum absorption wavelength ⁇ max (A) TR is 10%. It has two wavelengths, and the width between the two wavelengths is 180 nm or more.
  • the absorption layer contains the NIR dye (A) and the transparent resin (P) having the characteristics of (1-1) to (1-6), so that the long wavelength range of near infrared light, particularly , Light in the wavelength range of 850 to 1100 nm can be effectively shielded, and the transmittance of visible light, particularly the transmittance of green and red, can be maintained sufficiently high.
  • the NIR dye (A) maintains a high transmittance of visible light in dichloromethane in relation to the transparent resin (P). I understand.
  • the NIR dye (A) further preferably satisfies 1 or more selected from the following (1-7) to (1-9), more preferably 2 or more, and particularly satisfies all. preferable.
  • Spectral transmittance curve SC Maximum absorption wavelength in DCM ⁇ max (A) Average transmittance of light having a wavelength of 435 to 480 nm when the transmittance of light in DCM is 10% T AVE435-480 (A) ) From DCM , the average internal transmittance of light with a wavelength of 435 to 480 nm when the internal transmittance at the maximum absorption wavelength ⁇ max (A) TR on the spectral transmittance curve SC TR is 10% T AVE435-480 (A). The value obtained by subtracting TR is 10% or less.
  • the value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM is 5% or less.
  • the value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from the average transmittance T AVE590-630 (A) DCM is 5% or less.
  • This filter may further have a transparent substrate.
  • the absorption layer and the reflection layer are provided on the main surface of the transparent substrate.
  • the present filter may have the absorption layer and the reflection layer on the same main surface of the transparent substrate, or may have the absorption layer and the reflection layer on different main surfaces.
  • the stacking order thereof is not particularly limited.
  • This filter may also have another functional layer.
  • other functional layers include an antireflection layer that suppresses the loss of visible light transmittance.
  • an antireflection layer that suppresses the loss of visible light transmittance.
  • the absorption layer has the outermost surface structure, a visible light transmittance loss due to reflection occurs at the interface between the absorption layer and air, so it is preferable to provide an antireflection layer on the absorption layer.
  • FIG. 1 is a configuration example of an optical filter 10A having a reflection layer 12 on one main surface of the absorption layer 11.
  • the absorption layer 11 can be composed of a layer containing the NIR dye (A) and the transparent resin (P).
  • the absorption layer 11 may further contain the NIR dye (B) and / or the NIR dye (C) described later.
  • the absorption layer 11 may have a structure in which a plurality of layers are laminated, and each layer contains an NIR dye (A), a NIR dye (B) and / or an NIR dye (C) in an appropriate combination. ..
  • the phrase "providing the reflective layer 12 on one main surface (upper) of the absorbing layer 11" is not limited to the case where the reflective layer 12 is provided in contact with the absorbing layer 11, and the absorbing layer 11 and the reflective layer 12 The following configuration is also the same, including the case where another functional layer is provided between.
  • FIG. 2 is a cross-sectional view schematically showing an example of an optical filter of an embodiment having a transparent substrate, an absorption layer, and a reflection layer.
  • the optical filter 10B has an absorption layer 11 arranged on one main surface of the transparent substrate 13 and the transparent substrate 13, and a reflection layer 12 provided on the other main surface of the transparent substrate 13.
  • the absorption layer 11 can have the same configuration as the optical filter 10A.
  • FIG. 3 is a configuration example of an optical filter 10C having an absorbing layer 11 and having reflective layers 12a and 12b on both main surfaces of the absorbing layer 11.
  • FIG. 4 shows an optical filter 10D having an absorption layer 11 on one main surface of the transparent substrate 13 and reflection layers 12a and 12b on the other main surface of the transparent substrate 13 and on the main surface of the absorption layer 11.
  • the absorption layer 11 can have the same configuration as the optical filter 10A.
  • FIG. 5 is a configuration example of an optical filter 10E provided with absorption layers 11a and 11b on both main surfaces of the transparent substrate 13 and further provided with reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
  • the two reflective layers 12a and 12b to be combined may be the same or different.
  • the reflecting layers 12a and 12b have a property of reflecting ultraviolet light and near-infrared light and transmitting visible light, and the reflecting layer 12a reflects ultraviolet light and light in the first near-infrared region.
  • the reflective layer 12b may be configured to reflect ultraviolet light and light in the second near-infrared region.
  • the two absorption layers 11a and 11b is an absorption layer having the above configuration in the present filter.
  • the absorption layers 11a and 11b may be the same or different.
  • the absorption layers 11a and 11b may be a combination of a near-infrared absorbing layer and an ultraviolet absorbing layer, or may be a combination of an ultraviolet absorbing layer and a near-infrared absorbing layer, respectively.
  • the absorption layers 11a and 11b when the absorption layers 11a and 11b contain the NIR dye (B) and / or the NIR dye (C) described later in addition to the NIR dye (A), they are contained in the absorption layers 11a and 11b, respectively.
  • the NIR dyes can be combined as appropriate.
  • the optical filter 10E contains NIR dyes (A) to (C)
  • one of the absorption layers 11a and 11b contains one selected from NIR dyes (A) to (C)
  • the composition may contain seeds.
  • the absorption layers 11a and 11b may be a single layer or a plurality of layers may be laminated.
  • FIG. 6 is a configuration example of the optical filter 10F provided with the antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10B shown in FIG.
  • the antireflection layer may cover not only the outermost surface of the absorption layer but also the entire side surface of the absorption layer. In that case, the moisture-proof effect of the absorption layer can be enhanced.
  • the absorption layer has the above-mentioned properties (1-1) to (1-6), and preferably the NIR dye (A) having one or more properties further selected from the above-mentioned (1-7) to (1-9). And a transparent resin (P).
  • the absorption layer is typically a layer or (resin) substrate in which the NIR dye (A) is uniformly dissolved or dispersed in the transparent resin (P).
  • the absorption layer may contain other NIR dyes in addition to the NIR dye (A) as long as the effects of the present invention are not impaired. Further, the absorption layer may contain a dye other than the NIR dye, particularly a UV dye, as long as the effect of the present invention is not impaired.
  • NIR dyes include NIR dyes (B) having the maximum absorption wavelength in the wavelength region of 1100 to 1200 nm in the spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing the transparent resin (P).
  • the NIR dye (C) which is a squarylium dye having a maximum absorption wavelength in the wavelength region of 630 to 750 nm, is preferable.
  • the absorption layer may contain either one of the NIR dye (B) and the NIR dye (C) in addition to the NIR dye (A), or may contain both. ..
  • the absorption layer contains the NIR dye (B), it is possible to absorb near-infrared light in a wavelength range longer than the absorption wavelength range of the NIR dye (A), and the absorption layer absorbs the wavelength range corresponding to the absorption glass. can get. Since the absorption layer contains the NIR dye (C), the influence of the incident angle dependence of the reflection layer made of the dielectric multilayer film in this filter can be reduced.
  • the NIR dye (A) has a maximum absorption wavelength ⁇ max (A) TR in the wavelength region of 850 to 1100 nm as defined in (1-1).
  • the maximum absorption wavelength ⁇ max (A) TR is preferably in the wavelength region of 900 to 1050 nm.
  • the NIR dye (A) has a TAVE490-560 (A) TR of 90% or more as defined in (1-2).
  • the T AVE 490-560 (A) TR is preferably 92% or more, more preferably 94% or more.
  • the NIR dye (A) has a TAVE590-630 (A) TR of 90% or more as defined in (1-3).
  • T AVE590-630 (A) T R is preferably 91% or more, more preferably 94% or more.
  • the NIR dye (A) has a spectral transmittance curve SC TR of 650 to 1150 nm when the internal transmittance at the maximum absorption wavelength ⁇ max (A) TR is 10%. It has two wavelengths in which the internal transmittance is 50% in the wavelength region of, and the width WT 50% between the two wavelengths is 180 nm or more.
  • the WT 50% is preferably 200 nm or more, more preferably 300 nm or more.
  • the wavelength on the short wavelength side is preferably 650 nm or more, more preferably 700 nm or more.
  • the upper limit of WT 50% is preferably about 380 nm, more preferably about 370 nm, and even more preferably about 320 nm.
  • the NIR dye (A) has a T AVE 490-560 (A) DCM- T AVE 490-560 (A) TR of 10% or less as specified in (1-5), and is specified in (1-6). As you can see, T AVE590-630 (A) DCM- T AVE590-630 (A) TR is 10% or less. T AVE490-560 (A) DCM- T AVE490-560 (A) TR and T AVE590-630 (A) DCM- T AVE590-630 (A) TR are each preferably 8% or less.
  • T AVE 490-560 (A) DCM and T AVE 590-630 (A) DCM are the maximum absorption in the spectral transmittance curve SC DCM at a wavelength of 350 to 1200 nm measured by dissolving NIR dye (A) in dichloromethane.
  • Wavelength ⁇ max (A) The average transmittance of light having a wavelength of 490 to 560 nm and the average transmittance of light having a wavelength of 590 to 630 nm, respectively, when the transmittance of light at the DCM is 10%.
  • the ⁇ max (A) DCM is preferably in the wavelength region of 850 to 1100 nm, more preferably in the wavelength region of 900 to 1000 nm.
  • the NIR dye (A) preferably has T AVE435-480 (A) DCM- T AVE435-480 (A) TR shown in (1-7) of 10% or less, more preferably 9% or less, and 7%. The following is more preferable.
  • the NIR dye (A) preferably has T AVE 490-560 (A) DCM- T AVE 490-560 (A) TR shown in (1-8) of 5% or less, more preferably 4% or less, and 3%. The following is more preferable.
  • the NIR dye (A) preferably has T AVE590-630 (A) DCM- T AVE590-630 (A) TR shown in (1-9) of 5% or less, more preferably 4% or less, and 3%. The following is more preferable.
  • the molecular structure of the NIR dye (A) is not particularly limited as long as it satisfies the requirements (1-1) to (1-6) in relation to the transparent resin (P).
  • at least one pigment selected from the group consisting of cyanine pigments, croconium pigments, phthalocyanine pigments, squarylium pigments, diimonium pigments, tris-type immonium pigments, and diketopyrrolopyrrole pigments can be mentioned, and high transmission of visible light can be mentioned.
  • Tris-type imonium dyes are particularly preferable from the viewpoint of sex and the width of the absorption layer.
  • Tris-type imonium dye which is the NIR dye (A)
  • one or more selected from the compound represented by the following formula (A1) and the compound represented by the following formula (A2) is preferable.
  • R 201 to R 206 and R 221 to R 226 have independent hydrogen atoms, halogen atoms, sulfo groups, hydroxy groups, cyano groups, nitro groups, carboxyl groups, phosphate groups, and oxygen atoms between carbon atoms.
  • R 201 to R 206 and R 221 to R 226 groups in which a substituted or unsubstituted amino group is bonded to a phenyl group are excluded.
  • two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom.
  • the hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • R 207 to R 218 and R 227 to R 238 are independently substituted with a hydrogen atom, a halogen atom, an optionally substituted amino group, an amide group, a cyano group, a nitro group, a carboxyl group, or a halogen atom. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be used.
  • the two groups adjacent to each other may be bonded to each other to form a ring having 3 to 8 members together with the two carbon atoms of the phenyl group.
  • the hydrogen atom to be bonded may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may be substituted an aryl group having 6 to 14 carbon atoms which may be substituted, and 7 carbon atoms which may be substituted.
  • R 207 to R 218 and R 227 to R 238 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the ring formed by bonding two groups adjacent to each other together with the two carbon atoms of the phenyl group may be an alicyclic ring or an aromatic ring. It may be a heterocycle. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • R 207 to R 218 and R 227 to R 238 the combination in which two groups that are adjacent to each other are bonded is in the three phenyl groups bonded to the central nitrogen atom in the formulas (A1) and (A2). There are a total of 6 sets, 2 sets each. Specifically, in the formula (A1), there are six sets of R 207 and R 208 , R 209 and R 210 , R 211 and R 212 , R 213 and R 214 , R 215 and R 216 , and R 217 and R 218 . Is.
  • the number of pairs to which two adjacent groups are bonded may be one set or two or more sets. All up to 6 pairs may be combined. For each of the three phenyl groups, it is preferable that a total of three groups are bonded.
  • one or two nitrogen atoms may be contained as a hetero atom, or an unsaturated bond may be formed between the atoms, and the number of carbon atoms is 1.
  • examples thereof include up to 6 alkylene groups. More specifically, the following groups (X-1) to (X-4) can be mentioned.
  • the hydrogen atom contained in these divalent groups may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • R 207 to R 218 and R 227 to R 238 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms or an alkoxy group, and each has a hydrogen atom or an alkyl having 1 to 12 carbon atoms.
  • a group or an alkoxy group is preferable.
  • the alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • R 201 and R 207 , R 202 and R 210 , R 203 and R 211 , R 204 and R 214 , R 205 and R 215 , R 206 and R 218 , R 221 and R 227 , R 222 and R 230 , R 223 and R 231 and R 224 and R 234 , R 225 and R 235 , and R 226 and R 238 are 4 members together with a nitrogen atom bonded to a phenyl group and two carbon atoms of the phenyl group.
  • a heterocycle of to 8 may be formed, and the hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • Xa - and Xb - each independently represents a monovalent anion.
  • the alkyl group may be linear, branched, cyclic or a combination of these structures.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • the aryl group refers to a group bonded via a carbon atom constituting an aromatic ring (however, a hetero atom is not contained) of an aromatic compound, for example, a benzene ring, a naphthalene ring, a biphenyl, or the like.
  • the aryl group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the carbon atom contributing to the bond is substituted with an alkyl group, for example, a tolyl group or a xsilyl group.
  • the aralkyl group refers to a group in which an alkyl group is bonded to an aromatic ring (however, it does not contain a hetero atom) and is bonded via a carbon atom constituting the alkyl group.
  • the aralkyl group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the atom to which the alkyl group contributing to the bond is bonded is substituted with an alkyl group.
  • the heterocyclic group is a group in which the atoms constituting the ring are bonded via the atoms constituting the alicyclic or aromatic ring composed of carbon atoms and atoms other than carbon atoms.
  • the heterocyclic group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the atom contributing to the bond is substituted with an alkyl group.
  • Examples of the atom other than the carbon atom contained in the heterocycle include an oxygen atom, a nitrogen atom, and a sulfur atom, and the number is preferably 1 or 2.
  • Xa - and Xb - as are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, C [SO 2 R f] 3 - , and the like.
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms, preferably a fluoroalkyl group having 1 to 2 carbon atoms, and more preferably a fluoroalkyl group having 1 carbon atom.
  • R f include perfluoroalkyl groups such as -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , and -C 2 F 4 H, -C 3 F 6.
  • Examples include H, -C 2 F 8 H and the like.
  • the fluoroalkyl group is preferably a perfluoroalkyl group, more preferably a trifluoromethyl group.
  • Xa - and Xb - as are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 -, C [SO 2 CF 3] 3 - and the like are preferable, from the viewpoint difference in optical characteristics between dichloromethane solution and resin is small, SbF 6 -, PF 6 - and N [SO 2 CF 3] 2 - are more preferable, SbF 6 -, N [SO 2 CF 3 ] 2 - is particularly preferable. From the viewpoint of light resistance, BF 4-, PF 6 -, N [SO 2 CF 3] 2 - are preferred.
  • the following formulas (A1a), (A1b), and (A1c) are based on the structure of the group bonded to the nitrogen atom bonded to the 4-position of the three phenyl groups bonded to the central nitrogen atom. ), They were classified into three types of dyes (A1a) to (A1c).
  • the following formulas (A2a) and (A2b) based on the structure of the group bonded to the nitrogen atom bonded to the 4-position of the three phenyl groups bonded to the central nitrogen atom, It was classified into three types of dyes (A2a) to (A2c) represented by the formula (A2c), respectively.
  • the dye (A1a) and the dye (A2a) have a structure in which the nitrogen atom bonded to the 4-position of the three phenyl groups (hereinafter, the nitrogen atom at the 4-position) does not form a heterocycle.
  • the dye (A1b) and the dye (A2b) have a structure in which at least one set of two groups bonded to each of the three nitrogen atoms at the 4-position is bonded to each other to form a heterocycle. Two sets of two groups each bonded to the three 4-position nitrogen atoms may be bonded to each other, or all three sets may be bonded.
  • the dye (A1c) and dye (A2c) formed a heterocycle in which at least one of the two groups attached to the three nitrogen atoms at the 4-position was bonded to the group attached to the 3- or 5-position of the phenyl group. It is a structure.
  • the dye (A1c) and the dye (A2c) may have 2 to 6 heterocycles.
  • R 201 to R 206 and R 221 to R 226 are independently hydrogen atoms, halogen atoms, sulfo groups, hydroxy groups, cyano groups, nitro groups, and carboxyl groups, respectively.
  • R 201 to R 206 and R 221 to R 226 are each independently preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • R 207 ⁇ R 218 and R 227 ⁇ R 238 are each independently, it can be like the R 207 ⁇ R 218 and R 227 ⁇ R 238 in formula (A1) and formula (A2).
  • Q 1 , Q 2 and Q 3 are such that R 201 and R 202 , R 203 and R 204 and R 205 and R 206 in formula (A1) are bonded, respectively, and these groups are bonded. It shows a divalent group when a heterocycle having 3 to 8 members is formed together with the nitrogen atom.
  • Q 11 , Q 12 and Q 13 are such that R 221 and R 222 , R 223 and R 224 and R 225 and R 226 in formula (A2) are bonded, respectively, and these groups are bonded. It shows a divalent group when a heterocycle having 3 to 8 members is formed together with the nitrogen atom.
  • Formula (A1b) and formula (A2b) may if it has at least one of Q 1 ⁇ Q 3 and Q 11 ⁇ Q 13 each may have two or more, may have three ..
  • the hydrogen atom bonded to Q 1 ⁇ Q 3 and Q 11 ⁇ Q 13 may be substituted by an alkyl group having 1 to 12 carbon atoms independently.
  • Q 1 to Q 3 and Q 11 to Q 13 are independently alkylene groups represented by ⁇ (CH 2 ) n1 ⁇ (n1 is an integer of 2 to 7), and hydrogen of the alkylene group.
  • the atom may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • R 201 to R 206 and R 221 to R 226 are independently similar to R 201 to R 206 and R 221 to R 226 in the formulas (A1a) and (A2a), respectively. it can.
  • R 207 to R 218 and R 227 to R 238 can be independently made similar to R 207 to R 218 and R 227 to R 238 in formulas (A1) and (A2), respectively.
  • Q 4 ⁇ Q 9 are each, R 201 and R 207, R 202 and R 210, R 203 and R 211, R 204 and R 214, R 205 and R 215, R 206 and R 218 Shows a divalent group in the case where is bonded to form a heterocycle having 4 to 8 members together with the nitrogen atom and the carbon atom of the phenyl group to which these groups are bonded.
  • Q 14 ⁇ Q 19 respectively, R 221 and R 227, R 222 and R 230, R 223 and R 231, R 224 and R 234, R 225 and R 235, R 226 and R 238 Shows a divalent group in the case where is bonded to form a heterocycle having 4 to 8 members together with the nitrogen atom and the carbon atom of the phenyl group to which these groups are bonded.
  • Formula (A1c) and formula (A2c) may if it has at least one of Q 4 ⁇ Q 9 and Q 14 ⁇ Q 19 each may have two or more, have up to 6 Good.
  • the hydrogen atom bonded to Q 4 ⁇ Q 9 and Q 14 ⁇ Q 19 may be substituted by an alkyl group having 1 to 12 carbon atoms independently.
  • Q 4 ⁇ Q 9 and Q 14 ⁇ Q 19 are each independently, - (CH 2) n2 - (n2 is an integer of 1-5) is preferably an alkylene group represented by hydrogen of the alkylene group The atom may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • R 201 ⁇ R 218 and R 221 ⁇ R 238 are each independently, it can be like the R 201 ⁇ R 218 and R 221 ⁇ R 238 in formula (A1) and formula (A2) ..
  • the dye (A1a) and the dye (A2a) include compounds in which R 201 to R 218 and R 221 to R 238 are shown in Tables 1 and 2 below, respectively.
  • R 201 to R 218 and R 221 to R 238 are shown in Tables 1 and 2 below, respectively.
  • R 201 , R 203 , and R 205 have the same group, they are collectively shown in one column in Table 1.
  • R 202 , R 204 , and R 206 are also shown together in the same manner.
  • R 207 to R 218 in the three phenyl groups bonded to the central nitrogen atom, the substituents at the same position are grouped together as "R 207 , R 211 , R 215 ", "R 208 , R 212 , R". 216 ”,“ R 209 , R 213 , R 217 ”,“ R 210 , R 214 , R 218 ”.
  • the same description method was used for the dye (A2a).
  • Xa - and Xb - show no, in even Xa any compound - or Xb - are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, or, C [SO 2 R f] 3 - in is there.
  • Xa - and Xb - are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 - or C [SO 2 CF 3] 3 - Is preferable.
  • the dyes corresponding to the preferred monovalent anions are shown below.
  • the dye (A1a-1) when Xa ⁇ is I ⁇ , the dye (A1a-1I), BF 4- is the dye (A1a-1B), SbF 6 ⁇ is the dye (A1a-1Sb), and PF. 6 - dye (A1a-1P) in the case of, ClO 4 - dye (A1a-1Cl) the case of, N [SO 2 CF 3] 2 - in the case where the colorant (A1a-1NS), C [ SO 2 CF 3 ] 3 - shows the case of the dye (A1a-1CS).
  • Table 1 and 2 Ph represents a phenyl group, an alkyl group such as -C 3 H 7 is an alkyl group of all linear.
  • Examples of the dye (A1b), more specifically, Q 1 ⁇ Q 3, R 207 ⁇ R 218 is, compounds shown in Table 3 below.
  • Q 1 ⁇ Q 3, R 207 ⁇ R 218 is described in the same manner as in Table 1.
  • Q 11 to Q 13 and R 227 to R 238 include compounds shown in Table 4 below.
  • R227 to R238 have the same description as in Table 2.
  • Table 3 4, Xa - and Xb - show no, in any of the compound Xa - or Xb - is similar to the dye shown in Table 1 (A1a).
  • all alkyl groups such as -C 4 H 9 are linear alkyl groups.
  • Examples of the dye (A1c), more specifically, Q 4 ⁇ Q 9, "R 202, R 204, R 206", “R 208, R 212, R 216", “R 209, R 213, R 217 , "R 210 , R 214 , R 218 " are listed in Table 5 below.
  • Table 5 shows that when having Q 5, Q 7, Q 9, to have the same group as Q 5, Q 7, Q 9, shown in Table 5 are collectively into one column.
  • “R 202 , R 204 , R 206 " and “R 210 , R 214 , R 218 " are groups that are present when the dye (A1c) does not have Q 5 , Q 7 , Q 9 .
  • Table 6 In illustrative dye (A2c), because they have the same groups as Q 14, Q 16, Q 18 , shown in Table 6 are collectively into one column.
  • Q 15, Q 17, Q 19 to have the same group as Q 15, Q 17, Q 19 , shown in Table 6 are collectively into one column.
  • “R 222 , R 224 , R 226 " and “R 230 , R 234 , R 238 " are groups that are present when the dye (A2c) does not have Q 15 , Q 17 , Q 19 .
  • R 202 , R 204 , R 206 ”, “R 208 , R 212 , R 216 ”, “R 209 , R 213 , R 217 ”, “R 210 , R 214 , R 218 ” are the same as in Table 1. It was described as. “ R222 , R224 , R226 ”, “ R228 , R232 , R236 ”, “ R229 , R233 , R237 ”, “ R230 , R234 , R238 ” are the same as in Table 2. It was described as.
  • the left and right symmetrical compounds of the dye (A1c) and the dye (A2c), for example, the dye (A1c-1) and "Q 5 , Q 7 , Q 9 " are -CH 2- CH 2- CH 2- CH. 2- , "R 201 , R 203 , R 205 “ is -C 2 H 5 , "R 207 , R 211 , R 215 “, “R 208 , R 212 , R 216 “, “R 209 “ , R 213 , R 217 “, are treated as the same compound as the compound in which H is.
  • Table 5 6, Xa - and Xb - show no, in any of the compound Xa - or Xb - is similar to the dye shown in Table 1 (A1a).
  • an alkyl group such as -C 3 H 7 is an alkyl group of all linear.
  • Tables 5 and 6 "Q 4 , Q 6 , Q 8 ", “Q 5 , Q 7 , Q 9 “, “Q 14 , Q 16 , Q 18 “, and "Q 15 , Q 17 , Q”
  • the divalent group shown in the column of " 19 " is a mode in which the left side is bonded to a nitrogen atom and the right side is bonded to a carbon atom of a phenyl group.
  • the dye (A1) includes the dye (A1a-5Sb), the dye (A1a-5NS), the dye (A1a-5P), the dye (A1a-5Cl), and the dye (A1a-5B) as the dye (A1a). ), Dye (A1a-1NS), Dye (A1a-4Sb), Dye (A1a-4NS), Dye (A1a-4P), Dye (A1a-7NS), Dye (A1a-7P), etc.
  • A1a-5Sb), dye (A1a-5NS), dye (A1a-5P), dye (A1a-4Sb), dye (A1a-4NS), dye (A1a-4P) are more preferable.
  • the dye (A1b), a dye (A1b-1Sb), a dye (A1b-1NS), a dye (A1b-1P) and the like are preferable.
  • As the dye (A1c), a dye (A1c-3NS), a dye (A1c-3P), a dye (A1c-4NS), a dye (A1c-4P), a dye (A1c-10NS), a dye (A1c-10P) and the like are preferable.
  • Dye (A1b-1NS), Dye (A1b-1NS), Dye (A1c-4NS), Dye (A1c-4P), Dye (A1c-10NS), Dye (A1c-10P) are more preferable.
  • the dye (A2) includes the dye (A2a-5Sb), the dye (A2a-5NS), the dye (A2a-5P), the dye (A2a-5Cl), and the dye (A2a-5B) as the dye (A2a). ), Dye (A2a-1NS), Dye (A2a-4Sb), Dye (A2a-4NS), Dye (A2a-4P), Dye (A2a-7NS), Dye (A2a-7P), etc.
  • A2a-5Sb), dye (A2a-5NS), dye (A2a-5P), dye (A2a-4Sb), dye (A2a-4NS), dye (A2a-4P) are more preferable.
  • the dye (A2b), a dye (A2b-1Sb), a dye (A2b-1NS), a dye (A2b-1P) and the like are preferable.
  • As the dye (A2c), a dye (A2c-3NS), a dye (A2c-3P), a dye (A2c-4NS), a dye (A2c-4P), a dye (A2c-10NS), a dye (A2c-10P) and the like are preferable.
  • Dye (A2b-1NS), Dye (A2b-1NS), Dye (A2c-4NS), Dye (A2c-4P), Dye (A2c-10NS), Dye (A2c-10P) are more preferred.
  • the NIR dye (A) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (A), and may have the property of NIR dye (A) as a mixture.
  • the dye (A1) and the dye (A2) can be produced by known methods, respectively.
  • the dyes (A1a) to dyes (A1c) can be produced, for example, by the methods described in Japanese Patent Application Laid-Open No. 2007-197492.
  • the dyes (A2a) to dyes (A2c) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2009-221146.
  • the NIR dye (B) is a dye having a maximum absorption wavelength ⁇ max (B) TR in a wavelength region of 1100 to 1200 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing it in a transparent resin (P). is there.
  • the maximum absorption wavelength ⁇ max (B) TR is preferably in the wavelength region of 1100 to 1150 nm.
  • the NIR dye (B) has a high visible transmittance in the resin.
  • the molecular structure is not particularly limited as long as the maximum absorption wavelength ⁇ max (B) TR is in the range of 1100 to 1200 nm.
  • Specific examples thereof include at least one pigment selected from the group consisting of cyanine pigments, croconium pigments, phthalocyanine pigments, squarylium pigments, diimonium pigments, diketopyrrolopyrrole pigments, metal complex pigments, and metal oxides, which are visible.
  • the diimonium dye is particularly preferable from the viewpoint of high light transmission.
  • the diimonium dye which is the NIR dye (B) one or more selected from the compound represented by the following formula (B1) and the compound represented by the following formula (B2) is preferable.
  • R 241 to R 248 and R 261 to R 268 are independently unsaturated bonds between hydrogen atom, halogen atom, sulfo group, hydroxy group, cyano group, nitro group, carboxyl group, phosphoric acid group and carbon atom.
  • R 241 to R 248 and R 261 to R 268 are independently unsaturated bonds between hydrogen atom, halogen atom, sulfo group, hydroxy group, cyano group, nitro group, carboxyl group, phosphoric acid group and carbon atom.
  • R 241 to R 248 and R 261 to R 268 two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom.
  • the hydrogen atom bonded to may be substituted with an alkyl group having 1 to 12 carbon atoms.
  • an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may be substituted an aryl group having 6 to 14 carbon atoms which may be substituted, and 7 carbon atoms which may be substituted.
  • Cyano group and acyloxy group having 1 to 6 carbon atoms are examples of substituent in the aralkyl group of to 14 or the heterocyclic group having 3 to 14 members.
  • R 241 to R 248 and R 261 to R 268 are each independently preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group or alkoxy group preferably has 1 to 8 carbon atoms.
  • linear or branched alkyl groups having 4 to 6 carbon atoms are preferable from the following viewpoints.
  • the solubility in an organic solvent is improved, and when the number of carbon atoms is 6 or less, the heat resistance is improved. It is considered that the reason why the heat resistance is improved is that the melting point of the dye is increased.
  • the divalent group is preferably an alkylene group represented by- (CH 2 ) n3- (n3 is an integer of 2 to 7), and the hydrogen atom of the alkylene group has 1 to 12 carbon atoms. It may be substituted with the alkyl group of.
  • R 249 to R 253 and R 269 to R 273 are independently hydrogen atoms, halogen atoms, optionally substituted amino groups, amide groups, cyano groups, nitro groups, carboxyl groups, or halogen atoms. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be substituted.
  • the four R 249 to R 253 and R 269 to R 273, respectively, may be the same or different.
  • R 249 to R 253 and R 269 to R 273 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Xc - and Xd - each independently represents a monovalent anion.
  • Xc - and Xd - as, for example, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 - and the like, etc. -, C [SO 2 R f ] 3.
  • PF 6 -, N [SO 2 R f] 2 -, C [SO 2 R f] 3 - are preferred, PF 6 -, N [SO 2 R f] 2 - is more preferable.
  • R f can be set in the same manner as in the cases of Xa ⁇ and Xb ⁇ , including preferred embodiments.
  • R 241 to R 253 and R 261 to R 273 respectively, and the compounds shown in Tables 7 and 8 below can be mentioned.
  • the example dye (B1) since they have the same group as R 241 and R 243 , R 245 and R 247 , they are collectively shown in one column in Table 7.
  • R 242 , R 244 , R 246 , and R 248 are collectively shown in one column in Table 7.
  • R 249 4 to R 253 4 indicate that R 249 to R 253 each have 4 groups or atoms, and if the 4 groups or atoms are the same, list only one of those groups or atoms. did.
  • Xc - and Xd - show no, in even Xc any compound - or Xd - are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, or, C [SO 2 R f] 3 - in is there.
  • Xc - and Xd - are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 - or C [SO 2 CF 3] 3 - Is preferable.
  • the dyes corresponding to the preferred monovalent anions are shown below.
  • the dye (B1-1) the case where Xc ⁇ is I ⁇ is the dye (B1-1I), the case of BF 4- is the dye (B1-1B), and the case of SbF 6 ⁇ is the dye (B1-1Sb).
  • PF 6 - in the case where the colorant (B1-1P), ClO 4 - in the case where the colorant (B1-1Cl), N [SO 2 CF 3] 2 - in the case where the colorant (B1-1NS), C [SO 2 CF 3] 3 - shows the case of the dye (B1-1CS).
  • Ph represents a phenyl group
  • an alkyl group such as -C 3 H 7 is an alkyl group of all linear.
  • the dye (B1) includes a dye (B1-5NS), a dye (B1-5Sb), a dye (B1-5P), a dye (B1-4NS), a dye (B1-4Sb), and a dye (B1-). 4P) and the like are preferable.
  • the dye (B2) a dye (B2-4NS), a dye (B2-4P), a dye (B2-5NS), a dye (B2-5P) and the like are preferable.
  • the NIR dye (B) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (B), and may have the property of NIR dye (B) as a mixture.
  • the dye (B1) and the dye (B2) can be produced by known methods, respectively.
  • the dye (B1) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2009-137894.
  • the dye (B2) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2000-229931.
  • the NIR dye (C) is a squarylium dye having a maximum absorption wavelength ⁇ max (C) TR in the wavelength region of 630 to 750 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing it in a transparent resin (P). Is.
  • the maximum absorption wavelength ⁇ max (c) TR is preferably in the wavelength region of 650 to 740 nm.
  • the NIR dye (C) has a higher visible transmittance in the resin, and when the transmittance increases from the maximum absorption wavelength ⁇ max (C) TR to the short wavelength side, it may show a steep rise. preferable.
  • the NIR dye (C) is not particularly limited as long as it is a squarylium dye that satisfies the requirements of the maximum absorption wavelength ⁇ max (C) TR . More specifically, as the NIR dye (C), a squarylium dye represented by the following formula (I) or formula (II) is preferable.
  • R 24 and R 26 are independently hydrogen atom, halogen atom, hydroxyl group, alkyl group or alkoxy group having 1 to 20 carbon atoms, acyloxy group having 1 to 10 carbon atoms, aryl group having 6 to 11 carbon atoms, respectively.
  • an oxygen atom, a saturated or unsaturated hydrocarbon group of may having 1 to 25 carbon atoms containing a ring structure), - NHR 30, or,, -SO 2 -R 30 (R 30 are each one or more hydrogen atoms May be substituted with a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, or a cyano group, and may contain an unsaturated bond, an oxygen atom, a saturated or unsaturated ring structure between carbon atoms, and has 1 to 25 carbon atoms.
  • the group (R 41 , R 42 ) represented by the following formula (S) is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms or an alkoxy. Indicates a group. K is 2 or 3).
  • R 21 and R 22 , R 22 and R 25 , and R 21 and R 23 are linked together to form a heterocycle A, heterocycle B, and heterocycle C with 5 or 6 members, respectively, with nitrogen atoms. May be good.
  • R 21 and R 22 have an alkyl group having a hydrogen atom of 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having a hydrogen atom as a divalent group ⁇ Q— to which they are bonded.
  • An alkylene group or an alkyleneoxy group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent is shown.
  • R 22 and R 25 when the heterocycle B is formed, and R 21 and R 23 when the heterocycle C is formed are the divalent groups -X 1- Y 1- and-when they are bonded, respectively.
  • X 2- Y 2- (the side that binds to nitrogen is X 1 and X 2 ), X 1 and X 2 are the groups represented by the following formulas (1x) or (2x), respectively, and Y 1 and Y 2 are respectively. It is a group represented by any of the following formulas (1y) to (5y).
  • Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
  • the four Zs are independently hydrogen atoms, hydroxyl groups, alkyl or alkoxy groups having 1 to 6 carbon atoms, or -NR 38 R 39 (R 38 and R 39 are independent, respectively. Indicates a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • R 31 to R 36 are independent hydrogen atoms, alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 10 carbon atoms, and R 37 is an alkyl group having 1 to 6 carbon atoms or 6 to 10 carbon atoms. Indicates an aryl group.
  • R 27 , R 28 , R 29 , R 31 to R 37 , R 21 to R 23 when not forming a heterocycle, and R 25 are 5-membered rings coupled with any other of these. Alternatively, a 6-membered ring may be formed. R 31 and R 36 and R 31 and R 37 may be directly coupled.
  • R 21 , R 22 , R 23 and R 25 independently have a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms or an alkoxy group, and a carbon number of carbon atoms. It represents an acyloxy group of 1 to 10, an aryl group having 6 to 11 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms which may have a substituent or an oxygen atom between carbon atoms. ..
  • the hydrocarbon group is an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group and the alkyl moiety in the alkoxy group, aryl group or aralkyl group may be linear, branched chain, cyclic or a combination of these structures.
  • examples of the substituent in R 29 include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, and an acyloxy group having 1 to 6 carbon atoms.
  • examples of the substituent in the case of "may have a substituent" except for R 29 include a halogen atom or an alkoxy group having 1 to 15 carbon atoms.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • Ring Z is a 5-membered ring or a 6-membered ring each independently having 0 to 3 heteroatoms in the ring, and the hydrogen atom contained in the ring Z may be substituted.
  • the substituent includes a halogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  • R 1 and R 2, R 2 and R 3, and the carbon atoms or heteroatoms constituting R 1 and ring Z is, respectively form a heterocyclic ring A1, heterocycle B1 and heterocyclic C1 together with the nitrogen atom linked to each other
  • the hydrogen atoms contained in the heterocycle A1, the heterocycle B1 and the heterocycle C1 may be substituted.
  • the substituent includes a halogen atom or an alkyl group having 1 to 15 carbon atoms which may have a substituent.
  • R 1 and R 2 each independently contain an unsaturated bond, a hetero atom, a saturated or unsaturated ring structure between hydrogen atoms, halogen atoms, or carbon atoms.
  • R 4 and R 3 in the case of not forming a hetero ring may independently contain a hetero atom between a hydrogen atom, a halogen atom, or a carbon atom, and may have a substituent or an alkyl group or a substituent. Indicates an alkoxy group.
  • the number of carbon atoms of the hydrocarbon group is 1 to 15.
  • the number of carbon atoms of the alkyl group or the alkoxy group may be 1 to 10.
  • a halogen atom or an alkoxy group having 1 to 10 carbon atoms can be exemplified.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • Examples of the compound (I) include compounds represented by any of the formulas (I-1) to (I-4).
  • the NIR dye (C) contains the compounds (I-1) to (I-) from the viewpoint of increasing the visible light transmittance of the resin layer containing the NIR dye (C). 3) is preferable, and compound (I-1) is particularly preferable.
  • X 1 is preferably a group (2x), and Y 1 is preferably a single bond or a group (1y).
  • R 31 to R 36 a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable.
  • Specific examples of -Y 1- X 1- include divalent organic groups represented by the formulas (11-1) to (12-3).
  • R 21 is independently formulated (1) from the viewpoint of solubility, heat resistance, and steepness of change near the boundary between the visible region and the near infrared region in the spectral transmittance curve.
  • the group represented by 4-1) or the formula (4-2) is more preferable.
  • R 81 to R 85 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • R 24 is preferably -NR 27 R 28 .
  • R 23 and R 26 are independently preferable to be a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms, and all of them are more preferably a hydrogen atom.
  • a halogen atom such as a fluorine atom, a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms , Acyloxy group having 1 to 6 carbon atoms and the like.
  • the R 29 has a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, or a substituent.
  • Alkoxy groups having 7 to 18 carbon atoms, which may have oxygen atoms between carbon atoms, are preferable.
  • R 29 may be a linear, branched, cyclic alkyl group having 1 to 17 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms and / or 1 to 6 carbon atoms which may be substituted with a fluorine atom.
  • a group selected from an aralkyl group having a phenyl group which may be substituted with a group and / or an alkoxy group having 1 to 6 carbon atoms is preferable.
  • one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, or a cyano group, and unsaturated bonds, oxygen atoms, saturation, or
  • a group that is a hydrocarbon group having at least one or more branches and having 5 to 25 carbon atoms, which may contain an unsaturated ring structure, can also be preferably used.
  • R 29 include groups represented by the following formulas (11a), (11b), (12a) to (12e), and (13a) to (13e).
  • the compound (I-11) includes the compounds shown in Table 9 below.
  • Table 9 the group (11-1) is shown as (11-1). The same applies to other groups.
  • the display of groups is the same in the other tables below.
  • the compounds shown in Table 9 have the same meaning of each symbol on the left and right sides of the squarylium skeleton. The same applies to the squarylium dyes shown in the other tables below.
  • R 24 is preferably -NH-SO 2- R 30 from the viewpoint of increasing the transmittance of visible light, particularly the transmittance of light having a wavelength of 430 to 550 nm.
  • a compound in which R 24 is -NH-SO 2- R 30 is represented by the formula (I-12).
  • R 23 and R 26 are independently preferable to be a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms, and all of them are more preferably a hydrogen atom.
  • R 30 has an alkyl or alkoxy group having 1 to 12 carbon atoms which may have a branch independently from the viewpoint of light resistance, or an unsaturated ring structure. 6 to 16 hydrocarbon groups are preferred. Examples of the unsaturated ring structure include benzene, toluene, xylene, furan, and benzofuran. R 30 is more preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may independently have a branch. In each group showing R 30 , a part or all of hydrogen atoms may be substituted with halogen atoms, particularly fluorine atoms. The hydrogen atom is replaced with a fluorine atom so that the adhesion between the resin layer containing the dye (I-12) and, for example, the transparent substrate is not deteriorated.
  • R 30 having an unsaturated ring structure include groups represented by the following formulas (P2), (P3), (P7), (P8), (P10) to (P13).
  • the compound (I-12) includes the compounds shown in Table 10 below.
  • Examples of the compound (II) include compounds represented by any of the formulas (II-1) to (II-3).
  • R 1 and R 2 are alkyl having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom, or a substituent.
  • the groups are shown, and R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  • R 1 , R 4 , and R 9 to R 12 are alkyl having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom, or a substituent.
  • the groups are shown, and R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
  • R 1 and R 2 in compound (II-1) and compound (II-2) are preferably alkyl groups having 1 to 15 carbon atoms independently from the viewpoint of solubility in a resin, visible light transmission, and the like.
  • An alkyl group having 7 to 15 carbon atoms is more preferable, an alkyl group having at least one of R 1 and R 2 having a branched chain having 7 to 15 carbon atoms is more preferable, and both R 1 and R 2 have 8 carbon atoms.
  • Alkyl groups having up to 15 branched chains are particularly preferred.
  • R 3 is preferably an alkyl group having a hydrogen atom, a halogen atom, or 1 to 3 carbon atoms, and more preferably a hydrogen atom, a halogen atom, or a methyl group, independently from the viewpoint of solubility in a resin, visible light transmission, and the like.
  • R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom, from the viewpoint of steepness of change near the boundary between the visible region and the near infrared region.
  • R 5 in compound (II-1) and R 6 in compound (II-2) are preferably alkyl groups having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom, or a halogen atom. , Hydrogen atom, halogen atom, methyl group are more preferable.
  • Specific examples of the compound (II-1) and the compound (II-2) include the compounds shown in Tables 11 and 12, respectively.
  • Tables 11 and 12 -C 8 H 17 , -C 4 H 9 , and -C 6 H 13 represent linear octyl, butyl, and hexyl groups, respectively.
  • R 1 in compound (II-3) is preferably an alkyl group having 1 to 15 carbon atoms, and an alkyl group having 1 to 10 carbon atoms independently from the viewpoint of solubility in a resin, visible light transmission, and the like. More preferably, an ethyl group and an isopropyl group are particularly preferable.
  • R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom.
  • R 7 and R 8 are preferably an alkyl group having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom or a halogen atom, and more preferably a hydrogen atom, a halogen atom or a methyl group.
  • R 9 to R 12 are preferably alkyl groups having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom, or a halogen atom.
  • -CR 9 R 10 -CR 11 R 12 as, the base (11-1) to (11-3) or, divalent organic groups represented by the following formulas (11-5).
  • -C (CH 3 ) (CH 2- CH (CH 3 ) 2 ) -CH (CH 3 ) -... (11-5)
  • the compound (II-3) includes the compounds shown in Table 13 below.
  • the NIR dye (C) the dye (I-11) and the dye (I-12) are preferable from the viewpoint of solubility in a resin or a solvent and visible permeability, and the dye (I) shown in Table 9 is preferable. -11) and the dye (I-12) shown in Table 10 are more preferable. Furthermore, among these, dye (I-11-7), dye (I-12-2), dye (I-12-9), dye (I-12-15), dye (I-12-23) , Dye (I-12-24) and the like are preferable.
  • the NIR dye (C) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (C), and may have the property of NIR dye (C) as a mixture.
  • Compound (I) and compound (II) can each be produced by known methods.
  • compound (I) can be prepared, for example, by the method described in US Pat. No. 5,543,086.
  • Compound (I-12) can be produced, for example, by the methods described in US Patent Application Publication No. 2014/0061505 and International Publication No. 2014/088063.
  • Compound (II) can be produced by the method described in WO 2017/135359.
  • UV dye optionally contained in the absorption layer include oxazole-based, merocyanine-based, cyanine-based, naphthalimide-based, oxadiazole-based, oxazine-based, oxazolidine-based, naphthalic acid-based, and styryl-based.
  • examples thereof include dyes such as anthracene type, cyclic carbonyl type and triazole type. Of these, oxazole-based and merocyanine-based pigments are preferable.
  • one type of UV dye may be used alone for the absorption layer, or two or more types may be used in combination.
  • the transparent resin (P) is a resin having a Tg of 130 ° C. or higher and satisfying the above (1-1) to (1 to 6) in relation to the NIR dye (A).
  • the transparent resin (P) preferably further satisfies one or more selected from the above (1-7) to (1-9) in relation to the NIR dye (A).
  • Tg is determined by DSC measurement (Differential Scanning Calorimetry).
  • the Tg of the transparent resin (P) is 130 ° C. or higher, the absorbing layer is excellent in heat resistance for maintaining the optical characteristics of the NIR dye (A) in high temperature use. Further, in a preferred embodiment, deformation due to heat or stress is unlikely to occur, and the adhesion of the dielectric multilayer film is excellent in this filter.
  • the Tg is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. Although there is no particular upper limit on Tg, the Tg of the transparent resin (P) is preferably 400 ° C. or lower from the viewpoint of molding processability and the like.
  • the type is particularly limited as long as the Tg is 130 ° C. or higher and the above requirements (1-1) to (1 to 6) are satisfied in relation to the NIR dye (A).
  • Polyimideimide resin, polyolefin resin, cycloolefin resin, polyester resin and the like can be used.
  • At least one selected from polyimide resin, polyester resin, polycarbonate resin, cycloolefin resin and epoxy resin is preferable.
  • a polyimide resin is preferable, and a polyimide resin having a Tg of 200 ° C. or higher is particularly preferable.
  • the transparent resin (P) may be made of one kind of resin or two or more kinds of resins. When it is composed of two or more kinds of resins, the properties of the individual resins do not necessarily satisfy the requirements of the transparent resin (P), and the mixture may satisfy the requirements of the transparent resin (P).
  • the transparent resin (P) As the transparent resin (P), a commercially available product may be used.
  • examples of commercially available products include OKP4HT, B-OKP-2, and OKP-850 (all of which are manufactured by Osaka Gas Chemical Co., Ltd., trade names) as polyester resins.
  • polycarbonate resins that can be used as transparent resin (P), FPC-0220 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name), Panlite (registered trademark) SP3810 (manufactured by Teijin Limited, trade name), Examples thereof include PURE-ACE (registered trademark) M5 (manufactured by Teijin Limited, product name) and S5 (manufactured by Teijin Limited, product name).
  • Neoprim registered trademark
  • C-3650 manufactured by Mitsubishi Gas Chemical Company, Inc., trade name
  • C-3G30 Mitsubishi Gas Chemical Company, Inc., trade name
  • P transparent resin
  • C-3450 Mitsubishi Gas Chemical Company, product name
  • P500 Mitsubishi Gas Chemical Company, product name
  • JL-20 New Japan Chemical Co., Ltd.
  • the varnishes of these polyimide resins may contain silica) and the like.
  • cycloolefin resins that can be used as transparent resin (P), ARTON (registered trademark) F4520 (manufactured by JSR, trade name), ZEONEX (registered trademark) K26R, F52R, T62R, APEL (registered trademark) APL5014DP, APL6015T (Both are manufactured by Mitsui Chemicals, Inc., trade name) and the like.
  • the absorption layer includes the above-mentioned essential dye NIR dye (A), any dye NIR dye (B), and NIR. It is preferable that it is composed only of a dye (C), a dye such as a UV dye, and a transparent resin (P).
  • the adhesive layer may have an optional component such as a lubricant or a plasticizer.
  • the absorption layer satisfies the following (2-1) and (2-2) when the average OD value is 1 in the wavelength region of the maximum absorption wavelength ⁇ max (A) TR ⁇ 10 nm of the NIR dye (A). It is more preferable to satisfy one or more selected from (2-3) and (2-4), and it is particularly preferable to satisfy all of (2-1) to (2-4). ..
  • TAVE490-560 (AL) in the wavelength region of 490 to 560 nm is 88% or more.
  • T AVE 490-560 (AL) is preferably 90% or more, more preferably 92% or more.
  • TAVE590-630 (AL) in the wavelength region of 590 to 630 nm is 70% or more.
  • T AVE590-630 (AL) is preferably 72% or more, more preferably 75% or more.
  • the wavelength ⁇ 50% is more preferably in the wavelength region of 610 to 640 nm.
  • the total width of the wavelength region in which the internal transmittance is 30% or less is 250 nm or more. In the wavelength region of 600 to 1200 nm, there may be one or a plurality of wavelength regions in which the internal transmittance is 30% or less.
  • the total width of the wavelength range in which the internal transmittance is 30% or less is preferably 250 nm or more, more preferably 300 nm or more. It can be said that the larger the total width is, the higher the NIR absorption capacity in the absorption layer is.
  • the content of the NIR dye (A) in the absorption layer is appropriately set so that the effect of the filter can be exhibited according to the design of the filter.
  • the content of the NIR dye (A) in the absorption layer is from the viewpoint of blocking near-infrared light, particularly near-infrared light in a long wavelength region, while ensuring the transmittance of visible light, particularly the transmittance of green and red. Therefore, 1 to 15 parts by mass is preferable with respect to 100 parts by mass of the transparent resin (P), and 1 to 10 parts by mass is more preferable from the viewpoint of solubility.
  • the absorption layer contains one or more selected from NIR dye (A), NIR dye (B) and NIR dye (C), the content of each NIR dye depends on the design of this filter. As appropriate so that the absorption layer satisfies the properties of (2-1) and (2-2), preferably one or more properties further selected from (2-3) and (2-4). Be selected.
  • the content of the NIR dye (A) in the absorption layer is the same as above, and the content of one or more selected from the NIR dye (B) and the NIR dye (C) ensures the transmittance of visible light.
  • the NIR dye (B) and the NIR dye (C) are each about 1 to 15 with respect to 100 parts by mass of the transparent resin (P). By mass is preferable, and from the viewpoint of solubility, 3 to 10 parts by mass is more preferable.
  • the total content of one or more selected from the NIR dye (A), the NIR dye (B) and the NIR dye (C) is preferably 2 to 30 parts by mass with respect to 100 parts by mass of the transparent resin (P). From the viewpoint of solubility, 5 to 27 parts by mass is more preferable.
  • the thickness of the absorption layer is preferably 0.1 to 100 ⁇ m.
  • the total thickness of each layer is preferably 0.1 to 100 ⁇ m. If the thickness is less than 0.1 ⁇ m, the desired optical characteristics may not be sufficiently exhibited, and if the thickness is more than 100 ⁇ m, the flatness of the layer may be lowered and the absorption rate may vary in the plane.
  • the thickness of the absorption layer is more preferably 0.3 to 50 ⁇ m.
  • another functional layer such as a reflective layer or an antireflection layer is provided, cracks or the like may occur if the absorbing layer is too thick depending on the material thereof. Therefore, the thickness of the absorption layer is more preferably 0.3 to 10 ⁇ m.
  • the absorption layer is, for example, NIR dye (A), preferably one or more selected from NIR dye (A), NIR dye (B), and NIR dye (C), and particularly preferably NIR dye (A).
  • NIR dye (B), NIR dye (C), raw material components of transparent resin (P) or transparent resin (P), and each component to be blended as needed are dissolved or dispersed in a solvent for coating.
  • a liquid can be prepared, coated on a substrate, dried, and further cured if necessary to form.
  • the base material may be a transparent substrate included in the present filter, or may be a peelable base material used only when forming an absorption layer.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like.
  • a dip coating method, a cast coating method, a spin coating method or the like can be used for coating the coating liquid.
  • An absorbent layer is formed by applying the above coating liquid on a substrate and then drying it.
  • the coating liquid contains the raw material component of the transparent resin (P)
  • further curing treatments such as thermosetting and photocuring are performed.
  • the absorption layer can be manufactured in the form of a film by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like.
  • this film may be attached onto the transparent substrate.
  • the absorption layer may have one layer or two or more layers in the present filter. When having two or more layers, each layer may have the same configuration or different layers. Further, the absorption layer may be composed of a single layer or may have a structure in which a plurality of layers are laminated. Further, the absorption layer itself may function as a substrate (resin substrate).
  • the transparent substrate is not particularly limited as long as it transmits visible light of about 400 to 700 nm, and may be a material that absorbs near-infrared light or near-ultraviolet light. Examples thereof include inorganic materials such as glass and crystals, and organic materials such as transparent resins.
  • Glasses that can be used for transparent substrates include absorbent glass (near-infrared absorbing glass) containing copper ions in fluoride-based glass, phosphate-based glass, etc., soda lime glass, borosilicate glass, non-alkali glass, and quartz. Examples include glass.
  • the "phosphate-based glass” also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
  • alkali metal ions for example, Li ion and Na ion
  • alkali ions having a small ionic radius existing on the main surface of the glass plate can be converted into alkali ions having a larger ionic radius (for example) by ion exchange at a temperature below the glass transition point.
  • Li ion is Na ion or K ion
  • Na ion is K ion.
  • the transparent resin material that can be used as a transparent substrate examples include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymers, and acrylic resins such as norbornene resin, polyacrylate and polymethylmethacrylate. , Urethane resin, vinyl chloride resin, fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin and the like.
  • examples of the crystal material that can be used for the transparent substrate include birefringent crystals such as quartz, lithium niobate, and sapphire.
  • the optical characteristics of the transparent substrate may have the above-mentioned optical characteristics as an optical filter obtained by laminating the absorption layer, the reflection layer, and the like. Sapphire is preferable as the crystal material.
  • the transparent substrate is preferably an inorganic material, and particularly preferably glass or sapphire, from the viewpoint of shape stability related to long-term reliability such as optical characteristics as an optical filter and mechanical characteristics, and handleability during filter manufacturing.
  • the shape of the transparent substrate is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped, and the thickness thereof is preferably, for example, 0.03 to 5 mm, and from the viewpoint of thinning, 0.03 to 0.5 mm. Is more preferable. From the viewpoint of workability, a transparent substrate made of glass and having a plate thickness of 0.05 to 0.5 mm is preferable.
  • the reflective layer is made of a dielectric multilayer film and has a function of shielding light in a specific wavelength range.
  • the reflective layer include those having wavelength selectivity that transmits visible light and mainly reflects light having a wavelength other than the light-shielding region of the absorption layer.
  • the reflective layer preferably has a reflective region that reflects near-infrared light.
  • the reflection region of the reflection layer may include a light-shielding region in the near-infrared region of the absorption layer.
  • the reflective layer is not limited to the above characteristics, and may be appropriately designed to have specifications that further block light in a predetermined wavelength range, for example, the near-ultraviolet region.
  • the reflective layer When the reflective layer has a reflective region that reflects near-infrared light, the reflective layer specifically preferably satisfies the following (iii-1).
  • (Iii-1) In the spectral transmittance curve with an incident angle of 0 degrees, the average transmittance T RE850-1100ave 0 ° of light having a wavelength of 850 to 1100 nm is 0.2% or less.
  • the average transmittance T RE850-1100ave 0 ° is preferably 0.15% or less, more preferably 0.05% or less.
  • the absorbing layer and the reflective layer have the following relationship.
  • the wavelength ⁇ ABSHT20-0 ° on the short wavelength side showing a transmittance of 20% with respect to light having an incident angle of 0 ° in the absorption layer satisfies 650 nm ⁇ ⁇ ABSHT20-0 ° ⁇ 800 nm
  • the wavelength ⁇ ABSHT20-0 The relationship between ° and the wavelength ⁇ RESHT 20-0 ° on the short wavelength side, which shows a transmittance of 20% in the wavelength range of 650 nm or more with respect to light having an incident angle of 0 ° in the reflective layer, satisfies (iii-2). Is preferable. (Iii-2) ⁇ ABSHT 20-0 ° + 30 nm ⁇ ⁇ RESHT 20-0 ° ⁇ 790 nm
  • the reflective layer preferably further satisfies (iii-3). (Iii-3)
  • the average transmittance of light in the wavelength region from ⁇ RESHT 20-0 ° to ⁇ RESHT 20-0 ° + 300 nm is 10% or less.
  • the reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated.
  • the high refractive index film preferably has a refractive index of 1.6 or more, more preferably 2.2 to 2.5.
  • Examples of the material of the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
  • the low refractive index film preferably has a refractive index of less than 1.6, and more preferably 1.45 or more and less than 1.55.
  • the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy, etc. in film formation.
  • the transmittance of the reflective layer changes sharply in the boundary wavelength region between the transmissive region and the light-shielding region.
  • the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 layers or more, more preferably 25 layers or more, and even more preferably 30 layers or more.
  • the total number of layers is preferably 100 layers or less, more preferably 75 layers or less, and even more preferably 60 layers or less.
  • the film thickness of the dielectric multilayer film is preferably 2 to 10 ⁇ m.
  • the reflective layer can satisfy the requirements for miniaturization, and can suppress the dependence on the incident angle while maintaining high productivity.
  • a vacuum film forming process such as a CVD method, a sputtering method or a vacuum vapor deposition method
  • a wet film forming process such as a spray method or a dip method
  • one layer may give a predetermined optical characteristic, or two layers may give a predetermined optical characteristic.
  • each reflective layer may have the same configuration or a different configuration.
  • two or more reflective layers are provided, they are usually composed of a plurality of reflective layers having different reflection bands.
  • one is a near-infrared reflective layer that blocks light in a short wavelength band in the near infrared region, and the other is a long wavelength band and a near ultraviolet region in the near infrared region. It may be a near-infrared / near-ultraviolet reflective layer that blocks light in both regions.
  • the present filter has a transparent substrate and two or more reflective layers are provided, all of them may be provided on one main surface of the transparent substrate, and each reflective layer may be provided on the transparent substrate. It may be sandwiched and provided on both main surfaces.
  • Anti-reflective layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Of these, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity.
  • the antireflection layer is obtained by alternately laminating dielectric films like the reflection layer.
  • This filter may include, for example, a component (layer) that provides absorption by inorganic fine particles or the like that controls the transmission and absorption of light in a specific wavelength range, as other components.
  • the inorganic fine particles include ITO (Indium Tin Oxides), ATO (Antimony-doped Tin Oxides), cesium tungstate, and lanthanum boride.
  • the ITO fine particles and the cesium tungstate fine particles have high visible light transmittance and have light absorption over a wide range in the infrared wavelength region exceeding 1200 nm, and thus can be used when such infrared light shielding property is required. ..
  • this filter By having a reflective layer and an absorbing layer containing a NIR dye (A) and a transparent resin (P), this filter provides near-infrared light while maintaining good transparency of visible light, especially green and red. In particular, it is excellent in shielding long-wavelength near-infrared light.
  • this filter satisfies all of the following requirements (3-1) to (3-3) regarding the optical characteristics measured at an incident angle of 0 degrees.
  • the present filter more preferably satisfies all the requirements (3-4) to (3-9).
  • the minimum OD value of the NIR dye (A) in the wavelength region of the maximum absorption wavelength ⁇ max (A) TR ⁇ 10 nm is 4 or more.
  • the minimum OD value at an incident angle of 0 degree is more preferably 5 or more.
  • the average transmittance TAVE490-560 (0 °) in the wavelength region of 490 to 560 nm is 82% or more.
  • the average transmittance T AVE490-560 (0 °) is more preferably 83.0% or more, further preferably 83.5% or more.
  • the average transmittance TAVE590-630 (0 °) in the wavelength region of 590 to 630 nm is 50% or more.
  • the average transmittance T AVE590-630 (0 °) is more preferably 55% or more, further preferably 60% or more.
  • the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 30 degrees is 50% wavelength lambda 50%
  • is 5 nm or less.
  • is more preferably 4 nm or less, further preferably 3 nm or less.
  • the average transmittance TAVE490-560 (30 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 30 degrees is 80% or more.
  • the average transmittance T AVE490-560 (30 °) is more preferably 81% or more, further preferably 83% or more.
  • the minimum OD value in the wavelength region of the maximum absorption wavelength ⁇ max (A) TR ⁇ 10 nm of the NIR dye (A) measured at an incident angle of 30 degrees is 3 or more.
  • the minimum OD value at an incident angle of 30 degrees is more preferably 4 or more.
  • the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 50 degrees is 50% wavelength lambda 50%
  • is 15 nm or less.
  • is more preferably 13 nm or less, further preferably 10 nm or less.
  • the average transmittance TAVE490-560 (50 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 50 degrees is 70% or more.
  • the average transmittance T AVE490-560 (50 °) is more preferably 72% or more, further preferably 74% or more.
  • the minimum OD value in the wavelength region of the maximum absorption wavelength ⁇ max (A) TR ⁇ 10 nm of the NIR dye (A) measured at an incident angle of 50 degrees is 3 or more.
  • the minimum OD value at an incident angle of 50 degrees is more preferably 4 or more.
  • This filter is useful as an optical filter for an image pickup device in a device having both an image pickup device such as a digital still camera and an optical component that uses laser light.
  • this filter is useful for applications of optical sensors such as ambient light sensors.
  • An image pickup device using this filter includes a solid-state image pickup element, an image pickup lens, and this filter.
  • This filter can be used, for example, by being arranged between an image pickup lens and a solid-state image sensor, or by being directly attached to a solid-state image sensor, an image sensor, or the like of an image pickup device via an adhesive layer.
  • NIR dye (A), NIR dye (B), and other NIR dyes were synthesized by the following methods.
  • Synthesis Examples 1 to 11 are examples of synthesis of NIR dye (A)
  • Synthesis Examples 12 to 15 are examples of synthesis of NIR dye (B)
  • Synthesis Examples 16 and 17 are examples of synthesis of other NIR dyes.
  • the NIR dye (A) the trade name S0772 manufactured by Few Chemicals, which is a commercial product represented by the following formula (S0772), and as another NIR dye, a commercially available product represented by the following formula (S2437), manufactured by Few Chemicals.
  • Product name S2437 was prepared.
  • an ultraviolet-visible near-infrared spectrophotometer (UH4150, manufactured by Hitachi High-Tech Science Co., Ltd.) was used to evaluate the optical characteristics of these dyes, and the following optical characteristics (spectral transmittance curve) were also evaluated. Similarly, UH4150 was used.
  • Step 2> Intermediate 1 (15 g, 52 mmol), potassium carbonate (71.4 g, 520 mmol), 1-bromo-2 methylpropane (127 g, 930 mmol), N, N-dimethylformamide (150 mL) obtained in step 1 in a 1 L eggplant flask. ) was added, and the mixture was stirred at 115 ° C. for 24 hours. After returning to room temperature, filtration was performed, the filtrate was extracted with dichloromethane, the solvent was removed, and the mixture was washed with methanol. As a result, 18.2 g (yield) of intermediate 2 as a brown solid was obtained. Rate 56%) Obtained.
  • Step 3> Intermediate 2 (3 g, 4.8 mmol) obtained in step 2 and N, N-dimethylformamide (60 mL) were added to a 500 mL eggplant flask, and the mixture was stirred until dissolved at 60 ° C. Then, a solution prepared by dissolving silver hexafluoroantimonate (V) (3.79 g, 11 mmol) in N, N-dimethylformamide (30 mL) was added to the solution in which Intermediate 2 was dissolved, and the mixture was stirred at 60 ° C. for 3 hours. I let you.
  • V silver hexafluoroantimonate
  • Step 2 Intermediate 3 (3 g, 4.8 mmol) and ethyl acetate (50 mL) obtained in step 1 of Synthesis Example 6 were added to a 500 mL eggplant flask, and the mixture was stirred at 60 ° C. until dissolved. Then, the intermediate 3 was dissolved in a solution prepared by dissolving potassium hexafluorophosphate (2.2 g, 12 mmol) and ammonium peroxodisulfate (2.7 g, 12 mmol) in a mixed solvent of acetonitrile (30 mL) and water (30 mL). In addition to the prepared solution, the mixture was stirred at 60 ° C. for 4 hours.
  • Step 2> 1.0 g (yield 20%) of a green solid dye (A1a-7P) was obtained in the same manner except that the intermediate 3 described in step 2 of Synthesis Example 6 was changed to intermediate 4.
  • Step 2> It is a green solid in the same manner except that the intermediate 3 described in step 2 of Synthesis Example 6 was changed to intermediate 5 and potassium hexafluorophosphate was changed to potassium bis (trifluoromethylsulfonyl) imide. 0.8 g (yield 22%) of the dye (A1a-1NS) was obtained.
  • Step 1> 4-Bromoaniline (25.4 g, 148 mmol) and N, N-dimethylformamide (80 mL) were added to a 1 L eggplant flask, and the mixture was stirred at 110 ° C. until dissolution. Then, 1-bromo-2-methylpropane (54.7 g, 399 mmol) and N-ethyldiisopropylamine (57.3 g, 444 mmol) were added, and the mixture was reacted at 130 ° C. for 15 hours.
  • Step 2 Intermediate 6 (12 g, 42 mmol) obtained in step 1 in a 1 L eggplant flask, 1,4-phenylenediamine (1.1 g, 9.8 mmol), sodium tert-butoxide (8 g, 83 mmol), tris (dibenzylidene). Add acetone) dipalladium (0) (1 g, 1.1 mmol), 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (2 g, 4 mmol), 1,4-dioxane (80 mL), and add. The reaction was carried out at 100 ° C. for 20 hours.
  • Step 3 Intermediate 7 (2 g, 2 mmol) obtained in step 2 and N, N-dimethylformamide (20 mL) were added to a 500 mL eggplant flask, and the mixture was stirred until dissolved at 60 ° C. Then, a solution of silver hexafluoroantimonate (V) (1.6 g, 4.5 mmol) in N, N-dimethylformamide (20 mL) was added to the solution of intermediate 7 and at 60 ° C. It was stirred for 2 hours.
  • V silver hexafluoroantimonate
  • the dye (S1) was synthesized according to the reaction pathway shown below. That is, the products (10) (6.5 mmol) and squaric acid (3.4 mmol) prepared with reference to European Journal of Medical Chemistry, 54, 647, (2012) were placed in a 500 mL eggplant flask, and toluene (330 mL) was added. And 1-butanol (110 mL) were dissolved, quinoline (8 mmol) was added, and the mixture was stirred at 150 ° C. for 4 hours.
  • the product (10) is an iodine salt of a compound in which the hydrogen at the 1-position of 2-methyl-benzo [c, d] indole is replaced with R, and R is -CH 2- CH (C 6 H 13). ) (C 8 H 17 ).
  • Step 1 Benzo [cd] indole-2 (1H) -one (30 g, 177 mmol) and chloroform (500 mL) were placed in a 1 L three-necked flask, and the mixture was heated and stirred at 65 ° C. to dissolve the raw materials, then cooled to 0 ° C. and bromine. (28.3 g, 177 mmol) was slowly added dropwise. After completion of the dropping, the temperature was returned to room temperature, and after stirring for 24 hours, hexane was added to the reaction solution for dilution, and the precipitate was collected by filtration. The solid on the filter paper was washed with hexane a plurality of times and vacuum dried to obtain 60 g (yield 100% or more) of Intermediate 8 which is an ocher solid.
  • Step 2> To a 1 L eggplant flask, add intermediate 8 (30 g, 121 mmol) synthesized in step 1, 4-Dimethylaminopyridine (2.0 g, 16 mmol), potassium iodide (4.0 g, 24 mmol) and sulfolane (300 mL), and add 70. The mixture was stirred at ° C. for 1 h. Potassium hydroxide (21 g, 374 mmol) and 7- (Bromomethyl) pentadecane (111 g, 363 mmol) were added to the reaction solution, and the reaction was carried out at 70 ° C. for 19 hours.
  • intermediate 8 (30 g, 121 mmol) synthesized in step 1
  • 4-Dimethylaminopyridine 2.0 g, 16 mmol
  • potassium iodide 4.0 g, 24 mmol
  • sulfolane 300 mL
  • Step 3 Intermediate 9 (33 g, 70 mmol) and ethyl acetate (2.5 g, 28 mmol) synthesized in step 2, copper (I) iodide (1.9 g, 10 mmol), 28% sodium methoxide / in a 1 L eggplant flask. A methanol solution (42 g) was added, and the mixture was stirred and reacted at 90 ° C. for 6 hours. Further, copper (I) iodide (1 g, 5 mmol) and a 28% sodium methoxide / methanol solution (20 g) were added, and the mixture was further stirred at 90 ° C. for 15 hours.
  • Step 4 Intermediate 10 (26 g, 61 mmol) synthesized in step 3 and dichloromethane (500 mL) were placed in a 2 L three-necked flask and cooled to ⁇ 78 ° C. Then, 1 M boron tribromide dichloromethane solution (200 mL) was slowly added dropwise, and after completion of the addition, the reaction solution was returned to room temperature and stirred for 2 hours. After completion of the reaction, the mixture was cooled to 0 ° C., 200 mL of water was slowly added, and boron tribromide was quenched.
  • Step 6> To a 1 L three-necked flask, add intermediate 12 (14 g, 22 mmol) synthesized in step 5, epichlorohydrin (8.2 g, 88 mmol), chloroform (50 mL), and diethyl ether (20 mL), and stir at 70 ° C. .. A mixed solution of Boron Trifluoride-Ethyl Ether Complex (15.9 g, 110 mmol) and chloroform (30 mL) was added dropwise, the temperature was raised to 130 ° C., and the mixture was stirred and reacted for 15 hours.
  • Step 7 Intermediate 13 (8 g, 10 mmol) synthesized in step 6 and hydrochloric acid (15 mL) were added to a 1 L eggplant flask, and the mixture was heated at 130 ° C. for 1 h. Then, tetrafluoroboric acid (3 mL) was added, and the reaction was further carried out for 1 hour. After completion of the reaction, the temperature was returned to room temperature, 50 mL of water was added, and 20 mL of tetrafluoroboric acid was added. Then, an extraction operation was carried out using dichloromethane and water to remove the solvent, and an orange oily substance, Intermediate 14, was obtained in an amount of 7.1 g (yield 94%).
  • a dye-containing resin layer was prepared using the various dyes and transparent resin prepared above, and the optical characteristics were measured. In addition, various dyes were dissolved in dichloromethane, and the optical characteristics were measured and compared with the optical characteristics of the dye-containing resin layer. The following commercially available products were used as the transparent resin. The results are shown in Table 14.
  • Resin D OKP-850 (manufactured by Osaka Gas Chemical Co., Ltd., trade name), polyester resin, Tg: 151 ° C.
  • Resin E Panlite (registered trademark) SP3810 (manufactured by Teijin Limited, trade name), polycarbonate resin, Tg: 150 ° C. (Other transparent resins)
  • Resin F BR50 (manufactured by Mitsubishi Rayon Co., Ltd., trade name), acrylic resin, Tg: 100 ° C.
  • the dye prepared above was uniformly dissolved in a transparent resin dissolved in cyclohexanone by 10% by mass with respect to the solid content concentration of the transparent resin.
  • the obtained solution was applied onto a glass plate (D263: manufactured by SCHOTT, trade name) and dried to obtain a dye-containing resin layer having a film thickness of about 1 ⁇ m.
  • the spectral transmittance curve of the dye-containing resin layer was obtained by using the spectral transmittance curve of the glass plate with the dye-containing resin layer and the spectral transmittance curve of the glass plate.
  • the amount of the dye added (dye concentration) described in the table is the mass with respect to 100 parts by mass of the transparent resin when the internal transmittance of light at the maximum absorption wavelength ⁇ max TR is adjusted to 10% at a film thickness of 2 ⁇ m. It is a department.
  • the average internal transmittance of light with a wavelength of 435 to 480 nm is T AVE435-480TR , and the average of light with a wavelength of 490 to 560 nm.
  • the internal transmittance T AVE490-560TR and the average internal transmittance T AVE590-630TR of light having a wavelength of 590 to 630 nm were determined.
  • the width WT 50% between the two wavelengths in the case of having two wavelengths having an internal transmittance of 50% in the wavelength region of 650 to 1150 nm was determined.
  • the wavelength on the short wavelength side where the internal transmittance is 50% in the wavelength region of 650 to 1150 nm is shown by ⁇ SH 50%
  • the wavelength on the long wavelength side is shown by ⁇ LG 50% .
  • the maximum absorption wavelength ⁇ max DCM was obtained from the spectral transmittance curve. Further, from the spectral transmittance curve in which the dye concentration in dichloromethane was adjusted so that the light transmittance at the maximum absorption wavelength ⁇ max DCM was 10%, the average transmittance of light having a wavelength of 435 to 480 nm T AVE435-480 DCM , The average transmittance of light having a wavelength of 490 to 560 nm T AVE490-560 DCM and the average transmittance of light having a wavelength of 590 to 630 nm T AVE590-630 DCM were determined, and the difference from the average internal transmittance of the dye-containing resin layer was calculated.
  • T AVE 435-480 DCM -T AVE 435-480 TR is shown in the column of "Difference of T AVE 435-480 ".
  • T AVE490-560DCM -T AVE490-560TR the column “difference T AVE490-560” showed T AVE590-630DCM -T AVE590-630TR the column "difference T AVE590-630".
  • FIG. 7 shows the spectral transmittance curves of the dye (A1a-5NS) in Test Example 2 in the transparent resin (P; resin A) and in dichloromethane.
  • FIG. 8 shows the spectral transmittance curves of the dye (A1a-5NS) in Test Example 19 in the transparent resin (resin F) and dichloromethane.
  • the spectral transmittance curves of the dyes measured in the transparent resin in FIGS. 7 and 9 show the range of WT 50% with double- headed arrows.
  • the combination of the NIR dye (A) and the transparent resin (P) of Test Examples 1 to 18 has the characteristics of (1-1) to (1-6). It can be seen that the NIR dye (A) is preferably a tris-type imonium dye in that the range of absorption of near-infrared light indicated by WT 50% is large. Further, NIR dye (A) is in terms difference in optical characteristics between dichloromethane solution and resin is small, Xa - is N [SO 2 CF 3] 2 -, SbF 6 - or PF 6 - are preferable, N It can be seen that [SO 2 CF 3 ] 2 - is particularly preferable. As the transparent resin (P), it can be seen that the polyimide resin is preferable from the viewpoint that the visible light transmittance can be increased.
  • Test Examples 19 to 23 since either the NIR dye or the transparent resin does not satisfy the requirements of the NIR dye (A) or the transparent resin (P), the characteristics of (1-1) to (1-6) are exhibited. It can be seen that 1 or more is not satisfied.
  • Test Examples 24 to 28 are examples in which the dye (B1) is combined with a transparent resin that does not meet the requirements of the transparent resin (P) or the transparent resin (P), and the dye (B1) is a transparent resin such as a polyimide resin (B1). It can be seen that when combined with P), it functions preferably as the NIR dye (B).
  • Examples 1 to 11 Manufacturing and evaluation of optical filters
  • An optical filter having the same configuration as the optical filter 10B shown in FIG. 2 was manufactured and evaluated by the following method.
  • Table 15 shows the configuration and evaluation results of the optical filter.
  • Examples 1 to 7 are examples, and examples 8 to 11 are comparative examples.
  • a transparent substrate As a transparent substrate, a CuO-containing borosilicate glass substrate (manufactured by AGC Co., Ltd., thickness 0.2 mm) or a 0.08 mm thick Teijin Pure Ace WRM5-80 (manufactured by Teijin Limited, product). Name, polycarbonate resin, Tg 215 ° C.) A resin substrate was used. In the table, "absorbent glass” and “PC resin” are described, respectively.
  • a dielectric multilayer film formed as follows was used as the reflective layer.
  • the dielectric multilayer film was formed by alternately laminating a total of 42 layers of TiO 2 film and SiO 2 film on one main surface of a transparent substrate by a vapor deposition method.
  • the composition of the reflective layer is simulated by using the number of laminated dielectric multilayer films, the film thickness of TiO 2 film, and the film thickness of SiO 2 film as parameters, and light having a wavelength of 850 to 1100 nm in a spectral transmittance curve with an incident angle of 0 degrees.
  • the design was such that the average transmittance of was 0.03%.
  • the transparent resin shown in the table NIR dye (A), NIR dye (B), NIR dye (C) (dye (I-). 12-23)) and other NIR dyes were combined to form an absorption layer with a thickness of about 2.0 ⁇ m.
  • the maximum absorption wavelength ⁇ max (C) TR in the spectral transmittance curve having a wavelength of 350 to 1200 nm measured by being contained in the resin A is 714 nm.
  • the content of the dye in the table is the mass part of the dye with respect to 100 parts by mass of the transparent resin.
  • the dye (15) has a maximum absorption wavelength ⁇ max (A) TR of 937 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by being contained in the resin A, but the characteristic of (1-4). It is a pigment that does not satisfy.
  • the maximum absorption wavelengths ⁇ maxTR in the spectral transmittance curve of the wavelengths of 350 to 1200 nm measured by being contained in the resin F are 839 nm and 771 nm, respectively.
  • Step b2> Intermediate A3-11 (8.09 g, 33 mmol) obtained in step b1 was placed in a flask and dissolved in anhydrous diethyl ether (230 mL) under a nitrogen atmosphere. The solution was cooled to ⁇ 78 ° C., a 1.6 M solution of normal butyllithium in hexane (20 mL, 32.0 mmol) was added dropwise, and the mixture was stirred for 1 hour. Subsequently, an anhydrous diethyl ether solution (120 mL) in which benzophenone (6.56 g, 36.0 mmol) was dissolved was added dropwise. The mixed solution was stirred at room temperature for one day and night.
  • Step b4 Intermediate A3-13 (4.00 g, 12.1 mmol) obtained in step b3 was placed in a flask and dissolved in anhydrous dimethylformamide (120 mL) under a nitrogen atmosphere. Anhydrous dimethylformamide solution (30 mL) in which N-bromosuccinimide (2.16 g, 12.1 mmol) was dissolved was added dropwise to the solution. The mixture was stirred at room temperature for 24 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine to remove the solvent, and then intermediate A3-14 (3.67 g, yield 74%) was obtained by column chromatography (dichloromethane).
  • Step b5 Intermediate A3-14 (3.50 g, 8.55 mmol) obtained in step b4 and shaving magnesium (0.416 g, 17.1 mmol) were placed in a flask and dissolved in anhydrous tetrahydrofuran (20 ml) under a nitrogen atmosphere. .. The solution was refluxed for 3 hours and cooled to ⁇ 40 ° C. In a separate flask, N-chlorosuccinimide (1.03 g, 7.70 mmol) is dissolved in anhydrous toluene (20 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (1.86 g, 7.70 mmol) is added. , Stirred for 20 minutes.
  • the wavelength ⁇ at which the internal transmittance is 50% in the wavelength region of 600 to 800 nm was determined.
  • the table also shows the transmittance T 500 at a wavelength of 500 nm and the transmittance T 600 at a wavelength of 600 nm.
  • optical characteristics of optical filter> Further, for the obtained optical filters of Examples 1 to 11, the spectral transmittance curves at incident angles of 0 degrees, 30 degrees and 50 degrees were obtained, and the following optical characteristics were obtained.
  • Maximum absorption wavelength of NIR dye (A) at 0 degree incident angle ⁇ max (A) Minimum OD value in wavelength region of TR ⁇ 10 nm, average transmittance TAVE435-480 (0 °) in wavelength region of 435 to 480 nm, 490 average transmittance T AVE490-560 (0 °) in the wavelength region of ⁇ 560 nm, the average transmittance T AVE590-630 (0 °) in the wavelength region of 590 ⁇ 630 nm, the transmittance in a wavelength range of 600 ⁇ 800 nm 50% The wavelength ⁇ 50% (0 °) to be obtained was determined.
  • the spectral transmittance curves of the absorption layer and the optical filter in the optical filter of the examples of FIG. 9, FIG. 10, FIG. 11, FIG. 11, FIG. 12, Example 4, FIG. 13 and FIG. Shown. 15 and 16 show the absorption layer and the spectral transmittance curve of the optical filter in the optical filter of the comparative example of Example 8.
  • the "width of T 30% or less" is indicated by W or Wa and Wb.
  • the "width of T 30% or less" is the sum of Wa and Wb.
  • the transmittance of visible light particularly the transmittance of green and red
  • the transmittance of near-infrared light can be maintained. It can be seen that the shielding property is particularly excellent in the shielding property of long-wavelength near-infrared light.
  • the optical filter of the present invention can maintain a sufficiently high transmittance of visible light, particularly green and red, and is particularly excellent in shielding near-infrared light, especially long-wavelength near-infrared light. According to the present invention, it is possible to provide an image pickup device and an optical sensor having excellent color reproducibility and durability using the optical filter.
  • 10A, 10B, 10C, 10D, 10E, 10F Optical filter, 11, 11a, 11b ... Absorption layer, 12, 12a, 12b ... Reflective layer, 13 ... Transparent substrate, 14 ... Antireflection layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

