WO2022034739A1 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
WO2022034739A1
WO2022034739A1 PCT/JP2021/022940 JP2021022940W WO2022034739A1 WO 2022034739 A1 WO2022034739 A1 WO 2022034739A1 JP 2021022940 W JP2021022940 W JP 2021022940W WO 2022034739 A1 WO2022034739 A1 WO 2022034739A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
dye
less
group
wavelength range
Prior art date
Application number
PCT/JP2021/022940
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 塩野
崇 長田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022542588A priority Critical patent/JPWO2022034739A1/ja
Priority to CN202180055527.2A priority patent/CN116075751A/en
Publication of WO2022034739A1 publication Critical patent/WO2022034739A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • An image sensor using a solid-state image sensor has optics that transmit light in the visible band (visible light) and block light in the near-infrared region (near-infrared light) in order to reproduce color tones well and obtain clear images.
  • a filter is used.
  • an optical filter for example, a near-infrared light cut filter in which a base material containing a dye and a resin and a dielectric multilayer film is provided on a glass substrate is known.
  • the number of layers having at least a layer made of resin A (layer A) and a layer made of resin B (layer B) is 30 or more.
  • an optical filter comprising the laminated film of the above, having an average reflectance of 60% or more in the near infrared band having a wavelength of 850 to 1000 nm, and satisfying the following formulas a and b.
  • This filter satisfies all of the following (i-1) to (i-9).
  • (I-1) In the spectral transmittance curve with an incident angle of 0 °, It has a maximum value of 1 (0 deg) in the wavelength range of 430 nm or more and less than 490 nm. It has a maximum value of 2 (0 deg) in the wavelength range of 490 nm or more and less than 590 nm. It has a maximum value of 3 (0 deg) in the wavelength range of 590 nm or more and less than 650 nm.
  • the wavelength range of the minimum value 1 (30 deg) or the wavelength range in which the transmittance is 1% or less is preferably 400 nm or more and less than 430 nm, and more preferably 410 nm or more and less than 420 nm.
  • the wavelength range of the minimum value 2 (30 deg) or the wavelength range in which the transmittance is 1% or less is preferably 450 nm or more and less than 530 nm, and more preferably 460 nm or more and less than 520 nm.
  • the average transmittance (30 deg) is preferably 1% or less, more preferably 0.5% or less, still more preferably 0.2% or less.
  • wavelength ⁇ 1 (0deg) , wavelength ⁇ 1 (30deg) , wavelength ⁇ 2 (0deg) , wavelength ⁇ 2 (30deg) , wavelength ⁇ 3 (0deg) , wavelength ⁇ 3 (30deg) , wavelength ⁇ 4 (0deg) , wavelength ⁇ 4 ( 30deg). ) Is a value obtained by the following formula.
  • this filter reduces the change in the amount of light in the RGB band due to the incident angle.
  • IR80b (dye 4) -IR10 (dye 4) is preferably 79 nm or less, more preferably 77 nm or less.
  • the dye A has an absorption maximum wavelength in a wavelength range of 400 nm or more and less than 700 nm in the spectral transmittance curve of the coating film obtained by dissolving the dye A in a resin and applying the dye A on a glass substrate.
  • the dye 3 In the spectral transmittance curve of the coating film obtained by dissolving the dye 3 in the resin and coating the glass substrate, the dye 3 has an absorption maximum wavelength in a wavelength range of 540 nm or more and less than 600 nm. .. (Ii-4) In the spectral transmittance curve of the coating film obtained by dissolving the dye 4 in the resin and coating the glass substrate, the dye 4 has an absorption maximum wavelength in a wavelength range of 600 nm or more and less than 720 nm. ..
  • the dye 1 preferably has an absorption maximum wavelength in the wavelength range of 395 nm or more and less than 430 nm, and more preferably has an absorption maximum wavelength in the wavelength range of 395 nm or more and less than 420 nm.
  • the dye 2 preferably has an absorption maximum wavelength in a wavelength range of 460 nm or more and less than 530 nm, and more preferably has an absorption maximum wavelength in a wavelength range of 470 nm or more and less than 520 nm.
  • the resin layer When the resin layer has dye 1, dye 2, dye 3, dye 4, and resin, the resin layer preferably satisfies all of the following (iii-1) to (iii-3).
  • the wavelength range of the maximum value 10 is preferably 430 nm or more and less than 480 nm, and more preferably 430 nm or more and less than 455 nm.
  • the wavelength range of the maximum value 11 is preferably 490 nm or more and less than 550 nm, and more preferably 500 nm or more and less than 540 nm.
  • the wavelength range of the maximum value 12 is preferably 590 nm or more and less than 640 nm, and more preferably 590 nm or more and less than 630 nm.
  • the maximum value among the maximum value 10, the maximum value 11 and the maximum value 12 is preferably 55% or more, more preferably 60% or more.
  • the dye 1 is preferably a compound represented by the following formula (1).
  • R 1 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • substituent an alkoxy group, an acyl group, an acyloxy group, a cyano group, a dialkylamino group or a chlorine atom is preferable.
  • the alkoxy group, acyl group, acyloxy group and dialkylamino group preferably have 1 to 6 carbon atoms.
  • R 1 is an alkyl group having 1 to 6 carbon atoms in which a part of the hydrogen atom may be substituted with a cycloalkyl group or a phenyl group.
  • Particularly preferable Q 1 is an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a t-butyl group. Be done.
  • R 2 to R 5 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • At least one of R 2 and R 3 is preferably an alkyl group, and it is more preferable that both are alkyl groups. When R 2 and R 3 are not alkyl groups, a hydrogen atom is more preferred. As R 2 and R 3 , an alkyl group having 1 to 6 carbon atoms is particularly preferable.
  • R8 and R9 each independently represent a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • R 10 to R 19 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • R 8 to R 19 examples include the same substituents as the substituents in R 1 , and the preferred embodiments are also the same.
  • R 8 to R 19 are hydrocarbon groups having no substituent, the same embodiment as that of R 1 having no substituent can be mentioned.
  • both R 10 and R 11 are more preferably alkyl groups having 1 to 6 carbon atoms, and particularly preferably the same alkyl group.
  • the alkyl group may be linear or branched, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an unsubstituted alkyl group such as a methyl group, an ethyl group, a propyl group or a t-butyl group.
  • the compound (3) may have the same group having two pyrrole rings or different groups, but preferably the group having two pyrrole rings is the same and is a symmetrical squarylium system. It is preferably a compound.
  • the compound (3) include compounds in which the atom or group bonded to each skeleton is the atom or group shown in the table below.
  • the dye 4 is preferably a compound represented by the following formula (4).
  • Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
  • R 37 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • R 24 is preferably -NH-SO 2 -R 30 from the viewpoint of increasing the transmittance of visible light, particularly the transmittance of light having a wavelength of 430 to 550 nm.
  • the base material is preferably a resin base material containing dye A and a resin. Further, the resin base material can further contain a UV dye.
  • the base material preferably has a structure in which a resin layer containing the dye A and the resin is laminated on at least one main surface of the support. At this time, the support is preferably made of the transparent resin or the transparent inorganic material. Further, the resin layer can further contain a UV dye.
  • the transparent inorganic material glass or a crystalline material is preferable.
  • the glass include absorbent glass (near infrared absorber glass) containing copper ions in fluoride-based glass, phosphate-based glass and the like, soda lime glass, borosilicate glass, non-alkali glass, quartz glass and the like. ..
  • absorbent glass is preferable depending on the purpose, and phosphate-based glass and fluoride-based glass are preferable from the viewpoint of absorbing infrared light.
  • phosphate-based glass also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
  • an inorganic material is preferable, and glass and sapphire are particularly preferable, from the viewpoint of shape stability related to long-term reliability such as optical properties and mechanical properties, and handleability at the time of filter manufacturing.
  • the base material is a resin base material having a single-layer structure containing a transparent resin and dye A
  • it can be produced by, for example, the following method.
  • the resin base material can be produced by melt-extruding a transparent resin or a mixture of a transparent resin and an arbitrary component and molding it into a film. Further, a transparent resin and, if necessary, an arbitrary component are dissolved in a solvent to prepare a coating liquid, which is applied to a peelable base material for producing a resin base material to a desired thickness, dried, and further. After curing, if necessary, the resin base material can be peeled off from the base material for production.
  • the solvent used for the coating liquid may be a dispersion medium capable of stably dispersing the transparent resin or a solvent capable of dissolving the transparent resin.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repellency in the drying step, and the like. Further, for the coating of the coating liquid, for example, a dip coating method, a cast coating method, a die coating method, a spin coating method and the like can be used.
  • the thickness of the resin layer is preferably 0.3 to 15 ⁇ m. ..
  • the total thickness of the resin layers is preferably 0.3 to 15 ⁇ m.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like.
  • a dip coating method, a cast coating method, a spin coating method or the like can be used for the coating of the coating liquid.
  • a resin layer is formed by applying the above coating liquid onto a substrate and then drying it.
  • further curing treatment such as heat curing and photocuring is performed.
  • the resin layer can be manufactured in the form of a film by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like.
  • this film may be attached on a support.
  • This filter may have one resin layer or two or more layers. When the filter has two or more resin layers, each layer may have the same configuration or may be different.
  • the thickness of the base material is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, from the viewpoint of reducing the height of the filter.
  • the thickness of the base material is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more from the viewpoint of process handling.
  • This filter has a dielectric multilayer film.
  • the dielectric multilayer film is laminated as an outermost layer on at least one main surface side of the base material.
  • the dielectric multilayer film When the dielectric multilayer film is laminated as the outermost layer on both main surface sides of the substrate, at least one of the dielectric multilayer films is designed as a near-infrared reflective layer (hereinafter, also referred to as NIR reflective layer). Is preferable.
  • the other side of the dielectric multilayer film is preferably designed as a NIR reflective layer, a reflective layer having a reflective region other than the near infrared region, or an antireflection layer.
  • the base material has a single-layer structure, it is preferable to form NIR reflective layers on both sides of the base material from the viewpoint of preventing warping.
  • the NIR reflective layer is a dielectric multilayer film designed to shield light in the near infrared region.
  • the NIR reflective layer has, for example, wavelength selectivity that transmits visible light and mainly reflects light in the near infrared region other than the light shielding region of the absorption layer.
  • the reflection region of the NIR reflection layer may include a light-shielding region in the near-infrared region of the absorption layer.
  • the NIR reflection layer is not limited to the NIR reflection characteristic, and may be appropriately designed to have specifications for further blocking light in a wavelength range other than the near infrared region, for example, the near ultraviolet region.
  • the low refractive index film preferably has a refractive index of less than 1.6, more preferably 1.45 or more and less than 1.55.
  • the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy and the like in terms of film forming property.
  • the transmittance of the NIR reflective layer changes sharply in the boundary wavelength region between the transmissive region and the light-shielding region.
  • the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 or more, more preferably 25 or more, and even more preferably 30 or more.
  • the total number of layers is preferably 100 layers or less, more preferably 75 layers or less, and even more preferably 60 layers or less.
  • the film thickness of the reflective layer is preferably 2 to 10 ⁇ m as a whole.
  • the antireflection layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Of these, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity.
  • the antireflection layer is obtained by alternately laminating dielectric films like the reflection layer.
  • the dielectric multilayer film satisfies all of the following (vi-1) to (vi-7) in the spectral transmittance curve of the incident angle of 5 ° and the spectral transmittance curve of 30 °.
  • (Vi-1) The average reflectance of light having a wavelength of 430 nm or more and less than 490 nm is 30% or less.
  • (Vi-2) The average reflectance of light having a wavelength of 490 nm or more and less than 590 nm is 30% or less.
  • Vi-3) The average reflectance of light having a wavelength of 590 nm or more and less than 650 nm is 30% or less.
  • the average transmittance is preferably 18% or less, more preferably 15% or less.
  • the internal transmittance at a wavelength of 350 nm to 1200 nm was calculated based on the following formula.
  • Internal transmittance ⁇ T 0 deg / (100-R 5 deg ) ⁇ x 100
  • T 0 deg means the measured transmittance of 0 °
  • R 5 deg means the reflectance of 5 °.
  • Test Example 1a-1 The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 5. The results are shown in Table 5.
  • IR80a The longest wavelength with an internal transmittance of 80% in the wavelength range of 450 nm or more and less than 540 nm
  • IR80b The shortest wavelength with an internal transmittance of 80% in the wavelength range of 450 nm or more and less than 540 nm
  • IR10 Wavelength of 450 nm or more and less than 540 nm Wavelength with internal transmittance of 10% in the range
  • Test Example 1a-1 The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 6. The results are shown in Table 6.
  • Test Example 1a-1 The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 7. The results are shown in Table 7.
  • IR80a The longest wavelength with an internal transmittance of 80% in the wavelength range of 600 nm or more and less than 720 nm
  • IR80b The shortest wavelength with an internal transmittance of 80% in the wavelength range of 600 nm or more and less than 720 nm
  • IR10 Wavelength of 600 nm or more and less than 720 nm Wavelength with internal transmittance of 10% in the range
  • the obtained coated film was measured for transmission spectroscopy in the incident direction at 0 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with an ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. The results are shown in Table 8.
  • Test Example 3 A 48-layer dielectric multilayer film composed of SiO 2 and TiO 2 was formed on D263 (alkaline glass) manufactured by Schott by vapor deposition. The obtained dielectric multilayer film is measured for transmission spectroscopy in the incident direction of 5 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with the ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. did. The results are shown in Table 9.
  • Test Example 4 ⁇ Test Example 4-1 (Example)> Dye compound 1-2 (2% by mass), Dye compound 2-5 (2.8% by mass), Dye compound 3-3 (2.5% by mass), Dye compound 4-2 (4.5% by mass), C-3G30G (manufactured by Mitsubishi Gas Chemicals, polyimide varnish) diluted with cyclohexanone was mixed, and the dye compound and the polyimide resin solution were sufficiently dissolved to obtain a resin solution.
  • the dielectric multilayer film obtained in Test Example 3 was formed by thin film deposition on D263 (alkaline glass, thickness 0.2 mm) manufactured by Schott.
  • a resin solution obtained by using a spin coat is applied to D263 (alkaline glass) on which a dielectric multilayer film is formed, and the coating film is sufficiently heated to remove the organic solvent to obtain a coating film having a thickness of 3 ⁇ m. Made. A seven-layer antireflection film composed of SiO 2 and TiO 2 was formed by thin film deposition on the obtained coating film.
  • the coated film with the antireflection film vapor-deposited is subjected to transmission spectroscopy in the incident direction of 0 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with the ultraviolet visible near infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. It was measured. The results are shown in Table 10.
  • Test Example 4-2 (Example)> The same operation as in Test Example 4-1 was performed except that D263 (alkaline glass) was changed to borosilicate glass (manufactured by AGC) that cuts infrared rays. The results are shown in Table 11 and FIG.
  • Example 4-3> A 34-layer dielectric multilayer film composed of SiO 2 and TiO 2 through which light in the blue band, light in the green band, and light in the red band is transmitted to D263 (alkaline glass, thickness 0.2 mm) manufactured by shotto. A film was formed by vapor deposition.
  • the obtained film was measured for transmission spectroscopy at 0 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with an ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. The results are shown in Table 12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

The present invention relates to an optical filter comprising a base material and a dielectric multilayer film laminated as an outermost layer on at least one main surface side of the base material, wherein the base material has a resin layer including a resin and dye A having an absorption maximum wavelength in a wavelength range of 400 nm or more and less than 700 nm, and has a maximum value in a wavelength range of 430 nm or more and less than 490 nm, a wavelength range of 490 nm or more and less than 590 nm, and a wavelength range of 590 nm or more and less than 650 nm.

Description

光学フィルタOptical filter
 本発明は、光学フィルタに関する。 The present invention relates to an optical filter.
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視帯域の光(可視光)を透過し近赤外域の光(近赤外光)を遮断する光学フィルタが用いられる。光学フィルタとしては、例えば、ガラス基板上に、色素と樹脂を含む基材と、誘電体多層膜とを設けた近赤外光カットフィルタが知られている。 An image sensor using a solid-state image sensor has optics that transmit light in the visible band (visible light) and block light in the near-infrared region (near-infrared light) in order to reproduce color tones well and obtain clear images. A filter is used. As an optical filter, for example, a near-infrared light cut filter in which a base material containing a dye and a resin and a dielectric multilayer film is provided on a glass substrate is known.
 光学フィルタに用いる色素は、フレア現象及びゴースト現象を抑制する観点から、近赤外光の遮光性に優れている近赤外線吸収色素が好ましい。また、近年、複数の帯域(例えば、RGB帯域(赤色帯域、緑色帯域、青色帯域))の光を選択的に透過する光学フィルタが求められている。 The dye used in the optical filter is preferably a near-infrared absorbing dye having excellent light-shielding properties for near-infrared light from the viewpoint of suppressing flare phenomenon and ghost phenomenon. Further, in recent years, there has been a demand for an optical filter that selectively transmits light in a plurality of bands (for example, RGB band (red band, green band, blue band)).
 複数の帯域の光を選択的に透過する光学フィルタとしては、例えば、特許文献1では、樹脂Aからなる層(A層)と樹脂Bからなる層(B層)を少なくとも有する積層数が30以上の積層フィルムを含んでなり、波長850~1000nmの近赤外線帯域の平均反射率が60%以上であり、かつ下記式aおよびbを満たすことを特徴とする光学フィルタが開示されている。 As an optical filter that selectively transmits light in a plurality of bands, for example, in Patent Document 1, the number of layers having at least a layer made of resin A (layer A) and a layer made of resin B (layer B) is 30 or more. There is disclosed an optical filter comprising the laminated film of the above, having an average reflectance of 60% or more in the near infrared band having a wavelength of 850 to 1000 nm, and satisfying the following formulas a and b.
  T(630nm)-T(595nm)≧20%    式a
  T(370nm)≦5%              式b
 ここでT(xnm):波長xnmにおける透過率
T (630 nm) -T (595 nm) ≧ 20% Equation a
T (370 nm) ≤ 5% Equation b
Here T (xnm): Transmittance at wavelength xnm
日本国特開2006-126315号公報Japanese Patent Application Laid-Open No. 2006-126315
 しかしながら、本発明者らの検討によると、特許文献1に記載の光学フィルタは、複数の帯域の光を透過するものの、RGB帯域の光の選択性が小さく改善の余地があった。 However, according to the study by the present inventors, although the optical filter described in Patent Document 1 transmits light in a plurality of bands, the selectivity of light in the RGB band is small and there is room for improvement.
