JP6693585B2 - Optical filter and device using optical filter - Google Patents

Optical filter and device using optical filter Download PDF

Info

Publication number
JP6693585B2
JP6693585B2 JP2019026433A JP2019026433A JP6693585B2 JP 6693585 B2 JP6693585 B2 JP 6693585B2 JP 2019026433 A JP2019026433 A JP 2019026433A JP 2019026433 A JP2019026433 A JP 2019026433A JP 6693585 B2 JP6693585 B2 JP 6693585B2
Authority
JP
Japan
Prior art keywords
optical filter
resin
group
wavelength
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026433A
Other languages
Japanese (ja)
Other versions
JP2019124946A (en
Inventor
大月 敏敬
敏敬 大月
坪内 孝史
孝史 坪内
勝也 長屋
勝也 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2019026433A priority Critical patent/JP6693585B2/en
Publication of JP2019124946A publication Critical patent/JP2019124946A/en
Application granted granted Critical
Publication of JP6693585B2 publication Critical patent/JP6693585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Studio Devices (AREA)

Description

本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、可視光線と一部の近赤外線を選択的に透過させる光学フィルター(2波長バンドパスフィルター)、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。   The present invention relates to an optical filter and a device using the optical filter. Specifically, the present invention relates to an optical filter (two-wavelength bandpass filter) that selectively transmits visible light and a part of near-infrared light, and a solid-state imaging device and a camera module using the optical filter.

ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話、スマートフォンなどの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されているが、これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。   CCDs and CMOS image sensors that are solid-state image pickup devices for color images are used in solid-state image pickup devices such as video cameras, digital still cameras, mobile phones with camera functions, and smartphones. In, a silicon photodiode is used which has a sensitivity to near infrared rays which cannot be perceived by human eyes. In these solid-state image pickup devices, it is necessary to perform luminosity correction to obtain a natural color to the human eye, and an optical filter (for example, near infrared cutoff) that selectively transmits or cuts light rays in a specific wavelength range. Filter) is often used.

このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、特許文献1には、透明樹脂からなる基板を用い、透明樹脂中に近赤外線吸収剤を含有させた近赤外線カットフィルターが記載されており、特許文献2には銅イオンを含有するガラス基板を用いた近赤外カットフィルターが記載されている。   As such a near infrared cut filter, those manufactured by various methods have been conventionally used. For example, Patent Document 1 describes a near-infrared cut filter in which a substrate made of a transparent resin is used and a near-infrared absorber is contained in the transparent resin, and Patent Document 2 describes a glass substrate containing a copper ion. A near infrared cut filter using is described.

一方、近年、近赤外線を利用したモーションキャプチャーや距離認識(空間認識)などのセンシング機能をカメラモジュールに付与する試みが行われている。このような用途では、可視光線と一部の近赤外線を選択的に透過させることが必要となるため、従来のような近赤外線を一律に遮蔽する近赤外線カットフィルターを用いることはできない。   On the other hand, in recent years, attempts have been made to provide a camera module with a sensing function such as motion capture using near infrared rays and distance recognition (space recognition). In such an application, it is necessary to selectively transmit visible light and a part of near infrared rays, and thus a near infrared cut filter that uniformly shields near infrared rays cannot be used.

可視光線と一部の近赤外線を選択的に透過させる光学フィルターとして、(株)東亜理化学研究所やセラテックジャパン(株)などがガラス基板上に誘電体多層膜を製膜したフィルターを販売している。   As an optical filter that selectively transmits visible light and some near infrared rays, Toa Rikagaku Kenkyusho Co., Ltd. and Ceratech Japan Co., Ltd. sell filters that have a dielectric multilayer film formed on a glass substrate. There is.

特開平6−200113号公報JP-A-6-200113 特許第5036229号公報Japanese Patent No. 5036229

前記可視光線と一部の近赤外線を選択的に透過させる光学フィルターとして市販されている光学フィルターは、光線が斜めから該フィルターに入射した際に分光特性が大きく変わってしまうという問題があった。特に、可視光透過帯域の長波長側や、近赤外線選択透過帯域の短波長側で光学フィルターの入射角依存が大きいと、光線が該フィルターの斜めから入射した時に、センシング機能に用いる近赤外線のシグナルノイズ比(S/N比)が悪化するほか、カメラ画質や画像端部における色再現性に悪影響が出るなどといった問題がある。図1は従来の2波長バンドパスフィルターの分光透過スペクトル例を示しているが、入射角度が30°になると、近赤外選択透過帯域が大幅に短波長側にシフトしてしまい、本来カットすべき波長領域(この図の例では750〜800nm付近)の透過率が高くなってしまうことが確認される。このため、特に近赤外選択透過帯域の短波長側の入射角依存性が少なく、良好な近赤外光線S/N比、カメラ画質、可視光線および一部の近赤外光線の選択的透過性の全てを満足する光学フィルターが望まれていた。   The optical filter commercially available as an optical filter that selectively transmits the visible light and a part of the near-infrared has a problem that the spectral characteristics are significantly changed when the light is obliquely incident on the filter. In particular, if the incident angle dependence of the optical filter is large on the long-wavelength side of the visible light transmission band or on the short-wavelength side of the near-infrared selective transmission band, when the light ray enters from the diagonal of the filter, the near-infrared light used for the sensing function In addition to the deterioration of the signal noise ratio (S / N ratio), there are problems that the image quality of the camera and the color reproducibility at the edge of the image are adversely affected. FIG. 1 shows an example of a spectral transmission spectrum of a conventional two-wavelength bandpass filter. However, when the incident angle becomes 30 °, the near-infrared selective transmission band shifts significantly to the short wavelength side, which is essentially cut. It is confirmed that the transmittance in the proper wavelength region (in the example of this figure, around 750 to 800 nm) becomes high. For this reason, there is little dependency on the incident angle on the short wavelength side of the near infrared selective transmission band, and a good near infrared ray S / N ratio, camera image quality, selective transmission of visible light and some near infrared rays. An optical filter that satisfies all of the requirements has been desired.

本発明の目的は、可視光線と一部の近赤外線とを選択的に透過させる機能を有し、かつ、入射角依存性の少ない光学フィルターおよび該光学フィルターを用いた装置を提供することにある。   An object of the present invention is to provide an optical filter having a function of selectively transmitting visible light and a part of near-infrared rays and having little incident angle dependency, and an apparatus using the optical filter. ..

本発明者らは、前記課題を達成するために鋭意検討した結果、特定の光学特性を有する光学フィルターとすることで、前記課題を解決できること、特に、近赤外選択透過帯域の短波長側で入射角依存を少なくできることを見出し、本発明を完成するに至った。
本発明の態様例を以下に示す。
The present inventors have conducted extensive studies to achieve the above-mentioned object, and by using an optical filter having specific optical characteristics, the above-mentioned object can be solved, particularly on the short wavelength side of the near-infrared selective transmission band. The inventors have found that the incident angle dependence can be reduced, and have completed the present invention.
The example of the aspect of this invention is shown below.

[1] 可視光線と一部の近赤外線を選択的に透過させる光学フィルターであって、
波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
波長800nmにおける、光学フィルターの垂直方向から測定した場合の透過率が20%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率が50%以下である、光学フィルター。
[1] An optical filter which selectively transmits visible light and a part of near infrared rays,
It has a light ray stop band Za, a light ray transmission band Zb, and a light ray stop band Zc in the wavelength region of 650 nm or more, and the center wavelength of each band is Za <Zb <Zc,
The transmittance at a wavelength of 800 nm is 20% or less when measured from the vertical direction of the optical filter, and the transmittance is 50% or less when measured from the direction of 30 ° with respect to the vertical direction of the optical filter. filter.

[2] 波長700〜800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率の平均値が10%以下である、[1]に記載の光学フィルター。   [2] In the wavelength range of 700 to 800 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 5% or less, and when measured from the direction of 30 ° with respect to the vertical direction of the optical filter. The optical filter according to [1], which has an average transmittance of 10% or less.

[3] 前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb−Xaが5〜150nmであり、Y=(Xa+Xb)/2で表されるYの値が820〜950nmである、[1]または[2]に記載の光学フィルター。
[4] 前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値(Xa)が810〜900nmである、[1]〜[3]のいずれかに記載の光学フィルター。
[3] Of Zb, a wavelength value on the shortest wavelength side (Xa) and a wavelength value on the longest wavelength side (Xb), which have a transmittance of 50% when measured in the direction perpendicular to the optical filter. Xb−Xa is 5 to 150 nm, and the Y value represented by Y = (Xa + Xb) / 2 is 820 to 950 nm. [1] or [2].
[4] Among Zb, the wavelength value (Xa) on the shortest wavelength side, which has a transmittance of 50% when measured from the direction perpendicular to the optical filter, is 810 to 900 nm, and [1] to [3 ] The optical filter according to any one of.

[5] 前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ4%以下であり、前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である、[1]〜[4]のいずれかに記載の光学フィルター。   [5] The minimum transmittance when measured from the vertical direction of the optical filter in Za and Zc is 4% or less, and the maximum transmittance when measured from the vertical direction of the optical filter in Zb is 55% or more. The optical filter according to any one of [1] to [4].

[6] 波長Y−10nm〜Y+10nmの領域における、光学フィルターの垂直方向から測定した平均透過率が60%以上である、[1]〜[5]のいずれかに記載の光学フィルター。   [6] The optical filter according to any one of [1] to [5], which has an average transmittance of 60% or more measured in the vertical direction of the optical filter in the wavelength range of Y-10 nm to Y + 10 nm.

[7] 前記光学フィルターが、基材(i)を有し、該基材(i)が波長750〜850nmに吸収極大を有する化合物(S)を含む透明樹脂層を有する、[1]〜[6]のいずれかに記載の光学フィルター。
[8] 前記化合物(S)が、下記式(S1)で表される化合物である、[7]に記載の光学フィルター。
[7] The optical filter has a base material (i), and the base material (i) has a transparent resin layer containing a compound (S) having an absorption maximum at a wavelength of 750 to 850 nm. The optical filter according to any one of 6].
[8] The optical filter according to [7], wherein the compound (S) is a compound represented by the following formula (S1).

(S1)
[式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または−NR8−を表し、
1〜R8はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、−NRgh基、−SO2i基、−OSO2i基または下記La〜Lhのいずれかを表し、RgおよびRhはそれぞれ独立に、水素原子、−C(O)Ri基または下記La〜Leのいずれかを表し、Riは下記La〜Leのいずれかを表し、
(La)炭素数1〜12の脂肪族炭化水素基
(Lb)炭素数1〜12のハロゲン置換アルキル基
(Lc)炭素数3〜14の脂環式炭化水素基
(Ld)炭素数6〜14の芳香族炭化水素基
(Le)炭素数3〜14の複素環基
(Lf)炭素数1〜12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1〜12のアシル基、
(Lh)置換基Lを有してもよい炭素数1〜12のアルコキシカルボニル基
置換基Lは、炭素数1〜12の脂肪族炭化水素基、炭素数1〜12のハロゲン置換アルキル基、炭素数3〜14の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基および炭素数3〜14の複素環基からなる群より選ばれる少なくとも1種である。]
(S1)
[In the formula (S1), X independently represents an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or —NR 8 —,
R 1 to R 8 are each independently a hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphoric acid group, —NR g R h group, —SO 2 R i group, —OSO. It represents either 2 R i group or a group represented by L a ~L h, are each R g and R h independently represent any of hydrogen atom, -C (O) R i groups or the following L a ~L e , R i represents any of the following L a ~L e,
(L a ) C 1-12 aliphatic hydrocarbon group (L b ) C 1-12 halogen-substituted alkyl group (L c ) C 3-14 alicyclic hydrocarbon group (L d ) carbon Number of carbon atoms which may have an aromatic hydrocarbon group (L e ) having 6 to 14 carbon atoms, a heterocyclic group having 3 to 14 carbon atoms (L f ) and an alkoxy group having 1 to 12 carbon atoms (L g ) substituent L 1-12 acyl groups,
(L h ) an alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L, the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, It is at least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a heterocyclic group having 3 to 14 carbon atoms. ]

[9] 前記透明樹脂層が、前記化合物(S)の他に波長600nm以上750nm未満に吸収極大を有する化合物(A)を含む、[7]または[8]に記載の光学フィルター。   [9] The optical filter according to [7] or [8], wherein the transparent resin layer contains a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 750 nm, in addition to the compound (S).

[10] 前記透明樹脂層が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、[7]〜[9]のいずれかに記載の光学フィルター。   [10] The transparent resin layer has a cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin. , Polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester [7] to [9] containing at least one resin selected from the group consisting of a system curable resin, a silsesquioxane UV curable resin, an acrylic UV curable resin and a vinyl UV curable resin. The optical filter according to any one.

[11] 前記基材(i)の少なくとも一方の面に誘電体多層膜を有する、[7]〜[10]のいずれかに記載の光学フィルター。   [11] The optical filter according to any one of [7] to [10], which has a dielectric multilayer film on at least one surface of the base material (i).

[12] 固体撮像装置用である、[1]〜[11]のいずれかに記載の光学フィルター。
[13] [1]〜[12]のいずれかに記載の光学フィルターを具備する固体撮像装置。
[14] [1]〜[12]のいずれかに記載の光学フィルターを具備するカメラモジュール。
[12] The optical filter according to any one of [1] to [11], which is for a solid-state imaging device.
[13] A solid-state imaging device including the optical filter according to any one of [1] to [12].
[14] A camera module including the optical filter according to any one of [1] to [12].

本発明によれば、可視光線と一部の近赤外線の透過特性に優れ、かつ、入射角依存の少ない光学フィルターを提供することができる。   According to the present invention, it is possible to provide an optical filter that is excellent in the transmission characteristics of visible light and a part of near-infrared rays and that has little dependence on the incident angle.