The present invention relates to an optical filter comprising an absorption layer and a reflection layer constituted of a dielectric multilayer film, the absorption layer comprising: a transparent resin having a glass transition point of 130°C or higher; and a near-infrared-ray-absorbing colorant (A) which, in the transparent resin, has a maximum absorption wavelength in the wavelength range of 850-1,100 nm, which has an average internal transmittance of 90% or higher for light having wavelengths of 490-560 nm, which has an average internal transmittance of 90% or higher for light having wavelengths of 590-630 nm, and which, in the wavelength range of 650-1,150 nm, has an internal transmittance of 50% at wavelengths, the difference between which is 180 nm or greater. The near-infrared-ray-absorbing colorant (A) has a difference in average transmittance of 490-560 nm light of 10% or less between in dichloromethane and in the transparent resin and has a difference in average transmittance of 590-630 nm light of 10% or less between in dichloromethane and in the transparent resin.

Description

光学フィルタ、撮像装置および光学センサーOptical filters, imaging devices and optical sensors
 本発明は、可視波長領域の光を透過し、近赤外波長領域の光を遮蔽する光学フィルタおよび該光学フィルタを備えた撮像装置および光学センサーに関する。 The present invention relates to an optical filter that transmits light in the visible wavelength region and shields light in the near-infrared wavelength region, and an image pickup device and an optical sensor provided with the optical filter.
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し近赤外域の光(以下「近赤外光」ともいう)を遮蔽する光学フィルタが用いられる。該光学フィルタとしては、ガラス基材上に、近赤外吸収色素と樹脂を含む吸収層と、近赤外光を遮蔽する誘電体多層膜からなる反射層とを設けた近赤外カットフィルタが知られている。 An image sensor using a solid-state image sensor transmits light in the visible region (hereinafter also referred to as "visible light") and transmits light in the near infrared region (hereinafter "near red") in order to reproduce color tones well and obtain a clear image. An optical filter that blocks (also called "outside light") is used. The optical filter includes a near-infrared cut filter in which an absorption layer containing a near-infrared absorbing dye and a resin and a reflecting layer made of a dielectric multilayer film that shields near-infrared light are provided on a glass substrate. Are known.
 このような近赤外カットフィルタは、環境光センサーなどの用途に用いられており、その場合、近赤外光の特定の長波長域の光を吸収し、可視光域は高い透過率を有することが求められていた。 Such a near-infrared cut filter is used for applications such as an ambient light sensor, in which case it absorbs light in a specific long wavelength region of near-infrared light and has a high transmittance in the visible light region. Was required.
 環境光センサー用の光学フィルタとして、例えば、特許文献1には、近赤外光の長波長域である波長850~1050nmに吸収能をもつ色素を用いた光学フィルタが開示されている。 As an optical filter for an ambient light sensor, for example, Patent Document 1 discloses an optical filter using a dye having an absorption ability in a wavelength range of 850 to 1050 nm, which is a long wavelength range of near infrared light.
 また、特許文献2には、近赤外光の長波長域に吸収を有する吸収ガラスに代わって、該波長域における吸収特性が良好であるとともに、小型で肉厚の薄い形状が容易に得られ、なおかつ研磨加工時に微小欠陥が発生しにくく、コストと生産性に優れた近赤外線カットフィルタの技術が記載されている。特許文献2では、ジイモニウム系色素、シアニン系色素およびオニウム塩を組み合わせた色素と透明樹脂を含有する光学フィルムを用いて上記特性の近赤外線カットフィルタを得る技術が開示されている。 Further, in Patent Document 2, instead of the absorbing glass having absorption in the long wavelength region of near infrared light, a shape having good absorption characteristics in the wavelength region and a small size and a thin wall can be easily obtained. Moreover, the technology of the near-infrared cut filter, which is less likely to generate minute defects during polishing and is excellent in cost and productivity, is described. Patent Document 2 discloses a technique for obtaining a near-infrared cut filter having the above characteristics by using an optical film containing a transparent resin and a dye that combines a diimonium dye, a cyanine dye, and an onium salt.
国際公開第2017/094672号International Publication No. 2017/094672 日本国特開2008-303130号公報Japanese Patent Application Laid-Open No. 2008-303130
 しかしながら、近赤外光の長波長域において吸収能を有する特定の色素と透明樹脂を含有する吸収層を用いた上記の光学フィルタにおいては、可視光の透過率、特に視感に強く影響する緑色や赤色の透過率が十分に高いとは言えなかった。 However, in the above optical filter using an absorption layer containing a specific dye and a transparent resin capable of absorbing near-infrared light in a long wavelength region, the transmittance of visible light, particularly green, which strongly affects the visual perception. It could not be said that the transmittance of red and red was sufficiently high.
 本発明は、近赤外光の長波長域、特には、850~1100nmの波長域の光を効果的に遮蔽できるとともに、可視光の透過率、特に緑色や赤色の透過率を十分に高く維持できる光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置および光学センサーの提供を目的とする。 The present invention can effectively block light in the long wavelength range of near-infrared light, particularly in the wavelength range of 850 to 1100 nm, and maintains a sufficiently high transmittance of visible light, particularly green and red. It is an object of the present invention to provide an optical filter capable of the present invention, and an image pickup device and an optical sensor having excellent color reproducibility using the optical filter.
 本発明の一態様に係る光学フィルタは、ガラス転移点が130℃以上の透明樹脂と、下記(1-1)~(1-6)の要件をすべて満足する近赤外線吸収色素(A)を含有する吸収層と、誘電体多層膜からなる反射層とを有する。
(1-1)前記近赤外線吸収色素(A)を前記透明樹脂に含有させて測定される波長350~1200nmの分光透過率曲線SCTRにおいて、最大吸収波長λmax(A)TRが850~1100nmの波長領域にある。
(1-2)前記分光透過率曲線SCTRにおいて前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長490~560nmの光の平均内部透過率TAVE490-560(A)TRが90%以上である。
(1-3)前記分光透過率曲線SCTRにおいて前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長590~630nmの光の平均内部透過率TAVE590-630(A)TRが90%以上である。
(1-4)前記分光透過率曲線SCTRは、前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときに、650~1150nmの波長領域で内部透過率が50%となる波長を2つ有し、前記2つの波長間の幅が180nm以上である。
(1-5)前記近赤外線吸収色素(A)をジクロロメタンに溶解させて測定される波長350~1200nmの分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長490~560nmの光の平均透過率TAVE490-560(A)DCMから前記平均内部透過率TAVE490-560(A)TRを引いた値が10%以下である。
(1-6)前記分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長590~630nmの光の平均透過率TAVE590-630(A)DCMから前記平均内部透過率TAVE590-630(A)TRを引いた値が10%以下である。
The optical filter according to one aspect of the present invention contains a transparent resin having a glass transition point of 130 ° C. or higher and a near-infrared absorbing dye (A) that satisfies all of the following requirements (1-1) to (1-6). It has an absorbing layer and a reflective layer made of a dielectric multilayer film.
(1-1) In the spectral transmittance curve SC TR having a wavelength of 350 to 1200 nm measured by containing the near-infrared absorbing dye (A) in the transparent resin, the maximum absorption wavelength λ max (A) TR is 850 to 1100 nm. It is in the wavelength range of.
(1-2) Average internal transmittance of light having a wavelength of 490 to 560 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the spectral transmittance curve SC TR T AVE490-560 (A) TR is 90% or more.
(1-3) Average internal transmittance of light having a wavelength of 590 to 630 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the spectral transmittance curve SC TR T AVE590-630 (A) TR is 90% or more.
(1-4) The spectral transmittance curve SC TR has an internal transmittance of 50% in a wavelength region of 650 to 1150 nm, where the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10%. It has two wavelengths, and the width between the two wavelengths is 180 nm or more.
(1-5) the transmittance of light at the maximum absorption wavelength lambda max (A) DCM in the spectral transmittance curve SC DCM wavelength 350 ~ 1200 nm to be measured the near-infrared absorbing dye (A) was dissolved in dichloromethane The value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM of light having a wavelength of 490 to 560 nm at 10% is 10% or less.
(1-6) Maximum absorption wavelength λ max (A) in the spectral transmittance curve SC DCM The average transmittance of light having a wavelength of 590 to 630 nm when the transmittance of light in DCM is 10% T AVE590-630 ( A) The value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from DCM is 10% or less.
 本発明はまた、本発明の光学フィルタを備えた撮像装置および光学センサーを提供する。 The present invention also provides an image pickup apparatus and an optical sensor provided with the optical filter of the present invention.
 本発明によれば、近赤外光の長波長域、特には、850~1100nmの波長域の光を効果的に遮蔽できるとともに、可視光の透過率、特に緑色や赤色の透過率を十分に高く維持できる光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置および光学センサーが提供できる。 According to the present invention, it is possible to effectively block light in the long wavelength range of near-infrared light, particularly in the wavelength range of 850 to 1100 nm, and to sufficiently reduce the transmittance of visible light, particularly the transmittance of green and red. It is possible to provide an optical filter that can be maintained at a high level, and an image pickup device and an optical sensor that use the optical filter and have excellent color reproducibility.
図1は一実施形態の光学フィルタの一例を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment. 図2は一実施形態の光学フィルタの他の例を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of one embodiment. 図3は一実施形態の光学フィルタの他の例を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of one embodiment. 図4は一実施形態の光学フィルタの他の例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of one embodiment. 図5は一実施形態の光学フィルタの他の例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of the optical filter of one embodiment. 図6は一実施形態の光学フィルタの他の例を概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another example of the optical filter of one embodiment. 図7は試験例2における色素(A1a-5NS)の透明樹脂P中およびジクロロメタン中における分光透過率曲線を示す図である。FIG. 7 is a diagram showing spectral transmittance curves of the dye (A1a-5NS) in Test Example 2 in the transparent resin P and dichloromethane. 図8は試験例19における色素(A1a-5NS)の透明樹脂P以外の透明樹脂中およびジクロロメタン中における分光透過率曲線を示す図である。FIG. 8 is a diagram showing spectral transmittance curves of the dye (A1a-5NS) in Test Example 19 in a transparent resin other than the transparent resin P and in dichloromethane. 図9は実施例(例1;実施例)の光学フィルタにおける吸収層の分光透過率曲線を示す図である。FIG. 9 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 1; Example). 図10は実施例(例1;実施例)の光学フィルタの分光透過率曲線を示す図である。FIG. 10 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 1; Example). 図11は実施例(例4;実施例)の光学フィルタにおける吸収層の分光透過率曲線を示す図である。FIG. 11 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 4; Example). 図12は実施例(例4;実施例)の光学フィルタの分光透過率曲線を示す図である。FIG. 12 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 4; Example). 図13は実施例(例6;実施例)の光学フィルタにおける吸収層の分光透過率曲線を示す図である。FIG. 13 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 6; Example). 図14は実施例(例6;実施例)の光学フィルタの分光透過率曲線を示す図である。FIG. 14 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 6; Example). 図15は実施例(例8;比較例)の光学フィルタにおける吸収層の分光透過率曲線を示す図である。FIG. 15 is a diagram showing a spectral transmittance curve of the absorption layer in the optical filter of the example (Example 8; comparative example). 図16は実施例(例8;比較例)の光学フィルタの分光透過率曲線を示す図である。FIG. 16 is a diagram showing a spectral transmittance curve of the optical filter of the example (Example 8; comparative example).
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
Hereinafter, embodiments of the present invention will be described.
In the present specification, the near-infrared absorbing dye may be abbreviated as "NIR dye" and the ultraviolet absorbing dye may be abbreviated as "UV dye".
 本明細書において、式(A1)で示される化合物を化合物(A1)という。他の式で表される化合物も同様である。化合物(A1)からなる色素を色素(A1)ともいい、他の色素についても同様である。また、例えば、式(1x)で表される基を基(1x)とも記し、他の式で表される基も同様である。 In the present specification, the compound represented by the formula (A1) is referred to as a compound (A1). The same applies to compounds represented by other formulas. The dye composed of the compound (A1) is also referred to as a dye (A1), and the same applies to other dyes. Further, for example, a group represented by the formula (1x) is also described as a group (1x), and the same applies to a group represented by another formula.
 本明細書において、内部透過率とは、実測透過率/(100-反射率)の式で示される、実測透過率から界面反射の影響を引いて得られる透過率である。本明細書において、樹脂からなる透明基板の透過率、吸収層等の色素が樹脂に含有される場合を含む樹脂層の透過率の分光は、「透過率」と記載されている場合も全て「内部透過率」である。一方、色素をジクロロメタン等の溶媒に溶解して測定される透過率、誘電体多層膜を有する光学フィルタの透過率は、実測透過率である。 In the present specification, the internal transmittance is a transmittance obtained by subtracting the influence of interfacial reflection from the actually measured transmittance, which is represented by the formula of measured transmittance / (100-reflectance). In the present specification, the transmittance of a transparent substrate made of a resin and the spectroscopy of the transmittance of a resin layer including the case where a dye such as an absorption layer is contained in the resin are all described as "transmittance". "Internal transmittance". On the other hand, the transmittance measured by dissolving the dye in a solvent such as dichloromethane and the transmittance of the optical filter having the dielectric multilayer film are the measured transmittance.
 本明細書において、特定の波長域について、透過率が例えば90%以上とは、その全波長領域において透過率が90%を下回らない、すなわちその波長領域において最小透過率が90%以上であることをいう。同様に、特定の波長域について、透過率が例えば1%以下とは、その全波長領域において透過率が1%を超えない、すなわちその波長領域において最大透過率が1%以下であることをいう。内部透過率においても同様である。特定の波長域における平均透過率および平均内部透過率は、該波長域の1nm毎の透過率および内部透過率の相加平均である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
In the present specification, for a specific wavelength region, for example, a transmittance of 90% or more means that the transmittance does not fall below 90% in the entire wavelength region, that is, the minimum transmittance is 90% or more in the wavelength region. To say. Similarly, for a specific wavelength region, for example, a transmittance of 1% or less means that the transmittance does not exceed 1% in the entire wavelength region, that is, the maximum transmittance is 1% or less in the wavelength region. .. The same applies to the internal transmittance. The average transmittance and the average internal transmittance in a specific wavelength region are arithmetic means of the transmittance and internal transmittance for each 1 nm in the wavelength region.
In the present specification, "-" representing a numerical range includes upper and lower limits.
<光学フィルタ>
 本発明の一実施形態の光学フィルタ(以下、「本フィルタ」ともいう。)は、ガラス転移点(以下、「Tg」ともいう。)が130℃以上の透明樹脂(以下、透明樹脂(P)ともいう。)と、下記(1-1)~(1-6)の全ての要件を満足するNIR色素(A)を含有する吸収層と、誘電体多層膜からなる反射層とを有する。
<Optical filter>
The optical filter of one embodiment of the present invention (hereinafter, also referred to as “the present filter”) is a transparent resin (hereinafter, transparent resin (P)) having a glass transition point (hereinafter, also referred to as “Tg”) of 130 ° C. or higher. It also has an absorption layer containing the NIR dye (A) that satisfies all the following requirements (1-1) to (1-6), and a reflection layer made of a dielectric multilayer film.
(1-1)NIR色素(A)を透明樹脂(P)に含有させて測定される波長350~1200nmの分光透過率曲線SCTRにおいて、最大吸収波長λmax(A)TRが850~1100nmの波長領域にある。
(1-2)分光透過率曲線SCTRにおいて最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長490~560nmの光の平均内部透過率TAVE490-560(A)TRが90%以上である。
(1-1) In the spectral transmittance curve SC TR having a wavelength of 350 to 1200 nm measured by containing the NIR dye (A) in the transparent resin (P), the maximum absorption wavelength λ max (A) TR is 850 to 1100 nm. It is in the wavelength range.
(1-2) Spectral Transmittance Curve The average internal transmittance of light with a wavelength of 490 to 560 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the SC TR T AVE490-560 (A). ) TR is 90% or more.
(1-3)分光透過率曲線SCTRにおいて最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長590~630nmの光の平均内部透過率TAVE590-630(A)TRが90%以上である。
(1-4)分光透過率曲線SCTRは、最大吸収波長λmax(A)TRでの内部透過率を10%としたときに、650~1150nmの波長領域で内部透過率が50%となる波長を2つ有し、該2つの波長間の幅が180nm以上である。
(1-3) Average internal transmittance of light having a wavelength of 590 to 630 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the spectral transmittance curve SC TR T AVE590-630 (A) ) TR is 90% or more.
(1-4) The spectral transmittance curve SC TR has an internal transmittance of 50% in the wavelength region of 650 to 1150 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10%. It has two wavelengths, and the width between the two wavelengths is 180 nm or more.
(1-5)NIR色素(A)をジクロロメタンに溶解させて測定される波長350~1200nmの分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長490~560nmの光の平均透過率TAVE490-560(A)DCMから平均内部透過率TAVE490-560(A)TRを引いた値が10%以下である。
(1-6)分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長590~630nmの光の平均透過率TAVE590-630(A)DCMから平均内部透過率TAVE590-630(A)TRを引いた値が10%以下である。
(1-5) Spectral Transmittance Curve Measured by Dissolving NIR Dye (A) in dichloromethane and Having a Wavelength of 350 to 1200 nm Maximum Absorption Wavelength in SC DCM λ max (A) Light transmittance in DCM is 10%. The value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM of light having a wavelength of 490 to 560 nm is 10% or less.
(1-6) Spectral transmittance curve SC Maximum absorption wavelength in DCM λ max (A) Average transmittance of light having a wavelength of 590 to 630 nm when the transmittance of light in DCM is 10% T AVE590-630 (A) ) The value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from DCM is 10% or less.
 本フィルタは、吸収層が(1-1)~(1-6)の特性を有するNIR色素(A)と透明樹脂(P)を含有することで、近赤外光の長波長域、特には、850~1100nmの波長域の光を効果的に遮蔽できるとともに、可視光の透過率、特に緑色や赤色の透過率を十分に高く維持できる。一般的には,最大吸収波長が長波長域にあるNIR色素では会合の寄与もあり、ジクロロメタン中での可視光の高透過率を透明樹脂中では再現しづらいことが知られている。NIR色素(A)は、上記(1-5)~(1-6)に示されるとおり、透明樹脂(P)との関係において、ジクロロメタン中での可視光の高透過率を維持していることがわかる。 In this filter, the absorption layer contains the NIR dye (A) and the transparent resin (P) having the characteristics of (1-1) to (1-6), so that the long wavelength range of near infrared light, particularly , Light in the wavelength range of 850 to 1100 nm can be effectively shielded, and the transmittance of visible light, particularly the transmittance of green and red, can be maintained sufficiently high. In general, it is known that it is difficult to reproduce the high transmittance of visible light in dichloromethane in a transparent resin due to the contribution of association in the NIR dye having the maximum absorption wavelength in the long wavelength region. As shown in (1-5) to (1-6) above, the NIR dye (A) maintains a high transmittance of visible light in dichloromethane in relation to the transparent resin (P). I understand.
 NIR色素(A)は、さらに以下の(1-7)~(1-9)から選ばれる1以上を満足するのが好ましく、2以上を満足するのがより好ましく、全てを満足するのが特に好ましい。 The NIR dye (A) further preferably satisfies 1 or more selected from the following (1-7) to (1-9), more preferably 2 or more, and particularly satisfies all. preferable.
(1-7)分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長435~480nmの光の平均透過率TAVE435-480(A)DCMから、分光透過率曲線SCTRにおける最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長435~480nmの光の平均内部透過率TAVE435-480(A)TRを引いた値が10%以下である。
(1-8)平均透過率TAVE490-560(A)DCMから平均内部透過率TAVE490-560(A)TRを引いた値が5%以下である。
(1-9)平均透過率TAVE590-630(A)DCMから平均内部透過率TAVE590-630(A)TRを引いた値が5%以下である。
(1-7) Spectral transmittance curve SC Maximum absorption wavelength in DCM λ max (A) Average transmittance of light having a wavelength of 435 to 480 nm when the transmittance of light in DCM is 10% T AVE435-480 (A) ) From DCM , the average internal transmittance of light with a wavelength of 435 to 480 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR on the spectral transmittance curve SC TR is 10% T AVE435-480 (A). The value obtained by subtracting TR is 10% or less.
(1-8) The value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM is 5% or less.
(1-9) The value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from the average transmittance T AVE590-630 (A) DCM is 5% or less.
 本フィルタは、透明基板をさらに有してもよい。この場合、吸収層および反射層は、透明基板の主面上に設けられる。本フィルタは、吸収層と反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。 This filter may further have a transparent substrate. In this case, the absorption layer and the reflection layer are provided on the main surface of the transparent substrate. The present filter may have the absorption layer and the reflection layer on the same main surface of the transparent substrate, or may have the absorption layer and the reflection layer on different main surfaces. When the absorption layer and the reflection layer are provided on the same main surface, the stacking order thereof is not particularly limited.
 本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。 This filter may also have another functional layer. Examples of other functional layers include an antireflection layer that suppresses the loss of visible light transmittance. In particular, when the absorption layer has the outermost surface structure, a visible light transmittance loss due to reflection occurs at the interface between the absorption layer and air, so it is preferable to provide an antireflection layer on the absorption layer.
 次に、図面を用いて本フィルタの構成例について説明する。図1は、吸収層11の一方の主面上に反射層12を備えた光学フィルタ10Aの構成例である。光学フィルタ10Aにおいて、吸収層11は、NIR色素(A)と透明樹脂(P)とを含有する層で構成できる。吸収層11は、後述のNIR色素(B)および/またはNIR色素(C)をさらに含有してもよい。その場合、吸収層11は、複数の層が積層した構成であってよく、各層にはNIR色素(A)、NIR色素(B)および/またはNIR色素(C)が適宜組み合わされて含有される。なお、「吸収層11の一方の主面(上)に、反射層12を備える」とは、吸収層11に接触して反射層12が備わる場合に限らず、吸収層11と反射層12との間に、別の機能層が備わる場合も含み、以下の構成も同様である。 Next, a configuration example of this filter will be described using drawings. FIG. 1 is a configuration example of an optical filter 10A having a reflection layer 12 on one main surface of the absorption layer 11. In the optical filter 10A, the absorption layer 11 can be composed of a layer containing the NIR dye (A) and the transparent resin (P). The absorption layer 11 may further contain the NIR dye (B) and / or the NIR dye (C) described later. In that case, the absorption layer 11 may have a structure in which a plurality of layers are laminated, and each layer contains an NIR dye (A), a NIR dye (B) and / or an NIR dye (C) in an appropriate combination. .. The phrase "providing the reflective layer 12 on one main surface (upper) of the absorbing layer 11" is not limited to the case where the reflective layer 12 is provided in contact with the absorbing layer 11, and the absorbing layer 11 and the reflective layer 12 The following configuration is also the same, including the case where another functional layer is provided between.
 図2は、透明基板と吸収層と反射層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。光学フィルタ10Bは、透明基板13と透明基板13の一方の主面上に配置された吸収層11と透明基板13の他方の主面上に設けられた反射層12を有する。光学フィルタ10Bにおいて、吸収層11は、光学フィルタ10Aと同様の構成とできる。 FIG. 2 is a cross-sectional view schematically showing an example of an optical filter of an embodiment having a transparent substrate, an absorption layer, and a reflection layer. The optical filter 10B has an absorption layer 11 arranged on one main surface of the transparent substrate 13 and the transparent substrate 13, and a reflection layer 12 provided on the other main surface of the transparent substrate 13. In the optical filter 10B, the absorption layer 11 can have the same configuration as the optical filter 10A.
 図3は、吸収層11を備え、吸収層11の両主面上に、反射層12aおよび12bをそれぞれ備えた光学フィルタ10Cの構成例である。図4は、透明基板13の一方の主面に吸収層11を備え、透明基板13の他方の主面上および吸収層11の主面上に、反射層12aおよび12bを備えた光学フィルタ10Dの構成例である。光学フィルタ10C、10Dにおいて、吸収層11は、光学フィルタ10Aと同様の構成とできる。 FIG. 3 is a configuration example of an optical filter 10C having an absorbing layer 11 and having reflective layers 12a and 12b on both main surfaces of the absorbing layer 11. FIG. 4 shows an optical filter 10D having an absorption layer 11 on one main surface of the transparent substrate 13 and reflection layers 12a and 12b on the other main surface of the transparent substrate 13 and on the main surface of the absorption layer 11. This is a configuration example. In the optical filters 10C and 10D, the absorption layer 11 can have the same configuration as the optical filter 10A.
 図5は、透明基板13の両主面に吸収層11aおよび11bを備え、さらに吸収層11aおよび11bの主面上に、反射層12aおよび12bを備えた光学フィルタ10Eの構成例である。 FIG. 5 is a configuration example of an optical filter 10E provided with absorption layers 11a and 11b on both main surfaces of the transparent substrate 13 and further provided with reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
 図3、図4および図5において、組み合わせる2層の反射層12a、12bは、同一でも異なってもよい。例えば、反射層12a、12bは、紫外光および近赤外光を反射し、可視光を透過する特性を有し、反射層12aが、紫外光と第1の近赤外域の光を反射し、反射層12bが、紫外光と第2の近赤外域の光を反射する構成でもよい。 In FIGS. 3, 4 and 5, the two reflective layers 12a and 12b to be combined may be the same or different. For example, the reflecting layers 12a and 12b have a property of reflecting ultraviolet light and near-infrared light and transmitting visible light, and the reflecting layer 12a reflects ultraviolet light and light in the first near-infrared region. The reflective layer 12b may be configured to reflect ultraviolet light and light in the second near-infrared region.
 また、図5において、2層の吸収層11aと11bは、少なくとも一方が本フィルタにおける上記構成を備える吸収層である。吸収層11aと11bは同一でも異なってもよい。吸収層11aと11bが異なる場合、例えば、吸収層11aと11bが、各々、近赤外線吸収層と紫外線吸収層の組合せでもよく、紫外線吸収層と近赤外線吸収層の組合せでもよい。 Further, in FIG. 5, at least one of the two absorption layers 11a and 11b is an absorption layer having the above configuration in the present filter. The absorption layers 11a and 11b may be the same or different. When the absorption layers 11a and 11b are different, for example, the absorption layers 11a and 11b may be a combination of a near-infrared absorbing layer and an ultraviolet absorbing layer, or may be a combination of an ultraviolet absorbing layer and a near-infrared absorbing layer, respectively.
 また、光学フィルタ10Eにおいて、吸収層11a、11bがNIR色素(A)に加えて後述のNIR色素(B)および/またはNIR色素(C)を含有する場合、吸収層11aと11bにそれぞれ含有されるNIR色素は、適宜組み合わせが可能である。例えば、光学フィルタ10Eが、NIR色素(A)~(C)を含有する場合、吸収層11aおよび11bの一方がNIR色素(A)~(C)から選ばれる1種を含有し、他方が2種を含有する構成であってもよい。さらに、吸収層11aおよび11bは、それぞれ、単層でもよく複数の層が積層した構成であってもよい。 Further, in the optical filter 10E, when the absorption layers 11a and 11b contain the NIR dye (B) and / or the NIR dye (C) described later in addition to the NIR dye (A), they are contained in the absorption layers 11a and 11b, respectively. The NIR dyes can be combined as appropriate. For example, when the optical filter 10E contains NIR dyes (A) to (C), one of the absorption layers 11a and 11b contains one selected from NIR dyes (A) to (C), and the other 2 The composition may contain seeds. Further, the absorption layers 11a and 11b may be a single layer or a plurality of layers may be laminated.
 図6は、図2に示す光学フィルタ10Bの吸収層11の主面上に反射防止層14を備えた光学フィルタ10Fの構成例である。反射層が設けられず、吸収層が最表面の構成をとる場合には、吸収層上に反射防止層を設けるとよい。なお、反射防止層は、吸収層の最表面だけでなく、吸収層の側面全体も覆う構成でもよい。その場合、吸収層の防湿の効果を高められる。 FIG. 6 is a configuration example of the optical filter 10F provided with the antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10B shown in FIG. When the reflective layer is not provided and the absorbing layer has the outermost surface structure, it is preferable to provide an antireflection layer on the absorbing layer. The antireflection layer may cover not only the outermost surface of the absorption layer but also the entire side surface of the absorption layer. In that case, the moisture-proof effect of the absorption layer can be enhanced.
 以下、吸収層、反射層、透明基板および反射防止層について説明する。
(吸収層)
 吸収層は、上記(1-1)~(1-6)の特性を有する、好ましくはさらに上記(1-7)~(1-9)から選ばれる1以上の特性を有するNIR色素(A)と透明樹脂(P)を含有する。
Hereinafter, the absorption layer, the reflection layer, the transparent substrate, and the antireflection layer will be described.
(Absorption layer)
The absorption layer has the above-mentioned properties (1-1) to (1-6), and preferably the NIR dye (A) having one or more properties further selected from the above-mentioned (1-7) to (1-9). And a transparent resin (P).
 吸収層は、典型的には、透明樹脂(P)中にNIR色素(A)が均一に溶解または分散した層または(樹脂)基板である。吸収層は、本発明の効果を損なわない範囲でNIR色素(A)以外にその他のNIR色素を含有してもよい。さらに、吸収層は、本発明の効果を損なわない範囲でNIR色素以外の色素、特にはUV色素を含有してもよい。 The absorption layer is typically a layer or (resin) substrate in which the NIR dye (A) is uniformly dissolved or dispersed in the transparent resin (P). The absorption layer may contain other NIR dyes in addition to the NIR dye (A) as long as the effects of the present invention are not impaired. Further, the absorption layer may contain a dye other than the NIR dye, particularly a UV dye, as long as the effect of the present invention is not impaired.
 その他のNIR色素としては、透明樹脂(P)に含有させて測定される波長350~1200nmの分光透過率曲線において、それぞれ、1100~1200nmの波長領域に最大吸収波長を有するNIR色素(B)、630~750nmの波長領域に最大吸収波長を有するスクアリリウム色素であるNIR色素(C)が好ましい。本フィルタの要求特性に応じて、吸収層はNIR色素(A)に加えて、NIR色素(B)およびNIR色素(C)のいずれか一方を含有してもよく、両方を含有してもよい。 Other NIR dyes include NIR dyes (B) having the maximum absorption wavelength in the wavelength region of 1100 to 1200 nm in the spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing the transparent resin (P). The NIR dye (C), which is a squarylium dye having a maximum absorption wavelength in the wavelength region of 630 to 750 nm, is preferable. Depending on the required characteristics of the filter, the absorption layer may contain either one of the NIR dye (B) and the NIR dye (C) in addition to the NIR dye (A), or may contain both. ..
 吸収層がNIR色素(B)を含有することで、NIR色素(A)の吸収波長域より長波長域の近赤外光を吸収でき、該吸収層により吸収ガラスに相当する波長域の吸収が得られる。吸収層がNIR色素(C)を含有することで、本フィルタにおける誘電体多層膜からなる反射層の入射角依存性の影響を低減できる。 Since the absorption layer contains the NIR dye (B), it is possible to absorb near-infrared light in a wavelength range longer than the absorption wavelength range of the NIR dye (A), and the absorption layer absorbs the wavelength range corresponding to the absorption glass. can get. Since the absorption layer contains the NIR dye (C), the influence of the incident angle dependence of the reflection layer made of the dielectric multilayer film in this filter can be reduced.
[NIR色素(A)]
 NIR色素(A)は、(1-1)に規定されるとおり、最大吸収波長λmax(A)TRが850~1100nmの波長領域にある。最大吸収波長λmax(A)TRは、900~1050nmの波長領域にあるのが好ましい。
[NIR dye (A)]
The NIR dye (A) has a maximum absorption wavelength λ max (A) TR in the wavelength region of 850 to 1100 nm as defined in (1-1). The maximum absorption wavelength λ max (A) TR is preferably in the wavelength region of 900 to 1050 nm.
 NIR色素(A)は、(1-2)に規定されるとおり、TAVE490-560(A)TRが90%以上である。TAVE490-560(A)TRは、92%以上が好ましく、94%以上がより好ましい。NIR色素(A)は、(1-3)に規定されるとおり、TAVE590-630(A)TRが90%以上である。TAVE590-630(A)T
は、91%以上が好ましく、94%以上がより好ましい。
The NIR dye (A) has a TAVE490-560 (A) TR of 90% or more as defined in (1-2). The T AVE 490-560 (A) TR is preferably 92% or more, more preferably 94% or more. The NIR dye (A) has a TAVE590-630 (A) TR of 90% or more as defined in (1-3). T AVE590-630 (A) T
R is preferably 91% or more, more preferably 94% or more.
 NIR色素(A)は、(1-4)に規定されるとおり、最大吸収波長λmax(A)TRでの内部透過率を10%としたときの分光透過率曲線SCTRが、650~1150nmの波長領域で内部透過率が50%となる波長を2つ有し、該2つの波長間の幅WT50%が180nm以上である。WT50%は200nm以上が好ましく、300nm以上がより好ましい。上記50%となる波長のうち短波長側の波長は、650nm以上が好ましく、700nm以上がより好ましい。WT50%の上限は380nm程度が好ましく、370nm程度がより好ましく、320nm程度がさらに好ましい。 As specified in (1-4), the NIR dye (A) has a spectral transmittance curve SC TR of 650 to 1150 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10%. It has two wavelengths in which the internal transmittance is 50% in the wavelength region of, and the width WT 50% between the two wavelengths is 180 nm or more. The WT 50% is preferably 200 nm or more, more preferably 300 nm or more. Of the wavelengths of 50%, the wavelength on the short wavelength side is preferably 650 nm or more, more preferably 700 nm or more. The upper limit of WT 50% is preferably about 380 nm, more preferably about 370 nm, and even more preferably about 320 nm.
 NIR色素(A)は、(1-5)に規定されるとおり、TAVE490-560(A)DCM-TAVE490-560(A)TRが10%以下であり、(1-6)に規定されるとおり、TAVE590-630(A)DCM-TAVE590-630(A)TRが10%以下である。TAVE490-560(A)DCM-TAVE490-560(A)TRおよびTAVE590-630(A)DCM-TAVE590-630(A)TRはそれぞれ、8%以下が好ましい。 The NIR dye (A) has a T AVE 490-560 (A) DCM- T AVE 490-560 (A) TR of 10% or less as specified in (1-5), and is specified in (1-6). As you can see, T AVE590-630 (A) DCM- T AVE590-630 (A) TR is 10% or less. T AVE490-560 (A) DCM- T AVE490-560 (A) TR and T AVE590-630 (A) DCM- T AVE590-630 (A) TR are each preferably 8% or less.
 ここで、TAVE490-560(A)DCMおよびTAVE590-630(A)DCMは、NIR色素(A)をジクロロメタンに溶解させて測定される波長350~1200nmの分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの、それぞれ波長490~560nmの光の平均透過率および波長590~630nmの光の平均透過率である。λmax(A)DCMは、850~1100nmの波長領域にあることが好ましく、900~1000nmの波長領域にあることがより好ましい。 Here, T AVE 490-560 (A) DCM and T AVE 590-630 (A) DCM are the maximum absorption in the spectral transmittance curve SC DCM at a wavelength of 350 to 1200 nm measured by dissolving NIR dye (A) in dichloromethane. Wavelength λ max (A) The average transmittance of light having a wavelength of 490 to 560 nm and the average transmittance of light having a wavelength of 590 to 630 nm, respectively, when the transmittance of light at the DCM is 10%. The λ max (A) DCM is preferably in the wavelength region of 850 to 1100 nm, more preferably in the wavelength region of 900 to 1000 nm.
 NIR色素(A)は、(1-7)に示すTAVE435-480(A)DCM-TAVE435-480(A)TRが10%以下であることが好ましく、9%以下がより好ましく、7%以下がさらに好ましい。NIR色素(A)は、(1-8)に示すTAVE490-560(A)DCM-TAVE490-560(A)TRが5%以下であることが好ましく、4%以下がより好ましく、3%以下がさらに好ましい。NIR色素(A)は、(1-9)に示すTAVE590-630(A)DCM-TAVE590-630(A)TRが5%以下であることが好ましく、4%以下がより好ましく、3%以下がさらに好ましい。 The NIR dye (A) preferably has T AVE435-480 (A) DCM- T AVE435-480 (A) TR shown in (1-7) of 10% or less, more preferably 9% or less, and 7%. The following is more preferable. The NIR dye (A) preferably has T AVE 490-560 (A) DCM- T AVE 490-560 (A) TR shown in (1-8) of 5% or less, more preferably 4% or less, and 3%. The following is more preferable. The NIR dye (A) preferably has T AVE590-630 (A) DCM- T AVE590-630 (A) TR shown in (1-9) of 5% or less, more preferably 4% or less, and 3%. The following is more preferable.
 NIR色素(A)としては、透明樹脂(P)との関係において(1-1)~(1-6)の要件を満たす限り、分子構造は特に制限されない。具体的には、シアニン色素、クロコニウム色素、フタロシアニン色素、スクアリリウム色素、ジイモニウム色素、トリス型イモニウム色素、およびジケトピロロピロール色素からなる群から選ばれる少なくとも1種の色素が挙げられ、可視光高透過性の観点および吸収層幅の広さからトリス型イモニウム色素が特に好ましい。 The molecular structure of the NIR dye (A) is not particularly limited as long as it satisfies the requirements (1-1) to (1-6) in relation to the transparent resin (P). Specifically, at least one pigment selected from the group consisting of cyanine pigments, croconium pigments, phthalocyanine pigments, squarylium pigments, diimonium pigments, tris-type immonium pigments, and diketopyrrolopyrrole pigments can be mentioned, and high transmission of visible light can be mentioned. Tris-type imonium dyes are particularly preferable from the viewpoint of sex and the width of the absorption layer.
 NIR色素(A)であるトリス型イモニウム色素として、具体的には、下式(A1)で示される化合物および下式(A2)で示される化合物から選ばれる1種以上が好ましい。 As the Tris-type imonium dye which is the NIR dye (A), specifically, one or more selected from the compound represented by the following formula (A1) and the compound represented by the following formula (A2) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(A1)および(A2)中の記号は以下のとおりである。
 R201~R206およびR221~R226はそれぞれ独立して、水素原子、ハロゲン原子、スルホ基、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、炭素原子間に酸素原子を有してもよく、置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、または、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基である。ただし、置換または非置換のアミノ基がフェニル基に結合した基は除く。さらに、R201~R206およびR221~R226において、同一の窒素原子に結合する2つの基は互いに結合して、前記窒素原子とともに員数3~8のヘテロ環を形成していてもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
The symbols in the formulas (A1) and (A2) are as follows.
R 201 to R 206 and R 221 to R 226 have independent hydrogen atoms, halogen atoms, sulfo groups, hydroxy groups, cyano groups, nitro groups, carboxyl groups, phosphate groups, and oxygen atoms between carbon atoms. The alkyl group or alkoxy group having 1 to 20 carbon atoms which may be substituted, or the aryl group having 6 to 14 carbon atoms and the aralkyl group having 7 to 14 carbon atoms which may be substituted, may be substituted. Alternatively, it is a heterocyclic group having 3 to 14 members. However, groups in which a substituted or unsubstituted amino group is bonded to a phenyl group are excluded. Further, in R 201 to R 206 and R 221 to R 226 , two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom. The hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
 R207~R218およびR227~R238はそれぞれ独立して、水素原子、ハロゲン原子、置換されていてもよいアミノ基、アミド基、シアノ基、ニトロ基、カルボキシル基、または、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基もしくはアルコキシ基である。R207~R218およびR227~R238において、互いにとなり合う2つの基は、互いに結合してフェニル基の2個の炭素原子とともに員数3~8の環を形成してもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。 R 207 to R 218 and R 227 to R 238 are independently substituted with a hydrogen atom, a halogen atom, an optionally substituted amino group, an amide group, a cyano group, a nitro group, a carboxyl group, or a halogen atom. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be used. In R 207 to R 218 and R 227 to R 238 , the two groups adjacent to each other may be bonded to each other to form a ring having 3 to 8 members together with the two carbon atoms of the phenyl group. The hydrogen atom to be bonded may be substituted with an alkyl group having 1 to 12 carbon atoms.
 R201~R206およびR221~R226において、置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基における置換基としては、ハロゲン原子、水酸基、炭素数1~6のアルキル基で置換されていてもよいアミノ基、カルボキシル基、スルホ基、シアノ基、炭素数1~6のアシルオキシ基が挙げられる。 In R 201 to R 206 and R 221 to R 226 , an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may be substituted, an aryl group having 6 to 14 carbon atoms which may be substituted, and 7 carbon atoms which may be substituted. As the substituent in the aralkyl group of to 14 or the heterocyclic group having 3 to 14 members, an amino group, a carboxyl group or a sulfo group which may be substituted with a halogen atom, a hydroxyl group or an alkyl group having 1 to 6 carbon atoms. , Cyano group and acyloxy group having 1 to 6 carbon atoms.
 環を形成していない場合のR207~R218およびR227~R238は、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~12のアルキル基もしくはアルコキシ基が好ましい。アルキル基もしくはアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましい。 In the case where no ring is formed, R 207 to R 218 and R 227 to R 238 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 12 carbon atoms. The alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
