WO2019230570A1 - Near-infrared absorbing dye, optical filter and imaging device - Google Patents

Near-infrared absorbing dye, optical filter and imaging device Download PDF

Info

Publication number
WO2019230570A1
WO2019230570A1 PCT/JP2019/020536 JP2019020536W WO2019230570A1 WO 2019230570 A1 WO2019230570 A1 WO 2019230570A1 JP 2019020536 W JP2019020536 W JP 2019020536W WO 2019230570 A1 WO2019230570 A1 WO 2019230570A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical filter
layer
dye
infrared absorbing
Prior art date
Application number
PCT/JP2019/020536
Other languages
French (fr)
Japanese (ja)
Inventor
繁樹 服部
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020522147A priority Critical patent/JP7310806B2/en
Publication of WO2019230570A1 publication Critical patent/WO2019230570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a near-infrared absorbing dye that transmits light in the visible wavelength region and shields light in the near-infrared wavelength region, an optical filter, and an imaging device including the optical filter.
  • An imaging apparatus using a solid-state imaging device transmits near-infrared light (hereinafter referred to as “near red”) to transmit visible light (hereinafter also referred to as “visible light”) in order to obtain a clear image with good color tone reproduction.
  • a near-infrared cut filter that also shields the outside light) is used.
  • near-infrared cut filter near-infrared light is shielded by an absorption layer in which a near-infrared absorbing dye is dispersed in a resin or a reflective layer made of a dielectric multilayer film that reflects near-infrared light.
  • Patent Document 1 describes a near-infrared absorbing dye having a structure in which a heteroaryl ring containing a chalcogen atom is present on both sides of a squarylium skeleton and an amino group is bonded to the heteroaryl ring.
  • the near-infrared absorbing dye used for the near-infrared cut filter in the absorbing layer containing the same, an absorbing layer is used in order to sufficiently exhibit the optical characteristics of transmitting visible light and shielding near-infrared light.
  • the solubility with respect to the resin which comprises is calculated
  • a near-infrared absorbing dye having both optical properties that transmit visible light and shield near-infrared light and sufficient solubility in a resin has not been obtained.
  • the present invention relates to a near-infrared-absorbing dye having both optical properties that transmit visible light and shield near-infrared light and high solubility in a resin, an optical filter, and an imaging device that excels in color reproducibility using the optical filter. For the purpose of provision.
  • the present invention relates to a near-infrared absorbing dye comprising a compound represented by the formula (A1) (hereinafter also referred to as a near-infrared absorbing dye (A1)) and a near-infrared absorbing dye comprising a compound represented by the formula (A2) (hereinafter referred to as “infrared absorbing dye”).
  • a near-infrared absorbing dye also referred to as A2).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, An alkoxy group, an aryl group or an araryl group; R 1 and R 2 may be connected to each other to form a 3 to 6-membered alicyclic or aromatic ring that may contain a hetero atom, in which case the hydrogen atom bonded to the ring is substituted with a substituent. May be.
  • R 3 and R 4 may each independently have a substituent, and may be a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
  • R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms
  • R 7 and R 8 may each independently have a substituent, and may have a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
  • the optical filter according to the present invention is characterized by comprising an absorption layer containing the near-infrared absorbing dye (A1) or the near-infrared absorbing dye (A2) and a resin.
  • an imaging apparatus according to the present invention includes a solid-state imaging device, an imaging lens, and the optical filter.
  • the present invention it is possible to provide a near-infrared absorbing dye having an optical characteristic of transmitting visible light and shielding near-infrared light and having high solubility in a resin. Furthermore, according to the present invention, it is possible to provide an optical filter using the dye and an imaging device excellent in color reproducibility using the optical filter.
  • FIG. 1 is a cross-sectional view schematically showing an example of the optical filter of the embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 5 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 6 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 7 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • the near-infrared absorbing dye may be abbreviated as “NIR dye”, and the ultraviolet absorbing dye may be abbreviated as “UV dye”.
  • NIR dye a compound represented by the formula (A1)
  • UV dye ultraviolet absorbing dye
  • a compound represented by the formula (A1) is referred to as a compound (A1).
  • the NIR dye composed of the compound (A1) is also called NIR dye (A1), and the same applies to other dyes.
  • a group represented by the formula (1a) is also referred to as a group (1a), and the same applies to groups represented by other formulas.
  • “to” representing a numerical range includes upper and lower limits.
  • the present invention provides an NIR dye (A1) represented by the formula (A1) and an NIR dye (A2) represented by the formula (A2).
  • the NIR dye (A1) of the present invention has a squarylium skeleton at the center of the molecular structure, and one thiophene ring is bonded to each of the left and right sides of the squarylium skeleton, and the thiophene ring is in the ⁇ position opposite to the squarylium skeleton.
  • An amino group having two linear or branched alkyl groups which may have a substituent and may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon and carbon atoms hereinafter referred to as an amino group) , “Amino group (X)”).
  • the amino group (X) does not have a configuration in which an aromatic ring is directly bonded to a nitrogen atom.
  • the NIR dye (A2) of the present invention has a squarylium skeleton at the center of the molecular structure, and one thienothiophene ring is bonded to each side of the squarylium skeleton, and the thienothiophene ring is an ⁇ on the opposite side of the squarylium skeleton.
  • an amino group (X) is bonded to the position.
  • NIR dye (A1) and NIR dye (A2) are common in that they have a squarylium skeleton and an amino group (X).
  • the NIR dye (A1) and the NIR dye (A2) are common in that the group connecting the squarylium skeleton and the amino group (X) contains a thiophene ring. Since the NIR dye (A1) and the NIR dye (A2) of the present invention have such a structure, they have excellent optical properties that transmit visible light and shield near-infrared light, and have high solubility in resins.
  • the NIR dye (A1) and the NIR dye (A2) the greater the number of rings including the thiophene ring that connects the squarylium skeleton and the amino group (X), that is, the NIR dye (A2) has a larger number than the NIR dye (A1).
  • the maximum absorption wavelength is larger. Therefore, the NIR dye can be properly used according to the desired wavelength region.
  • the NIR dye (A1) is represented by the following formula (A1).
  • R 1 and R 2 may each independently have a hydrogen atom, a halogen atom, a hydroxyl group, or a substituent, and an unsaturated bond or an oxygen atom is present between carbon-carbon atoms.
  • R 1 and R 2 may be connected to each other to form a 3 to 6-membered alicyclic or aromatic ring that may contain a hetero atom, in which case the hydrogen atom bonded to the ring is substituted with a substituent. May be.
  • Two R 1 s in the formula (A1) may be different on the left and right sides of the squarylium skeleton, but are preferably the same on the left and right sides from the viewpoint of ease of production. The same applies to R 2 and R 3 and R 4 described later.
  • the alkyl group may be linear, branched, cyclic, or a combination of these structures.
  • the alkyl group has an unsaturated bond between carbon and carbon atoms when it is linear or branched, or when it is cyclic and does not form an aromatic ring.
  • An example where the alkyl group is cyclic and has an unsaturated bond between carbon and carbon atoms but does not form an aromatic ring is cycloalkene.
  • the alkyl group having an oxygen atom between carbon-carbon atoms may be any of linear, branched, and cyclic. The same applies to the alkyl group that the alkoxy group has.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, A fluorine atom and a chlorine atom are preferable.
  • an aryl group is bonded through an aromatic ring of an aromatic compound, for example, a carbon atom constituting a benzene ring, naphthalene ring, biphenyl, furan ring, thiophene ring, pyrrole ring, etc. Group.
  • the aryl group includes a structure in which a hydrogen atom bonded to a ring constituent atom other than a carbon atom contributing to the bond is substituted with an alkyl group, for example, a tolyl group or a xylyl group.
  • an araryl group refers to a group in which an alkyl group is bonded to an aromatic ring and bonded via a carbon atom constituting the alkyl group.
  • the araryl group includes a structure in which a hydrogen atom bonded to a ring atom other than an atom to which an alkyl group contributing to the bond is bonded is substituted with an alkyl group.
  • Examples of the substituent in R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, Examples thereof include an imide group and an alkoxy group having 1 to 20 carbon atoms.
  • R 1 and R 2 are an aryl group or an araryl group
  • the substituent is a group that replaces the hydrogen atom bonded to the aromatic ring or the hydrogen atom of the alkyl group that these have, and in addition to the above substituent, an aryl group including.
  • R 1 and R 2 are an alkyl group or an alkoxy group
  • the carbon number is preferably 1-20, more preferably 1-15, and still more preferably 1-12.
  • R 1 and R 2 are aryl groups
  • the carbon number is preferably 6-20, more preferably 6-15, and still more preferably 6-12.
  • R 1 and R 2 are araryl groups
  • the carbon number is preferably 7 to 20, more preferably 7 to 16, and even more preferably 7 to 13.
  • R 1 and R 2 have a substituent, the carbon number includes the carbon number of the substituent.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, particularly preferably a hydrogen atom, from the viewpoint of light stability.
  • R 2 is a linear or branched alkyl group having 3 to 20 carbon atoms which may contain an oxygen atom between carbon-carbon atoms from the viewpoint of visible light permeability and solubility in a resin and a solvent. Is preferred.
  • the number of carbon atoms in the alkyl group is more preferably 3 to 12 when it is linear, and more preferably 4 to 10 when it is branched.
  • R 2 is more preferably, for example, a group selected from groups (1a) to (5a), particularly preferably group (1a).
  • R 2 is preferably a branched alkyl group having 4 to 10 carbon atoms.
  • R 2 is preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, particularly preferably a hydrogen atom, from the viewpoint of ease of production.
  • R 1 and R 2 may be linked to each other to form an alicyclic ring or aromatic ring, and in that case, the number of members is 3-6.
  • the number of members is the number of atoms including two carbon atoms of the thiophene ring to which R 1 and R 2 are bonded.
  • the alicyclic or aromatic ring may contain a hetero atom. Examples of the hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • bonded with the said alicyclic ring or an aromatic ring may be substituted by the substituent, and the substituent illustrated as the substituent in R ⁇ 1 > and R ⁇ 2 > is mentioned as a substituent.
  • R 3 and R 4 may each independently have a substituent, and may be a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
  • substituents for R 3 and R 4 the same substituents as those for R 1 and R 2 , that is, a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, Examples thereof include a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 20 carbon atoms.
  • Examples of the substituent in R 3 and R 4 further include a cyclic alkyl group or an aryl group.
  • a phenyl group which may have 1 to 5 substituents or a naphthyl group which may have 1 to 7 substituents is preferable.
  • Examples of the substituent which may substitute the hydrogen atom of the phenyl group and naphthyl group include an alkyl group having 1 to 12 carbon atoms which may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, an alkoxy group, or an alkyl group. And an amino group (the alkyl group has 1 to 12 carbon atoms).
  • the phenyl group and naphthyl group are preferably unsubstituted or substituted with 1 to 3 hydrogen atoms.
  • the substituent is preferably a methyl group, a tertiary butyl group, a dimethylamino group, a methoxy group, or the like.
  • R 3 and R 4 contain an alicyclic ring or an aromatic ring in the main chain or side chain, it is preferable in terms of heat resistance and lengthening of the NIR absorption wavelength.
  • R 3 and R 4 do not have an alicyclic ring or an aromatic ring in the main chain or side chain, it is preferable in terms of light resistance, ease of production, and solubility in resins and solvents.
  • the number of carbon atoms in the alicyclic ring is preferably 3 to 10.
  • the aromatic ring preferably has 4 to 14 carbon atoms.
  • Examples of the carbon number of R 3 and R 4 include 1-20.
  • the number of carbon atoms of R 3 and R 4 is preferably 2 to 20, more preferably 3 to 16, and still more preferably 4 to 12 when it is linear.
  • the number of carbon atoms of R 3 and R 4 is preferably 3 to 20, more preferably 4 to 16, and still more preferably 8 to 10 when branched.
  • R 3 and R 4 have a substituent, and when the main chain or side chain contains an alicyclic ring or an aromatic ring, the above carbon number includes the carbon number of the substituent, the alicyclic ring, or the aromatic ring.
  • R 3 and R 4 may be the same or different, but are preferably the same from the viewpoint of ease of production.
  • One of R 3 and R 4 is preferably branched from the viewpoint of solubility in the resin and the solvent, and more preferably both are branched.
  • the number of branches is not particularly limited.
  • the number of branches is preferably 1 to 5, and more preferably 1 to 3.
  • the position of branching is preferably ⁇ -position, and from the viewpoint of ease of production, ⁇ -position is preferable.
  • One carbon atom may be branched into two or may be branched into three.
  • R 3 and R 4 are more preferably, for example, a group selected from the groups (1b) to (5b). —CH (C n H 2n + 1 ) 2 (1b) -C (C n H 2n + 1 ) 3 (1c) —CH 2 —CH (C n H 2n + 1 ) 2 (2b) —CH 2 —C (C n H 2n + 1 ) 3 (2c) — (CH 2 ) 2 —CH (C n H 2n + 1 ) 2 (3b) — (CH 2 ) 3 —CH (C n H 2n + 1 ) 2 (4b) — (CH 2 ) m —CH 3 (5b)
  • n is an integer of 1 to 10, preferably 2 to 8, and more preferably 4 to 6.
  • Two or three C n H 2n + 1 in the formulas (1b) to (4b) may be linear or branched, and may be the same or different.
  • m is an integer of 0 to 19, preferably 1 to 19, more preferably 2 to 15, and further preferably 3 to 11.
  • the groups (1b) to (5b) may have an oxygen atom between carbon-carbon atoms.
  • the group (1b) and the group (1c) are preferable in terms of solubility because the branching position is in the ⁇ -position.
  • the group (2b) and the group (2c) are preferable in terms of ease of production since the branching position is in the ⁇ -position, and the group (2b) is particularly preferable.
  • the group (1a) which is 4 H 9 is preferred.
  • NIR dye (A1) R 1 to R 4 are compounds shown in the following Table 1 (Table 1 also shows abbreviations as NIR dye (A1)). Is mentioned.
  • R 1 to R 4 represent formula symbols when the formula is a group shown. In all the compounds shown in Table 1, R 1 to R 4 are all the same on the left and right sides of the formula.
  • NIR dye (A2) is represented by the following formula (A2).
  • R 5 can be the same as R 1 in the formula (A1), including preferred embodiments.
  • R 6 is the same as R 2 in formula (A1), including preferred embodiments.
  • R 7 and R 8 in formula (A2) are the same as R 3 and R 4 in formula (A1), including preferred embodiments.
  • NIR dye (A2) R 5 to R 8 are compounds shown in the following Table 2 (Table 2 also shows abbreviations as NIR dye (A2)). Is mentioned.
  • R 5 to R 8 represent formula symbols when the formula is a group shown. In all the compounds shown in Table 2, R 5 to R 8 are all the same on the left and right sides of the formula.
  • the NIR dye (A1) has a maximum absorption wavelength ⁇ max (A1) in a dichloromethane solution of approximately 600 to 750 nm.
  • the NIR dye (A1) has a light transmittance at a wavelength of 418 nm and a light at a wavelength of 482 nm when the concentration is adjusted so that the transmittance of light having a maximum absorption wavelength ⁇ max (A1) is 10% in a dichloromethane solution.
  • the transmittance is preferably 85% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 94% or more.
  • the NIR dye (A1) preferably has a steep slope of the spectral transmittance curve on the short wavelength side of the absorption peak having the maximum absorption wavelength ⁇ max (A1) in the dichloromethane solution.
  • NIR dyes (A1) shown in Table 1 NIR dyes (A1-1) and the like are preferable from the viewpoint of solubility.
  • the NIR dye (A2) has a maximum absorption wavelength ⁇ max (A2) in a dichloromethane solution of approximately 700 to 850 nm.
  • the NIR dye (A2) has a light transmittance at a wavelength of 418 nm and a light at a wavelength of 482 nm when the concentration is adjusted so that the transmittance of light having a maximum absorption wavelength ⁇ max (A2) is 10% in a dichloromethane solution.
  • the transmittance is preferably 85% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 94% or more.
  • the NIR dye (A2) has an absorption layer containing a NIR dye (A2) and a dielectric multilayer film, for example, because the maximum absorption wavelength ⁇ max (A2) in the dichloromethane solution is in the above range.
  • the dielectric multilayer film it is possible to effectively suppress the light omission that a part of the near-infrared light to obtain a high reflectivity according to the incident angle increases, and as a result, an optical filter having particularly excellent near-infrared shielding characteristics is obtained. be able to.
  • NIR dyes (A2) shown in Table 2 NIR dyes (A2-1) and the like are preferable from the viewpoint of solubility.
  • NIR dye (A1) and NIR dye (A2) have good solubility in organic solvents and good compatibility with transparent resins. As a result, even if the absorption layer is thinned, it has excellent spectral transmittance characteristics and the optical filter can be thinned, so that thermal expansion of the absorption layer due to heating can be suppressed. Therefore, for example, during the heat treatment when forming a functional layer such as a reflection layer or an antireflection layer laminated on the absorption layer, occurrence of cracks or the like of these layers can be suppressed.
  • the NIR dye (A1) and the NIR dye (A2) are, for example, 3,4-dihydroxy-3-cyclobutene-1,2-dione (squaric acid) and squalic acid bonded to formula (A1) or formula (A2). And a thiophene derivative capable of forming the structure shown in FIG.
  • a thiophene derivative capable of forming the structure shown in FIG.
  • 2 equivalents of a thiophene derivative having a desired structure may be reacted with 1 equivalent of squaric acid within the above range.
  • a thiophene derivative as a starting material is reacted with a tertiary amine having a desired substituent (R 3 , R 4 ), and the intermediate A1-1 has the desired substituent (R 1 , R 2 , NR 3 R 4 ).
  • a thiophene derivative is obtained.
  • NIR dye (A1) is obtained.
  • the NIR dye (A2) can be produced by the following scheme (F2).
  • squaric acid is represented by (s).
  • R 5 ⁇ R 8 are the same meaning as R 5 ⁇ R 8 in Formula (A2).
  • Intermediate A2-1 is reacted with a tertiary amine having the desired substituent (R 7 , R 8 ), and intermediate A2-2 has the desired substituent (R 5 , R 6 , NR 7 R 8 ).
  • R 7 , R 8 a tertiary amine having the desired substituent
  • R 2 a tertiary amine having the desired substituent
  • R 3 a tertiary amine having the desired substituent
  • intermediate A2-2 has the desired substituent (R 5 , R 6 , NR 7 R 8 ).
  • a thienothiophene derivative is obtained.
  • One equivalent of squaric acid (s) is reacted with two equivalents of intermediate A2-2 to give NIR dye (A2).
  • NIR dye (A1) and NIR dye (A2) of the present invention is not particularly limited.
  • the present invention can be applied to an optical filter that blocks near infrared light.
  • An optical filter according to an embodiment of the present invention includes an absorption layer containing the NIR dye (A1) or NIR dye (A2) of the present invention and a resin.
  • the absorption layer may contain two or more selected from NIR dye (A1) and NIR dye (A2).
  • NIR dye (A) an NIR dye composed of one or more selected from NIR dye (A1) and NIR dye (A2) is referred to as NIR dye (A).
  • the filter may further include a reflective layer made of a dielectric multilayer film in addition to the absorbing layer.