図1は、従来の2波長バンドパスフィルターの分光透過スペクトル例を示したものである。FIG. 1 shows an example of a spectral transmission spectrum of a conventional two-wavelength bandpass filter. 図2(a)は、光学フィルターの垂直方向から測定した場合の透過率を測定する方法を示す概略図である。図2(b)は、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率を測定する方法を示す概略図である。FIG. 2A is a schematic diagram showing a method of measuring the transmittance when measured from the vertical direction of the optical filter. FIG. 2B is a schematic diagram showing a method for measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter. 図3は、実施例1で得られた基材の分光透過スペクトルである。FIG. 3 is a spectral transmission spectrum of the substrate obtained in Example 1. 図4は、実施例1で得られた光学フィルターの分光透過スペクトルである。FIG. 4 is a spectral transmission spectrum of the optical filter obtained in Example 1. 図5は、実施例2で得られた基材の分光透過スペクトルである。FIG. 5 is a spectral transmission spectrum of the substrate obtained in Example 2. 図6は、実施例2で得られた光学フィルターの分光透過スペクトルである。FIG. 6 is a spectral transmission spectrum of the optical filter obtained in Example 2. 図7は、比較例1で得られた光学フィルターの分光透過スペクトルである。FIG. 7 is a spectral transmission spectrum of the optical filter obtained in Comparative Example 1. 図8は、比較例2で得られた光学フィルターの分光透過スペクトルである。FIG. 8 is a spectral transmission spectrum of the optical filter obtained in Comparative Example 2.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

≪光学フィルター≫
本発明の光学フィルターは、可視光線と一部の近赤外線を選択的に透過させるフィルターであって、波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、波長800nmにおける、光学フィルターの垂直方向から測定した場合の透過率が20%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率が50%以下である、光学フィルターである。このような、本発明の光学フィルターは、可視光線と一部(所望領域)の近赤外線の透過率特性に優れ、さらに、入射角依存の少ない、特に近赤外選択透過帯域の短波長側で入射角依存の少ない光学フィルターである。
≪Optical filter≫
The optical filter of the present invention is a filter that selectively transmits visible light and a part of near infrared rays, and has a light stop band Za, a light transmission band Zb, and a light stop band Zc in a region of a wavelength of 650 nm or more, The center wavelength of each band is Za <Zb <Zc, the transmittance at a wavelength of 800 nm when measured from the vertical direction of the optical filter is 20% or less, and the direction of 30 ° with respect to the vertical direction of the optical filter. The optical filter has a transmittance of 50% or less when measured from. Such an optical filter of the present invention has excellent transmittance characteristics of visible light and a part (desired region) of near-infrared rays, and further has little dependence on the incident angle, particularly on the short wavelength side of the near-infrared selective transmission band. It is an optical filter with little dependence on the incident angle.

本発明の光学フィルターは、波長800nmにおける、光学フィルターの垂直方向から測定した場合の透過率が20%以下であり、該フィルターを、近赤外センシング機能を併せ持つ固体撮像素子などに使用する場合には、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。また、波長800nmにおける、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率は、50%以下であり、好ましくは40%以下、より好ましくは30%以下、特に好ましくは20%以下である。本発明の光学フィルターが前記光学特性を有することで、可視光線と一部(所望領域)の近赤外線の透過率特性に優れ、かつ、入射角依存の少ない、特に近赤外選択透過帯域の短波長側で入射角依存の少ない光学フィルターを得ることができ、さらに、不要な波長の光線を効果的にカットすることができ、得られるカメラ画像の色再現性を向上させることができる。   The optical filter of the present invention has a transmittance of 20% or less at a wavelength of 800 nm when measured from the vertical direction of the optical filter, and when the filter is used for a solid-state imaging device having a near-infrared sensing function as well. Is more preferably 15% or less, further preferably 10% or less, particularly preferably 5% or less. The transmittance at a wavelength of 800 nm when measured from the direction of 30 ° with respect to the vertical direction of the optical filter is 50% or less, preferably 40% or less, more preferably 30% or less, particularly preferably 20%. % Or less. Since the optical filter of the present invention has the above-mentioned optical characteristics, it has excellent transmittance characteristics of visible light and a part (desired region) of near-infrared rays, and has little incidence angle dependence, particularly a short near-infrared selective transmission band. It is possible to obtain an optical filter that is less dependent on the incident angle on the wavelength side, and it is possible to effectively cut rays of unnecessary wavelengths and improve the color reproducibility of the obtained camera image.

本発明の光学フィルターは、波長700〜800nmの透過率を低く抑えることが好ましく、この波長域の透過率を低くすることで、該フィルターを、センサーを有する装置、例えば、固体撮像装置に使用した場合、該センサーにおいて、検出されるノイズが低減されると考えられる。このため、波長800nmにおける透過率は低いことが好ましいと考えられるが、従来の光学フィルターでは、波長800nmにおける低い透過率を達成することはできなかった。特に、従来の光学フィルターに入射する光の入射角が変化(例えば、フィルター面の垂直方向に対して30°)すると、通常、波長800nmにおける透過率が高くなり、このようなフィルターは、様々な角度から光が入射する可能性がある用途であって、ノイズの低減が要求される用途には、使用できなかった。
一方で、本発明の光学フィルターによれば、波長700〜800nmの透過率を低く抑えることができ、該フィルターに入射する角度が変化しても、波長800nmにおける透過率が低いため、様々な角度から光が入射する可能性がある用途であって、ノイズの低減が要求される用途に、特に好適に使用することができる。
The optical filter of the present invention preferably has a low transmittance in the wavelength range of 700 to 800 nm. By lowering the transmittance in this wavelength range, the filter is used for a device having a sensor, for example, a solid-state imaging device. In that case, it is considered that the detected noise is reduced in the sensor. Therefore, it is considered preferable that the transmittance at the wavelength of 800 nm is low, but the conventional optical filter cannot achieve the low transmittance at the wavelength of 800 nm. In particular, when the incident angle of light incident on a conventional optical filter changes (for example, 30 ° with respect to the vertical direction of the filter surface), the transmittance at a wavelength of 800 nm usually increases, and such a filter has various characteristics. It could not be used in applications where light may be incident from an angle and where noise reduction is required.
On the other hand, according to the optical filter of the present invention, the transmittance at a wavelength of 700 to 800 nm can be suppressed to a low level, and even if the angle of incidence on the filter changes, the transmittance at a wavelength of 800 nm is low, so that various angles can be obtained. It can be particularly suitably used for applications in which light may be incident from, and applications in which noise reduction is required.

本発明の光学フィルターは、波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有する。ただし、それぞれの帯域の中心波長はZa<Zb<Zcである。   The optical filter of the present invention has a light ray stop band Za, a light ray transmission band Zb, and a light ray stop band Zc in a wavelength region of 650 nm or more. However, the central wavelength of each band is Za <Zb <Zc.

Zaは波長650nm以上900nm以下において、光学フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Za1から、20%未満から20%以上となる最も長い波長Za2までの波長帯域を指す。なお、Zaの中心波長は、(Za1+Za2)/2nmである。   Za has a wavelength of 650 nm or more and 900 nm or less, and the transmittance when measured from the vertical direction of the optical filter is from the shortest wavelength Za1 of more than 20% to 20% or less to the longest wavelength of less than 20% to 20% or more. It refers to the wavelength band up to Za2. The center wavelength of Za is (Za1 + Za2) / 2 nm.

Zbは波長750nm以上1050nm以下において、光学フィルターの垂直方向から測定した場合の透過率が、40%以下から40%超になる最も短い波長Zb1から、40%超から40%以下となる最も長い波長Zb2までの波長帯域を指す。なお、Zbの中心波長は、(Zb1+Zb2)/2nmである。   Zb is a wavelength of 750 nm or more and 1050 nm or less, in which the transmittance when measured in the vertical direction of the optical filter is 40% or less to 40% or more, the shortest wavelength Zb1 to 40% to 40% or less, the longest wavelength. It refers to the wavelength band up to Zb2. The center wavelength of Zb is (Zb1 + Zb2) / 2 nm.

Zcは波長820nm以上において、光学フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Zc1から、Zc1+200nmである波長Zc2までの波長帯域を指す。なお、Zcの中心波長は、(Zc1+Zc2)/2nmである。   Zc indicates a wavelength band from the shortest wavelength Zc1 at which the transmittance measured from the vertical direction of the optical filter is 20% to 20% to the wavelength Zc2 which is Zc1 + 200 nm at a wavelength of 820 nm or more. The center wavelength of Zc is (Zc1 + Zc2) / 2 nm.

本発明の光学フィルターを、近赤外センシング機能を併せ持つ固体撮像素子などに使用する場合、光線(近赤外線)透過帯域Zbの最大透過率は高い方が好ましく、光線阻止帯域ZaおよびZcの最小透過率は低い方が好ましい。このような場合、本発明の光学フィルターを有する固体撮像素子等は、優れた近赤外センシング性能を達成可能であるとともに、不要な波長の光線を効果的にカットすることができるため、色再現性等に優れるカメラ画像を得ることができる。   When the optical filter of the present invention is used in a solid-state imaging device having a near-infrared sensing function as well, it is preferable that the maximum transmittance of the light ray (near-infrared) transmission band Zb is high, and the minimum transmission of the light ray stop bands Za and Zc. A lower rate is preferable. In such a case, the solid-state imaging device or the like having the optical filter of the present invention can achieve excellent near-infrared sensing performance and can effectively cut light rays of unnecessary wavelengths, so that color reproduction is possible. It is possible to obtain a camera image having excellent properties.

光線透過帯域Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率は、好ましくは55%以上、より好ましくは57%以上、さらに好ましくは60%以上、特に好ましくは63%以上である。光線阻止帯域ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率は、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1%以下である。Zbにおける最大透過率やZaおよびZcにおける最小透過率が前記範囲にあると、発明の光学フィルターを有する固体撮像素子等は、高い近赤外センシング性能を達成しつつノイズが少なくなるため、色再現性に優れるカメラ画像を得ることができる。   The maximum transmittance when measured from the vertical direction of the optical filter in the light transmission band Zb is preferably 55% or more, more preferably 57% or more, further preferably 60% or more, and particularly preferably 63% or more. The minimum transmittance measured in the vertical direction of the optical filter in the light stop bands Za and Zc is preferably 4% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less. .. When the maximum transmittance in Zb or the minimum transmittance in Za and Zc is within the above range, the solid-state imaging device or the like having the optical filter of the invention achieves high near-infrared sensing performance and less noise, resulting in color reproduction. It is possible to obtain an excellent camera image.

前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb−Xaで光線透過帯Zbの幅を定義することができ、Xb−Xaの値は好ましくは5〜150nm、さらに好ましくは10〜140nm、特に好ましくは15〜130nmである。また、Y=(Xa+Xb)/2で表されるYの値は、好ましくは820〜950nm、より好ましくは825〜920nm、さらに好ましくは830〜890nm、特に好ましくは835〜880nmである。Xb−XaやYの値がこの範囲にあると、近赤外センシング感度とカメラ画像の色再現性とにより優れる光学フィルターを得ることができる。   Of the Zb, the difference Xb between the value of the wavelength on the shortest wavelength side (Xa) and the value of the wavelength on the longest wavelength side (Xb), which has a transmittance of 50% when measured from the vertical direction of the optical filter. The width of the light transmission band Zb can be defined by -Xa, and the value of Xb-Xa is preferably 5 to 150 nm, more preferably 10 to 140 nm, and particularly preferably 15 to 130 nm. The value of Y represented by Y = (Xa + Xb) / 2 is preferably 820 to 950 nm, more preferably 825 to 920 nm, further preferably 830 to 890 nm, and particularly preferably 835 to 880 nm. When the values of Xb-Xa and Y are in this range, it is possible to obtain an optical filter that is more excellent in near infrared sensing sensitivity and color reproducibility of camera images.

また、前記Xaは、好ましくは810〜900nm、より好ましくは810〜860nm、特に好ましくは810〜840nmの範囲にある。Xaがこの範囲にあると、近赤外線領域において、所望の光線を透過および遮断することができ、ノイズを低減することができるため好ましい。   The Xa is preferably in the range of 810 to 900 nm, more preferably 810 to 860 nm, and particularly preferably 810 to 840 nm. When Xa is in this range, a desired light ray can be transmitted and blocked in the near infrared region, and noise can be reduced, which is preferable.

本発明の光学フィルターは、該光学フィルターの垂直方向に対して30°の角度から測定した透過率曲線のうち、前記Zbに相当する帯域において透過率が50%となる最も短波長側の波長の値(Xa')と前記Xaとの差の絶対値|Xa−Xa'|は、好ましくは30nm以下、より好ましくは25nm以下、さらに好ましくは20nm以下、特に好ましくは15nm以下である。|Xa−Xa'|の値がこの範囲にあると、分光特性の入射角依存が小さい光学フィルターを得ることができ、該光学フィルターを特にセンシング機能を有するカメラモジュールなどに使用した場合、光を該フィルターに斜めから入射させても良好な近赤外線S/N比とカメラ画質を同時に達成することができる。   The optical filter of the present invention has a transmittance curve measured from an angle of 30 ° with respect to the vertical direction of the optical filter, and has a transmittance of 50% in a band corresponding to Zb, which is the shortest wavelength side wavelength. The absolute value | Xa−Xa ′ | of the difference between the value (Xa ′) and the Xa is preferably 30 nm or less, more preferably 25 nm or less, further preferably 20 nm or less, and particularly preferably 15 nm or less. When the value of | Xa−Xa ′ | is in this range, an optical filter having a small incident angle dependence of the spectral characteristic can be obtained, and when the optical filter is used for a camera module having a sensing function, light is not emitted. A good near-infrared S / N ratio and camera image quality can be achieved at the same time even when the light is obliquely incident on the filter.