 R207~R218およびR227~R238において、互いにとなり合う2つの基が結合してフェニル基の2個の炭素原子とともに形成される環は、脂環であっても芳香環であってもよく、ヘテロ環であってもよい。ヘテロ原子としては窒素原子、酸素原子、硫黄原子が挙げられる。 In R 207 to R 218 and R 227 to R 238 , the ring formed by bonding two groups adjacent to each other together with the two carbon atoms of the phenyl group may be an alicyclic ring or an aromatic ring. It may be a heterocycle. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
 R207~R218およびR227~R238において、互いにとなり合う2つの基が結合する組合せは、式(A1)、式(A2)において、中心の窒素原子に結合する3個の各フェニル基において2組ずつ計6組存在する。具体的には、式(A1)においては、R207とR208、R209とR210、R211とR212、R213とR214、R215とR216、R217とR218の6組である。式(A2)においては、R227とR228、R229とR230、R231とR232、R233とR234、R235とR236、R237とR238の6組である。 In R 207 to R 218 and R 227 to R 238 , the combination in which two groups that are adjacent to each other are bonded is in the three phenyl groups bonded to the central nitrogen atom in the formulas (A1) and (A2). There are a total of 6 sets, 2 sets each. Specifically, in the formula (A1), there are six sets of R 207 and R 208 , R 209 and R 210 , R 211 and R 212 , R 213 and R 214 , R 215 and R 216 , and R 217 and R 218 . Is. In the formula (A2), there are 6 sets of R 227 and R 228 , R 229 and R 230 , R 231 and R 232 , R 233 and R 234 , R 235 and R 236 , and R 237 and R 238 .
 式(A1)のR207~R218および式(A2)のR227~R238において、となり合う2つの基が結合する組数は1組であっても、2組以上であってもよく、最大6組全てが結合してもよい。3個のフェニル基について、各1組合計3組が結合するのが好ましい。 In R 207 to R 218 of the formula (A1) and R 227 to R 238 of the formula (A2), the number of pairs to which two adjacent groups are bonded may be one set or two or more sets. All up to 6 pairs may be combined. For each of the three phenyl groups, it is preferable that a total of three groups are bonded.
 上記となり合う2つの基が結合した2価の基として、具体的には、ヘテロ原子として窒素原子を1~2個含んでもよく、原子間に不飽和結合を有してもよい、炭素数1~6のアルキレン基が挙げられる。より具体的には、以下の基(X-1)~(X-4)が挙げられる。なお、これらの2価の基が有する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。 As a divalent group in which the above two adjacent groups are bonded, specifically, one or two nitrogen atoms may be contained as a hetero atom, or an unsaturated bond may be formed between the atoms, and the number of carbon atoms is 1. Examples thereof include up to 6 alkylene groups. More specifically, the following groups (X-1) to (X-4) can be mentioned. The hydrogen atom contained in these divalent groups may be substituted with an alkyl group having 1 to 12 carbon atoms.
 -(CH-(nは1~6の整数)      …(X-1)
 -CH=CH-CH=CH-          …(X-2)
 -CH-CH=CH-      …(X-3)
 -N=CH-NH-        …(X-4)
-(CH 2 ) n- (n is an integer from 1 to 6) ... (X-1)
-CH = CH-CH = CH-... (X-2)
-CH 2- CH = CH-... (X-3)
-N = CH-NH-... (X-4)
 R207~R218およびR227~R238は、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~12のアルキル基もしくはアルコキシ基が好ましく、水素原子または炭素数1~12のアルキル基もしくはアルコキシ基が好ましい。アルキル基もしくはアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましい。 R 207 to R 218 and R 227 to R 238 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms or an alkoxy group, and each has a hydrogen atom or an alkyl having 1 to 12 carbon atoms. A group or an alkoxy group is preferable. The alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
 また、R201とR207、R202とR210、R203とR211、R204とR214、R205とR215、R206とR218、R221とR227、R222とR230、R223とR231、R224とR234、R225とR235、R226とR238は、互いに結合して、フェニル基に結合する窒素原子および該フェニル基の2個の炭素原子とともに員数4~8のヘテロ環を形成してもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
 XaおよびXbはそれぞれ独立して一価の陰イオンを表す。
Also, R 201 and R 207 , R 202 and R 210 , R 203 and R 211 , R 204 and R 214 , R 205 and R 215 , R 206 and R 218 , R 221 and R 227 , R 222 and R 230 , R 223 and R 231 and R 224 and R 234 , R 225 and R 235 , and R 226 and R 238 are 4 members together with a nitrogen atom bonded to a phenyl group and two carbon atoms of the phenyl group. A heterocycle of to 8 may be formed, and the hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
Xa - and Xb - each independently represents a monovalent anion.
 上記において、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。また、以下のアリール基がアルキル基を有する場合のアルキル基、アラルキル基のアルキル基についても同様である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子および塩素原子が好ましい。 In the above, the alkyl group may be linear, branched, cyclic or a combination of these structures. The same applies to the alkyl group when the following aryl group has an alkyl group and the alkyl group of the aralkyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
 上記において、アリール基は芳香族化合物が有する芳香環(ただし、ヘテロ原子を含まない)、例えば、ベンゼン環、ナフタレン環、ビフェニル等を構成する炭素原子を介して結合する基をいう。アリール基は該結合に寄与する炭素原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造、例えば、トリル基、キシリル基を含む。 In the above, the aryl group refers to a group bonded via a carbon atom constituting an aromatic ring (however, a hetero atom is not contained) of an aromatic compound, for example, a benzene ring, a naphthalene ring, a biphenyl, or the like. The aryl group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the carbon atom contributing to the bond is substituted with an alkyl group, for example, a tolyl group or a xsilyl group.
 上記において、アラルキル基は、芳香環(ただし、ヘテロ原子を含まない)にアルキル基が結合し、該アルキル基を構成する炭素原子を介して結合する基をいう。アラルキル基は、該結合に寄与するアルキル基が結合する原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造を含む。 In the above, the aralkyl group refers to a group in which an alkyl group is bonded to an aromatic ring (however, it does not contain a hetero atom) and is bonded via a carbon atom constituting the alkyl group. The aralkyl group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the atom to which the alkyl group contributing to the bond is bonded is substituted with an alkyl group.
 上記において、ヘテロ環基は、環を構成する原子が炭素原子と炭素原子以外の原子からなる脂環または芳香環を構成する原子を介して結合する基である。ヘテロ環基は該結合に寄与する原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造を含む。ヘテロ環が有する炭素原子以外の原子としては、酸素原子、窒素原子、または硫黄原子が挙げられ、個数としては1~2個が好ましい。 In the above, the heterocyclic group is a group in which the atoms constituting the ring are bonded via the atoms constituting the alicyclic or aromatic ring composed of carbon atoms and atoms other than carbon atoms. The heterocyclic group includes a structure in which a hydrogen atom bonded to a ring-constituting atom other than the atom contributing to the bond is substituted with an alkyl group. Examples of the atom other than the carbon atom contained in the heterocycle include an oxygen atom, a nitrogen atom, and a sulfur atom, and the number is preferably 1 or 2.
 XaおよびXbとしては、それぞれ独立して、Cl、Br、I、F、ClO 、BF 、PF 、SbF 、CFSO 、CHSO 、N[SO 、C[SO 等が挙げられる。 Xa - and Xb - as are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, C [SO 2 R f] 3 - , and the like.
 ここで、Rは、炭素数1~4のフルオロアルキル基であり、炭素数1~2のフルオロアルキル基であることが好ましく、炭素数1のフルオロアルキル基であることがより好ましい。炭素数が上記範囲内であると、耐熱性、耐湿性等の耐久性、および後述する有機溶媒への溶解性が良好である。このようなRとしては、例えば、-CF、-C、-C、-C等のパーフルオロアルキル基、-CH、-CH、-CH等が挙げられる。 Here, R f is a fluoroalkyl group having 1 to 4 carbon atoms, preferably a fluoroalkyl group having 1 to 2 carbon atoms, and more preferably a fluoroalkyl group having 1 carbon atom. When the number of carbon atoms is within the above range, durability such as heat resistance and moisture resistance, and solubility in an organic solvent described later are good. Examples of such R f include perfluoroalkyl groups such as -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , and -C 2 F 4 H, -C 3 F 6. Examples include H, -C 2 F 8 H and the like.
 耐湿性の観点からは、上記フルオロアルキル基は、パーフルオロアルキル基であることが好ましく、トリフルオロメチル基であることがより好ましい。 From the viewpoint of moisture resistance, the fluoroalkyl group is preferably a perfluoroalkyl group, more preferably a trifluoromethyl group.
 XaおよびXbとしては、それぞれ独立して、I、BF4-、SbF 、PF 、ClO 、N[SOCF 、C[SOCF 等が好ましく、ジクロロメタン溶液中と樹脂中との光学特性の差が小さい点で、SbF 、PF およびN[SOCF がより好ましく、SbF 、N[SOCF が特に好ましい。また、光耐久性の観点から、BF4-、PF 、N[SOCF が好ましい。 Xa - and Xb - as are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 -, C [SO 2 CF 3] 3 - and the like are preferable, from the viewpoint difference in optical characteristics between dichloromethane solution and resin is small, SbF 6 -, PF 6 - and N [SO 2 CF 3] 2 - are more preferable, SbF 6 -, N [SO 2 CF 3 ] 2 - is particularly preferable. From the viewpoint of light resistance, BF 4-, PF 6 -, N [SO 2 CF 3] 2 - are preferred.
 色素(A1)について、中心の窒素原子に結合する3個のフェニル基の4位に結合する窒素原子に結合する基の構造に基づいて以下の式(A1a)、式(A1b)、式(A1c)でそれぞれ示される3種類の色素(A1a)~(A1c)に分類した。色素(A2)についても同様に、中心の窒素原子に結合する3個のフェニル基の4位に結合する窒素原子に結合する基の構造に基づいて以下の式(A2a)、式(A2b)、式(A2c)でそれぞれ示される3種類の色素(A2a)~(A2c)に分類した。 Regarding the dye (A1), the following formulas (A1a), (A1b), and (A1c) are based on the structure of the group bonded to the nitrogen atom bonded to the 4-position of the three phenyl groups bonded to the central nitrogen atom. ), They were classified into three types of dyes (A1a) to (A1c). Similarly, for the dye (A2), the following formulas (A2a) and (A2b), based on the structure of the group bonded to the nitrogen atom bonded to the 4-position of the three phenyl groups bonded to the central nitrogen atom, It was classified into three types of dyes (A2a) to (A2c) represented by the formula (A2c), respectively.
 色素(A1a)および色素(A2a)は、3個のフェニル基の4位に結合する窒素原子(以下、4位の窒素原子)がヘテロ環を形成していない構造である。 The dye (A1a) and the dye (A2a) have a structure in which the nitrogen atom bonded to the 4-position of the three phenyl groups (hereinafter, the nitrogen atom at the 4-position) does not form a heterocycle.
 色素(A1b)および色素(A2b)は、3個の4位の窒素原子に結合するそれぞれ2つの基のうち少なくとも1組が互いに結合してヘテロ環を形成した構造である。3個の4位の窒素原子に結合するそれぞれ2つの基の2組が互いに結合しても、3組全てが結合していてもよい。 The dye (A1b) and the dye (A2b) have a structure in which at least one set of two groups bonded to each of the three nitrogen atoms at the 4-position is bonded to each other to form a heterocycle. Two sets of two groups each bonded to the three 4-position nitrogen atoms may be bonded to each other, or all three sets may be bonded.
 色素(A1c)および色素(A2c)は、3個の4位の窒素原子に結合する2つの基の少なくとも1つがフェニル基の3位または5位に結合する基と結合してヘテロ環を形成した構造である。色素(A1c)および色素(A2c)は、該ヘテロ環を2~6個有してもよい。 The dye (A1c) and dye (A2c) formed a heterocycle in which at least one of the two groups attached to the three nitrogen atoms at the 4-position was bonded to the group attached to the 3- or 5-position of the phenyl group. It is a structure. The dye (A1c) and the dye (A2c) may have 2 to 6 heterocycles.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(A1a)および式(A2a)において、R201~R206およびR221~R226は、それぞれ独立して、水素原子、ハロゲン原子、スルホ基、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、炭素原子間に酸素原子を有してもよく、置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、または、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基である。ただし、置換または非置換のアミノ基がフェニル基に結合した基は除く。R201~R206およびR221~R226は、それぞれ独立して、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。R207~R218およびR227~R238は、それぞれ独立して、式(A1)および式(A2)におけるR207~R218およびR227~R238と同様にできる。 In formulas (A1a) and (A2a), R 201 to R 206 and R 221 to R 226 are independently hydrogen atoms, halogen atoms, sulfo groups, hydroxy groups, cyano groups, nitro groups, and carboxyl groups, respectively. An alkyl group or an alkoxy group having 1 to 20 carbon atoms which may have an oxygen atom between a phosphate group and a carbon atom and may be substituted, or an alkyl group or an alkoxy group having 6 to 14 carbon atoms which may be substituted. It is an aryl group, an aralkyl group having 7 to 14 carbon atoms, or a heterocyclic group having 3 to 14 members. However, groups in which a substituted or unsubstituted amino group is bonded to a phenyl group are excluded. R 201 to R 206 and R 221 to R 226 are each independently preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms. R 207 ~ R 218 and R 227 ~ R 238 are each independently, it can be like the R 207 ~ R 218 and R 227 ~ R 238 in formula (A1) and formula (A2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(A1b)において、Q、QおよびQは、式(A1)におけるR201とR202、R203とR204およびR205とR206が、それぞれ結合して、これらの基が結合していた窒素原子とともに員数3~8のヘテロ環を形成した場合の2価の基を示す。式(A2b)において、Q11、Q12およびQ13は、式(A2)におけるR221とR222、R223とR224およびR225とR226が、それぞれ結合して、これらの基が結合していた窒素原子とともに員数3~8のヘテロ環を形成した場合の2価の基を示す。 In formula (A1b), Q 1 , Q 2 and Q 3 are such that R 201 and R 202 , R 203 and R 204 and R 205 and R 206 in formula (A1) are bonded, respectively, and these groups are bonded. It shows a divalent group when a heterocycle having 3 to 8 members is formed together with the nitrogen atom. In formula (A2b), Q 11 , Q 12 and Q 13 are such that R 221 and R 222 , R 223 and R 224 and R 225 and R 226 in formula (A2) are bonded, respectively, and these groups are bonded. It shows a divalent group when a heterocycle having 3 to 8 members is formed together with the nitrogen atom.
 式(A1b)および式(A2b)は、それぞれQ~QおよびQ11~Q13のうち少なくとも1つを有すればよく、2つ以上有してもよく、3つ有してもよい。なお、Q~QおよびQ11~Q13に結合する水素原子は、独立して炭素数1~12のアルキル基に置換されていてもよい。 Formula (A1b) and formula (A2b) may if it has at least one of Q 1 ~ Q 3 and Q 11 ~ Q 13 each may have two or more, may have three .. The hydrogen atom bonded to Q 1 ~ Q 3 and Q 11 ~ Q 13 may be substituted by an alkyl group having 1 to 12 carbon atoms independently.
 Q~QおよびQ11~Q13は、それぞれ独立して、-(CHn1-(n1は2~7の整数)で示されるアルキレン基であるのが好ましく、該アルキレン基の水素原子は、炭素数1~12のアルキル基に置換されていてもよい。 It is preferable that Q 1 to Q 3 and Q 11 to Q 13 are independently alkylene groups represented by − (CH 2 ) n1 − (n1 is an integer of 2 to 7), and hydrogen of the alkylene group. The atom may be substituted with an alkyl group having 1 to 12 carbon atoms.
 ヘテロ環を形成しない場合の、R201~R206およびR221~R226は、それぞれ独立して、式(A1a)および式(A2a)におけるR201~R206およびR221~R226と同様にできる。R207~R218およびR227~R238はそれぞれ独立して、式(A1)および式(A2)におけるR207~R218およびR227~R238と同様にできる。 In the case where the heterocycle is not formed, R 201 to R 206 and R 221 to R 226 are independently similar to R 201 to R 206 and R 221 to R 226 in the formulas (A1a) and (A2a), respectively. it can. R 207 to R 218 and R 227 to R 238 can be independently made similar to R 207 to R 218 and R 227 to R 238 in formulas (A1) and (A2), respectively.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A1c)において、Q~Qは、それぞれ、R201とR207、R202とR210、R203とR211、R204とR214、R205とR215、R206とR218が結合して、これらの基が結合していた窒素原子およびフェニル基の炭素原子とともに員数4~8のヘテロ環を形成した場合の2価の基を示す。式(A2c)において、Q14~Q19は、それぞれ、R221とR227、R222とR230、R223とR231、R224とR234、R225とR235、R226とR238が結合して、これらの基が結合していた窒素原子およびフェニル基の炭素原子とともに員数4~8のヘテロ環を形成した場合の2価の基を示す。 In formula (A1c), Q 4 ~ Q 9 are each, R 201 and R 207, R 202 and R 210, R 203 and R 211, R 204 and R 214, R 205 and R 215, R 206 and R 218 Shows a divalent group in the case where is bonded to form a heterocycle having 4 to 8 members together with the nitrogen atom and the carbon atom of the phenyl group to which these groups are bonded. In formula (A2c), Q 14 ~ Q 19 , respectively, R 221 and R 227, R 222 and R 230, R 223 and R 231, R 224 and R 234, R 225 and R 235, R 226 and R 238 Shows a divalent group in the case where is bonded to form a heterocycle having 4 to 8 members together with the nitrogen atom and the carbon atom of the phenyl group to which these groups are bonded.
 式(A1c)および式(A2c)は、それぞれQ~QおよびQ14~Q19のうち少なくとも1つを有すればよく、2つ以上有してもよく、最大6つ有してもよい。なお、Q~QおよびQ14~Q19に結合する水素原子は、独立して炭素数1~12のアルキル基に置換されていてもよい。 Formula (A1c) and formula (A2c) may if it has at least one of Q 4 ~ Q 9 and Q 14 ~ Q 19 each may have two or more, have up to 6 Good. The hydrogen atom bonded to Q 4 ~ Q 9 and Q 14 ~ Q 19 may be substituted by an alkyl group having 1 to 12 carbon atoms independently.
 Q~QおよびQ14~Q19は、それぞれ独立して、-(CHn2-(n2は1~5の整数)で示されるアルキレン基であるのが好ましく、該アルキレン基の水素原子は、炭素数1~12のアルキル基に置換されていてもよい。 Q 4 ~ Q 9 and Q 14 ~ Q 19 are each independently, - (CH 2) n2 - (n2 is an integer of 1-5) is preferably an alkylene group represented by hydrogen of the alkylene group The atom may be substituted with an alkyl group having 1 to 12 carbon atoms.
 ヘテロ環を形成しない場合の、R201~R218およびR221~R238はそれぞれ独立して、式(A1)および式(A2)におけるR201~R218およびR221~R238と同様にできる。 In the case of not forming the hetero ring, R 201 ~ R 218 and R 221 ~ R 238 are each independently, it can be like the R 201 ~ R 218 and R 221 ~ R 238 in formula (A1) and formula (A2) ..
 色素(A1a)および色素(A2a)としては、より具体的には、それぞれR201~R218およびR221~R238が、以下の表1および表2に示される化合物が挙げられる。例示する色素(A1a)においては、R201、R203、R205として同一の基を有するため、表1ではこれらをまとめて1つの欄に示した。R202、R204、R206についても同様にしてまとめて示した。R207~R218については、中心の窒素原子に結合する3個のフェニル基において、同じ位置の置換基をまとめて、「R207、R211、R215」、「R208、R212、R216」、「R209、R213、R217」、「R210、R214、R218」のように示した。色素(A2a)においても同様の記載方法とした。 More specifically, the dye (A1a) and the dye (A2a) include compounds in which R 201 to R 218 and R 221 to R 238 are shown in Tables 1 and 2 below, respectively. In the example dye (A1a), since R 201 , R 203 , and R 205 have the same group, they are collectively shown in one column in Table 1. R 202 , R 204 , and R 206 are also shown together in the same manner. For R 207 to R 218 , in the three phenyl groups bonded to the central nitrogen atom, the substituents at the same position are grouped together as "R 207 , R 211 , R 215 ", "R 208 , R 212 , R". 216 ”,“ R 209 , R 213 , R 217 ”,“ R 210 , R 214 , R 218 ”. The same description method was used for the dye (A2a).
 表1中、色素(A1a-21)および色素(A1a-23)については、互いにとなり合う3組の2つの基、R207とR208、R211とR212、およびR215とR216が、それぞれ結合して形成される2価の基を、「R207、R211、R215」の欄と、「R208、R212、R216」の欄を結合した欄に記載した。色素(A1a-22)については、互いにとなり合う3組の2つの基、R209とR210、R213とR214、およびR217とR218が、それぞれ結合して形成される2価の基を、「R209、R213、R217」の欄と、「R210、R214、R218」の欄を結合した欄に記載した。表2中の、色素(A2a-21)、色素(A2a-22)および色素(A2a-23)についても同様の記載方法とした。 In Table 1, for the dye (A1a-21) and the dye (A1a-23), there are three sets of two groups, R 207 and R 208 , R 211 and R 212 , and R 215 and R 216, which are adjacent to each other. The divalent groups formed by binding to each other are described in the columns of "R 207 , R 211 , R 215 " and the columns of "R 208 , R 212 , R 216 ". For the dye (A1a-22), a divalent group formed by combining three sets of two groups, R 209 and R 210 , R 213 and R 214 , and R 217 and R 218 , which are adjacent to each other. Was described in the column in which the columns of "R 209 , R 213 , R 217 " and the columns of "R 210 , R 214 , R 218 " were combined. The same description method was used for the dye (A2a-21), the dye (A2a-22) and the dye (A2a-23) in Table 2.
 表1、2には、XaおよびXbを示さないが、いずれの化合物においてもXaまたはXbは、それぞれ独立して、Cl、Br、I、F、ClO 、BF 、PF 、SbF 、CFSO 、CHSO 、N[SO 、または、C[SO である。XaおよびXbは、それぞれ独立して、I、BF4-、SbF 、PF 、ClO 、N[SOCF またはC[SOCF が好ましい。 Table 1, 2, Xa - and Xb - show no, in even Xa any compound - or Xb - are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, or, C [SO 2 R f] 3 - in is there. Xa - and Xb - are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 - or C [SO 2 CF 3] 3 - Is preferable.
 上記好ましい一価の陰イオンに対応する色素の略号を以下のように示す。色素(A1a-1)においてXaが、Iの場合を色素(A1a-1I)、BF4-の場合を色素(A1a-1B)、SbF の場合を色素(A1a-1Sb)、PF の場合を色素(A1a-1P)、ClO の場合を色素(A1a-1Cl)、N[SOCF の場合を色素(A1a-1NS)、C[SOCF の場合を色素(A1a-1CS)と示す。表1、2に示す他の色素においても同様である。表1、2中、Phはフェニル基を示し、-C等のアルキル基は全て直鎖のアルキル基である。 The abbreviations for the dyes corresponding to the preferred monovalent anions are shown below. In the dye (A1a-1), when Xa is I , the dye (A1a-1I), BF 4- is the dye (A1a-1B), SbF 6 is the dye (A1a-1Sb), and PF. 6 - dye (A1a-1P) in the case of, ClO 4 - dye (A1a-1Cl) the case of, N [SO 2 CF 3] 2 - in the case where the colorant (A1a-1NS), C [ SO 2 CF 3 ] 3 - shows the case of the dye (A1a-1CS). The same applies to the other dyes shown in Tables 1 and 2. In Table 1, 2, Ph represents a phenyl group, an alkyl group such as -C 3 H 7 is an alkyl group of all linear.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 色素(A1b)としては、より具体的には、Q~Q、R207~R218が、以下の表3に示される化合物が挙げられる。例示する色素(A1b)においては、Q、Q、Qとして同一の基を有するため、表3ではこれらをまとめて1つの欄に示した。R207~R218については、表1と同様の記載とした。色素(A2b)としては、より具体的には、Q11~Q13、R227~R238が、以下の表4に示される化合物が挙げられる。例示する色素(A2b)においては、Q11、Q12、Q13として同一の基を有するため、表4ではこれらをまとめて1つの欄に示した。R227~R238については、表2と同様の記載とした。 Examples of the dye (A1b), more specifically, Q 1 ~ Q 3, R 207 ~ R 218 is, compounds shown in Table 3 below. In illustrative dye (A1b), because they have the same groups as Q 1, Q 2, Q 3 , shown in Table 3 are collectively into one column. R 207 to R 218 are described in the same manner as in Table 1. More specifically, as the dye (A2b), Q 11 to Q 13 and R 227 to R 238 include compounds shown in Table 4 below. In illustrative dye (A2b), because they have the same groups as Q 11, Q 12, Q 13 , shown in Table 4 are collectively into one column. R227 to R238 have the same description as in Table 2.
 表3、4には、XaおよびXbを示さないが、いずれの化合物においてもXaまたはXbは、表1に示す色素(A1a)と同様である。表3、4中、-C等のアルキル基は全て直鎖のアルキル基である。 Table 3, 4, Xa - and Xb - show no, in any of the compound Xa - or Xb - is similar to the dye shown in Table 1 (A1a). In Tables 3 and 4, all alkyl groups such as -C 4 H 9 are linear alkyl groups.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 色素(A1c)としては、より具体的には、Q~Q、「R202、R204、R206」、「R208、R212、R216」、「R209、R213、R217」、「R210、R214、R218」が以下の表5に示される化合物が挙げられる。例示する色素(A1c)においては、Q、Q、Qとして同一の基を有するため、表5ではこれらをまとめて1つの欄に示した。さらに、Q、Q、Qを有する場合、Q、Q、Qとして同一の基を有するため、表5ではこれらをまとめて1つの欄に示した。「R202、R204、R206」および「R210、R214、R218」は、色素(A1c)が、Q、Q、Qを有しない場合に、存在する基である。 Examples of the dye (A1c), more specifically, Q 4 ~ Q 9, "R 202, R 204, R 206", "R 208, R 212, R 216", "R 209, R 213, R 217 , "R 210 , R 214 , R 218 " are listed in Table 5 below. In illustrative dye (A1c), because they have the same groups as Q 4, Q 6, Q 8 , shown in Table 5 are collectively into one column. Furthermore, when having Q 5, Q 7, Q 9, to have the same group as Q 5, Q 7, Q 9, shown in Table 5 are collectively into one column. "R 202 , R 204 , R 206 " and "R 210 , R 214 , R 218 " are groups that are present when the dye (A1c) does not have Q 5 , Q 7 , Q 9 .
 色素(A2c)としては、より具体的には、Q14~Q19、「R222、R224、R226」、「R228、R232、R236」、「R229、R233、R237」、「R230、R234、R238」が以下の表6に示される化合物が挙げられる。例示する色素(A2c)においては、Q14、Q16、Q18として同一の基を有するため、表6ではこれらをまとめて1つの欄に示した。さらに、Q15、Q17、Q19を有する場合、Q15、Q17、Q19として同一の基を有するため、表6ではこれらをまとめて1つの欄に示した。「R222、R224、R226」および「R230、R234、R238」は、色素(A2c)が、Q15、Q17、Q19を有しない場合に、存在する基である。 Dye (A2c) as is more specifically, Q 14 ~ Q 19, "R 222, R 224, R 226", "R 228, R 232, R 236", "R 229, R 233, R 237 , "R 230 , R 234 , R 238 " are listed in Table 6 below. In illustrative dye (A2c), because they have the same groups as Q 14, Q 16, Q 18 , shown in Table 6 are collectively into one column. Furthermore, when having a Q 15, Q 17, Q 19 , to have the same group as Q 15, Q 17, Q 19 , shown in Table 6 are collectively into one column. "R 222 , R 224 , R 226 " and "R 230 , R 234 , R 238 " are groups that are present when the dye (A2c) does not have Q 15 , Q 17 , Q 19 .
 「R202、R204、R206」、「R208、R212、R216」、「R209、R213、R217」、「R210、R214、R218」については、表1と同様の記載とした。「R222、R224、R226」、「R228、R232、R236」、「R229、R233、R237」、「R230、R234、R238」については、表2と同様の記載とした。 “R 202 , R 204 , R 206 ”, “R 208 , R 212 , R 216 ”, “R 209 , R 213 , R 217 ”, “R 210 , R 214 , R 218 ” are the same as in Table 1. It was described as. “ R222 , R224 , R226 ”, “ R228 , R232 , R236 ”, “ R229 , R233 , R237 ”, “ R230 , R234 , R238 ” are the same as in Table 2. It was described as.
 なお、色素(A1c)および色素(A2c)において左右が対称の化合物、例えば、色素(A1c-1)と、「Q、Q、Q」が-CH-CH-CH-CH-であり、「R201、R203、R205」が、-Cであり、「R207、R211、R215」、「R208、R212、R216」、「R209、R213、R217」、がHである化合物とは同じ化合物として扱う。 The left and right symmetrical compounds of the dye (A1c) and the dye (A2c), for example, the dye (A1c-1) and "Q 5 , Q 7 , Q 9 " are -CH 2- CH 2- CH 2- CH. 2- , "R 201 , R 203 , R 205 " is -C 2 H 5 , "R 207 , R 211 , R 215 ", "R 208 , R 212 , R 216 ", "R 209 " , R 213 , R 217 ", are treated as the same compound as the compound in which H is.
 表5、6には、XaおよびXbを示さないが、いずれの化合物においてもXaまたはXbは、表1に示す色素(A1a)と同様である。表5、6中、-C等のアルキル基は全て直鎖のアルキル基である。また、表5、6中、「Q、Q、Q」、「Q、Q、Q」、「Q14、Q16、Q18」、および「Q15、Q17、Q19」の欄に示す2価の基は、左側が窒素原子に結合し右側がフェニル基の炭素原子に結合する態様である。 Table 5, 6, Xa - and Xb - show no, in any of the compound Xa - or Xb - is similar to the dye shown in Table 1 (A1a). In Table 5 and 6, an alkyl group such as -C 3 H 7 is an alkyl group of all linear. Also, in Tables 5 and 6, "Q 4 , Q 6 , Q 8 ", "Q 5 , Q 7 , Q 9 ", "Q 14 , Q 16 , Q 18 ", and "Q 15 , Q 17 , Q" The divalent group shown in the column of " 19 " is a mode in which the left side is bonded to a nitrogen atom and the right side is bonded to a carbon atom of a phenyl group.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 色素(A1)としては、これらの中でも、色素(A1a)として、色素(A1a-5Sb)、色素(A1a-5NS)、色素(A1a-5P)、色素(A1a-5Cl)、色素(A1a-5B)、色素(A1a-1NS)、色素(A1a-4Sb)、色素(A1a-4NS)、色素(A1a-4P)、色素(A1a-7NS)、色素(A1a-7P)、等が好ましく、色素(A1a-5Sb)、色素(A1a-5NS)、色素(A1a-5P)、色素(A1a-4Sb)、色素(A1a-4NS)、色素(A1a-4P)がより好ましい。 Among these, the dye (A1) includes the dye (A1a-5Sb), the dye (A1a-5NS), the dye (A1a-5P), the dye (A1a-5Cl), and the dye (A1a-5B) as the dye (A1a). ), Dye (A1a-1NS), Dye (A1a-4Sb), Dye (A1a-4NS), Dye (A1a-4P), Dye (A1a-7NS), Dye (A1a-7P), etc. A1a-5Sb), dye (A1a-5NS), dye (A1a-5P), dye (A1a-4Sb), dye (A1a-4NS), dye (A1a-4P) are more preferable.
 また、色素(A1b)として、色素(A1b-1Sb)、色素(A1b-1NS)、色素(A1b-1P)等が好ましい。色素(A1c)として、色素(A1c-3NS)、色素(A1c-3P)、色素(A1c-4NS)、色素(A1c-4P)、色素(A1c-10NS)、色素(A1c-10P)等が好ましく、色素(A1b-1NS)、色素(A1b-1NS)、色素(A1c-4NS)、色素(A1c-4P)、色素(A1c-10NS)、色素(A1c-10P)がより好ましい。 Further, as the dye (A1b), a dye (A1b-1Sb), a dye (A1b-1NS), a dye (A1b-1P) and the like are preferable. As the dye (A1c), a dye (A1c-3NS), a dye (A1c-3P), a dye (A1c-4NS), a dye (A1c-4P), a dye (A1c-10NS), a dye (A1c-10P) and the like are preferable. , Dye (A1b-1NS), Dye (A1b-1NS), Dye (A1c-4NS), Dye (A1c-4P), Dye (A1c-10NS), Dye (A1c-10P) are more preferable.
 色素(A2)としては、これらの中でも、色素(A2a)として、色素(A2a-5Sb)、色素(A2a-5NS)、色素(A2a-5P)、色素(A2a-5Cl)、色素(A2a-5B)、色素(A2a-1NS)、色素(A2a-4Sb)、色素(A2a-4NS)、色素(A2a-4P)、色素(A2a-7NS)、色素(A2a-7P)、等が好ましく、色素(A2a-5Sb)、色素(A2a-5NS)、色素(A2a-5P)、色素(A2a-4Sb)、色素(A2a-4NS)、色素(A2a-4P)がより好ましい。 Among these, the dye (A2) includes the dye (A2a-5Sb), the dye (A2a-5NS), the dye (A2a-5P), the dye (A2a-5Cl), and the dye (A2a-5B) as the dye (A2a). ), Dye (A2a-1NS), Dye (A2a-4Sb), Dye (A2a-4NS), Dye (A2a-4P), Dye (A2a-7NS), Dye (A2a-7P), etc. A2a-5Sb), dye (A2a-5NS), dye (A2a-5P), dye (A2a-4Sb), dye (A2a-4NS), dye (A2a-4P) are more preferable.
 また、色素(A2b)として、色素(A2b-1Sb)、色素(A2b-1NS)、色素(A2b-1P)等が好ましい。色素(A2c)として、色素(A2c-3NS)、色素(A2c-3P)、色素(A2c-4NS)、色素(A2c-4P)、色素(A2c-10NS)、色素(A2c-10P)等が好ましく、色素(A2b-1NS)、色素(A2b-1NS)、色素(A2c-4NS)、色素(A2c-4P)、色素(A2c-10NS)、色素(A2c-10P)がより好ましい。 Further, as the dye (A2b), a dye (A2b-1Sb), a dye (A2b-1NS), a dye (A2b-1P) and the like are preferable. As the dye (A2c), a dye (A2c-3NS), a dye (A2c-3P), a dye (A2c-4NS), a dye (A2c-4P), a dye (A2c-10NS), a dye (A2c-10P) and the like are preferable. , Dye (A2b-1NS), Dye (A2b-1NS), Dye (A2c-4NS), Dye (A2c-4P), Dye (A2c-10NS), Dye (A2c-10P) are more preferred.
 NIR色素(A)は、1種の化合物からなってもよく、2種以上の化合物からなってもよい。2種以上の化合物からなる場合は、個々の化合物がNIR色素(A)の性質を必ずしも有する必要はなく、混合物として、NIR色素(A)の性質を有すればよい。 The NIR dye (A) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (A), and may have the property of NIR dye (A) as a mixture.
 色素(A1)および色素(A2)は、それぞれ公知の方法で製造できる。色素(A1a)~色素(A1c)は、例えば、日本国特開2007-197492号公報に記載された方法で製造可能である。色素(A2a)~色素(A2c)は、例えば、日本国特開2009-221146号公報に記載された方法で製造可能である。 The dye (A1) and the dye (A2) can be produced by known methods, respectively. The dyes (A1a) to dyes (A1c) can be produced, for example, by the methods described in Japanese Patent Application Laid-Open No. 2007-197492. The dyes (A2a) to dyes (A2c) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2009-221146.
[NIR色素(B)]
 NIR色素(B)は、透明樹脂(P)に含有させて測定される波長350~1200nmの分光透過率曲線において、1100~1200nmの波長領域に最大吸収波長λmax(B)TRを有する色素である。最大吸収波長λmax(B)TRは、1100~1150nmの波長領域にあるのが好ましい。
[NIR dye (B)]
The NIR dye (B) is a dye having a maximum absorption wavelength λ max (B) TR in a wavelength region of 1100 to 1200 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing it in a transparent resin (P). is there. The maximum absorption wavelength λ max (B) TR is preferably in the wavelength region of 1100 to 1150 nm.
 NIR色素(B)は、さらに、樹脂中での可視透過率が高い性能を有することが好ましい。 It is preferable that the NIR dye (B) has a high visible transmittance in the resin.
 NIR色素(B)としては、最大吸収波長λmax(B)TRが1100~1200nmにあれば、分子構造は特に制限されない。具体的には、シアニン色素、クロコニウム色素、フタロシアニン色素、スクアリリウム色素、ジイモニウム色素、ジケトピロロピロール色素、金属錯体色素、および金属酸化物からなる群から選ばれる少なくとも1種の色素が挙げられ、可視光高透過性の観点からジイモニウム色素が特に好ましい。 As the NIR dye (B), the molecular structure is not particularly limited as long as the maximum absorption wavelength λ max (B) TR is in the range of 1100 to 1200 nm. Specific examples thereof include at least one pigment selected from the group consisting of cyanine pigments, croconium pigments, phthalocyanine pigments, squarylium pigments, diimonium pigments, diketopyrrolopyrrole pigments, metal complex pigments, and metal oxides, which are visible. The diimonium dye is particularly preferable from the viewpoint of high light transmission.
 NIR色素(B)であるジイモニウム色素として具体的には、下式(B1)で示される化合物および下式(B2)で示される化合物から選ばれる1種以上が好ましい。 Specifically, as the diimonium dye which is the NIR dye (B), one or more selected from the compound represented by the following formula (B1) and the compound represented by the following formula (B2) is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(B1)および(B2)中の記号は以下のとおりである。
 R241~R248およびR261~R268は、それぞれ独立して、水素原子、ハロゲン原子、スルホ基、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、炭素原子間に不飽和結合または酸素原子を有してもよく置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、または、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基である。R241~R248およびR261~R268において、同一の窒素原子に結合する2つの基は互いに結合して、前記窒素原子とともに員数3~8のヘテロ環を形成していてもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
The symbols in the formulas (B1) and (B2) are as follows.
R 241 to R 248 and R 261 to R 268 are independently unsaturated bonds between hydrogen atom, halogen atom, sulfo group, hydroxy group, cyano group, nitro group, carboxyl group, phosphoric acid group and carbon atom. Alternatively, an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may have an oxygen atom or may be substituted, or an aryl group having 6 to 14 carbon atoms and 7 to 14 carbon atoms which may be substituted. Alkoxy group, or a heterocyclic group having 3 to 14 members. In R 241 to R 248 and R 261 to R 268 , two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom. The hydrogen atom bonded to may be substituted with an alkyl group having 1 to 12 carbon atoms.
 R241~R248およびR261~R268において、置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基における置換基としては、ハロゲン原子、水酸基、炭素数1~6のアルキル基で置換されていてもよいアミノ基、カルボキシル基、スルホ基、シアノ基、炭素数1~6のアシルオキシ基が挙げられる。 In R 241 to R 248 and R 261 to R 268 , an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may be substituted, an aryl group having 6 to 14 carbon atoms which may be substituted, and 7 carbon atoms which may be substituted. As the substituent in the aralkyl group of to 14 or the heterocyclic group having 3 to 14 members, an amino group, a carboxyl group or a sulfo group which may be substituted with a halogen atom, a hydroxyl group or an alkyl group having 1 to 6 carbon atoms. , Cyano group and acyloxy group having 1 to 6 carbon atoms.
 環を形成していない場合のR241~R248およびR261~R268は、それぞれ独立して、炭素数1~12のアルキル基もしくはアルコキシ基が好ましい。アルキル基もしくはアルコキシ基の炭素数は1~8が好ましい。 When the ring is not formed, R 241 to R 248 and R 261 to R 268 are each independently preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms. The alkyl group or alkoxy group preferably has 1 to 8 carbon atoms.
 R241~R248およびR261~R268としては、以下の観点からは、炭素数4~6の直鎖状または分岐状のアルキル基が好ましい。炭素数4以上とすることにより、有機溶媒に対する溶解性が良好になり、炭素数6以下とすることにより耐熱性が向上する。耐熱性が向上する理由としては、色素の融点が上昇するからと考えられる。 As R 241 to R 248 and R 261 to R 268 , linear or branched alkyl groups having 4 to 6 carbon atoms are preferable from the following viewpoints. When the number of carbon atoms is 4 or more, the solubility in an organic solvent is improved, and when the number of carbon atoms is 6 or less, the heat resistance is improved. It is considered that the reason why the heat resistance is improved is that the melting point of the dye is increased.
 同一の窒素原子に結合する2つの基が互いに結合した場合の2価の基、すなわち、R241とR242、R243とR244、R245とR246、R247とR248が、それぞれ結合した場合の2価の基としては、-(CHn3-(n3は2~7の整数)で示されるアルキレン基であるのが好ましく、該アルキレン基の水素原子は、炭素数1~12のアルキル基に置換されていてもよい。 A divalent group when two groups bonded to the same nitrogen atom are bonded to each other, that is, R 241 and R 242 , R 243 and R 244 , R 245 and R 246 , and R 247 and R 248 are bonded, respectively. In this case, the divalent group is preferably an alkylene group represented by- (CH 2 ) n3- (n3 is an integer of 2 to 7), and the hydrogen atom of the alkylene group has 1 to 12 carbon atoms. It may be substituted with the alkyl group of.
 R249~R253およびR269~R273は、それぞれ独立して、水素原子、ハロゲン原子、置換されていてもよいアミノ基、アミド基、シアノ基、ニトロ基、カルボキシル基、または、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基もしくはアルコキシ基である。それぞれ4個のR249~R253、R269~R273は、同じであっても異なってもよい。 R 249 to R 253 and R 269 to R 273 are independently hydrogen atoms, halogen atoms, optionally substituted amino groups, amide groups, cyano groups, nitro groups, carboxyl groups, or halogen atoms. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be substituted. The four R 249 to R 253 and R 269 to R 273, respectively, may be the same or different.
 R249~R253およびR269~R273は、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~12のアルキル基もしくはアルコキシ基が好ましい。アルキル基もしくはアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましい。 R 249 to R 253 and R 269 to R 273 are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 12 carbon atoms. The alkyl group or alkoxy group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
 XcおよびXdはそれぞれ独立して一価の陰イオンを表す。XcおよびXdとしては、例えば、Cl、Br、I、F、ClO 、BF 、PF 、SbF 、CFSO 、CHSO 、N[SO 、C[SO 等を挙げられる。これらのなかでも、PF 、N[SO 、C[SO が好ましく、PF 、N[SO がより好ましい。 Xc - and Xd - each independently represents a monovalent anion. Xc - and Xd - as, for example, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 - and the like, etc. -, C [SO 2 R f ] 3. Among these, PF 6 -, N [SO 2 R f] 2 -, C [SO 2 R f] 3 - are preferred, PF 6 -, N [SO 2 R f] 2 - is more preferable.
 ここで、Rは、上記XaおよびXbの場合と好ましい態様も含めて同様にできる。 Here, R f can be set in the same manner as in the cases of Xa and Xb , including preferred embodiments.
 色素(B1)および色素(B2)としては、より具体的には、それぞれR241~R253およびR261~R273が、以下の表7および表8に示される化合物が挙げられる。例示する色素(B1)においては、R241、R243、R245、R247として同一の基を有するため、表7ではこれらをまとめて1つの欄に示した。R242、R244、R246、R248についても同様にしてまとめて示した。R249 ~R253 については、R249~R253がそれぞれ4個の基または原子を有することを示し、4個の基または原子が同じ場合は、その基または原子の1つのみを記載した。異なる場合は「H,H,H,-CH」のように4つの原子または基を記載した。原子または基の結合する位置は特定しない。例えば、「H,H,H,-CH」は、-CHがベンゼン環の窒素原子が結合する炭素原子以外の4個の炭素原子のいずれかに結合した場合を示す。 More specifically, as the dye (B1) and the dye (B2), R 241 to R 253 and R 261 to R 273 , respectively, and the compounds shown in Tables 7 and 8 below can be mentioned. In the example dye (B1), since they have the same group as R 241 and R 243 , R 245 and R 247 , they are collectively shown in one column in Table 7. The same applies to R 242 , R 244 , R 246 , and R 248 . For R 249 4 to R 253 4 , indicate that R 249 to R 253 each have 4 groups or atoms, and if the 4 groups or atoms are the same, list only one of those groups or atoms. did. If different, four atoms or groups are listed, such as "H, H, H, -CH 3 ". The position where the atom or group is bonded is not specified. For example, "H, H, H, -CH 3 " indicates a case where -CH 3 is bonded to any of four carbon atoms other than the carbon atom to which the nitrogen atom of the benzene ring is bonded.
 表7において、色素(B1-6)は、R241とR242、R243とR244、R245とR246、R247とR248が、それぞれ結合して、いずれも、-CH-CH-CH-CH-である場合を示す。これら表7における色素(B1)の記載方法を、表8における色素(B2)においても適用した。 In Table 7, in the dye (B1-6), R 241 and R 242 , R 243 and R 244 , R 245 and R 246 , and R 247 and R 248 are bound to each other, and all of them are -CH 2- CH. A case of 2- CH 2- CH 2- is shown. The description method of the dye (B1) in Table 7 was also applied to the dye (B2) in Table 8.
 表7、8には、XcおよびXdを示さないが、いずれの化合物においてもXcまたはXdは、それぞれ独立して、Cl、Br、I、F、ClO 、BF 、PF 、SbF 、CFSO 、CHSO 、N[SO 、または、C[SO である。XcおよびXdは、それぞれ独立して、I、BF4-、SbF 、PF 、ClO 、N[SOCF またはC[SOCF が好ましい。 Table 7, 8, Xc - and Xd - show no, in even Xc any compound - or Xd - are each independently, Cl -, Br -, I -, F -, ClO 4 -, BF 4 -, PF 6 -, SbF 6 -, CF 3 SO 3 -, CH 3 C 6 H 4 SO 3 -, N [SO 2 R f] 2 -, or, C [SO 2 R f] 3 - in is there. Xc - and Xd - are each independently, I -, BF 4-, SbF 6 -, PF 6 -, ClO 4 -, N [SO 2 CF 3] 2 - or C [SO 2 CF 3] 3 - Is preferable.
 上記好ましい一価の陰イオンに対応する色素の略号を以下のように示す。例えば、色素(B1-1)においてXcが、Iの場合を色素(B1-1I)、BF4-の場合を色素(B1-1B)、SbF の場合を色素(B1-1Sb)、PF の場合を色素(B1-1P)、ClO の場合を色素(B1-1Cl)、N[SOCF の場合を色素(B1-1NS)、C[SOCF の場合を色素(B1-1CS)と示す。表7、8に示す他の色素においても同様である。表7、8中、Phはフェニル基を示し、-C等のアルキル基は全て直鎖のアルキル基である。 The abbreviations for the dyes corresponding to the preferred monovalent anions are shown below. For example, in the dye (B1-1), the case where Xc is I is the dye (B1-1I), the case of BF 4- is the dye (B1-1B), and the case of SbF 6 is the dye (B1-1Sb). , PF 6 - in the case where the colorant (B1-1P), ClO 4 - in the case where the colorant (B1-1Cl), N [SO 2 CF 3] 2 - in the case where the colorant (B1-1NS), C [SO 2 CF 3] 3 - shows the case of the dye (B1-1CS). The same applies to the other dyes shown in Tables 7 and 8. In Table 7, 8, Ph represents a phenyl group, an alkyl group such as -C 3 H 7 is an alkyl group of all linear.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 色素(B1)としては、これらの中でも、色素(B1-5NS)、色素(B1-5Sb)、色素(B1-5P)、色素(B1-4NS)、色素(B1-4Sb)、色素(B1-4P)等が好ましい。色素(B2)としては、これらの中でも、色素(B2-4NS)、色素(B2-4P)、色素(B2-5NS)、色素(B2-5P)等が好ましい。 Among these, the dye (B1) includes a dye (B1-5NS), a dye (B1-5Sb), a dye (B1-5P), a dye (B1-4NS), a dye (B1-4Sb), and a dye (B1-). 4P) and the like are preferable. Among these, as the dye (B2), a dye (B2-4NS), a dye (B2-4P), a dye (B2-5NS), a dye (B2-5P) and the like are preferable.
 NIR色素(B)は、1種の化合物からなってもよく、2種以上の化合物からなってもよい。2種以上の化合物からなる場合は、個々の化合物がNIR色素(B)の性質を必ずしも有する必要はなく、混合物として、NIR色素(B)の性質を有すればよい。 The NIR dye (B) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (B), and may have the property of NIR dye (B) as a mixture.