  • a reflective layer refers to a reflection layer made of a dielectric multilayer film.
  • This filter may further have a transparent substrate.
  • the absorption layer is provided on the main surface of the transparent substrate.
  • this filter has a transparent substrate, an absorption layer, and a reflection layer, an absorption layer and a reflection layer are provided on the main surface of a transparent substrate.
  • This filter may have an absorption layer and a reflective layer on the same main surface of a transparent substrate, and may have on a different main surface.
  • the stacking order is not particularly limited.
  • This filter may also have other functional layers.
  • the other functional layer include an antireflection layer that suppresses visible light transmittance loss.
  • an antireflection layer may be provided on the absorption layer.
  • FIG. 1 is a cross-sectional view showing an optical filter 10 ⁇ / b> A composed of an absorption layer 11.
  • the absorption layer 11 can be comprised by the layer containing NIR pigment
  • the absorption layer 11 can take the form of a film or a substrate.
  • FIG. 2 is a configuration example of an optical filter 10B provided with a reflective layer 12 on one main surface of the absorbing layer 11.
  • the absorption layer 11 can be composed of a layer containing a NIR dye (A) and a resin.
  • the phrase “including the reflective layer 12 on one main surface (upper side) of the absorbing layer 11 is not limited to the case where the reflecting layer 12 is provided in contact with the absorbing layer 11, and the absorbing layer 11, the reflecting layer 12, The following configuration is also the same, including the case where another functional layer is provided in between.
  • FIG. 3 is a cross-sectional view schematically showing an example of the optical filter of the embodiment having a transparent substrate and an absorption layer.
  • FIG. 4 is a cross-sectional view schematically showing an example of an optical filter according to an embodiment having a transparent substrate, an absorption layer, and a reflection layer.
  • the optical filter 10 ⁇ / b> C includes the transparent substrate 13 and the absorption layer 11 disposed on one main surface of the transparent substrate 13.
  • the optical filter 10 ⁇ / b> D includes a transparent substrate 13, an absorption layer 11 disposed on one main surface of the transparent substrate 13, and a reflective layer 12 provided on the other main surface of the transparent substrate 13.
  • the absorption layer 11 can be composed of a layer containing the NIR dye (A) and a resin.
  • FIG. 5 shows an optical filter 10E having an absorption layer 11 on one main surface of the transparent substrate 13, and reflection layers 12a and 12b on the other main surface of the transparent substrate 13 and on the main surface of the absorption layer 11. It is a structural example.
  • FIG. 6 is a configuration example of an optical filter 10F that includes absorption layers 11a and 11b on both main surfaces of the transparent substrate 13, and further includes reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
  • the two reflecting layers 12a and 12b to be combined may be the same or different.
  • the reflective layers 12a and 12b have a property of reflecting ultraviolet light and near infrared light and transmitting visible light, and the reflective layer 12a reflects ultraviolet light and light in the first near infrared region,
  • the reflection layer 12b may be configured to reflect ultraviolet light and second near-infrared light.
  • the two absorption layers 11a and 11b may be the same or different.
  • the absorption layers 11a and 11b may be a combination of a near infrared absorption layer and an ultraviolet absorption layer, or may be a combination of an ultraviolet absorption layer and a near infrared absorption layer.
  • the near-infrared absorbing layer can be composed of a layer containing a NIR dye (A) and a resin.
  • FIG. 7 is a configuration example of an optical filter 10G including an antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10D shown in FIG.
  • the antireflection layer 14 may cover not only the outermost surface of the absorption layer 11 but also the entire side surface of the absorption layer 11. In that case, the moisture-proof effect of the absorption layer 11 can be enhanced.
  • the absorption layer contains the NIR dye (A).
  • the absorbing layer may further contain an NIR dye other than the NIR dye (A) (hereinafter referred to as other NIR dye) as long as the effect of the present invention is not impaired.
  • the content of the NIR dye (A) in the absorbing layer is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin as the total amount of the NIR dye (A) and other NIR dyes. Desirable near infrared absorptivity is obtained at 0.1 parts by mass or more, and decrease in near infrared absorptivity and increase in haze value are suppressed at 30 parts by mass or less.
  • the total content of the NIR dye (A) and other NIR dyes is more preferably 0.5 to 25 parts by mass, and further preferably 1 to 20 parts by mass.
  • NIR dyes have a maximum absorption wavelength in the range of 660 to 1100 nm, and there is a predetermined difference between the maximum absorption wavelength and the maximum absorption wavelength ⁇ max (A) of the NIR dye (A). preferable.
  • the difference between the maximum absorption wavelengths of both is preferably 30 nm or more, more preferably 50 nm or more, further preferably 80 nm or more, and particularly preferably 100 nm or more.
  • NIR dyes include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, indophenol compounds, And squarylium compounds other than the NIR dye (A).
  • Other NIR dyes may be used alone or in combination of two or more.
  • the absorption layer contains a NIR dye (A) and a resin, and is typically a layer or (resin) substrate in which the NIR dye (A) is uniformly dissolved or dispersed in the resin.
  • the resin is usually a transparent resin, and the absorption layer may contain other NIR dyes in addition to the NIR dye (A). Further, the absorption layer may contain a dye other than the NIR dye, particularly a UV dye.
  • UV dyes include oxazole, merocyanine, cyanine, naphthalimide, oxadiazole, oxazine, oxazolidine, naphthalic acid, styryl, anthracene, cyclic carbonyl, and triazole. Pigments. Among these, oxazole-based and merocyanine-based dyes are preferable. Moreover, UV dye may be used individually by 1 type for an absorption layer, and may use 2 or more types together.
  • Transparent resins include acrylic resin, epoxy resin, ene / thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide Examples thereof include resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins. These resins may be used alone or in combination of two or more.
  • the transparent resin is preferably a resin having a high glass transition point (Tg) from the viewpoints of transparency, solubility of the NIR dye (A), and heat resistance.
  • Tg glass transition point
  • at least one selected from polyester resins, polycarbonate resins, polyethersulfone resins, polyarylate resins, polyimide resins, and epoxy resins is preferable, and at least one selected from polyester resins and polyimide resins is more preferable.
  • the absorbing layer is further in the range not impairing the effect of the present invention, adhesion imparting agent, color tone correction dye, leveling agent, antistatic agent, thermal stabilizer, light stabilizer, antioxidant, dispersant, flame retardant, You may have arbitrary components, such as a lubricant and a plasticizer.
  • the absorption layer is prepared by, for example, dissolving or dispersing a dye containing the NIR dye (A), a resin or a raw material component of the resin, and each component blended as necessary, in a solvent, It can be formed by applying it to a substrate, drying it, and curing it as necessary.
  • the base material may be a transparent substrate optionally included in the filter, or may be a peelable base material used only when forming the absorption layer.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may contain a surfactant to improve voids due to fine bubbles, dents due to adhesion of foreign matters, and repelling in the drying process.
  • a dip coating method, a cast coating method, or a spin coating method can be used for coating the coating liquid.
  • An absorption layer is formed by applying the coating liquid onto a substrate and then drying it. Further, when the coating liquid contains a resin raw material component, a curing treatment such as thermosetting or photocuring is further performed.
  • the absorption layer can be manufactured in a film form by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like.
  • this filter contains a transparent substrate, you may stick this film on a transparent substrate.
  • This filter may have two or more absorption layers.
  • each layer may be the same or different.
  • the absorption layer is composed of two or more layers, an example in which one layer is a near infrared absorption layer made of a resin containing a NIR dye and the other layer is an ultraviolet absorption layer made of a resin containing a UV dye is given.
  • the absorption layer itself may be a substrate (resin substrate).
  • the thickness of the absorption layer is preferably 0.1 to 100 ⁇ m.
  • the total thickness of each layer is preferably 0.1 to 100 ⁇ m. If the thickness is less than 0.1 ⁇ m, the desired optical characteristics may not be sufficiently exhibited. If the thickness exceeds 100 ⁇ m, the flatness of the layer may be reduced, and the in-plane variation of the absorptance may occur.
  • the thickness of the absorption layer is more preferably 0.3 to 50 ⁇ m.
  • other functional layers such as a reflection layer and an antireflection layer, are provided, depending on the material, if the absorption layer is too thick, cracking or the like may occur. Therefore, the thickness of the absorption layer is more preferably 0.3 to 10 ⁇ m.
  • the transparent substrate is an optional component.
  • the thickness of the transparent substrate is preferably 0.03 to 5 mm, and more preferably 0.05 to 1 mm from the viewpoint of thinning.
  • glass, (birefringent) crystal, or resin can be used as long as it transmits visible light.
  • absorption glass near-infrared absorbing glass substrate obtained by adding CuO or the like to fluorophosphate glass or phosphate glass, soda lime glass, borosilicate glass, alkali-free glass And quartz glass.
  • the “phosphate glass” includes silicic acid phosphate glass in which a part of the glass skeleton is composed of SiO 2 .
  • the transparent substrate is a fluorophosphate glass
  • P 5+ 20 to 45%
  • Al 3+ 1 to 25%
  • R + 1 to 30%
  • R + is Li + , Na + , K + , and the value on the left is the sum of the respective contents
  • R 2+ 1 to 50%
  • R 2+ is at least one of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and the value on the left is the sum of the respective content ratios
  • F ⁇ 10 to 65%
  • O 2 ⁇ 35 to 90%.
  • the transparent substrate is phosphate glass
  • P 2 O 5 30 to 80%
  • Al 2 O 3 1 to 20%
  • R 2 O 0.5 to 30% in terms of mass%
  • R 2 O is at least one of Li 2 O, Na 2 O, and K 2 O, and the value on the left is the sum of the respective content ratios.
  • CuO 1 to 12%
  • RO 0.5 to 40% (provided that RO is at least one of MgO, CaO, SrO, BaO, ZnO, and the value on the left is the sum of the respective content ratios. It is preferable to contain a certain).
  • Examples of commercially available products include NF-50E, NF-50EX, NF-50T, NF-50TX, NF-50GX (manufactured by AGC Co., Ltd., trade name), BG-60, BG-61 (above, manufactured by SCHOTT Co., Ltd.) CD5000 (manufactured by HOYA, trade name) and the like.
  • the above-described CuO-containing glass may further contain a metal oxide.
  • the metal oxide contains, for example, one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc.
  • the CuO-containing glass exhibits ultraviolet absorption characteristics. Have.
  • Transparent resins for transparent substrates include acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine Examples thereof include oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins. These resins may be used alone or in combination of two or more.
  • the reflective layer is an optional component.
  • the reflective layer is made of a dielectric multilayer film and has a function of shielding light in a specific wavelength range. Examples of the reflective layer include those having wavelength selectivity that transmit visible light and mainly reflect light having a wavelength other than the light shielding area of the absorption layer.
  • the reflection region of the reflection layer may include a light shielding region in the near infrared region of the absorption layer.
  • the reflective layer is not limited to the above characteristics, and may be appropriately designed according to specifications for shielding light in a predetermined wavelength range.
  • the NIR dye (A) preferably has a reflection characteristic in which the transmittance of light having the maximum absorption wavelength ⁇ max (A) is 1% or less. Thereby, this filter synergistically obtains a high light shielding property (high OD value) at the maximum absorption wavelength ⁇ max (A) of the NIR dye (A).
  • the filter may have one reflective layer or two or more layers.
  • each layer may be the same or different.
  • one layer shields at least near-infrared light, in particular, a near-infrared shielding layer having the above-described reflection characteristics, and the other layer shields at least ultraviolet light.
  • a combination to form an ultraviolet shielding layer may be used.
  • the reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately stacked.
  • the material for the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoint of film formability, reproducibility in refractive index, and stability.
  • Examples of the material for the low refractive index film include SiO 2 and SiO x N y . From the viewpoint of reproducibility, stability, economical efficiency, etc. in film formability, SiO 2 is preferable.
  • the thickness of the reflective layer is preferably 2 to 10 ⁇ m.
  • Antireflection layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes.
  • the use of a dielectric multilayer film is preferable from the viewpoint of high light utilization efficiency and productivity.
  • This filter has an absorption layer containing the NIR dye (A), so that it can realize excellent light shielding properties against near-infrared light and high visible light transmittance.
  • This filter can be used for, for example, an imaging device such as a digital still camera, an ambient light sensor, and the like.
  • An imaging apparatus using the present filter includes a solid-state imaging device, an imaging lens, and the present filter.
  • This filter can be used, for example, disposed between an imaging lens and a solid-state imaging device, or directly attached to a solid-state imaging device, an imaging lens, or the like of an imaging apparatus via an adhesive layer.
  • the structure of the produced NIR dye was confirmed by 1H NMR.
  • an ultraviolet-visible spectrophotometer manufactured by Hitachi High-Technologies Corporation, model U-4150 was used for evaluating the optical properties of the NIR dye and the absorption layer containing the NIR dye.
  • Step A2-1-1 Thieno [3,2-b] thiophene (4.00 g, 28.5 mmol) was placed in the flask and dissolved in anhydrous dimethylformamide (28.5 ml) under a nitrogen atmosphere. The solution was cooled to ⁇ 15 ° C., and an anhydrous dimethylformamide solution (28.5 ml) in which N-bromosuccinimide (5.08 g, 28.5 mmol) was dissolved was added dropwise. The mixture was stirred at room temperature for 30 minutes and then stirred at 60 ° C. for 5 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A2-1-1 (5.09 g, yield 81%) was obtained by silica gel column chromatography (hexane).
  • Step A2-1-2> A flask was charged with intermediate A2-1-1 (2.00 g, 9.13 mmol) obtained in step A2-1-1 and shaved magnesium (0.440 g, 18.3 mmol), and anhydrous tetrahydrofuran was added under a nitrogen atmosphere. (13 ml). The solution was refluxed for 3 hours and cooled to -40 ° C. In a separate flask, N-chlorosuccinimide (0.490 g, 3.65 mmol) was dissolved in anhydrous toluene (18 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (0.880 g, 3.65 mmol) was added. For 20 minutes.
  • Step Acf1-2> The intermediate Acf1-1 (2.57 g, 9.34 mmol) obtained in Step Acf1-1 and ground magnesium (0.450 g, 18.7 mmol) were placed in a flask, and anhydrous tetrahydrofuran (13 ml) was added under a nitrogen atmosphere. Dissolved. The solution was refluxed for 3 hours and cooled to -40 ° C. In a separate flask, N-chlorosuccinimide (1.25 g, 9.34 mmol) was dissolved in anhydrous toluene (23 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (2.26 g, 9.34 mmol) was added. For 20 minutes.
  • Step Acf2-2> The intermediate Acf2-1 (2.32 g, 11.8 mmol) obtained in Step Acf2-1 was placed in a flask and dissolved in anhydrous dimethylformamide (12 ml) under a nitrogen atmosphere. The solution was cooled to ⁇ 15 ° C., and an anhydrous dimethylformamide solution (12 ml) in which N-bromosuccinimide (4.63 g, 26.0 mmol) was dissolved was added dropwise. The mixture was stirred at room temperature for 30 minutes and then stirred at 60 ° C. for 5 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine and the solvent was removed, and then intermediate Acf2-2 (3.55 g, yield 85%) was obtained by silica gel column chromatography (hexane).
  • Step Acf2-2 A mixed solution in which 3.55 g (10.0 mmol) was dissolved in anhydrous toluene (4 ml) was added dropwise and stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed from the filtrate obtained by filtration, and intermediate Acf2-3 (1.56 g, 23%) was obtained by silica gel column chromatography (hexane).
  • Step Acf2-4> In a flask, intermediate Acf2-3 (1.56 g, 2.35 mmol) obtained in step Acf2-3, palladium (II) acetate (0.0269 g, 0.120 mmol), xanthophos (0.102 g, 0.176 mmol) , Triethylsilane (3.58 g, 30.8 mmol) was added and dissolved in anhydrous toluene (23 ml) under a nitrogen atmosphere. The mixed solution was stirred at reflux for 7 hours. After completion of the reaction, the solvent was removed and intermediate Acf2-4 (1.16 g, 84%) was obtained by silica gel column chromatography (hexane).
  • the transmittance T 482 (A) DCM at 482 nm was determined. The results are shown in Table 3. For the wavelengths 418 nm and 482 nm, absorption wavelengths that were next larger than the maximum absorption wavelength of the NIR dye (A1-1) and NIR dye (A2-1) in the measurement wavelength region were selected and compared.
  • a transparent resin (Neoprim (registered trademark) C3G30 (trade name, polyimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.)) was dissolved in a mixed solution (1: 1) of ⁇ -butyrolactone and cyclohexanone at a concentration of 10% by mass.
  • the NIR dye was dissolved in the solution, and the solubility (mass%) in the resin was evaluated. The results are shown in Table 3.
  • the NIR dyes (A1-1) and (A2-1) and the NIR dyes (Acf1) and (Acf2) all have a high light shielding property against near-infrared light.
  • the NIR dye (Acf1) of Example 3 which is a comparative example and the NIR dye (Acf2) of Example 4 were compared to the case where either the visible light transmittance or the solubility in the coating solution was low. It can be seen that the example NIR dye (A1-1) of Example 1 and the NIR dye (A2-1) of Example 2 have high visible light transmittance and high solubility in the coating solution.
  • NIR dye (A1-1) and NIR dye (A2-1) the coating solution obtained in the above test was applied on a glass plate (D263; manufactured by SCHOTT, trade name) and dried to form a film. An absorption layer having a thickness of 1 ⁇ m could be obtained.
  • the optical filter having the configuration shown in FIG. 7 is manufactured by the following method.
  • a transparent substrate a glass substrate having a thickness of 0.21 mm made of CuO-containing fluorophosphate glass (manufactured by AGC Co., Ltd., trade name: NF-50GX) or a glass substrate having a thickness of 0.2 mm (D263; manufactured by SCHOTT, product) Name).
  • a dielectric multilayer film formed as follows is used as the reflective layer.
  • the dielectric multilayer film is formed by laminating, for example, a total of 42 layers of TiO 2 films and SiO 2 films alternately on one main surface of the glass substrate by vapor deposition.
  • the configuration of the reflection layer is simulated by using the number of dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters. Is designed to have an average transmittance of 0.03%.
  • an absorption layer having a thickness of about 1.0 ⁇ m is formed on the main surface on the opposite side of the reflective layer of the glass substrate by combining one or more of transparent resin and NIR dye (A). Form. Thereafter, seven layers of TiO 2 films and SiO 2 films are alternately laminated on the surface of the absorption layer by vapor deposition to form an antireflection layer, thereby obtaining an optical filter (NIR filter).
  • NIR filter optical filter
  • the near-infrared absorbing dye of the present invention can realize excellent light-shielding properties for near-infrared light, and can form a homogeneous absorption layer because it has high solubility in solvents and resins. It is applicable to an optical filter that shields light.
  • the optical filter of the present invention can be applied to an imaging apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)