 本発明は、上記従来の実情に鑑みてなされたものであって、RGB帯域の光を選択的に透過し、かつ入射角によるRGB帯域の光量変化が少ない光学フィルタを提供することを解決すべき課題とする。 The present invention has been made in view of the above-mentioned conventional circumstances, and it should be solved to provide an optical filter that selectively transmits light in the RGB band and has a small change in the amount of light in the RGB band depending on the incident angle. Make it an issue.
 本発明の一態様に係る光学フィルタは、下記に存する。
 基材と、前記基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える光学フィルタであって、
 前記基材は、樹脂及び色素Aを含有する樹脂層を有し、
 前記色素Aは、ガラス基板上に、前記色素Aを前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、波長400nm以上700nm未満の範囲に吸収極大波長を有し、
 下記(i-1)~(i-9)を全て満たす、光学フィルタ。
 (i-1)入射角0°の分光透過率曲線において、
 波長430nm以上490nm未満の範囲に極大値1(0deg)を有し、
 波長490nm以上590nm未満の範囲に極大値2(0deg)を有し、
 波長590nm以上650nm未満の範囲に極大値3(0deg)を有する。
 (i-2)入射角30°の分光透過率曲線において、
 波長430nm以上490nm未満の範囲に極大値1(30deg)を有し、
 波長490nm以上590nm未満の範囲に極大値2(30deg)を有し、
 波長590nm以上650nm未満の範囲に極大値3(30deg)を有する。
 (i-3)入射角0°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(0deg)又は透過率が1%以下になる波長範囲を有し、
 波長490nm以上610nm未満の範囲に極小値2(0deg)又は透過率が1%以下になる波長範囲を有する。
 (i-4)入射角30°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(30deg)又は透過率が1%以下になる波長範囲を有し、
 波長490nm以上610nm未満の範囲に極小値2(30deg)又は透過率が1%以下になる波長範囲を有する。
 (i-5)下記式が全て満たされる。
 極大値1(0deg)-極小値1(0deg)≧30%
 極大値2(0deg)-極小値1(0deg)≧30%
 極大値2(0deg)-極小値2(0deg)≧30%
 極大値3(0deg)-極小値2(0deg)≧27%
 (i-6)下記式が全て満たされる。
 極大値1(30deg)-極小値1(30deg)≧30%
 極大値2(30deg)-極小値1(30deg)≧30%
 極大値2(30deg)-極小値2(30deg)≧30%
 極大値3(30deg)-極小値2(30deg)≧27%
 (i-7)入射角0°の分光透過率曲線において、
 波長700~1000nmの範囲における平均透過率(0deg)が5%以下である。
 (i-8)入射角30°の分光透過率曲線において、
 波長700~1000nmの範囲における平均透過率(30deg)が5%以下である。
 (i-9)下記式が全て満たされる。
 0.85≦極大値1(30deg)/極大値1(0deg)≦1.12
 0.85≦極大値2(30deg)/極大値2(0deg)≦1.12
 0.85≦極大値3(30deg)/極大値3(0deg)≦1.12
The optical filter according to one aspect of the present invention is as follows.
An optical filter comprising a base material and a dielectric multilayer film laminated as an outermost layer on at least one main surface side of the base material.
The base material has a resin layer containing a resin and a dye A, and has a resin layer.
The dye A has an absorption maximum wavelength in a wavelength range of 400 nm or more and less than 700 nm in the spectral transmittance curve of the coating film obtained by dissolving the dye A in the resin and applying the dye A on a glass substrate.
An optical filter that satisfies all of the following (i-1) to (i-9).
(I-1) In the spectral transmittance curve with an incident angle of 0 °,
It has a maximum value of 1 (0 deg) in the wavelength range of 430 nm or more and less than 490 nm.
It has a maximum value of 2 (0 deg) in the wavelength range of 490 nm or more and less than 590 nm.
It has a maximum value of 3 (0 deg) in the wavelength range of 590 nm or more and less than 650 nm.
(I-2) In the spectral transmittance curve with an incident angle of 30 °,
It has a maximum value of 1 (30 deg) in the wavelength range of 430 nm or more and less than 490 nm.
It has a maximum value of 2 (30 deg) in the wavelength range of 490 nm or more and less than 590 nm.
It has a maximum value of 3 (30 deg) in the wavelength range of 590 nm or more and less than 650 nm.
(I-3) In the spectral transmittance curve with an incident angle of 0 °, the wavelength range is a minimum value of 1 (0 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
It has a minimum value of 2 (0 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
(I-4) In the spectral transmittance curve with an incident angle of 30 °, the wavelength range is a minimum value of 1 (30 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
It has a minimum value of 2 (30 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
(I-5) All of the following equations are satisfied.
Maxima 1 (0deg) -Maximum 1 (0deg) ≧ 30%
Maxima 2 (0deg) -Maximum 1 (0deg) ≧ 30%
Maxima 2 (0deg) -Maximum 2 (0deg) ≧ 30%
Maxima 3 (0deg) -Maximum 2 (0deg) ≧ 27%
(I-6) All of the following equations are satisfied.
Maxima 1 (30deg) -Maximum 1 (30deg) ≧ 30%
Maxima 2 (30deg) -Maximum 1 (30deg) ≧ 30%
Maxima 2 (30deg) -Maximum 2 (30deg) ≧ 30%
Maxima 3 (30deg) -Maximum 2 (30deg) ≧ 27%
(I-7) In the spectral transmittance curve with an incident angle of 0 °,
The average transmittance (0 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
(I-8) In the spectral transmittance curve with an incident angle of 30 °,
The average transmittance (30 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
(I-9) All of the following equations are satisfied.
0.85 ≤ maximum value 1 (30 deg) / maximum value 1 (0 deg) ≤ 1.12
0.85 ≤ maximum value 2 (30 deg) / maximum value 2 (0 deg) ≤ 1.12
0.85 ≤ maximum value 3 (30 deg) / maximum value 3 (0 deg) ≤ 1.12
 本発明の光学フィルタは、RGB帯域の光を選択的に透過し、かつ入射角によるRGB帯域の光量変化が少ない。 The optical filter of the present invention selectively transmits light in the RGB band, and the change in the amount of light in the RGB band due to the incident angle is small.
図1は、一実施形態の光学フィルタの一例を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment. 図2は、試験例4-2の塗工膜の分光透過率曲線を示す図である。FIG. 2 is a diagram showing a spectral transmittance curve of the coated film of Test Example 4-2.
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
 本明細書において、式(1)で示される化合物を化合物(1)ともいう。他の式で表される化合物も同様である。また、式(1)で表される基を基(1)とも記し、他の式で表される基も同様である。
Hereinafter, embodiments of the present invention will be described.
In the present specification, the near-infrared absorbing dye may be abbreviated as "NIR dye" and the ultraviolet absorbing dye may be abbreviated as "UV dye".
In the present specification, the compound represented by the formula (1) is also referred to as a compound (1). The same applies to compounds represented by other formulas. Further, the group represented by the formula (1) is also referred to as a group (1), and the same applies to the groups represented by other formulas.
 本明細書において、「内部透過率」とは、{実測透過率/(100-反射率)}×100の式で示される、実測透過率から界面反射の影響を引いて得られる透過率である。
 本明細書において、基材又は樹脂層の透過率は、「透過率」と記載されている場合も全て「内部透過率」である。一方、色素をジクロロメタン等の溶媒に溶解して測定される透過率、光学フィルタの透過率は、実測透過率である。
In the present specification, the "internal transmittance" is a transmittance obtained by subtracting the influence of interfacial reflection from the actually measured transmittance, which is represented by the formula {measured transmittance / (100-reflectance)} × 100. ..
In the present specification, the transmittance of the base material or the resin layer is "internal transmittance" even when it is described as "transmittance". On the other hand, the transmittance measured by dissolving the dye in a solvent such as dichloromethane and the transmittance of the optical filter are actually measured transmittances.
 本明細書において、特定の波長域について、透過率が例えば90%以上とは、その全波長域において透過率が90%を下回らない、すなわちその波長域において最小透過率が90%以上であることをいう。同様に、特定の波長域について、透過率が例えば1%以下とは、その全波長域において透過率が1%を超えない、すなわちその波長域において最大透過率が1%以下であることをいう。内部透過率においても同様である。特定の波長域における平均透過率及び平均内部透過率は、該波長域の1nm毎の透過率及び内部透過率の相加平均である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
In the present specification, for a specific wavelength range, for example, a transmittance of 90% or more means that the transmittance does not fall below 90% in the entire wavelength range, that is, the minimum transmittance is 90% or more in the wavelength range. To say. Similarly, for a specific wavelength range, for example, a transmittance of 1% or less means that the transmittance does not exceed 1% in the entire wavelength range, that is, the maximum transmittance is 1% or less in the wavelength range. .. The same applies to the internal transmittance. The average transmittance and the average internal transmittance in a specific wavelength range are arithmetic means of the transmittance and the internal transmittance for each 1 nm in the wavelength range.
In the present specification, "-" representing a numerical range includes an upper and lower limit.
[光学フィルタ]
 図1に示すように、本発明の一実施形態の光学フィルタ10は、基材11と、基材11の少なくとも一方の主面側に最外層として積層された誘電体多層膜12とを備える。基材は、樹脂及び色素Aを含有する樹脂層を有する。
 以下、本発明の一実施形態の光学フィルタを「本フィルタ」と称することがある。
[Optical filter]
As shown in FIG. 1, the optical filter 10 of the embodiment of the present invention includes a base material 11 and a dielectric multilayer film 12 laminated as an outermost layer on at least one main surface side of the base material 11. The base material has a resin layer containing a resin and a dye A.
Hereinafter, the optical filter according to the embodiment of the present invention may be referred to as "the present filter".
 本フィルタは、下記(i-1)~(i-9)を全て満たす。
 (i-1)入射角0°の分光透過率曲線において、
 波長430nm以上490nm未満の範囲に極大値1(0deg)を有し、
 波長490nm以上590nm未満の範囲に極大値2(0deg)を有し、
 波長590nm以上650nm未満の範囲に極大値3(0deg)を有する。
 (i-2)入射角30°の分光透過率曲線において、
 波長430nm以上490nm未満の範囲に極大値1(30deg)を有し、
 波長490nm以上590nm未満の範囲に極大値2(30deg)を有し、
 波長590nm以上650nm未満の範囲に極大値3(30deg)を有する。
 (i-3)入射角0°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(0deg)又は透過率が1%以下になる波長範囲を有し、
 波長490nm以上610nm未満の範囲に極小値2(0deg)又は透過率が1%以下になる波長範囲を有する。
 (i-4)入射角30°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(30deg)又は透過率が1%以下になる波長範囲を有し、
 波長490nm以上610nm未満の範囲に極小値2(30deg)又は透過率が1%以下になる波長範囲を有する。
 (i-5)下記式が全て満たされる。
 極大値1(0deg)-極小値1(0deg)≧30%
 極大値2(0deg)-極小値1(0deg)≧30%
 極大値2(0deg)-極小値2(0deg)≧30%
 極大値3(0deg)-極小値2(0deg)≧27%
 (i-6)下記式が全て満たされる。
 極大値1(30deg)-極小値1(30deg)≧30%
 極大値2(30deg)-極小値1(30deg)≧30%
 極大値2(30deg)-極小値2(30deg)≧30%
 極大値3(30deg)-極小値2(30deg)≧27%
 (i-7)入射角0°の分光透過率曲線において、
 波長700~1000nmの範囲における平均透過率(0deg)が5%以下である。
 (i-8)入射角30°の分光透過率曲線において、
 波長700~1000nmの範囲における平均透過率(30deg)が5%以下である。
 (i-9)下記式が全て満たされる。
 0.85≦極大値1(30deg)/極大値1(0deg)≦1.12
 0.85≦極大値2(30deg)/極大値2(0deg)≦1.12
 0.85≦極大値3(30deg)/極大値3(0deg)≦1.12
This filter satisfies all of the following (i-1) to (i-9).
(I-1) In the spectral transmittance curve with an incident angle of 0 °,
It has a maximum value of 1 (0 deg) in the wavelength range of 430 nm or more and less than 490 nm.
It has a maximum value of 2 (0 deg) in the wavelength range of 490 nm or more and less than 590 nm.
It has a maximum value of 3 (0 deg) in the wavelength range of 590 nm or more and less than 650 nm.
(I-2) In the spectral transmittance curve with an incident angle of 30 °,
It has a maximum value of 1 (30 deg) in the wavelength range of 430 nm or more and less than 490 nm.
It has a maximum value of 2 (30 deg) in the wavelength range of 490 nm or more and less than 590 nm.
It has a maximum value of 3 (30 deg) in the wavelength range of 590 nm or more and less than 650 nm.
(I-3) In the spectral transmittance curve with an incident angle of 0 °, the wavelength range is a minimum value of 1 (0 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
It has a minimum value of 2 (0 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
(I-4) In the spectral transmittance curve with an incident angle of 30 °, the wavelength range is a minimum value of 1 (30 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
It has a minimum value of 2 (30 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
(I-5) All of the following equations are satisfied.
Maxima 1 (0deg) -Maximum 1 (0deg) ≧ 30%
Maxima 2 (0deg) -Maximum 1 (0deg) ≧ 30%
Maxima 2 (0deg) -Maximum 2 (0deg) ≧ 30%
Maxima 3 (0deg) -Maximum 2 (0deg) ≧ 27%
(I-6) All of the following equations are satisfied.
Maxima 1 (30deg) -Maximum 1 (30deg) ≧ 30%
Maxima 2 (30deg) -Maximum 1 (30deg) ≧ 30%
Maxima 2 (30deg) -Maximum 2 (30deg) ≧ 30%
Maxima 3 (30deg) -Maximum 2 (30deg) ≧ 27%
(I-7) In the spectral transmittance curve with an incident angle of 0 °,
The average transmittance (0 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
(I-8) In the spectral transmittance curve with an incident angle of 30 °,
The average transmittance (30 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
(I-9) All of the following equations are satisfied.
0.85 ≤ maximum value 1 (30 deg) / maximum value 1 (0 deg) ≤ 1.12
0.85 ≤ maximum value 2 (30 deg) / maximum value 2 (0 deg) ≤ 1.12
0.85 ≤ maximum value 3 (30 deg) / maximum value 3 (0 deg) ≤ 1.12
 本フィルタは、上記(i-1)~(i-6)を満たすことで、RGB帯域の光を選択的に透過できる。 This filter can selectively transmit light in the RGB band by satisfying the above (i-1) to (i-6).
 (i-1)において、
 極大値1(0deg)の波長範囲は、好ましくは430nm以上480nm未満、より好ましくは430nm以上455nm未満である。
 極大値2(0deg)の波長範囲は、好ましくは490nm以上550nm未満、より好ましくは500nm以上540nm未満である。
 極大値3(0deg)の波長範囲は、好ましくは590nm以上640nm未満、より好ましくは590nm以上630nm未満である。
In (i-1)
The wavelength range of the maximum value 1 (0 deg) is preferably 430 nm or more and less than 480 nm, and more preferably 430 nm or more and less than 455 nm.
The wavelength range of the maximum value 2 (0 deg) is preferably 490 nm or more and less than 550 nm, and more preferably 500 nm or more and less than 540 nm.
The wavelength range of the maximum value 3 (0 deg) is preferably 590 nm or more and less than 640 nm, and more preferably 590 nm or more and less than 630 nm.
 (i-2)において、
 極大値1(30deg)の波長範囲は、好ましくは430nm以上480nm未満、より好ましくは430nm以上455nm未満である。
 極大値2(30deg)の波長範囲は、好ましくは490nm以上550nm未満、より好ましくは500nm以上540nm未満である。
 極大値3(30deg)の波長範囲は、好ましくは590nm以上640nm未満、より好ましくは590nm以上630nm未満である。
In (i-2)
The wavelength range of the maximum value 1 (30 deg) is preferably 430 nm or more and less than 480 nm, and more preferably 430 nm or more and less than 455 nm.
The wavelength range of the maximum value 2 (30 deg) is preferably 490 nm or more and less than 550 nm, and more preferably 500 nm or more and less than 540 nm.
The wavelength range of the maximum value 3 (30 deg) is preferably 590 nm or more and less than 640 nm, and more preferably 590 nm or more and less than 630 nm.
 (i-3)において、
 極小値1(0deg)の波長範囲又は透過率が1%以下になる波長範囲は、好ましくは450nm以上540nm未満、より好ましくは460nm以上530nm未満である。
 極小値2(0deg)の波長範囲又は透過率が1%以下になる波長範囲は、好ましくは500nm以上600nm未満、より好ましくは510nm以上590nm未満である。
In (i-3)
The wavelength range of the minimum value 1 (0 deg) or the wavelength range in which the transmittance is 1% or less is preferably 450 nm or more and less than 540 nm, and more preferably 460 nm or more and less than 530 nm.
The wavelength range of the minimum value 2 (0 deg) or the wavelength range in which the transmittance is 1% or less is preferably 500 nm or more and less than 600 nm, and more preferably 510 nm or more and less than 590 nm.
 (i-4)において、
 極小値1(30deg)の波長範囲又は透過率が1%以下になる波長範囲は、好ましくは400nm以上430nm未満、より好ましくは410nm以上420nm未満である。
 極小値2(30deg)の波長範囲又は透過率が1%以下になる波長範囲は、好ましくは450nm以上530nm未満、より好ましくは460nm以上520nm未満である。
In (i-4)
The wavelength range of the minimum value 1 (30 deg) or the wavelength range in which the transmittance is 1% or less is preferably 400 nm or more and less than 430 nm, and more preferably 410 nm or more and less than 420 nm.
The wavelength range of the minimum value 2 (30 deg) or the wavelength range in which the transmittance is 1% or less is preferably 450 nm or more and less than 530 nm, and more preferably 460 nm or more and less than 520 nm.
 (i-5)において、
 極大値1(0deg)-極小値1(0deg)は、好ましくは35%以上、より好ましくは40%以上である。
 極大値2(0deg)-極小値1(0deg)は、好ましくは32%以上、より好ましくは35%以上である。
 極大値2(0deg)-極小値2(0deg)は、好ましくは32%以上、より好ましくは35%以上である。
 極大値3(0deg)-極小値2(0deg)は、好ましくは30%以上、より好ましくは35%以上である。
In (i-5)
The maximum value 1 (0 deg) -minimum value 1 (0 deg) is preferably 35% or more, more preferably 40% or more.