 色素(B1)および色素(B2)は、それぞれ公知の方法で製造できる。色素(B1)は、例えば、日本国特開2009-137894号公報に記載された方法で製造できる。色素(B2)は、例えば、日本国特開2000-229931号公報に記載された方法で製造可能である。 The dye (B1) and the dye (B2) can be produced by known methods, respectively. The dye (B1) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2009-137894. The dye (B2) can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 2000-229931.
 また、色素(B1)の市販品を例示すると、例えば、日本化薬(株)製のKayasorbIRG-022、同IRG-023、同IRG-024、同IRG-068、同IRG-069、同IRG-079、日本カーリット(株)製のCIR-1081、CIR-1083、CIR-1085、CIR-RL(以上、いずれも商品名)等が挙げられる。 To give an example of a commercially available product of the dye (B1), for example, Kayasorb IRG-022, IRG-023, IRG-024, IRG-068, IRG-069, and IRG- of Nippon Kayaku Co., Ltd. 079, CIR-1081, CIR-1083, CIR-1085, CIR-RL (all of which are trade names) manufactured by Nippon Carlit Co., Ltd. can be mentioned.
[NIR色素(C)]
 NIR色素(C)は、透明樹脂(P)に含有させて測定される波長350~1200nmの分光透過率曲線において、630~750nmの波長領域に最大吸収波長λmax(C)TRを有するスクアリリウム色素である。最大吸収波長λmax(c)TRは、650~740nmの波長領域にあるのが好ましい。
[NIR dye (C)]
The NIR dye (C) is a squarylium dye having a maximum absorption wavelength λ max (C) TR in the wavelength region of 630 to 750 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing it in a transparent resin (P). Is. The maximum absorption wavelength λ max (c) TR is preferably in the wavelength region of 650 to 740 nm.
 NIR色素(C)は、さらに、樹脂中での可視透過率が高く、最大吸収波長λmax(C)TRから短波長側へ透過率が上昇していく際は、急峻な立ち上がりを示すことが好ましい。 The NIR dye (C) has a higher visible transmittance in the resin, and when the transmittance increases from the maximum absorption wavelength λ max (C) TR to the short wavelength side, it may show a steep rise. preferable.
 NIR色素(C)は、最大吸収波長λmax(C)TRの要件を満足するスクアリリウム色素であればそれ以外は特に制限されない。NIR色素(C)として、より具体的には、下式(I)または式(II)で表されるスクアリリウム色素が好ましい。 The NIR dye (C) is not particularly limited as long as it is a squarylium dye that satisfies the requirements of the maximum absorption wavelength λ max (C) TR . More specifically, as the NIR dye (C), a squarylium dye represented by the following formula (I) or formula (II) is preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ただし、式(I)中の記号は以下のとおりである。
 R24およびR26は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~20のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、炭素数6~11のアリール基、置換基を有していてもよく炭素原子間に酸素原子を有していてもよい炭素数7~18のアラルキル基、-NR2728(R27およびR28は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、-C(=O)-R29(R29は、水素原子、ハロゲン原子、水酸基、置換基を有していてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1~25の炭化水素基)、-NHR30、または、-SO-R30(R30は、それぞれ1つ以上の水素原子がハロゲン原子、水酸基、カルボキシル基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1~25の炭化水素基)を示す。)、または、下記式(S)で示される基(R41、R42は、独立して、水素原子、ハロゲン原子、または炭素数1~10のアルキル基もしくはアルコキシ基を示す。kは2または3である。)を示す。
However, the symbols in the formula (I) are as follows.
R 24 and R 26 are independently hydrogen atom, halogen atom, hydroxyl group, alkyl group or alkoxy group having 1 to 20 carbon atoms, acyloxy group having 1 to 10 carbon atoms, aryl group having 6 to 11 carbon atoms, respectively. An aralkyl group having 7 to 18 carbon atoms, which may have a substituent or an oxygen atom between carbon atoms, -NR 27 R 28 (R 27 and R 28 are independently hydrogen. Atom, an alkyl group having 1 to 20 carbon atoms, -C (= O) -R 29 (R 29 may have a hydrogen atom, a halogen atom, a hydroxyl group, a substituent, and an unsaturated bond between carbon atoms. , an oxygen atom, a saturated or unsaturated hydrocarbon group of may having 1 to 25 carbon atoms containing a ring structure), - NHR 30, or,, -SO 2 -R 30 (R 30 are each one or more hydrogen atoms May be substituted with a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, or a cyano group, and may contain an unsaturated bond, an oxygen atom, a saturated or unsaturated ring structure between carbon atoms, and has 1 to 25 carbon atoms. The group (R 41 , R 42 ) represented by the following formula (S) is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms or an alkoxy. Indicates a group. K is 2 or 3).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 R21とR22、R22とR25、およびR21とR23は、互いに連結して窒素原子と共に員数が5または6のそれぞれヘテロ環A、ヘテロ環B、およびヘテロ環Cを形成してもよい。 R 21 and R 22 , R 22 and R 25 , and R 21 and R 23 are linked together to form a heterocycle A, heterocycle B, and heterocycle C with 5 or 6 members, respectively, with nitrogen atoms. May be good.
 ヘテロ環Aが形成される場合のR21とR22は、これらが結合した2価の基-Q-として、水素原子が炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。 When a hetero ring A is formed, R 21 and R 22 have an alkyl group having a hydrogen atom of 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having a hydrogen atom as a divalent group −Q— to which they are bonded. An alkylene group or an alkyleneoxy group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent is shown.
 ヘテロ環Bが形成される場合のR22とR25、およびヘテロ環Cが形成される場合のR21とR23は、これらが結合したそれぞれ2価の基-X-Y-および-X-Y-(窒素に結合する側がXおよびX)として、XおよびXがそれぞれ下記式(1x)または(2x)で示される基であり、YおよびYがそれぞれ下記式(1y)~(5y)から選ばれるいずれかで示される基である。XおよびXが、それぞれ下記式(2x)で示される基の場合、YおよびYはそれぞれ単結合であってもよく、その場合、炭素原子間に酸素原子を有してもよい。 R 22 and R 25 when the heterocycle B is formed, and R 21 and R 23 when the heterocycle C is formed are the divalent groups -X 1- Y 1- and-when they are bonded, respectively. As X 2- Y 2- (the side that binds to nitrogen is X 1 and X 2 ), X 1 and X 2 are the groups represented by the following formulas (1x) or (2x), respectively, and Y 1 and Y 2 are respectively. It is a group represented by any of the following formulas (1y) to (5y). When X 1 and X 2 are groups represented by the following formulas (2x), Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(1x)中、4個のZは、それぞれ独立して水素原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、または-NR3839(R38およびR39は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す)を示す。R31~R36はそれぞれ独立して水素原子、炭素数1~6のアルキル基または炭素数6~10のアリール基を、R37は炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。 In the formula (1x), the four Zs are independently hydrogen atoms, hydroxyl groups, alkyl or alkoxy groups having 1 to 6 carbon atoms, or -NR 38 R 39 (R 38 and R 39 are independent, respectively. Indicates a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). R 31 to R 36 are independent hydrogen atoms, alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 10 carbon atoms, and R 37 is an alkyl group having 1 to 6 carbon atoms or 6 to 10 carbon atoms. Indicates an aryl group.
 R27、R28、R29、R31~R37、ヘテロ環を形成していない場合のR21~R23、およびR25は、これらのうちの他のいずれかと互いに結合して5員環または6員環を形成してもよい。R31とR36、R31とR37は直接結合してもよい。 R 27 , R 28 , R 29 , R 31 to R 37 , R 21 to R 23 when not forming a heterocycle, and R 25 are 5-membered rings coupled with any other of these. Alternatively, a 6-membered ring may be formed. R 31 and R 36 and R 31 and R 37 may be directly coupled.
 ヘテロ環を形成していない場合の、R21、R22、R23およびR25は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~20のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、炭素数6~11のアリール基、または、置換基を有していてもよく炭素原子間に酸素原子を有していてもよい炭素数7~18のアラルキル基を示す。 When the hetero ring is not formed, R 21 , R 22 , R 23 and R 25 independently have a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms or an alkoxy group, and a carbon number of carbon atoms. It represents an acyloxy group of 1 to 10, an aryl group having 6 to 11 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms which may have a substituent or an oxygen atom between carbon atoms. ..
 なお、式(I)において、特に断りのない限り、炭化水素基はアルキル基、アリール基、またはアラルキル基である。特に断りのない限り、アルキル基および、アルコキシ基、アリール基またはアラルキル基におけるアルキル部分は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。 In the formula (I), unless otherwise specified, the hydrocarbon group is an alkyl group, an aryl group, or an aralkyl group. Unless otherwise specified, the alkyl group and the alkyl moiety in the alkoxy group, aryl group or aralkyl group may be linear, branched chain, cyclic or a combination of these structures.
 以下の他の式におけるアルキル基、アルコキシ基、アリール基、アラルキル基においても、同様である。式(I)において、R29における置換基としては、ハロゲン原子、水酸基、カルボキシル基、スルホ基、シアノ基、炭素数1~6のアシルオキシ基が挙げられる。R29を除いて「置換基を有してもよい」という場合の置換基としては、ハロゲン原子または炭素数1~15のアルコキシ基が例示できる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子および塩素原子が好ましい。 The same applies to the alkyl group, alkoxy group, aryl group, and aralkyl group in the other formulas below. In the formula (I), examples of the substituent in R 29 include a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, and an acyloxy group having 1 to 6 carbon atoms. Examples of the substituent in the case of "may have a substituent" except for R 29 include a halogen atom or an alkoxy group having 1 to 15 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ただし、式(II)中の記号は以下のとおりである。
 環Zは、それぞれ独立して、ヘテロ原子を環中に0~3個有する5員環または6員環であり、環Zが有する水素原子は置換されていてもよい。水素原子が置換される場合、置換基としては、ハロゲン原子、または、置換基を有してもよい炭素数1~10のアルキル基が挙げられる。
However, the symbols in the formula (II) are as follows.
Ring Z is a 5-membered ring or a 6-membered ring each independently having 0 to 3 heteroatoms in the ring, and the hydrogen atom contained in the ring Z may be substituted. When the hydrogen atom is substituted, the substituent includes a halogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
 RとR、RとR、およびRと環Zを構成する炭素原子またはヘテロ原子は、互いに連結して窒素原子とともにそれぞれヘテロ環A1、ヘテロ環B1およびヘテロ環C1を形成していてもよく、その場合、ヘテロ環A1、ヘテロ環B1およびヘテロ環C1が有する水素原子は置換されていてもよい。水素原子が置換される場合、置換基としては、ハロゲン原子、または、置換基を有してもよい炭素数1~15のアルキル基が挙げられる。 R 1 and R 2, R 2 and R 3, and the carbon atoms or heteroatoms constituting R 1 and ring Z is, respectively form a heterocyclic ring A1, heterocycle B1 and heterocyclic C1 together with the nitrogen atom linked to each other In that case, the hydrogen atoms contained in the heterocycle A1, the heterocycle B1 and the heterocycle C1 may be substituted. When the hydrogen atom is substituted, the substituent includes a halogen atom or an alkyl group having 1 to 15 carbon atoms which may have a substituent.
 ヘテロ環を形成していない場合のRおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素原子間に不飽和結合、ヘテロ原子、飽和もしくは不飽和の環構造を含んでよく、置換基を有してもよい炭化水素基を示す。Rおよびヘテロ環を形成していない場合のRは、それぞれ独立して、水素原子、ハロゲン原子、または炭素原子間にヘテロ原子を含んでもよく、置換基を有してもよいアルキル基もしくはアルコキシ基を示す。 When not forming a hetero ring, R 1 and R 2 each independently contain an unsaturated bond, a hetero atom, a saturated or unsaturated ring structure between hydrogen atoms, halogen atoms, or carbon atoms. Well, it shows a hydrocarbon group which may have a substituent. R 4 and R 3 in the case of not forming a hetero ring may independently contain a hetero atom between a hydrogen atom, a halogen atom, or a carbon atom, and may have a substituent or an alkyl group or a substituent. Indicates an alkoxy group.
 式(II)において、炭化水素基の炭素数は1~15が挙げられる。アルキル基もしくはアルコキシ基の炭素数は1~10が挙げられる。式(II)において、「置換基を有してもよい」という場合の置換基としては、ハロゲン原子または炭素数1~10のアルコキシ基が例示できる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子および塩素原子が好ましい。 In the formula (II), the number of carbon atoms of the hydrocarbon group is 1 to 15. The number of carbon atoms of the alkyl group or the alkoxy group may be 1 to 10. In the formula (II), as the substituent in the case of "may have a substituent", a halogen atom or an alkoxy group having 1 to 10 carbon atoms can be exemplified. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
 化合物(I)としては、例えば、式(I-1)~(I-4)のいずれかで示される化合物が挙げられる。 Examples of the compound (I) include compounds represented by any of the formulas (I-1) to (I-4).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 ただし、式(I-1)~式(I-4)中の記号は、式(I)における同記号の各規定と同じであり、好ましい態様も同様である。 However, the symbols in the formulas (I-1) to (I-4) are the same as the respective provisions of the same symbols in the formula (I), and the preferred embodiments are also the same.
 化合物(I-1)~(I-4)のうちでも、NIR色素(C)としては、これを含有する樹脂層の可視光透過率を高くできる観点から化合物(I-1)~(I-3)が好ましく、化合物(I-1)が特に好ましい。 Among the compounds (I-1) to (I-4), the NIR dye (C) contains the compounds (I-1) to (I-) from the viewpoint of increasing the visible light transmittance of the resin layer containing the NIR dye (C). 3) is preferable, and compound (I-1) is particularly preferable.
 化合物(I-1)において、Xとしては、基(2x)が好ましく、Yとしては、単結合または基(1y)が好ましい。この場合、R31~R36としては、水素原子または炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。なお、-Y-X-として、具体的には、式(11-1)~(12-3)で示される2価の有機基が挙げられる。 In compound (I-1), X 1 is preferably a group (2x), and Y 1 is preferably a single bond or a group (1y). In this case, as R 31 to R 36 , a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable. Specific examples of -Y 1- X 1- include divalent organic groups represented by the formulas (11-1) to (12-3).
 -C(CH-CH(CH)-      …(11-1)
 -C(CH-CH-          …(11-2)
 -C(CH-CH(C)-      …(11-3)
 -C(CH-C(CH)(nC)- …(11-4)
 -C(CH-CH-CH-       …(12-1)
 -C(CH-CH-CH(CH)-   …(12-2)
 -C(CH-CH(CH)-CH-   …(12-3)
-C (CH 3 ) 2- CH (CH 3 ) -... (11-1)
-C (CH 3 ) 2- CH 2- ... (11-2)
-C (CH 3 ) 2- CH (C 2 H 5 ) -... (11-3)
-C (CH 3 ) 2- C (CH 3 ) (nC 3 H 7 ) -... (11-4)
-C (CH 3 ) 2- CH 2- CH 2- ... (12-1)
-C (CH 3 ) 2- CH 2- CH (CH 3 ) -... (12-2)
-C (CH 3 ) 2- CH (CH 3 ) -CH 2- ... (12-3)
 また、化合物(I-1)において、R21は、溶解性、耐熱性、さらに分光透過率曲線における可視域と近赤外域の境界付近の変化の急峻性の観点から、独立して、式(4-1)または式(4-2)で示される基がより好ましい。 Further, in compound (I-1), R 21 is independently formulated (1) from the viewpoint of solubility, heat resistance, and steepness of change near the boundary between the visible region and the near infrared region in the spectral transmittance curve. The group represented by 4-1) or the formula (4-2) is more preferable.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(4-1)および式(4-2)中、R81~R85は、独立して、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。 In formulas (4-1) and (4-2), R 81 to R 85 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
 化合物(I-1)において、R24は-NR2728が好ましい。-NR2728としては、NIR色素(C)と組み合わせる樹脂や、基材上に樹脂層を形成する際に用いる溶媒への溶解性の観点から、-NH-C(=O)-R29が好ましい。化合物(I-1)において、R24が-NH-C(=O)-R29の化合物を式(I-11)に示す。 In compound (I-1), R 24 is preferably -NR 27 R 28 . -NR 27 R 28 is -NH-C (= O) -R 29 from the viewpoint of solubility in the resin to be combined with the NIR dye (C) and the solvent used when forming the resin layer on the substrate. Is preferable. In compound (I-1), a compound in which R 24 is -NH-C (= O) -R 29 is represented by the formula (I-11).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物(I-11)における、R23およびR26は、独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基もしくはアルコキシ基が好ましく、いずれも水素原子がより好ましい。 In the compound (I-11), R 23 and R 26 are independently preferable to be a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms, and all of them are more preferably a hydrogen atom.
 化合物(I-11)において、R29としては、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数6~10のアリール基、または置換基を有していてもよく、炭素原子間に酸素原子を有していてもよい炭素数7~18のアラルキル基が好ましい。置換基としては、フッ素原子等のハロゲン原子、水酸基、カルボキシル基、スルホ基、シアノ基、炭素数1~6のアルキル基、炭素数1~6のフロロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアシルオキシ基等が挙げられる。 In the compound (I-11), as R 29 , an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aryl group having 6 to 10 carbon atoms which may have a substituent, or An aralkyl group having 7 to 18 carbon atoms, which may have a substituent and may have an oxygen atom between carbon atoms, is preferable. As the substituent, a halogen atom such as a fluorine atom, a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms , Acyloxy group having 1 to 6 carbon atoms and the like.
 R29としては、水素原子、ハロゲン原子、水酸基、炭素数1~20のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、炭素数6~11のアリール基、または、置換基を有していてもよく炭素原子間に酸素原子を有していてもよい炭素数7~18のアラルキル基が好ましい。 The R 29 has a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, or a substituent. Alkoxy groups having 7 to 18 carbon atoms, which may have oxygen atoms between carbon atoms, are preferable.
 R29としては、フッ素原子で置換されてもよい直鎖状、分岐鎖状、環状の炭素数1~17のアルキル基、炭素数1~6のフロロアルキル基および/または炭素数1~6のアルコキシ基で置換されてもよいフェニル基、および炭素原子間に酸素原子を有していてもよい炭素数7~18の、末端に炭素数1~6のフッ素原子で置換されていてもよいアルキル基および/または、炭素数1~6のアルコキシ基で置換されてもよいフェニル基を有するアラルキル基から選ばれる基が好ましい。 R 29 may be a linear, branched, cyclic alkyl group having 1 to 17 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms and / or 1 to 6 carbon atoms which may be substituted with a fluorine atom. A phenyl group that may be substituted with an alkoxy group, and an alkyl that may have an oxygen atom between carbon atoms and may be substituted with a fluorine atom having 7 to 18 carbon atoms and having 1 to 6 carbon atoms at the terminal. A group selected from an aralkyl group having a phenyl group which may be substituted with a group and / or an alkoxy group having 1 to 6 carbon atoms is preferable.
 R29としては、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシル基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5~25の炭化水素基である基も好ましく使用できる。このようなR29としては、例えば、下記式(11a)、(11b)、(12a)~(12e)、(13a)~(13e)で示される基が挙げられる。 As R 29 , one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxyl group, a sulfo group, or a cyano group, and unsaturated bonds, oxygen atoms, saturation, or A group that is a hydrocarbon group having at least one or more branches and having 5 to 25 carbon atoms, which may contain an unsaturated ring structure, can also be preferably used. Examples of such R 29 include groups represented by the following formulas (11a), (11b), (12a) to (12e), and (13a) to (13e).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物(I-11)としては、より具体的に、以下の表9に示す化合物が挙げられる。なお、表9において、基(11-1)を(11-1)と示す。他の基についても同様である。以下の他の表においても基の表示は同様である。また、表9に示す化合物は、いずれもスクアリリウム骨格の左右において各記号の意味は同一である。以下の他の表に示すスクアリリウム色素においても同様である。 More specifically, the compound (I-11) includes the compounds shown in Table 9 below. In Table 9, the group (11-1) is shown as (11-1). The same applies to other groups. The display of groups is the same in the other tables below. In addition, the compounds shown in Table 9 have the same meaning of each symbol on the left and right sides of the squarylium skeleton. The same applies to the squarylium dyes shown in the other tables below.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 化合物(I-1)において、R24は、可視光の透過率、特に波長430~550nmの光の透過率を高める観点から、-NH-SO-R30が好ましい。化合物(I-1)において、R24が-NH-SO-R30の化合物を式(I-12)に示す。 In compound (I-1), R 24 is preferably -NH-SO 2- R 30 from the viewpoint of increasing the transmittance of visible light, particularly the transmittance of light having a wavelength of 430 to 550 nm. In compound (I-1), a compound in which R 24 is -NH-SO 2- R 30 is represented by the formula (I-12).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物(I-12)における、R23およびR26は、独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基もしくはアルコキシ基が好ましく、いずれも水素原子がより好ましい。 In the compound (I-12), R 23 and R 26 are independently preferable to be a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms, and all of them are more preferably a hydrogen atom.
 化合物(I-12)において、R30は耐光性の点から、独立して、分岐を有してもよい炭素数1~12のアルキル基もしくはアルコキシ基、または不飽和の環構造を有する炭素数6~16の炭化水素基が好ましい。不飽和の環構造としては、ベンゼン、トルエン、キシレン、フラン、ベンゾフラン等が挙げられる。R30は、独立して、分岐を有してもよい炭素数1~12のアルキル基もしくはアルコキシ基がより好ましい。なお、R30を示す各基において、水素原子の一部または全部がハロゲン原子、特にはフッ素原子に置換されていてもよい。なお、水素原子のフッ素原子への置換は、色素(I-12)を含有する樹脂層と、例えば、透明基板との密着性が落ちない程度とする。 In compound (I-12), R 30 has an alkyl or alkoxy group having 1 to 12 carbon atoms which may have a branch independently from the viewpoint of light resistance, or an unsaturated ring structure. 6 to 16 hydrocarbon groups are preferred. Examples of the unsaturated ring structure include benzene, toluene, xylene, furan, and benzofuran. R 30 is more preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may independently have a branch. In each group showing R 30 , a part or all of hydrogen atoms may be substituted with halogen atoms, particularly fluorine atoms. The hydrogen atom is replaced with a fluorine atom so that the adhesion between the resin layer containing the dye (I-12) and, for example, the transparent substrate is not deteriorated.
 不飽和の環構造を有するR30として具体的には、下記式(P2)、(P3)、(P7)、(P8)、(P10)~(P13)で示される基が挙げられる。 Specific examples of the R 30 having an unsaturated ring structure include groups represented by the following formulas (P2), (P3), (P7), (P8), (P10) to (P13).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物(I-12)としては、より具体的に、以下の表10に示す化合物が挙げられる。 More specifically, the compound (I-12) includes the compounds shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 化合物(II)としては、例えば、式(II-1)~(II-3)のいずれかで示される化合物が挙げられる。 Examples of the compound (II) include compounds represented by any of the formulas (II-1) to (II-3).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 ただし、式(II-1)、式(II-2)中、RおよびRは、それぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~15のアルキル基を示し、R~Rはそれぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~10のアルキル基を示す。 However, in the formulas (II-1) and (II-2), R 1 and R 2 are alkyl having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom, or a substituent. The groups are shown, and R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
 ただし、式(II-3)中、R、R、およびR~R12は、それぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~15のアルキル基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~5のアルキル基を示す。 However, in formula (II-3), R 1 , R 4 , and R 9 to R 12 are alkyl having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom, or a substituent. The groups are shown, and R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
 化合物(II-1)および化合物(II-2)におけるRおよびRは、樹脂への溶解性、可視光透過性等の観点から、独立して、炭素数1~15のアルキル基が好ましく、炭素数7~15のアルキル基がより好ましく、RとRの少なくとも一方が、炭素数7~15の分岐鎖を有するアルキル基がさらに好ましく、RとRの両方が炭素数8~15の分岐鎖を有するアルキル基が特に好ましい。 R 1 and R 2 in compound (II-1) and compound (II-2) are preferably alkyl groups having 1 to 15 carbon atoms independently from the viewpoint of solubility in a resin, visible light transmission, and the like. , An alkyl group having 7 to 15 carbon atoms is more preferable, an alkyl group having at least one of R 1 and R 2 having a branched chain having 7 to 15 carbon atoms is more preferable, and both R 1 and R 2 have 8 carbon atoms. Alkyl groups having up to 15 branched chains are particularly preferred.
 Rは、樹脂への溶解性、可視光透過性等の観点から、独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基が好ましく、水素原子、ハロゲン原子、メチル基がより好ましい。Rは、可視域と近赤外域の境界付近の変化の急峻性の観点から、水素原子、ハロゲン原子が好ましく、水素原子がとくに好ましい。化合物(II-1)におけるRおよび化合物(II-2)におけるRは、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましく、水素原子、ハロゲン原子、メチル基がより好ましい。 R 3 is preferably an alkyl group having a hydrogen atom, a halogen atom, or 1 to 3 carbon atoms, and more preferably a hydrogen atom, a halogen atom, or a methyl group, independently from the viewpoint of solubility in a resin, visible light transmission, and the like. preferable. R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom, from the viewpoint of steepness of change near the boundary between the visible region and the near infrared region. R 5 in compound (II-1) and R 6 in compound (II-2) are preferably alkyl groups having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom, or a halogen atom. , Hydrogen atom, halogen atom, methyl group are more preferable.
 化合物(II-1)および化合物(II-2)としては、より具体的に、それぞれ以下の表11および表12に示す化合物が挙げられる。表11および表12において、-C17、-C、-C13は、直鎖のオクチル基、ブチル基、ヘキシル基をそれぞれ示す。 Specific examples of the compound (II-1) and the compound (II-2) include the compounds shown in Tables 11 and 12, respectively. In Tables 11 and 12, -C 8 H 17 , -C 4 H 9 , and -C 6 H 13 represent linear octyl, butyl, and hexyl groups, respectively.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 化合物(II-3)におけるRは、樹脂への溶解性、可視光透過性等の観点から、独立して、炭素数1~15のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、エチル基、イソプロピル基が特に好ましい。 R 1 in compound (II-3) is preferably an alkyl group having 1 to 15 carbon atoms, and an alkyl group having 1 to 10 carbon atoms independently from the viewpoint of solubility in a resin, visible light transmission, and the like. More preferably, an ethyl group and an isopropyl group are particularly preferable.
 Rは、可視光透過性、合成容易性の観点から、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。RおよびRは、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましく、水素原子、ハロゲン原子、メチル基がより好ましい。 From the viewpoint of visible light transmission and ease of synthesis, R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom. R 7 and R 8 are preferably an alkyl group having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom or a halogen atom, and more preferably a hydrogen atom, a halogen atom or a methyl group.
 R~R12は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましい。-CR10-CR1112-として、上記基(11-1)~(11-3)または、以下の式(11-5)で示される2価の有機基が挙げられる。
 -C(CH)(CH-CH(CH)-CH(CH)-…(11-5)
R 9 to R 12 are preferably alkyl groups having 1 to 5 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom, or a halogen atom. -CR 9 R 10 -CR 11 R 12 - as, the base (11-1) to (11-3) or, divalent organic groups represented by the following formulas (11-5).
-C (CH 3 ) (CH 2- CH (CH 3 ) 2 ) -CH (CH 3 ) -... (11-5)
 化合物(II-3)としては、より具体的に、以下の表13に示す化合物が挙げられる。 More specifically, the compound (II-3) includes the compounds shown in Table 13 below.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 NIR色素(C)としては、これらの中でも、樹脂や溶媒への溶解性、可視透過性の点から、色素(I-11)および色素(I-12)が好ましく、表9に示す色素(I-11)および表10に示す色素(I-12)がより好ましい。さらに、これらの中でも、色素(I-11-7)、色素(I-12-2)、色素(I-12-9)、色素(I-12-15)、色素(I-12-23)、色素(I-12-24)等が好ましい。 Among these, as the NIR dye (C), the dye (I-11) and the dye (I-12) are preferable from the viewpoint of solubility in a resin or a solvent and visible permeability, and the dye (I) shown in Table 9 is preferable. -11) and the dye (I-12) shown in Table 10 are more preferable. Furthermore, among these, dye (I-11-7), dye (I-12-2), dye (I-12-9), dye (I-12-15), dye (I-12-23) , Dye (I-12-24) and the like are preferable.
 NIR色素(C)は、1種の化合物からなってもよく、2種以上の化合物からなってもよい。2種以上の化合物からなる場合は、個々の化合物がNIR色素(C)の性質を必ずしも有する必要はなく、混合物として、NIR色素(C)の性質を有すればよい。 The NIR dye (C) may consist of one kind of compound or two or more kinds of compounds. When composed of two or more kinds of compounds, each compound does not necessarily have the property of NIR dye (C), and may have the property of NIR dye (C) as a mixture.
 化合物(I)および化合物(II)は、それぞれ公知の方法で、製造できる。化合物(I)について、化合物(I-11)は、例えば、米国特許第5,543,086号明細書に記載された方法で製造できる。化合物(I-12)は、例えば、米国特許出願公開第2014/0061505号明細書、国際公開第2014/088063号に記載された方法で製造可能である。化合物(II)については、国際公開第2017/135359号に記載された方法で製造可能である。 Compound (I) and compound (II) can each be produced by known methods. For compound (I), compound (I-11) can be prepared, for example, by the method described in US Pat. No. 5,543,086. Compound (I-12) can be produced, for example, by the methods described in US Patent Application Publication No. 2014/0061505 and International Publication No. 2014/088063. Compound (II) can be produced by the method described in WO 2017/135359.
 また、吸収層が任意に含有する上記UV色素として、具体例には、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。この中でも、オキサゾール系、メロシアニン系の色素が好ましい。また、UV色素は、吸収層に1種を単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the UV dye optionally contained in the absorption layer include oxazole-based, merocyanine-based, cyanine-based, naphthalimide-based, oxadiazole-based, oxazine-based, oxazolidine-based, naphthalic acid-based, and styryl-based. Examples thereof include dyes such as anthracene type, cyclic carbonyl type and triazole type. Of these, oxazole-based and merocyanine-based pigments are preferable. In addition, one type of UV dye may be used alone for the absorption layer, or two or more types may be used in combination.
[透明樹脂(P)]
 透明樹脂(P)は、Tgが130℃以上であり、NIR色素(A)との関係において、上記(1-1)~(1~6)を満足する樹脂である。透明樹脂(P)は、NIR色素(A)との関係において、さらに上記(1-7)~(1-9)から選ばれる1以上を満足することが好ましい。
[Transparent resin (P)]
The transparent resin (P) is a resin having a Tg of 130 ° C. or higher and satisfying the above (1-1) to (1 to 6) in relation to the NIR dye (A). The transparent resin (P) preferably further satisfies one or more selected from the above (1-7) to (1-9) in relation to the NIR dye (A).
 Tgは、DSC測定(Differential Scanning Calorimetry)により求められる。透明樹脂(P)のTgは130℃以上であれば、吸収層は、高温使用においてNIR色素(A)の光学特性を維持する耐熱性に優れる。さらに、好ましい態様において、熱や応力による変形が生じにくく、本フィルタにおいて誘電体多層膜の密着性に優れる。Tgは、200℃以上が好ましく、250℃以上がより好ましい。Tgの上限は特にないが、成形加工性等の観点から、透明樹脂(P)のTgは400℃以下が好ましい。 Tg is determined by DSC measurement (Differential Scanning Calorimetry). When the Tg of the transparent resin (P) is 130 ° C. or higher, the absorbing layer is excellent in heat resistance for maintaining the optical characteristics of the NIR dye (A) in high temperature use. Further, in a preferred embodiment, deformation due to heat or stress is unlikely to occur, and the adhesion of the dielectric multilayer film is excellent in this filter. The Tg is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. Although there is no particular upper limit on Tg, the Tg of the transparent resin (P) is preferably 400 ° C. or lower from the viewpoint of molding processability and the like.
 透明樹脂(P)としては、Tgが130℃以上であり、NIR色素(A)との関係において、上記(1-1)~(1~6)の要件を満足すれば、種類は特に制限されず、例えば、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、シクロオレフィン樹脂、およびポリエステル樹脂等から選ばれる1種以上が使用できる。 As the transparent resin (P), the type is particularly limited as long as the Tg is 130 ° C. or higher and the above requirements (1-1) to (1 to 6) are satisfied in relation to the NIR dye (A). For example, acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin. , Polyimideimide resin, polyolefin resin, cycloolefin resin, polyester resin and the like can be used.
 これらのなかでも、ポリイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂およびエポキシ樹脂から選ばれる少なくとも1種以上が好ましい。なお、誘電体多層膜との密着性の観点からは、ポリイミド樹脂が好ましく、Tgが200℃以上のポリイミド樹脂が特に好ましい。 Among these, at least one selected from polyimide resin, polyester resin, polycarbonate resin, cycloolefin resin and epoxy resin is preferable. From the viewpoint of adhesion to the dielectric multilayer film, a polyimide resin is preferable, and a polyimide resin having a Tg of 200 ° C. or higher is particularly preferable.
 透明樹脂(P)は、1種の樹脂からなってもよく、2種以上の樹脂からなってもよい。2種以上の樹脂からなる場合は、個々の樹脂の性質が必ずしも上記透明樹脂(P)の要件を満たす必要はなく、混合物として、透明樹脂(P)の要件を満たせばよい。 The transparent resin (P) may be made of one kind of resin or two or more kinds of resins. When it is composed of two or more kinds of resins, the properties of the individual resins do not necessarily satisfy the requirements of the transparent resin (P), and the mixture may satisfy the requirements of the transparent resin (P).
 透明樹脂(P)としては、市販品を用いてもよい。市販品としては、ポリエステル樹脂として、OKP4HT、B-OKP-2、OKP-850(以上、いずれも大阪ガスケミカル(株)製、商品名)等が挙げられる。 As the transparent resin (P), a commercially available product may be used. Examples of commercially available products include OKP4HT, B-OKP-2, and OKP-850 (all of which are manufactured by Osaka Gas Chemical Co., Ltd., trade names) as polyester resins.
 透明樹脂(P)として使用可能な市販のポリカーボネート樹脂として、FPC-0220(三菱ガス化学(株)社製、商品名)、パンライト(登録商標)SP3810(帝人(株)製、商品名)、PURE-ACE(登録商標)M5(帝人(株)製、商品名)、同S5(帝人(株)製、商品名)等が挙げられる。 As commercially available polycarbonate resins that can be used as transparent resin (P), FPC-0220 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name), Panlite (registered trademark) SP3810 (manufactured by Teijin Limited, trade name), Examples thereof include PURE-ACE (registered trademark) M5 (manufactured by Teijin Limited, product name) and S5 (manufactured by Teijin Limited, product name).
 透明樹脂(P)として使用可能な市販のポリイミド樹脂として、ワニスの形態で得られる、ネオプリム(登録商標)C-3650(三菱ガス化学(株)製、商品名)、同C-3G30(三菱ガス化学(株)製、商品名)、同C-3450(三菱ガス化学(株)製、商品名)、同P500(三菱ガス化学(株)製、商品名)、JL-20(新日本理化製、商品名)(これらのポリイミド樹脂のワニスには、シリカが含まれていてもよい)等が挙げられる。 Neoprim (registered trademark) C-3650 (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name) and C-3G30 (Mitsubishi Gas) obtained in the form of varnish as commercially available polyimide resins that can be used as transparent resin (P). Chemical Co., Ltd., product name), C-3450 (Mitsubishi Gas Chemical Company, product name), P500 (Mitsubishi Gas Chemical Company, product name), JL-20 (New Japan Chemical Co., Ltd.) , Trade name) (The varnishes of these polyimide resins may contain silica) and the like.
 透明樹脂(P)として使用可能な市販のシクロオレフィン樹脂として、ARTON(登録商標)F4520(JSR社製、商品名)、ZEONEX(登録商標)K26R、F52R、T62R、APEL(登録商標)APL5014DP,APL6015T(いずれも三井化学社製、商品名)等が挙げられる。 As commercially available cycloolefin resins that can be used as transparent resin (P), ARTON (registered trademark) F4520 (manufactured by JSR, trade name), ZEONEX (registered trademark) K26R, F52R, T62R, APEL (registered trademark) APL5014DP, APL6015T (Both are manufactured by Mitsui Chemicals, Inc., trade name) and the like.
 吸収層は、可視光、特に緑色や赤色の光の透過性を十分に高く維持する観点から、上記した必須の色素であるNIR色素(A)、任意の色素であるNIR色素(B)、NIR色素(C)、UV色素等の色素と透明樹脂(P)のみで構成されるのが好ましい。 From the viewpoint of maintaining sufficiently high transparency of visible light, especially green and red light, the absorption layer includes the above-mentioned essential dye NIR dye (A), any dye NIR dye (B), and NIR. It is preferable that it is composed only of a dye (C), a dye such as a UV dye, and a transparent resin (P).
 ただし、吸収層は、本発明の効果を損なわない範囲で、密着性付与剤、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を有してもよい。 However, as long as the absorption layer does not impair the effects of the present invention, the adhesive layer, a color tone correcting dye, a leveling agent, an antistatic agent, a heat stabilizer, a light stabilizer, an antioxidant, a dispersant, a flame retardant, etc. It may have an optional component such as a lubricant or a plasticizer.
 吸収層は、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域において平均OD値を1としたときに、以下の(2-1)および(2-2)を満足することが好ましく、さらに、(2-3)および(2-4)から選ばれる1以上を満足することがより好ましく、(2-1)~(2-4)を全て満足することが特に好ましい。 The absorption layer satisfies the following (2-1) and (2-2) when the average OD value is 1 in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the NIR dye (A). It is more preferable to satisfy one or more selected from (2-3) and (2-4), and it is particularly preferable to satisfy all of (2-1) to (2-4). ..
(2-1)490~560nmの波長領域における平均内部透過率TAVE490-560(AL)が88%以上である。TAVE490-560(AL)は90%以上が好ましく、92%以上がより好ましい。 (2-1) The average internal transmittance TAVE490-560 (AL) in the wavelength region of 490 to 560 nm is 88% or more. T AVE 490-560 (AL) is preferably 90% or more, more preferably 92% or more.
(2-2)590~630nmの波長領域における平均内部透過率TAVE590-630(AL)が70%以上である。TAVE590-630(AL)は72%以上が好ましく、75%以上がより好ましい。 (2-2) The average internal transmittance TAVE590-630 (AL) in the wavelength region of 590 to 630 nm is 70% or more. T AVE590-630 (AL) is preferably 72% or more, more preferably 75% or more.
(2-3)600~700nmの波長領域に内部透過率が50%となる波長λ50%を有する。波長λ50%は610~640nmの波長領域にあるのがより好ましい。 (2-3) It has a wavelength λ 50% at which the internal transmittance is 50% in the wavelength region of 600 to 700 nm. The wavelength λ 50% is more preferably in the wavelength region of 610 to 640 nm.
(2-4)600~1200nmの波長領域において内部透過率が30%以下となる波長域の幅の合計が250nm以上である。600~1200nmの波長領域において、内部透過率が30%以下となる波長域は1つであっても、複数であってもよい。内部透過率が30%以下となる波長域の幅の合計は250nm以上が好ましく、300nm以上がより好ましい。該幅の合計が大きいほど、吸収層におけるNIR吸収能が高いといえる。 (2-4) In the wavelength region of 600 to 1200 nm, the total width of the wavelength region in which the internal transmittance is 30% or less is 250 nm or more. In the wavelength region of 600 to 1200 nm, there may be one or a plurality of wavelength regions in which the internal transmittance is 30% or less. The total width of the wavelength range in which the internal transmittance is 30% or less is preferably 250 nm or more, more preferably 300 nm or more. It can be said that the larger the total width is, the higher the NIR absorption capacity in the absorption layer is.
 吸収層においてNIR色素(A)の含有量は、本フィルタの設計に応じて本フィルタの効果を発揮できるように適宜設定される。吸収層においてNIR色素(A)の含有量は、可視光の透過率、特に緑色や赤色の透過率を確保しつつ、近赤外光、特に、長波長域の近赤外光を遮光する観点から、透明樹脂(P)100質量部に対して1~15質量部が好ましく、溶解性の観点から1~10質量部がより好ましい。 The content of the NIR dye (A) in the absorption layer is appropriately set so that the effect of the filter can be exhibited according to the design of the filter. The content of the NIR dye (A) in the absorption layer is from the viewpoint of blocking near-infrared light, particularly near-infrared light in a long wavelength region, while ensuring the transmittance of visible light, particularly the transmittance of green and red. Therefore, 1 to 15 parts by mass is preferable with respect to 100 parts by mass of the transparent resin (P), and 1 to 10 parts by mass is more preferable from the viewpoint of solubility.
 吸収層がNIR色素(A)と、NIR色素(B)およびNIR色素(C)から選ばれる1種以上を含有する場合、その含有量は、各NIR色素において、本フィルタの設計に応じて、吸収層が(2-1)および(2-2)の特性を満足するように、好ましくは、さらに(2-3)および(2-4)から選ばれる1以上の特性を満足するように適宜選択される。 When the absorption layer contains one or more selected from NIR dye (A), NIR dye (B) and NIR dye (C), the content of each NIR dye depends on the design of this filter. As appropriate so that the absorption layer satisfies the properties of (2-1) and (2-2), preferably one or more properties further selected from (2-3) and (2-4). Be selected.
 この場合、吸収層におけるNIR色素(A)の含有量は上記と同様であり、NIR色素(B)およびNIR色素(C)から選ばれる1種以上の含有量は、可視光の透過率を確保しつつ、NIR色素(B)やNIR色素(C)の特性を発揮できる観点から、NIR色素(B)およびNIR色素(C)について、それぞれ透明樹脂(P)100質量部に対して1~15質量部が好ましく、溶解性の観点から3~10質量部がより好ましい。さらにNIR色素(A)と、NIR色素(B)およびNIR色素(C)から選ばれる1種以上の合計含有量は、透明樹脂(P)100質量部に対して2~30質量部が好ましく、溶解性の観点から5~27質量部がより好ましい。 In this case, the content of the NIR dye (A) in the absorption layer is the same as above, and the content of one or more selected from the NIR dye (B) and the NIR dye (C) ensures the transmittance of visible light. However, from the viewpoint that the characteristics of the NIR dye (B) and the NIR dye (C) can be exhibited, the NIR dye (B) and the NIR dye (C) are each about 1 to 15 with respect to 100 parts by mass of the transparent resin (P). By mass is preferable, and from the viewpoint of solubility, 3 to 10 parts by mass is more preferable. Further, the total content of one or more selected from the NIR dye (A), the NIR dye (B) and the NIR dye (C) is preferably 2 to 30 parts by mass with respect to 100 parts by mass of the transparent resin (P). From the viewpoint of solubility, 5 to 27 parts by mass is more preferable.