Abstract

The present invention relates to: a near-infrared absorbing dye which is composed of a compound represented by formula (A1); and a near-infrared absorbing dye which is composed of a compound represented by formula (A2). In formula (A1) and formula (A2), each of R1, R2, R5 and R6 independently represents a hydrogen atom, a halogen atom, a hydroxyl group, or an optionally substituted alkyl group, alkoxy group, aryl group or alaryl group which may contain an unsaturated bond or an oxygen atom between carbon atoms; and each of R3, R4, R7 and R8 independently represents an optionally substituted linear or branched chain alkyl group which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon atoms.

Description

近赤外線吸収色素、光学フィルタおよび撮像装置Near-infrared absorbing dye, optical filter, and imaging device
 本発明は、可視波長領域の光を透過し、近赤外波長領域の光を遮蔽する近赤外線吸収色素、光学フィルタおよび該光学フィルタを備えた撮像装置に関する。 The present invention relates to a near-infrared absorbing dye that transmits light in the visible wavelength region and shields light in the near-infrared wavelength region, an optical filter, and an imaging device including the optical filter.
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し近赤外域の光(以下「近赤外光」ともいう)を遮蔽する近赤外カットフィルタが用いられる。近赤外カットフィルタにおいては、樹脂中に近赤外線吸収色素を分散させた吸収層や、近赤外光を反射する誘電体多層膜からなる反射層により近赤外光の遮蔽が行われる。 An imaging apparatus using a solid-state imaging device transmits near-infrared light (hereinafter referred to as “near red”) to transmit visible light (hereinafter also referred to as “visible light”) in order to obtain a clear image with good color tone reproduction. A near-infrared cut filter that also shields the outside light) is used. In a near-infrared cut filter, near-infrared light is shielded by an absorption layer in which a near-infrared absorbing dye is dispersed in a resin or a reflective layer made of a dielectric multilayer film that reflects near-infrared light.
 このような近赤外カットフィルタに用いる近赤外線吸収色素として、スクアリリウム骨格とその両側にヘテロ芳香環構造を有する色素が知られている。例えば、特許文献1には、スクアリリウム骨格の両側にカルコゲン原子を含むヘテロアリール環を有し、ヘテロアリール環にアミノ基が結合した構造の近赤外線吸収色素が記載されている。 As a near-infrared absorbing dye used for such a near-infrared cut filter, a dye having a squarylium skeleton and a heteroaromatic ring structure on both sides thereof is known. For example, Patent Document 1 describes a near-infrared absorbing dye having a structure in which a heteroaryl ring containing a chalcogen atom is present on both sides of a squarylium skeleton and an amino group is bonded to the heteroaryl ring.
国際公開第2017/104283号International Publication No. 2017/104283
 ここで、近赤外カットフィルタに用いる近赤外線吸収色素には、これを含有する吸収層において、可視光を透過し近赤外光を遮蔽する光学特性を十分に発揮するために、吸収層を構成する樹脂に対する溶解性が求められている。しかしながら、可視光を透過し近赤外光を遮蔽する光学特性と樹脂に対する十分な溶解性をともに有する近赤外線吸収色素は得られていない。 Here, in the near-infrared absorbing dye used for the near-infrared cut filter, in the absorbing layer containing the same, an absorbing layer is used in order to sufficiently exhibit the optical characteristics of transmitting visible light and shielding near-infrared light. The solubility with respect to the resin which comprises is calculated | required. However, a near-infrared absorbing dye having both optical properties that transmit visible light and shield near-infrared light and sufficient solubility in a resin has not been obtained.
 本発明は、可視光を透過し近赤外光を遮蔽する光学特性と樹脂に対する高い溶解性をともに有する近赤外線吸収色素、光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置の提供を目的とする。 The present invention relates to a near-infrared-absorbing dye having both optical properties that transmit visible light and shield near-infrared light and high solubility in a resin, an optical filter, and an imaging device that excels in color reproducibility using the optical filter. For the purpose of provision.
 本発明は、式(A1)で示される化合物からなる近赤外線吸収色素(以下、近赤外線吸収色素(A1)ともいう)、および式(A2)で示される化合物からなる近赤外線吸収色素(以下、近赤外線吸収色素(A2)ともいう)を提供する。 The present invention relates to a near-infrared absorbing dye comprising a compound represented by the formula (A1) (hereinafter also referred to as a near-infrared absorbing dye (A1)) and a near-infrared absorbing dye comprising a compound represented by the formula (A2) (hereinafter referred to as “infrared absorbing dye”). A near-infrared absorbing dye (also referred to as A2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(A1)中、
 RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。RおよびRは、互いに連結して、ヘテロ原子を含んでもよい員数3~6の脂環または芳香環を形成してもよく、その場合、該環に結合する水素原子は置換基で置換されていてもよい。
 RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
In formula (A1),
R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, An alkoxy group, an aryl group or an araryl group; R 1 and R 2 may be connected to each other to form a 3 to 6-membered alicyclic or aromatic ring that may contain a hetero atom, in which case the hydrogen atom bonded to the ring is substituted with a substituent. May be.
R 3 and R 4 may each independently have a substituent, and may be a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(A2)中、
 RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基であり、
 RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
In formula (A2),
R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, An alkoxy group, an aryl group or an araryl group,
R 7 and R 8 may each independently have a substituent, and may have a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
 また、本発明に係る光学フィルタは、上記近赤外線吸収色素(A1)、または近赤外線吸収色素(A2)と樹脂とを含有する吸収層を備えたことを特徴とする。
 また、本発明に係る撮像装置は、固体撮像素子と、撮像レンズと、上記光学フィルタを備えたことを特徴とする。
Moreover, the optical filter according to the present invention is characterized by comprising an absorption layer containing the near-infrared absorbing dye (A1) or the near-infrared absorbing dye (A2) and a resin.
In addition, an imaging apparatus according to the present invention includes a solid-state imaging device, an imaging lens, and the optical filter.
 本発明によれば、可視光を透過し近赤外光を遮蔽する光学特性を有するとともに、樹脂に対する高い溶解性を有する近赤外線吸収色素を提供できる。さらに、本発明によれば、該色素を用いた光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置を提供できる。 According to the present invention, it is possible to provide a near-infrared absorbing dye having an optical characteristic of transmitting visible light and shielding near-infrared light and having high solubility in a resin. Furthermore, according to the present invention, it is possible to provide an optical filter using the dye and an imaging device excellent in color reproducibility using the optical filter.
図1は実施形態の光学フィルタの一例を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the optical filter of the embodiment. 図2は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of the embodiment. 図3は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of the embodiment. 図4は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of the embodiment. 図5は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of the optical filter of the embodiment. 図6は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing another example of the optical filter of the embodiment. 図7は実施形態の光学フィルタの別の一例を概略的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
 本明細書において、式(A1)で示される化合物を化合物(A1)という。他の式で表される化合物も同様である。化合物(A1)からなるNIR色素をNIR色素(A1)ともいい、他の色素についても同様である。また、例えば、式(1a)で表される基を基(1a)とも記し、他の式で表される基も同様である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
Embodiments of the present invention will be described below.
In this specification, the near-infrared absorbing dye may be abbreviated as “NIR dye”, and the ultraviolet absorbing dye may be abbreviated as “UV dye”.
In this specification, a compound represented by the formula (A1) is referred to as a compound (A1). The same applies to compounds represented by other formulas. The NIR dye composed of the compound (A1) is also called NIR dye (A1), and the same applies to other dyes. For example, a group represented by the formula (1a) is also referred to as a group (1a), and the same applies to groups represented by other formulas.
In this specification, “to” representing a numerical range includes upper and lower limits.
<NIR色素>
 本発明は、式(A1)に示されるNIR色素(A1)および式(A2)に示されるNIR色素(A2)を提供する。
<NIR dye>
The present invention provides an NIR dye (A1) represented by the formula (A1) and an NIR dye (A2) represented by the formula (A2).
 本発明のNIR色素(A1)は、分子構造の中央にスクアリリウム骨格を有し、スクアリリウム骨格の左右に各1個のチオフェン環が結合し、該チオフェン環はスクアリリウム骨格とは反対側のα位に、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基を2個有するアミノ基(以下、「アミノ基(X)」という)が結合した構造である。アミノ基(X)は、窒素原子に芳香環が直接結合する構成を有しない。 The NIR dye (A1) of the present invention has a squarylium skeleton at the center of the molecular structure, and one thiophene ring is bonded to each of the left and right sides of the squarylium skeleton, and the thiophene ring is in the α position opposite to the squarylium skeleton. , An amino group having two linear or branched alkyl groups which may have a substituent and may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon and carbon atoms (hereinafter referred to as an amino group) , “Amino group (X)”). The amino group (X) does not have a configuration in which an aromatic ring is directly bonded to a nitrogen atom.
 本発明のNIR色素(A2)は、分子構造の中央にスクアリリウム骨格を有し、スクアリリウム骨格の左右に各1個のチエノチオフェン環が結合し、該チエノチオフェン環はスクアリリウム骨格とは反対側のα位に、アミノ基(X)が結合した構造である。 The NIR dye (A2) of the present invention has a squarylium skeleton at the center of the molecular structure, and one thienothiophene ring is bonded to each side of the squarylium skeleton, and the thienothiophene ring is an α on the opposite side of the squarylium skeleton. In this structure, an amino group (X) is bonded to the position.
 NIR色素(A1)およびNIR色素(A2)は、スクアリリウム骨格と、アミノ基(X)を有する点で共通している。NIR色素(A1)およびNIR色素(A2)は、スクアリリウム骨格とアミノ基(X)を連結する基がチオフェン環を含む点で共通する。本発明のNIR色素(A1)およびNIR色素(A2)は、該構造を有することで、可視光を透過し近赤外光を遮蔽する光学特性に優れるとともに、樹脂に対する溶解性も高い。 NIR dye (A1) and NIR dye (A2) are common in that they have a squarylium skeleton and an amino group (X). The NIR dye (A1) and the NIR dye (A2) are common in that the group connecting the squarylium skeleton and the amino group (X) contains a thiophene ring. Since the NIR dye (A1) and the NIR dye (A2) of the present invention have such a structure, they have excellent optical properties that transmit visible light and shield near-infrared light, and have high solubility in resins.
 NIR色素(A1)およびNIR色素(A2)ではスクアリリウム骨格とアミノ基(X)を連結するチオフェン環を含む環の数が多い程、すなわち、NIR色素(A1)に比べてNIR色素(A2)の方が、最大吸収波長が大きい。したがって、所望の波長領域に応じてNIR色素の使い分けが可能である。 In the NIR dye (A1) and the NIR dye (A2), the greater the number of rings including the thiophene ring that connects the squarylium skeleton and the amino group (X), that is, the NIR dye (A2) has a larger number than the NIR dye (A1). The maximum absorption wavelength is larger. Therefore, the NIR dye can be properly used according to the desired wavelength region.
 以下、NIR色素(A1)およびNIR色素(A2)について詳細に説明する。NIR色素(A1)は、以下の式(A1)で示される。 Hereinafter, the NIR dye (A1) and the NIR dye (A2) will be described in detail. The NIR dye (A1) is represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(A1)中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。RおよびRは、互いに連結して、ヘテロ原子を含んでもよい員数3~6の脂環または芳香環を形成してもよく、その場合、該環に結合する水素原子は置換基で置換されていてもよい。式(A1)中の2つのRは、スクアリリウム骨格の左右で異なってもよいが、製造容易性の観点から左右が同じであることが好ましい。Rおよび後述のR、Rについても同様である。 In formula (A1), R 1 and R 2 may each independently have a hydrogen atom, a halogen atom, a hydroxyl group, or a substituent, and an unsaturated bond or an oxygen atom is present between carbon-carbon atoms. An alkyl group, alkoxy group, aryl group or araryl group which may be contained. R 1 and R 2 may be connected to each other to form a 3 to 6-membered alicyclic or aromatic ring that may contain a hetero atom, in which case the hydrogen atom bonded to the ring is substituted with a substituent. May be. Two R 1 s in the formula (A1) may be different on the left and right sides of the squarylium skeleton, but are preferably the same on the left and right sides from the viewpoint of ease of production. The same applies to R 2 and R 3 and R 4 described later.
 ここで、本明細書において、特に断りのない限り、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。アルキル基が炭素-炭素原子間に不飽和結合を有するのは、直鎖状または分岐鎖状の場合、もしくは環状であって芳香環を形成しない場合である。アルキル基が環状であって炭素-炭素原子間に不飽和結合を有するが芳香環を形成しない例としてはシクロアルケンが挙げられる。アルキル基が炭素-炭素原子間に酸素原子を有するのは、直鎖状、分岐鎖状、環状のいずれの場合でもよい。アルコキシ基が有するアルキル基についても同様である。さらに、以下のアリール基がアルキル基を有する場合のアルキル基、アルアリール基のアルキル基についても同様である。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子および塩素原子が好ましい。
Here, unless otherwise specified, in this specification, the alkyl group may be linear, branched, cyclic, or a combination of these structures. The alkyl group has an unsaturated bond between carbon and carbon atoms when it is linear or branched, or when it is cyclic and does not form an aromatic ring. An example where the alkyl group is cyclic and has an unsaturated bond between carbon and carbon atoms but does not form an aromatic ring is cycloalkene. The alkyl group having an oxygen atom between carbon-carbon atoms may be any of linear, branched, and cyclic. The same applies to the alkyl group that the alkoxy group has. Further, the same applies to the alkyl group in the case where the following aryl group has an alkyl group and the alkyl group of the araryl group.
As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, A fluorine atom and a chlorine atom are preferable.
 本明細書において、特に断りのない限り、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル、フラン環、チオフェン環、ピロール環等を構成する炭素原子を介して結合する基をいう。アリール基は該結合に寄与する炭素原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造、例えば、トリル基、キシリル基を含む。 In this specification, unless otherwise specified, an aryl group is bonded through an aromatic ring of an aromatic compound, for example, a carbon atom constituting a benzene ring, naphthalene ring, biphenyl, furan ring, thiophene ring, pyrrole ring, etc. Group. The aryl group includes a structure in which a hydrogen atom bonded to a ring constituent atom other than a carbon atom contributing to the bond is substituted with an alkyl group, for example, a tolyl group or a xylyl group.
 本明細書において、特に断りのない限り、アルアリール基は、芳香環にアルキル基が結合し、該アルキル基を構成する炭素原子を介して結合する基をいう。アルアリール基は、該結合に寄与するアルキル基が結合する原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造を含む。 In this specification, unless otherwise specified, an araryl group refers to a group in which an alkyl group is bonded to an aromatic ring and bonded via a carbon atom constituting the alkyl group. The araryl group includes a structure in which a hydrogen atom bonded to a ring atom other than an atom to which an alkyl group contributing to the bond is bonded is substituted with an alkyl group.
 RおよびRにおける置換基としては、ハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~20のアルコキシ基が挙げられる。RおよびRがアリール基またはアルアリール基の場合、置換基は、芳香環に結合する水素原子またはこれらが有するアルキル基の水素原子を置換する基であり、上記置換基の他にさらにアリール基を含む。 Examples of the substituent in R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, Examples thereof include an imide group and an alkoxy group having 1 to 20 carbon atoms. When R 1 and R 2 are an aryl group or an araryl group, the substituent is a group that replaces the hydrogen atom bonded to the aromatic ring or the hydrogen atom of the alkyl group that these have, and in addition to the above substituent, an aryl group including.
 RおよびRがアルキル基またはアルコキシ基の場合、炭素数は1~20が好ましく、1~15がより好ましく、1~12がさらに好ましい。RおよびRがアリール基の場合、炭素数は6~20が好ましく、6~15がより好ましく、6~12がさらに好ましい。RおよびRがアルアリール基の場合、炭素数は7~20が好ましく、7~16がより好ましく、7~13がさらに好ましい。
 RおよびRが置換基を有する場合、上記炭素数には置換基の炭素数が含まれる。
When R 1 and R 2 are an alkyl group or an alkoxy group, the carbon number is preferably 1-20, more preferably 1-15, and still more preferably 1-12. When R 1 and R 2 are aryl groups, the carbon number is preferably 6-20, more preferably 6-15, and still more preferably 6-12. When R 1 and R 2 are araryl groups, the carbon number is preferably 7 to 20, more preferably 7 to 16, and even more preferably 7 to 13.
When R 1 and R 2 have a substituent, the carbon number includes the carbon number of the substituent.
 Rは、光安定性の観点から、水素原子または炭素数1~3のアルキル基が好ましく、水素原子が特に好ましい。 R 1 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, particularly preferably a hydrogen atom, from the viewpoint of light stability.
 Rは、可視光透過性や、樹脂および溶媒への溶解性の観点からは、炭素-炭素原子間に酸素原子を含んでよい炭素数3~20の直鎖状または分岐鎖状のアルキル基が好ましい。アルキル基の炭素数は、直鎖状の場合、3~12がより好ましく、分岐鎖状の場合、4~10がより好ましい。Rは、例えば、基(1a)~(5a)から選ばれる基がさらに好ましく、基(1a)が特に好ましい。特に、RおよびRの一方または両方が直鎖状のアルキル基である場合は、Rは、炭素数4~10の分岐鎖状のアルキル基が好ましい。 R 2 is a linear or branched alkyl group having 3 to 20 carbon atoms which may contain an oxygen atom between carbon-carbon atoms from the viewpoint of visible light permeability and solubility in a resin and a solvent. Is preferred. The number of carbon atoms in the alkyl group is more preferably 3 to 12 when it is linear, and more preferably 4 to 10 when it is branched. R 2 is more preferably, for example, a group selected from groups (1a) to (5a), particularly preferably group (1a). In particular, when one or both of R 3 and R 4 is a linear alkyl group, R 2 is preferably a branched alkyl group having 4 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Rは、製造容易性の観点からは、水素原子または炭素数1~8のアルキル基が好ましく、水素原子が特に好ましい。 R 2 is preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, particularly preferably a hydrogen atom, from the viewpoint of ease of production.
 RおよびRが互いに連結して脂環または芳香環を形成してもよく、その場合の員数は3~6である。なお、員数はRおよびRが結合するチオフェン環の2つの炭素原子を含む原子数である。上記脂環または芳香環はヘテロ原子を含んでもよい。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子が挙げられる。また、上記脂環または芳香環に結合する水素原子は置換基で置換されてよく、置換基としては、RおよびRにおける置換基として例示した置換基が挙げられる。 R 1 and R 2 may be linked to each other to form an alicyclic ring or aromatic ring, and in that case, the number of members is 3-6. The number of members is the number of atoms including two carbon atoms of the thiophene ring to which R 1 and R 2 are bonded. The alicyclic or aromatic ring may contain a hetero atom. Examples of the hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom. Moreover, the hydrogen atom couple | bonded with the said alicyclic ring or an aromatic ring may be substituted by the substituent, and the substituent illustrated as the substituent in R < 1 > and R < 2 > is mentioned as a substituent.
 RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。 R 3 and R 4 may each independently have a substituent, and may be a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
 RおよびRにおける置換基としては、RおよびRにおける置換基と同様の置換基、すなわち、ハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~20のアルコキシ基が挙げられる。 As the substituents for R 3 and R 4, the same substituents as those for R 1 and R 2 , that is, a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, Examples thereof include a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 20 carbon atoms.
 RおよびRにおける置換基としては、さらに、環状のアルキル基またはアリール基が挙げられる。アリール基としては、1~5個の置換基を有してもよいフェニル基または、1~7個の置換基を有してもよいナフチル基が好ましい。フェニル基およびナフチル基の水素原子を置換してもよい置換基としては、炭素-炭素原子間に不飽和結合または酸素原子を含んでよい炭素数1~12のアルキル基、もしくはアルコキシ基、またはアルキルアミノ基(アルキル基の炭素数は1~12)が挙げられる。フェニル基およびナフチル基は、非置換または、水素原子が1~3個置換されているのが好ましく、置換基としては、メチル基、ターシャリーブチル基、ジメチルアミノ基、メトキシ基等が好ましい。 Examples of the substituent in R 3 and R 4 further include a cyclic alkyl group or an aryl group. As the aryl group, a phenyl group which may have 1 to 5 substituents or a naphthyl group which may have 1 to 7 substituents is preferable. Examples of the substituent which may substitute the hydrogen atom of the phenyl group and naphthyl group include an alkyl group having 1 to 12 carbon atoms which may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, an alkoxy group, or an alkyl group. And an amino group (the alkyl group has 1 to 12 carbon atoms). The phenyl group and naphthyl group are preferably unsubstituted or substituted with 1 to 3 hydrogen atoms. The substituent is preferably a methyl group, a tertiary butyl group, a dimethylamino group, a methoxy group, or the like.