本発明の光学フィルターは、前記Yに関し、Y−10nm〜Y+10nmの波長域における光学フィルターの垂直方向から測定した場合の平均透過率は、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは80%以上である。
このような透過特性を有するフィルターは、可視域と目的とする近赤外域において高い光線透過特性を達成でき、カメラ機能と近赤外センシング機能とを良好なレベルで両立することができる。
The optical filter of the present invention, with respect to the Y, has an average transmittance of preferably 60% or more, more preferably 65% or more, further preferably when measured from the vertical direction of the optical filter in the wavelength range of Y-10 nm to Y + 10 nm. Is 70% or more, particularly preferably 80% or more.
A filter having such a transmission characteristic can achieve a high light transmission characteristic in a visible region and a target near-infrared region, and can achieve both a camera function and a near-infrared sensing function at a good level.

本発明の光学フィルターを、近赤外センシング機能を併せ持つ固体撮像素子などに使用する場合、波長700〜800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値は、好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率の平均値は、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは6%以下、さらに好ましくは5%以下、特に好ましくは3%以下である。本発明の光学フィルターがこのような光学特性を有すると、不要な波長の光線を効果的にカットすることができ、カメラ画像の色再現性を向上させることができ、特に、光を該フィルターに斜め方向から入射させてもこれらの効果を有する光学フィルターとなる。   When the optical filter of the present invention is used for a solid-state imaging device having a near-infrared sensing function as well, the average value of the transmittance when measured from the vertical direction of the optical filter in the wavelength range of 700 to 800 nm is preferably 5% or less, more preferably 4% or less, further preferably 3% or less, further preferably 2% or less, particularly preferably 1% or less, when measured from a direction of 30 ° to the vertical direction of the optical filter. The average value of the transmittance is preferably 10% or less, more preferably 8% or less, further preferably 6% or less, further preferably 5% or less, and particularly preferably 3% or less. When the optical filter of the present invention has such optical characteristics, it can effectively cut light rays having unnecessary wavelengths, and can improve color reproducibility of a camera image. The optical filter has these effects even when it is incident from an oblique direction.

本発明の光学フィルターを固体撮像素子などに使用する場合、可視光透過率が高い方が好ましい。具体的には、波長430〜580nmの領域において、光学フィルターの垂直方向から測定した場合の平均透過率は、好ましくは75%以上、より好ましくは80%以上、さらに好ましくは83%以上、特に好ましくは85%以上である。この波長域において平均透過率がこの範囲にあると、本発明の光学フィルターを固体撮像素子用途として使用した場合、優れた撮像感度を達成することができる。   When the optical filter of the present invention is used in a solid-state image sensor or the like, it is preferable that the visible light transmittance is high. Specifically, in the wavelength region of 430 to 580 nm, the average transmittance when measured from the vertical direction of the optical filter is preferably 75% or more, more preferably 80% or more, further preferably 83% or more, particularly preferably Is 85% or more. When the average transmittance is within this range in this wavelength range, excellent imaging sensitivity can be achieved when the optical filter of the present invention is used as a solid-state imaging device.

本発明の光学フィルターは、波長560〜800nmの範囲において、光学フィルターの垂直方向から測定した時の透過率が50%となる最も短い波長の値(Xd)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が50%となる最も短い波長の値(Xe)との差の絶対値は小さいことが好ましく、具体的には、好ましくは25nm未満、より好ましくは15nm未満、特に好ましくは10nm未満である。このような光学特性を有する光学フィルターによれば、分光特性の入射角依存が小さく、視野角の広い光学フィルターを得ることができ、特にカメラモジュールなどの用途に使用した場合、良好なカメラ画質や画像端部における色再現性を達成できる。   The optical filter of the present invention has the shortest wavelength value (Xd) at which the transmittance is 50% when measured from the vertical direction of the optical filter in the wavelength range of 560 to 800 nm and the vertical direction of the optical filter. It is preferable that the absolute value of the difference from the value (Xe) of the shortest wavelength at which the transmittance is 50% when measured from an angle of 30 ° is small, specifically, preferably less than 25 nm, more preferably 15 nm. Less, particularly preferably less than 10 nm. According to the optical filter having such an optical characteristic, it is possible to obtain an optical filter having a small viewing angle dependence of the spectral characteristic and a wide viewing angle, and particularly when used for a camera module or the like, a good camera image quality or Color reproducibility at the edge of the image can be achieved.

本発明の光学フィルターの厚みは、所望の用途に応じて適宜選択すればよいが、近年の固体撮像装置の薄型化、軽量化等の流れによれば、本発明の光学フィルターの厚みも薄いことが好ましい。
本発明の光学フィルターの厚みは、例えば、260μm以下、好ましくは210μm以下、より好ましくは160μm以下、さらに好ましくは120μm以下、特に好ましくは90μm以下であり、下限は特に制限されないが、例えば、20μmであることが望ましい。
The thickness of the optical filter of the present invention may be appropriately selected according to the desired application, but according to the recent trend of thinning and weight saving of the solid-state imaging device, the thickness of the optical filter of the present invention is also thin. Is preferred.
The thickness of the optical filter of the present invention is, for example, 260 μm or less, preferably 210 μm or less, more preferably 160 μm or less, further preferably 120 μm or less, particularly preferably 90 μm or less, and the lower limit is not particularly limited, but is, for example, 20 μm. Is desirable.

<光学フィルターの構造等>
本発明の光学フィルターの構造は特に制限されないが、薄型化可能であり、前記光学特性を有する光学フィルターを容易に得ることができる等の点から、下記化合物(S)を含む透明樹脂層を有する基材(i)を含有することが好ましく、該基材(i)と誘電体多層膜とを有することが好ましい。また、本発明の光学フィルターには、所望の用途、要求特性等に応じて、その他の機能膜が含まれていてもよい。
<Structure of optical filter, etc.>
The structure of the optical filter of the present invention is not particularly limited, but it has a transparent resin layer containing the following compound (S) from the viewpoints that it can be made thin and an optical filter having the above-mentioned optical characteristics can be easily obtained. It is preferable to contain the substrate (i), and it is preferable to have the substrate (i) and the dielectric multilayer film. Further, the optical filter of the present invention may include other functional films depending on the desired application, required characteristics and the like.

[基材(i)]
前記基材(i)は、単層であっても多層であってもよく、少なくとも下記化合物(S)を1種以上含有する透明樹脂層を有すればよい。基材(i)が単層の場合は、例えば、化合物(S)を含む透明樹脂製基板(ii)からなる基材を挙げることができ、この透明樹脂製基板(ii)が前記透明樹脂層となる。多層の場合は、例えば、ガラス支持体やベースとなる樹脂製支持体などの支持体または透明樹脂製基板(ii)上に化合物(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材や、化合物(S)を含む透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を挙げることができる。製造コストや光学特性調整の容易性、さらに、樹脂製支持体や透明樹脂製基板(ii)の傷消し効果を達成できることや基材(i)の耐傷つき性向上等の点から、化合物(S)を含有する透明樹脂製基板(ii)上に硬化性樹脂からなるオーバーコート層などの樹脂層が積層された基材が特に好ましい。
以下、化合物(S)および透明樹脂を含有する層を「透明樹脂層」ともいい、それ以外の樹脂層を単に「樹脂層」ともいう。
[Substrate (i)]
The base material (i) may be a single layer or a multilayer, as long as it has at least a transparent resin layer containing one or more of the following compound (S). When the base material (i) is a single layer, for example, a base material made of a transparent resin substrate (ii) containing the compound (S) can be mentioned, and the transparent resin substrate (ii) is the transparent resin layer. Becomes In the case of a multilayer, for example, a support such as a glass support or a resin support serving as a base, or an overcoat layer made of a curable resin containing the compound (S) on a transparent resin substrate (ii), etc. Examples thereof include a base material on which a transparent resin layer is laminated, and a base material on which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on a transparent resin substrate (ii) containing the compound (S). .. From the standpoints of manufacturing cost, ease of adjusting optical characteristics, achievement of scratch erasing effect of the resin support and transparent resin substrate (ii), and improvement of scratch resistance of the substrate (i), the compound (S A base material in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate (ii) containing a) is particularly preferable.
Hereinafter, the layer containing the compound (S) and the transparent resin is also referred to as "transparent resin layer", and the other resin layers are simply referred to as "resin layer".

波長750nm以上の領域における、前記基材(i)の垂直方向から測定した最も低い透過率(Tb)は、好ましくは40%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
波長750nm以上の領域における前記基材(i)の垂直方向から測定した透過率が50%未満から50%以上となる最も短い波長(Xf)は、好ましくは770〜900nm、さらに好ましくは775〜890nm、特に好ましくは780〜880nmである。
基材(i)の(Tb)および(Xf)の光学特性がこのような範囲にあれば、近赤外線選択透過帯域付近の不要な近赤外線を選択的に効率よくカットすることができ、センシング用近赤外線S/N比を向上できるとともに、基材(i)上に誘電体多層膜を製膜した際、近赤外線選択透過帯域の短波長側の光学特性の入射角依存性を低減することができる。
The lowest transmittance (Tb) measured from the vertical direction of the substrate (i) in the wavelength region of 750 nm or more is preferably 40% or less, more preferably 25% or less, and particularly preferably 10% or less.
The shortest wavelength (Xf) at which the transmittance measured from the vertical direction of the substrate (i) in the wavelength region of 750 nm or more is less than 50% to 50% or more is preferably 770 to 900 nm, more preferably 775 to 890 nm. And particularly preferably 780 to 880 nm.
If the optical properties of (Tb) and (Xf) of the base material (i) are in such a range, unnecessary near infrared rays near the near infrared selective transmission band can be selectively and efficiently cut, and for sensing. The near-infrared S / N ratio can be improved, and when the dielectric multilayer film is formed on the substrate (i), it is possible to reduce the incident angle dependence of the optical characteristics on the short wavelength side of the near-infrared selective transmission band. it can.

波長600nm以上750nm未満の領域において、前記基材(i)の垂直方向から測定した最も低い透過率(Ta)は、好ましくは45%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
波長600nm以上の領域における前記基材(i)の垂直方向から測定した透過率が50%超から50%以下となる最も短い波長(Xc)は、好ましくは610〜705nm、さらに好ましくは620〜680nm、特に好ましくは630〜660nmである。
基材(i)の(Ta)および(Xc)の光学特性がこのような範囲にあれば、不要な近赤外線を選択的に効率よくカットすることができるとともに、基材(i)上に誘電体多層膜を製膜した際、可視域〜近赤外波付近の光学特性の入射角依存性を低減することができる。
In the wavelength region of 600 nm or more and less than 750 nm, the lowest transmittance (Ta) measured from the vertical direction of the substrate (i) is preferably 45% or less, more preferably 25% or less, particularly preferably 10% or less. is there.
The shortest wavelength (Xc) at which the transmittance measured from the vertical direction of the substrate (i) in the wavelength region of 600 nm or more is from more than 50% to 50% or less is preferably 610 to 705 nm, more preferably 620 to 680 nm. , Particularly preferably 630 to 660 nm.
When the optical properties of (Ta) and (Xc) of the base material (i) are in such a range, unnecessary near infrared rays can be selectively and efficiently cut off, and at the same time, a dielectric layer is formed on the base material (i). When the body multilayer film is formed, it is possible to reduce the incident angle dependence of the optical characteristics in the visible region to the near infrared region.

基材(i)の波長430〜580nmにおける平均透過率は、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上である。このような透過特性を有する基材を用いると、可視域および目的とする近赤外域において高い光線透過特性を達成でき、カメラ機能と近赤外センシング機能とを良好なレベルで両立することができる。   The average transmittance of the substrate (i) at a wavelength of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, particularly preferably 80% or more. By using a substrate having such transmission characteristics, it is possible to achieve high light transmission characteristics in the visible range and the target near-infrared range, and it is possible to achieve both a camera function and a near-infrared sensing function at a good level. ..

前記基材(i)の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、得られる光学フィルターの入射角依存性を低減するように適宜選択することが望ましく、好ましくは10〜210μm、より好ましくは20〜150μm、さらに好ましくは20〜110μm、特に好ましくは30〜80μmである。
基材(i)の厚みが前記範囲にあると、該基材(i)を用いた光学フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記透明樹脂製基板(ii)からなる基材(i)をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。
The thickness of the base material (i) can be appropriately selected according to the desired application and is not particularly limited, but it is desirable to select it appropriately so as to reduce the incident angle dependency of the obtained optical filter, and it is preferable. Is 10 to 210 μm, more preferably 20 to 150 μm, further preferably 20 to 110 μm, and particularly preferably 30 to 80 μm.
When the thickness of the base material (i) is within the above range, the optical filter using the base material (i) can be made thin and lightweight, and can be suitably used for various applications such as a solid-state imaging device. it can. In particular, when the base material (i) made of the transparent resin substrate (ii) is used for a lens unit such as a camera module, it is preferable because the height and weight of the lens unit can be reduced.

〈化合物(S)〉
化合物(S)は、波長750〜850nmに吸収極大を有する化合物であり、好ましくは下記式(S1)で表されるスクアリリウム系化合物である。このような化合物(S)を用いることにより、得られる基材(i)は、吸収極大付近でのシャープな吸収と高い可視光透過率を同時に達成することができる。さらに、一般的な有機色素を光学フィルターに用いた場合、通常、蛍光が発生する場合が多いが、出願人が鋭意検討した結果、化合物(S)を用いることで、生じ得る蛍光強度を著しく低く抑えることができることを見出した。そのため、化合物(S)を含む基材(i)を有する本発明の光学フィルターを、近赤外センシング機能を有するカメラモジュールに使用した際、色素蛍光によるセンシング機能の誤作動を防止することができる。
<Compound (S)>
The compound (S) is a compound having an absorption maximum at a wavelength of 750 to 850 nm, and is preferably a squarylium compound represented by the following formula (S1). By using such a compound (S), the obtained substrate (i) can achieve sharp absorption near the absorption maximum and high visible light transmittance at the same time. Further, when a general organic dye is used for an optical filter, fluorescence is usually generated in many cases, but as a result of diligent studies by the applicant, the compound (S) has been used, whereby the fluorescence intensity that can be generated is significantly lowered. It was found that it can be suppressed. Therefore, when the optical filter of the present invention having the substrate (i) containing the compound (S) is used in a camera module having a near-infrared sensing function, malfunction of the sensing function due to dye fluorescence can be prevented. ..