The maximum value 2 (0 deg) -minimum value 1 (0 deg) is preferably 32% or more, more preferably 35% or more.
The maximum value 2 (0 deg) -minimum value 2 (0 deg) is preferably 32% or more, more preferably 35% or more.
The maximum value 3 (0 deg) -minimum value 2 (0 deg) is preferably 30% or more, more preferably 35% or more.
 (i-6)において、
 極大値1(30deg)-極小値1(30deg)は、好ましくは35%以上、より好ましくは40%以上である。
 極大値2(30deg)-極小値1(30deg)は、好ましくは32%以上、より好ましくは35%以上である。
 極大値2(30deg)-極小値2(30deg)は、好ましくは32%以上、より好ましくは35%以上である。
 極大値3(30deg)-極小値2(30deg)は、好ましくは30%以上、より好ましくは35%以上である。
In (i-6)
The maximum value 1 (30 deg) -minimum value 1 (30 deg) is preferably 35% or more, more preferably 40% or more.
The maximum value 2 (30 deg) -minimum value 1 (30 deg) is preferably 32% or more, more preferably 35% or more.
The maximum value 2 (30 deg) -minimum value 2 (30 deg) is preferably 32% or more, more preferably 35% or more.
The maximum value 3 (30 deg) -minimum value 2 (30 deg) is preferably 30% or more, more preferably 35% or more.
 本フィルタは、上記(i-7)~(i-8)を満たすことで、近赤外光の遮光性に優れる。 This filter is excellent in light-shielding property of near-infrared light by satisfying the above (i-7) to (i-8).
 (i-7)において、
 平均透過率(0deg)は、好ましくは2%以下、より好ましくは0.5%以下、さらに好ましくは0.2%以下である。
In (i-7)
The average transmittance (0 deg) is preferably 2% or less, more preferably 0.5% or less, still more preferably 0.2% or less.
 (i-8)において、
 平均透過率(30deg)は、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.2%以下である。
In (i-8)
The average transmittance (30 deg) is preferably 1% or less, more preferably 0.5% or less, still more preferably 0.2% or less.
 本フィルタは、上記(i-9)を満たすことで、入射角によるRGB帯域の光量変化が少なくなる。 By satisfying the above (i-9), this filter reduces the change in the amount of light in the RGB band due to the incident angle.
 (i-9)において、
 極大値1(30deg)/極大値1(0deg)は、好ましくは0.9以上1.12以下、より好ましくは0.95以上1.05以下である。
 極大値2(30deg)/極大値2(0deg)は、好ましくは0.9以上1.12以下、より好ましくは0.95以上1.05以下である。
 極大値3(30deg)/極大値3(0deg)は、好ましくは0.9以上1.12以下、より好ましくは0.95以上1.05以下である。
In (i-9)
The maximum value 1 (30 deg) / maximum value 1 (0 deg) is preferably 0.9 or more and 1.12 or less, and more preferably 0.95 or more and 1.05 or less.
The maximum value 2 (30 deg) / maximum value 2 (0 deg) is preferably 0.9 or more and 1.12 or less, and more preferably 0.95 or more and 1.05 or less.
The maximum value 3 (30 deg) / maximum value 3 (0 deg) is preferably 0.9 or more and 1.12 or less, and more preferably 0.95 or more and 1.05 or less.
 さらに、本フィルタは、下記式を全て満たすことが好ましい。
 |波長λ1(0deg)-波長λ1(30deg)|≦10nm
 |波長λ2(0deg)-波長λ2(30deg)|≦10nm
 |波長λ3(0deg)-波長λ3(30deg)|≦10nm
 |波長λ4(0deg)-波長λ4(30deg)|≦10nm
Further, it is preferable that this filter satisfies all of the following equations.
| Wavelength λ1 (0 deg) -Wavelength λ1 (30 deg) | ≤10 nm
| Wavelength λ2 (0 deg) -Wavelength λ2 (30 deg) | ≤10 nm
| Wavelength λ3 (0 deg) -Wavelength λ3 (30 deg) | ≤10 nm
| Wavelength λ4 (0 deg) -Wavelength λ4 (30 deg) | ≤10 nm
<式中、波長λ1(0deg)、波長λ1(30deg)、波長λ2(0deg)、波長λ2(30deg)、波長λ3(0deg)、波長λ3(30deg)、波長λ4(0deg)、波長λ4(30deg)は、下記式により求められる値である。
 波長λ1(0deg)={極大値1(0deg)における波長+極小値1(0deg)における波長}÷2
 波長λ1(30deg)={極大値1(30deg)における波長+極小値1(30deg)における波長}÷2
 波長λ2(0deg)={極大値2(0deg)における波長+極小値1(0deg)における波長}÷2
 波長λ2(30deg)={極大値2(30deg)における波長+極小値1(30deg)における波長}÷2
 波長λ3(0deg)={極大値2(0deg)における波長+極小値2(0deg)における波長}÷2
 波長λ3(30deg)={極大値2(30deg)における波長+極小値2(30deg)における波長}÷2
 波長λ4(0deg)={極大値3(0deg)における波長+極小値2(0deg)における波長}÷2
 波長λ4(30deg)={極大値3(30deg)における波長+極小値2(30deg)における波長}÷2>
<In the formula, wavelength λ1 (0deg) , wavelength λ1 (30deg) , wavelength λ2 (0deg) , wavelength λ2 (30deg) , wavelength λ3 (0deg) , wavelength λ3 (30deg) , wavelength λ4 (0deg) , wavelength λ4 ( 30deg). ) Is a value obtained by the following formula.
Wavelength λ1 (0deg) = {wavelength at maximum value 1 (0deg) + wavelength at minimum value 1 (0deg) } ÷ 2
Wavelength λ1 (30deg) = {wavelength at maximum value 1 (30deg) + wavelength at minimum value 1 (30deg) } / 2
Wavelength λ2 (0deg) = {wavelength at maximum value 2 (0deg) + wavelength at minimum value 1 (0deg) } ÷ 2
Wavelength λ2 (30deg) = {wavelength at maximum value 2 (30deg) + wavelength at minimum value 1 (30deg) } ÷ 2
Wavelength λ3 (0deg) = {wavelength at maximum value 2 (0deg) + wavelength at minimum value 2 (0deg) } ÷ 2
Wavelength λ3 (30deg) = {wavelength at maximum value 2 (30deg) + wavelength at minimum value 2 (30deg) } ÷ 2
Wavelength λ4 (0deg) = {wavelength at maximum value 3 (0deg) + wavelength at minimum value 2 (0deg) } ÷ 2
Wavelength λ4 (30deg) = {wavelength at maximum value 3 (30deg) + wavelength at minimum value 2 (30deg) } ÷ 2>
 本フィルタは、上記式を満たすことで、入射角によるRGB帯域の光量変化が少なくなる。 By satisfying the above equation, this filter reduces the change in the amount of light in the RGB band due to the incident angle.
 |波長λ1(0deg)-波長λ1(30deg)|は、好ましくは5nm以下、より好ましくは3nm以下である。
 |波長λ2(0deg)-波長λ2(30deg)|は、好ましくは5nm以下、より好ましくは3nm以下である。
 |波長λ3(0deg)-波長λ3(30deg)|は、好ましくは5nm以下、より好ましくは3nm以下である。
 |波長λ4(0deg)-波長λ4(30deg)|は、好ましくは5nm以下、より好ましくは3nm以下である。
| Wavelength λ1 (0 deg) − Wavelength λ1 (30 deg) | is preferably 5 nm or less, more preferably 3 nm or less.
| Wavelength λ2 (0 deg) − Wavelength λ 2 (30 deg) | is preferably 5 nm or less, more preferably 3 nm or less.
| Wavelength λ3 (0 deg) − Wavelength λ3 (30 deg) | is preferably 5 nm or less, more preferably 3 nm or less.
| Wavelength λ4 (0 deg) − Wavelength λ4 (30 deg) | is preferably 5 nm or less, more preferably 3 nm or less.
 さらに、本フィルタ中の樹脂層が、後述の色素1、後述の色素2、後述の色素3、後述の色素4及び樹脂を有するとき、本フィルタは、下記(iv-1)~(iv-4)を全て満たすことが好ましい。 Further, when the resin layer in the present filter has the dye 1 described later, the dye 2 described later, the dye 3 described later, the dye 4 described later, and the resin, the filter has the following (iv-1) to (iv-4). ) Satisfy all of them.
 (iv-1)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素1を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
  波長395nm以上450nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素1)とし、
  内部透過率が10%となる波長をIR10(色素1)としたとき、下記式が満たされる。
  IR80a(色素1)-IR10(色素1)≦25nm
 (iv-2)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素2を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
  波長450nm以上540nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素2)とし、
  内部透過率が80%となる最も短い波長をIR80b(色素2)とし、
  内部透過率が10%となる波長をIR10(色素2)としたとき、下記式が満たされる。
  IR80a(色素2)-IR10(色素2)≦35nm
  IR80b(色素2)-IR10(色素2)≦55nm
 (iv-3)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素3を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
  波長540nm以上600nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素3)とし、
  内部透過率が80%となる最も短い波長をIR80b(色素3)とし、
  内部透過率が10%となる波長をIR10(色素3)としたとき、下記式が満たされる。
  IR80a(色素3)-IR10(色素3)≦35nm
  IR80b(色素3)-IR10(色素3)≦55nm
 (iv-4)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素4を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
  波長600nm以上720nm未満の範囲において内部透過率が80%となる最も短い波長をIR80b(色素4)とし、
  内部透過率が10%となる波長をIR10(色素4)としたとき、下記式が満たされる。
  IR80b(色素4)-IR10(色素4)≦80nm
(Iv-1) In the spectral transmittance curve of the coating film coated by dissolving the dye 1 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
IR80a (dye 1) is the longest wavelength with an internal transmittance of 80% in the wavelength range of 395 nm or more and less than 450 nm.
When the wavelength at which the internal transmittance is 10% is IR10 (dye 1) , the following equation is satisfied.
IR80a (dye 1) -IR10 ( dye 1) ≤25 nm
(Iv-2) In the spectral transmittance curve of the coating film coated by dissolving the dye 2 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
IR80a (dye 2) is the longest wavelength in which the internal transmittance is 80% in the wavelength range of 450 nm or more and less than 540 nm.
The shortest wavelength at which the internal transmittance is 80% is IR80b (dye 2) .
When the wavelength at which the internal transmittance is 10% is IR10 (dye 2) , the following equation is satisfied.
IR80a (dye 2) -IR10 ( dye 2) ≤35 nm
IR80b (dye 2) -IR10 ( dye 2) ≤55 nm
(Iv-3) In the spectral transmittance curve of the coating film coated by dissolving the dye 3 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
IR80a (dye 3) is the longest wavelength in which the internal transmittance is 80% in the wavelength range of 540 nm or more and less than 600 nm.
The shortest wavelength at which the internal transmittance is 80% is IR80b (dye 3) .
When the wavelength at which the internal transmittance is 10% is IR10 (dye 3) , the following equation is satisfied.
IR80a (dye 3) -IR10 ( dye 3) ≤35 nm
IR80b (dye 3) -IR10 ( dye 3) ≤55 nm
(Iv-4) In the spectral transmittance curve of the coating film coated by dissolving the dye 4 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
IR80b (dye 4) is the shortest wavelength in which the internal transmittance is 80% in the wavelength range of 600 nm or more and less than 720 nm.
When the wavelength at which the internal transmittance is 10% is IR10 (dye 4) , the following equation is satisfied.
IR80b (dye 4) -IR10 ( dye 4) ≤80 nm
 本フィルタは、上記(iv-1)~(iv-4)を満たすことで、RGB帯域の光をより選択的に透過できる。 This filter can more selectively transmit light in the RGB band by satisfying the above (iv-1) to (iv-4).
 (iv-1)において、
 IR80a(色素1)-IR10(色素1)は、好ましくは24nm以下であり、より好ましくは23nm以下である。
In (iv-1)
IR80a (dye 1) -IR10 (dye 1) is preferably 24 nm or less, more preferably 23 nm or less.
 (iv-2)において、
 IR80a(色素2)-IR10(色素2)は、好ましくは30nm以下であり、より好ましくは26nm以下である。
 IR80b(色素2)-IR10(色素2)は、好ましくは50nm以下であり、より好ましくは47nm以下である。
In (iv-2)
IR80a (dye 2) -IR10 (dye 2) is preferably 30 nm or less, more preferably 26 nm or less.
IR80b (dye 2) -IR10 (dye 2) is preferably 50 nm or less, more preferably 47 nm or less.
 (iv-3)において、
 IR80a(色素3)-IR10(色素3)は、好ましくは33nm以下であり、より好ましくは30nm以下である。
 IR80b(色素3)-IR10(色素3)は、好ましくは53nm以下であり、より好ましくは50nm以下である。
In (iv-3)
IR80a (dye 3) -IR10 (dye 3) is preferably 33 nm or less, more preferably 30 nm or less.
IR80b (dye 3) -IR10 (dye 3) is preferably 53 nm or less, more preferably 50 nm or less.
 (iv-4)において、
 IR80b(色素4)-IR10(色素4)は、好ましくは79nm以下であり、より好ましくは77nm以下である。
In (iv-4)
IR80b (dye 4) -IR10 (dye 4) is preferably 79 nm or less, more preferably 77 nm or less.
<基材、樹脂層>
 基材は、樹脂層を有する。樹脂層は、樹脂及び色素Aを含有する。
<Base material, resin layer>
The base material has a resin layer. The resin layer contains the resin and the dye A.
(樹脂)
 樹脂は、透明樹脂(透明性を有する樹脂)であることが好ましい。
 透明樹脂としては、例えば、ノルボルネン樹脂等のシクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC);ポリイミド樹脂(PI);ポリカーボネート樹脂(PC);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル樹脂;ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂;ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂;ウレタン樹脂、塩化ビニル樹脂;フッ素樹脂;ポリビニルブチラール樹脂;ポリビニルアルコール樹脂等が挙げられる。
 これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
(resin)
The resin is preferably a transparent resin (resin having transparency).
Examples of the transparent resin include cycloolefin polymers (COP) such as norbornene resin or cycloolefin copolymers (COC); polyimide resins (PI); polycarbonate resins (PC); polyethylene terephthalates (PET) and polyester resins such as polybutylene terephthalates. Polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymers; acrylic resins such as polyacrylates and polymethylmethacrylates; urethane resins, vinyl chloride resins; fluororesins; polyvinyl butyral resins; polyvinyl alcohol resins and the like.
One of these resins may be used alone, or two or more of these resins may be mixed and used.
 これらの中でも、可視光域の透明性(波長400~700nm)、耐熱性、ガラス転移温度を両立できる観点から、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、アクリル樹脂、エポキシ樹脂が好ましく、ポリエチレンテレフタレート、ポリイミド樹脂がより好ましく、ポリイミド樹脂がさらに好ましい。 Among these, cycloolefin polymer, cycloolefin copolymer, polyimide resin, polycarbonate resin, polyethylene terephthalate, acrylic resin, epoxy from the viewpoint of achieving both transparency in the visible light range (wavelength 400 to 700 nm), heat resistance, and glass transition temperature. Resins are preferable, polyethylene terephthalates and polyimide resins are more preferable, and polyimide resins are even more preferable.
(色素A)
 色素Aは、ガラス基板上に、色素Aを樹脂に溶解して塗工した塗工膜の分光透過率曲線において、波長400nm以上700nm未満の範囲に吸収極大波長を有する。
(Dye A)
The dye A has an absorption maximum wavelength in a wavelength range of 400 nm or more and less than 700 nm in the spectral transmittance curve of the coating film obtained by dissolving the dye A in a resin and applying the dye A on a glass substrate.
 色素Aは、RGB帯域の光を選択的に透過させる観点から、色素1、色素2、色素3及び色素4を含有することが好ましい。
 また、色素Aが色素1、色素2、色素3及び色素4を含有するとき、下記(ii-1)~(ii-4)が全て満たされることが好ましい。
The dye A preferably contains dye 1, dye 2, dye 3 and dye 4 from the viewpoint of selectively transmitting light in the RGB band.
Further, when the dye A contains the dye 1, the dye 2, the dye 3 and the dye 4, it is preferable that all of the following (ii-1) to (ii-4) are satisfied.
 (ii-1)ガラス基板上に、前記色素1を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素1は波長395nm以上450nm未満の範囲に吸収極大波長を有する。
 (ii-2)ガラス基板上に、前記色素2を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素2は波長450nm以上540nm未満の範囲に吸収極大波長を有する。
 (ii-3)ガラス基板上に、前記色素3を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素3は波長540nm以上600nm未満の範囲に吸収極大波長を有する。
 (ii-4)ガラス基板上に、前記色素4を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素4は波長600nm以上720nm未満の範囲に吸収極大波長を有する。
(Ii-1) In the spectral transmittance curve of the coating film obtained by dissolving the dye 1 in the resin and coating it on a glass substrate, the dye 1 has an absorption maximum wavelength in a wavelength range of 395 nm or more and less than 450 nm. ..
(Ii-2) In the spectral transmittance curve of the coating film obtained by dissolving the dye 2 in the resin and coating the glass substrate, the dye 2 has an absorption maximum wavelength in a wavelength range of 450 nm or more and less than 540 nm. ..
(Ii-3) In the spectral transmittance curve of the coating film obtained by dissolving the dye 3 in the resin and coating the glass substrate, the dye 3 has an absorption maximum wavelength in a wavelength range of 540 nm or more and less than 600 nm. ..
(Ii-4) In the spectral transmittance curve of the coating film obtained by dissolving the dye 4 in the resin and coating the glass substrate, the dye 4 has an absorption maximum wavelength in a wavelength range of 600 nm or more and less than 720 nm. ..
 上記(ii-1)~(ii-4)が全て満たされることで、本フィルタは、RGB帯域の光をより選択的に透過できる。 When all of the above (ii-1) to (ii-4) are satisfied, this filter can more selectively transmit light in the RGB band.