 RおよびRが、主鎖または側鎖に脂環または芳香環を含む場合、耐熱性や、NIR吸収波長の長波長化の点で好ましい。RおよびRが、主鎖または側鎖に脂環または芳香環を有しない場合、耐光性や、製造容易性や、樹脂および溶媒への溶解性の点で好ましい。脂環の炭素数としては3~10が好ましい。芳香環の炭素数は4~14が好ましい。 When R 3 and R 4 contain an alicyclic ring or an aromatic ring in the main chain or side chain, it is preferable in terms of heat resistance and lengthening of the NIR absorption wavelength. When R 3 and R 4 do not have an alicyclic ring or an aromatic ring in the main chain or side chain, it is preferable in terms of light resistance, ease of production, and solubility in resins and solvents. The number of carbon atoms in the alicyclic ring is preferably 3 to 10. The aromatic ring preferably has 4 to 14 carbon atoms.
 RおよびRの炭素数としては1~20が挙げられる。RおよびRの炭素数は、直鎖状の場合2~20が好ましく、3~16がより好ましく、4~12がさらに好ましい。RおよびRの炭素数は、分岐鎖状の場合、3~20が好ましく、4~16がより好ましく、8~10がさらに好ましい。
 RおよびRが置換基を有する場合、および主鎖または側鎖に脂環または芳香環を含む場合、上記炭素数には置換基、脂環、芳香環の炭素数が含まれる。
Examples of the carbon number of R 3 and R 4 include 1-20. The number of carbon atoms of R 3 and R 4 is preferably 2 to 20, more preferably 3 to 16, and still more preferably 4 to 12 when it is linear. The number of carbon atoms of R 3 and R 4 is preferably 3 to 20, more preferably 4 to 16, and still more preferably 8 to 10 when branched.
When R 3 and R 4 have a substituent, and when the main chain or side chain contains an alicyclic ring or an aromatic ring, the above carbon number includes the carbon number of the substituent, the alicyclic ring, or the aromatic ring.
 RおよびRは同一であっても異なってもよいが、製造容易性の点から同一であるのが好ましい。RおよびRは、樹脂および溶媒への溶解性の観点からは、いずれか一方が分岐鎖状であるのが好ましく、両方が分岐鎖状であるのがより好ましい。 R 3 and R 4 may be the same or different, but are preferably the same from the viewpoint of ease of production. One of R 3 and R 4 is preferably branched from the viewpoint of solubility in the resin and the solvent, and more preferably both are branched.
 RおよびRが分岐鎖状の場合、分岐の数は特に制限されない。分岐の数は1~5が好ましく、1~3がより好ましい。樹脂および溶媒への溶解性の観点からは、分岐の位置は、α位が好ましく、製造容易性の観点からは、β位が好ましい。一つの炭素原子から2つに分岐していてもよく3つに分岐していてもよい。 When R 3 and R 4 are branched, the number of branches is not particularly limited. The number of branches is preferably 1 to 5, and more preferably 1 to 3. From the viewpoint of solubility in a resin and a solvent, the position of branching is preferably α-position, and from the viewpoint of ease of production, β-position is preferable. One carbon atom may be branched into two or may be branched into three.
 RおよびRは、例えば、基(1b)~(5b)から選ばれる基がさらに好ましい。
 -CH(C2n+1  …(1b)
 -C(C2n+1  …(1c)
 -CH-CH(C2n+1  …(2b)
 -CH-C(C2n+1  …(2c)
 -(CH-CH(C2n+1  …(3b)
 -(CH-CH(C2n+1  …(4b)
 -(CH-CH  …(5b)
R 3 and R 4 are more preferably, for example, a group selected from the groups (1b) to (5b).
—CH (C n H 2n + 1 ) 2 (1b)
-C (C n H 2n + 1 ) 3 (1c)
—CH 2 —CH (C n H 2n + 1 ) 2 (2b)
—CH 2 —C (C n H 2n + 1 ) 3 (2c)
— (CH 2 ) 2 —CH (C n H 2n + 1 ) 2 (3b)
— (CH 2 ) 3 —CH (C n H 2n + 1 ) 2 (4b)
— (CH 2 ) m —CH 3 (5b)
 ただし、式(1b)~(4b)においてnは1~10の整数であり、2~8が好ましく、4~6がより好ましい。式(1b)~(4b)における2個または3個のC2n+1は直鎖であっても分岐鎖であってもよく、同一であっても異なってもよい。式(5b)においてmは0~19の整数であり、1~19が好ましく、2~15がより好ましく、3~11がさらに好ましい。さらに、基(1b)~(5b)は炭素-炭素原子間に酸素原子を有してもよい。 However, in the formulas (1b) to (4b), n is an integer of 1 to 10, preferably 2 to 8, and more preferably 4 to 6. Two or three C n H 2n + 1 in the formulas (1b) to (4b) may be linear or branched, and may be the same or different. In the formula (5b), m is an integer of 0 to 19, preferably 1 to 19, more preferably 2 to 15, and further preferably 3 to 11. Further, the groups (1b) to (5b) may have an oxygen atom between carbon-carbon atoms.
 これらの中でも、基(1b)、基(1c)は、分岐の位置がα位にあり溶解性の点で好ましい。基(2b)、基(2c)は、分岐の位置がβ位にあり製造容易性の点で好ましく、特に、基(2b)が好ましい。基(2b)としては、例えば、2個の(C2n+1)がともにCHである上記基(3a)、2個の(C2n+1)の一方がC、他方がCである上記基(1a)が好ましい。 Among these, the group (1b) and the group (1c) are preferable in terms of solubility because the branching position is in the α-position. The group (2b) and the group (2c) are preferable in terms of ease of production since the branching position is in the β-position, and the group (2b) is particularly preferable. The group (2b), for example, two (C n H 2n + 1) is the base are both CH 3 (3a), two of (C n H 2n + 1) one is C 2 H 5, and the other is C The group (1a) which is 4 H 9 is preferred.
 NIR色素(A1)としては、より具体的には、R~Rが、以下の表1に示される化合物(表1には、そのNIR色素(A1)としての略号を併せて示す。)が挙げられる。表1において、R~Rは、式が示された基である場合、式の記号を示す。表1に示す全ての化合物において、R~Rは式の左右で全て同一である。 More specifically, as NIR dye (A1), R 1 to R 4 are compounds shown in the following Table 1 (Table 1 also shows abbreviations as NIR dye (A1)). Is mentioned. In Table 1, R 1 to R 4 represent formula symbols when the formula is a group shown. In all the compounds shown in Table 1, R 1 to R 4 are all the same on the left and right sides of the formula.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 NIR色素(A2)は、以下の式(A2)で示される。 NIR dye (A2) is represented by the following formula (A2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(A2)において、Rは、式(A1)におけるRと好ましい態様を含めて同様にできる。また、Rは、式(A1)におけるRと好ましい態様を含めて同様である。さらに、式(A2)におけるRおよびRは、式(A1)におけるRおよびRと好ましい態様を含めて同様である。 In the formula (A2), R 5 can be the same as R 1 in the formula (A1), including preferred embodiments. R 6 is the same as R 2 in formula (A1), including preferred embodiments. Furthermore, R 7 and R 8 in formula (A2) are the same as R 3 and R 4 in formula (A1), including preferred embodiments.
 NIR色素(A2)としては、より具体的には、R~Rが、以下の表2に示される化合物(表2には、そのNIR色素(A2)としての略号を併せて示す。)が挙げられる。表2において、R~Rは、式が示された基である場合、式の記号を示す。表2に示す全ての化合物において、R~Rは、式の左右で全て同一である。 More specifically, as NIR dye (A2), R 5 to R 8 are compounds shown in the following Table 2 (Table 2 also shows abbreviations as NIR dye (A2)). Is mentioned. In Table 2, R 5 to R 8 represent formula symbols when the formula is a group shown. In all the compounds shown in Table 2, R 5 to R 8 are all the same on the left and right sides of the formula.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 NIR色素(A1)は、ジクロロメタン溶液中での最大吸収波長λmax(A1)が、概ね600~750nmの範囲にある。NIR色素(A1)は、ジクロロメタン溶液中で最大吸収波長λmax(A1)の光における透過率が10%となるように濃度調整をしたときの、波長418nmの光の透過率および波長482nmの光の透過率は、それぞれ、85%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、94%以上が特に好ましい。 The NIR dye (A1) has a maximum absorption wavelength λ max (A1) in a dichloromethane solution of approximately 600 to 750 nm. The NIR dye (A1) has a light transmittance at a wavelength of 418 nm and a light at a wavelength of 482 nm when the concentration is adjusted so that the transmittance of light having a maximum absorption wavelength λ max (A1) is 10% in a dichloromethane solution. The transmittance is preferably 85% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 94% or more.
 NIR色素(A1)は、ジクロロメタン溶液中での最大吸収波長λmax(A1)を有する吸収ピークの短波長側において分光透過率曲線の傾斜が急峻であることが好ましい。これにより、例えば、NIR色素(A1)を含む吸収層と誘電体多層膜を備える光学フィルタにおいて、誘電体多層膜が本来的に有する光の入射角により吸収波長がシフトする角度依存性の影響を受けることなく、誘電体多層膜の吸光特性を十分に活用でき、結果として近赤外線遮蔽特性に特に優れる光学フィルタとできる。 The NIR dye (A1) preferably has a steep slope of the spectral transmittance curve on the short wavelength side of the absorption peak having the maximum absorption wavelength λ max (A1) in the dichloromethane solution. Thereby, for example, in an optical filter including an absorption layer containing an NIR dye (A1) and a dielectric multilayer film, the influence of the angle dependency that the absorption wavelength is shifted by the incident angle of light inherently possessed by the dielectric multilayer film is affected. Without receiving, the light absorption characteristics of the dielectric multilayer film can be fully utilized, and as a result, an optical filter having particularly excellent near-infrared shielding characteristics can be obtained.
 表1に示すNIR色素(A1)のうちでも、溶解性の観点からは、NIR色素(A1-1)等が好ましい。 Among NIR dyes (A1) shown in Table 1, NIR dye (A1-1) and the like are preferable from the viewpoint of solubility.
 NIR色素(A2)は、ジクロロメタン溶液中での最大吸収波長λmax(A2)が、概ね700~850nmの範囲にある。NIR色素(A2)は、ジクロロメタン溶液中で最大吸収波長λmax(A2)の光における透過率が10%となるように濃度調整をしたときの、波長418nmの光の透過率および波長482nmの光の透過率は、それぞれ、85%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、94%以上が特に好ましい。 The NIR dye (A2) has a maximum absorption wavelength λ max (A2) in a dichloromethane solution of approximately 700 to 850 nm. The NIR dye (A2) has a light transmittance at a wavelength of 418 nm and a light at a wavelength of 482 nm when the concentration is adjusted so that the transmittance of light having a maximum absorption wavelength λ max (A2) is 10% in a dichloromethane solution. The transmittance is preferably 85% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 94% or more.
 NIR色素(A2)は、ジクロロメタン溶液中での最大吸収波長λmax(A2)が上記範囲にあることで、例えば、NIR色素(A2)を含む吸収層と誘電体多層膜を備える光学フィルタにおいて、誘電体多層膜における、入射角にともない高反射率を得るべき近赤外光の一部が高透過率化する光抜けを有効に抑制でき、結果として近赤外線遮蔽特性に特に優れる光学フィルタとすることができる。 The NIR dye (A2) has an absorption layer containing a NIR dye (A2) and a dielectric multilayer film, for example, because the maximum absorption wavelength λ max (A2) in the dichloromethane solution is in the above range. In the dielectric multilayer film, it is possible to effectively suppress the light omission that a part of the near-infrared light to obtain a high reflectivity according to the incident angle increases, and as a result, an optical filter having particularly excellent near-infrared shielding characteristics is obtained. be able to.
 表2に示すNIR色素(A2)のうちでも、溶解性の観点からは、NIR色素(A2-1)等が好ましい。 Among the NIR dyes (A2) shown in Table 2, NIR dyes (A2-1) and the like are preferable from the viewpoint of solubility.
 NIR色素(A1)およびNIR色素(A2)は、有機溶媒に対する溶解性が良好であり、透明樹脂への相溶性も良好である。その結果、吸収層を薄くしても優れた分光透過率特性を有し、光学フィルタを薄型化できるため、加熱による吸収層の熱膨張を抑制できる。そのため、例えば、該吸収層上に積層する反射層や、反射防止層等の機能層を形成する際の熱処理時において、それらの層の割れ等の発生を抑制できる。 NIR dye (A1) and NIR dye (A2) have good solubility in organic solvents and good compatibility with transparent resins. As a result, even if the absorption layer is thinned, it has excellent spectral transmittance characteristics and the optical filter can be thinned, so that thermal expansion of the absorption layer due to heating can be suppressed. Therefore, for example, during the heat treatment when forming a functional layer such as a reflection layer or an antireflection layer laminated on the absorption layer, occurrence of cracks or the like of these layers can be suppressed.
 NIR色素(A1)およびNIR色素(A2)は、例えば、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(スクアリン酸)と、スクアリン酸と結合して式(A1)または式(A2)に示す構造を形成可能なチオフェン誘導体とを反応させて製造できる。例えば、NIR色素(A1)およびNIR色素(A2)が左右対称の構造である場合、スクアリン酸1当量に対して上記範囲で所望の構造のチオフェン誘導体2当量を反応させればよい。 The NIR dye (A1) and the NIR dye (A2) are, for example, 3,4-dihydroxy-3-cyclobutene-1,2-dione (squaric acid) and squalic acid bonded to formula (A1) or formula (A2). And a thiophene derivative capable of forming the structure shown in FIG. For example, when the NIR dye (A1) and the NIR dye (A2) have a bilaterally symmetric structure, 2 equivalents of a thiophene derivative having a desired structure may be reacted with 1 equivalent of squaric acid within the above range.
 以下に、具体例として、NIR色素(A1)を得る際の反応経路を示す。下記スキーム(F1)においてスクアリン酸を(s)で示す。スキーム(F1)において、R~Rは、式(A1)におけるR~Rと同様の意味である。 Hereinafter, as a specific example, a reaction route for obtaining the NIR dye (A1) is shown. In the following scheme (F1), squaric acid is represented by (s). In scheme (F1), R 1 ~ R 4 are the same meaning as R 1 ~ R 4 in the formula (A1).
 スキーム(F1)によれば、アミノ基導入位置に臭素原子を有し、β位に所望の置換基(R、R)を有するチオフェン誘導体を出発物質とする。 According to Scheme (F1), a thiophene derivative having a bromine atom at the amino group introduction position and a desired substituent (R 1 , R 2 ) at the β-position is used as a starting material.
 出発物質のチオフェン誘導体に所望の置換基(R、R)を有する3級アミンを反応させ中間体A1-1として、所望の置換基(R、R、NR)を有するチオフェン誘導体を得る。スクアリン酸(s)の1当量に対し、中間体A1-1の2当量を反応させて、NIR色素(A1)を得る。 A thiophene derivative as a starting material is reacted with a tertiary amine having a desired substituent (R 3 , R 4 ), and the intermediate A1-1 has the desired substituent (R 1 , R 2 , NR 3 R 4 ). A thiophene derivative is obtained. By reacting 2 equivalents of Intermediate A1-1 with 1 equivalent of squaric acid (s), NIR dye (A1) is obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 NIR色素(A2)は、下記スキーム(F2)により製造できる。下記スキーム(F2)においてスクアリン酸を(s)で示す。スキーム(F2)において、R~Rは、式(A2)におけるR~Rと同様の意味である。 The NIR dye (A2) can be produced by the following scheme (F2). In the following scheme (F2), squaric acid is represented by (s). In scheme (F2), R 5 ~ R 8 are the same meaning as R 5 ~ R 8 in Formula (A2).
 スキーム(F2)において、β位に所望の置換基(R、R)を有するチエノチオフェン誘導体のアミノ基導入位置にN-ブロモスクシンイミド(NBS)を反応させて臭素原子を導入した中間体A2-1を得る。 In Scheme (F2), intermediate A2 in which a bromine atom was introduced by reacting N-bromosuccinimide (NBS) at the amino group introduction position of a thienothiophene derivative having a desired substituent (R 5 , R 6 ) at the β-position Get -1.
 中間体A2-1に所望の置換基(R、R)を有する3級アミンを反応させ中間体A2-2として、所望の置換基(R、R、NR)を有するチエノチオフェン誘導体を得る。スクアリン酸(s)の1当量に対し、中間体A2-2の2当量を反応させて、NIR色素(A2)を得る。 Intermediate A2-1 is reacted with a tertiary amine having the desired substituent (R 7 , R 8 ), and intermediate A2-2 has the desired substituent (R 5 , R 6 , NR 7 R 8 ). A thienothiophene derivative is obtained. One equivalent of squaric acid (s) is reacted with two equivalents of intermediate A2-2 to give NIR dye (A2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明のNIR色素(A1)およびNIR色素(A2)の用途は特に限定されない。例えば、近赤外光を遮蔽する光学フィルタに適用可能である。 The use of the NIR dye (A1) and NIR dye (A2) of the present invention is not particularly limited. For example, the present invention can be applied to an optical filter that blocks near infrared light.
<光学フィルタ>
 本発明の一実施形態の光学フィルタ(以下、「本フィルタ」ともいう)は、本発明のNIR色素(A1)またはNIR色素(A2)と樹脂とを含有する吸収層を備える。本フィルタにおいて吸収層は、NIR色素(A1)およびNIR色素(A2)から選ばれる2種以上を含有してもよい。以下の説明において、NIR色素(A1)およびNIR色素(A2)から選ばれる1種または2種以上からなるNIR色素をNIR色素(A)という。
<Optical filter>
An optical filter according to an embodiment of the present invention (hereinafter also referred to as “the present filter”) includes an absorption layer containing the NIR dye (A1) or NIR dye (A2) of the present invention and a resin. In this filter, the absorption layer may contain two or more selected from NIR dye (A1) and NIR dye (A2). In the following description, an NIR dye composed of one or more selected from NIR dye (A1) and NIR dye (A2) is referred to as NIR dye (A).
 本フィルタは、上記吸収層に加えて、誘電体多層膜からなる反射層をさらに有してもよい。以下の、説明において「反射層」は、誘電体多層膜からなる反射層を指す。 The filter may further include a reflective layer made of a dielectric multilayer film in addition to the absorbing layer. In the following description, “reflection layer” refers to a reflection layer made of a dielectric multilayer film.
 本フィルタは、透明基板をさらに有してもよい。この場合、吸収層は透明基板の主面上に設けられる。本フィルタが透明基板と吸収層および反射層を有する場合、吸収層および反射層は、透明基板の主面上に設けられる。本フィルタは、吸収層と反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。 This filter may further have a transparent substrate. In this case, the absorption layer is provided on the main surface of the transparent substrate. When this filter has a transparent substrate, an absorption layer, and a reflection layer, an absorption layer and a reflection layer are provided on the main surface of a transparent substrate. This filter may have an absorption layer and a reflective layer on the same main surface of a transparent substrate, and may have on a different main surface. When the absorption layer and the reflection layer are provided on the same main surface, the stacking order is not particularly limited.
 本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。 本 This filter may also have other functional layers. Examples of the other functional layer include an antireflection layer that suppresses visible light transmittance loss. In particular, when the absorption layer has an outermost surface configuration, a visible light transmittance loss due to reflection occurs at the interface between the absorption layer and air. Therefore, an antireflection layer may be provided on the absorption layer.
 次に、図面を用いて本フィルタの構成例について説明する。図1は、吸収層11からなる光学フィルタ10Aを示す断面図である。吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。光学フィルタ10Aにおいて、吸収層11はフィルムや基板の形態を取り得る。 Next, a configuration example of this filter will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an optical filter 10 </ b> A composed of an absorption layer 11. The absorption layer 11 can be comprised by the layer containing NIR pigment | dye (A) and resin. In the optical filter 10A, the absorption layer 11 can take the form of a film or a substrate.
 図2は、吸収層11の一方の主面上に反射層12を備えた光学フィルタ10Bの構成例である。光学フィルタ10Bにおいて、吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。なお、「吸収層11の一方の主面(上)に、反射層12を備える」とは、吸収層11に接触して反射層12が備わる場合に限らず、吸収層11と反射層12との間に、別の機能層が備わる場合も含み、以下の構成も同様である。 FIG. 2 is a configuration example of an optical filter 10B provided with a reflective layer 12 on one main surface of the absorbing layer 11. In the optical filter 10B, the absorption layer 11 can be composed of a layer containing a NIR dye (A) and a resin. The phrase “including the reflective layer 12 on one main surface (upper side) of the absorbing layer 11 is not limited to the case where the reflecting layer 12 is provided in contact with the absorbing layer 11, and the absorbing layer 11, the reflecting layer 12, The following configuration is also the same, including the case where another functional layer is provided in between.
 図3は、透明基板と吸収層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。図4は、透明基板と吸収層と反射層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。光学フィルタ10Cは、透明基板13と透明基板13の一方の主面上に配置された吸収層11を有する。光学フィルタ10Dは、透明基板13と透明基板13の一方の主面上に配置された吸収層11と透明基板13の他方の主面上に設けられた反射層12を有する。光学フィルタ10C、10Dにおいて、吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。 FIG. 3 is a cross-sectional view schematically showing an example of the optical filter of the embodiment having a transparent substrate and an absorption layer. FIG. 4 is a cross-sectional view schematically showing an example of an optical filter according to an embodiment having a transparent substrate, an absorption layer, and a reflection layer. The optical filter 10 </ b> C includes the transparent substrate 13 and the absorption layer 11 disposed on one main surface of the transparent substrate 13. The optical filter 10 </ b> D includes a transparent substrate 13, an absorption layer 11 disposed on one main surface of the transparent substrate 13, and a reflective layer 12 provided on the other main surface of the transparent substrate 13. In the optical filters 10C and 10D, the absorption layer 11 can be composed of a layer containing the NIR dye (A) and a resin.
 図5は、透明基板13の一方の主面に吸収層11を備え、透明基板13の他方の主面上および吸収層11の主面上に、反射層12aおよび12bを備えた光学フィルタ10Eの構成例である。図6は、透明基板13の両主面に吸収層11aおよび11bを備え、さらに吸収層11aおよび11bの主面上に、反射層12aおよび12bを備えた光学フィルタ10Fの構成例である。 FIG. 5 shows an optical filter 10E having an absorption layer 11 on one main surface of the transparent substrate 13, and reflection layers 12a and 12b on the other main surface of the transparent substrate 13 and on the main surface of the absorption layer 11. It is a structural example. FIG. 6 is a configuration example of an optical filter 10F that includes absorption layers 11a and 11b on both main surfaces of the transparent substrate 13, and further includes reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
 図5および図6において、組み合わせる2層の反射層12a、12bは、同一でも異なってもよい。例えば、反射層12a、12bは、紫外光および近赤外光を反射し、可視光を透過する特性を有し、反射層12aが、紫外光と第1の近赤外域の光を反射し、反射層12bが、紫外光と第2の近赤外域の光を反射する構成でもよい。 5 and 6, the two reflecting layers 12a and 12b to be combined may be the same or different. For example, the reflective layers 12a and 12b have a property of reflecting ultraviolet light and near infrared light and transmitting visible light, and the reflective layer 12a reflects ultraviolet light and light in the first near infrared region, The reflection layer 12b may be configured to reflect ultraviolet light and second near-infrared light.
 また、図6において、2層の吸収層11aと11bは、同一でも異なってもよい。吸収層11aと11bが異なる場合、例えば、吸収層11aと11bが、各々、近赤外線吸収層と紫外線吸収層の組合せでもよく、紫外線吸収層と近赤外線吸収層の組合せでもよい。該近赤外線吸収層は、NIR色素(A)と樹脂とを含有する層で構成できる。 In FIG. 6, the two absorption layers 11a and 11b may be the same or different. When the absorption layers 11a and 11b are different, for example, the absorption layers 11a and 11b may be a combination of a near infrared absorption layer and an ultraviolet absorption layer, or may be a combination of an ultraviolet absorption layer and a near infrared absorption layer. The near-infrared absorbing layer can be composed of a layer containing a NIR dye (A) and a resin.