式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または−NR8−を表し、
1〜R8はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、−NRgh基、−SO2i基、−OSO2i基または下記La〜Lhのいずれかを表し、RgおよびRhはそれぞれ独立に、水素原子、−C(O)Ri基または下記La〜Leのいずれかを表し、Riは下記La〜Leのいずれかを表す。
(La)炭素数1〜12の脂肪族炭化水素基
(Lb)炭素数1〜12のハロゲン置換アルキル基
(Lc)炭素数3〜14の脂環式炭化水素基
(Ld)炭素数6〜14の芳香族炭化水素基
(Le)炭素数3〜14の複素環基
(Lf)炭素数1〜12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1〜12のアシル基、
(Lh)置換基Lを有してもよい炭素数1〜12のアルコキシカルボニル基
置換基Lは、炭素数1〜12の脂肪族炭化水素基、炭素数1〜12のハロゲン置換アルキル基、炭素数3〜14の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基および炭素数3〜14の複素環基からなる群より選ばれる少なくとも1種である。
In formula (S1), X independently represents an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or —NR 8 —,
R 1 to R 8 are each independently a hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphoric acid group, —NR g R h group, —SO 2 R i group, —OSO. It represents either 2 R i group or a group represented by L a ~L h, are each R g and R h independently represent any of hydrogen atom, -C (O) R i groups or the following L a ~L e , R i represents any of the following L a ~L e.
(L a ) C 1-12 aliphatic hydrocarbon group (L b ) C 1-12 halogen-substituted alkyl group (L c ) C 3-14 alicyclic hydrocarbon group (L d ) carbon Number of carbon atoms which may have an aromatic hydrocarbon group (L e ) having 6 to 14 carbon atoms, a heterocyclic group having 3 to 14 carbon atoms (L f ) and an alkoxy group having 1 to 12 carbon atoms (L g ) substituent L 1-12 acyl groups,
(L h ) an alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L, the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, It is at least one selected from the group consisting of an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a heterocyclic group having 3 to 14 carbon atoms.

前記R1としては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ニトロ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、水酸基である。 R 1 is preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl. A group, a hydroxyl group, an amino group, a dimethylamino group and a nitro group, and more preferably a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and a hydroxyl group.

前記R2〜R7としては、好ましくはそれぞれ独立に水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、シアノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、N−メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t−ブタノイルアミノ基、シクロヘキサノイルアミノ基、n−ブチルスルホニル基、モルホリノ基、メチルカルボニル基、トリフルオロメチルカルボニル基、tert−ブチルカルボニル基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、水酸基、ジメチルアミノ基、ジエチルアミノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t−ブタノイルアミノ基、シクロヘキサノイルアミノ基、モルホリノ基である。 R 2 to R 7 are preferably each independently a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group. Group, cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, diethylamino group, cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoro Ethanoylamino group, t-butanoylamino group, cyclohexanoylamino group, n-butylsulfonyl group, morpholino group, methylcarbonyl group, trifluoromethylcarbonyl group, tert-butylcarbonyl group, more preferably hydrogen atom , Chlorine atom, fluorine atom, methyl group, ethyl group, -Propyl group, isopropyl group, tert-butyl group, hydroxyl group, dimethylamino group, diethylamino group, nitro group, acetylamino group, propionylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group, t-butanoyl An amino group, a cyclohexanoylamino group, and a morpholino group.

前記R8としては、好ましくは水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基であり、より好ましくは水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基である。 R 8 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclohexyl group or a phenyl group, and more preferably Is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a tert-butyl group.

前記Xとしては、好ましくは酸素原子、硫黄原子であり、特に好ましくは酸素原子である。   The above X is preferably an oxygen atom or a sulfur atom, and particularly preferably an oxygen atom.

化合物(S)は、下記式(S1)のような記載方法に加え、下記式(S2)のように共鳴構造を取るような記載方法でも構造を表すことができる。つまり、下記式(S1)と下記式(S2)との違いは構造の記載方法のみであり、どちらも同一の化合物を表す。本発明中では特に断りのない限り、下記式(S1)のような記載方法にてスクアリリウム系化合物の構造を表すものとする。   The structure of the compound (S) can be represented by a description method such as the following formula (S1) and a resonance structure such as the following formula (S2). That is, the difference between the following formula (S1) and the following formula (S2) is only in the method of describing the structure, and both represent the same compound. Unless otherwise specified, in the present invention, the structure of the squarylium compound is represented by the method described in the following formula (S1).

さらに、例えば、下記式(S1)で表される化合物と下記式(S3)で表される化合物は、同一の化合物であるとみなすことができる。   Furthermore, for example, the compound represented by the following formula (S1) and the compound represented by the following formula (S3) can be regarded as the same compound.

化合物(S)は、前記式(S1)の要件を満たせば特に構造は限定されない。中央の四員環に結合している左右の置換基は同一であっても異なっていてもよいが、同一であることが合成上容易であるため好ましい。化合物(S)の具体例としては、下記表1に記載の化合物(s−1)〜(s−30)が挙げられる。   The structure of the compound (S) is not particularly limited as long as it satisfies the requirement of the formula (S1). The left and right substituents bonded to the central four-membered ring may be the same or different, but the same is preferable because it is easy to synthesize. Specific examples of the compound (S) include compounds (s-1) to (s-30) shown in Table 1 below.

化合物(S)の吸収極大波長は、好ましくは755nm以上845nm以下、さらに好ましくは760nm以上840nm以下、特に好ましくは765nm以上835nm以下である。化合物(S)の吸収極大波長がこのような範囲にあると、近赤外選択透過帯域付近の不要な近赤外線を選択的に効率よくカットすることができる。
なお、本発明において、化合物の吸収極大波長は、例えば、該化合物を、その良溶媒に溶解させることで得られる溶液の透過率を測定(光路長1cm)した時の吸収が最大となる波長として観察される。
The absorption maximum wavelength of the compound (S) is preferably 755 nm or more and 845 nm or less, more preferably 760 nm or more and 840 nm or less, and particularly preferably 765 nm or more and 835 nm or less. When the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near infrared rays near the near infrared selective transmission band can be selectively and efficiently cut.
In the present invention, the absorption maximum wavelength of a compound is, for example, the wavelength at which the absorption becomes maximum when the transmittance of a solution obtained by dissolving the compound in a good solvent is measured (optical path length 1 cm). To be observed.

化合物(S)は、一般的に知られている方法で合成すればよく、例えば、特開平1−228960号公報、特開2001−40234号公報、特許第3094037号公報、特許第3196383号公報に記載されている方法などを参照して合成することができる。   The compound (S) may be synthesized by a generally known method, and is disclosed in, for example, JP-A-1-228960, JP-A-2001-40234, JP-A-3094037, and JP-A-3196383. It can be synthesized with reference to the described method and the like.

化合物(S)の含有量は、前記基材(i)として、例えば、化合物(S)を含有する透明樹脂製基板(ii)からなる基材や、化合物(S)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01〜2.0重量部、より好ましくは0.02〜1.5重量部、特に好ましくは0.03〜1.0重量部であり、前記基材(i)として、ガラス支持体やベースとなる樹脂製支持体に化合物(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、化合物(S)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1〜5.0重量部、より好ましくは0.2〜4.0重量部、特に好ましくは0.3〜3.0重量部である。化合物(S)の含有量が前記範囲内にあると、良好な近赤外線吸収、透過特性と高い可視光透過率とを両立した光学フィルターを得ることができる。
前記基材(i)に用いる化合物(S)としては、1種単独でもよいし、2種以上でもよい。
The content of the compound (S) is, for example, a substrate made of a transparent resin substrate (ii) containing the compound (S) or a transparent resin substrate containing the compound (S) as the substrate (i). When a base material on which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on (ii), preferably 0.01 to 2.0 parts by weight relative to 100 parts by weight of the transparent resin. , More preferably 0.02 to 1.5 parts by weight, and particularly preferably 0.03 to 1.0 part by weight, and the base material (i) is a compound on a glass support or a resin support serving as a base. When a substrate having a transparent resin layer such as an overcoat layer made of a curable resin or the like containing (S) is used, 100 parts by weight of the resin forming the transparent resin layer containing the compound (S) is used. , Preferably 0.1 to 5.0 parts by weight, more preferably Is 0.2 to 4.0 parts by weight, particularly preferably 0.3 to 3.0 parts by weight. When the content of the compound (S) is within the above range, it is possible to obtain an optical filter having both good near-infrared absorption and transmission characteristics and high visible light transmittance.
As the compound (S) used for the base material (i), one type may be used alone, or two or more types may be used.

〈化合物(A)〉
前記基材(i)は、化合物(S)に加え、さらに、波長600nm以上750nm未満に吸収極大を有する化合物(A)を含有してもよい。
<Compound (A)>
The base material (i) may further contain, in addition to the compound (S), a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 750 nm.

前記化合物(A)と前記化合物(S)とを併用する場合、これらの化合物は、同一の層に含まれていても別々の層に含まれていてもよい。同一の層に含まれる場合は、例えば、化合物(A)と化合物(S)とがともに同一の透明樹脂製基板(ii)中に含まれる基材や、ガラス支持体等の支持体上に化合物(A)と化合物(S)とが含まれる透明樹脂層が積層されている基材を挙げることができ、別々の層に含まれる場合は、例えば、化合物(A)が含まれる樹脂製基板上に化合物(S)が含まれる透明樹脂層が積層されている基材や、化合物(S)が含まれる透明樹脂製基板(ii)上に化合物(A)が含まれる樹脂層が積層されている基材を挙げることができる。
化合物(A)と化合物(S)とは、同一の層に含まれていることがより好ましく、このような場合、これらの化合物が別々の層に含まれる場合よりも化合物(A)と化合物(S)との含有量比率を制御することがより容易となる。
When the compound (A) and the compound (S) are used in combination, these compounds may be contained in the same layer or different layers. When they are contained in the same layer, for example, the compound (A) and the compound (S) are both contained in the same transparent resin substrate (ii) or a compound such as a glass support on a support. A base material in which a transparent resin layer containing (A) and a compound (S) is laminated can be mentioned, and when contained in different layers, for example, on a resin substrate containing the compound (A). The base material on which the transparent resin layer containing the compound (S) is laminated, or the resin layer containing the compound (A) is laminated on the transparent resin substrate (ii) containing the compound (S). A base material can be mentioned.
The compound (A) and the compound (S) are more preferably contained in the same layer, and in such a case, the compound (A) and the compound (S) are contained more than in the case where these compounds are contained in different layers. It becomes easier to control the content ratio with S).

化合物(A)は、波長600nm以上750nm未満に吸収極大を有すれば特に制限されないが、溶剤可溶型の色素化合物であることが好ましく、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であることがより好ましく、スクアリリウム系化合物を含むことがさらに好ましく、スクアリリウム系化合物とその他の化合物(A)をそれぞれ1種以上含むことがさらに好ましく、その他の化合物(A)としてはフタロシアニン系化合物およびシアニン系化合物が特に好ましい。
スクアリリウム系化合物は、優れた可視光透過性、急峻な吸収特性および高いモル吸光係数を有するが、光線吸収時に散乱光の原因となる蛍光を発生させる場合がある。そのような場合、スクアリリウム系化合物とその他の化合物(A)とを組み合わせて使用することにより、散乱光が少なくより良好なカメラ画質を得ることができる。
The compound (A) is not particularly limited as long as it has an absorption maximum at a wavelength of 600 nm or more and less than 750 nm, but is preferably a solvent-soluble dye compound, and a group consisting of a squarylium compound, a phthalocyanine compound and a cyanine compound. More preferably, it is at least one selected from the above, more preferably contains a squarylium compound, more preferably contains at least one squarylium compound and one or more other compounds (A), and other compounds (A) Of these, phthalocyanine compounds and cyanine compounds are particularly preferable.
Squarylium compounds have excellent visible light transmittance, steep absorption characteristics, and high molar extinction coefficient, but they sometimes generate fluorescence that causes scattered light when absorbing light. In such a case, by using the squarylium compound and the other compound (A) in combination, it is possible to obtain a better camera image quality with less scattered light.

化合物(A)の吸収極大波長は、好ましくは620nm以上748nm以下、さらに好ましくは650nm以上745nm以下、特に好ましくは660nm以上740nm以下である。基材(i)が化合物(S)に加えて化合物(A)を含有することにより、近赤外選択透過帯域の短波長側に加え可視域の入射角依存性も低減でき、前記の(Xd)と(Xe)との差の絶対値を小さくすることがより容易となる。   The absorption maximum wavelength of the compound (A) is preferably 620 nm or more and 748 nm or less, more preferably 650 nm or more and 745 nm or less, and particularly preferably 660 nm or more and 740 nm or less. By containing the compound (A) in addition to the compound (S) in the base material (i), it is possible to reduce the incident angle dependence of the visible region in addition to the short wavelength side of the near infrared selective transmission band. It becomes easier to reduce the absolute value of the difference between () and (Xe).