 (ii-1)において、色素1は、好ましくは波長395nm以上430nm未満の範囲に吸収極大波長を有し、より好ましくは波長395nm以上420nm未満の範囲に吸収極大波長を有する。
 (ii-2)において、色素2は、好ましくは波長460nm以上530nm未満の範囲に吸収極大波長を有し、より好ましくは波長470nm以上520nm未満の範囲に吸収極大波長を有する。
 (ii-3)において、色素3は、好ましくは波長550nm以上590nm未満の範囲に吸収極大波長を有し、より好ましくは波長560nm以上580nm未満の範囲に吸収極大波長を有する。
 (ii-4)において、色素4は、好ましくは波長640nm以上710nm未満の範囲に吸収極大波長を有し、より好ましくは波長660nm以上710nm未満の範囲に吸収極大波長を有する。
In (ii-1), the dye 1 preferably has an absorption maximum wavelength in the wavelength range of 395 nm or more and less than 430 nm, and more preferably has an absorption maximum wavelength in the wavelength range of 395 nm or more and less than 420 nm.
In (ii-2), the dye 2 preferably has an absorption maximum wavelength in a wavelength range of 460 nm or more and less than 530 nm, and more preferably has an absorption maximum wavelength in a wavelength range of 470 nm or more and less than 520 nm.
In (ii-3), the dye 3 preferably has an absorption maximum wavelength in the wavelength range of 550 nm or more and less than 590 nm, and more preferably has an absorption maximum wavelength in the wavelength range of 560 nm or more and less than 580 nm.
In (ii-4), the dye 4 preferably has an absorption maximum wavelength in the wavelength range of 640 nm or more and less than 710 nm, and more preferably has an absorption maximum wavelength in the wavelength range of 660 nm or more and less than 710 nm.
 樹脂層が、色素1、色素2、色素3、色素4及び樹脂を有するとき、樹脂層は、下記(iii-1)~(iii-3)を全て満たすことが好ましい。 When the resin layer has dye 1, dye 2, dye 3, dye 4, and resin, the resin layer preferably satisfies all of the following (iii-1) to (iii-3).
 (iii-1)波長430nm以上490nm未満の範囲に極大値10を有し、
 波長490nm以上590nm未満の範囲に極大値11を有し、
 波長590nm以上650nm未満の範囲に極大値12を有する。
 (iii-2)波長400nm以上440nm未満の範囲に極小値10又は内部透過率が1%以下になる波長範囲を有し、
 波長440nm以上540nm未満の範囲に極小値11又は内部透過率が1%以下になる波長範囲を有し、
 波長540nm以上640nm未満の範囲に極小値12又は内部透過率が1%以下になる波長範囲を有し、
 波長640nm以上700nm未満の範囲に極小値13又は内部透過率が1%以下になる波長範囲を有する。
 (iii-3)極大値10、極大値11及び極大値12のなかの最大値が40%以上である。
(Iii-1) It has a maximum value of 10 in the wavelength range of 430 nm or more and less than 490 nm, and has a maximum value of 10.
It has a maximum value of 11 in the wavelength range of 490 nm or more and less than 590 nm, and has a maximum value of 11.
It has a maximum value of 12 in the wavelength range of 590 nm or more and less than 650 nm.
(Iii-2) The wavelength range is 400 nm or more and less than 440 nm, and the minimum value is 10 or the internal transmittance is 1% or less.
It has a minimum value of 11 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 440 nm or more and less than 540 nm.
It has a minimum value of 12 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 540 nm or more and less than 640 nm.
It has a minimum value of 13 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 640 nm or more and less than 700 nm.
(Iii-3) The maximum value among the maximum value 10, the maximum value 11, and the maximum value 12 is 40% or more.
 上記(iii-1)~(iii-3)が全て満たされることで、本フィルタは、RGB帯域の光をより選択的に透過できる。 When all of the above (iii-1) to (iii-3) are satisfied, this filter can more selectively transmit light in the RGB band.
 (iii-1)において、
 極大値10の波長範囲は、好ましくは430nm以上480nm未満、より好ましくは430nm以上455nm未満である。
 極大値11の波長範囲は、好ましくは490nm以上550nm未満、より好ましくは500nm以上540nm未満である。
 極大値12の波長範囲は、好ましくは590nm以上640nm未満、より好ましくは590nm以上630nm未満である。
In (iii-1)
The wavelength range of the maximum value 10 is preferably 430 nm or more and less than 480 nm, and more preferably 430 nm or more and less than 455 nm.
The wavelength range of the maximum value 11 is preferably 490 nm or more and less than 550 nm, and more preferably 500 nm or more and less than 540 nm.
The wavelength range of the maximum value 12 is preferably 590 nm or more and less than 640 nm, and more preferably 590 nm or more and less than 630 nm.
 (iii-2)において、
 極小値10の波長範囲又は内部透過率が1%以下になる波長範囲は、好ましくは400nm以上430nm未満、より好ましくは410nm以上420nm未満である。
 極小値11の波長範囲又は内部透過率が1%以下になる波長範囲は、好ましくは450nm以上530nm未満、より好ましくは460nm以上520nm未満である。
 極小値12の波長範囲又は内部透過率が1%以下になる波長範囲は、好ましくは550nm以上630nm未満、より好ましくは560nm以上600nm未満である。
In (iii-2)
The wavelength range of the minimum value 10 or the wavelength range in which the internal transmittance is 1% or less is preferably 400 nm or more and less than 430 nm, and more preferably 410 nm or more and less than 420 nm.
The wavelength range of the minimum value 11 or the wavelength range in which the internal transmittance is 1% or less is preferably 450 nm or more and less than 530 nm, and more preferably 460 nm or more and less than 520 nm.
The wavelength range of the minimum value 12 or the wavelength range in which the internal transmittance is 1% or less is preferably 550 nm or more and less than 630 nm, and more preferably 560 nm or more and less than 600 nm.
 (iii-3)において、
 極大値10、極大値11及び極大値12のなかの最大値は、好ましくは55%以上、より好ましくは60%以上である。
In (iii-3)
The maximum value among the maximum value 10, the maximum value 11 and the maximum value 12 is preferably 55% or more, more preferably 60% or more.
(色素1)
 色素1は、下記式(1)で表される化合物であることが好ましい。
(Dye 1)
The dye 1 is preferably a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Rは、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。
 置換基としては、アルコキシ基、アシル基、アシルオキシ基、シアノ基、ジアルキルアミノ基または塩素原子が好ましい。上記アルコキシ基、アシル基、アシルオキシ基及びジアルキルアミノ基の炭素数は1~6が好ましい。
In formula (1), R 1 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
As the substituent, an alkoxy group, an acyl group, an acyloxy group, a cyano group, a dialkylamino group or a chlorine atom is preferable. The alkoxy group, acyl group, acyloxy group and dialkylamino group preferably have 1 to 6 carbon atoms.
 置換基を有しないRとして具体的には、水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換されていてもよい炭素数1~12のアルキル基、水素原子の一部が芳香族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数3~8のシクロアルキル基、及び水素原子の一部が脂肪族環、アルキル基もしくはアルケニル基で置換されていてもよい炭素数6~12のアリール基が好ましい。 Specifically, as R 1 having no substituent, a part of the hydrogen atom may be substituted with an aliphatic ring, an aromatic ring or an alkenyl group, an alkyl group having 1 to 12 carbon atoms, and a part of the hydrogen atom. May be substituted with an aromatic ring, an alkyl group or an alkenyl group, a cycloalkyl group having 3 to 8 carbon atoms, and a part of the hydrogen atom may be substituted with an aliphatic ring, an alkyl group or an alkenyl group. An aryl group having 6 to 12 carbon atoms is preferable.
 Rが非置換のアルキル基である場合、そのアルキル基は直鎖状であっても、分岐状であってもよく、その炭素数は1~6がより好ましい。 When R 1 is an unsubstituted alkyl group, the alkyl group may be linear or branched, and the number of carbon atoms thereof is more preferably 1 to 6.
 Rが水素原子の一部が脂肪族環、芳香族環もしくはアルケニル基で置換された炭素数1~12のアルキル基である場合、炭素数3~6のシクロアルキル基を有する炭素数1~4のアルキル基、フェニル基で置換された炭素数1~4のアルキル基がより好ましく、フェニル基で置換された炭素数1または2のアルキル基が特に好ましい。なお、アルケニル基で置換されたアルキル基とは、全体としてアルケニル基であるが1、2位間に不飽和結合を有しないものを意味し、例えばアリル基や3-ブテニル基等をいう。 When R 1 is an alkyl group having 1 to 12 carbon atoms in which a part of the hydrogen atom is substituted with an aliphatic ring, an aromatic ring or an alkenyl group, 1 to 1 to 12 carbon atoms having a cycloalkyl group having 3 to 6 carbon atoms. An alkyl group of 4 and an alkyl group having 1 to 4 carbon atoms substituted with a phenyl group are more preferable, and an alkyl group having 1 or 2 carbon atoms substituted with a phenyl group is particularly preferable. The alkyl group substituted with an alkenyl group means an alkenyl group as a whole but does not have an unsaturated bond between the 1st and 2nd positions, and refers to, for example, an allyl group, a 3-butenyl group, or the like.
 好ましいRは、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基である。特に好ましいQは炭素数1~6のアルキル基であり、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。 Preferred R 1 is an alkyl group having 1 to 6 carbon atoms in which a part of the hydrogen atom may be substituted with a cycloalkyl group or a phenyl group. Particularly preferable Q 1 is an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a t-butyl group. Be done.
 式(1)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表す。 In the formula (1), R 2 to R 5 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
 アルキル基及びアルコキシ基の炭素数は1~6が好ましく、1~4がより好ましい。 The number of carbon atoms of the alkyl group and the alkoxy group is preferably 1 to 6, and more preferably 1 to 4.
 R及びRは、少なくとも一方が、アルキル基であることが好ましく、いずれもアルキル基であることがより好ましい。R及びRがアルキル基でない場合は、水素原子がより好ましい。R及びRは、いずれも炭素数1~6のアルキル基が特に好ましい。 At least one of R 2 and R 3 is preferably an alkyl group, and it is more preferable that both are alkyl groups. When R 2 and R 3 are not alkyl groups, a hydrogen atom is more preferred. As R 2 and R 3 , an alkyl group having 1 to 6 carbon atoms is particularly preferable.
 R及びRは、少なくとも一方が、水素原子が好ましく、いずれも水素原子がより好ましい。RまたはRが水素原子でない場合は、炭素数1~6のアルキル基が好ましい。 At least one of R 4 and R 5 is preferably a hydrogen atom, and both are more preferably a hydrogen atom. When R 4 or R 5 is not a hydrogen atom, an alkyl group having 1 to 6 carbon atoms is preferable.
 式(1)中、Yは、R及びRで置換されたメチレン基または酸素原子を表す。
 式(1)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表す。
In formula (1), Y represents a methylene group or oxygen atom substituted with R 6 and R 7 .
In the formula (1), R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
 式(1)中、Xは、下記式(X1)~(X5)のいずれかを表す。 In the formula (1), X represents any of the following formulas (X1) to (X5).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(X1)~(X4)中、R及びRは、それぞれ独立に、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。
 R10~R19は、それぞれ独立に、水素原子、または、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。
In the formulas (X1) to ( X4), R8 and R9 each independently represent a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
R 10 to R 19 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
 R~R19の置換基としては、Rにおける置換基と同様の置換基が挙げられ、好ましい態様も同様である。R~R19が置換基を有しない炭化水素基である場合、置換基を有しないRと同様の態様が挙げられる。 Examples of the substituents of R 8 to R 19 include the same substituents as the substituents in R 1 , and the preferred embodiments are also the same. When R 8 to R 19 are hydrocarbon groups having no substituent, the same embodiment as that of R 1 having no substituent can be mentioned.
 式(X1)において、R及びRは異なる基であってもよいが、同一の基が好ましい。R及びRが非置換のアルキル基である場合、直鎖状であっても、分岐状であってもよく、炭素数は1~6がより好ましい。 In formula (X1), R 8 and R 9 may be different groups, but the same group is preferred. When R 8 and R 9 are unsubstituted alkyl groups, they may be linear or branched, and the number of carbon atoms is more preferably 1 to 6.
 好ましいR及びRは、いずれも、水素原子の一部がシクロアルキル基またはフェニル基で置換されていてもよい炭素数1~6のアルキル基である。特に好ましいR及びRは、いずれも、炭素数1~6のアルキル基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。 Preferred R 8 and R 9 are all alkyl groups having 1 to 6 carbon atoms in which a part of the hydrogen atom may be substituted with a cycloalkyl group or a phenyl group. Particularly preferable R 8 and R 9 are all alkyl groups having 1 to 6 carbon atoms, and specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. Groups, t-butyl groups and the like can be mentioned.
 式(X2)において、R10とR11は、いずれも、炭素数1~6のアルキル基がより好ましく、それらは同一のアルキル基が特に好ましい。 In the formula (X2), both R 10 and R 11 are more preferably alkyl groups having 1 to 6 carbon atoms, and particularly preferably the same alkyl group.
 式(X3)において、R12及びR15は、いずれも水素原子であるか、置換基を有しない炭素数1~6のアルキル基が好ましい。同じ炭素原子に結合した2つの基であるR13とR14は、いずれも水素原子であるか、いずれも炭素数1~6のアルキル基が好ましい。 In the formula (X3), R 12 and R 15 are preferably hydrogen atoms or alkyl groups having 1 to 6 carbon atoms having no substituent. The two groups R 13 and R 14 bonded to the same carbon atom are both hydrogen atoms, or an alkyl group having 1 to 6 carbon atoms is preferable.
 式(X4)における、同じ炭素原子に結合した2つの基R16とR17及びR18とR19は、いずれも水素原子であるか、いずれも炭素数1~6のアルキル基が好ましい。 The two groups R 16 and R 17 and R 18 and R 19 bonded to the same carbon atom in the formula (X4) are all hydrogen atoms, or an alkyl group having 1 to 6 carbon atoms is preferable.
 化合物(1)としては、より具体的には、各骨格に結合する原子または基が、以下の表に示される原子または基である化合物が挙げられる。 Specific examples of the compound (1) include compounds in which the atom or group bonded to each skeleton is the atom or group shown in the table below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(色素3)
 色素3は、下記式(3)で表される化合物であることが好ましい。
(Dye 3)
The dye 3 is preferably a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(3)中、R101及びR102は、それぞれ独立に、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシカルボニル基、または置換基を有していてもよいフェニル基を表す。
 nは各々独立に0~3の整数を表す。
In the formula (3), R 101 and R 102 may independently have an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and a substituent. Represents an alkoxycarbonyl group or a phenyl group which may have a substituent.
n represents an integer of 0 to 3 independently.
 アルキル基としては、直鎖状でも分岐状でもよく、炭素数1~6のアルキル基が好ましく、メチル基、エチル基、プロピル基、t-ブチル基等の無置換のアルキル基がより好ましい。 The alkyl group may be linear or branched, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an unsubstituted alkyl group such as a methyl group, an ethyl group, a propyl group or a t-butyl group.
 アルケニル基としては、直鎖状でも分岐状でもよく、炭素数1~6のアルケニル基が好ましく、ビニル基、アリル基、3-ブテン-1-イル基等の無置換のアルケニル基がより好ましい。 The alkenyl group may be linear or branched, preferably an alkenyl group having 1 to 6 carbon atoms, and more preferably an unsubstituted alkenyl group such as a vinyl group, an allyl group, or a 3-butene-1-yl group.
 アルコキシカルボニル基としては、上記のようなアルキル基を有する基が好ましい。 As the alkoxycarbonyl group, a group having an alkyl group as described above is preferable.
 アルキル基、アルケニル基、アルコキシカルボニル基の置換基としては特に限定されないが、例えば上記のようなアルキル基を有するアルコキシ基、塩素、フッ素等のハロゲン原子が挙げられる。 The substituent of the alkyl group, the alkenyl group, and the alkoxycarbonyl group is not particularly limited, and examples thereof include the alkoxy group having an alkyl group as described above, and halogen atoms such as chlorine and fluorine.
 フェニル基の置換基としては特に限定されないが、上記のようなアルキル基、アルコキシ基、ハロゲン原子が挙げられ、好ましくは無置換のフェニル基である。 The substituent of the phenyl group is not particularly limited, but examples thereof include an alkyl group, an alkoxy group and a halogen atom as described above, and an unsubstituted phenyl group is preferable.
 式(3)中、nは各々独立に0~3の整数を表す。nは各々独立に2~3が好ましい。 In equation (3), n independently represents an integer of 0 to 3. It is preferable that n is 2 to 3 independently of each other.
 また、化合物(3)は、2個のピロール環を有する基は同じであっても、異なっていてもよいが、好ましくは2個のピロール環を有する基が同一であり、左右対称のスクアリリウム系化合物であることが好ましい。 Further, the compound (3) may have the same group having two pyrrole rings or different groups, but preferably the group having two pyrrole rings is the same and is a symmetrical squarylium system. It is preferably a compound.
 化合物(3)としては、より具体的には、各骨格に結合する原子または基が、以下の表に示される原子または基である化合物が挙げられる。 Specific examples of the compound (3) include compounds in which the atom or group bonded to each skeleton is the atom or group shown in the table below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(色素4)
 色素4は、下記式(4)で表される化合物であることが好ましい。
(Dye 4)
The dye 4 is preferably a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(4)中、R21及びR22は、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基もしくはアリル基、または置換基を有していてもよい炭素数6~11のアリール基もしくはアルアリール基を示す。 In formula (4), R 21 and R 22 each independently have a hydrogen atom, an alkyl group or an allyl group having 1 to 6 carbon atoms which may have a substituent, or a substituent. A good aryl group or alaryl group having 6 to 11 carbon atoms is shown.
 R23及びR25は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基もしくはアルコキシ基を示す。 R 23 and R 25 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms.
 R24及びR26は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、-NR2728を示す。 R 24 and R 26 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, and -NR 27 R 28 .
 R27及びR28は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、-C(=O)-R29、-NHR30、-SO-R30、または、下記式(S)で示される基を示す。 R 27 and R 28 are independently each of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, -C (= O) -R 29 , -NHR 30 , -SO 2 -R 30 , or the following formula ( The group represented by S) is shown.
 R29は、水素原子、置換基を有してもよい炭素数1~20のアルキル基もしくは炭素数6~11のアリール基、または置換基を有していてもよく、炭素原子間に酸素原子を有してもよい炭素数7~18のアルアリール基を示す。 R 29 may have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aryl group having 6 to 11 carbon atoms, or a substituent, and an oxygen atom between carbon atoms. Indicates an alaryl group having 7 to 18 carbon atoms which may have.