 本フィルタにおいて、吸収層の厚さは、0.1~100μmが好ましい。吸収層が複数層からなる場合、各層の合計の厚さは、0.1~100μmが好ましい。厚さが0.1μm未満では、所望の光学特性を十分に発現できないおそれがあり、厚さが100μm超では、層の平坦性が低下し、吸収率の面内バラツキが生じるおそれがある。吸収層の厚さは、0.3~50μmがより好ましい。また、反射層や、反射防止層等の他の機能層を備えた場合、その材質によっては、吸収層が厚すぎると割れ等が生ずるおそれがある。そのため、吸収層の厚さは、0.3~10μmがより好ましい。 In this filter, the thickness of the absorption layer is preferably 0.1 to 100 μm. When the absorption layer is composed of a plurality of layers, the total thickness of each layer is preferably 0.1 to 100 μm. If the thickness is less than 0.1 μm, the desired optical characteristics may not be sufficiently exhibited, and if the thickness is more than 100 μm, the flatness of the layer may be lowered and the absorption rate may vary in the plane. The thickness of the absorption layer is more preferably 0.3 to 50 μm. Further, when another functional layer such as a reflective layer or an antireflection layer is provided, cracks or the like may occur if the absorbing layer is too thick depending on the material thereof. Therefore, the thickness of the absorption layer is more preferably 0.3 to 10 μm.
 吸収層は、例えば、NIR色素(A)と、好ましくはNIR色素(A)とNIR色素(B)およびNIR色素(C)から選ばれる1種以上と、特に好ましくは、NIR色素(A)とNIR色素(B)とNIR色素(C)と、透明樹脂(P)または透明樹脂(P)の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記基材は、本フィルタに含まれる透明基板でもよいし、吸収層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。 The absorption layer is, for example, NIR dye (A), preferably one or more selected from NIR dye (A), NIR dye (B), and NIR dye (C), and particularly preferably NIR dye (A). NIR dye (B), NIR dye (C), raw material components of transparent resin (P) or transparent resin (P), and each component to be blended as needed are dissolved or dispersed in a solvent for coating. A liquid can be prepared, coated on a substrate, dried, and further cured if necessary to form. The base material may be a transparent substrate included in the present filter, or may be a peelable base material used only when forming an absorption layer. The solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより吸収層が形成される。また、塗工液が透明樹脂(P)の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。 Further, the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like. Further, for coating the coating liquid, for example, a dip coating method, a cast coating method, a spin coating method or the like can be used. An absorbent layer is formed by applying the above coating liquid on a substrate and then drying it. When the coating liquid contains the raw material component of the transparent resin (P), further curing treatments such as thermosetting and photocuring are performed.
 また、吸収層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを他の部材に積層し熱圧着等により一体化させてもよい。例えば、本フィルタが透明基板を含む場合、このフィルムを透明基板上に貼着してもよい。 Further, the absorption layer can be manufactured in the form of a film by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like. For example, when the filter includes a transparent substrate, this film may be attached onto the transparent substrate.
 吸収層は、本フィルタの中に1層有してもよく、2層以上有してもよい。2層以上有する場合、各層は同じ構成であっても異なってもよい。さらに、吸収層は、単層からなってもよく複数の層が積層した構成であってもよい。また、吸収層は、それ自体が基板(樹脂基板)として機能するものでもよい。 The absorption layer may have one layer or two or more layers in the present filter. When having two or more layers, each layer may have the same configuration or different layers. Further, the absorption layer may be composed of a single layer or may have a structure in which a plurality of layers are laminated. Further, the absorption layer itself may function as a substrate (resin substrate).
(透明基板)
 本フィルタに透明基板を用いる場合、透明基板は、略400~700nmの可視光を透過すれば、構成する材料は特に制限されず、近赤外光や近紫外光を吸収する材料でもよい。例えば、ガラスや結晶等の無機材料や、透明樹脂等の有機材料が挙げられる。
(Transparent board)
When a transparent substrate is used for this filter, the transparent substrate is not particularly limited as long as it transmits visible light of about 400 to 700 nm, and may be a material that absorbs near-infrared light or near-ultraviolet light. Examples thereof include inorganic materials such as glass and crystals, and organic materials such as transparent resins.
 透明基板に使用できるガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等に銅イオンを含む吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。 Glasses that can be used for transparent substrates include absorbent glass (near-infrared absorbing glass) containing copper ions in fluoride-based glass, phosphate-based glass, etc., soda lime glass, borosilicate glass, non-alkali glass, and quartz. Examples include glass. The "phosphate-based glass" also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
 ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。 As for glass, alkali metal ions (for example, Li ion and Na ion) having a small ionic radius existing on the main surface of the glass plate can be converted into alkali ions having a larger ionic radius (for example) by ion exchange at a temperature below the glass transition point. , Li ion is Na ion or K ion, and Na ion is K ion.) You may use the chemically strengthened glass obtained by exchanging with the ion.
 透明基板として使用できる透明樹脂材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂等が挙げられる。 Examples of the transparent resin material that can be used as a transparent substrate include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymers, and acrylic resins such as norbornene resin, polyacrylate and polymethylmethacrylate. , Urethane resin, vinyl chloride resin, fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin and the like.
 また、透明基板に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。透明基板の光学特性は、上記吸収層、反射層等と積層して得られる光学フィルタとして、前述した光学特性を有するとよい。結晶材料としてはサファイアが好ましい。 Further, examples of the crystal material that can be used for the transparent substrate include birefringent crystals such as quartz, lithium niobate, and sapphire. The optical characteristics of the transparent substrate may have the above-mentioned optical characteristics as an optical filter obtained by laminating the absorption layer, the reflection layer, and the like. Sapphire is preferable as the crystal material.
 透明基板は、光学フィルタとしての光学特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から、無機材料が好ましく、特にガラス、サファイアが好ましい。 The transparent substrate is preferably an inorganic material, and particularly preferably glass or sapphire, from the viewpoint of shape stability related to long-term reliability such as optical characteristics as an optical filter and mechanical characteristics, and handleability during filter manufacturing.
 透明基板の形状は特に限定されず、ブロック状、板状、フィルム状でもよく、その厚さは、例えば、0.03~5mmが好ましく、薄型化の観点からは、0.03~0.5mmがより好ましい。加工性の観点から言えば、ガラスからなる板厚0.05~0.5mmの透明基板が好ましい。 The shape of the transparent substrate is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped, and the thickness thereof is preferably, for example, 0.03 to 5 mm, and from the viewpoint of thinning, 0.03 to 0.5 mm. Is more preferable. From the viewpoint of workability, a transparent substrate made of glass and having a plate thickness of 0.05 to 0.5 mm is preferable.
(反射層)
 反射層は、誘電体多層膜からなり、特定の波長域の光を遮蔽する機能を有する。反射層としては、例えば、可視光を透過し、吸収層の遮光域以外の波長の光を主に反射する波長選択性を有するものが挙げられる。反射層は、近赤外光を反射する反射領域を有することが好ましい。この場合、反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。反射層は、上記特性に限らず、所定の波長域の光、例えば、近紫外域をさらに遮断する仕様に適宜設計してよい。
(Reflective layer)
The reflective layer is made of a dielectric multilayer film and has a function of shielding light in a specific wavelength range. Examples of the reflective layer include those having wavelength selectivity that transmits visible light and mainly reflects light having a wavelength other than the light-shielding region of the absorption layer. The reflective layer preferably has a reflective region that reflects near-infrared light. In this case, the reflection region of the reflection layer may include a light-shielding region in the near-infrared region of the absorption layer. The reflective layer is not limited to the above characteristics, and may be appropriately designed to have specifications that further block light in a predetermined wavelength range, for example, the near-ultraviolet region.
 反射層が近赤外光を反射する反射領域を有する場合、反射層は具体的には、以下の(iii-1)を満足することが好ましい。
(iii-1)入射角0度の分光透過率曲線において、波長850~1100nmの光の平均透過率TRE850-1100ave0°が0.2%以下である。
 平均透過率TRE850-1100ave0°は0.15%以下が好ましく、0.05%以下がより好ましい。
When the reflective layer has a reflective region that reflects near-infrared light, the reflective layer specifically preferably satisfies the following (iii-1).
(Iii-1) In the spectral transmittance curve with an incident angle of 0 degrees, the average transmittance T RE850-1100ave 0 ° of light having a wavelength of 850 to 1100 nm is 0.2% or less.
The average transmittance T RE850-1100ave 0 ° is preferably 0.15% or less, more preferably 0.05% or less.
 反射層が近赤外光を反射する反射領域を有する場合、吸収層と反射層は以下の関係を有することが好ましい。 When the reflective layer has a reflective region that reflects near-infrared light, it is preferable that the absorbing layer and the reflective layer have the following relationship.
 吸収層において入射角0度の光に対して透過率が20%を示す短波長側の波長λABSHT20-0°が650nm≦λABSHT20-0°≦800nmを満足する場合において、波長λABSHT20-0°と、反射層において入射角0度の光に対して650nm以上の波長域で透過率が20%を示す短波長側の波長λRESHT20-0°との関係が(iii-2)を満足することが好ましい。
(iii-2)λABSHT20-0°+30nm≦λRESHT20-0°≦790nm
When the wavelength λ ABSHT20-0 ° on the short wavelength side showing a transmittance of 20% with respect to light having an incident angle of 0 ° in the absorption layer satisfies 650 nm ≦ λ ABSHT20-0 ° ≦ 800 nm, the wavelength λ ABSHT20-0 The relationship between ° and the wavelength λ RESHT 20-0 ° on the short wavelength side, which shows a transmittance of 20% in the wavelength range of 650 nm or more with respect to light having an incident angle of 0 ° in the reflective layer, satisfies (iii-2). Is preferable.
(Iii-2) λ ABSHT 20-0 ° + 30 nm ≤ λ RESHT 20-0 ° ≤ 790 nm
 反射層は、さらに(iii-3)を満足することが好ましい。
(iii-3)λRESHT20-0°からλRESHT20-0°+300nmまでの波長領域の光における平均透過率が10%以下である。
The reflective layer preferably further satisfies (iii-3).
(Iii-3) The average transmittance of light in the wavelength region from λ RESHT 20-0 ° to λ RESHT 20-0 ° + 300 nm is 10% or less.
 反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜は、好ましくは、屈折率が1.6以上であり、より好ましくは2.2~2.5である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。 The reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated. The high refractive index film preferably has a refractive index of 1.6 or more, more preferably 2.2 to 2.5. Examples of the material of the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
 一方、低屈折率膜は、好ましくは、屈折率1.6未満であり、より好ましくは1.45以上1.55未満である。低屈折率膜の材料としては、例えばSiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。 On the other hand, the low refractive index film preferably has a refractive index of less than 1.6, and more preferably 1.45 or more and less than 1.55. Examples of the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy, etc. in film formation.
 さらに、反射層は、透過域と遮光域の境界波長領域で透過率が急峻に変化することが好ましい。この目的のためには、反射層を構成する誘電体多層膜の合計積層数は、15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、反り等が発生したり、膜厚が増加したりするため、合計積層数は100層以下が好ましく、75層以下がより好ましく、60層以下がより一層好ましい。また、誘電体多層膜の膜厚は、2~10μmが好ましい。 Further, it is preferable that the transmittance of the reflective layer changes sharply in the boundary wavelength region between the transmissive region and the light-shielding region. For this purpose, the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 layers or more, more preferably 25 layers or more, and even more preferably 30 layers or more. However, when the total number of layers increases, warpage and the like occur and the film thickness increases. Therefore, the total number of layers is preferably 100 layers or less, more preferably 75 layers or less, and even more preferably 60 layers or less. The film thickness of the dielectric multilayer film is preferably 2 to 10 μm.
 誘電体多層膜の合計積層数や膜厚が上記範囲内であれば、反射層は小型化の要件を満たし、高い生産性を維持しながら入射角依存性を抑制できる。また、誘電体多層膜の形成には、例えば、CVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。 If the total number of laminated dielectric multilayer films and the film thickness are within the above ranges, the reflective layer can satisfy the requirements for miniaturization, and can suppress the dependence on the incident angle while maintaining high productivity. Further, for forming the dielectric multilayer film, for example, a vacuum film forming process such as a CVD method, a sputtering method or a vacuum vapor deposition method, a wet film forming process such as a spray method or a dip method can be used.
 反射層は、1層(1群の誘電体多層膜)で所定の光学特性を与えたり、2層で所定の光学特性を与えたりしてもよい。2層以上有する場合、各反射層は同じ構成でも異なる構成でもよい。反射層を2層以上有する場合、通常、反射帯域の異なる複数の反射層で構成される。 As the reflective layer, one layer (one group of dielectric multilayer films) may give a predetermined optical characteristic, or two layers may give a predetermined optical characteristic. When having two or more layers, each reflective layer may have the same configuration or a different configuration. When two or more reflective layers are provided, they are usually composed of a plurality of reflective layers having different reflection bands.
 例として、2層の反射層を設ける場合、一方を、近赤外域のうち短波長帯の光を遮蔽する近赤外反射層とし、他方を、該近赤外域の長波長帯および近紫外域の両領域の光を遮蔽する近赤外・近紫外反射層としてもよい。また、例えば、本フィルタが透明基板を有する場合に、2層以上の反射層を設ける際には、全てを透明基板の一方の主面上に設けてもよく、各反射層を、透明基板を挟んでその両主面上に設けてもよい。 As an example, when two reflective layers are provided, one is a near-infrared reflective layer that blocks light in a short wavelength band in the near infrared region, and the other is a long wavelength band and a near ultraviolet region in the near infrared region. It may be a near-infrared / near-ultraviolet reflective layer that blocks light in both regions. Further, for example, when the present filter has a transparent substrate and two or more reflective layers are provided, all of them may be provided on one main surface of the transparent substrate, and each reflective layer may be provided on the transparent substrate. It may be sandwiched and provided on both main surfaces.
(反射防止層)
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造などが挙げられる。中でも光学的効率、生産性の観点から誘電体多層膜が好ましい。反射防止層は、反射層と同様に誘電体膜を交互に積層して得られる。
(Anti-reflective layer)
Examples of the antireflection layer include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Of these, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity. The antireflection layer is obtained by alternately laminating dielectric films like the reflection layer.
 本フィルタは、他の構成要素として、例えば、特定の波長域の光の透過と吸収を制御する無機微粒子等による吸収を与える構成要素(層)などを備えてもよい。無機微粒子の具体例としては、ITO(Indium Tin Oxides)、ATO(Antimony-doped Tin Oxides)、タングステン酸セシウム、ホウ化ランタン等が挙げられる。ITO微粒子、タングステン酸セシウム微粒子は、可視光の透過率が高く、かつ1200nmを超える赤外波長領域の広範囲に光吸収性を有するため、かかる赤外光の遮蔽性を必要とする場合に使用できる。 This filter may include, for example, a component (layer) that provides absorption by inorganic fine particles or the like that controls the transmission and absorption of light in a specific wavelength range, as other components. Specific examples of the inorganic fine particles include ITO (Indium Tin Oxides), ATO (Antimony-doped Tin Oxides), cesium tungstate, and lanthanum boride. The ITO fine particles and the cesium tungstate fine particles have high visible light transmittance and have light absorption over a wide range in the infrared wavelength region exceeding 1200 nm, and thus can be used when such infrared light shielding property is required. ..
 本フィルタは、反射層と、NIR色素(A)と透明樹脂(P)を含有する吸収層を有することで、可視光特には緑色や赤色の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に長波長近赤外光の遮蔽性に優れる。 By having a reflective layer and an absorbing layer containing a NIR dye (A) and a transparent resin (P), this filter provides near-infrared light while maintaining good transparency of visible light, especially green and red. In particular, it is excellent in shielding long-wavelength near-infrared light.
 本フィルタは、入射角0度で測定される光学特性に関し、以下の(3-1)~(3-3)の要件をすべて満足することが好ましい。本フィルタは、さらに、これらに加えて、(3-4)~(3-9)の要件をすべて満足することがより好ましい。 It is preferable that this filter satisfies all of the following requirements (3-1) to (3-3) regarding the optical characteristics measured at an incident angle of 0 degrees. In addition to these, the present filter more preferably satisfies all the requirements (3-4) to (3-9).
(3-1)NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が4以上である。入射角0度における該最小OD値は5以上がより好ましい。 (3-1) The minimum OD value of the NIR dye (A) in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm is 4 or more. The minimum OD value at an incident angle of 0 degree is more preferably 5 or more.
(3-2)490~560nmの波長領域における平均透過率TAVE490-560(0°)が82%以上である。平均透過率TAVE490-560(0°)は83.0%以上がより好ましく、83.5%以上がさらに好ましい。 (3-2) The average transmittance TAVE490-560 (0 °) in the wavelength region of 490 to 560 nm is 82% or more. The average transmittance T AVE490-560 (0 °) is more preferably 83.0% or more, further preferably 83.5% or more.
(3-3)590~630nmの波長領域における平均透過率TAVE590-630(0°)が50%以上である。平均透過率TAVE590-630(0°)は55%以上がより好ましく、60%以上がさらに好ましい。 (3-3) The average transmittance TAVE590-630 (0 °) in the wavelength region of 590 to 630 nm is 50% or more. The average transmittance T AVE590-630 (0 °) is more preferably 55% or more, further preferably 60% or more.
(3-4)600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角30度で透過率が50%となる波長λ50%(30°)の差の絶対値|λ50%(30°)-λ50%(0°)|が5nm以下である。|λ50%(30°)-λ50%(0°)|は4nm以下がより好ましく、3nm以下がさらに好ましい。 (3-4) 600 in the wavelength region of ~ 800 nm, the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 30 degrees is 50% wavelength lambda 50% The absolute value of the difference (30 °) | λ 50% (30 °) −λ 50% (0 °) | is 5 nm or less. | Λ 50% (30 °) −λ 50% (0 °) | is more preferably 4 nm or less, further preferably 3 nm or less.
(3-5)入射角30度で測定される490~560nmの波長領域における平均透過率TAVE490-560(30°)が80%以上である。平均透過率TAVE490-560(30°)は81%以上がより好ましく、83%以上がさらに好ましい。 (3-5) The average transmittance TAVE490-560 (30 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 30 degrees is 80% or more. The average transmittance T AVE490-560 (30 °) is more preferably 81% or more, further preferably 83% or more.
(3-6)入射角30度で測定される、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が3以上である。入射角30度における該最小OD値は4以上がより好ましい。 (3-6) The minimum OD value in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the NIR dye (A) measured at an incident angle of 30 degrees is 3 or more. The minimum OD value at an incident angle of 30 degrees is more preferably 4 or more.
(3-7)600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角50度で透過率が50%となる波長λ50%(50°)の差の絶対値|λ50%(50°)-λ50%(0°)|が15nm以下である。|λ50%(50°)-λ50%(0°)|は13nm以下がより好ましく、10nm以下がさらに好ましい。 (3-7) 600 in the wavelength region of ~ 800 nm, the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 50 degrees is 50% wavelength lambda 50% The absolute value of the difference of (50 °) | λ 50% (50 °) −λ 50% (0 °) | is 15 nm or less. | Λ 50% (50 °) −λ 50% (0 °) | is more preferably 13 nm or less, further preferably 10 nm or less.
(3-8)入射角50度で測定される490~560nmの波長領域における平均透過率TAVE490-560(50°)が70%以上である。平均透過率TAVE490-560(50°)は72%以上がより好ましく、74%以上がさらに好ましい。 (3-8) The average transmittance TAVE490-560 (50 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 50 degrees is 70% or more. The average transmittance T AVE490-560 (50 °) is more preferably 72% or more, further preferably 74% or more.
(3-9)入射角50度で測定される、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が3以上である。入射角50度における該最小OD値は4以上がより好ましい。 (3-9) The minimum OD value in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the NIR dye (A) measured at an incident angle of 50 degrees is 3 or more. The minimum OD value at an incident angle of 50 degrees is more preferably 4 or more.
 本フィルタは、例えば、デジタルスチルカメラ等の撮像装置とレーザ光を用いる光学部品をともに有する機器において、撮像装置用の光学フィルタの用途に有用である。また、本フィルタは、環境光センサー等の光学センサーの用途に有用である。 This filter is useful as an optical filter for an image pickup device in a device having both an image pickup device such as a digital still camera and an optical component that uses laser light. In addition, this filter is useful for applications of optical sensors such as ambient light sensors.
 本フィルタを用いた撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。 An image pickup device using this filter includes a solid-state image pickup element, an image pickup lens, and this filter. This filter can be used, for example, by being arranged between an image pickup lens and a solid-state image sensor, or by being directly attached to a solid-state image sensor, an image sensor, or the like of an image pickup device via an adhesive layer.
 次に、本発明を実施例によりさらに具体的に説明する。まず、実施例の吸収層に用いるNIR色素(A)の合成例および特性を説明する。次いで、光学フィルタの実施例について説明する。 Next, the present invention will be described in more detail with reference to Examples. First, a synthesis example and characteristics of the NIR dye (A) used for the absorption layer of the example will be described. Next, an example of the optical filter will be described.
[試験例1~29;色素の合成、評価]
(色素の合成、評価)
 以下の方法で、NIR色素(A)、NIR色素(B)、その他のNIR色素を合成した。合成例1~11がNIR色素(A)の合成例であり、合成例12~15がNIR色素(B)の合成例であり、合成例16、17がその他のNIR色素の合成例である。また、NIR色素(A)として、下記式(S0772)に示す市販品であるFew Chemicals社製の商品名S0772、その他のNIR色素として、下記式(S2437)に示す市販品であるFew Chemicals社製の商品名S2437を準備した。
[Test Examples 1-29; Dye synthesis and evaluation]
(Dye synthesis and evaluation)
NIR dye (A), NIR dye (B), and other NIR dyes were synthesized by the following methods. Synthesis Examples 1 to 11 are examples of synthesis of NIR dye (A), Synthesis Examples 12 to 15 are examples of synthesis of NIR dye (B), and Synthesis Examples 16 and 17 are examples of synthesis of other NIR dyes. Further, as the NIR dye (A), the trade name S0772 manufactured by Few Chemicals, which is a commercial product represented by the following formula (S0772), and as another NIR dye, a commercially available product represented by the following formula (S2437), manufactured by Few Chemicals. Product name S2437 was prepared.
 また、これらの色素の光学特性の評価には、紫外可視近赤外分光光度計((株)日立ハイテクサイエンス社製、UH4150)を用い、以下の光学特性(分光透過率曲線)の評価にも同様に、UH4150を用いた。 In addition, an ultraviolet-visible near-infrared spectrophotometer (UH4150, manufactured by Hitachi High-Tech Science Co., Ltd.) was used to evaluate the optical characteristics of these dyes, and the following optical characteristics (spectral transmittance curve) were also evaluated. Similarly, UH4150 was used.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[合成例1]
 以下に示す反応経路にしたがい、色素(A1a-5Sb)を合成した。
[Synthesis Example 1]
A dye (A1a-5Sb) was synthesized according to the reaction pathway shown below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<ステップ1>
 1Lナスフラスコにトリス(4-ニトロフェニル)アミン(25g、66mmol)とパラジウム-活性炭素(パラジウム10%)(6.5g)、1、4-ジオキサン(350mL)、メタノール(300mL)を加え、0℃に冷却・撹拌し、ギ酸アンモニウム(65g、990mmol)を追加し、室温で4h撹拌した。反応液を濾過後、ろ液をジクロロメタンで抽出操作を行い、溶媒を除去し、残った固体にヘキサンを300mL入れて1日撹拌し、洗浄した。ヘキサンをろ過操作で取り除いたところ、灰色固体である中間体1を18.1g(収率95%)得た。
<Step 1>
To a 1 L eggplant flask, add tris (4-nitrophenyl) amine (25 g, 66 mmol), palladium-activated carbon (palladium 10%) (6.5 g), 1,4-dioxane (350 mL), and methanol (300 mL), and add 0. The mixture was cooled and stirred at ° C., ammonium formate (65 g, 990 mmol) was added, and the mixture was stirred at room temperature for 4 hours. After filtering the reaction solution, the filtrate was extracted with dichloromethane, the solvent was removed, 300 mL of hexane was added to the remaining solid, and the mixture was stirred for 1 day and washed. When hexane was removed by filtration, 18.1 g (yield 95%) of Intermediate 1 which was a gray solid was obtained.
<ステップ2>
 1Lナスフラスコにステップ1で得られた中間体1(15g、52mmol)と炭酸カリウム(71.4g、520mmol)、1-ブロモ-2メチルプロパン(127g、930mmol)、N,N-ジメチルホルムアミド(150mL)を加え、115℃で24h撹拌した。室温に戻した後、ろ過操作を実施し、ジクロロメタンで洗浄後、ろ液をジクロロメタンで抽出し、溶媒除去後、メタノールで洗浄を行ったところ、茶色固体である中間体2を18.2g(収率56%)得た。
<Step 2>
Intermediate 1 (15 g, 52 mmol), potassium carbonate (71.4 g, 520 mmol), 1-bromo-2 methylpropane (127 g, 930 mmol), N, N-dimethylformamide (150 mL) obtained in step 1 in a 1 L eggplant flask. ) Was added, and the mixture was stirred at 115 ° C. for 24 hours. After returning to room temperature, filtration was performed, the filtrate was extracted with dichloromethane, the solvent was removed, and the mixture was washed with methanol. As a result, 18.2 g (yield) of intermediate 2 as a brown solid was obtained. Rate 56%) Obtained.
<ステップ3>
 500mLナスフラスコにステップ2で得られた中間体2(3g、4.8mmol)とN,N-ジメチルホルムアミド(60mL)を加え、60℃で溶解するまで撹拌した。その後、ヘキサフルオロアンチモン(V)酸銀(3.79g、11mmol)をN,N-ジメチルホルムアミド(30mL)に溶解させた溶液を、中間体2を溶解させた溶液に加え、60℃で3h撹拌させた。析出してきた固体をろ過後、回収した固体をカラムクロマトグラフィー(ジクロロメタン:メタノール=1000:30)にて単離し、溶媒除去した後、固体をジクロロメタンに少量溶解させ、酢酸エチルを用いて再沈作業を行い、緑色固体である色素(A1a-5Sb)を2.8g(収率54%)得た。
<Step 3>
Intermediate 2 (3 g, 4.8 mmol) obtained in step 2 and N, N-dimethylformamide (60 mL) were added to a 500 mL eggplant flask, and the mixture was stirred until dissolved at 60 ° C. Then, a solution prepared by dissolving silver hexafluoroantimonate (V) (3.79 g, 11 mmol) in N, N-dimethylformamide (30 mL) was added to the solution in which Intermediate 2 was dissolved, and the mixture was stirred at 60 ° C. for 3 hours. I let you. After filtering the precipitated solid, the recovered solid is isolated by column chromatography (dichloromethane: methanol = 1000:30), the solvent is removed, a small amount of the solid is dissolved in dichloromethane, and the solid is reprecipitated with ethyl acetate. 2.8 g (yield 54%) of a dye (A1a-5Sb) which is a green solid was obtained.
[合成例2]
 500mLナスフラスコに合成例1のステップ2で得られた中間体2(3g、4.8mmol)と酢酸エチル(50mL)を加え、60℃で溶解するまで撹拌した。その後、カリウムビス(トリフルオロメチルスルホニル)イミド(3.8g、12mmol)とペルオキソ二硫酸アンモニウム(2.7g、12mmol)をアセトニトリル(30mL)と水(30mL)の混合溶媒に溶解させた溶液を、中間体2を溶解させた溶液に加え、60℃で4h撹拌させた。反応終了後、室温に戻し、水(100mL)とヘキサン(200mL)を加え、固体を析出させ、ろ過し、酢酸エチルで洗浄した。回収した固体をカラムクロマトグラフィー(ジクロロメタン:メタノール=1000:30)にて単離し、溶媒除去した後、固体をジクロロメタンに少量溶解させ、酢酸エチルを用いて再沈作業を行い、緑色固体である色素(A1a-5NS)を3.6g(収率63%)得た。
[Synthesis Example 2]
Intermediate 2 (3 g, 4.8 mmol) and ethyl acetate (50 mL) obtained in step 2 of Synthesis Example 1 were added to a 500 mL eggplant flask, and the mixture was stirred at 60 ° C. until dissolved. Then, a solution prepared by dissolving potassium bis (trifluoromethylsulfonyl) imide (3.8 g, 12 mmol) and ammonium peroxodisulfate (2.7 g, 12 mmol) in a mixed solvent of acetonitrile (30 mL) and water (30 mL) was added in the middle. Body 2 was added to the dissolved solution and stirred at 60 ° C. for 4 hours. After completion of the reaction, the temperature was returned to room temperature, water (100 mL) and hexane (200 mL) were added to precipitate a solid, which was filtered and washed with ethyl acetate. The recovered solid is isolated by column chromatography (dichloromethane: methanol = 1000:30), the solvent is removed, a small amount of the solid is dissolved in dichloromethane, reprecipitation is performed using ethyl acetate, and the dye is a green solid. 3.6 g (yield 63%) of (A1a-5NS) was obtained.
[合成例3]
 カリウムビス(トリフルオロメチルスルホニル)イミドをヘキサフルオロリン酸カリウム(2.2g、12mmol)に変更する以外は合成例2と同様の方法で、緑色固体である色素(A1a-5P)を2.6g(収率59%)得た。
[Synthesis Example 3]
2.6 g of dye (A1a-5P), which is a green solid, in the same manner as in Synthesis Example 2 except that potassium bis (trifluoromethylsulfonyl) imide is changed to potassium hexafluorophosphate (2.2 g, 12 mmol). (Yield 59%) was obtained.
[合成例4]
 カリウムビス(トリフルオロメチルスルホニル)イミドを過塩素酸ナトリウム(1.5g、12mmol)に変更する以外は合成例2と同様の方法で、緑色固体である色素(A1a-5Cl)を2.5g(収率63%)得た。
[Synthesis Example 4]
2.5 g (A1a-5Cl) of the dye (A1a-5Cl), which is a green solid, was added in the same manner as in Synthesis Example 2 except that potassium bis (trifluoromethylsulfonyl) imide was changed to sodium perchlorate (1.5 g, 12 mmol). Yield 63%) was obtained.
[合成例5]
 カリウムビス(トリフルオロメチルスルホニル)イミドをテトラフルオロホウ酸ナトリウム(1.3g、12mmol)に変更する以外は合成例2と同様の方法で、緑色固体である色素(A1a-5B)を2.7g(収率71%)得た。
[Synthesis Example 5]
2.7 g of dye (A1a-5B) which is a green solid by the same method as in Synthesis Example 2 except that potassium bis (trifluoromethylsulfonyl) imide is changed to sodium tetrafluoroborate (1.3 g, 12 mmol). (Yield 71%) was obtained.
[合成例6]
 以下に示す反応経路にしたがい、色素(A1a-4P)を合成した。
[Synthesis Example 6]
A dye (A1a-4P) was synthesized according to the reaction pathway shown below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<ステップ1>
 合成例1のステップ2で用いた1-ブロモ-2メチルプロパンを1-ブロモブタン(127g、930mmol)に変更する以外は同様の原料を用いて反応させ、ジクロロメタンで抽出操作を行った後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1000:40)にて単離し、淡黄色の油状物質である中間体3を23g(収率71%)得た。
<Step 1>
The reaction was carried out using the same raw materials except that 1-bromo-2 methylpropane used in step 2 of Synthesis Example 1 was changed to 1-bromobutane (127 g, 930 mmol), an extraction operation was performed with dichloromethane, and then column chromatography was performed. Isolation was performed by chromatography (hexane: ethyl acetate = 1000: 40) to obtain 23 g (yield 71%) of Intermediate 3, which is a pale yellow oily substance.
<ステップ2>
 500mLナスフラスコに合成例6のステップ1で得られた中間体3(3g、4.8mmol)と酢酸エチル(50mL)を加え、60℃で溶解するまで撹拌した。その後、ヘキサフルオロリン酸カリウム(2.2g、12mmol)とペルオキソ二硫酸アンモニウム(2.7g、12mmol)をアセトニトリル(30mL)と水(30mL)の混合溶媒に溶解させた溶液を、中間体3を溶解させた溶液に加え、60℃で4h撹拌させた。反応終了後、室温に戻し、水(100mL)とヘキサン(200mL)を加え、固体を析出させ、ろ過し、酢酸エチルで洗浄した。回収した固体をカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=10:1)にて単離し、溶媒除去した後、固体をジクロロメタンに少量溶解させ、ヘキサンを用いて再沈作業を行い、緑色固体である色素(A1a-4P)を2.8g(収率63%)得た。
<Step 2>
Intermediate 3 (3 g, 4.8 mmol) and ethyl acetate (50 mL) obtained in step 1 of Synthesis Example 6 were added to a 500 mL eggplant flask, and the mixture was stirred at 60 ° C. until dissolved. Then, the intermediate 3 was dissolved in a solution prepared by dissolving potassium hexafluorophosphate (2.2 g, 12 mmol) and ammonium peroxodisulfate (2.7 g, 12 mmol) in a mixed solvent of acetonitrile (30 mL) and water (30 mL). In addition to the prepared solution, the mixture was stirred at 60 ° C. for 4 hours. After completion of the reaction, the temperature was returned to room temperature, water (100 mL) and hexane (200 mL) were added to precipitate a solid, which was filtered and washed with ethyl acetate. The recovered solid is isolated by column chromatography (dichloromethane: ethyl acetate = 10: 1), the solvent is removed, a small amount of the solid is dissolved in dichloromethane, reprecipitation is performed using hexane, and the dye is a green solid. 2.8 g (yield 63%) of (A1a-4P) was obtained.
[合成例7]
 ヘキサフルオロリン酸カリウムをカリウムビス(トリフルオロメチルスルホニル)イミド(3.8g、12mmol)に変更する以外は合成例6のステップ2と同様の方法で、緑色固体である色素(A1a-4NS)を3.1g(収率54%)得た。
[Synthesis Example 7]
The dye (A1a-4NS) which is a green solid is prepared in the same manner as in Step 2 of Synthesis Example 6 except that potassium hexafluorophosphate is changed to potassium bis (trifluoromethylsulfonyl) imide (3.8 g, 12 mmol). 3.1 g (yield 54%) was obtained.
[合成例8]
 ヘキサフルオロリン酸カリウムをテトラフルオロホウ酸ナトリウム(1.3g、12mmol)に変更する以外は合成例6のステップ2と同様の方法で、緑色固体である色素(A1a-4B)を0.9g(収率22%)得た。
[Synthesis Example 8]
0.9 g (A1a-4B) of the dye (A1a-4B), which is a green solid, was added in the same manner as in step 2 of Synthesis Example 6 except that potassium hexafluorophosphate was changed to sodium tetrafluoroborate (1.3 g, 12 mmol). Yield 22%) was obtained.
[合成例9]
 以下に示す方法にしたがい、色素(A1a-7P)を合成した。
[Synthesis Example 9]
A dye (A1a-7P) was synthesized according to the method shown below.
<ステップ1>
 合成例1のステップ2で用いた1-ブロモ-2メチルプロパンを1-ブロモオクタン(中間体1に対して18等量)に変更する以外は同様の原料を用いて反応させ、ジクロロメタンで抽出操作を行った後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1000:40)にて単離し、淡黄色の油状物質である中間体4を13.4g(収率67%)得た。
<Step 1>
Reaction was carried out using the same raw materials except that 1-bromo-2 methylpropane used in step 2 of Synthesis Example 1 was changed to 1-bromooctane (18 equal to Intermediate 1), and an extraction operation was performed with dichloromethane. After that, the mixture was isolated by column chromatography (hexane: ethyl acetate = 1000: 40) to obtain 13.4 g (yield 67%) of Intermediate 4, which is a pale yellow oily substance.
<ステップ2>
 合成例6のステップ2に記載した中間体3を中間体4に変更した以外は同様の方法で、緑色の固体である色素(A1a-7P)を1.0g(収率20%)得た。
<Step 2>
1.0 g (yield 20%) of a green solid dye (A1a-7P) was obtained in the same manner except that the intermediate 3 described in step 2 of Synthesis Example 6 was changed to intermediate 4.
[合成例10]
 合成例9のステップ2で用いたヘキサフルオロリン酸カリウムをカリウムビス(トリフルオロメチルスルホニル)イミドに変更した以外は同様の方法で、緑色の固体である色素(A1a-7NS)を2.4g(収率37%)得た。
[Synthesis Example 10]
2.4 g (A1a-7NS) of a green solid dye (A1a-7NS) was added in the same manner except that potassium hexafluorophosphate used in step 2 of Synthesis Example 9 was changed to potassium bis (trifluoromethylsulfonyl) imide. Yield 37%) was obtained.
[合成例11]
 以下に示す方法にしたがい、色素(A1a-1NS)を合成した。
[Synthesis Example 11]
A dye (A1a-1NS) was synthesized according to the method shown below.
<ステップ1>
 合成例1のステップ2で用いた1-ブロモ-2メチルプロパンをブロモエタン(中間体1に対して18等量)に変更する以外は同様の原料を用いて反応させ、ジクロロメタンで抽出操作を行った後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=8:2)にて単離し、淡黄色の油状物質である中間体5を1.7g(収率12%)得た。
<Step 1>
The reaction was carried out using the same raw materials except that 1-bromo-2 methylpropane used in step 2 of Synthesis Example 1 was changed to bromoethane (18 equal to Intermediate 1), and the extraction operation was carried out with dichloromethane. Then, it was isolated by column chromatography (hexane: ethyl acetate = 8: 2) to obtain 1.7 g (yield 12%) of Intermediate 5, which is a pale yellow oily substance.
<ステップ2>
 合成例6のステップ2に記載した中間体3を中間体5に変更し、ヘキサフルオロリン酸カリウムをカリウムビス(トリフルオロメチルスルホニル)イミドに変更した以外は同様の方法で、緑色の固体である色素(A1a-1NS)を0.8g(収率22%)得た。
<Step 2>
It is a green solid in the same manner except that the intermediate 3 described in step 2 of Synthesis Example 6 was changed to intermediate 5 and potassium hexafluorophosphate was changed to potassium bis (trifluoromethylsulfonyl) imide. 0.8 g (yield 22%) of the dye (A1a-1NS) was obtained.
[合成例12]
 以下に示す反応経路にしたがい、色素(B1-5Sb)を合成した。
[Synthesis Example 12]
A dye (B1-5Sb) was synthesized according to the reaction pathway shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<ステップ1>
 1Lナスフラスコに4-ブロモアニリン(25.4g、148mmol)とN,N-ジメチルホルムアミド(80mL)を加え、110℃で溶解するまで撹拌した。その後、1-ブロモ-2-メチルプロパン(54.7g、399mmol)とN-エチルジイソプロピルアミン(57.3g、444mmol)を加え、130℃で15h反応させた。室温に戻した後、酢酸エチル:ヘキサン=1:4の混合溶媒で抽出操作を実施し、溶媒除去後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1000:50)にて単離したところ、白色固体である中間体6を15g(収率36%)で得た。
<Step 1>
4-Bromoaniline (25.4 g, 148 mmol) and N, N-dimethylformamide (80 mL) were added to a 1 L eggplant flask, and the mixture was stirred at 110 ° C. until dissolution. Then, 1-bromo-2-methylpropane (54.7 g, 399 mmol) and N-ethyldiisopropylamine (57.3 g, 444 mmol) were added, and the mixture was reacted at 130 ° C. for 15 hours. After returning to room temperature, an extraction operation was carried out with a mixed solvent of ethyl acetate: hexane = 1: 4, and after removing the solvent, isolation by column chromatography (hexane: ethyl acetate = 1000: 50) revealed a white solid. The intermediate 6 was obtained in an amount of 15 g (yield 36%).
<ステップ2>
 1Lナスフラスコにステップ1で得られた中間体6(12g、42mmol)と、1,4-フェニレンジアミン(1.1g、9.8mmol)、ナトリウムtert-ブトキシド(8g、83mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1g、1.1mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(2g、4mmol)、1,4-ジオキサン(80mL)を加え、100℃で20h反応させた。室温に戻し、セライトろ過で触媒の残存固体を除去後、ジクロロメタンと塩化アンモニウム飽和水溶液で抽出操作を実施し、溶媒除去後、析出した固体をメタノールで洗浄することで、茶色固体である中間体7を17.5g(収率97%)で得た。
<Step 2>
Intermediate 6 (12 g, 42 mmol) obtained in step 1 in a 1 L eggplant flask, 1,4-phenylenediamine (1.1 g, 9.8 mmol), sodium tert-butoxide (8 g, 83 mmol), tris (dibenzylidene). Add acetone) dipalladium (0) (1 g, 1.1 mmol), 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (2 g, 4 mmol), 1,4-dioxane (80 mL), and add. The reaction was carried out at 100 ° C. for 20 hours. After returning to room temperature and removing the residual solid of the catalyst by Celite filtration, an extraction operation was carried out with a saturated aqueous solution of dichloromethane and ammonium chloride, and after removing the solvent, the precipitated solid was washed with methanol to form an intermediate 7 which is a brown solid. Was obtained in 17.5 g (yield 97%).
<ステップ3>
 500mLナスフラスコにステップ2で得られた中間体7(2g、2mmol)とN,N-ジメチルホルムアミド(20mL)を加え、60℃で溶解するまで撹拌した。その後、ヘキサフルオロアンチモン(V)酸銀(1.6g、4.5mmol)をN,N-ジメチルホルムアミド(20mL)に溶解させた溶液を、中間体7を溶解させた溶液に加え、60℃で2h撹拌させた。析出してきた固体をろ過後、N,N-ジメチルホルムアミドで洗浄し、ろ液に水をゆっくり150mL程度滴下し、析出してきた固体を再度ろ過し、水とヘキサンで洗浄後、カラムクロマトグラフィー(ジクロロメタン:酢酸エチル=7:3)にて単離し、溶媒除去した後、固体をジクロロメタンに少量溶解させ、酢酸エチルを用いて再沈作業を行い、赤茶色固体である色素(B1-5Sb)を1.3g(収率43%)得た。
<Step 3>
Intermediate 7 (2 g, 2 mmol) obtained in step 2 and N, N-dimethylformamide (20 mL) were added to a 500 mL eggplant flask, and the mixture was stirred until dissolved at 60 ° C. Then, a solution of silver hexafluoroantimonate (V) (1.6 g, 4.5 mmol) in N, N-dimethylformamide (20 mL) was added to the solution of intermediate 7 and at 60 ° C. It was stirred for 2 hours. After filtering the precipitated solid, wash it with N, N-dimethylformamide, slowly add about 150 mL of water to the filtrate, filter the precipitated solid again, wash it with water and hexane, and then perform column chromatography (dichloromethane). : Isolate with ethyl acetate = 7: 3), remove the solvent, dissolve a small amount of the solid in dichloromethane, perform reprecipitation work with ethyl acetate, and add 1 dye (B1-5Sb), which is a reddish brown solid. .3 g (43% yield) was obtained.
[合成例13]
 500mLナスフラスコに合成例12のステップ2で得られた中間体7(5g、5.4mmol)と酢酸エチル(50mL)を加え、60℃で溶解するまで撹拌した。その後、カリウムビス(トリフルオロメチルスルホニル)イミド(4.4g、13.8mmol)とペルオキソ二硫酸アンモニウム(3.1g、13.5mmol)をアセトニトリル(30mL)と水(30mL)の混合溶媒に溶解させた溶液を、中間体7を溶解させた溶液に加え、60℃で4h撹拌させた。反応終了後、室温に戻し、水(100mL)とヘキサン(200mL)を加え、固体を析出させ、ろ過し、酢酸エチルで洗浄した。回収した固体をカラムクロマトグラフィー(ジクロロメタン:メタノール=1000:30)にて単離し、溶媒除去した後、固体をジクロロメタンに少量溶解させ、ヘキサンを用いて再沈作業を行い、赤茶色固体である色素(B1-5NS)を6.0g(収率75%)得た。
[Synthesis Example 13]