 図7は、図4に示す光学フィルタ10Dの吸収層11の主面上に反射防止層14を備えた光学フィルタ10Gの構成例である。反射防止層14は、吸収層11の最表面だけでなく、吸収層11の側面全体も覆う構成でもよい。その場合、吸収層11の防湿の効果を高められる。 FIG. 7 is a configuration example of an optical filter 10G including an antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10D shown in FIG. The antireflection layer 14 may cover not only the outermost surface of the absorption layer 11 but also the entire side surface of the absorption layer 11. In that case, the moisture-proof effect of the absorption layer 11 can be enhanced.
 以下、吸収層、反射層、透明基板および反射防止層について説明する。
(吸収層)
 吸収層はNIR色素(A)を含有する。吸収層は、本発明の効果を阻害しない範囲であれば、さらにNIR色素(A)以外のNIR色素(以下、その他のNIR色素という。)を含有してよい。
Hereinafter, the absorption layer, the reflective layer, the transparent substrate, and the antireflection layer will be described.
(Absorption layer)
The absorption layer contains the NIR dye (A). The absorbing layer may further contain an NIR dye other than the NIR dye (A) (hereinafter referred to as other NIR dye) as long as the effect of the present invention is not impaired.
 吸収層中におけるNIR色素(A)の含有量は、NIR色素(A)とその他のNIR色素との合計量で樹脂100質量部に対して、0.1~30質量部が好ましい。0.1質量部以上で所望の近赤外線吸収能が得られ、30質量部以下で、近赤外線吸収能の低下やヘイズ値の上昇等が抑制される。また、NIR色素(A)とその他のNIR色素の合計の含有量は、0.5~25質量部がより好ましく、1~20質量部がさらに好ましい。 The content of the NIR dye (A) in the absorbing layer is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin as the total amount of the NIR dye (A) and other NIR dyes. Desirable near infrared absorptivity is obtained at 0.1 parts by mass or more, and decrease in near infrared absorptivity and increase in haze value are suppressed at 30 parts by mass or less. The total content of the NIR dye (A) and other NIR dyes is more preferably 0.5 to 25 parts by mass, and further preferably 1 to 20 parts by mass.
 その他のNIR色素としては、その最大吸収波長が660~1100nmの範囲にあり、該最大吸収波長とNIR色素(A)の最大吸収波長λmax(A)との間に所定の差があるものが好ましい。両者の最大吸収波長の差は、30nm以上が好ましく、50nm以上がより好ましく、80nm以上がさらに好ましく、100nm以上が特に好ましい。 Other NIR dyes have a maximum absorption wavelength in the range of 660 to 1100 nm, and there is a predetermined difference between the maximum absorption wavelength and the maximum absorption wavelength λ max (A) of the NIR dye (A). preferable. The difference between the maximum absorption wavelengths of both is preferably 30 nm or more, more preferably 50 nm or more, further preferably 80 nm or more, and particularly preferably 100 nm or more.
 その他のNIR色素としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、およびNIR色素(A)以外のスクアリリウム系化合物が挙げられる。その他のNIR色素は1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Other NIR dyes include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, indophenol compounds, And squarylium compounds other than the NIR dye (A). Other NIR dyes may be used alone or in combination of two or more.
 吸収層は、NIR色素(A)と樹脂を含有し、典型的には、樹脂中にNIR色素(A)が均一に溶解または分散した層または(樹脂)基板である。樹脂は、通常、透明樹脂であり、吸収層は、NIR色素(A)以外にその他のNIR色素を含有してもよい。さらに、吸収層は、NIR色素以外の色素、特にはUV色素を含有してもよい。 The absorption layer contains a NIR dye (A) and a resin, and is typically a layer or (resin) substrate in which the NIR dye (A) is uniformly dissolved or dispersed in the resin. The resin is usually a transparent resin, and the absorption layer may contain other NIR dyes in addition to the NIR dye (A). Further, the absorption layer may contain a dye other than the NIR dye, particularly a UV dye.
 UV色素は、具体例に、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。この中でも、オキサゾール系、メロシアニン系の色素が好ましい。また、UV色素は、吸収層に1種を単独で用いてもよく、2種以上を併用してもよい。 Specific examples of UV dyes include oxazole, merocyanine, cyanine, naphthalimide, oxadiazole, oxazine, oxazolidine, naphthalic acid, styryl, anthracene, cyclic carbonyl, and triazole. Pigments. Among these, oxazole-based and merocyanine-based dyes are preferable. Moreover, UV dye may be used individually by 1 type for an absorption layer, and may use 2 or more types together.
 透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Transparent resins include acrylic resin, epoxy resin, ene / thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide Examples thereof include resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins. These resins may be used alone or in combination of two or more.
 上記透明樹脂は、透明性、NIR色素(A)の溶解性、ならびに耐熱性の観点からは、ガラス転移点(Tg)の高い樹脂が好ましい。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリアリレート樹脂、ポリイミド樹脂、およびエポキシ樹脂から選ばれる1種以上が好ましく、ポリエステル樹脂、ポリイミド樹脂から選ばれる1種以上がより好ましい。 The transparent resin is preferably a resin having a high glass transition point (Tg) from the viewpoints of transparency, solubility of the NIR dye (A), and heat resistance. Specifically, at least one selected from polyester resins, polycarbonate resins, polyethersulfone resins, polyarylate resins, polyimide resins, and epoxy resins is preferable, and at least one selected from polyester resins and polyimide resins is more preferable. .
 吸収層は、さらに、本発明の効果を損なわない範囲で、密着性付与剤、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を有してもよい。 The absorbing layer is further in the range not impairing the effect of the present invention, adhesion imparting agent, color tone correction dye, leveling agent, antistatic agent, thermal stabilizer, light stabilizer, antioxidant, dispersant, flame retardant, You may have arbitrary components, such as a lubricant and a plasticizer.
 吸収層は、例えば、NIR色素(A)を含む色素と、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記基材は、本フィルタに任意に含まれる透明基板でもよいし、吸収層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。 The absorption layer is prepared by, for example, dissolving or dispersing a dye containing the NIR dye (A), a resin or a raw material component of the resin, and each component blended as necessary, in a solvent, It can be formed by applying it to a substrate, drying it, and curing it as necessary. The base material may be a transparent substrate optionally included in the filter, or may be a peelable base material used only when forming the absorption layer. The solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより吸収層が形成される。また、塗工液が樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。 In addition, the coating liquid may contain a surfactant to improve voids due to fine bubbles, dents due to adhesion of foreign matters, and repelling in the drying process. Furthermore, for example, a dip coating method, a cast coating method, or a spin coating method can be used for coating the coating liquid. An absorption layer is formed by applying the coating liquid onto a substrate and then drying it. Further, when the coating liquid contains a resin raw material component, a curing treatment such as thermosetting or photocuring is further performed.
 また、吸収層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを他の部材に積層し熱圧着等により一体化させてもよい。例えば、本フィルタが透明基板を含む場合、このフィルムを透明基板上に貼着してもよい。 Further, the absorption layer can be manufactured in a film form by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like. For example, when this filter contains a transparent substrate, you may stick this film on a transparent substrate.
 本フィルタは、吸収層を2層以上有してもよい。吸収層が2層以上で構成される場合、各層は同じでも異なってもよい。吸収層が2層以上の構成の場合、一方の層が、NIR色素を含む樹脂からなる近赤外線吸収層、もう一方の層が、UV色素を含む樹脂からなる紫外線吸収層とする例が挙げられる。また、吸収層は、それそのものが基板(樹脂基板)であってもよい。 This filter may have two or more absorption layers. When the absorption layer is composed of two or more layers, each layer may be the same or different. In the case where the absorption layer is composed of two or more layers, an example in which one layer is a near infrared absorption layer made of a resin containing a NIR dye and the other layer is an ultraviolet absorption layer made of a resin containing a UV dye is given. . Further, the absorption layer itself may be a substrate (resin substrate).
 本フィルタにおいて、吸収層の厚さは、0.1~100μmが好ましい。吸収層が複数層からなる場合、各層の合計の厚さは、0.1~100μmが好ましい。厚さが0.1μm未満では、所望の光学特性を十分に発現できないおそれがあり、厚さが100μm超では、層の平坦性が低下し、吸収率の面内バラツキが生じるおそれがある。吸収層の厚さは、0.3~50μmがより好ましい。また、反射層や、反射防止層等の他の機能層を備えた場合、その材質によっては、吸収層が厚すぎると割れ等が生ずるおそれがある。そのため、吸収層の厚さは、0.3~10μmがより好ましい。 In this filter, the thickness of the absorption layer is preferably 0.1 to 100 μm. When the absorption layer is composed of a plurality of layers, the total thickness of each layer is preferably 0.1 to 100 μm. If the thickness is less than 0.1 μm, the desired optical characteristics may not be sufficiently exhibited. If the thickness exceeds 100 μm, the flatness of the layer may be reduced, and the in-plane variation of the absorptance may occur. The thickness of the absorption layer is more preferably 0.3 to 50 μm. Moreover, when other functional layers, such as a reflection layer and an antireflection layer, are provided, depending on the material, if the absorption layer is too thick, cracking or the like may occur. Therefore, the thickness of the absorption layer is more preferably 0.3 to 10 μm.
(透明基板)
 本フィルタにおいて透明基板は任意の構成要素である。本フィルタが透明基板を備える場合、該透明基板の厚さは、0.03~5mmが好ましく、薄型化の点から、0.05~1mmがより好ましい。透明基板の材料としては、可視光を透過するものであれば、ガラスや(複屈折性)結晶、樹脂が利用できる。
(Transparent substrate)
In this filter, the transparent substrate is an optional component. When the filter includes a transparent substrate, the thickness of the transparent substrate is preferably 0.03 to 5 mm, and more preferably 0.05 to 1 mm from the viewpoint of thinning. As a material of the transparent substrate, glass, (birefringent) crystal, or resin can be used as long as it transmits visible light.
 透明基板用のガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型のガラス(近赤外線吸収ガラス基材)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含むものとする。 As glass for transparent substrates, absorption glass (near-infrared absorbing glass substrate) obtained by adding CuO or the like to fluorophosphate glass or phosphate glass, soda lime glass, borosilicate glass, alkali-free glass And quartz glass. The “phosphate glass” includes silicic acid phosphate glass in which a part of the glass skeleton is composed of SiO 2 .
 透明基板がフツリン酸塩系ガラスの場合、具体的にカチオン%表示で、P5+:20~45%、Al3+:1~25%、R:1~30%(但し、Rは、Li、Na、Kのうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)、Cu2+:1~20%、R2+:1~50%(但し、R2+は、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+のうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有するとともに、アニオン%表示で、F:10~65%、O2-:35~90%を含有していることが好ましい。 When the transparent substrate is a fluorophosphate glass, specifically, in terms of cation%, P 5+ : 20 to 45%, Al 3+ : 1 to 25%, R + : 1 to 30% (provided that R + is Li + , Na + , K + , and the value on the left is the sum of the respective contents), Cu 2+ : 1 to 20%, R 2+ : 1 to 50% (however, , R 2+ is at least one of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and the value on the left is the sum of the respective content ratios) and an anion In terms of%, it is preferable to contain F : 10 to 65% and O 2− : 35 to 90%.
 また、透明基板がリン酸塩系ガラスの場合、質量%表示で、P:30~80%、Al:1~20%、RO:0.5~30%、(但し、ROは、LiO、NaO、KOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である。)、CuO:1~12%、RO:0.5~40%(但し、ROは、MgO、CaO、SrO、BaO、ZnOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有することが好ましい。 When the transparent substrate is phosphate glass, P 2 O 5 : 30 to 80%, Al 2 O 3 : 1 to 20%, R 2 O: 0.5 to 30% in terms of mass% ( However, R 2 O is at least one of Li 2 O, Na 2 O, and K 2 O, and the value on the left is the sum of the respective content ratios.), CuO: 1 to 12%, RO: 0.5 to 40% (provided that RO is at least one of MgO, CaO, SrO, BaO, ZnO, and the value on the left is the sum of the respective content ratios. It is preferable to contain a certain).
 市販品を例示すると、NF-50E、NF-50EX、NF-50T、NF-50TX、NF-50GX(AGC(株)製、商品名)等、BG-60、BG-61(以上、ショット社製、商品名)等、CD5000(HOYA(株)製、商品名)等が挙げられる。 Examples of commercially available products include NF-50E, NF-50EX, NF-50T, NF-50TX, NF-50GX (manufactured by AGC Co., Ltd., trade name), BG-60, BG-61 (above, manufactured by SCHOTT Co., Ltd.) CD5000 (manufactured by HOYA, trade name) and the like.
 上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物として、例えば、Fe、MoO、WO、CeO、Sb、V等の1種または2種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。これらの金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe:0.6~5質量部、MoO:0.5~5質量部、WO:1~6質量部、CeO:2.5~6質量部、またはFeとSbの2種をFe:0.6~5質量部+Sb:0.1~5質量部、もしくはVとCeOの2種をV:0.01~0.5質量部+CeO:1~6質量部とすることが好ましい。 The above-described CuO-containing glass may further contain a metal oxide. When the metal oxide contains, for example, one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc., the CuO-containing glass exhibits ultraviolet absorption characteristics. Have. The content of these metal oxides, relative to the CuO-containing glass 100 parts by weight, the Fe 2 O 3, MoO 3, WO 3 and at least one selected from the group consisting of CeO 2, Fe 2 O 3 : 0.6 to 5 parts by mass, MoO 3 : 0.5 to 5 parts by mass, WO 3 : 1 to 6 parts by mass, CeO 2 : 2.5 to 6 parts by mass, or Fe 2 O 3 and Sb 2 O 3 two Fe 2 O 3 of 0.6 to 5 parts + Sb 2 O 3: 0.1 to 5 parts by weight, or V 2 O 5 and the two CeO 2 V 2 O 5: 0.01 ~ 0.5 parts by mass + CeO 2 : 1 to 6 parts by mass is preferable.
 透明基板用の透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Transparent resins for transparent substrates include acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine Examples thereof include oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins. These resins may be used alone or in combination of two or more.
(反射層)
 本フィルタにおいて反射層は任意の構成要素である。反射層は、誘電体多層膜からなり、特定の波長域の光を遮蔽する機能を有する。反射層としては、例えば、可視光を透過し、吸収層の遮光域以外の波長の光を主に反射する波長選択性を有するものが挙げられる。この場合、反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。反射層は、上記特性に限らず、所定の波長域の光を遮蔽する仕様に合わせて適宜設計してよい。
(Reflective layer)
In this filter, the reflective layer is an optional component. The reflective layer is made of a dielectric multilayer film and has a function of shielding light in a specific wavelength range. Examples of the reflective layer include those having wavelength selectivity that transmit visible light and mainly reflect light having a wavelength other than the light shielding area of the absorption layer. In this case, the reflection region of the reflection layer may include a light shielding region in the near infrared region of the absorption layer. The reflective layer is not limited to the above characteristics, and may be appropriately designed according to specifications for shielding light in a predetermined wavelength range.
 本フィルタにおいて反射層を備える場合、NIR色素(A)の最大吸収波長λmax(A)の光における透過率が1%以下の反射特性を有するとよい。これにより、本フィルタは、NIR色素(A)の最大吸収波長λmax(A)において、相乗的に、高い遮光性(高OD値)が得られる。 In the case where the filter includes a reflective layer, the NIR dye (A) preferably has a reflection characteristic in which the transmittance of light having the maximum absorption wavelength λ max (A) is 1% or less. Thereby, this filter synergistically obtains a high light shielding property (high OD value) at the maximum absorption wavelength λ max (A) of the NIR dye (A).
 本フィルタは反射層を1層有してもよく、2層以上有してもよい。反射層が2層以上で構成される場合、各層は同じでも異なってもよい。反射層が2層以上の構成の場合、一方の層が、少なくとも近赤外光を遮蔽する、特には、上記反射特性を有する近赤外線遮蔽層、もう一方の層が、少なくとも紫外光を遮蔽する紫外線遮蔽層とする組合せでもよい。 The filter may have one reflective layer or two or more layers. When the reflective layer is composed of two or more layers, each layer may be the same or different. When the reflective layer has two or more layers, one layer shields at least near-infrared light, in particular, a near-infrared shielding layer having the above-described reflection characteristics, and the other layer shields at least ultraviolet light. A combination to form an ultraviolet shielding layer may be used.
 反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜の材料としては、Ta、TiO、Nbが挙げられる。このうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。低屈折率膜の材料としては、SiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。また、反射層の膜厚は、2~10μmが好ましい。 The reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately stacked. Examples of the material for the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoint of film formability, reproducibility in refractive index, and stability. Examples of the material for the low refractive index film include SiO 2 and SiO x N y . From the viewpoint of reproducibility, stability, economical efficiency, etc. in film formability, SiO 2 is preferable. The thickness of the reflective layer is preferably 2 to 10 μm.
(反射防止層)
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造等が挙げられる。中でも高い光利用効率、生産性の観点から誘電体多層膜の使用が好ましい。
(Antireflection layer)
Examples of the antireflection layer include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Among these, the use of a dielectric multilayer film is preferable from the viewpoint of high light utilization efficiency and productivity.
 本フィルタは、NIR色素(A)を含有する吸収層を有することで、近赤外光に対して優れた遮光性を実現できるとともに、高い可視光透過性を実現できる。本フィルタは、例えば、デジタルスチルカメラ等の撮像装置や環境光センサー等に使用できる。 This filter has an absorption layer containing the NIR dye (A), so that it can realize excellent light shielding properties against near-infrared light and high visible light transmittance. This filter can be used for, for example, an imaging device such as a digital still camera, an ambient light sensor, and the like.
 本フィルタを用いた撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。 An imaging apparatus using the present filter includes a solid-state imaging device, an imaging lens, and the present filter. This filter can be used, for example, disposed between an imaging lens and a solid-state imaging device, or directly attached to a solid-state imaging device, an imaging lens, or the like of an imaging apparatus via an adhesive layer.
 次に、本発明を実施例によりさらに具体的に説明する。まず、例1および例2において、表1および表2にそれぞれ示すNIR色素(A1-1)およびNIR色素(A2-1)を製造した。さらに、例3および例4において、NIR色素(A)と構造の異なる比較例のNIR色素(Acf1)およびNIR色素(Acf2)を製造した。得られたNIR色素の光学特性を測定し評価した。 Next, the present invention will be described more specifically with reference to examples. First, in Examples 1 and 2, NIR dyes (A1-1) and NIR dyes (A2-1) shown in Tables 1 and 2, respectively, were produced. Further, in Examples 3 and 4, comparative NIR dyes (Acf1) and NIR dyes (Acf2) having different structures from the NIR dye (A) were produced. The optical properties of the obtained NIR dye were measured and evaluated.
 また、得られたNIR色素を含有する吸収層を有する光学フィルタの実施例(例5)について説明する。 Also, examples (Example 5) of the obtained optical filter having an absorption layer containing the NIR dye will be described.
 なお、以下の各例において、製造したNIR色素の構造は1H NMRにより確認した。また、NIR色素、これを含む吸収層の光学特性の評価には、紫外可視分光光度計((株)日立ハイテクノロジーズ社製、U-4150形)を用いた。 In each of the following examples, the structure of the produced NIR dye was confirmed by 1H NMR. In addition, an ultraviolet-visible spectrophotometer (manufactured by Hitachi High-Technologies Corporation, model U-4150) was used for evaluating the optical properties of the NIR dye and the absorption layer containing the NIR dye.
[例1]
 以下に示す反応経路にしたがい、NIR色素(A1-1)を合成した。
[Example 1]
The NIR dye (A1-1) was synthesized according to the reaction route shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
<ステップA1-1-1>
 フラスコに2-ブロモチオフェン(2.00g、12.3mmol)、削り状マグネシウム(0.597g、24.6mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(18ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(1.64g、12.3mmol)を窒素雰囲気下で無水トルエン(31ml)に溶解し、ビス-(2-エチルヘキシル)アミン(2.96g、12.3mmol)を加えて、20分間撹拌した。-40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(3.49g、12.3mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(25ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体A1-1-1(1.00g、収率25%)を得た。
<Step A1-1-1>