 R30は、1つ以上の水素原子が、ハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1~25の炭化水素基を示す。 In R 30 , one or more hydrogen atoms may be substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and an unsaturated bond, an oxygen atom, a saturated or unsaturated group between carbon atoms. It shows a hydrocarbon group having 1 to 25 carbon atoms which may contain a ring structure.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(S)中、R41及びR42は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~10のアルキル基もしくはアルコキシ基を示す。 In the formula (S), R 41 and R 42 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
 kは2または3を表す。 K represents 2 or 3.
 R21とR22、R22とR25、及びR21とR23は、それぞれ、互いに連結して窒素原子と共に員数が5または6の複素環A、複素環B、及び複素環Cを形成してもよい。 R 21 and R 22 , R 22 and R 25 , and R 21 and R 23 are connected to each other to form a heterocycle A, a heterocycle B, and a heterocycle C having 5 or 6 members together with a nitrogen atom, respectively. May be.
 複素環Aが形成される場合のR21とR22は、これらが結合した2価の基-Q-として、水素原子が、炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。 When the heterocyclic ring A is formed, R 21 and R 22 have a divalent group −Q— to which they are bonded, and the hydrogen atom is an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Alternatively, an alkylene group or an alkyleneoxy group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent is shown.
 複素環Bが形成される場合のR22とR25、及び複素環Cが形成される場合のR21とR23は、これらが結合したそれぞれ2価の基-X-Y-及びX-Y-(窒素に結合する側がX及びX)として、X及びXがそれぞれ下記式(1x)または(2x)で示される基であり、Y及びYがそれぞれ下記式(1y)~(5y)から選ばれるいずれかで示される基である。 R 22 and R 25 when the heterocycle B is formed, and R 21 and R 23 when the heterocycle C is formed are the divalent groups -X 1 -Y 1- and X to which they are bonded, respectively. As 2 -Y2- (X 1 and X 2 on the side that binds to nitrogen), X 1 and X 2 are groups represented by the following formulas (1x) or ( 2x ), respectively, and Y 1 and Y 2 are the following, respectively. It is a group represented by any one selected from the formulas (1y) to (5y).
 X及びXが、それぞれ下記式(2x)で示される基の場合、Y及びYはそれぞれ単結合であってもよく、その場合、炭素原子間に酸素原子を有してもよい。 When X 1 and X 2 are groups represented by the following formulas (2x), Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(1x)中、4個のZは、それぞれ独立して、水素原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、または-NR3839を示す。 In the formula (1x), each of the four Zs independently represents a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 6 carbon atoms, or -NR 38 R 39 .
 R31~R36は、それぞれ独立して、水素原子、炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。 R 31 to R 36 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
 R37は、炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。 R 37 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms.
 R38及びR39は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す。 R 38 and R 39 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
 R27、R28、R29、R31~R37、複素環を形成していない場合のR21~R23、及びR25は、これらのうちの他のいずれかと互いに結合して5員環または6員環を形成してもよい。R31とR36、R31とR37は直接結合してもよい。 R 27 , R 28 , R 29 , R 31 to R 37 , R 21 to R 23 when no heterocycle is formed, and R 25 are 5-membered rings coupled to any other of these. Alternatively, a 6-membered ring may be formed. R 31 and R 36 and R 31 and R 37 may be directly coupled.
 化合物(4)としては、例えば、可視光透過率を高くできる観点から下記式(4-1)で示される化合物が好ましい。 As the compound (4), for example, a compound represented by the following formula (4-1) is preferable from the viewpoint of increasing the visible light transmittance.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(4-1)中の記号は、式(4)における同記号の各規定と同じであり、好ましい態様も同様である。 The symbols in the formula (4-1) are the same as the respective provisions of the same symbols in the formula (4), and the preferred embodiments are also the same.
 化合物(4-1)において、Xとしては、基(2x)が好ましく、Yとしては、単結合または基(1y)が好ましい。この場合、R31~R36としては、水素原子または炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。なお、-Y-X-として、具体的には、式(11-1)~(12-3)で示される2価の有機基が挙げられる。 In compound (4-1), X 1 is preferably a group (2x), and Y 1 is preferably a single bond or a group (1y). In this case, as R 31 to R 36 , a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable. Specific examples of −Y 1 − X 1 − include divalent organic groups represented by the formulas (11-1) to (12-3).
 -C(CH-CH(CH)-      …(11-1)
 -C(CH-CH-          …(11-2)
 -C(CH-CH(C)-      …(11-3)
 -C(CH-C(CH)(nC)- …(11-4)
 -C(CH-CH-CH-       …(12-1)
 -C(CH-CH-CH(CH)-   …(12-2)
 -C(CH-CH(CH)-CH-   …(12-3)
-C (CH 3 ) 2 -CH (CH 3 ) -... (11-1)
-C (CH 3 ) 2 -CH 2- ... (11-2)
-C (CH 3 ) 2 -CH (C 2 H 5 ) -... (11-3)
-C (CH 3 ) 2 -C (CH 3 ) (nC 3 H 7 )-... (11-4)
-C (CH 3 ) 2 -CH 2 -CH 2- ... (12-1)
-C (CH 3 ) 2 -CH 2 -CH (CH 3 ) -... (12-2)
-C (CH 3 ) 2 -CH (CH 3 ) -CH 2- ... (12-3)
 また、化合物(4-1)において、R21は、溶解性、耐熱性、さらに分光透過率曲線における可視域と近赤外域の境界付近の変化の急峻性の観点から、それぞれ独立して、下記式(4-11)または式(4-12)で示される基がより好ましい。 Further, in compound (4-1), R 21 is independently described below from the viewpoints of solubility, heat resistance, and steepness of change near the boundary between the visible region and the near infrared region in the spectral transmittance curve. The group represented by the formula (4-11) or the formula (4-12) is more preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(4-11)及び式(4-12)中、R71~R75は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。 In formulas (4-11) and (4-12), R 71 to R 75 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
 化合物(4-1)において、R24は可視光の透過率、特に波長430~550nmの光の透過率を高める観点から、-NH-SO-R30が好ましい。 In compound (4-1), R 24 is preferably -NH-SO 2 -R 30 from the viewpoint of increasing the transmittance of visible light, particularly the transmittance of light having a wavelength of 430 to 550 nm.
 化合物(4-1)において、R24が-NH-SO-R30の化合物を下記式(4-1-A)に示す。 In the compound (4-1), the compound in which R 24 is -NH-SO 2 -R 30 is represented by the following formula (4-1-A).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 化合物(4-1-A)におけるR23及びR26は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基もしくは炭素数1~6のアルコキシ基が好ましく、いずれも水素原子がより好ましい。 R 23 and R 26 in the compound (4-1-A) are preferably hydrogen atoms, halogen atoms, alkyl groups having 1 to 6 carbon atoms or alkoxy groups having 1 to 6 carbon atoms, respectively, and both of them are independent. Hydrogen atoms are more preferred.
 化合物(4-1-A)において、R30は、耐光性の点から、それぞれ独立して、分岐を有してもよい炭素数1~12のアルキル基、分岐を有してもよい炭素数1~12のアルコキシ基、または不飽和の環構造を有する炭素数6~16の炭化水素基が好ましい。不飽和の環構造としては、ベンゼン、トルエン、キシレン、フラン、ベンゾフラン等が挙げられる。R30は、それぞれ独立して、分岐を有してもよい炭素数1~12のアルキル基もしくは分岐を有してもよい炭素数1~12のアルコキシ基がより好ましい。なお、R30を示す各基において、水素原子の一部または全部がハロゲン原子、特にはフッ素原子に置換されていてもよい。 In compound (4-1-A), R 30 has an alkyl group having 1 to 12 carbon atoms which may have a branch and a carbon number which may have a branch, respectively, independently from the viewpoint of light resistance. Alkoxy groups of 1 to 12 or hydrocarbon groups having 6 to 16 carbon atoms having an unsaturated ring structure are preferable. Examples of the unsaturated ring structure include benzene, toluene, xylene, furan, and benzofuran. R 30 is more preferably an alkyl group having 1 to 12 carbon atoms which may have a branch or an alkoxy group having 1 to 12 carbon atoms which may have a branch, respectively. In each group showing R 30 , a part or all of a hydrogen atom may be substituted with a halogen atom, particularly a fluorine atom.
 化合物(4)としては、より具体的には、式(4-1-A)における各骨格に結合する原子または基が、以下の表に示される原子または基である化合物が挙げられる。 Specific examples of the compound (4) include compounds in which the atom or group bonded to each skeleton in the formula (4-1-A) is an atom or group shown in the table below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(その他の色素)
 樹脂層は、その他の色素としてUV色素をさらに含有できる。
 UV色素としては、例えば、メロシアニン系、オキサゾール系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。
(Other pigments)
The resin layer can further contain a UV dye as another dye.
Examples of UV dyes include merocyanine-based, oxazole-based, cyanine-based, naphthalimide-based, oxadiazole-based, oxazine-based, oxazolidine-based, naphthalic acid-based, styryl-based, anthracene-based, cyclic carbonyl-based, and triazole-based dyes. Can be mentioned.
(各成分の含有量)
 基材における色素1の含有量は、樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.1~5質量部である。
 基材における色素2の含有量は、樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.1~5質量部である。
 基材における色素3の含有量は、樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.1~5質量部である。
 基材における色素4の含有量は、樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.1~5質量部である。
 基材における全色素の含有量は、樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは5~15質量部である。
(Contents of each component)
The content of the dye 1 in the base material is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
The content of the dye 2 in the base material is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
The content of the dye 3 in the base material is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
The content of the dye 4 in the base material is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin.
The content of the total dye in the base material is preferably 0.1 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the resin.
(基材構成)
 基材は、単層構造であっても、複層構造であってもよい。また、基材の材質としては400~700nmの可視光を透過する透明性材料であれば有機材料でも無機材料でもよく、特に制限されない。
(Base material composition)
The base material may have a single-layer structure or a multi-layer structure. The material of the base material may be an organic material or an inorganic material as long as it is a transparent material that transmits visible light of 400 to 700 nm, and is not particularly limited.
 基材が単層構造の場合、基材は、色素A及び樹脂を含む樹脂基材であることが好ましい。また、樹脂基材は、UV色素をさらに含有できる。
 基材が複層構造の場合、基材は、支持体の少なくとも一方の主面に、色素A及び樹脂を含有する樹脂層を積層した構造であることが好ましい。このとき支持体は、上記透明樹脂又は透明性無機材料からなることが好ましい。また、樹脂層は、UV色素をさらに含有できる。
When the base material has a single-layer structure, the base material is preferably a resin base material containing dye A and a resin. Further, the resin base material can further contain a UV dye.
When the base material has a multi-layer structure, the base material preferably has a structure in which a resin layer containing the dye A and the resin is laminated on at least one main surface of the support. At this time, the support is preferably made of the transparent resin or the transparent inorganic material. Further, the resin layer can further contain a UV dye.
 透明性無機材料としては、ガラスや結晶材料が好ましい。
 ガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等に銅イオンを含む吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。ガラスとしては、目的に応じて吸収ガラスが好ましく、赤外光を吸収する観点ではリン酸塩系ガラス、フツリン酸塩系ガラスが好ましい。赤色光(600~700nm)を多く取り込みたい際は、アルカリガラス、無アルカリガラス、石英ガラスが好ましい。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。
As the transparent inorganic material, glass or a crystalline material is preferable.
Examples of the glass include absorbent glass (near infrared absorber glass) containing copper ions in fluoride-based glass, phosphate-based glass and the like, soda lime glass, borosilicate glass, non-alkali glass, quartz glass and the like. .. As the glass, absorbent glass is preferable depending on the purpose, and phosphate-based glass and fluoride-based glass are preferable from the viewpoint of absorbing infrared light. When it is desired to take in a large amount of red light (600 to 700 nm), alkaline glass, non-alkali glass, and quartz glass are preferable. The "phosphate-based glass" also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
 ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。 As for glass, alkali metal ions (for example, Li ion and Na ion) having a small ion radius existing on the main surface of the glass plate are converted into alkali ions having a larger ion radius (for example) by ion exchange at a temperature below the glass transition point. , Li ion is Na ion or K ion, and Na ion is K ion.) You may use the chemically strengthened glass obtained by exchanging with the ion.
 結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。 Examples of the crystal material include birefringent crystals such as quartz, lithium niobate, and sapphire.
 支持体としては、光学特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から、無機材料が好ましく、特にガラス、サファイアが好ましい。 As the support, an inorganic material is preferable, and glass and sapphire are particularly preferable, from the viewpoint of shape stability related to long-term reliability such as optical properties and mechanical properties, and handleability at the time of filter manufacturing.
 基材が、透明樹脂、色素Aを含む単層構造の樹脂基材である場合、例えば、以下の方法で製造できる。 When the base material is a resin base material having a single-layer structure containing a transparent resin and dye A, it can be produced by, for example, the following method.
 樹脂基材は、透明樹脂、または透明樹脂と任意成分の混合物を溶融押出してフィルム状に成形して製造できる。また、透明樹脂及び必要に応じて任意成分を溶媒に溶解させ、塗工液を調製し、これを樹脂基材作製用の剥離性の基材に所望の厚さに塗工し乾燥させ、さらに、必要に応じて硬化させた後、樹脂基材を基材から剥離して、製造できる。 The resin base material can be produced by melt-extruding a transparent resin or a mixture of a transparent resin and an arbitrary component and molding it into a film. Further, a transparent resin and, if necessary, an arbitrary component are dissolved in a solvent to prepare a coating liquid, which is applied to a peelable base material for producing a resin base material to a desired thickness, dried, and further. After curing, if necessary, the resin base material can be peeled off from the base material for production.
 塗工液に用いる溶媒は、透明樹脂を安定に分散できる分散媒または溶解できる溶媒であればよい。塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、ダイコート法またはスピンコート法等を使用できる。 The solvent used for the coating liquid may be a dispersion medium capable of stably dispersing the transparent resin or a solvent capable of dissolving the transparent resin. The coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repellency in the drying step, and the like. Further, for the coating of the coating liquid, for example, a dip coating method, a cast coating method, a die coating method, a spin coating method and the like can be used.
 基材が、支持体と、支持体の少なくとも一方の主面に積層した色素Aを含有する樹脂層とを有する複層構造である場合、樹脂層の厚さは、0.3~15μmが好ましい。樹脂層が複数層からなる場合、樹脂層の合計の厚さは、0.3~15μmが好ましい。 When the base material has a multi-layer structure having a support and a resin layer containing a dye A laminated on at least one main surface of the support, the thickness of the resin layer is preferably 0.3 to 15 μm. .. When the resin layer is composed of a plurality of layers, the total thickness of the resin layers is preferably 0.3 to 15 μm.
 樹脂層は、色素Aと、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。基材は、本フィルタに含まれる支持体でもよいし、樹脂層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。 In the resin layer, the dye A, the resin or the raw material component of the resin, and each component to be blended as necessary are dissolved or dispersed in a solvent to prepare a coating liquid, and this is applied to the base material. It can be formed by drying and further curing if necessary. The base material may be a support included in the present filter, or may be a peelable base material used only when forming a resin layer. The solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより樹脂層が形成される。また、塗工液が透明樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。 Further, the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like. Further, for the coating of the coating liquid, for example, a dip coating method, a cast coating method, a spin coating method or the like can be used. A resin layer is formed by applying the above coating liquid onto a substrate and then drying it. When the coating liquid contains a raw material component of a transparent resin, further curing treatment such as heat curing and photocuring is performed.
 また、樹脂層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを他の部材に積層し熱圧着等により一体化させてもよい。例えば、このフィルムを支持体上に貼着してもよい。 Further, the resin layer can be manufactured in the form of a film by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like. For example, this film may be attached on a support.
 本フィルタは、樹脂層を1層有してもよく、2層以上有してもよい。本フィルタが樹脂層を2層以上有する場合、各層は同じ構成であっても異なってもよい。 This filter may have one resin layer or two or more layers. When the filter has two or more resin layers, each layer may have the same configuration or may be different.
 基材の形状は特に限定されず、ブロック状、板状、フィルム状でもよい。 The shape of the base material is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped.
 また、基材が単層構造の場合、基材の厚さは、本フィルタの低背化の観点から好ましくは500μm以下、より好ましくは400μm以下である。また、基材が単層構造の場合、基材の厚さは、プロセス上のハンドリングの観点から好ましくは30μm以上、より好ましくは50μm以上である。 When the base material has a single-layer structure, the thickness of the base material is preferably 500 μm or less, more preferably 400 μm or less, from the viewpoint of reducing the height of the filter. When the base material has a single-layer structure, the thickness of the base material is preferably 30 μm or more, more preferably 50 μm or more from the viewpoint of process handling.
 基材が複層構造の場合、基材の厚さは、本フィルタの低背化の観点から好ましくは500μm以下、より好ましくは400μm以下である。また、基材が複層構造の場合、基材の厚さは、プロセス上のハンドリングの観点から好ましくは30μm以上、より好ましくは50μm以上である。 When the base material has a multi-layer structure, the thickness of the base material is preferably 500 μm or less, more preferably 400 μm or less, from the viewpoint of reducing the height of the filter. When the base material has a multi-layer structure, the thickness of the base material is preferably 30 μm or more, more preferably 50 μm or more from the viewpoint of process handling.
<誘電体多層膜>
 本フィルタは、誘電体多層膜を有する。誘電体多層膜は、基材の少なくとも一方の主面側に最外層として積層される。
<Dielectric multilayer film>
This filter has a dielectric multilayer film. The dielectric multilayer film is laminated as an outermost layer on at least one main surface side of the base material.
 誘電体多層膜が、基材の両方の主面側に最外層として積層される場合、誘電体多層膜の少なくとも一方は近赤外線反射層(以下、NIR反射層とも記載する。)として設計されることが好ましい。誘電体多層膜の他方はNIR反射層、近赤外域以外の反射領域を有する反射層、または反射防止層として設計されることが好ましい。 When the dielectric multilayer film is laminated as the outermost layer on both main surface sides of the substrate, at least one of the dielectric multilayer films is designed as a near-infrared reflective layer (hereinafter, also referred to as NIR reflective layer). Is preferable. The other side of the dielectric multilayer film is preferably designed as a NIR reflective layer, a reflective layer having a reflective region other than the near infrared region, or an antireflection layer.