Intermediate 7 (5 g, 5.4 mmol) obtained in step 2 of Synthesis Example 12 and ethyl acetate (50 mL) were added to a 500 mL eggplant flask, and the mixture was stirred at 60 ° C. until dissolved. Then, potassium bis (trifluoromethylsulfonyl) imide (4.4 g, 13.8 mmol) and ammonium peroxodisulfate (3.1 g, 13.5 mmol) were dissolved in a mixed solvent of acetonitrile (30 mL) and water (30 mL). The solution was added to the solution in which the intermediate 7 was dissolved, and the mixture was stirred at 60 ° C. for 4 hours. After completion of the reaction, the temperature was returned to room temperature, water (100 mL) and hexane (200 mL) were added to precipitate a solid, which was filtered and washed with ethyl acetate. The recovered solid is isolated by column chromatography (dichloromethane: methanol = 1000:30), the solvent is removed, a small amount of the solid is dissolved in dichloromethane, reprecipitation is performed using hexane, and the dye is a reddish brown solid. 6.0 g (yield 75%) of (B1-5NS) was obtained.
[合成例14]
 カリウムビス(トリフルオロメチルスルホニル)イミドをヘキサフルオロリン酸カリウムに変更する以外は合成例2と同様の方法で、赤茶色固体である色素(B1-5P)を収率36%で得た。
[Synthesis Example 14]
A reddish brown solid dye (B1-5P) was obtained in a yield of 36% by the same method as in Synthesis Example 2 except that potassium bis (trifluoromethylsulfonyl) imide was changed to potassium hexafluorophosphate.
[合成例15]
 合成例12のステップ1で用いた1-ブロモ-2メチルプロパンを1-ブロモブタン(54.7g、399mmol)に変更する以外は同様の方法で、n-ブチルが修飾された中間体を合成(収率89%)し、合成例12のステップ2,3と同様の方法を用いて赤茶色固体である色素(B1-4Sb)を収率72%で得た。
[Synthesis Example 15]
An n-butyl-modified intermediate was synthesized (yield) in the same manner except that 1-bromo-2 methylpropane used in step 1 of Synthesis Example 12 was changed to 1-bromobutane (54.7 g, 399 mmol). The rate was 89%), and a dye (B1-4Sb) which was a reddish brown solid was obtained in a yield of 72% by using the same method as in steps 2 and 3 of Synthesis Example 12.
[合成例16]
 以下に示す反応経路にしたがい、色素(S1)を合成した。すなわち、European Journal of Medical Chemistry, 54, 647, (2012)を参考にして作製した生成物(10)(6.5mmol)とスクアリン酸(3.4mmol)を500mLナスフラスコにいれ、トルエン(330mL)と1-ブタノール(110mL)に溶解させ、キノリン(8mmol)添加し、150℃で4時間撹拌させた。なお、生成物(10)は、2-メチル-ベンゾ[c,d]インドールの1位の水素がRに置換された化合物のヨウ素塩であり、Rは-CH-CH(C13)(C17)である。
[Synthesis Example 16]
The dye (S1) was synthesized according to the reaction pathway shown below. That is, the products (10) (6.5 mmol) and squaric acid (3.4 mmol) prepared with reference to European Journal of Medical Chemistry, 54, 647, (2012) were placed in a 500 mL eggplant flask, and toluene (330 mL) was added. And 1-butanol (110 mL) were dissolved, quinoline (8 mmol) was added, and the mixture was stirred at 150 ° C. for 4 hours. The product (10) is an iodine salt of a compound in which the hydrogen at the 1-position of 2-methyl-benzo [c, d] indole is replaced with R, and R is -CH 2- CH (C 6 H 13). ) (C 8 H 17 ).
 反応終了後、溶媒を除去し、カラムクロマトグラフィー(ヘキサン:酢酸エチル=8:2)にて単離し、溶媒除去し、ヘキサン洗浄後、赤褐色固体である色素(S1)(0.5g、収率25%)を得た。 After completion of the reaction, the solvent was removed, isolated by column chromatography (hexane: ethyl acetate = 8: 2), the solvent was removed, and after washing with hexane, the dye (S1) (0.5 g, yield) which was a reddish brown solid. 25%) was obtained.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[合成例16]
 以下に示す反応経路にしたがい、色素(S2)を合成した。
[Synthesis Example 16]
The dye (S2) was synthesized according to the reaction pathway shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<ステップ1>
 1Lの三口フラスコにbenzo[cd]indol-2(1H)-one(30g,177mmol)とクロロホルム(500mL)を入れ、65℃で加熱撹拌し原料を溶解させた後、0℃まで冷却し、臭素(28.3g,177mmol)をゆっくり滴下した。滴下終了後、室温に戻し、24h撹拌後、ヘキサンを反応液に加えて希釈し、析出物を濾過し回収した。ろ紙上の固体を複数回ヘキサンを用いて洗浄し、真空乾燥させ、黄土色の固体である中間体8を60g(収率100%以上)得た。
<Step 1>
Benzo [cd] indole-2 (1H) -one (30 g, 177 mmol) and chloroform (500 mL) were placed in a 1 L three-necked flask, and the mixture was heated and stirred at 65 ° C. to dissolve the raw materials, then cooled to 0 ° C. and bromine. (28.3 g, 177 mmol) was slowly added dropwise. After completion of the dropping, the temperature was returned to room temperature, and after stirring for 24 hours, hexane was added to the reaction solution for dilution, and the precipitate was collected by filtration. The solid on the filter paper was washed with hexane a plurality of times and vacuum dried to obtain 60 g (yield 100% or more) of Intermediate 8 which is an ocher solid.
<ステップ2>
 1Lのナスフラスコに、ステップ1で合成した中間体8(30g,121mmol)と4-Dimethylaminopyridine(2.0g,16mmol)、ヨウ化カリウム(4.0g,24mmol)とスルホラン(300mL)を加え、70℃で1h撹拌した。反応液中に、水酸化カリウム(21g,374mmol)と7-(Bromomethyl)pentadecane(111g,363mmol)を加え、70℃で19h反応させた。反応終了後、室温に戻し、ヘキサンと酢酸エチルを4:1で混合した有機溶媒と水を用いて抽出操作を行い、溶媒除去した。その後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1000:10)にて単離し、黄色の油状物質である中間体9を45g(収率78%)得た。
<Step 2>
To a 1 L eggplant flask, add intermediate 8 (30 g, 121 mmol) synthesized in step 1, 4-Dimethylaminopyridine (2.0 g, 16 mmol), potassium iodide (4.0 g, 24 mmol) and sulfolane (300 mL), and add 70. The mixture was stirred at ° C. for 1 h. Potassium hydroxide (21 g, 374 mmol) and 7- (Bromomethyl) pentadecane (111 g, 363 mmol) were added to the reaction solution, and the reaction was carried out at 70 ° C. for 19 hours. After completion of the reaction, the temperature was returned to room temperature, and an extraction operation was carried out using an organic solvent in which hexane and ethyl acetate were mixed at a ratio of 4: 1 and water to remove the solvent. Then, it was isolated by column chromatography (hexane: ethyl acetate = 1000:10) to obtain 45 g (yield 78%) of Intermediate 9, which is a yellow oily substance.
<ステップ3>
 1Lのナスフラスコに、ステップ2で合成した中間体9(33g,70mmol)と酢酸エチル(2.5g,28mmol)、ヨウ化銅(I)(1.9g,10mmol)、28%ナトリウムメトキシド/メタノール溶液(42g)を加え、90℃で6h撹拌・反応させた。さらにヨウ化銅(I)(1g,5mmol)と28%ナトリウムメトキシド/メタノール溶液(20g)を添加し、さらに90℃で15h撹拌させた。反応終了後、室温に戻し、セライト濾過を行った後、ジクロロメタンと水で抽出操作を行い、溶媒除去した。その後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=1000:30)にて単離し、黄色の油状物質である中間体10を26g(収率88%)で得た。
<Step 3>
Intermediate 9 (33 g, 70 mmol) and ethyl acetate (2.5 g, 28 mmol) synthesized in step 2, copper (I) iodide (1.9 g, 10 mmol), 28% sodium methoxide / in a 1 L eggplant flask. A methanol solution (42 g) was added, and the mixture was stirred and reacted at 90 ° C. for 6 hours. Further, copper (I) iodide (1 g, 5 mmol) and a 28% sodium methoxide / methanol solution (20 g) were added, and the mixture was further stirred at 90 ° C. for 15 hours. After completion of the reaction, the temperature was returned to room temperature, Celite filtration was performed, and then an extraction operation was performed with dichloromethane and water to remove the solvent. Then, it was isolated by column chromatography (hexane: ethyl acetate = 1000: 30) to obtain 26 g (yield 88%) of Intermediate 10, which is a yellow oily substance.
<ステップ4>
 2Lの三口フラスコに、ステップ3で合成した中間体10(26g,61mmol)とジクロロメタン(500mL)を入れ、-78℃に冷却した。その後、1Mの三臭化ホウ素ジクロロメタン溶液(200mL)をゆっくり滴下し、滴下終了後に反応溶液を室温に戻し、2h撹拌した。反応終了後、0℃に冷却し、水200mLをゆっくり加え、三臭化ホウ素をクエンチした。析出した固体を濾過し、ろ液をジクロロメタンと炭酸水素ナトリウム水溶液で抽出操作を行い、溶媒除去を行った。濾過時に回収した固体と合わせて、ヘキサンで複数回洗浄し、黄色固体である中間体11を24g(収率95%)で得た。
<Step 4>
Intermediate 10 (26 g, 61 mmol) synthesized in step 3 and dichloromethane (500 mL) were placed in a 2 L three-necked flask and cooled to −78 ° C. Then, 1 M boron tribromide dichloromethane solution (200 mL) was slowly added dropwise, and after completion of the addition, the reaction solution was returned to room temperature and stirred for 2 hours. After completion of the reaction, the mixture was cooled to 0 ° C., 200 mL of water was slowly added, and boron tribromide was quenched. The precipitated solid was filtered, and the filtrate was extracted with dichloromethane and an aqueous solution of sodium hydrogen carbonate to remove the solvent. Together with the solid recovered during filtration, the mixture was washed with hexane multiple times to obtain 24 g (yield 95%) of Intermediate 11, which is a yellow solid.
<ステップ5>
 1Lの三口フラスコに、ステップ4で合成した中間体11(10g,24mmol)と炭酸カリウム(16.9g,120mmol)、DMF(120mL)を加え、70℃で撹拌した。その後、7-(Bromomethyl)pentadecane(8.95g,29mmol)を滴下し、70℃で2h撹拌させた。反応終了後、ヘキサンと酢酸エチルを1:1で混合させた有機溶媒と水で抽出操作を行い、溶媒除去した。そして、カラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)にて単離し、黄色の油状物質である中間体12を14g(収率91%)で得た。
<Step 5>
Intermediate 11 (10 g, 24 mmol) synthesized in step 4, potassium carbonate (16.9 g, 120 mmol) and DMF (120 mL) were added to a 1 L three-necked flask, and the mixture was stirred at 70 ° C. Then, 7- (Bromomethyl) pentadecane (8.95 g, 29 mmol) was added dropwise, and the mixture was stirred at 70 ° C. for 2 hours. After completion of the reaction, an extraction operation was carried out with water and an organic solvent in which hexane and ethyl acetate were mixed at a ratio of 1: 1 to remove the solvent. Then, it was isolated by column chromatography (hexane: ethyl acetate = 10: 1) to obtain 14 g (yield 91%) of Intermediate 12, which is a yellow oily substance.
<ステップ6>
 1Lの三口フラスコに、ステップ5で合成した中間体12(14g,22mmol)とエピクロロヒドリン(8.2g,88mmol)、クロロホルム(50mL)、ジエチルエーテル(20mL)を加え、70℃で撹拌する。Boron Trifluoride-Ethyl Ether Complex(15.9g,110mmol)とクロロホルム(30mL)の混合溶液を滴下し、130℃に昇温させて15h撹拌・反応させた。その後、反応溶液を冷却し、トルエンを加え、エバポレーターで溶媒除去を2回ほど行い、橙褐色の油状物質(中間体13’)を得た。油状物質にエタノール(20mL)とメルドラム酸(4.6g,32mmol)を加え、トリエチルアミン(11.4g,110mmol)を加え、室温で5h撹拌させた。反応終了後、トルエンを加え、エバポレーターで溶媒除去を2回ほど行い、カラムクロマトグラフィー(ヘキサン:酢酸エチル=6:4)にて単離し、マゼンダ色の油状物質である中間体13を8g(収率47%)で得た。
<Step 6>
To a 1 L three-necked flask, add intermediate 12 (14 g, 22 mmol) synthesized in step 5, epichlorohydrin (8.2 g, 88 mmol), chloroform (50 mL), and diethyl ether (20 mL), and stir at 70 ° C. .. A mixed solution of Boron Trifluoride-Ethyl Ether Complex (15.9 g, 110 mmol) and chloroform (30 mL) was added dropwise, the temperature was raised to 130 ° C., and the mixture was stirred and reacted for 15 hours. Then, the reaction solution was cooled, toluene was added, and the solvent was removed by an evaporator about twice to obtain an orange-brown oily substance (intermediate 13'). Ethanol (20 mL) and Meldrum's acid (4.6 g, 32 mmol) were added to the oily substance, triethylamine (11.4 g, 110 mmol) was added, and the mixture was stirred at room temperature for 5 hours. After completion of the reaction, toluene was added, the solvent was removed by an evaporator about twice, isolated by column chromatography (hexane: ethyl acetate = 6: 4), and 8 g (yield) of intermediate 13 which was a magenta-colored oily substance was collected. It was obtained at a rate of 47%).
<ステップ7>
 1Lのナスフラスコに、ステップ6で合成した中間体13(8g,10mmol)と塩酸(15mL)を加え、130℃で1h加熱した。その後、テトラフルオロほう酸(3mL)を加え、さらに1h反応させた。反応終了後、室温に戻し、50mLの水を加え、テトラフルオロほう酸を20mL添加した。その後、ジクロロメタンと水を用いて抽出操作を行い、溶媒除去したところ、橙色の油状物質である中間体14を7.1g(収率94%)で得た。
<Step 7>
Intermediate 13 (8 g, 10 mmol) synthesized in step 6 and hydrochloric acid (15 mL) were added to a 1 L eggplant flask, and the mixture was heated at 130 ° C. for 1 h. Then, tetrafluoroboric acid (3 mL) was added, and the reaction was further carried out for 1 hour. After completion of the reaction, the temperature was returned to room temperature, 50 mL of water was added, and 20 mL of tetrafluoroboric acid was added. Then, an extraction operation was carried out using dichloromethane and water to remove the solvent, and an orange oily substance, Intermediate 14, was obtained in an amount of 7.1 g (yield 94%).
<ステップ8>
 1Lのナスフラスコに、ステップ7で合成した中間体14(7.1g,10mmol)とスクアリン酸(0.59g,5.2mmol)、トルエン(500mL)、1-ブタノール(170mL)、キノリン(1.77g)を加え、130℃で2h反応させた。その後、エバポレーターで溶媒除去を行い、カラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)にて単離したところ、黒色固体である色素(S2)を3.4g(収率55%)で得た。
<Step 8>
In a 1 L eggplant flask, intermediate 14 (7.1 g, 10 mmol) synthesized in step 7, squaric acid (0.59 g, 5.2 mmol), toluene (500 mL), 1-butanol (170 mL), quinoline (1. 77 g) was added and reacted at 130 ° C. for 2 hours. Then, the solvent was removed with an evaporator, and the mixture was isolated by column chromatography (hexane: ethyl acetate = 9: 1) to obtain 3.4 g (yield 55%) of the dye (S2) as a black solid. ..
 上記で用意した各種色素と透明樹脂を用いて色素含有樹脂層を作製し光学特性を測定した。また、各種色素をジクロロメタンに溶解して光学特性を測定し、色素含有樹脂層における光学特性と比較した。透明樹脂としては、以下の市販品を用いた。結果を表14に示す。 A dye-containing resin layer was prepared using the various dyes and transparent resin prepared above, and the optical characteristics were measured. In addition, various dyes were dissolved in dichloromethane, and the optical characteristics were measured and compared with the optical characteristics of the dye-containing resin layer. The following commercially available products were used as the transparent resin. The results are shown in Table 14.
(透明樹脂(P))
 樹脂A;ネオプリム(登録商標)C-3G30(三菱ガス化学(株)製、商品名)、ポリイミド樹脂を含有するワニス、含有するポリイミド樹脂のTg:320℃
 樹脂B;ARTON(登録商標)F4520(JSR(株)製、商品名)、シクロオレフィン樹脂、Tg:151℃
 樹脂C;B-OKP-2(大阪ガスケミカル(株)製、商品名)、ポリエステル樹脂、Tg:150℃
 樹脂D;OKP-850(大阪ガスケミカル(株)製、商品名)、ポリエステル樹脂、Tg:151℃
 樹脂E;パンライト(登録商標)SP3810(帝人(株)製、商品名)、ポリカーボネート樹脂、Tg:150℃
(その他の透明樹脂)
 樹脂F;BR50(三菱レイヨン(株)製、商品名)、アクリル樹脂、Tg:100℃
(Transparent resin (P))
Resin A; Neoprim (registered trademark) C-3G30 (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name), varnish containing polyimide resin, Tg of polyimide resin contained: 320 ° C.
Resin B; ARTON (registered trademark) F4520 (manufactured by JSR Corporation, trade name), cycloolefin resin, Tg: 151 ° C.
Resin C; B-OKP-2 (manufactured by Osaka Gas Chemical Co., Ltd., trade name), polyester resin, Tg: 150 ° C.
Resin D; OKP-850 (manufactured by Osaka Gas Chemical Co., Ltd., trade name), polyester resin, Tg: 151 ° C.
Resin E; Panlite (registered trademark) SP3810 (manufactured by Teijin Limited, trade name), polycarbonate resin, Tg: 150 ° C.
(Other transparent resins)
Resin F; BR50 (manufactured by Mitsubishi Rayon Co., Ltd., trade name), acrylic resin, Tg: 100 ° C.
 シクロヘキサノンに溶解させた透明樹脂に、上記で用意した色素を透明樹脂の固形分濃度に対して10質量%均一に溶解させた。得られた溶液をガラス板(D263:SCHOTT社製、商品名)上に塗布し、乾燥して膜厚1μm程度の色素含有樹脂層を得た。色素含有樹脂層付きガラス板の分光透過率曲線とガラス板の分光透過率曲線を用いて、色素含有樹脂層の分光透過率曲線を得た。 The dye prepared above was uniformly dissolved in a transparent resin dissolved in cyclohexanone by 10% by mass with respect to the solid content concentration of the transparent resin. The obtained solution was applied onto a glass plate (D263: manufactured by SCHOTT, trade name) and dried to obtain a dye-containing resin layer having a film thickness of about 1 μm. The spectral transmittance curve of the dye-containing resin layer was obtained by using the spectral transmittance curve of the glass plate with the dye-containing resin layer and the spectral transmittance curve of the glass plate.
 作製した色素含有樹脂層の内部透過率分光は、紫外可視近赤外分光光度計を用いて波長350~1200nmの範囲を測定し、内部透過率T[%](=実測透過率[%]/(100-実測反射率[%])×100[%])を用いて算出した。表中に記載の色素の添加量(色素濃度)は、膜厚2μmにおいて最大吸収波長λmaxTRでの光の内部透過率が10%になるように調整した際の、透明樹脂100質量部に対する質量部である。 For the internal transmittance spectroscopy of the produced dye-containing resin layer, the wavelength range of 350 to 1200 nm was measured using an ultraviolet-visible near-infrared spectrophotometer, and the internal transmittance T [%] (= measured transmittance [%] / It was calculated using (100-measured reflectance [%]) × 100 [%]). The amount of the dye added (dye concentration) described in the table is the mass with respect to 100 parts by mass of the transparent resin when the internal transmittance of light at the maximum absorption wavelength λ max TR is adjusted to 10% at a film thickness of 2 μm. It is a department.
 最大吸収波長λmaxTRでの光の透過率が10%になるように調整した分光透過率曲線から、波長435~480nmの光の平均内部透過率TAVE435-480TR、波長490~560nmの光の平均内部透過率TAVE490-560TR、波長590~630nmの光の平均内部透過率TAVE590-630TRを求めた。650~1150nmの波長領域で内部透過率が50%となる2つの波長を有する場合の該2つの波長間の幅WT50%を求めた。なお、表には650~1150nmの波長領域で内部透過率が50%となる短波長側の波長をλSH50%、長波長側の波長をλLG50%で示した。 From the spectral transmittance curve adjusted so that the light transmittance at the maximum absorption wavelength λ maxTR is 10%, the average internal transmittance of light with a wavelength of 435 to 480 nm is T AVE435-480TR , and the average of light with a wavelength of 490 to 560 nm. The internal transmittance T AVE490-560TR and the average internal transmittance T AVE590-630TR of light having a wavelength of 590 to 630 nm were determined. The width WT 50% between the two wavelengths in the case of having two wavelengths having an internal transmittance of 50% in the wavelength region of 650 to 1150 nm was determined. In the table, the wavelength on the short wavelength side where the internal transmittance is 50% in the wavelength region of 650 to 1150 nm is shown by λ SH 50%, and the wavelength on the long wavelength side is shown by λ LG 50% .
 ジクロロメタンに溶解して波長350~1200nmの光吸収スペクトルを測定して分光透過率曲線から、最大吸収波長λmaxDCMを求めた。さらに、ジクロロメタン中の色素濃度を、最大吸収波長λmaxDCMでの光の透過率が10%になるように調整した分光透過率曲線から、波長435~480nmの光の平均透過率TAVE435-480DCM、波長490~560nmの光の平均透過率TAVE490-560DCM、波長590~630nmの光の平均透過率TAVE590-630DCMを求めて、色素含有樹脂層の平均内部透過率との差を算出した。表には、「TAVE435-480の差」の欄にTAVE435-480DCM-TAVE435-480TRを示した。同様に「TAVE490-560の差」の欄にTAVE490-560DCM-TAVE490-560TRを、「TAVE590-630の差」の欄にTAVE590-630DCM-TAVE590-630TRを示した。 It was dissolved in dichloromethane and the light absorption spectrum having a wavelength of 350 to 1200 nm was measured, and the maximum absorption wavelength λ max DCM was obtained from the spectral transmittance curve. Further, from the spectral transmittance curve in which the dye concentration in dichloromethane was adjusted so that the light transmittance at the maximum absorption wavelength λ max DCM was 10%, the average transmittance of light having a wavelength of 435 to 480 nm T AVE435-480 DCM , The average transmittance of light having a wavelength of 490 to 560 nm T AVE490-560 DCM and the average transmittance of light having a wavelength of 590 to 630 nm T AVE590-630 DCM were determined, and the difference from the average internal transmittance of the dye-containing resin layer was calculated. In the table, T AVE 435-480 DCM -T AVE 435-480 TR is shown in the column of "Difference of T AVE 435-480 ". Likewise the T AVE490-560DCM -T AVE490-560TR the column "difference T AVE490-560" showed T AVE590-630DCM -T AVE590-630TR the column "difference T AVE590-630".
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 また、図7に試験例2における色素(A1a-5NS)の透明樹脂(P;樹脂A)中およびジクロロメタン中における分光透過率曲線を示す。さらに、図8に試験例19における色素(A1a-5NS)の透明樹脂(樹脂F)中およびジクロロメタン中における分光透過率曲線を示す。なお、図7、図9において透明樹脂中で測定された色素の分光透過率曲線には、両矢印でWT50%の範囲を示した。 Further, FIG. 7 shows the spectral transmittance curves of the dye (A1a-5NS) in Test Example 2 in the transparent resin (P; resin A) and in dichloromethane. Further, FIG. 8 shows the spectral transmittance curves of the dye (A1a-5NS) in Test Example 19 in the transparent resin (resin F) and dichloromethane. The spectral transmittance curves of the dyes measured in the transparent resin in FIGS. 7 and 9 show the range of WT 50% with double- headed arrows.
 表14から、試験例1~18のNIR色素(A)と透明樹脂(P)の組合せにおいて、(1-1)~(1-6)の特性を有することがわかる。NIR色素(A)は、WT50%で示す近赤外光の吸収の幅が大きい点で、トリス型イモニウム色素が好ましいことがわかる。また、NIR色素(A)は、ジクロロメタン溶液中と樹脂中との光学特性の差が小さい点では、XaがN[SOCF 、SbF またはPF が好ましく、N[SOCF が特に好ましいことがわかる。透明樹脂(P)としては可視光透過率を高くできる点からポリイミド樹脂が好ましいことがわかる。 From Table 14, it can be seen that the combination of the NIR dye (A) and the transparent resin (P) of Test Examples 1 to 18 has the characteristics of (1-1) to (1-6). It can be seen that the NIR dye (A) is preferably a tris-type imonium dye in that the range of absorption of near-infrared light indicated by WT 50% is large. Further, NIR dye (A) is in terms difference in optical characteristics between dichloromethane solution and resin is small, Xa - is N [SO 2 CF 3] 2 -, SbF 6 - or PF 6 - are preferable, N It can be seen that [SO 2 CF 3 ] 2 - is particularly preferable. As the transparent resin (P), it can be seen that the polyimide resin is preferable from the viewpoint that the visible light transmittance can be increased.
 試験例19~23においては、NIR色素と透明樹脂のいずれかがNIR色素(A)または透明樹脂(P)の要件を満たさないために、(1-1)~(1-6)の特性の1以上を満たさないことがわかる。試験例24~28は、色素(B1)と透明樹脂(P)または透明樹脂(P)の要件を満たさない透明樹脂を組合せた例であり、色素(B1)はポリイミド樹脂のような透明樹脂(P)と組合せることでNIR色素(B)として好ましく機能することがわかる。 In Test Examples 19 to 23, since either the NIR dye or the transparent resin does not satisfy the requirements of the NIR dye (A) or the transparent resin (P), the characteristics of (1-1) to (1-6) are exhibited. It can be seen that 1 or more is not satisfied. Test Examples 24 to 28 are examples in which the dye (B1) is combined with a transparent resin that does not meet the requirements of the transparent resin (P) or the transparent resin (P), and the dye (B1) is a transparent resin such as a polyimide resin (B1). It can be seen that when combined with P), it functions preferably as the NIR dye (B).
[例1~11;光学フィルタの製造、評価]
(光学フィルタの製造)
 図2に示す光学フィルタ10Bと同様の構成の光学フィルタを以下の方法で製造し、評価した。表15に光学フィルタの構成と評価結果を示す。例1~7が実施例であり、例8~11が比較例である。
[Examples 1 to 11; Manufacturing and evaluation of optical filters]
(Manufacturing of optical filters)
An optical filter having the same configuration as the optical filter 10B shown in FIG. 2 was manufactured and evaluated by the following method. Table 15 shows the configuration and evaluation results of the optical filter. Examples 1 to 7 are examples, and examples 8 to 11 are comparative examples.
 各例において、透明基板として、CuO含有フツリン酸ガラス基板(AGC(株)社製、厚さ0.2mm)または、厚さ0.08mmの帝人ピュアエースWRM5-80(帝人(株)製、商品名、ポリカーボネート樹脂、Tg215℃)樹脂基板を使用した。表には、それぞれ「吸収ガラス」、「PC樹脂」と記載した。 In each example, as a transparent substrate, a CuO-containing borosilicate glass substrate (manufactured by AGC Co., Ltd., thickness 0.2 mm) or a 0.08 mm thick Teijin Pure Ace WRM5-80 (manufactured by Teijin Limited, product). Name, polycarbonate resin, Tg 215 ° C.) A resin substrate was used. In the table, "absorbent glass" and "PC resin" are described, respectively.
 反射層としては、以下のとおり形成した誘電体多層膜を用いた。誘電体多層膜は、透明基板の一方の主面に、蒸着法により、TiO膜とSiO膜を交互に合計42層積層して形成した。反射層の構成は、誘電体多層膜の積層数、TiO膜の膜厚およびSiO膜の膜厚をパラメータとしてシミュレーションし、入射角0度の分光透過率曲線において、波長850~1100nmの光の平均透過率が0.03%となる設計とした。 As the reflective layer, a dielectric multilayer film formed as follows was used. The dielectric multilayer film was formed by alternately laminating a total of 42 layers of TiO 2 film and SiO 2 film on one main surface of a transparent substrate by a vapor deposition method. The composition of the reflective layer is simulated by using the number of laminated dielectric multilayer films, the film thickness of TiO 2 film, and the film thickness of SiO 2 film as parameters, and light having a wavelength of 850 to 1100 nm in a spectral transmittance curve with an incident angle of 0 degrees. The design was such that the average transmittance of was 0.03%.
 また、透明基板の反射層が形成されたのと反対側の主面上に、表に示す透明樹脂と、NIR色素(A)、NIR色素(B)、NIR色素(C)(色素(I-12-23))、およびその他のNIR色素を組み合わせて、厚さ約2.0μmの吸収層を形成した。ここで、色素(I-12-23)において、樹脂Aに含有させて測定される波長350~1200nmの分光透過率曲線における最大吸収波長λmax(C)TRは714nmである。
 また、表中の色素の含有量は、透明樹脂100質量部に対する色素の質量部である。
Further, on the main surface opposite to the surface on which the reflective layer of the transparent substrate was formed, the transparent resin shown in the table, NIR dye (A), NIR dye (B), NIR dye (C) (dye (I-). 12-23)) and other NIR dyes were combined to form an absorption layer with a thickness of about 2.0 μm. Here, in the dye (I-12-23), the maximum absorption wavelength λ max (C) TR in the spectral transmittance curve having a wavelength of 350 to 1200 nm measured by being contained in the resin A is 714 nm.
The content of the dye in the table is the mass part of the dye with respect to 100 parts by mass of the transparent resin.
 その他のNIR色素として以下の色素(15)、色素(16)および色素(17)を用いた。ここで、色素(15)は、樹脂Aに含有させて測定される波長350~1200nmの分光透過率曲線における最大吸収波長λmax(A)TRが937nmであるが、(1-4)の特性を満たさない色素である。色素(16)および色素(17)において、樹脂Fに含有させて測定される波長350~1200nmの分光透過率曲線における最大吸収波長λmaxTRは、それぞれ839nmおよび771nmである。 The following dyes (15), dyes (16) and dyes (17) were used as other NIR dyes. Here, the dye (15) has a maximum absorption wavelength λ max (A) TR of 937 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by being contained in the resin A, but the characteristic of (1-4). It is a pigment that does not satisfy. In the dye (16) and the dye (17), the maximum absorption wavelengths λ maxTR in the spectral transmittance curve of the wavelengths of 350 to 1200 nm measured by being contained in the resin F are 839 nm and 771 nm, respectively.
[色素(15)の合成]
 以下に示す反応経路に従って色素(15)を合成した。
[Synthesis of dye (15)]
Dye (15) was synthesized according to the reaction pathway shown below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
<ステップb1>
 フラスコに2-ブロモチオフェン(9.00g、55.2mmmol)、マグネシウム(4.03g、165mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(55mL)に溶解した。前記混合溶液を80℃で1時間撹拌した。別フラスコに[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド(1.20g、2.21mmol)、2,3-ジブロモチオフェン(12.7g、52.5mmol)を入れ、無水ジエチルエーテル(110mL)に溶解した。前記ジエチルエーテル混合溶液を0℃に冷やし、前記テトラヒドロフラン混合溶液を滴下して、室温で3時間撹拌した。反応終了後、前記混合溶液に水(55mL)を加え、酢酸エチルで抽出して、有機層を飽和食塩水で洗い、溶媒を除去して、カラムクロマトグラフィー(ヘキサン)で中間体A3-11(8.93g、収率66%)を得た。
<Step b1>
2-Bromothiophene (9.00 g, 55.2 m mmol) and magnesium (4.03 g, 165 mmol) were placed in a flask and dissolved in anhydrous tetrahydrofuran (55 mL) under a nitrogen atmosphere. The mixed solution was stirred at 80 ° C. for 1 hour. [1,3-Bis (diphenylphosphino) propane] nickel (II) dichloride (1.20 g, 2.21 mmol) and 2,3-dibromothiophene (12.7 g, 52.5 mmol) are placed in a separate flask and anhydrous. It was dissolved in diethyl ether (110 mL). The diethyl ether mixture was cooled to 0 ° C., the tetrahydrofuran mixture was added dropwise, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, water (55 mL) was added to the mixed solution, extracted with ethyl acetate, the organic layer was washed with saturated brine, the solvent was removed, and intermediate A3-11 (hexane) was used for column chromatography (hexane). 8.93 g, yield 66%) was obtained.
<ステップb2>
 フラスコにステップb1で得た中間体A3-11(8.09g、33mmol)を入れ、窒素雰囲気下で無水ジエチルエーテル(230mL)に溶解した。前記溶液を-78℃に冷やし、1.6Mのノルマルブチルリチウムのヘキサン溶液(20mL、32.0mmol)を滴下して、1時間撹拌した。続いてベンゾフェノン(6.56g、36.0mmol)を溶かした無水ジエチルエーテル溶液(120mL)を滴下した。前記混合溶液を室温で1昼夜撹拌した。反応終了後、飽和塩化アンモニウム水溶液(200mL)を加え、ジイソプロビルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で中間体A3-12(8.81g、収率77%)を得た。
<Step b2>
Intermediate A3-11 (8.09 g, 33 mmol) obtained in step b1 was placed in a flask and dissolved in anhydrous diethyl ether (230 mL) under a nitrogen atmosphere. The solution was cooled to −78 ° C., a 1.6 M solution of normal butyllithium in hexane (20 mL, 32.0 mmol) was added dropwise, and the mixture was stirred for 1 hour. Subsequently, an anhydrous diethyl ether solution (120 mL) in which benzophenone (6.56 g, 36.0 mmol) was dissolved was added dropwise. The mixed solution was stirred at room temperature for one day and night. After completion of the reaction, saturated aqueous ammonium chloride solution (200 mL) was added, and the mixture was extracted with diisoprovir ether. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A3-12 (8.81 g, 77% yield) was obtained by column chromatography (hexane: dichloromethane = 1: 1).
<ステップb3>
 フラスコにステップb2で得た中間体A3-12(4.94g、14.4mmol)、アンバーリスト15(2.30g)を入れ、窒素雰囲気下で無水トルエン(300mL)に溶解した。前記混合溶液を7時間還流撹拌した。反応終了後、濾過して濾液を得て、溶媒を除去し、カラムクロマトグラフィー(ヘキサン:ジクロロメタン=2:1)で中間体A3-13(4.29g、91%)を得た。
<Step b3>
Intermediate A3-12 (4.94 g, 14.4 mmol) obtained in step b2 and Amberlist 15 (2.30 g) were placed in a flask and dissolved in anhydrous toluene (300 mL) under a nitrogen atmosphere. The mixed solution was refluxed and stirred for 7 hours. After completion of the reaction, the mixture was filtered to obtain a filtrate, the solvent was removed, and intermediate A3-13 (4.29 g, 91%) was obtained by column chromatography (hexane: dichloromethane = 2: 1).
<ステップb4>
 フラスコにステップb3で得た中間体A3-13(4.00g、12.1mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(120mL)に溶解した。前記溶液に、N-ブロモスクシンイミド(2.16g、12.1mmol)を溶かした無水ジメチルホルムアミド溶液(30mL)を滴下した。前記混合液を室温で一昼夜撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、カラムクロマトグラフィー(ジクロロメタン)で中間体A3-14(3.67g、収率74%)を得た。
<Step b4>
Intermediate A3-13 (4.00 g, 12.1 mmol) obtained in step b3 was placed in a flask and dissolved in anhydrous dimethylformamide (120 mL) under a nitrogen atmosphere. Anhydrous dimethylformamide solution (30 mL) in which N-bromosuccinimide (2.16 g, 12.1 mmol) was dissolved was added dropwise to the solution. The mixture was stirred at room temperature for 24 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine to remove the solvent, and then intermediate A3-14 (3.67 g, yield 74%) was obtained by column chromatography (dichloromethane).
<ステップb5>
 フラスコにステップb4で得られた中間体A3-14(3.50g、8.55mmol)、削り状マグネシウム(0.416g、17.1mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(20ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(1.03g、7.70mmol)を窒素雰囲気下で無水トルエン(20ml)に溶解し、ビス-(2-エチルヘキシル)アミン(1.86g、7.70mmol)を加えて、20分間撹拌した。
<Step b5>
Intermediate A3-14 (3.50 g, 8.55 mmol) obtained in step b4 and shaving magnesium (0.416 g, 17.1 mmol) were placed in a flask and dissolved in anhydrous tetrahydrofuran (20 ml) under a nitrogen atmosphere. .. The solution was refluxed for 3 hours and cooled to −40 ° C. In a separate flask, N-chlorosuccinimide (1.03 g, 7.70 mmol) is dissolved in anhydrous toluene (20 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (1.86 g, 7.70 mmol) is added. , Stirred for 20 minutes.
 -40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.43g、8.55mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(17ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、カラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)で中間体A3-15(1.34g、収率27.5%)を得た。 Tetraisopropyl orthotitanium (2.43 g, 8.55 mmol) was added dropwise to a mixed solution cooled to -40 ° C, and the mixture was stirred for 5 minutes, followed by mixing N-chlorosuccinimide and bis- (2-ethylhexyl) amine. The solution was added dropwise. The mixture was stirred at room temperature for 3 hours, and after completion of the reaction, a saturated aqueous potassium carbonate solution (17 ml) was added. It was subsequently diluted with ethyl acetate and filtered, and the resulting solution was extracted with ethyl acetate. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A3-15 (1.34 g, yield 27.5%) was obtained by column chromatography (hexane: triethylamine = 100: 3). It was.
<ステップb6>
 フラスコにステップb5で得られた中間体A3-15(1.30g、2.28mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.130g、1.14mmol)を入れ、窒素雰囲気下でノルマルブタノール(6ml)とトルエン(6ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、カラムクロマトグラフィー(ジクロロメタン:メタノール:トリエチルアミン=100:1:3)で色素(15)(0.445g、収率32%)を得た。
<Step b6>
The intermediate A3-15 (1.30 g, 2.28 mmol) obtained in step b5 and 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.130 g, 1.14 mmol) were placed in a flask. It was dissolved in a mixed solution of normal butanol (6 ml) and toluene (6 ml) under a nitrogen atmosphere. The mixture was stirred under reflux for 3 hours, the solvent was removed after the reaction was completed, and the dye (15) (0.445 g, yield 32%) was obtained by column chromatography (dichloromethane: methanol: triethylamine = 100: 1: 3). It was.
[色素(16)、色素(17)の合成]
 J. Heterocyclic. Chem., 42, 959, (2005)に記載された方法で色素(16)および色素(17)を合成した。
[Synthesis of dye (16) and dye (17)]
J. Heterocyclic. Chem. , 42, 959, (2005), and the dye (16) and the dye (17) were synthesized by the method described in (2005).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(評価)
<吸収層の光学特性>
 得られた例1~例11の光学フィルタの吸収層について入射角0度の分光透過率曲線を求めた。該分光透過率曲線においてNIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域において平均OD値を1としたときの、435~480nmの波長領域における平均内部透過率TAVE435-480(AL)、490~560nmの波長領域における平均内部透過率TAVE490-560(AL)、590~630nmの波長領域における平均内部透過率TAVE590-630(AL)を求めた。
(Evaluation)
<Optical characteristics of absorption layer>
A spectral transmittance curve with an incident angle of 0 degrees was obtained for the absorption layers of the obtained optical filters of Examples 1 to 11. In the spectral transmittance curve, when the average OD value is 1 in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the NIR dye (A), the average internal transmittance TAVE435 in the wavelength region of 435 to 480 nm. -480 (AL), the average internal transmittance T AVE490-560 in the wavelength region of 490 ~ 560nm (AL), determine the average internal transmittance T AVE590-630 (AL) in the wavelength region of 590 ~ 630 nm.
 さらに、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域において平均OD値を1としたときの、600~800nmの波長領域で内部透過率が50%となる波長λ50%、600~1200nmの波長領域において内部透過率が30%以下となる波長域の幅の合計(表中「T30%以下の幅」)を求めた。表には、併せて波長500nmにおける透過率T500、および波長600nmにおける透過率T600を示した。 Further, when the average OD value is 1 in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the NIR dye (A), the wavelength λ at which the internal transmittance is 50% in the wavelength region of 600 to 800 nm. The total width of the wavelength range in which the internal transmittance is 30% or less in the wavelength region of 50% and 600 to 1200 nm (“T 30% or less width” in the table) was determined. The table also shows the transmittance T 500 at a wavelength of 500 nm and the transmittance T 600 at a wavelength of 600 nm.
<光学フィルタの光学特性>
 また、得られた例1~例11の光学フィルタについて入射角0度、30度および50度の分光透過率曲線を求め以下の光学特性を求めた。
<Optical characteristics of optical filter>
Further, for the obtained optical filters of Examples 1 to 11, the spectral transmittance curves at incident angles of 0 degrees, 30 degrees and 50 degrees were obtained, and the following optical characteristics were obtained.
 入射角0度における、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値、435~480nmの波長領域における平均透過率TAVE435-480(0°)、490~560nmの波長領域における平均透過率TAVE490-560(0°)、590~630nmの波長領域における平均透過率TAVE590-630(0°)、600~800nmの波長領域において透過率が50%となる波長λ50%(0°)を求めた。 Maximum absorption wavelength of NIR dye (A) at 0 degree incident angle λ max (A) Minimum OD value in wavelength region of TR ± 10 nm, average transmittance TAVE435-480 (0 °) in wavelength region of 435 to 480 nm, 490 average transmittance T AVE490-560 (0 °) in the wavelength region of ~ 560 nm, the average transmittance T AVE590-630 (0 °) in the wavelength region of 590 ~ 630 nm, the transmittance in a wavelength range of 600 ~ 800 nm 50% The wavelength λ 50% (0 °) to be obtained was determined.
 入射角30度における、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値、600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角30度で透過率が50%となる波長λ50%(30°)の差の絶対値|λ50%(30°)-λ50%(0°)|、490~560nmの波長領域における平均透過率TAVE490-560(30°)を求めた。 The maximum absorption wavelength of the NIR dye (A) at an incident angle of 30 degrees, the minimum OD value in the wavelength region of λ max (A) TR ± 10 nm, and the transmittance of 50% at an incident angle of 0 degrees in the wavelength region of 600 to 800 nm. Absolute value of the difference between the wavelength λ 50% (0 °) and the wavelength λ 50% (30 °) at which the transmittance is 50% at an incident angle of 30 ° | λ 50% (30 °) −λ 50% (0 °) ) | | The average transmittance TAVE490-560 (30 °) in the wavelength region of 490 to 560 nm was determined.
 入射角50度における、NIR色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値、600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角50度で透過率が50%となる波長λ50%(50°)の差の絶対値|λ50%(50°)-λ50%(0°)|、490~560nmの波長領域における平均透過率TAVE490-560(50°)を求めた。 The maximum absorption wavelength of the NIR dye (A) at an incident angle of 50 degrees, the minimum OD value in the wavelength region of λ max (A) TR ± 10 nm, and the transmittance of 50% at an incident angle of 0 degrees in the wavelength region of 600 to 800 nm. Absolute value of the difference between the wavelength λ 50% (0 °) and the wavelength λ 50% (50 °) at which the transmittance is 50% at an incident angle of 50 ° | λ 50% (50 °)50% (0 °) ) | | The average transmittance TAVE490-560 (50 °) in the wavelength region of 490 to 560 nm was determined.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 また、図9、図10に例1の、図11、図12に例4の、図13、図14に例6の、それぞれ実施例の光学フィルタにおける吸収層および光学フィルタの分光透過率曲線を示す。図15、図16に例8の比較例の光学フィルタにおける吸収層および光学フィルタの分光透過率曲線を示す。なお、各例の吸収層の分光透過率曲線の図においては、「T30%以下の幅」をWまたはWaとWbで示した。例4、6、8においては、「T30%以下の幅」は、WaとWbの和である。 Further, the spectral transmittance curves of the absorption layer and the optical filter in the optical filter of the examples of FIG. 9, FIG. 10, FIG. 11, FIG. 11, FIG. 12, Example 4, FIG. 13 and FIG. Shown. 15 and 16 show the absorption layer and the spectral transmittance curve of the optical filter in the optical filter of the comparative example of Example 8. In the figure of the spectral transmittance curve of the absorption layer of each example, the "width of T 30% or less" is indicated by W or Wa and Wb. In Examples 4, 6 and 8, the "width of T 30% or less" is the sum of Wa and Wb.
 表15および図10、12、14から、例1~7の実施例の光学フィルタにおいては、可視光の透過率、特に緑色や赤色の透過率を十分に高く維持できるとともに、近赤外光の遮蔽性において、特に長波長近赤外光の遮蔽性に優れることがわかる。 From Table 15 and FIGS. 10, 12, and 14, in the optical filters of the examples of Examples 1 to 7, the transmittance of visible light, particularly the transmittance of green and red, can be maintained sufficiently high, and the transmittance of near-infrared light can be maintained. It can be seen that the shielding property is particularly excellent in the shielding property of long-wavelength near-infrared light.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年6月20日出願の日本特許出願(特願2019-114575)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on June 20, 2019 (Japanese Patent Application No. 2019-114575), the contents of which are incorporated herein by reference.
 本発明の光学フィルタは、可視光の透過率、特に緑色や赤色の透過率を十分に高く維持できるとともに、近赤外光の遮蔽性において、特に長波長近赤外光の遮蔽性に優れる。本発明によれば、該光学フィルタを用いた色再現性および耐久性に優れる撮像装置および光学センサーを提供できる。 The optical filter of the present invention can maintain a sufficiently high transmittance of visible light, particularly green and red, and is particularly excellent in shielding near-infrared light, especially long-wavelength near-infrared light. According to the present invention, it is possible to provide an image pickup device and an optical sensor having excellent color reproducibility and durability using the optical filter.
 10A,10B,10C,10D,10E,10F…光学フィルタ、11,11a,11b…吸収層、12,12a,12b…反射層、13…透明基板、14…反射防止層。 10A, 10B, 10C, 10D, 10E, 10F ... Optical filter, 11, 11a, 11b ... Absorption layer, 12, 12a, 12b ... Reflective layer, 13 ... Transparent substrate, 14 ... Antireflection layer.