2-Bromothiophene (2.00 g, 12.3 mmol) and shaved magnesium (0.597 g, 24.6 mmol) were placed in the flask and dissolved in anhydrous tetrahydrofuran (18 ml) under a nitrogen atmosphere. The solution was refluxed for 3 hours and cooled to -40 ° C. In a separate flask, N-chlorosuccinimide (1.64 g, 12.3 mmol) was dissolved in anhydrous toluene (31 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (2.96 g, 12.3 mmol) was added. For 20 minutes. Tetraisopropyl orthotitanate (3.49 g, 12.3 mmol) was added dropwise to the mixed solution cooled to −40 ° C., stirred for 5 minutes, and then mixed with N-chlorosuccinimide and bis- (2-ethylhexyl) amine. The solution was added dropwise. The mixture was stirred at room temperature for 3 hours, and after completion of the reaction, a saturated aqueous potassium carbonate solution (25 ml) was added. Subsequently, the mixture was diluted with ethyl acetate and filtered, and the resulting solution was extracted with ethyl acetate. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A1-1-1 (1.00 g, yield 25%) was obtained by silica gel column chromatography (hexane: triethylamine = 100: 3). Obtained.
<ステップA1-1-2>
 フラスコにステップA1-1-1で得られた中間体A1-1-1(1.00g、3.09mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.176g、1.55mmol)を入れ、窒素雰囲気下でノルマルブタノール(8ml)とトルエン(8ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=20:1)によりNIR色素(A1-1)(0.570g、収率51%)を得た。
<Step A1-1-2>
Into the flask was added intermediate A1-1-1 obtained in step A1-1-1 (1.00 g, 3.09 mmol), 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.176 g, 1 .55 mmol) was added and dissolved in a mixed solution of normal butanol (8 ml) and toluene (8 ml) under a nitrogen atmosphere. The mixture was stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed and NIR dye (A1-1) (0.570 g, yield 51%) was obtained by silica gel chromatography (dichloromethane: methanol = 20: 1). .
[例2]
 以下に示す反応経路にしたがい、NIR色素(A2-1)を合成した。
[Example 2]
The NIR dye (A2-1) was synthesized according to the reaction route shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<ステップA2-1-1>
 フラスコにチエノ[3,2-b]チオフェン(4.00g、28.5mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(28.5ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(5.08g、28.5mmol)を溶かした無水ジメチルホルムアミド溶液(28.5ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体A2-1-1(5.09g、収率81%)を得た。
<Step A2-1-1>
Thieno [3,2-b] thiophene (4.00 g, 28.5 mmol) was placed in the flask and dissolved in anhydrous dimethylformamide (28.5 ml) under a nitrogen atmosphere. The solution was cooled to −15 ° C., and an anhydrous dimethylformamide solution (28.5 ml) in which N-bromosuccinimide (5.08 g, 28.5 mmol) was dissolved was added dropwise. The mixture was stirred at room temperature for 30 minutes and then stirred at 60 ° C. for 5 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A2-1-1 (5.09 g, yield 81%) was obtained by silica gel column chromatography (hexane).
<ステップA2-1-2>
 フラスコにステップA2-1-1で得られた中間体A2-1-1(2.00g、9.13mmol)、削り状マグネシウム(0.440g、18.3mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(13ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(0.490g、3.65mmol)を窒素雰囲気下で無水トルエン(18ml)に溶解し、ビス-(2-エチルヘキシル)アミン(0.880g、3.65mmol)を加えて、20分間撹拌した。
<Step A2-1-2>
A flask was charged with intermediate A2-1-1 (2.00 g, 9.13 mmol) obtained in step A2-1-1 and shaved magnesium (0.440 g, 18.3 mmol), and anhydrous tetrahydrofuran was added under a nitrogen atmosphere. (13 ml). The solution was refluxed for 3 hours and cooled to -40 ° C. In a separate flask, N-chlorosuccinimide (0.490 g, 3.65 mmol) was dissolved in anhydrous toluene (18 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (0.880 g, 3.65 mmol) was added. For 20 minutes.
 -40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.59g、9.13mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(18ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体A2-1-2(0.987g、収率28%)を得た。 Tetraisopropyl orthotitanate (2.59 g, 9.13 mmol) was added dropwise to the mixed solution cooled to −40 ° C. and stirred for 5 minutes, followed by mixing of N-chlorosuccinimide and bis- (2-ethylhexyl) amine. The solution was added dropwise. The mixture was stirred at room temperature for 3 hours, and after completion of the reaction, a saturated aqueous potassium carbonate solution (18 ml) was added. Subsequently, the mixture was diluted with ethyl acetate and filtered, and the resulting solution was extracted with ethyl acetate. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate A2-1-2 (0.987 g, yield 28%) was obtained by silica gel column chromatography (hexane: triethylamine = 100: 3). Obtained.
<ステップA2-1-3>
 フラスコにステップA2-1-2で得られた中間体A2-1-2(0.411g、1.08mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.0617g、0.541mmol)を入れ、窒素雰囲気下でノルマルブタノール(3ml)とトルエン(3ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=50:1)によりNIR色素(A2-1)(0.100g、収率22%)を得た。
<Step A2-1-3>
Into the flask was added intermediate A2-1-2 (0.411 g, 1.08 mmol) obtained in step A2-1-2, 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.0617 g, 0 .541 mmol) was added and dissolved in a mixed solution of normal butanol (3 ml) and toluene (3 ml) under a nitrogen atmosphere. The mixture was stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed and NIR dye (A2-1) (0.100 g, yield 22%) was obtained by silica gel chromatography (dichloromethane: methanol = 50: 1). .
[例3]
 以下に示す反応経路にしたがい、NIR色素(Acf1)を合成した。
[Example 3]
An NIR dye (Acf1) was synthesized according to the reaction route shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<ステップAcf1-1>
 フラスコにジチエノ[3,2-b:2’,3’-d]チオフェン(2.00g、10.2mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(10ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(1.81g、10.2mmol)を溶かした無水ジメチルホルムアミド溶液(10ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)により中間体Acf1-1(2.58g、収率92%)を得た。
<Step Acf1-1>
Dithieno [3,2-b: 2 ′, 3′-d] thiophene (2.00 g, 10.2 mmol) was placed in the flask and dissolved in anhydrous dimethylformamide (10 ml) under a nitrogen atmosphere. The above solution was cooled to −15 ° C., and an anhydrous dimethylformamide solution (10 ml) in which N-bromosuccinimide (1.81 g, 10.2 mmol) was dissolved was added dropwise. The mixture was stirred at room temperature for 30 minutes and then stirred at 60 ° C. for 5 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine and the solvent was removed, and then intermediate Acf1-1 (2.58 g, yield 92%) was obtained by silica gel column chromatography (dichloromethane).
<ステップAcf1-2>
 フラスコにステップAcf1-1で得られた中間体Acf1-1(2.57g、9.34mmol)、削り状マグネシウム(0.450g、18.7mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(13ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(1.25g、9.34mmol)を窒素雰囲気下で無水トルエン(23ml)に溶解し、ビス-(2-エチルヘキシル)アミン(2.26g、9.34mmol)を加えて、20分間撹拌した。
<Step Acf1-2>
The intermediate Acf1-1 (2.57 g, 9.34 mmol) obtained in Step Acf1-1 and ground magnesium (0.450 g, 18.7 mmol) were placed in a flask, and anhydrous tetrahydrofuran (13 ml) was added under a nitrogen atmosphere. Dissolved. The solution was refluxed for 3 hours and cooled to -40 ° C. In a separate flask, N-chlorosuccinimide (1.25 g, 9.34 mmol) was dissolved in anhydrous toluene (23 ml) under a nitrogen atmosphere, and bis- (2-ethylhexyl) amine (2.26 g, 9.34 mmol) was added. For 20 minutes.
 -40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.65g、9.34mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(18ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体Acf1-2(1.02g、収率25%)を得た。 Tetraisopropyl orthotitanate (2.65 g, 9.34 mmol) was added dropwise to the mixed solution cooled to −40 ° C., stirred for 5 minutes, and then mixed with N-chlorosuccinimide and bis- (2-ethylhexyl) amine. The solution was added dropwise. The mixture was stirred at room temperature for 3 hours, and after completion of the reaction, a saturated aqueous potassium carbonate solution (18 ml) was added. Subsequently, the mixture was diluted with ethyl acetate and filtered, and the resulting solution was extracted with ethyl acetate. The obtained organic layer was washed with saturated brine, the solvent was removed, and intermediate Acf1-2 (1.02 g, yield 25%) was obtained by silica gel column chromatography (hexane: triethylamine = 100: 3). .
<ステップAcf1-2>
 フラスコにステップAcf1-2で得られた中間体Acf1-2(1.02g、2.35mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.134g、1.17mmol)を入れ、窒素雰囲気下でノルマルブタノール(6ml)とトルエン(6ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル:トリエチルアミン=100:1:3)により色素(Acf1)(0.569g、収率51%)を得た。
<Step Acf1-2>
Into the flask was added intermediate Acf1-2 (1.02 g, 2.35 mmol) obtained in Step Acf1-2, 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.134 g, 1.17 mmol). And dissolved in a mixed solution of normal butanol (6 ml) and toluene (6 ml) under a nitrogen atmosphere. The mixture was stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed, and the dye (Acf1) (0.569 g, yield 51%) was obtained by silica gel chromatography (hexane: ethyl acetate: triethylamine = 100: 1: 3). Obtained.
[例4]
 以下に示す反応経路にしたがい、NIR色素(Acf2)を合成した。
[Example 4]
An NIR dye (Acf2) was synthesized according to the reaction route shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<ステップAcf2-1>
 フラスコに3-ブロモチエノ[3,2-b]チオフェン(3g、13.7mmmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.0447g、0.0548mmol)を入れ、窒素雰囲気下で0.5Mのイソブチル亜鉛ブロミドのテトラヒドロフロン溶液(41ml、20.6mmol)に溶解して、1昼夜還流撹拌した。反応終了後、飽和塩化アンモニウム水溶液を入れ、ジイソプロピルエーテルで抽出して、有機層を得た。上記有機層を5%の塩酸水溶液で洗い、次いで飽和食塩水で洗って、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-1(2.32g、58%)を得た。
<Step Acf2-1>
To the flask was added 3-bromothieno [3,2-b] thiophene (3 g, 13.7 mmol), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.0447 g, .0. 0548 mmol) was added, dissolved in a 0.5 M solution of isobutylzinc bromide in tetrahydrofuron (41 ml, 20.6 mmol) under a nitrogen atmosphere and stirred at reflux for one day. After completion of the reaction, a saturated aqueous ammonium chloride solution was added and extracted with diisopropyl ether to obtain an organic layer. The organic layer was washed with a 5% aqueous hydrochloric acid solution and then with a saturated saline solution, the solvent was removed, and an intermediate Acf2-1 (2.32 g, 58%) was obtained by silica gel column chromatography (hexane). .
<ステップAcf2-2>
 フラスコにステップAcf2-1で得られた中間体Acf2-1(2.32g、11.8mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(12ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(4.63g、26.0mmol)を溶かした無水ジメチルホルムアミド溶液(12ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-2(3.55g、収率85%)を得た。
<Step Acf2-2>
The intermediate Acf2-1 (2.32 g, 11.8 mmol) obtained in Step Acf2-1 was placed in a flask and dissolved in anhydrous dimethylformamide (12 ml) under a nitrogen atmosphere. The solution was cooled to −15 ° C., and an anhydrous dimethylformamide solution (12 ml) in which N-bromosuccinimide (4.63 g, 26.0 mmol) was dissolved was added dropwise. The mixture was stirred at room temperature for 30 minutes and then stirred at 60 ° C. for 5 hours. After completion of the reaction, the mixture was poured into ice water and extracted with diisopropyl ether. The obtained organic layer was washed with saturated brine and the solvent was removed, and then intermediate Acf2-2 (3.55 g, yield 85%) was obtained by silica gel column chromatography (hexane).
<ステップAcf2-3>
 フラスコに酢酸パラジウム(II)(0.111g、0.0.494mmol)、ナトリウムターシャリーブトキシド(1.92g、20.0mmol)、トリターシャリーブチルホスフィン(0.200g、0.991mmol)を入れ、窒素雰囲気下で無水トルエン(15ml)に溶解した。上記混合溶液を60℃で10分間撹拌して、室温に戻し、4,4’-ジノルマルオクチルジフェニルアミン(3.94g、10.0mmol)とステップAcf2-2で得られた中間体Acf2-2(3.55g、10.0mmol)を無水トルエン(4ml)で溶解した混合溶液を滴下して、3時間還流撹拌した。反応終了後、濾過して得られた濾液から溶媒を除去し、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-3(1.56g、23%)を得た。
<Step Acf2-3>
The flask was charged with palladium (II) acetate (0.111 g, 0.0.494 mmol), sodium tertiary butoxide (1.92 g, 20.0 mmol), tritertiary butylphosphine (0.200 g, 0.991 mmol), Dissolved in anhydrous toluene (15 ml) under nitrogen atmosphere. The above mixed solution was stirred at 60 ° C. for 10 minutes and returned to room temperature, and 4,4′-dinormaloctyldiphenylamine (3.94 g, 10.0 mmol) and the intermediate Acf2-2 obtained in Step Acf2-2 ( A mixed solution in which 3.55 g (10.0 mmol) was dissolved in anhydrous toluene (4 ml) was added dropwise and stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed from the filtrate obtained by filtration, and intermediate Acf2-3 (1.56 g, 23%) was obtained by silica gel column chromatography (hexane).
<ステップAcf2-4>
 フラスコにステップAcf2-3で得られた中間体Acf2-3(1.56g、2.35mmol)、酢酸パラジウム(II)(0.0269g、0.120mmol)、キサントホス(0.102g、0.176mmol)、トリエチルシラン(3.58g、30.8mmol)を入れ、窒素雰囲気下で無水トルエン(23ml)に溶解した。上記混合溶液を7時間還流撹拌した。反応終了後、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン)で中間体Acf2-4(1.16g、84%)を得た。
<Step Acf2-4>
In a flask, intermediate Acf2-3 (1.56 g, 2.35 mmol) obtained in step Acf2-3, palladium (II) acetate (0.0269 g, 0.120 mmol), xanthophos (0.102 g, 0.176 mmol) , Triethylsilane (3.58 g, 30.8 mmol) was added and dissolved in anhydrous toluene (23 ml) under a nitrogen atmosphere. The mixed solution was stirred at reflux for 7 hours. After completion of the reaction, the solvent was removed and intermediate Acf2-4 (1.16 g, 84%) was obtained by silica gel column chromatography (hexane).
<ステップAcf2-5>
 フラスコにステップAcf2-4で得られた中間体Acf2-4(1.16g、1.98mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.113g、0.988mmol)を入れ、窒素雰囲気下でノルマルブタノール(5ml)とトルエン(5ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:ヘキサン=2:1)でNIR色素(Acf2)(0.464g、収率37%)を得た。
<Step Acf2-5>
Into the flask was added intermediate Acf2-4 (1.16 g, 1.98 mmol) obtained in step Acf2-4, 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.113 g, 0.988 mmol). And dissolved in a mixed solution of normal butanol (5 ml) and toluene (5 ml) under a nitrogen atmosphere. The mixture was stirred at reflux for 3 hours. After completion of the reaction, the solvent was removed, and NIR dye (Acf2) (0.464 g, 37% yield) was obtained by silica gel chromatography (dichloromethane: hexane = 2: 1).
[評価]
(ジクロロメタン中の透過率測定)
 上記で得られたNIR色素(A1-1)、(A2-1)、および、NIR色素(Acf1)、(Acf2)をジクロロメタンに溶解して波長400~1000nmの光吸収スペクトルを測定して吸光度曲線から、最大吸収波長λmax(A)DCMを求めた。さらに、ジクロロメタン中の色素濃度を、最大吸収波長λmax(A)DCMでの光の透過率が10%になるように調整した吸光度曲線から、波長418nmの透過率T418(A)DCMおよび波長482nmの透過率T482(A)DCMを求めた。結果を表3に示す。なお、波長418nmと482nmは、測定波長領域でNIR色素(A1-1)とNIR色素(A2-1)の最大吸収波長の次に大きい吸収波長を選び、それぞれ比較した。
[Evaluation]
(Measurement of transmittance in dichloromethane)
The NIR dyes (A1-1), (A2-1), and NIR dyes (Acf1), (Acf2) obtained above were dissolved in dichloromethane, and a light absorption spectrum at a wavelength of 400 to 1000 nm was measured to obtain an absorbance curve. From this, the maximum absorption wavelength λ max (A) DCM was determined. Furthermore, from the absorbance curve in which the dye concentration in dichloromethane was adjusted so that the light transmittance at the maximum absorption wavelength λ max (A) DCM was 10%, the transmittance T 418 (A) DCM and the wavelength at a wavelength of 418 nm were obtained. The transmittance T 482 (A) DCM at 482 nm was determined. The results are shown in Table 3. For the wavelengths 418 nm and 482 nm, absorption wavelengths that were next larger than the maximum absorption wavelength of the NIR dye (A1-1) and NIR dye (A2-1) in the measurement wavelength region were selected and compared.
(樹脂の塗布溶液に対する溶解性)
 上記で得られたNIR色素(A1-1)、(A2-1)および、NIR色素(Acf1)、(Acf2)の透明樹脂の塗布溶液に対する溶解性を評価した。
(Solubility in resin coating solution)
The solubility of the NIR dyes (A1-1) and (A2-1) obtained above and the NIR dyes (Acf1) and (Acf2) in the coating solution of the transparent resin was evaluated.
 すなわち、透明樹脂(ネオプリム(登録商標)C3G30(三菱ガス化学(株)製、商品名、ポリイミド樹脂))をγ-ブチロラクトンとシクロヘキサノンの混合溶液(1:1)に10質量%の濃度で溶解した溶液中に、上記NIR色素を溶解して、樹脂に対する溶解性(質量%)を評価した。結果を表3に示す。 That is, a transparent resin (Neoprim (registered trademark) C3G30 (trade name, polyimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.)) was dissolved in a mixed solution (1: 1) of γ-butyrolactone and cyclohexanone at a concentration of 10% by mass. The NIR dye was dissolved in the solution, and the solubility (mass%) in the resin was evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記評価結果から明らかなように、NIR色素(A1-1)、(A2-1)および、NIR色素(Acf1)、(Acf2)はいずれも近赤外光に対して高い遮光性を有する。また、上記評価結果から、比較例である例3のNIR色素(Acf1)および例4のNIR色素(Acf2)は、可視光透過率および塗布溶液に対する溶解性のいずれかが低いのに比べ、実施例である例1のNIR色素(A1-1)および例2のNIR色素(A2-1)は、可視光透過率が高く、かつ塗布溶液に対して高い溶解性を示すのがわかる。さらに、NIR色素(A1-1)およびNIR色素(A2-1)については、上記試験で得られた塗布溶液を、ガラス板(D263;SCHOTT製、商品名)上に塗布し、乾燥して膜厚1μmの吸収層を得ることができた。 As is clear from the above evaluation results, the NIR dyes (A1-1) and (A2-1) and the NIR dyes (Acf1) and (Acf2) all have a high light shielding property against near-infrared light. In addition, from the above evaluation results, the NIR dye (Acf1) of Example 3 which is a comparative example and the NIR dye (Acf2) of Example 4 were compared to the case where either the visible light transmittance or the solubility in the coating solution was low. It can be seen that the example NIR dye (A1-1) of Example 1 and the NIR dye (A2-1) of Example 2 have high visible light transmittance and high solubility in the coating solution. Further, for NIR dye (A1-1) and NIR dye (A2-1), the coating solution obtained in the above test was applied on a glass plate (D263; manufactured by SCHOTT, trade name) and dried to form a film. An absorption layer having a thickness of 1 μm could be obtained.
[例5]
 図7に示す構成の光学フィルタを以下の方法で製造する。
 透明基板として、CuO含有フツリン酸ガラス(AGC(株)製、商品名:NF-50GX)からなる厚さ0.21mmのガラス基板または、厚さ0.2mmのガラス基板(D263;SCHOTT製、商品名)を用いる。
[Example 5]
The optical filter having the configuration shown in FIG. 7 is manufactured by the following method.
As a transparent substrate, a glass substrate having a thickness of 0.21 mm made of CuO-containing fluorophosphate glass (manufactured by AGC Co., Ltd., trade name: NF-50GX) or a glass substrate having a thickness of 0.2 mm (D263; manufactured by SCHOTT, product) Name).
 反射層としては、以下のとおり形成した誘電体多層膜を用いる。誘電体多層膜は、ガラス基板の一方の主面に、蒸着法により、例えばTiO膜とSiO膜を交互に合計42層積層して形成する。反射層の構成は、誘電体多層膜の積層数、TiO膜の膜厚およびSiO膜の膜厚をパラメータとしてシミュレーションし、入射角0度の分光透過率曲線において、波長850~1100nmの光の平均透過率が0.03%となるように設計する。 As the reflective layer, a dielectric multilayer film formed as follows is used. The dielectric multilayer film is formed by laminating, for example, a total of 42 layers of TiO 2 films and SiO 2 films alternately on one main surface of the glass substrate by vapor deposition. The configuration of the reflection layer is simulated by using the number of dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters. Is designed to have an average transmittance of 0.03%.
 また、ガラス基板の反射層が形成されたのと反対側の主面上に、透明樹脂とNIR色素(A)の1種類または2種類以上を組み合わせて、厚さ約1.0μmの吸収層を形成する。この後、吸収層の表面に、蒸着法により、TiO膜とSiO膜を交互に7層積層して反射防止層を形成し、光学フィルタ(NIRフィルタ)を得る。 In addition, an absorption layer having a thickness of about 1.0 μm is formed on the main surface on the opposite side of the reflective layer of the glass substrate by combining one or more of transparent resin and NIR dye (A). Form. Thereafter, seven layers of TiO 2 films and SiO 2 films are alternately laminated on the surface of the absorption layer by vapor deposition to form an antireflection layer, thereby obtaining an optical filter (NIR filter).
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年5月29日出願の日本特許出願(特願2018-102387)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on May 29, 2018 (Japanese Patent Application No. 2018-102387), the contents of which are incorporated herein by reference.
 本発明の近赤外線吸収色素は、近赤外光に対して優れた遮光性を実現できるとともに、溶媒や樹脂に対する高い溶解性を有することから均質な吸収層の形成が可能であり、近赤外光を遮蔽する光学フィルタに適用可能である。本発明の光学フィルタは撮像装置に適用できる。 The near-infrared absorbing dye of the present invention can realize excellent light-shielding properties for near-infrared light, and can form a homogeneous absorption layer because it has high solubility in solvents and resins. It is applicable to an optical filter that shields light. The optical filter of the present invention can be applied to an imaging apparatus.
 10A,10B,10C,10D,10E,10F,10G…光学フィルタ、11,11a,11b…吸収層、12,12a,12b…反射層、13…透明基板、14…反射防止層。 10A, 10B, 10C, 10D, 10E, 10F, 10G ... optical filter, 11, 11a, 11b ... absorbing layer, 12, 12a, 12b ... reflecting layer, 13 ... transparent substrate, 14 ... antireflection layer.