 なお、基材が単層構造の場合、反りを防止する観点から、基材の両面にNIR反射層を形成することが好ましい。 When the base material has a single-layer structure, it is preferable to form NIR reflective layers on both sides of the base material from the viewpoint of preventing warping.
 NIR反射層は、近赤外域の光を遮蔽するように設計された誘電体多層膜である。NIR反射層は、例えば、可視光を透過し、吸収層の遮光域以外の近赤外域の光を主に反射する波長選択性を有する。なお、NIR反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。NIR反射層は、NIR反射特性に限らず、近赤外域以外の波長域の光、例えば、近紫外域をさらに遮断する仕様に適宜設計してよい。 The NIR reflective layer is a dielectric multilayer film designed to shield light in the near infrared region. The NIR reflective layer has, for example, wavelength selectivity that transmits visible light and mainly reflects light in the near infrared region other than the light shielding region of the absorption layer. The reflection region of the NIR reflection layer may include a light-shielding region in the near-infrared region of the absorption layer. The NIR reflection layer is not limited to the NIR reflection characteristic, and may be appropriately designed to have specifications for further blocking light in a wavelength range other than the near infrared region, for example, the near ultraviolet region.
 NIR反射層は、例えば、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜は、好ましくは、屈折率が1.6以上であり、より好ましくは2.2~2.5である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。 The NIR reflective layer is composed of, for example, a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated. The high refractive index film preferably has a refractive index of 1.6 or more, more preferably 2.2 to 2.5. Examples of the material of the high refractive index film include Ta 2 O 5 , TIO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
 一方、低屈折率膜は、好ましくは、屈折率が1.6未満であり、より好ましくは1.45以上1.55未満である。低屈折率膜の材料としては、例えばSiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。 On the other hand, the low refractive index film preferably has a refractive index of less than 1.6, more preferably 1.45 or more and less than 1.55. Examples of the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy and the like in terms of film forming property.
 さらに、NIR反射層は、透過域と遮光域の境界波長領域で透過率が急峻に変化することが好ましい。この目的のためには、反射層を構成する誘電体多層膜の合計積層数は、15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、反り等が発生したり、膜厚が増加したりするため、合計積層数は100層以下が好ましく、75層以下がより好ましく、60層以下がより一層好ましい。また、反射層の膜厚は、全体として2~10μmが好ましい。 Further, it is preferable that the transmittance of the NIR reflective layer changes sharply in the boundary wavelength region between the transmissive region and the light-shielding region. For this purpose, the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 or more, more preferably 25 or more, and even more preferably 30 or more. However, when the total number of layers increases, warpage or the like occurs or the film thickness increases. Therefore, the total number of layers is preferably 100 layers or less, more preferably 75 layers or less, and even more preferably 60 layers or less. The film thickness of the reflective layer is preferably 2 to 10 μm as a whole.
 誘電体多層膜の合計積層数や膜厚が上記範囲内であれば、NIR反射層は小型化の要件を満たし、高い生産性を維持しながら入射角依存性を抑制できる。また、誘電体多層膜の形成には、例えば、CVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。 If the total number of laminated dielectric multilayer films and the film thickness are within the above range, the NIR reflective layer can satisfy the requirements for miniaturization, and can suppress the dependence on the incident angle while maintaining high productivity. Further, for forming the dielectric multilayer film, for example, a vacuum film forming process such as a CVD method, a sputtering method or a vacuum vapor deposition method, a wet film forming process such as a spray method or a dip method can be used.
 NIR反射層は、1層(1群の誘電体多層膜)で所定の光学特性を与えたり、2層で所定の光学特性を与えたりしてもよい。本フィルタがNIR反射層を2層以上有する場合、各反射層は同じ構成でも異なる構成でもよい。本フィルタがNIR反射層を2層以上有する場合、通常、反射帯域の異なる複数のNIR反射層で構成される。2層のNIR反射層を設ける場合、一方を、近赤外域のうち短波長帯の光を遮蔽する近赤外線反射層とし、他方を、該近赤外域の長波長帯及び近紫外域の両領域の光を遮蔽する近赤外・近紫外反射層としてもよい。 As the NIR reflective layer, one layer (a group of dielectric multilayer films) may give predetermined optical characteristics, or two layers may give predetermined optical characteristics. When the present filter has two or more NIR reflective layers, each reflective layer may have the same configuration or a different configuration. When this filter has two or more NIR reflective layers, it is usually composed of a plurality of NIR reflective layers having different reflection bands. When two NIR reflective layers are provided, one is a near-infrared reflective layer that shields light in the short wavelength band of the near-infrared region, and the other is both the long-wavelength band and the near-ultraviolet region in the near-infrared region. It may be used as a near-infrared / near-ultraviolet reflective layer that shields the light of.
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造などが挙げられる。中でも光学的効率、生産性の観点から誘電体多層膜が好ましい。反射防止層は、反射層と同様に誘電体膜を交互に積層して得られる。 Examples of the antireflection layer include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Of these, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity. The antireflection layer is obtained by alternately laminating dielectric films like the reflection layer.
 また、誘電体多層膜は、入射角5°の分光透過率曲線及び30°の分光透過率曲線において、下記(vi-1)~(vi-7)を全て満たすことが好ましい。
(vi-1)波長430nm以上490nm未満の光の平均反射率が30%以下である。
(vi-2)波長490nm以上590nm未満の光の平均反射率が30%以下である。
(vi-3)波長590nm以上650nm未満の光の平均反射率が30%以下である。
(vi-4)波長430nm以上490nm未満の光の平均透過率が70%以上である。
(vi-5)波長490nm以上590nm未満の光の平均透過率が80%以上である。
(vi-6)波長590nm以上650nm未満の光の平均透過率が80%以上である。
(vi-7)波長700nm以上1000nm未満の光の平均透過率が20%以下である。
Further, it is preferable that the dielectric multilayer film satisfies all of the following (vi-1) to (vi-7) in the spectral transmittance curve of the incident angle of 5 ° and the spectral transmittance curve of 30 °.
(Vi-1) The average reflectance of light having a wavelength of 430 nm or more and less than 490 nm is 30% or less.
(Vi-2) The average reflectance of light having a wavelength of 490 nm or more and less than 590 nm is 30% or less.
(Vi-3) The average reflectance of light having a wavelength of 590 nm or more and less than 650 nm is 30% or less.
(Vi-4) The average transmittance of light having a wavelength of 430 nm or more and less than 490 nm is 70% or more.
(Vi-5) The average transmittance of light having a wavelength of 490 nm or more and less than 590 nm is 80% or more.
(Vi-6) The average transmittance of light having a wavelength of 590 nm or more and less than 650 nm is 80% or more.
(Vi-7) The average transmittance of light having a wavelength of 700 nm or more and less than 1000 nm is 20% or less.
 誘電体多層膜が上記(vi-1)~(vi-7)を満たすことで、リップルと呼ばれる分光特性上の強度変動を抑制できる。 When the dielectric multilayer film satisfies the above (vi-1) to (vi-7), it is possible to suppress the intensity fluctuation in the spectral characteristics called ripple.
 (vi-1)において、
 平均反射率は、好ましくは28%以下、より好ましくは25%以下である。
 (vi-2)において、
 平均反射率は、好ましくは15%以下、より好ましくは10%以下である。
 (vi-3)において、
 平均反射率は、好ましくは15%以下、より好ましくは10%以下である。
In (vi-1)
The average reflectance is preferably 28% or less, more preferably 25% or less.
In (vi-2)
The average reflectance is preferably 15% or less, more preferably 10% or less.
In (vi-3)
The average reflectance is preferably 15% or less, more preferably 10% or less.
 (vi-4)において、
 平均透過率は、好ましくは72%以上、より好ましくは74%以上である。
 (vi-5)において、
 平均透過率は、好ましくは85%以上、より好ましくは87%以上である。
 (vi-6)において、
 平均透過率は、好ましくは85%以上、より好ましくは87%以上である。
In (vi-4)
The average transmittance is preferably 72% or more, more preferably 74% or more.
In (vi-5)
The average transmittance is preferably 85% or more, more preferably 87% or more.
In (vi-6)
The average transmittance is preferably 85% or more, more preferably 87% or more.
 (vi-7)において、
 平均透過率は、好ましくは18%以下、より好ましくは15%以下である。
In (vi-7)
The average transmittance is preferably 18% or less, more preferably 15% or less.
[撮像装置]
 本フィルタは、例えば、デジタルスチルカメラ等の撮像装置に使用できる。
 本フィルタを撮像装置に使用した場合に、色再現性に優れる。
[Image pickup device]
This filter can be used, for example, in an image pickup device such as a digital still camera.
Excellent color reproducibility when this filter is used in an image pickup device.
 当該撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。 The image pickup device includes a solid-state image pickup element, an image pickup lens, and this filter. This filter can be used, for example, by being arranged between an image pickup lens and a solid-state image pickup element, or by being directly attached to a solid-state image pickup element, an image pickup lens, or the like of an image pickup device via an adhesive layer.
 次に、本発明を実施例によりさらに具体的に説明する。 Next, the present invention will be described in more detail by way of examples.
[色素化合物]
<色素化合物1-1>
 山田化学社製「DA115」を色素化合物1-1とした。
[Dye compound]
<Dye compound 1-1>
"DA115" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 1-1.
<色素化合物1-2>
 日本国特許第6504176号公報を参考に、以下の色素化合物1-2を合成した。
<Dye compound 1-2>
The following dye compounds 1-2 were synthesized with reference to Japanese Patent No. 6504176.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<色素化合物1-3>
 日本国特許第6504176号公報を参考に、以下の色素化合物1-3を合成した。
<Dye compound 1-3>
The following dye compounds 1-3 were synthesized with reference to Japanese Patent No. 6504176.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<色素化合物1-4>
 山田化学社製「DAA108」を色素化合物1-4とした。
<Dye compound 1-4>
"DAA108" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 1-4.
<色素化合物1-5>
 山田化学社製「FDB005」を色素化合物1-5とした。
<Dye compound 1-5>
"FDB005" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 1-5.
<色素化合物2-1>
 山田化学社製「FDB005」を色素化合物2-1とした。
<Dye compound 2-1>
"FDB005" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-1.
<色素化合物2-2>
 山田化学社製「DAA108」を色素化合物2-2とした。
<Dye compound 2-2>
"DAA108" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-2.
<色素化合物2-3>
 山田化学社製「FDB006」を色素化合物2-3とした。
<Dye compound 2-3>
"FDB006" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-3.
<色素化合物2-4>
 山田化学社製「FDG002」を色素化合物2-4とした。
<Dye compound 2-4>
"FDG002" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-4.
<色素化合物2-5>
 山田化学社製「FDB19」を色素化合物2-5とした。
<Dye compound 2-5>
"FDB19" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-5.
<色素化合物2-6>
 山田化学社製「DA115」を色素化合物2-6とした。
<Dye compound 2-6>
"DA115" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 2-6.
<色素化合物3-1>
 山田化学社製「IMM2」を色素化合物3-1とした。
<Dye compound 3-1>
"IMM2" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 3-1.
<色素化合物3-2>
 山田化学社製「FDG003」を色素化合物3-2とした。
<Dye compound 3-2>
"FDG003" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 3-2.
<色素化合物3-3>
 日本国特開2001-183522号公報を参考に、以下の色素化合物3-3を合成した。
<Dye compound 3-3>
The following dye compound 3-3 was synthesized with reference to Japanese Patent Application Laid-Open No. 2001-183522.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<色素化合物4-1>
 山田化学社製「FDR003」を色素化合物4-1とした。
<Dye compound 4-1>
"FDR003" manufactured by Yamada Chemical Co., Ltd. was designated as the dye compound 4-1.
<色素化合物4-2>
 日本国特許第6197940号公報を参考に、以下の色素化合物4-2を合成した。
<Dye compound 4-2>
The following dye compound 4-2 was synthesized with reference to Japanese Patent No. 6197940.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[試験例1]
<試験例1a-1>
 色素化合物1-1とシクロヘキサノンで希釈したC-3G30G(三菱ガス化学製、ポリイミドワニス)とを混合させ、色素化合物1-1をポリイミド樹脂溶液とを十分に溶解させて、樹脂溶液(色素化合物含有量:4.5質量%)を得た。
[Test Example 1]
<Test Example 1a-1>
Dye compound 1-1 and C-3G30G (manufactured by Mitsubishi Gas Chemical Company, polyimide varnish) diluted with cyclohexanone are mixed, and the dye compound 1-1 is sufficiently dissolved with the polyimide resin solution to form a resin solution (containing the dye compound). Amount: 4.5% by mass) was obtained.
 得られた樹脂溶液をshotto製D263(アルカリガラス)にスピンコートを用いて塗工して、十分に加熱して有機溶媒を除去し、厚み1.0μmの塗工膜を作製した。 The obtained resin solution was applied to D263 (alkaline glass) manufactured by Schott using a spin coat, and sufficiently heated to remove the organic solvent to prepare a coating film having a thickness of 1.0 μm.
 得られた塗工膜を日立ハイテクサイエンス製紫外可視近赤外分光光度計「UH4150」で、波長350nm~1200nmの範囲で入射方向に対して0°及び5°の入射方向で透過分光を測定した。 The obtained coating film was measured for transmission spectroscopy in the incident direction of 0 ° and 5 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with an ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. ..
 得られた透過率、反射率のデータから波長350nm~1200nmの内部透過率を下記式に基づき計算した。
  内部透過率={T0deg/(100-R5deg)}×100
 T0degは0°の実測透過率を意味し、R5degは5°の反射率を意味する。
From the obtained transmittance and reflectance data, the internal transmittance at a wavelength of 350 nm to 1200 nm was calculated based on the following formula.
Internal transmittance = {T 0 deg / (100-R 5 deg )} x 100
T 0 deg means the measured transmittance of 0 °, and R 5 deg means the reflectance of 5 °.
 吸収極大波長における内部透過率が10%となるように補正した結果を表4に示す。 Table 4 shows the results of correction so that the internal transmittance at the absorption maximum wavelength is 10%.
<試験例1a-2~1a-8>
 色素化合物の種類、色素化合物の含有量、樹脂の種類を表4に示すとおりとした以外は、試験例1a-1と同様の操作を行った。結果を表4に示す。
<Test Examples 1a-2 to 1a-8>
The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, and the type of the resin were set as shown in Table 4. The results are shown in Table 4.
 なお、各用語の意味は下記のとおりである。
 C-3G30G:三菱ガス化学製、ポリイミドワニス
 F4520:JSR製、シクロオレフィン樹脂
 B-OKP2:大阪ガスケミカル社製、ポリエステル樹脂
 IR80a:波長395nm以上450nm未満の範囲において内部透過率が80%となる最も長い波長
 IR80b:波長395nm以上450nm未満の範囲において内部透過率が80%となる最も短い波長
 IR10:波長395nm以上450nm未満の範囲において内部透過率が10%となる波長
 λMax:吸収極大波長
The meaning of each term is as follows.
C-3G30G: Mitsubishi Gas Chemicals, polyimide varnish F4520: JSR, cycloolefin resin B-OKP2: Osaka Gas Chemicals, polyester resin IR80a: The highest internal transmittance of 80% in the wavelength range of 395 nm or more and less than 450 nm. Long wavelength IR80b: Shortest wavelength with internal transmittance of 80% in the wavelength range of 395 nm or more and less than 450 nm IR10: Wavelength with internal transmittance of 10% in the wavelength range of 395 nm or more and less than 450 nm λ Max : Absorption maximum wavelength
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
<試験例1b-1~1b-11>
 色素化合物の種類、色素化合物の含有量、樹脂の種類、塗工膜の厚みを表5に示すとおりとした以外は、試験例1a-1と同様の操作を行った。結果を表5に示す。
<Test Examples 1b-1 to 1b-11>
The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 5. The results are shown in Table 5.
 なお、各用語の意味は下記のとおりである。
 IR80a:波長450nm以上540nm未満の範囲において内部透過率が80%となる最も長い波長
 IR80b:波長450nm以上540nm未満の範囲において内部透過率が80%となる最も短い波長
 IR10:波長450nm以上540nm未満の範囲において内部透過率が10%となる波長
The meaning of each term is as follows.
IR80a: The longest wavelength with an internal transmittance of 80% in the wavelength range of 450 nm or more and less than 540 nm IR80b: The shortest wavelength with an internal transmittance of 80% in the wavelength range of 450 nm or more and less than 540 nm IR10: Wavelength of 450 nm or more and less than 540 nm Wavelength with internal transmittance of 10% in the range
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
<試験例1c-1~1c-5>
 色素化合物の種類、色素化合物の含有量、樹脂の種類、塗工膜の厚みを表6に示すとおりとした以外は、試験例1a-1と同様の操作を行った。結果を表6に示す。
<Test Examples 1c-1 to 1c-5>
The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 6. The results are shown in Table 6.
 なお、各用語の意味は下記のとおりである。
 IR80a:波長540nm以上600nm未満の範囲において内部透過率が80%となる最も長い波長
 IR80b:波長540nm以上600nm未満の範囲において内部透過率が80%となる最も短い波長
 IR10:波長540nm以上600nm未満の範囲において内部透過率が10%となる波長
The meaning of each term is as follows.
IR80a: The longest wavelength with an internal transmittance of 80% in the wavelength range of 540 nm or more and less than 600 nm IR80b: The shortest wavelength with an internal transmittance of 80% in the wavelength range of 540 nm or more and less than 600 nm IR10: Wavelength of 540 nm or more and less than 600 nm Wavelength with internal transmittance of 10% in the range
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<試験例1d-1~1d-2>
 色素化合物の種類、色素化合物の含有量、樹脂の種類、塗工膜の厚みを表7に示すとおりとした以外は、試験例1a-1と同様の操作を行った。結果を表7に示す。
<Test Examples 1d-1 to 1d-2>
The same operation as in Test Example 1a-1 was performed except that the type of the dye compound, the content of the dye compound, the type of the resin, and the thickness of the coating film were set as shown in Table 7. The results are shown in Table 7.
 なお、各用語の意味は下記のとおりである。
 IR80a:波長600nm以上720nm未満の範囲において内部透過率が80%となる最も長い波長
 IR80b:波長600nm以上720nm未満の範囲において内部透過率が80%となる最も短い波長
 IR10:波長600nm以上720nm未満の範囲において内部透過率が10%となる波長
The meaning of each term is as follows.