Claims (18)

  1.  ガラス転移点が130℃以上の透明樹脂と、下記(1-1)~(1-6)の要件をすべて満足する近赤外線吸収色素(A)を含有する吸収層と、誘電体多層膜からなる反射層とを有する光学フィルタ。
    (1-1)前記近赤外線吸収色素(A)を前記透明樹脂に含有させて測定される波長350~1200nmの分光透過率曲線SCTRにおいて、最大吸収波長λmax(A)TRが850~1100nmの波長領域にある。
    (1-2)前記分光透過率曲線SCTRにおいて前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長490~560nmの光の平均内部透過率TAVE490-560(A)TRが90%以上である。
    (1-3)前記分光透過率曲線SCTRにおいて前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長590~630nmの光の平均内部透過率TAVE590-630(A)TRが90%以上である。
    (1-4)前記分光透過率曲線SCTRは、前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときに、650~1150nmの波長領域で内部透過率が50%となる波長を2つ有し、前記2つの波長間の幅が180nm以上である。
    (1-5)前記近赤外線吸収色素(A)をジクロロメタンに溶解させて測定される波長350~1200nmの分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長490~560nmの光の平均透過率TAVE490-560(A)DCMから前記平均内部透過率TAVE490-560(A)TRを引いた値が10%以下である。
    (1-6)前記分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長590~630nmの光の平均透過率TAVE590-630(A)DCMから前記平均内部透過率TAVE590-630(A)TRを引いた値が10%以下である。
    It is composed of a transparent resin having a glass transition point of 130 ° C. or higher, an absorption layer containing a near-infrared absorbing dye (A) that satisfies all of the following requirements (1-1) to (1-6), and a dielectric multilayer film. An optical filter having a reflective layer.
    (1-1) In the spectral transmittance curve SC TR having a wavelength of 350 to 1200 nm measured by containing the near-infrared absorbing dye (A) in the transparent resin, the maximum absorption wavelength λ max (A) TR is 850 to 1100 nm. It is in the wavelength range of.
    (1-2) Average internal transmittance of light having a wavelength of 490 to 560 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the spectral transmittance curve SC TR T AVE490-560 (A) TR is 90% or more.
    (1-3) Average internal transmittance of light having a wavelength of 590 to 630 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10% in the spectral transmittance curve SC TR T AVE590-630 (A) TR is 90% or more.
    (1-4) The spectral transmittance curve SC TR has an internal transmittance of 50% in a wavelength region of 650 to 1150 nm, where the internal transmittance at the maximum absorption wavelength λ max (A) TR is 10%. It has two wavelengths, and the width between the two wavelengths is 180 nm or more.
    (1-5) the transmittance of light at the maximum absorption wavelength lambda max (A) DCM in the spectral transmittance curve SC DCM wavelength 350 ~ 1200 nm to be measured the near-infrared absorbing dye (A) was dissolved in dichloromethane The value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM of light having a wavelength of 490 to 560 nm at 10% is 10% or less.
    (1-6) Maximum absorption wavelength λ max (A) in the spectral transmittance curve SC DCM The average transmittance of light having a wavelength of 590 to 630 nm when the transmittance of light in DCM is 10% T AVE590-630 ( A) The value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from DCM is 10% or less.
  2.  前記近赤外線吸収色素(A)は、さらに、下記(1-7)~(1-9)から選ばれる1以上を満足する請求項1に記載の光学フィルタ。
    (1-7)前記分光透過率曲線SCDCMにおける最大吸収波長λmax(A)DCMでの光の透過率を10%としたときの波長435~480nmの光の平均透過率TAVE435-480(A)DCMから、前記分光透過率曲線SCTRにおける前記最大吸収波長λmax(A)TRでの内部透過率を10%としたときの波長435~480nmの光の平均内部透過率TAVE435-480(A)TRを引いた値が10%以下である。
    (1-8)前記平均透過率TAVE490-560(A)DCMから前記平均内部透過率TAVE490-560(A)TRを引いた値が5%以下である。
    (1-9)前記平均透過率TAVE590-630(A)DCMから前記平均内部透過率TAVE590-630(A)TRを引いた値が5%以下である。
    The optical filter according to claim 1, wherein the near-infrared absorbing dye (A) further satisfies one or more selected from the following (1-7) to (1-9).
    (1-7) Maximum absorption wavelength λ max (A) in the spectral transmittance curve SC DCM The average transmittance of light having a wavelength of 435 to 480 nm when the transmittance of light in DCM is 10% T AVE435-480 ( A) From DCM , the average internal transmittance of light with a wavelength of 435 to 480 nm when the internal transmittance at the maximum absorption wavelength λ max (A) TR in the spectral transmittance curve SC TR is 10% T AVE435-480. (A) The value obtained by subtracting TR is 10% or less.
    (1-8) The value obtained by subtracting the average internal transmittance T AVE490-560 (A) TR from the average transmittance T AVE490-560 (A) DCM is 5% or less.
    (1-9) The value obtained by subtracting the average internal transmittance T AVE590-630 (A) TR from the average transmittance T AVE590-630 (A) DCM is 5% or less.
  3.  前記近赤外線吸収色素(A)は、下式(A1)で示される化合物、および下式(A2)で示される化合物から選ばれる少なくとも1種である請求項1または2記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000001