Claims (11)

  1.  式(A1)で示される化合物からなる近赤外線吸収色素。
    Figure JPOXMLDOC01-appb-C000001
     式(A1)中、
     RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。RおよびRは、互いに連結して、ヘテロ原子を含んでもよい員数3~6の脂環または芳香環を形成してもよく、その場合、該環に結合する水素原子は置換基で置換されていてもよい。
     RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
    A near-infrared absorbing dye comprising a compound represented by the formula (A1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (A1),
    R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, An alkoxy group, an aryl group or an araryl group; R 1 and R 2 may be connected to each other to form a 3 to 6-membered alicyclic or aromatic ring that may contain a hetero atom, in which case the hydrogen atom bonded to the ring is substituted with a substituent. May be.
    R 3 and R 4 may each independently have a substituent, and may be a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
  2.  前記Rは水素原子である請求項1記載の近赤外線吸収色素。 The near-infrared absorbing dye according to claim 1, wherein R 1 is a hydrogen atom.
  3.  式(A2)で示される化合物からなる近赤外線吸収色素。
    Figure JPOXMLDOC01-appb-C000002
     式(A2)中、
     RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。
     RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
    A near-infrared absorbing dye comprising a compound represented by the formula (A2).
    Figure JPOXMLDOC01-appb-C000002
    In formula (A2),
    R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, or an alkyl group which may have a substituent and may contain an unsaturated bond or an oxygen atom between carbon-carbon atoms, An alkoxy group, an aryl group or an araryl group;
    R 7 and R 8 may each independently have a substituent, and may have a linear or branched chain which may contain an unsaturated bond, an oxygen atom, an alicyclic ring or an aromatic ring between carbon-carbon atoms. It is an alkyl group.
  4.  前記Rは水素原子である請求項3記載の近赤外線吸収色素。 The near-infrared absorbing dye according to claim 3, wherein R 5 is a hydrogen atom.
  5.  請求項1~4のいずれか1項に記載の近赤外線吸収色素と樹脂とを含有する吸収層を備えたことを特徴とする光学フィルタ。 An optical filter comprising an absorption layer containing the near-infrared absorbing dye according to any one of claims 1 to 4 and a resin.
  6.  さらに誘電体多層膜を含む反射層を有する請求項5に記載の光学フィルタ。 The optical filter according to claim 5, further comprising a reflective layer including a dielectric multilayer film.
  7.  さらに透明基板を有し、前記透明基板上に前記吸収層を備えた請求項5または6に記載の光学フィルタ。 The optical filter according to claim 5, further comprising a transparent substrate, wherein the absorption layer is provided on the transparent substrate.
  8.  前記透明基板は、ガラスにより構成される請求項7に記載の光学フィルタ。 The optical filter according to claim 7, wherein the transparent substrate is made of glass.
  9.  前記ガラスは、近赤外線吸収ガラスである請求項8に記載の光学フィルタ。 The optical filter according to claim 8, wherein the glass is near-infrared absorbing glass.
  10.  前記透明基板は、樹脂により構成される請求項7に記載の光学フィルタ。 The optical filter according to claim 7, wherein the transparent substrate is made of a resin.
  11.  固体撮像素子と、撮像レンズと、請求項5~10のいずれか1項に記載の光学フィルタとを備えたことを特徴とする撮像装置。 An imaging apparatus comprising: a solid-state imaging device; an imaging lens; and the optical filter according to any one of claims 5 to 10.
PCT/JP2019/020536 2018-05-29 2019-05-23 Near-infrared absorbing dye, optical filter and imaging device WO2019230570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522147A JP7310806B2 (en) 2018-05-29 2019-05-23 Near-infrared absorbing dyes, optical filters and imaging devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102387 2018-05-29
JP2018102387 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019230570A1 true WO2019230570A1 (en) 2019-12-05