化合物(A)の含有量は、前記基材(i)として、例えば、化合物(A)を含有する透明樹脂製基板(ii)からなる基材や、化合物(A)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01〜2.0重量部、より好ましくは0.02〜1.5重量部、特に好ましくは0.03〜1.0重量部であり、前記基材(i)として、ガラス支持体やベースとなる樹脂製支持体に化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、化合物(A)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1〜5.0重量部、より好ましくは0.2〜4.0重量部、特に好ましくは0.3〜3.0重量部である。   The content of the compound (A) is, for example, a substrate made of a transparent resin substrate (ii) containing the compound (A) or a transparent resin substrate containing the compound (A) as the substrate (i). When a base material on which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on (ii), preferably 0.01 to 2.0 parts by weight relative to 100 parts by weight of the transparent resin. , More preferably 0.02 to 1.5 parts by weight, and particularly preferably 0.03 to 1.0 part by weight, and the base material (i) is a compound on a glass support or a resin support serving as a base. When a substrate having a transparent resin layer such as an overcoat layer made of a curable resin or the like containing (A) is used, 100 parts by weight of the resin forming the transparent resin layer containing the compound (A) is used. , Preferably 0.1 to 5.0 parts by weight, more preferably Is 0.2 to 4.0 parts by weight, particularly preferably 0.3 to 3.0 parts by weight.

〈その他の色素(X)〉
前記基材(i)には、さらに、化合物(S)および化合物(A)に該当しない、その他の色素(X)が含まれていてもよい。
その他の色素(X)としては、吸収極大波長が600nm未満もしくは850nm超のものであれば特に制限されないが、例えば、スクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ポルフィリン系化合物および金属ジチオラート系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。化合物(S)の吸収特性や目的とする近赤外透過波長によっては、化合物(S)とその他の色素(X)とを併用することで、可視域に加え近赤外透過帯域の長波長側においても入射角依存性を低減することができ、良好な赤外センシング性能を達成することができる。
<Other dyes (X)>
The base material (i) may further contain another dye (X) that does not correspond to the compound (S) and the compound (A).
The other dye (X) is not particularly limited as long as it has an absorption maximum wavelength of less than 600 nm or more than 850 nm, and examples thereof include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds. , At least one compound selected from the group consisting of porphyrin compounds and metal dithiolate compounds. Depending on the absorption characteristics of the compound (S) and the desired near-infrared transmission wavelength, by using the compound (S) in combination with other dye (X), the long wavelength side of the near-infrared transmission band in addition to the visible region Even in the case of 1, the incident angle dependency can be reduced, and good infrared sensing performance can be achieved.

その他の色素(X)の含有量は、前記基材(i)として、例えば、その他の色素(X)を含有する透明樹脂製基板(ii)からなる基材や、その他の色素(X)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01〜1.5重量部、より好ましくは0.02〜1.0重量部、特に好ましくは0.03〜0.7重量部であり、前記基材(i)として、ガラス支持体やベースとなる樹脂製支持体上にその他の色素(X)および硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、その他の色素(X)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1〜4.0重量部、より好ましくは0.2〜3.0重量部、特に好ましくは0.3〜2.0重量部である。その他の色素(X)の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率とを両立させることができる。   The content of the other dye (X) may be, for example, a substrate made of a transparent resin substrate (ii) containing the other dye (X) or the other dye (X) as the base (i). In the case of using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on the contained transparent resin substrate (ii), it is preferably 0.01 part with respect to 100 parts by weight of the transparent resin. To 1.5 parts by weight, more preferably 0.02 to 1.0 parts by weight, and particularly preferably 0.03 to 0.7 parts by weight, which serves as a glass support or a base as the base material (i). When a base material in which a transparent resin layer such as an overcoat layer made of another dye (X) and a curable resin is laminated on a resin support, a transparent resin layer containing the other dye (X) is used. Is preferably 0. To 4.0 parts by weight, more preferably 0.2 to 3.0 parts by weight, particularly preferably 0.3 to 2.0 parts by weight. When the content of the other dye (X) is within the above range, good near-infrared absorption characteristics and high visible light transmittance can both be achieved.

〈透明樹脂〉
透明樹脂製基板(ii)および該基板(ii)、樹脂製支持体またはガラス支持体などに積層する(透明)樹脂層は、透明樹脂を用いて形成することができる。
前記基材(i)に用いる透明樹脂としては、1種単独でもよいし、2種以上でもよい。
<Transparent resin>
The transparent resin substrate (ii) and the (transparent) resin layer laminated on the substrate (ii), the resin support, the glass support, or the like can be formed using a transparent resin.
As the transparent resin used for the base material (i), one kind may be used alone, or two or more kinds may be used.

透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性やフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうる基材とするため、ガラス転移温度(Tg)が、好ましくは110〜380℃、より好ましくは110〜370℃、さらに好ましくは120〜360℃である樹脂が挙げられる。前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成し得るフィルム((透明)樹脂層および透明樹脂製基板(ii))が得られるため、特に好ましい。
Tgは、具体的には、下記実施例に記載の方法で測定することができる。
The transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, the high temperature vapor deposition that ensures thermal stability and moldability to a film, and is performed at a vapor deposition temperature of 100 ° C. or higher can be used to induce dielectric properties. A resin having a glass transition temperature (Tg) of preferably 110 to 380 ° C., more preferably 110 to 370 ° C., and further preferably 120 to 360 ° C. for use as a substrate capable of forming a body multilayer film. When the glass transition temperature of the resin is 140 ° C. or higher, a film ((transparent) resin layer and transparent resin substrate (ii)) capable of forming a dielectric multilayer film by vapor deposition at a higher temperature is obtained, which is particularly preferable.
Specifically, the Tg can be measured by the method described in the examples below.

透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂体を形成した場合に、この樹脂体の全光線透過率(JIS K7375)が、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基材(i)は光学フィルムとして良好な透明性を示す。   As the transparent resin, when a resin body having a thickness of 0.1 mm made of the resin is formed, the total light transmittance (JIS K7375) of the resin body is preferably 75% or more, more preferably 78% or more, Particularly preferably, a resin of 80% or more can be used. When a resin having a total light transmittance within such a range is used, the obtained substrate (i) shows good transparency as an optical film.

透明樹脂として、溶媒可溶性の樹脂を用いる場合、該透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000〜350,000、好ましくは30,000〜250,000であり、数平均分子量(Mn)は、通常10,000〜150,000、好ましくは20,000〜100,000である。
MwおよびMnは、具体的には、下記実施例に記載の方法で測定することができる。
When a solvent-soluble resin is used as the transparent resin, the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, It is preferably 30,000 to 250,000, and the number average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
Mw and Mn can be specifically measured by the method described in the following examples.

透明樹脂としては、例えば、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂を挙げることができる。   Examples of the transparent resin include cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide (aramid) resin, polyarylate resin. Resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin Examples thereof include resins, allyl ester-based curable resins, silsesquioxane-based UV-curable resins, acrylic UV-curable resins and vinyl-based UV-curable resins.

[環状(ポリ)オレフィン系樹脂]
環状(ポリ)オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
[Cyclic (poly) olefin resin]
The cyclic (poly) olefin resin is at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). And a resin obtained by hydrogenating the resin are preferable.

式(X0)中、Rx1〜Rx4はそれぞれ独立に、下記(i')〜(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0または正の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、
置換または非置換の炭素数1〜30の炭化水素基
(v')置換または非置換の炭素数1〜30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基
(但し、前記結合に関与しないRx1〜Rx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1〜Rx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
In formula (X 0 ), R x1 to R x4 each independently represent an atom or a group selected from the following (i ′) to (ix ′), and k x , m x, and p x are each independently 0. Or it represents a positive integer.
(I ') hydrogen atom (ii') halogen atom (iii ') trialkylsilyl group (iv') having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom,
Substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (v ′) Substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) Polar group (however, excluding (iv ′))
(Vii ') R x1 and R x2 or R x3 and R x4 are bonded to each other to form an alkylidene group (provided that R x1 to R x4 which are not involved in the above-mentioned bond are independently the above-mentioned (i' ) To (vi ′) represents an atom or a group selected from
(Viii ') R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocycle (provided that R x1 to R which are not involved in the above-mentioned bond are combined). x4 represents an atom or a group independently selected from the above (i ') to (vi').)
(Ix ′) R x2 and R x3 are bonded to each other to form a monocyclic hydrocarbon ring or a heterocyclic ring (provided that R x1 and R x4 which are not involved in the above-mentioned bond are independently the above-mentioned (i Represents a atom or a group selected from ') to (vi').)

式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')〜(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0または正の整数を表す。 In formula (Y 0 ), R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other. The formed monocyclic or polycyclic alicyclic hydrocarbon, aromatic hydrocarbon or heterocycle is represented, and k y and p y each independently represent 0 or a positive integer.

[芳香族ポリエーテル系樹脂]
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
[Aromatic polyether resin]
The aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of structural units represented by the following formula (1) and structural units represented by the following formula (2).

式(1)中、R1〜R4はそれぞれ独立に、炭素数1〜12の1価の有機基を表し、a〜dはそれぞれ独立に、0〜4の整数を表す。 In formula (1), R 1 to R 4 each independently represent a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represent an integer of 0 to 4.

式(2)中、R1〜R4およびa〜dはそれぞれ独立に、前記式(1)中のR1〜R4およびa〜dと同義であり、Yは、単結合、−SO2−または>C=Oを表し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1〜12の1価の有機基またはニトロ基を表し、gおよびhはそれぞれ独立に、0〜4の整数を表し、mは0または1を表す。但し、mが0のとき、R7はシアノ基ではない。 In formula (2), R 1 to R 4 and a to d each independently have the same meaning as R 1 to R 4 and a to d in formula (1), and Y is a single bond or —SO 2. -Or> C = O, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represent 0 to 4 Represents an integer, and m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.

また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。   Further, the aromatic polyether-based resin further has at least one structural unit selected from the group consisting of structural units represented by the following formula (3) and structural units represented by the following formula (4). Is preferred.

式(3)中、R5およびR6はそれぞれ独立に、炭素数1〜12の1価の有機基を表し、Zは、単結合、−O−、−S−、−SO2−、>C=O、−CONH−、−COO−または炭素数1〜12の2価の有機基を表し、eおよびfはそれぞれ独立に、0〜4の整数を表し、nは0または1を表す。 In formula (3), R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms, and Z is a single bond, —O—, —S—, —SO 2 —,> C = O, -CONH-, -COO- or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.

式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。 In formula (4), R 7 , R 8 , Y, m, g and h each independently have the same meaning as R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f each independently have the same meaning as R 5 , R 6 , Z, n, e and f in the formula (3).

[ポリイミド系樹脂]
ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006−199945号公報や特開2008−163107号公報に記載されている方法で合成することができる。
[Polyimide resin]
The polyimide-based resin is not particularly limited as long as it is a high molecular compound containing an imide bond in a repeating unit, and is, for example, the method described in JP 2006-199945 A or JP 2008-163107 A. Can be synthesized.

[フルオレンポリカーボネート系樹脂]
フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば、特開2008−163194号公報に記載され〉
[Fluorene polycarbonate resin]
The fluorene polycarbonate-based resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and is described in, for example, JP-A-2008-163194>

[フルオレンポリエステル系樹脂]
フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば、特開2010−285505号公報や特開2011−197450号公報に記載されている方法で合成することができる。
[Fluorene polyester resin]
The fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety, and for example, it may be synthesized by the method described in JP 2010-285505 A or JP 2011-197450 A. You can

[フッ素化芳香族ポリマー系樹脂]
フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば特開2008−181121号公報に記載されている方法で合成することができる。
[Fluorinated aromatic polymer resin]
The fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond and an ester bond. A polymer containing a repeating unit containing at least one bond is preferable and can be synthesized by, for example, the method described in JP-A-2008-181121.

[アクリル系紫外線硬化型樹脂]
アクリル系紫外線硬化型樹脂としては、特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成される樹脂を挙げることができる。アクリル系紫外線硬化型樹脂は、前記基材(i)として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(S)および硬化性樹脂を含む透明樹脂層が積層された基材や、化合物(S)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
[Acrylic UV curable resin]
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic group or methacrylic group in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. The resins mentioned may be mentioned. The acrylic ultraviolet curable resin is a base material (i) in which a transparent resin layer containing the compound (S) and a curable resin is laminated on a glass support or a resin support serving as a base. In the case of using a substrate in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on a transparent resin substrate (ii) containing the compound (S), it is particularly preferably used as the curable resin. be able to.

[市販品]
透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状(ポリ)オレフィン系樹脂の市販品としては、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学(株)製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学(株)製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人(株)製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学(株)製ユピゼータEP−5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル(株)製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、(株)日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、新日鐵化学(株)製シルプラスなどを挙げることができる。
[Commercial goods]
Examples of commercially available transparent resins include the following commercially available products. Examples of commercially available cyclic (poly) olefin-based resins include JSR's Arton, Nippon Zeon's Zeonoa, Mitsui Chemicals 'APEL, Polyplastics' TOPAS, and the like. .. Examples of commercially available polyether sulfone-based resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Inc. Examples of commercially available polycarbonate-based resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate-based resins include Upizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Inc. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemicals Co., Ltd. Commercially available products of the acrylic resin include ACRYVIEWR manufactured by Nippon Shokubai Co., Ltd. Examples of commercially available silsesquioxane UV-curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.

〈その他成分〉
前記基材(i)は、本発明の効果を損なわない範囲において、さらに酸化防止剤、近紫外線吸収剤、蛍光消光剤および金属錯体系化合物等のその他の成分を含有してもよい。また、後述するキャスト成形により基材(i)を製造する場合には、レベリング剤や消泡剤を添加することで基材(i)の製造を容易にすることができる。これらその他成分は、1種単独で用いてもよいし、2種以上を用いてもよい。
<Other ingredients>
The base material (i) may further contain other components such as an antioxidant, a near-ultraviolet absorber, a fluorescence quencher and a metal complex-based compound as long as the effects of the present invention are not impaired. Further, when the base material (i) is produced by cast molding described later, the production of the base material (i) can be facilitated by adding a leveling agent or an antifoaming agent. These other components may be used alone or in combination of two or more.