     式(A1)および(A2)中の記号は以下のとおりである。
     R201~R206およびR221~R226はそれぞれ独立して、水素原子、ハロゲン原子、スルホ基、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、炭素原子間に酸素原子を有してもよく、置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、または、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基である。ただし、置換または非置換のアミノ基がフェニル基に結合した基は除く。さらに、R201~R206およびR221~R226において、同一の窒素原子に結合する2つの基は互いに結合して、前記窒素原子とともに員数3~8のヘテロ環を形成していてもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
     R207~R218およびR227~R238はそれぞれ独立して、水素原子、ハロゲン原子、置換されていてもよいアミノ基、アミド基、シアノ基、ニトロ基、カルボキシル基、または、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基もしくはアルコキシ基である。R207~R218およびR227~R238において、互いにとなり合う2つの基は、互いに結合してフェニル基の2個の炭素原子とともに員数3~8の環を形成してもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
     また、R201とR207、R202とR210、R203とR211、R204とR214、R205とR215、R206とR218、R221とR227、R222とR230、R223とR231、R224とR234、R225とR235、R226とR238は、互いに結合して、フェニル基に結合する窒素原子および該フェニル基の2個の炭素原子とともに員数4~8のヘテロ環を形成してもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
     XaおよびXbはそれぞれ独立して一価の陰イオンを表す。
    The optical filter according to claim 1 or 2, wherein the near-infrared absorbing dye (A) is at least one selected from the compound represented by the formula (A1) below and the compound represented by the formula (A2) below.
    Figure JPOXMLDOC01-appb-C000001

    The symbols in the formulas (A1) and (A2) are as follows.
    R 201 to R 206 and R 221 to R 226 have independent hydrogen atoms, halogen atoms, sulfo groups, hydroxy groups, cyano groups, nitro groups, carboxyl groups, phosphate groups, and oxygen atoms between carbon atoms. The alkyl group or alkoxy group having 1 to 20 carbon atoms which may be substituted, or the aryl group having 6 to 14 carbon atoms and the aralkyl group having 7 to 14 carbon atoms which may be substituted, may be substituted. Alternatively, it is a heterocyclic group having 3 to 14 members. However, groups in which a substituted or unsubstituted amino group is bonded to a phenyl group are excluded. Further, in R 201 to R 206 and R 221 to R 226 , two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom. The hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
    R 207 to R 218 and R 227 to R 238 are independently substituted with a hydrogen atom, a halogen atom, an optionally substituted amino group, an amide group, a cyano group, a nitro group, a carboxyl group, or a halogen atom. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be used. In R 207 to R 218 and R 227 to R 238 , the two groups adjacent to each other may be bonded to each other to form a ring having 3 to 8 members together with the two carbon atoms of the phenyl group. The hydrogen atom to be bonded may be substituted with an alkyl group having 1 to 12 carbon atoms.
    Also, R 201 and R 207 , R 202 and R 210 , R 203 and R 211 , R 204 and R 214 , R 205 and R 215 , R 206 and R 218 , R 221 and R 227 , R 222 and R 230 , R 223 and R 231 and R 224 and R 234 , R 225 and R 235 , and R 226 and R 238 are 4 members together with a nitrogen atom bonded to a phenyl group and two carbon atoms of the phenyl group. A heterocycle of to 8 may be formed, and the hydrogen atom bonded to the ring may be substituted with an alkyl group having 1 to 12 carbon atoms.
    Xa - and Xb - each independently represents a monovalent anion.
  4.  前記近赤外線吸収色素(A)は、前記式(A1)で示され、前記XaがN[SOCF 、SbF またはPF である化合物、および前記式(A2)で示され、前記XbがN[SOCF 、SbF またはPF である化合物から選ばれる少なくとも1種である請求項3記載の光学フィルタ。 The near infrared absorbing dye (A), the represented by formula (A1), wherein Xa - is N [SO 2 CF 3] 2 -, SbF 6 - or PF 6 -, compound, and the formula (A2) The optical filter according to claim 3, wherein the optical filter according to claim 3 is at least one selected from the compounds in which Xb is N [SO 2 CF 3 ] 2 , SbF 6 or PF 6 .
  5.  前記透明樹脂は、ポリイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂およびエポキシ樹脂から選ばれる少なくとも1種である請求項1~4のいずれかに1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 4, wherein the transparent resin is at least one selected from a polyimide resin, a polyester resin, a polycarbonate resin, a cycloolefin resin, and an epoxy resin.
  6.  前記透明樹脂は、ポリイミド樹脂である請求項1~5のいずれかに1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 5, wherein the transparent resin is a polyimide resin.
  7.  前記吸収層は、前記透明樹脂に含有させて測定される波長350~1200nmの分光透過率曲線において、1100~1200nmの波長領域に最大吸収波長を有する近赤外線吸収色素(B)をさらに含有する請求項1~6のいずれかに1項に記載の光学フィルタ。 The absorption layer further contains a near-infrared absorbing dye (B) having a maximum absorption wavelength in the wavelength region of 1100 to 1200 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by being contained in the transparent resin. Item 2. The optical filter according to any one of Items 1 to 6.
  8.  前記近赤外線吸収色素(B)は、下式(B1)で示される化合物、および下式(B2)で示される化合物から選ばれる少なくとも1種を含む請求項7記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000002

     式(B1)および(B2)中の記号は以下のとおりである。
     R241~R248およびR261~R268は、それぞれ独立して、水素原子、ハロゲン原子、スルホ基、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、炭素原子間に不飽和結合または酸素原子を有してもよく置換されていてもよい炭素数1~20のアルキル基もしくはアルコキシ基、または、置換されていてもよい、炭素数6~14のアリール基、炭素数7~14のアラルキル基、もしくは員数が3~14のヘテロ環基である。R241~R248およびR261~R268において、同一の窒素原子に結合する2つの基は互いに結合して、前記窒素原子とともに員数3~8のヘテロ環を形成していてもよく、該環に結合する水素原子は、炭素数1~12のアルキル基に置換されていてもよい。
     R249~R253およびR269~R273は、それぞれ独立して、水素原子、ハロゲン原子、置換されていてもよいアミノ基、アミド基、シアノ基、ニトロ基、カルボキシル基、または、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基もしくはアルコキシ基である。それぞれ4個のR249~R253、R269~R273は、同じであっても異なってもよい。
     XcおよびXdはそれぞれ独立して一価の陰イオンを表す。
    The optical filter according to claim 7, wherein the near-infrared absorbing dye (B) contains at least one selected from the compound represented by the formula (B1) below and the compound represented by the formula (B2) below.
    Figure JPOXMLDOC01-appb-C000002

    The symbols in the formulas (B1) and (B2) are as follows.
    R 241 to R 248 and R 261 to R 268 are independently unsaturated bonds between hydrogen atom, halogen atom, sulfo group, hydroxy group, cyano group, nitro group, carboxyl group, phosphoric acid group and carbon atom. Alternatively, an alkyl group or an alkoxy group having 1 to 20 carbon atoms which may have an oxygen atom or may be substituted, or an aryl group having 6 to 14 carbon atoms and 7 to 14 carbon atoms which may be substituted. Alkoxy group, or a heterocyclic group having 3 to 14 members. In R 241 to R 248 and R 261 to R 268 , two groups bonded to the same nitrogen atom may be bonded to each other to form a heterocycle having 3 to 8 members together with the nitrogen atom. The hydrogen atom bonded to may be substituted with an alkyl group having 1 to 12 carbon atoms.
    R 249 to R 253 and R 269 to R 273 are independently hydrogen atoms, halogen atoms, optionally substituted amino groups, amide groups, cyano groups, nitro groups, carboxyl groups, or halogen atoms. It is an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may be substituted. The four R 249 to R 253 and R 269 to R 273, respectively, may be the same or different.
    Xc - and Xd - each independently represents a monovalent anion.
  9.  前記吸収層は、前記透明樹脂に含有させて測定される波長350~1200nmの分光透過率曲線において、630~750nmの波長領域に最大吸収波長を有するスクアリリウム色素である近赤外線吸収色素(C)をさらに含有する請求項1~8のいずれかに1項に記載の光学フィルタ。 The absorption layer contains a near-infrared absorbing dye (C) which is a squarylium dye having a maximum absorption wavelength in a wavelength region of 630 to 750 nm in a spectral transmittance curve having a wavelength of 350 to 1200 nm measured by containing it in the transparent resin. The optical filter according to any one of claims 1 to 8 further contained.
  10.  前記吸収層は、前記近赤外線吸収色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域において平均OD値を1としたときに、下記(2-1)および(2-2)を満足する請求項1~9のいずれかに1項に記載の光学フィルタ。
    (2-1)490~560nmの波長領域における平均内部透過率TAVE490-560(AL)が88%以上である。
    (2-2)590~630nmの波長領域における平均内部透過率TAVE590-630(AL)が70%以上である。
    The absorption layer has the following (2-1) and (2-2) when the average OD value is 1 in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the near-infrared absorbing dye (A). The optical filter according to any one of claims 1 to 9, which satisfies).
    (2-1) The average internal transmittance TAVE490-560 (AL) in the wavelength region of 490 to 560 nm is 88% or more.
    (2-2) The average internal transmittance TAVE590-630 (AL) in the wavelength region of 590 to 630 nm is 70% or more.
  11.  前記吸収層は、前記近赤外線吸収色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域において平均OD値を1としたときに、下記(2-3)および(2-4)から選ばれる1以上を満足する請求項10に記載の光学フィルタ。
    (2-3)600~700nmの波長領域に内部透過率が50%となる波長λ50%を有する。
    (2-4)600~1200nmの波長領域において内部透過率が30%以下となる波長域の幅の合計が250nm以上である。
    The absorption layer has the following (2-3) and (2-4) when the average OD value is 1 in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the near-infrared absorbing dye (A). The optical filter according to claim 10, which satisfies one or more selected from).
    (2-3) It has a wavelength λ 50% at which the internal transmittance is 50% in the wavelength region of 600 to 700 nm.
    (2-4) In the wavelength region of 600 to 1200 nm, the total width of the wavelength region in which the internal transmittance is 30% or less is 250 nm or more.
  12.  さらに透明基板を有し、前記吸収層および前記反射層は、それぞれ前記透明基板の主面上に設けられる請求項1~11のいずれか1項記載の光学フィルタ。 The optical filter according to any one of claims 1 to 11, further comprising a transparent substrate, wherein the absorption layer and the reflection layer are each provided on the main surface of the transparent substrate.
  13.  前記透明基板は、透明樹脂またはガラスからなる請求項12に記載の光学フィルタ。 The optical filter according to claim 12, wherein the transparent substrate is made of transparent resin or glass.
  14.  前記ガラスは、銅イオンを添加したフツリン酸塩系ガラス、または、銅イオンを添加したリン酸塩系ガラスである請求項13に記載の光学フィルタ。 The optical filter according to claim 13, wherein the glass is a fluoride-based glass to which copper ions are added, or a phosphate-based glass to which copper ions are added.
  15.  入射角0度で測定される光学特性において下記(3-1)~(3-3)の要件をすべて満足する請求項1~14のいずれか1項に記載の光学フィルタ。
    (3-1)前記近赤外線吸収色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が4以上である。
    (3-2)490~560nmの波長領域における平均透過率TAVE490-560(0°)が82%以上である。
    (3-3)590~630nmの波長領域における平均透過率TAVE590-630(0°)が50%以上である。
    The optical filter according to any one of claims 1 to 14, which satisfies all the following requirements (3-1) to (3-3) in the optical characteristics measured at an incident angle of 0 degrees.
    (3-1) The minimum OD value of the near-infrared absorbing dye (A) in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm is 4 or more.
    (3-2) The average transmittance TAVE490-560 (0 °) in the wavelength region of 490 to 560 nm is 82% or more.
    (3-3) The average transmittance TAVE590-630 (0 °) in the wavelength region of 590 to 630 nm is 50% or more.
  16.  さらに、下記(3-4)~(3-9)の要件をすべて満足する請求項15に記載の光学フィルタ。
    (3-4)600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角30度で透過率が50%となる波長λ50%(30°)の差の絶対値|λ50%(30°)-λ50%(0°)|が5nm以下である。
    (3-5)入射角30度で測定される490~560nmの波長領域における平均透過率TAVE490-560(30°)が80%以上である。
    (3-6)入射角30度で測定される、前記近赤外線吸収色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が3以上である。
    (3-7)600~800nmの波長領域において、入射角0度で透過率が50%となる波長λ50%(0°)と入射角50度で透過率が50%となる波長λ50%(50°)の差の絶対値|λ50%(50°)-λ50%(0°)|が15nm以下である。
    (3-8)入射角50度で測定される490~560nmの波長領域における平均透過率TAVE490-560(50°)が70%以上である。
    (3-9)入射角50度で測定される、前記近赤外線吸収色素(A)の最大吸収波長λmax(A)TR±10nmの波長領域における最小OD値が3以上である。
    The optical filter according to claim 15, further satisfying all the requirements (3-4) to (3-9) below.
    (3-4) 600 in the wavelength region of ~ 800 nm, the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 30 degrees is 50% wavelength lambda 50% The absolute value of the difference (30 °) | λ 50% (30 °) −λ 50% (0 °) | is 5 nm or less.
    (3-5) The average transmittance TAVE490-560 (30 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 30 degrees is 80% or more.
    (3-6) The minimum OD value in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the near-infrared absorbing dye (A) measured at an incident angle of 30 degrees is 3 or more.
    (3-7) 600 in the wavelength region of ~ 800 nm, the wavelength lambda 50% of transmittance is 50% at an incident angle of 0 degrees (0 °) and the transmittance at an incident angle of 50 degrees is 50% wavelength lambda 50% The absolute value of the difference of (50 °) | λ 50% (50 °) −λ 50% (0 °) | is 15 nm or less.
    (3-8) The average transmittance TAVE490-560 (50 °) in the wavelength region of 490 to 560 nm measured at an incident angle of 50 degrees is 70% or more.
    (3-9) The minimum OD value in the wavelength region of the maximum absorption wavelength λ max (A) TR ± 10 nm of the near-infrared absorbing dye (A) measured at an incident angle of 50 degrees is 3 or more.
  17.  請求項1~16のいずれか1項記載の光学フィルタを備える撮像装置。 An imaging device including the optical filter according to any one of claims 1 to 16.
  18.  請求項1~16のいずれか1項記載の光学フィルタを備える光学センサー。 An optical sensor including the optical filter according to any one of claims 1 to 16.
PCT/JP2020/023450 2019-06-20 2020-06-15 Optical filter, imaging device, and optical sensor WO2020255927A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044620.9A CN114008494B (en) 2019-06-20 2020-06-15 Optical filter, imaging device and optical sensor
JP2021528231A JP7484911B2 (en) 2019-06-20 2020-06-15 Optical filter, imaging device and optical sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114575 2019-06-20
JP2019114575 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255927A1 true WO2020255927A1 (en) 2020-12-24

Family

ID=74040200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023450 WO2020255927A1 (en) 2019-06-20 2020-06-15 Optical filter, imaging device, and optical sensor

Country Status (2)

Country Link
JP (1) JP7484911B2 (en)
WO (1) WO2020255927A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082219A (en) * 1996-04-18 2002-03-22 Kanebo Ltd Near infrared ray absorption film and multilayer panel containing the same
JP2007197492A (en) * 2006-01-23 2007-08-09 Nippon Kayaku Co Ltd Immonium compound and use thereof
JP2008260899A (en) * 2007-04-13 2008-10-30 Fujifilm Corp Resin composition and laminate containing the same
JP2009280639A (en) * 2008-05-20 2009-12-03 Kyowa Hakko Chemical Co Ltd Immonium compound
JP2011026377A (en) * 2009-07-22 2011-02-10 Japan Carlit Co Ltd:The Near-infrared ray absorbing coloring matter and near-infrared ray blocking filter
WO2017164024A1 (en) * 2016-03-22 2017-09-28 Jsr株式会社 Optical filter and apparatus using optical filter
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082219A (en) * 1996-04-18 2002-03-22 Kanebo Ltd Near infrared ray absorption film and multilayer panel containing the same
JP2007197492A (en) * 2006-01-23 2007-08-09 Nippon Kayaku Co Ltd Immonium compound and use thereof
JP2008260899A (en) * 2007-04-13 2008-10-30 Fujifilm Corp Resin composition and laminate containing the same
JP2009280639A (en) * 2008-05-20 2009-12-03 Kyowa Hakko Chemical Co Ltd Immonium compound
JP2011026377A (en) * 2009-07-22 2011-02-10 Japan Carlit Co Ltd:The Near-infrared ray absorbing coloring matter and near-infrared ray blocking filter
WO2017164024A1 (en) * 2016-03-22 2017-09-28 Jsr株式会社 Optical filter and apparatus using optical filter
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter

Also Published As

Publication number Publication date
JP7484911B2 (en) 2024-05-16
CN114008494A (en) 2022-02-01
JPWO2020255927A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
KR101780913B1 (en) Optical Filter and Imaging Device
JP7222361B2 (en) Optical filters and imagers
JP6202230B1 (en) Optical filter and imaging device
JP7059729B2 (en) Optical filters, near-infrared absorbing dyes and imaging devices
JP7468568B2 (en) Optical filter and imaging device
JPWO2020004641A1 (en) Optical filter and information acquisition device
JP5698400B2 (en) Phthalocyanine compounds
JP2019078816A (en) Optical filter and imaging apparatus
WO2022075291A1 (en) Optical filter
JP2024069437A (en) Optical filter and imaging device
WO2021095613A1 (en) Optical filter and fingerprint detection device using same
WO2020255927A1 (en) Optical filter, imaging device, and optical sensor
WO2019230570A1 (en) Near-infrared absorbing dye, optical filter and imaging device
WO2023282186A1 (en) Optical filter
JP2018028605A (en) Optical filter composition and optical filter
CN114008494B (en) Optical filter, imaging device and optical sensor
WO2022024942A1 (en) Optical filter
JP2024087074A (en) Optical filter, imaging device and optical sensor
JP7459709B2 (en) optical filter
JPWO2020129909A1 (en) Optical filters, imaging devices and optical sensors
WO2022181422A1 (en) Optical filter
WO2022085636A1 (en) Optical filter
JP2022001928A (en) Optical filter
JP2022077314A (en) Optical filter
JP2021067709A (en) Optical filter and image capturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827847

Country of ref document: EP

Kind code of ref document: A1