Family

ID=68698125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020536 WO2019230570A1 (en) 2018-05-29 2019-05-23 Near-infrared absorbing dye, optical filter and imaging device

Country Status (2)

Country Link
JP (1) JP7310806B2 (en)
WO (1) WO2019230570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085636A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Optical filter
WO2024024700A1 (en) * 2022-07-27 2024-02-01 Agc株式会社 Liquid crystal composition, optical anisotropic film, near infrared ray-absorbing dye

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117201A (en) * 1998-10-15 2001-04-27 Konica Corp Image forming material, heat developable photographic sensitive material, silver halide photographic sensitive material, image forming method, optical filter and substrate for image forming material such as silver halide photographic sensitive material
JP2009015114A (en) * 2007-07-06 2009-01-22 Konica Minolta Business Technologies Inc Electrophotographic toner and image forming method
WO2013047068A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Colored photosensitive composition, color filter and process for producing same, and liquid-crystal display device
WO2017104283A1 (en) * 2015-12-17 2017-06-22 富士フイルム株式会社 Near-infrared absorbent composition, membrane, infrared cut filter, solid-state imaging element, infrared absorbent, and compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117201A (en) * 1998-10-15 2001-04-27 Konica Corp Image forming material, heat developable photographic sensitive material, silver halide photographic sensitive material, image forming method, optical filter and substrate for image forming material such as silver halide photographic sensitive material
JP2009015114A (en) * 2007-07-06 2009-01-22 Konica Minolta Business Technologies Inc Electrophotographic toner and image forming method
WO2013047068A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Colored photosensitive composition, color filter and process for producing same, and liquid-crystal display device
WO2017104283A1 (en) * 2015-12-17 2017-06-22 富士フイルム株式会社 Near-infrared absorbent composition, membrane, infrared cut filter, solid-state imaging element, infrared absorbent, and compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, W ET AL.: "Sensitive Structural Control of Macrocycle Threading by a Fluorescent Squaraine Dye Flanked by Polymer Chains", ORGANIC LETTERS, vol. 17, no. 21, 9 October 2015 (2015-10-09), pages 5268 - 5271, XP055662892 *
MALTESE, V ET AL.: "Electro-optical Properties of Neutral and Radical Ion Thienosquaraines", CHEMISTRY - A EUROPEAN JOURNAL, vol. 22, no. 29, 23 June 2016 (2016-06-23) - 11 July 2016 (2016-07-11), pages 10179 - 10186, XP055662886 *
SHAW, SK ET AL.: "Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups", CHEMISTRY - A EUROPEAN JOURNAL, vol. 23, no. 51, 9 August 2017 (2017-08-09) - 12 September 2017 (2017-09-12), pages 12646 - 12654, XP055662894 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085636A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Optical filter
WO2024024700A1 (en) * 2022-07-27 2024-02-01 Agc株式会社 Liquid crystal composition, optical anisotropic film, near infrared ray-absorbing dye

Also Published As

Publication number Publication date
JP7310806B2 (en) 2023-07-19
JPWO2019230570A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US10745572B2 (en) Squarylium-based dye for near-infrared optical filter
JP6202230B1 (en) Optical filter and imaging device
CN103323897B (en) Selectively light-transmitting filter, resin sheet and solid state image sensor
WO2017135359A1 (en) Near-infrared absorbing dye, optical filter, and image acquisition device
JP7222361B2 (en) Optical filters and imagers
JP7059729B2 (en) Optical filters, near-infrared absorbing dyes and imaging devices
WO2019230570A1 (en) Near-infrared absorbing dye, optical filter and imaging device
WO2022075291A1 (en) Optical filter
JP2019078816A (en) Optical filter and imaging apparatus
JP7031670B2 (en) Near infrared absorber dye, optical filter and image pickup device
JP7456295B2 (en) Squarylium compounds, optical filters, imaging devices
WO2019230660A1 (en) Near-infrared-absorbing colorant, optical filter, and imaging device
WO2019151348A1 (en) Optical filter and imaging device
JPWO2020129909A1 (en) Optical filters, imaging devices and optical sensors
JP7459709B2 (en) optical filter
WO2022024942A1 (en) Optical filter
WO2020255927A1 (en) Optical filter, imaging device, and optical sensor
JP7392381B2 (en) Optical filters and imaging devices
WO2022085636A1 (en) Optical filter
WO2022034739A1 (en) Optical filter
WO2022181422A1 (en) Optical filter
JP2022077314A (en) Optical filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810325

Country of ref document: EP

Kind code of ref document: A1