前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物が挙げられる。   Examples of the near-ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds.

前記酸化防止剤としては、例えば2,6−ジ−t−ブチル−4−メチルフェノール、2,2'−ジオキシ−3,3'−ジ−t−ブチル−5,5'−ジメチルジフェニルメタン、およびテトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンが挙げられる。   Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane.

なお、これらその他の成分は、基材(i)を製造する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるが、樹脂100重量部に対して、通常0.01〜5.0重量部、好ましくは0.05〜2.0重量部である。   In addition, these other components may be mixed with the resin or the like at the time of producing the base material (i), or may be added at the time of synthesizing the resin. The addition amount is appropriately selected according to the desired characteristics, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. ..

〈基材(i)の製造方法〉
前記基材(i)が、化合物(S)を含有する透明樹脂製基板(ii)を含む基材である場合、該透明樹脂製基板(ii)は、例えば、溶融成形またはキャスト成形により形成することができる。
<Method for producing base material (i)>
When the base material (i) is a base material containing a transparent resin substrate (ii) containing the compound (S), the transparent resin substrate (ii) is formed by, for example, melt molding or cast molding. be able to.

前記基材(i)が、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)上に、硬化性樹脂等からなるオーバーコート層などの樹脂層または化合物(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合、例えば、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)に、必要により化合物(S)を含む樹脂溶液を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)上に(透明)樹脂層が形成された基材を製造することができる。   The base material (i) contains a resin layer such as an overcoat layer made of a curable resin or a compound (S) on a resin support or a transparent resin substrate (ii) serving as a glass support or a base. In the case of a substrate on which a transparent resin layer such as an overcoat layer made of a curable resin or the like is laminated, for example, a glass support or a resin support serving as a base or a transparent resin substrate (ii) may be used, if necessary. The resin solution containing the compound (S) is melt-molded or cast-molded, preferably by spin coating, slit coating, inkjet coating, or the like, and then the solvent is dried and removed. By heating, it is possible to produce a substrate having a (transparent) resin layer formed on a glass support, a resin support serving as a base, or a transparent resin substrate (ii).

[溶融成形]
前記溶融成形としては、具体的には、樹脂と必要により化合物(S)等とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と必要により化合物(S)とを含有する樹脂組成物を溶融成形する方法;または、樹脂および溶剤と、必要により化合物(S)とを含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
[Melting]
As the melt-molding, specifically, a method of melt-kneading a pellet obtained by melt-kneading a resin and a compound (S) or the like, if necessary; a resin containing a resin and a compound (S) if necessary A method of melt-molding the composition; or a method of melt-molding pellets obtained by removing the solvent from the resin composition containing the resin and the solvent and optionally the compound (S). Examples of the melt molding method include injection molding, melt extrusion molding and blow molding.

[キャスト成形]
前記キャスト成形としては、樹脂および溶剤と、必要により化合物(S)とを含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;または、光硬化性樹脂および/または熱硬化性樹脂と、必要により化合物(S)とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などにより製造することもできる。
前記基材(i)が、化合物(S)を含有する透明樹脂製基板(ii)からなる基材である場合には、該基材(i)は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材(i)が、ガラス支持体やベースとなる樹脂製支持体等の支持体または透明樹脂製基板(ii)上に(透明)樹脂層が積層された基材である場合には、該基材(i)は、キャスト成形後、塗膜を剥離しないことで得ることができる。
[Cast molding]
As the cast molding, a method of casting a resin composition containing a resin and a solvent, and optionally a compound (S) on a suitable support to remove the solvent; or a photocurable resin and / or heat. By a method of casting a curable composition containing a curable resin and optionally a compound (S) on a suitable support to remove the solvent, and then curing the composition by an appropriate method such as ultraviolet irradiation or heating. It can also be manufactured.
When the base material (i) is a base material made of a transparent resin substrate (ii) containing the compound (S), the base material (i) is coated with a coating film from a support after cast molding. It can be obtained by peeling, and the base material (i) has a (transparent) resin layer on a support such as a glass support or a resin support serving as a base or a transparent resin substrate (ii). In the case of a laminated base material, the base material (i) can be obtained by removing the coating film after cast molding.

前記支持体としては、例えば、ガラス板、スチールベルト、スチールドラムおよび透明樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)製支持体が挙げられる。   Examples of the support include a glass plate, a steel belt, a steel drum, and a support made of a transparent resin (for example, a polyester film or a cyclic olefin resin film).

さらに、ガラス板、石英または透明プラスチック製等の光学部品に、前記樹脂組成物をコーティングして溶剤を乾燥させる方法、または、前記硬化性組成物をコーティングして硬化および乾燥させる方法などにより、光学部品上に透明樹脂層を形成することもできる。   Further, a glass plate, quartz or an optical component made of transparent plastic or the like is coated with the resin composition to dry the solvent, or the curable composition is coated to cure and dry the solution. It is also possible to form a transparent resin layer on the component.

前記方法で得られた(透明)樹脂層および透明樹脂製基板(ii)中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、(透明)樹脂層または透明樹脂製基板(ii)の重さ100重量%に対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる(透明)樹脂層および透明樹脂製基板(ii)が得られる。   The amount of residual solvent in the (transparent) resin layer and the transparent resin substrate (ii) obtained by the above method is preferably as small as possible. Specifically, the residual solvent amount is preferably 3% by weight or less, more preferably 1% by weight or less, based on 100% by weight of the (transparent) resin layer or the transparent resin substrate (ii). It is preferably 0.5% by weight or less. When the amount of residual solvent is within the above range, a (transparent) resin layer and a transparent resin substrate (ii) which are less likely to undergo deformation or change in characteristics and can easily exhibit desired functions can be obtained.

[誘電体多層膜]
前記誘電体多層膜は、不要な近赤外線を反射によりカットするとともに必要となる近赤外線を透過させる能力を有する膜であることが好ましい。本発明では、誘電体多層膜は基材(i)の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。
[Dielectric multilayer film]
The dielectric multilayer film is preferably a film having the ability to cut unnecessary near infrared rays by reflection and to transmit the necessary near infrared rays. In the present invention, the dielectric multilayer film may be provided on one side or both sides of the substrate (i). When it is provided on one side, it is possible to obtain an optical filter which is excellent in manufacturing cost and easiness of production, and when it is provided on both sides, it has high strength and is less likely to warp.

本発明の光学フィルターを固体撮像素子などの用途に適用する場合、光学フィルターの反りが小さい方が好ましいことから、誘電体多層膜を基材(i)の両面に設けることが好ましく、両面に設けた誘電体多層膜は分光特性が同じでも異なっていてもよい。両面に設けた誘電体多層膜の分光特性が同じ場合では、近赤外域において光線阻止帯域ZaおよびZcの透過率を効率よく低減することができ、両面に設けた誘電体多層膜の分光特性が異なる場合では、光線阻止帯域Zcをより長波長側まで広げることが容易になる傾向がある。   When the optical filter of the present invention is applied to uses such as a solid-state image sensor, it is preferable that the optical filter has a small warp. Therefore, it is preferable to provide the dielectric multilayer film on both surfaces of the substrate (i), The dielectric multilayer films may have the same or different spectral characteristics. When the dielectric multilayer films provided on both sides have the same spectral characteristics, the transmittances of the light stop bands Za and Zc can be efficiently reduced in the near infrared region, and the spectral characteristics of the dielectric multilayer films provided on both sides are If they are different, it tends to be easy to widen the ray stop band Zc to the longer wavelength side.

誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが挙げられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7〜2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0〜10重量%)含有させたものが挙げられる。   Examples of the dielectric multilayer film include layers in which high refractive index material layers and low refractive index material layers are alternately laminated. As the material forming the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of 1.7 to 2.5 is usually selected. Examples of such a material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, indium oxide, and the like, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component) can be used.

低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2〜1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。   As the material forming the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of 1.2 to 1.6 is usually selected. Such materials include, for example, silica, alumina, lanthanum fluoride, magnesium fluoride and sodium aluminum hexafluoride.

高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、基材(i)上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等を行うことで、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。   The method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, the high refractive index material layer and the low refractive index material layer are formed by directly performing the CVD method, the sputtering method, the vacuum deposition method, the ion assisted deposition method, the ion plating method, or the like on the base material (i). It is possible to form dielectric multilayer films that are alternately laminated.

高屈折率材料層および低屈折率材料層の各層の物理膜厚は、それぞれ層の屈折率にもよるが、通常、5〜500nmであることが好ましく、誘電体多層膜の物理膜厚の合計値は光学フィルター全体として1.0〜8.0μmであることが好ましい。   The physical film thickness of each of the high refractive index material layer and the low refractive index material layer depends on the refractive index of each layer, but is usually preferably 5 to 500 nm, and is the total physical film thickness of the dielectric multilayer film. The value is preferably 1.0 to 8.0 μm for the entire optical filter.

誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として16〜70層であることが好ましく、20〜60層であることがより好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。   The total number of laminated layers of the high refractive index material layer and the low refractive index material layer in the dielectric multilayer film is preferably 16 to 70 layers, and more preferably 20 to 60 layers as a whole of the optical filter. When the thickness of each layer, the thickness of the dielectric multilayer film as the entire optical filter, and the total number of layers are within the above ranges, it is possible to secure a sufficient manufacturing margin and reduce the warp of the optical filter and the crack of the dielectric multilayer film. can do.

本発明では、高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、可視域に十分な透過率を確保した上で近赤外波長域に所望の波長の光線阻止帯域や光線透過帯域を有する光学フィルターを得ることができる。   In the present invention, the kind of material constituting the high refractive index material layer and the low refractive index material layer, the thickness of each layer of the high refractive index material layer and the low refractive index material layer, the stacking order, and the number of stacked layers should be appropriately selected. Thus, it is possible to obtain an optical filter having a light blocking band and a light transmitting band of a desired wavelength in the near infrared wavelength region while ensuring a sufficient transmittance in the visible region.

ここで、前記条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、近赤外波長域において光線の透過を抑制したい波長域の透過率を低くするともに、光線を透過させたい波長域の透過率を高くするようにパラメーターを設定すればよい。例えば、両面に形成された誘電体多層膜によって850nm付近に光線透過帯域を設ける場合、前記ソフトを使用し、一方の誘電体多層膜の波長770〜810nmの目標透過率を0%、830〜870nmの目標透過率を100%とした上で、それぞれの波長域のTarget Toleranceの値を0.5以下などとし、もう一方の誘電体多層膜の波長830〜870nmの目標透過率を100%とし、900〜1150nmの目標透過率を0%とした上で、それぞれの波長域のTarget Toleranceの値を0.5以下などとするパラメーター設定方法が挙げられる。   Here, in order to optimize the conditions, for example, optical thin film design software (for example, Essential Macleod, manufactured by Thin Film Center) is used, and the transmittance of the wavelength region in which the transmission of light rays is desired to be suppressed in the near infrared wavelength region. The parameter may be set so that the transmittance is lowered and the transmittance in the wavelength region where the light beam is desired to be transmitted is increased. For example, when a light transmission band near 850 nm is provided by the dielectric multilayer films formed on both sides, the above software is used to set the target transmittance of one dielectric multilayer film at a wavelength of 770 to 810 nm to 0% and 830 to 870 nm. After setting the target transmittance of 100% to 100%, the value of Target Tolerance in each wavelength range is 0.5 or less, and the target transmittance of the other dielectric multilayer film at a wavelength of 830 to 870 nm is 100%, There is a parameter setting method in which the target transmittance of 900 to 1150 nm is set to 0% and the value of Target Tolerance in each wavelength range is set to 0.5 or less.

[その他の機能膜]
本発明の光学フィルターは、本発明の効果を損なわない範囲において、基材(i)と誘電体多層膜との間、基材(i)の誘電体多層膜が設けられた面と反対側の面、または誘電体多層膜の基材(i)が設けられた面と反対側の面に、基材(i)や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。
[Other functional films]
The optical filter of the present invention is, as far as the effect of the present invention is not impaired, between the base material (i) and the dielectric multilayer film, on the side opposite to the surface of the base material (i) on which the dielectric multilayer film is provided. The surface or the surface of the dielectric multilayer film opposite to the surface on which the base material (i) is provided, the surface hardness of the base material (i) and the dielectric multilayer film is improved, the chemical resistance is improved, and the antistatic property is improved. A functional film such as an antireflection film, a hard coat film, or an antistatic film can be appropriately provided for the purpose of scratch erasing or the like.

本発明の光学フィルターは、前記機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが前記機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。   The optical filter of the present invention may include one layer including the functional film, or may include two or more layers. When the optical filter of the present invention includes two or more layers composed of the functional film, the optical filter may include two or more layers similar to each other or two or more layers different from each other.

機能膜を積層する方法としては、特に制限されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材(i)または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。
また、前記コーティング剤などを含む硬化性組成物をバーコーター等で基材(i)または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。
The method for laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melted on the substrate (i) or the dielectric multilayer film in the same manner as described above. Examples thereof include a method of molding or cast molding.
It can also be produced by coating a curable composition containing the coating agent or the like on the substrate (i) or the dielectric multilayer film with a bar coater or the like, and then curing the composition by irradiating it with ultraviolet rays.

前記コーティング剤としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。   Examples of the coating agent include ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins. Specifically, vinyl compounds, urethane-based, urethane acrylate-based, acrylate-based, epoxy And epoxy acrylate resins. Examples of the curable composition containing these coating agents include vinyl-based, urethane-based, urethane acrylate-based, acrylate-based, epoxy-based and epoxy acrylate-based curable compositions.

また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を用いてもよい。   Further, the curable composition may contain a polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or thermal polymerization initiator can be used, and the photopolymerization initiator and the thermal polymerization initiator may be used in combination. The polymerization initiator may be used alone or in combination of two or more.