IR80a: The longest wavelength with an internal transmittance of 80% in the wavelength range of 600 nm or more and less than 720 nm IR80b: The shortest wavelength with an internal transmittance of 80% in the wavelength range of 600 nm or more and less than 720 nm IR10: Wavelength of 600 nm or more and less than 720 nm Wavelength with internal transmittance of 10% in the range
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
[試験例2]
<試験例2-1>
 色素化合物1-2(2.55質量%)、色素化合物2-5(3.56質量%)、色素化合物3-3(3.34質量%)、色素化合物4-2(4.06質量%)、シクロヘキサノンで希釈したC-3G30G(三菱ガス化学製、ポリイミドワニス)を混合させ、色素化合物とポリイミド樹脂溶液とを十分に溶解させて、樹脂溶液を得た。
[Test Example 2]
<Test Example 2-1>
Dye compound 1-2 (2.55% by mass), Dye compound 2-5 (3.56% by mass), Dye compound 3-3 (3.34% by mass), Dye compound 4-2 (4.06% by mass) ), C-3G30G diluted with cyclohexanone (manufactured by Mitsubishi Gas Chemicals, polyimide varnish) was mixed, and the dye compound and the polyimide resin solution were sufficiently dissolved to obtain a resin solution.
 得られた樹脂溶液をshotto製D263(アルカリガラス)にスピンコートを用いて塗工して、十分に加熱して有機溶媒を除去し、厚み2μmの塗工膜を作製した。 The obtained resin solution was applied to D263 (alkaline glass) manufactured by Schott using a spin coat, and sufficiently heated to remove the organic solvent to prepare a coating film having a thickness of 2 μm.
 得られた塗工膜を日立ハイテクサイエンス製紫外可視近赤外分光光度計「UH4150」で波長350nm~1200nmの範囲で入射方向に対して0°の入射方向で透過分光を測定した。結果を表8に示す。 The obtained coated film was measured for transmission spectroscopy in the incident direction at 0 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with an ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. The results are shown in Table 8.
<試験例2-2~2-4>
 色素化合物の種類及び含有量を表8に示すとおりとした以外は、試験例2-1と同様の操作を行った。結果を表8に示す。
<Test Examples 2-2-2-4>
The same operation as in Test Example 2-1 was carried out except that the types and contents of the dye compounds were as shown in Table 8. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
[試験例3]
 shotto製D263(アルカリガラス)に、蒸着によりSiO及びTiOから構成される48層の誘電体多層膜を成膜した。得られた誘電体多層膜を日立ハイテクサイエンス製紫外可視近赤外分光光度計「UH4150」で、350nm~1200nmの波長範囲で入射方向に対して5°及び30°の入射方向で透過分光を測定した。結果を表9に示す。
[Test Example 3]
A 48-layer dielectric multilayer film composed of SiO 2 and TiO 2 was formed on D263 (alkaline glass) manufactured by Schott by vapor deposition. The obtained dielectric multilayer film is measured for transmission spectroscopy in the incident direction of 5 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with the ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. did. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 試験例3より、得られた誘電体多層膜は可視帯域の透過率が十分に高く、可視帯域の反射透過率が低いことが分かった。 From Test Example 3, it was found that the obtained dielectric multilayer film had a sufficiently high transmittance in the visible band and a low reflection transmittance in the visible band.
[試験例4]
<試験例4-1(実施例)>
 色素化合物1-2(2質量%)、色素化合物2-5(2.8質量%)、色素化合物3-3(2.5質量%)、色素化合物4-2(4.5質量%)、シクロヘキサノンで希釈したC-3G30G(三菱ガス化学製、ポリイミドワニス)を混合させ、色素化合物とポリイミド樹脂溶液とを十分に溶解させて、樹脂溶液を得た。
[Test Example 4]
<Test Example 4-1 (Example)>
Dye compound 1-2 (2% by mass), Dye compound 2-5 (2.8% by mass), Dye compound 3-3 (2.5% by mass), Dye compound 4-2 (4.5% by mass), C-3G30G (manufactured by Mitsubishi Gas Chemicals, polyimide varnish) diluted with cyclohexanone was mixed, and the dye compound and the polyimide resin solution were sufficiently dissolved to obtain a resin solution.
 また、shotto製D263(アルカリガラス、厚さ0.2mm)に試験例3で得られた誘電体多層膜を蒸着により成膜した。 Further, the dielectric multilayer film obtained in Test Example 3 was formed by thin film deposition on D263 (alkaline glass, thickness 0.2 mm) manufactured by Schott.
 誘電体多層膜が成膜されたD263(アルカリガラス)にスピンコートを用いて得られた樹脂溶液を塗工して、十分に加熱して有機溶媒を除去することで厚み3μmの塗工膜を作製した。得られた塗工膜の上にSiO及びTiOからなる7層の反射防止膜を蒸着により成膜した。 A resin solution obtained by using a spin coat is applied to D263 (alkaline glass) on which a dielectric multilayer film is formed, and the coating film is sufficiently heated to remove the organic solvent to obtain a coating film having a thickness of 3 μm. Made. A seven-layer antireflection film composed of SiO 2 and TiO 2 was formed by thin film deposition on the obtained coating film.
 反射防止膜を蒸着した塗工膜を日立ハイテクサイエンス製紫外可視近赤外分光光度計「UH4150」で波長350nm~1200nmの範囲で入射方向に対して0°及び30°の入射方向で透過分光を測定した。結果を表10に示す。 The coated film with the antireflection film vapor-deposited is subjected to transmission spectroscopy in the incident direction of 0 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with the ultraviolet visible near infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. It was measured. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<試験例4-2(実施例)>
 D263(アルカリガラス)を、赤外線をカットするフツリン酸ガラス(AGC社製)に変更した以外は、試験例4-1と同様の操作を行った。結果を表11及び図2に示す。
<Test Example 4-2 (Example)>
The same operation as in Test Example 4-1 was performed except that D263 (alkaline glass) was changed to borosilicate glass (manufactured by AGC) that cuts infrared rays. The results are shown in Table 11 and FIG.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<試験例4-3>
 shotto製D263(アルカリガラス、厚さ0.2mm)に、青色帯域の光、緑色帯域の光、赤色帯域の光が透過する、SiO及びTiOから構成される34層の誘電体多層膜を蒸着により成膜した。
<Test Example 4-3>
A 34-layer dielectric multilayer film composed of SiO 2 and TiO 2 through which light in the blue band, light in the green band, and light in the red band is transmitted to D263 (alkaline glass, thickness 0.2 mm) manufactured by shotto. A film was formed by vapor deposition.
 得られた膜を日立ハイテクサイエンス製紫外可視近赤外分光光度計「UH4150」で波長350nm~1200nmの範囲で入射方向に対して0°及び30°の入射方向で透過分光を測定した。結果を表12に示す。 The obtained film was measured for transmission spectroscopy at 0 ° and 30 ° with respect to the incident direction in the wavelength range of 350 nm to 1200 nm with an ultraviolet-visible near-infrared spectrophotometer "UH4150" manufactured by Hitachi High-Tech Science. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 試験例4より、実施例の塗工膜(樹脂層)は、青色帯域の透過率、緑色帯域の透過率、赤色帯域の透過率が十分に高いことが分かった。 From Test Example 4, it was found that the coating film (resin layer) of the example had sufficiently high transmittance in the blue band, transmittance in the green band, and transmittance in the red band.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2020年8月14日出願の日本特許出願(特願2020-137088)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 14, 2020 (Japanese Patent Application No. 2020-137088), the contents of which are incorporated herein by reference.
10 光学フィルタ
11 基材
12 誘電体多層膜
10 Optical filter 11 Base material 12 Dielectric multilayer film

Claims (11)

  1.  基材と、前記基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える光学フィルタであって、
     前記基材は、樹脂及び色素Aを含有する樹脂層を有し、
     前記色素Aは、ガラス基板上に、前記色素Aを前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、波長400nm以上700nm未満の範囲に吸収極大波長を有し、
     下記(i-1)~(i-9)を全て満たす、光学フィルタ。
     (i-1)入射角0°の分光透過率曲線において、
     波長430nm以上490nm未満の範囲に極大値1(0deg)を有し、
     波長490nm以上590nm未満の範囲に極大値2(0deg)を有し、
     波長590nm以上650nm未満の範囲に極大値3(0deg)を有する。
     (i-2)入射角30°の分光透過率曲線において、
     波長430nm以上490nm未満の範囲に極大値1(30deg)を有し、
     波長490nm以上590nm未満の範囲に極大値2(30deg)を有し、
     波長590nm以上650nm未満の範囲に極大値3(30deg)を有する。
     (i-3)入射角0°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(0deg)又は透過率が1%以下になる波長範囲を有し、
     波長490nm以上610nm未満の範囲に極小値2(0deg)又は透過率が1%以下になる波長範囲を有する。
     (i-4)入射角30°の分光透過率曲線において、波長440nm以上550nm未満の範囲に極小値1(30deg)又は透過率が1%以下になる波長範囲を有し、
     波長490nm以上610nm未満の範囲に極小値2(30deg)又は透過率が1%以下になる波長範囲を有する。
     (i-5)下記式が全て満たされる。
     極大値1(0deg)-極小値1(0deg)≧30%
     極大値2(0deg)-極小値1(0deg)≧30%
     極大値2(0deg)-極小値2(0deg)≧30%
     極大値3(0deg)-極小値2(0deg)≧27%
     (i-6)下記式が全て満たされる。
     極大値1(30deg)-極小値1(30deg)≧30%
     極大値2(30deg)-極小値1(30deg)≧30%
     極大値2(30deg)-極小値2(30deg)≧30%
     極大値3(30deg)-極小値2(30deg)≧27%
     (i-7)入射角0°の分光透過率曲線において、
     波長700~1000nmの範囲における平均透過率(0deg)が5%以下である。
     (i-8)入射角30°の分光透過率曲線において、
     波長700~1000nmの範囲における平均透過率(30deg)が5%以下である。
     (i-9)下記式が全て満たされる。
     0.85≦極大値1(30deg)/極大値1(0deg)≦1.12
     0.85≦極大値2(30deg)/極大値2(0deg)≦1.12
     0.85≦極大値3(30deg)/極大値3(0deg)≦1.12
    An optical filter comprising a base material and a dielectric multilayer film laminated as an outermost layer on at least one main surface side of the base material.
    The base material has a resin layer containing a resin and a dye A, and has a resin layer.
    The dye A has an absorption maximum wavelength in a wavelength range of 400 nm or more and less than 700 nm in the spectral transmittance curve of the coating film obtained by dissolving the dye A in the resin and applying the dye A on a glass substrate.
    An optical filter that satisfies all of the following (i-1) to (i-9).
    (I-1) In the spectral transmittance curve with an incident angle of 0 °,
    It has a maximum value of 1 (0 deg) in the wavelength range of 430 nm or more and less than 490 nm.
    It has a maximum value of 2 (0 deg) in the wavelength range of 490 nm or more and less than 590 nm.
    It has a maximum value of 3 (0 deg) in the wavelength range of 590 nm or more and less than 650 nm.
    (I-2) In the spectral transmittance curve with an incident angle of 30 °,
    It has a maximum value of 1 (30 deg) in the wavelength range of 430 nm or more and less than 490 nm.
    It has a maximum value of 2 (30 deg) in the wavelength range of 490 nm or more and less than 590 nm.
    It has a maximum value of 3 (30 deg) in the wavelength range of 590 nm or more and less than 650 nm.
    (I-3) In the spectral transmittance curve with an incident angle of 0 °, the wavelength range is a minimum value of 1 (0 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
    It has a minimum value of 2 (0 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
    (I-4) In the spectral transmittance curve with an incident angle of 30 °, the wavelength range is a minimum value of 1 (30 deg) or a transmittance of 1% or less in a wavelength range of 440 nm or more and less than 550 nm.
    It has a minimum value of 2 (30 deg) or a wavelength range in which the transmittance is 1% or less in a wavelength range of 490 nm or more and less than 610 nm.
    (I-5) All of the following equations are satisfied.
    Maxima 1 (0deg) -Maximum 1 (0deg) ≧ 30%
    Maxima 2 (0deg) -Maximum 1 (0deg) ≧ 30%
    Maxima 2 (0deg) -Maximum 2 (0deg) ≧ 30%
    Maxima 3 (0deg) -Maximum 2 (0deg) ≧ 27%
    (I-6) All of the following equations are satisfied.
    Maxima 1 (30deg) -Maximum 1 (30deg) ≧ 30%
    Maxima 2 (30deg) -Maximum 1 (30deg) ≧ 30%
    Maxima 2 (30deg) -Maximum 2 (30deg) ≧ 30%
    Maxima 3 (30deg) -Maximum 2 (30deg) ≧ 27%
    (I-7) In the spectral transmittance curve with an incident angle of 0 °,
    The average transmittance (0 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
    (I-8) In the spectral transmittance curve with an incident angle of 30 °,
    The average transmittance (30 deg) in the wavelength range of 700 to 1000 nm is 5% or less.
    (I-9) All of the following equations are satisfied.
    0.85 ≤ maximum value 1 (30 deg) / maximum value 1 (0 deg) ≤ 1.12
    0.85 ≤ maximum value 2 (30 deg) / maximum value 2 (0 deg) ≤ 1.12
    0.85 ≤ maximum value 3 (30 deg) / maximum value 3 (0 deg) ≤ 1.12
  2.  さらに、下記式を全て満たす、請求項1に記載の光学フィルタ。
     |波長λ1(0deg)-波長λ1(30deg)|≦10nm
     |波長λ2(0deg)-波長λ2(30deg)|≦10nm
     |波長λ3(0deg)-波長λ3(30deg)|≦10nm
     |波長λ4(0deg)-波長λ4(30deg)|≦10nm
    <式中、波長λ1(0deg)、波長λ1(30deg)、波長λ2(0deg)、波長λ2(30deg)、波長λ3(0deg)、波長λ3(30deg)、波長λ4(0deg)、波長λ4(30deg)は、下記式により求められる値である。
     波長λ1(0deg)={極大値1(0deg)における波長+極小値1(0deg)における波長}÷2
     波長λ1(30deg)={極大値1(30deg)における波長+極小値1(30deg)における波長}÷2
     波長λ2(0deg)={極大値2(0deg)における波長+極小値1(0deg)における波長}÷2
     波長λ2(30deg)={極大値2(30deg)における波長+極小値1(30deg)における波長}÷2
     波長λ3(0deg)={極大値2(0deg)における波長+極小値2(0deg)における波長}÷2
     波長λ3(30deg)={極大値2(30deg)における波長+極小値2(30deg)における波長}÷2
     波長λ4(0deg)={極大値3(0deg)における波長+極小値2(0deg)における波長}÷2
     波長λ4(30deg)={極大値3(30deg)における波長+極小値2(30deg)における波長}÷2>
    The optical filter according to claim 1, further satisfying all of the following equations.
    | Wavelength λ1 (0 deg) -Wavelength λ1 (30 deg) | ≤10 nm
    | Wavelength λ2 (0 deg) -Wavelength λ2 (30 deg) | ≤10 nm
    | Wavelength λ3 (0 deg) -Wavelength λ3 (30 deg) | ≤10 nm
    | Wavelength λ4 (0 deg) -Wavelength λ4 (30 deg) | ≤10 nm
    <In the formula, wavelength λ1 (0deg) , wavelength λ1 (30deg) , wavelength λ2 (0deg) , wavelength λ2 (30deg) , wavelength λ3 (0deg) , wavelength λ3 (30deg) , wavelength λ4 (0deg) , wavelength λ4 ( 30deg). ) Is a value obtained by the following formula.
    Wavelength λ1 (0deg) = {wavelength at maximum value 1 (0deg) + wavelength at minimum value 1 (0deg) } ÷ 2
    Wavelength λ1 (30deg) = {wavelength at maximum value 1 (30deg) + wavelength at minimum value 1 (30deg) } / 2
    Wavelength λ2 (0deg) = {wavelength at maximum value 2 (0deg) + wavelength at minimum value 1 (0deg) } ÷ 2
    Wavelength λ2 (30deg) = {wavelength at maximum value 2 (30deg) + wavelength at minimum value 1 (30deg) } ÷ 2
    Wavelength λ3 (0deg) = {wavelength at maximum value 2 (0deg) + wavelength at minimum value 2 (0deg) } ÷ 2
    Wavelength λ3 (30deg) = {wavelength at maximum value 2 (30deg) + wavelength at minimum value 2 (30deg) } ÷ 2
    Wavelength λ4 (0deg) = {wavelength at maximum value 3 (0deg) + wavelength at minimum value 2 (0deg) } ÷ 2
    Wavelength λ4 (30deg) = {wavelength at maximum value 3 (30deg) + wavelength at minimum value 2 (30deg) } ÷ 2>
  3.  前記色素Aは、色素1、色素2、色素3及び色素4を含有し、
     下記(ii-1)~(ii-4)が全て満たされる、請求項1又は2に記載の光学フィルタ。
     (ii-1)ガラス基板上に、前記色素1を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素1は波長395nm以上450nm未満の範囲に吸収極大波長を有する。
     (ii-2)ガラス基板上に、前記色素2を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素2は波長450nm以上540nm未満の範囲に吸収極大波長を有する。
     (ii-3)ガラス基板上に、前記色素3を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素3は波長540nm以上600nm未満の範囲に吸収極大波長を有する。
     (ii-4)ガラス基板上に、前記色素4を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、前記色素4は波長600nm以上720nm未満の範囲に吸収極大波長を有する。
    The dye A contains dye 1, dye 2, dye 3 and dye 4.
    The optical filter according to claim 1 or 2, wherein the following (ii-1) to (ii-4) are all satisfied.
    (Ii-1) In the spectral transmittance curve of the coating film obtained by dissolving the dye 1 in the resin and coating it on a glass substrate, the dye 1 has an absorption maximum wavelength in a wavelength range of 395 nm or more and less than 450 nm. ..
    (Ii-2) In the spectral transmittance curve of the coating film obtained by dissolving the dye 2 in the resin and coating the glass substrate, the dye 2 has an absorption maximum wavelength in a wavelength range of 450 nm or more and less than 540 nm. ..
    (Ii-3) In the spectral transmittance curve of the coating film obtained by dissolving the dye 3 in the resin and coating the glass substrate, the dye 3 has an absorption maximum wavelength in a wavelength range of 540 nm or more and less than 600 nm. ..