前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100重量%とした場合、好ましくは0.1〜10重量%、より好ましくは0.5〜10重量%、さらに好ましくは1〜5重量%である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。   In the curable composition, the compounding ratio of the polymerization initiator is preferably 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, when the total amount of the curable composition is 100% by weight. More preferably, it is 1 to 5% by weight. When the blending ratio of the polymerization initiator is within the above range, the curable composition has excellent curing characteristics and handleability, and a functional film such as an antireflection film, a hard coat film or an antistatic film having a desired hardness can be obtained. it can.

さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類を挙げることができる。
これら溶剤は、1種単独で用いてもよいし、2種以上を用いてもよい。
Further, an organic solvent may be added to the curable composition as a solvent, and known organic solvents can be used. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene. Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene, xylene; dimethylformamide, dimethylacetamide, N- Examples thereof include amides such as methylpyrrolidone.
These solvents may be used alone or in combination of two or more.

前記機能膜の厚さは、好ましくは0.1〜20μm、さらに好ましくは0.5〜10μm、特に好ましくは0.7〜5μmである。   The thickness of the functional film is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm.

また、基材(i)と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材(i)、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。   In addition, the base material (i), the functional film or the dielectric is used for the purpose of improving the adhesion between the base material (i) and the functional film and / or the dielectric multilayer film or the adhesion between the functional film and the dielectric multilayer film. The surface of the multilayer film may be subjected to surface treatment such as corona treatment or plasma treatment.

[光学フィルターの用途]
本発明の光学フィルターは、視野角が広く、可視光と一部の近赤外線を選択的に透過させることができる。したがって、カメラ機能と近赤外センシング機能を併せ持つCCDやCMOSイメージセンサーなどの固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、暗視カメラなどのカメラモジュールを含む装置、モーションキャプチャー、レーザー距離計、バーチャル試着、ナンバープレート認識装置、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に有用である。
[Uses of optical filter]
The optical filter of the present invention has a wide viewing angle and can selectively transmit visible light and part of near infrared rays. Therefore, it is useful for the visibility correction of a solid-state image sensor such as a CCD or a CMOS image sensor having both a camera function and a near infrared sensing function. In particular, devices including camera modules such as digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automobile cameras, night-vision cameras, motion capture, laser distance. It is useful for a total, virtual fitting, license plate recognition device, television, car navigation, personal digital assistant, video game machine, portable game machine, fingerprint authentication system, digital music player and the like.

[固体撮像装置]
本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、カメラ機能と近赤外センシング機能を併せ持つCCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラなどのカメラモジュールを含む装置等の用途に用いることができる。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備し、例えば、さらにレンズ部やセンサー部等を具備する。
[Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor having a camera function and a near-infrared sensing function, and specifically, a digital still camera, a smartphone camera, a mobile phone. It can be used for applications such as telephone cameras, wearable device cameras, and devices including camera modules such as digital video cameras. For example, the camera module of the present invention includes the optical filter of the present invention, and further includes, for example, a lens unit and a sensor unit.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。   Hereinafter, the present invention will be described more specifically based on Examples, but the present invention is not limited to these Examples. In addition, "parts" means "parts by weight" unless otherwise specified. Moreover, the measuring method of each physical property value and the evaluation method of physical property are as follows.

<分子量>
樹脂合成例で得られた樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
<Molecular weight>
The molecular weight of the resin obtained in the resin synthesis example was measured by the method (a) or (b) below in consideration of the solubility of each resin in a solvent.

(a)ウォターズ(WATERS)社製のゲルパーミエ−ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー(株)製Hタイプカラム、展開溶剤:o−ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。   (A) Using a gel permeation chromatography (GPC) device (150C type, column: H type column manufactured by Tosoh Corp., developing solvent: o-dichlorobenzene) manufactured by WATERS, weight in terms of standard polystyrene The average molecular weight (Mw) and the number average molecular weight (Mn) were measured.

(b)東ソー(株)製のGPC装置(HLC−8220型、カラム:TSKgelα−M、展開溶剤:テトラヒドロフラン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。   (B) Using a GPC device (HLC-8220 type, column: TSKgel α-M, developing solvent: tetrahydrofuran) manufactured by Tosoh Corporation, the weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of standard polystyrene are measured. did.

なお、後述する樹脂合成例3で合成した樹脂については、前記方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。
(c)ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体を分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN−メチル−2−ピロリドン20mLに溶解し、得られた希薄高分子溶液を用いて、キャノン−フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
μ={ln(ts/t0)}/C
0:溶媒の流下時間
s:希薄高分子溶液の流下時間
C:0.5g/dL
For the resin synthesized in Resin Synthesis Example 3 to be described later, the logarithmic viscosity was measured by the following method (c) instead of the measurement of the molecular weight by the above method.
(C) A part of the polyimide resin solution was poured into anhydrous methanol to precipitate the polyimide resin, and the unreacted monomer was separated by filtration. 0.1 g of the polyimide obtained by vacuum drying at 80 ° C. for 12 hours was dissolved in 20 mL of N-methyl-2-pyrrolidone, and the diluted polymer solution obtained was used to measure 30 using a Canon-Fenske viscometer. The logarithmic viscosity (μ) at ° C was calculated by the following formula.
μ = {ln (t s / t 0 )} / C
t 0 : Solvent flow-down time t s : Dilute polymer solution flow-down time C: 0.5 g / dL

<ガラス転移温度(Tg)>
樹脂合成例で得られた樹脂のTgは、エスアイアイ・ナノテクノロジーズ(株)製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
<Glass transition temperature (Tg)>
The Tg of the resin obtained in the resin synthesis example was measured using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc. at a heating rate of 20 ° C./min under a nitrogen stream.

<分光透過率>
基材の(Ta)、(Xc)、(Tb)および(Xf)、ならびに、光学フィルターの各波長領域における透過率、(Xa)、(Xb)、(Xd)、(Xe)および(Xa')は、(株)日立ハイテクノロジーズ製の分光光度計(U−4100)を用いて測定した。なお、前記(Ta)、(Xc)、(Tb)または(Xf)と同様にして、比較例で用いた基材についても、その光学特性を測定した。
<Spectral transmittance>
(Ta), (Xc), (Tb) and (Xf) of the base material, and the transmittances (Xa), (Xb), (Xd), (Xe) and (Xa ′ of each wavelength region of the optical filter. ) Was measured using a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation. The optical characteristics of the base material used in the comparative example were measured in the same manner as (Ta), (Xc), (Tb) or (Xf).

ここで、光学フィルターの垂直方向から測定した場合の透過率は、図2(a)のようにフィルターに対して垂直に透過した光を測定した。また、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率は、図2(b)のようにフィルターの垂直方向に対して30°の角度で透過した光を測定した。   Here, as for the transmittance when measured from the vertical direction of the optical filter, the light transmitted perpendicularly to the filter was measured as shown in FIG. As for the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, the light transmitted at an angle of 30 ° with respect to the vertical direction of the filter was measured as shown in FIG.

[合成例]
下記実施例で用いた化合物(S)および化合物(A)は、一般的に知られている方法で合成することができ、例えば、特許第3094037号公報、特許第3703869号公報、特開昭60−228448号公報、特開平1−146846号公報、特開平1−228960号公報、特許第4081149号公報、特開昭63−124054号公報、「フタロシアニン −化学と機能―」(アイピーシー、1997年)、特開2007−169315号公報、特開2009−108267号公報、特開2010−241873号公報、特許第3699464号公報、特許第4740631号公報などに記載されている方法を参照して合成することができる。
[Synthesis example]
The compound (S) and the compound (A) used in the following examples can be synthesized by a generally known method. For example, Japanese Patent No. 3094037, Japanese Patent No. 3703869, and Japanese Patent Laid-Open No. Sho 60 are disclosed. No. 228448, Japanese Patent Application Laid-Open No. 1-146846, Japanese Patent Application Laid-Open No. 1-2228960, Japanese Patent No. 4081149, Japanese Patent Application Laid-Open No. 63-124054, “Phthalocyanine: Chemistry and Function” (IPC, 1997). ), JP-A 2007-169315, JP-A 2009-108267, JP-A 2010-241873, JP-A No. 3699464, JP-A No. 4740631, and the like. be able to.

<樹脂合成例1>
下記式(a)で表される8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン100部、1−ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、得られた溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(濃度0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、80℃で3時間加熱攪拌することにより開環重合させて開環重合体溶液を得た。この重合における重合転化率は97%であった。
<Resin synthesis example 1>
8-Methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 . 100 parts of 1,7,10 ] dodeca-3-ene, 18 parts of 1-hexene (molecular weight modifier) and 300 parts of toluene (solvent for ring-opening polymerization reaction) were charged in a reaction vessel purged with nitrogen, and the resulting solution was prepared. Heated to 80 ° C. Then, 0.2 parts of a toluene solution of triethylaluminum (concentration: 0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration: 0.025 mol / liter) were added to the solution in the reaction vessel as a polymerization catalyst. And 0.9 part were added and the mixture was heated and stirred at 80 ° C. for 3 hours to cause ring-opening polymerization to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization was 97%.

このようにして得られた開環重合体溶液1,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。 1,000 parts of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 parts of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Then, under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C., the mixture was heated and stirred for 3 hours to carry out a hydrogenation reaction. After cooling the obtained reaction solution (hydrogenated polymer solution), hydrogen gas was released. The reaction solution was poured into a large amount of methanol to separate and collect a coagulated product, which was dried to obtain a hydrogenated polymer (hereinafter also referred to as "resin A"). The resin A thus obtained had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000 and a glass transition temperature (Tg) of 165 ° C.

<樹脂合成例2>
3Lの4つ口フラスコに2,6−ジフルオロベンゾニトリル35.12g(0.253mol)、9,9−ビス(4−ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N−ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。
<Resin synthesis example 2>
35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, and 41.46 g of potassium carbonate were added to a 3 L four-necked flask. 0.300 mol), 443 g of N, N-dimethylacetamide (hereinafter also referred to as "DMAc") and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask. Next, after replacing the inside of the flask with nitrogen, the obtained solution was reacted at 140 ° C. for 3 hours, and the produced water was removed from the Dean-Stark tube at any time. When the generation of water was no longer observed, the temperature was gradually raised to 160 ° C. and the reaction was carried out at that temperature for 6 hours. After cooling to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filter cake (residue) was isolated by filtration. The obtained filter cake was vacuum dried at 60 ° C. overnight to obtain a white powder (hereinafter, also referred to as “resin B”) (yield 95%). The resulting resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.

<樹脂合成例3>
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'−ビス(4−アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れて、γ−ブチロラクトン68.65gおよびDMAc17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5−シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら6時間還流させた。6時間の還流後、内温が100℃になるまで空冷し、DMAc143.6gを加えて希釈し、攪拌しながら冷却することで、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎ入れてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。
<Resin synthesis example 3>
In a 500 mL five-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, a dropping funnel with a side tube, a Dean-Stark tube and a cooling tube, under a nitrogen stream, 1,4-bis (4-amino-α, α) -Dimethylbenzyl) benzene (27.66 g (0.08 mol)) and 4,4'-bis (4-aminophenoxy) biphenyl 7.38 g (0.02 mol) were added, and γ-butyrolactone 68.65 g and DMAc17. It was dissolved in 16 g. The resulting solution was cooled to 5 ° C. using an ice water bath and, while maintaining the same temperature, 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst. Then, 0.50 g (0.005 mol) of triethylamine was added all at once. After the addition was completed, the temperature was raised to 180 ° C., and the mixture was refluxed for 6 hours while distilling off the distillate as needed. After refluxing for 6 hours, the mixture was air-cooled until the internal temperature reached 100 ° C., 143.6 g of DMAc was added for dilution, and the mixture was cooled with stirring to obtain 264.16 g of a polyimide resin solution having a solid content concentration of 20% by weight. .. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The filtered polyimide was washed with methanol and then dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”).

得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。 The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. The resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.

[実施例1]
実施例1では、透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
容器に、樹脂合成例1で得られた樹脂A 100部、化合物(S)として前記表1に記載の化合物(s−5)(ジクロロメタン中での吸収極大波長770nm)0.03部および塩化メチレンを加えて樹脂濃度が20重量%の溶液を調製した。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥させた後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの透明樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を図3および表7に示す。
[Example 1]
In Example 1, an optical filter having a base material made of a transparent resin substrate was prepared according to the following procedure and conditions.
In a container, 100 parts of Resin A obtained in Resin Synthesis Example 1, 0.03 part of compound (s-5) (absorption maximum wavelength 770 nm in dichloromethane) described in Table 1 as compound (S) and methylene chloride. Was added to prepare a solution having a resin concentration of 20% by weight. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled from the glass plate. The peeled coating film was further dried under reduced pressure at 100 ° C. for 8 hours to obtain a substrate made of a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in FIG. 3 and Table 7.

続いて、得られた基材の片面に誘電体多層膜(I)を形成し、さらに基材のもう一方の面に誘電体多層膜(II)を形成し、厚さ約0.104mmの光学フィルターを得た。
誘電体多層膜(I)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)。誘電体多層膜(II)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)。誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層は、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。
Then, a dielectric multilayer film (I) is formed on one surface of the obtained base material, and a dielectric multilayer film (II) is further formed on the other surface of the base material. I got a filter.
The dielectric multilayer film (I) is formed by alternately stacking silica (SiO 2 ) layers and titania (TiO 2 ) layers at a vapor deposition temperature of 100 ° C. (total of 24 layers). The dielectric multilayer film (II) is formed by alternately stacking silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (18 layers in total). In each of the dielectric multilayer films (I) and (II), the silica layer and the titania layer are, in order from the substrate side, a titania layer, a silica layer, a titania layer, ... A silica layer, a titania layer, and a silica layer. The layers were alternately laminated, and the outermost layer of the optical filter was a silica layer.