    (Ii-4) In the spectral transmittance curve of the coating film obtained by dissolving the dye 4 in the resin and coating the glass substrate, the dye 4 has an absorption maximum wavelength in a wavelength range of 600 nm or more and less than 720 nm. ..
  4.  前記色素1、前記色素2、前記色素3、前記色素4及び前記樹脂を有する樹脂層は、下記(iii-1)~(iii-3)を全て満たす、請求項3に記載の光学フィルタ。
     (iii-1)波長430nm以上490nm未満の範囲に極大値10を有し、
     波長490nm以上590nm未満の範囲に極大値11を有し、
     波長590nm以上650nm未満の範囲に極大値12を有する。
     (iii-2)波長400nm以上440nm未満の範囲に極小値10又は内部透過率が1%以下になる波長範囲を有し、
     波長440nm以上540nm未満の範囲に極小値11又は内部透過率が1%以下になる波長範囲を有し、
     波長540nm以上640nm未満の範囲に極小値12又は内部透過率が1%以下になる波長範囲を有し、
     波長640nm以上700nm未満の範囲に極小値13又は内部透過率が1%以下になる波長範囲を有する。
     (iii-3)極大値10、極大値11及び極大値12のなかの最大値が40%以上である。
    The optical filter according to claim 3, wherein the dye 1, the dye 2, the dye 3, the dye 4, and the resin layer having the resin satisfy all of the following (iii-1) to (iii-3).
    (Iii-1) It has a maximum value of 10 in the wavelength range of 430 nm or more and less than 490 nm, and has a maximum value of 10.
    It has a maximum value of 11 in the wavelength range of 490 nm or more and less than 590 nm, and has a maximum value of 11.
    It has a maximum value of 12 in the wavelength range of 590 nm or more and less than 650 nm.
    (Iii-2) The wavelength range is 400 nm or more and less than 440 nm, and the minimum value is 10 or the internal transmittance is 1% or less.
    It has a minimum value of 11 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 440 nm or more and less than 540 nm.
    It has a minimum value of 12 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 540 nm or more and less than 640 nm.
    It has a minimum value of 13 or a wavelength range in which the internal transmittance is 1% or less in a wavelength range of 640 nm or more and less than 700 nm.
    (Iii-3) The maximum value among the maximum value 10, the maximum value 11, and the maximum value 12 is 40% or more.
  5.  さらに、下記(iv-1)~(iv-4)を全て満たす、請求項3又は4に記載の光学フィルタ。
     (iv-1)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素1を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
      波長395nm以上450nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素1)とし、
      内部透過率が10%となる波長をIR10(色素1)としたとき、下記式が満たされる。
      IR80a(色素1)-IR10(色素1)≦25nm
     (iv-2)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素2を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
      波長450nm以上540nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素2)とし、
      内部透過率が80%となる最も短い波長をIR80b(色素2)とし、
      内部透過率が10%となる波長をIR10(色素2)としたとき、下記式が満たされる。
      IR80a(色素2)-IR10(色素2)≦35nm
      IR80b(色素2)-IR10(色素2)≦55nm
     (iv-3)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素3を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
      波長540nm以上600nm未満の範囲において内部透過率が80%となる最も長い波長をIR80a(色素3)とし、
      内部透過率が80%となる最も短い波長をIR80b(色素3)とし、
      内部透過率が10%となる波長をIR10(色素3)としたとき、下記式が満たされる。
      IR80a(色素3)-IR10(色素3)≦35nm
      IR80b(色素3)-IR10(色素3)≦55nm
     (iv-4)吸収極大波長における内部透過率が10%となるように、ガラス基板上に、前記色素4を前記樹脂に溶解して塗工した塗工膜の分光透過率曲線において、
      波長600nm以上720nm未満の範囲において内部透過率が80%となる最も短い波長をIR80b(色素4)とし、
      内部透過率が10%となる波長をIR10(色素4)としたとき、下記式が満たされる。
      IR80b(色素4)-IR10(色素4)≦80nm
    The optical filter according to claim 3 or 4, further satisfying all of the following (iv-1) to (iv-4).
    (Iv-1) In the spectral transmittance curve of the coating film coated by dissolving the dye 1 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
    IR80a (dye 1) is the longest wavelength with an internal transmittance of 80% in the wavelength range of 395 nm or more and less than 450 nm.
    When the wavelength at which the internal transmittance is 10% is IR10 (dye 1) , the following equation is satisfied.
    IR80a (dye 1) -IR10 ( dye 1) ≤25 nm
    (Iv-2) In the spectral transmittance curve of the coating film coated by dissolving the dye 2 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
    IR80a (dye 2) is the longest wavelength in which the internal transmittance is 80% in the wavelength range of 450 nm or more and less than 540 nm.
    The shortest wavelength at which the internal transmittance is 80% is IR80b (dye 2) .
    When the wavelength at which the internal transmittance is 10% is IR10 (dye 2) , the following equation is satisfied.
    IR80a (dye 2) -IR10 ( dye 2) ≤35 nm
    IR80b (dye 2) -IR10 ( dye 2) ≤55 nm
    (Iv-3) In the spectral transmittance curve of the coating film coated by dissolving the dye 3 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
    IR80a (dye 3) is the longest wavelength in which the internal transmittance is 80% in the wavelength range of 540 nm or more and less than 600 nm.
    The shortest wavelength at which the internal transmittance is 80% is IR80b (dye 3) .
    When the wavelength at which the internal transmittance is 10% is IR10 (dye 3) , the following equation is satisfied.
    IR80a (dye 3) -IR10 ( dye 3) ≤35 nm
    IR80b (dye 3) -IR10 ( dye 3) ≤55 nm
    (Iv-4) In the spectral transmittance curve of the coating film coated by dissolving the dye 4 in the resin on a glass substrate so that the internal transmittance at the absorption maximum wavelength is 10%.
    IR80b (dye 4) is the shortest wavelength in which the internal transmittance is 80% in the wavelength range of 600 nm or more and less than 720 nm.
    When the wavelength at which the internal transmittance is 10% is IR10 (dye 4) , the following equation is satisfied.
    IR80b (dye 4) -IR10 ( dye 4) ≤80 nm
  6.  前記色素1が下記式(1)で表される化合物である、請求項3~5のいずれか1項に記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。
     R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表す。
     Yは、R及びRで置換されたメチレン基または酸素原子を表す。
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表す。
     Xは、下記式(X1)~(X5)のいずれかを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(X1)~(X4)中、R及びRは、それぞれ独立に、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。
     R10~R19は、それぞれ独立に、水素原子、または、置換基を有してもよい炭素数1~12の1価の炭化水素基を表す。)
    The optical filter according to any one of claims 3 to 5, wherein the dye 1 is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
    R2 to R5 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
    Y represents a methylene group or oxygen atom substituted with R 6 and R 7 .
    R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
    X represents any of the following formulas (X1) to (X5). )
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (X1) to (X4), R 8 and R 9 each independently represent a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
    R 10 to R 19 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a substituent. )
  7.  前記色素3が下記式(3)で表される化合物である、請求項3~6のいずれか1項に記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R101及びR102は、それぞれ独立に、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシカルボニル基、または置換基を有していてもよいフェニル基を表す。
     nは各々独立に0~3の整数を表す。)
    The optical filter according to any one of claims 3 to 6, wherein the dye 3 is a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 101 and R 102 each independently have an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and even if they have a substituent. Represents a good alkoxycarbonyl group, or a phenyl group which may have a substituent.
    n represents an integer of 0 to 3 independently. )
  8.  前記色素4が下記式(4)で表される化合物である、請求項3~7のいずれか1項に記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000004
    <式(4)中、R21及びR22は、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基もしくはアリル基、または置換基を有していてもよい炭素数6~11のアリール基もしくはアルアリール基を示す。
     R23及びR25は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~6のアルキル基もしくはアルコキシ基を示す。
     R24及びR26は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、-NR2728を示す。
     R27及びR28は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、-C(=O)-R29、-NHR30、-SO-R30、または、下記式(S)で示される基を示す。
     R29は、水素原子、置換基を有してもよい炭素数1~20のアルキル基もしくは炭素数6~11のアリール基、または置換基を有していてもよく、炭素原子間に酸素原子を有してもよい炭素数7~18のアルアリール基を示す。
     R30は、1つ以上の水素原子が、ハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1~25の炭化水素基を示す。
    Figure JPOXMLDOC01-appb-C000005
    (式(S)中、R41及びR42は、それぞれ独立して、水素原子、ハロゲン原子、または炭素数1~10のアルキル基もしくはアルコキシ基を示す。
     kは2または3を表す。)
     R21とR22、R22とR25、及びR21とR23は、それぞれ、互いに連結して窒素原子と共に員数が5または6の複素環A、複素環B、及び複素環Cを形成してもよい。
     複素環Aが形成される場合のR21とR22は、これらが結合した2価の基-Q-として、水素原子が、炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。
     複素環Bが形成される場合のR22とR25、及び複素環Cが形成される場合のR21とR23は、これらが結合したそれぞれ2価の基-X-Y-及びX-Y-(窒素に結合する側がX及びX)として、X及びXがそれぞれ下記式(1x)または(2x)で示される基であり、Y及びYがそれぞれ下記式(1y)~(5y)から選ばれるいずれかで示される基である。
     X及びXが、それぞれ下記式(2x)で示される基の場合、Y及びYはそれぞれ単結合であってもよく、その場合、炭素原子間に酸素原子を有してもよい。
    Figure JPOXMLDOC01-appb-C000006
    (式(1x)中、4個のZは、それぞれ独立して、水素原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、または-NR3839を示す。
     R31~R36は、それぞれ独立して、水素原子、炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。
     R37は、炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。
     R38及びR39は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す。)
     R27、R28、R29、R31~R37、複素環を形成していない場合のR21~R23、及びR25は、これらのうちの他のいずれかと互いに結合して5員環または6員環を形成してもよい。R31とR36、R31とR37は直接結合してもよい。>
    The optical filter according to any one of claims 3 to 7, wherein the dye 4 is a compound represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    <In the formula (4), R 21 and R 22 each independently have a hydrogen atom, an alkyl group or an allyl group having 1 to 6 carbon atoms which may have a substituent, or a substituent. An aryl group or an alaryl group having 6 to 11 carbon atoms which may be used is shown.
    R 23 and R 25 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms.
    R 24 and R 26 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, and -NR 27 R 28 .
    R 27 and R 28 are independently each of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, -C (= O) -R 29 , -NHR 30 , -SO 2 -R 30 , or the following formula ( The group represented by S) is shown.
    R 29 may have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aryl group having 6 to 11 carbon atoms, or a substituent, and an oxygen atom between carbon atoms. Indicates an alaryl group having 7 to 18 carbon atoms which may have.
    In R 30 , one or more hydrogen atoms may be substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and an unsaturated bond, an oxygen atom, a saturated or unsaturated group between carbon atoms. It shows a hydrocarbon group having 1 to 25 carbon atoms which may contain a ring structure.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (S), R 41 and R 42 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
    k represents 2 or 3. )
    R 21 and R 22 , R 22 and R 25 , and R 21 and R 23 are connected to each other to form a heterocycle A, a heterocycle B, and a heterocycle C having 5 or 6 members together with a nitrogen atom, respectively. May be.
    When the heterocyclic ring A is formed, R 21 and R 22 have a divalent group −Q— to which they are bonded, and the hydrogen atom is an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Alternatively, an alkylene group or an alkyleneoxy group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent is shown.
    R 22 and R 25 when the heterocycle B is formed, and R 21 and R 23 when the heterocycle C is formed are the divalent groups -X 1 -Y 1- and X to which they are bonded, respectively. As 2 -Y2- (X 1 and X 2 on the side that binds to nitrogen), X 1 and X 2 are groups represented by the following formulas (1x) or ( 2x ), respectively, and Y 1 and Y 2 are the following, respectively. It is a group represented by any one selected from the formulas (1y) to (5y).
    When X 1 and X 2 are groups represented by the following formulas (2x), Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (1x), each of the four Zs independently represents a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 6 carbon atoms, or -NR 38 R 39 .
    R 31 to R 36 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
    R 37 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms.
    R 38 and R 39 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. )
    R 27 , R 28 , R 29 , R 31 to R 37 , R 21 to R 23 when no heterocycle is formed, and R 25 are 5-membered rings coupled to any other of these. Alternatively, a 6-membered ring may be formed. R 31 and R 36 , and R 31 and R 37 may be directly coupled. >
  9.  前記誘電体多層膜が、入射角5°の分光透過率曲線及び30°の分光透過率曲線において、下記(vi-1)~(vi-7)を全て満たす、請求項1~8のいずれか1項に記載の光学フィルタ。
    (vi-1)波長430nm以上490nm未満の光の平均反射率が30%以下である。
    (vi-2)波長490nm以上590nm未満の光の平均反射率が30%以下である。
    (vi-3)波長590nm以上650nm未満の光の平均反射率が30%以下である。
    (vi-4)波長430nm以上490nm未満の光の平均透過率が70%以上である。
    (vi-5)波長490nm以上590nm未満の光の平均透過率が80%以上である。
    (vi-6)波長590nm以上650nm未満の光の平均透過率が80%以上である。
    (vi-7)波長700nm以上1000nm未満の光の平均透過率が20%以下である。
    Any of claims 1 to 8, wherein the dielectric multilayer film satisfies all of the following (vi-1) to (vi-7) in a spectral transmittance curve having an incident angle of 5 ° and a spectral transmittance curve of 30 °. The optical filter according to item 1.
    (Vi-1) The average reflectance of light having a wavelength of 430 nm or more and less than 490 nm is 30% or less.
    (Vi-2) The average reflectance of light having a wavelength of 490 nm or more and less than 590 nm is 30% or less.
    (Vi-3) The average reflectance of light having a wavelength of 590 nm or more and less than 650 nm is 30% or less.
    (Vi-4) The average transmittance of light having a wavelength of 430 nm or more and less than 490 nm is 70% or more.
    (Vi-5) The average transmittance of light having a wavelength of 490 nm or more and less than 590 nm is 80% or more.
    (Vi-6) The average transmittance of light having a wavelength of 590 nm or more and less than 650 nm is 80% or more.
    (Vi-7) The average transmittance of light having a wavelength of 700 nm or more and less than 1000 nm is 20% or less.
  10.  前記基材が、支持体を有し、
     前記樹脂層が前記支持体の少なくとも一方の主面に積層され、
     前記支持体が、透明性ガラス又は吸収ガラスを含む、請求項1~9のいずれか1項に記載の光学フィルタ。
    The base material has a support and
    The resin layer is laminated on at least one main surface of the support.
    The optical filter according to any one of claims 1 to 9, wherein the support includes transparent glass or absorbent glass.
  11.  前記樹脂がポリイミド樹脂である、請求項1~10のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 10, wherein the resin is a polyimide resin.
PCT/JP2021/022940 2020-08-14 2021-06-16 Optical filter WO2022034739A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022542588A JPWO2022034739A1 (en) 2020-08-14 2021-06-16
CN202180055527.2A CN116075751A (en) 2020-08-14 2021-06-16 Optical filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137088 2020-08-14
JP2020137088 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022034739A1 true WO2022034739A1 (en) 2022-02-17

Family

ID=80247797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022940 WO2022034739A1 (en) 2020-08-14 2021-06-16 Optical filter

Country Status (3)

Country Link
JP (1) JPWO2022034739A1 (en)
CN (1) CN116075751A (en)
WO (1) WO2022034739A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183522A (en) * 1999-12-27 2001-07-06 Mitsubishi Chemicals Corp Filter for plasma display panel
JP2006126315A (en) * 2004-10-27 2006-05-18 Toray Ind Inc Optical filter
JP2013011840A (en) * 2011-06-02 2013-01-17 Ito Kogaku Kogyo Kk Antiglare optical element
JP6197940B2 (en) * 2015-02-18 2017-09-20 旭硝子株式会社 Squarylium dye, resin film, optical filter and imaging device
JP6504176B2 (en) * 2014-09-19 2019-04-24 Agc株式会社 Optical filter
JP2020038369A (en) * 2018-08-30 2020-03-12 Jsr株式会社 Optical filter, manufacturing method thereof and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183522A (en) * 1999-12-27 2001-07-06 Mitsubishi Chemicals Corp Filter for plasma display panel
JP2006126315A (en) * 2004-10-27 2006-05-18 Toray Ind Inc Optical filter
JP2013011840A (en) * 2011-06-02 2013-01-17 Ito Kogaku Kogyo Kk Antiglare optical element
JP6504176B2 (en) * 2014-09-19 2019-04-24 Agc株式会社 Optical filter
JP6197940B2 (en) * 2015-02-18 2017-09-20 旭硝子株式会社 Squarylium dye, resin film, optical filter and imaging device
JP2020038369A (en) * 2018-08-30 2020-03-12 Jsr株式会社 Optical filter, manufacturing method thereof and use thereof

Also Published As

Publication number Publication date
CN116075751A (en) 2023-05-05
JPWO2022034739A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP6904465B2 (en) Near-infrared absorbing dye and absorbing layer
JP6197940B2 (en) Squarylium dye, resin film, optical filter and imaging device
JP6202230B1 (en) Optical filter and imaging device
WO2016114363A1 (en) Near-infrared cut filter and imaging device
WO2017030174A1 (en) Optical filter and image pickup device
JP7070555B2 (en) Optical filter and image pickup device
JP7059729B2 (en) Optical filters, near-infrared absorbing dyes and imaging devices
JP7222361B2 (en) Optical filters and imagers
WO2020004641A1 (en) Optical filter and information acquisition device
JP2019078816A (en) Optical filter and imaging apparatus
WO2022024826A1 (en) Optical filter
US20240192413A1 (en) Optical filter
JP2024069437A (en) Optical filter and imaging device
WO2022034739A1 (en) Optical filter
WO2022138252A1 (en) Optical filter
WO2021095613A1 (en) Optical filter and fingerprint detection device using same
WO2022024941A1 (en) Optical filter
JP7459709B2 (en) optical filter
JP7415815B2 (en) optical filter
WO2022085636A1 (en) Optical filter
JP7342958B2 (en) Optical filters and imaging devices
WO2022024942A1 (en) Optical filter
WO2022065170A1 (en) Optical filter
JP2022077314A (en) Optical filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855818

Country of ref document: EP

Kind code of ref document: A1