誘電体多層膜(I)および(II)の設計は、以下のようにして行った。
各層の厚さと層数については、可視域の反射防止効果と近赤外域の選択的な透過・反射性能を達成できるよう基材屈折率の波長依存特性や、使用した化合物(S)の吸収特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメーター(Target値)を下記表2の通りとした。
The dielectric multilayer films (I) and (II) were designed as follows.
Regarding the thickness and number of layers, the wavelength dependence characteristics of the base material refractive index and the absorption characteristics of the compound (S) used so that the antireflection effect in the visible range and the selective transmission / reflection performance in the near infrared range can be achieved. Optimization was performed using optical thin film design software (Essential Maclede, manufactured by Thin Film Center). When performing the optimization, in this example, the input parameters (Target value) to the software are shown in Table 2 below.

膜構成最適化の結果、実施例1では、誘電体多層膜(I)は、膜厚約13〜174nmのシリカ層と膜厚約9〜200nmのチタニア層とが交互に積層されてなる、積層数24の多層蒸着膜となり、誘電体多層膜(II)は、膜厚約41〜198nmのシリカ層と膜厚約12〜122nmのチタニア層とが交互に積層されてなる、積層数18の多層蒸着膜となった。最適化を行った膜構成の一例を表3に示す。   As a result of the optimization of the film structure, in Example 1, the dielectric multilayer film (I) was formed by alternately stacking a silica layer having a thickness of about 13 to 174 nm and a titania layer having a thickness of about 9 to 200 nm. The multilayer vapor deposition film of the number 24 is obtained, and the dielectric multilayer film (II) is a multilayer of the number 18 of laminations in which a silica layer having a thickness of about 41 to 198 nm and a titania layer having a thickness of about 12 to 122 nm are alternately laminated. It became a vapor deposition film. Table 3 shows an example of the optimized film structure.

得られた光学フィルターの垂直方向および垂直方向に対して30°の角度から測定した分光透過率を測定し、各波長領域における光学特性を評価した。結果を図4および表7に示す。   The spectral transmittance of the obtained optical filter was measured in the vertical direction and at an angle of 30 ° with respect to the vertical direction, and the optical characteristics in each wavelength region were evaluated. The results are shown in FIG. 4 and Table 7.

[実施例2]
実施例1において、化合物(s−5)0.03部の代わりに前記表1に記載の化合物(s−11)(ジクロロメタン中での吸収極大波長776nm)0.03部を用いたこと、ならびに、化合物(A)として、下記式(a−1)で表される化合物(a−1)(ジクロロメタン中での吸収極大波長698nm)0.03部および下記式(a−2)で表される化合物(a−2)(ジクロロメタン中での吸収極大波長733nm)0.03部を用いたこと以外は、実施例1と同様の手順および条件で化合物(S)および化合物(A)を含む透明樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を図5および表7に示す。
[Example 2]
In Example 1, 0.03 part of the compound (s-11) described in Table 1 (absorption maximum wavelength in dichloromethane: 776 nm) was used in place of 0.03 part of the compound (s-5), and As the compound (A), 0.03 parts of the compound (a-1) represented by the following formula (a-1) (absorption maximum wavelength 698 nm in dichloromethane) and the following formula (a-2) are represented. A transparent resin containing the compound (S) and the compound (A) in the same procedure and conditions as in Example 1 except that 0.03 part of the compound (a-2) (absorption maximum wavelength in dichloromethane: 733 nm) was used. A base material made of a substrate was obtained. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in FIG. 5 and Table 7.

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(III)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(IV)を形成し、厚さ約0.104mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、下記表4のような設計パラメーターを用いて行った。 Then, as in Example 1, a dielectric multi-layer film (III in which silica (SiO 2 ) layers and titania (TiO 2 ) layers were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed on the other surface of the substrate, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (total 18 layers) to form a dielectric multilayer film (IV). An optical filter having a thickness of about 0.104 mm was obtained. The dielectric multilayer film was designed using the design parameters as shown in Table 4 below in consideration of the wavelength dependence of the refractive index of the base material.

膜構成最適化の結果、実施例2では、誘電体多層膜(III)は、膜厚約27〜198nmのシリカ層と膜厚約10〜121nmのチタニア層とが交互に積層されてなる、積層数24の多層蒸着膜となり、誘電体多層膜(IV)は、膜厚約41〜198nmのシリカ層と膜厚約12〜122nmのチタニア層とが交互に積層されてなる、積層数18の多層蒸着膜となった。最適化を行った膜構成の一例を表5に示す。   As a result of the optimization of the film structure, in Example 2, the dielectric multilayer film (III) was formed by alternately stacking a silica layer having a film thickness of about 27 to 198 nm and a titania layer having a film thickness of about 10 to 121 nm. The multilayer vapor deposition film of the number 24 is obtained, and the dielectric multilayer film (IV) is a multilayer of the number 18 of laminations in which a silica layer having a thickness of about 41 to 198 nm and a titania layer having a thickness of about 12 to 122 nm are alternately laminated. It became a vapor deposition film. Table 5 shows an example of the optimized film structure.

得られた光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を図6および表7に示す。   The spectral transmittance of the obtained optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in FIG. 6 and Table 7.

[実施例3]
実施例3では、両面に樹脂層を有する透明樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
実施例1において、化合物(s−5)0.03部の代わりに前記表1に記載の化合物(s−23)(ジクロロメタン中での吸収極大波長784nm)0.03部を用いたこと以外は、実施例1と同様の手順および条件で化合物(S)を含む透明樹脂製基板を得た。
[Example 3]
In Example 3, an optical filter having a base material made of a transparent resin substrate having resin layers on both sides was prepared according to the following procedure and conditions.
In Example 1, except that 0.03 part of the compound (s-23) (absorption maximum wavelength 784 nm in dichloromethane) described in Table 1 was used in place of 0.03 part of the compound (s-5). A transparent resin substrate containing the compound (S) was obtained according to the same procedure and conditions as in Example 1.

得られた透明樹脂製基板の片面に、下記組成の樹脂組成物(1)をバーコーターで塗布し、オーブン中70℃で2分間加熱し、溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、バーコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(1)を硬化させ、透明樹脂製基板上に樹脂層を形成した。同様に、透明樹脂製基板のもう一方の面にも樹脂組成物(1)を用いて樹脂層を形成し、化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表7に示す。 The resin composition (1) having the following composition was applied to one surface of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 2 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 2 μm. Next, exposure (exposure amount: 500 mJ / cm 2 , 200 mW) was performed using a conveyor type exposure machine to cure the resin composition (1) and form a resin layer on the transparent resin substrate. Similarly, a resin layer is formed using the resin composition (1) on the other surface of the transparent resin substrate to obtain a base material having a resin layer on both surfaces of the transparent resin substrate containing the compound (S). It was The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in Table 7.

樹脂組成物(1)(固形分濃度(TSC):30%):トリシクロデカンジメタノールアクリレート 60重量部、ジペンタエリスリトールヘキサアクリレート 40重量部、1−ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤)   Resin composition (1) (solid content concentration (TSC): 30%): 60 parts by weight of tricyclodecane dimethanol acrylate, 40 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent) )

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(V)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(VI)を形成し、厚さ約0.108mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Then, as in Example 1, a dielectric multilayer film (V) in which silica (SiO 2 ) layers and titania (TiO 2 ) layers were alternately laminated on one surface of the obtained base material (total of 24 layers). ) Is formed on the other surface of the base material, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (18 layers in total) to form a dielectric multilayer film (VI). An optical filter having a thickness of about 0.108 mm was obtained. The dielectric multilayer film was designed by using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material as in Example 1. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[実施例4]
実施例3において、化合物(s−23)0.03部の代わりに前記表1に記載の化合物(s−5)0.01部および前記表1に記載の化合物(s−21)(ジクロロメタン中での吸収極大波長782nm)0.02部を用いたこと以外は、実施例3と同様の手順および条件で化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表7に示す。
[Example 4]
In Example 3, instead of 0.03 part of compound (s-23), 0.01 part of compound (s-5) described in Table 1 and compound (s-21) described in Table 1 (in dichloromethane) In the same procedure and conditions as in Example 3, except that 0.02 part of the maximum absorption wavelength at 782 nm) was used, a base material having resin layers on both surfaces of a transparent resin substrate containing the compound (S) was obtained. .. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in Table 7.

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(VII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(VIII)を形成し、厚さ約0.108mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Subsequently, as in Example 1, a dielectric multilayer film (VII) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed on the other surface of the base material, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (total 18 layers) to form a dielectric multilayer film (VIII). An optical filter having a thickness of about 0.108 mm was obtained. The dielectric multilayer film was designed by using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material as in Example 1. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[実施例5]
実施例3において、化合物(s−23)0.03部の代わりに、前記表1に記載の化合物(s−11)0.04部を用いたこと、ならびに、化合物(A)として、下記式(a−3)で表される化合物(a−3)(ジクロロメタン中での吸収極大波長703nm)0.02部および下記式(a−4)で表される化合物(a−4)(ジクロロメタン中での吸収極大波長736nm)0.06部を用いたこと以外は、実施例3と同様の手順および条件で化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表7に示す。
[Example 5]
In Example 3, 0.04 part of the compound (s-11) described in Table 1 was used instead of 0.03 part of the compound (s-23), and the following formula was used as the compound (A). 0.02 part of compound (a-3) represented by (a-3) (absorption maximum wavelength 703 nm in dichloromethane) and compound (a-4) represented by the following formula (a-4) (in dichloromethane) In the same procedure and conditions as in Example 3 except that 0.06 part of the absorption maximum wavelength in Example 1 was used, a base material having resin layers on both surfaces of a transparent resin substrate containing the compound (S) was obtained. .. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in Table 7.

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(IX)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(X)を形成し、厚さ約0.108mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例2と同じ設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Then, as in Example 1, a dielectric multilayer film (IX) in which silica (SiO 2 ) layers and titania (TiO 2 ) layers were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed on the other surface of the base material, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (18 layers in total) to form a dielectric multilayer film (X). An optical filter having a thickness of about 0.108 mm was obtained. The dielectric multilayer film was designed by using the same design parameters as in Example 2 in consideration of the wavelength dependence of the refractive index of the base material as in Example 1. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[実施例6]
実施例6では、両面に化合物(S)を含む透明樹脂層を有する樹脂製基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
容器に、樹脂合成例1で得られた樹脂Aおよび塩化メチレンを加えて樹脂濃度が20重量%の溶液を調製し、得られた溶液を用いたこと以外は、実施例1と同様にして樹脂製基板を作成した。
[Example 6]
In Example 6, an optical filter having a base material made of a resin substrate having a transparent resin layer containing the compound (S) on both surfaces was prepared according to the following procedure and conditions.
Resin A obtained in the same manner as in Example 1 except that the resin A obtained in Resin Synthesis Example 1 and methylene chloride were added to a container to prepare a solution having a resin concentration of 20% by weight, and the obtained solution was used. A substrate was made.

得られた樹脂製基板の両面に、樹脂組成物(1)の代わりに下記組成の樹脂組成物(2)を用いること以外は実施例3と同様にして透明樹脂層を形成し、両面に化合物(S)を含む透明樹脂層を有する樹脂製基板からなる基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表7に示す。   A transparent resin layer was formed on both surfaces of the obtained resin substrate in the same manner as in Example 3 except that the resin composition (2) having the following composition was used instead of the resin composition (1), and the compound was formed on both surfaces. A base material made of a resin substrate having a transparent resin layer containing (S) was obtained. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in Table 7.

樹脂組成物(2)(TSC:25%):トリシクロデカンジメタノールアクリレート 100重量部、1−ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(s−5) 0.75重量部、化合物(a−2) 0.75重量部、化合物(a−3) 0.75重量部、メチルエチルケトン(溶剤)   Resin composition (2) (TSC: 25%): tricyclodecane dimethanol acrylate 100 parts by weight, 1-hydroxycyclohexyl phenyl ketone 4 parts by weight, compound (s-5) 0.75 parts by weight, compound (a-2) ) 0.75 part by weight, compound (a-3) 0.75 part by weight, methyl ethyl ketone (solvent)

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(XI)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(XII)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例2と同じ設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Subsequently, as in Example 1, a dielectric multilayer film (XI) in which silica (SiO 2 ) layers and titania (TiO 2 ) layers were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on the other surface of the substrate (18 layers in total) to form a dielectric multilayer film (XII). An optical filter having a thickness of about 0.110 mm was obtained. The dielectric multilayer film was designed by using the same design parameters as in Example 2 in consideration of the wavelength dependence of the refractive index of the base material as in Example 1. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[実施例7]
実施例7では、片面に化合物(S)を含む透明樹脂層を有する透明ガラス基板からなる基材を有する光学フィルターを以下の手順および条件で作成した。
縦60mm、横60mmの大きさにカットした透明ガラス基板「OA−10G(厚み200μm)」(日本電気硝子(株)製)上に下記組成の樹脂組成物(3)をスピンコーターで塗布し、ホットプレート上80℃で2分間加熱し、溶剤を揮発除去することで、塗膜を形成した。この際、乾燥後の厚みが2μmとなるように、スピンコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、前記塗膜を硬化させ、化合物(S)を含む透明樹脂層を有する透明ガラス基板からなる基材を得た。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表7に示す。
[Example 7]
In Example 7, an optical filter having a base material made of a transparent glass substrate having a transparent resin layer containing the compound (S) on one surface was prepared according to the following procedure and conditions.
A resin composition (3) having the following composition was applied by a spin coater on a transparent glass substrate “OA-10G (thickness 200 μm)” (manufactured by Nippon Electric Glass Co., Ltd.) cut into a size of 60 mm in length and 60 mm in width, A coating film was formed by heating on a hot plate at 80 ° C. for 2 minutes to volatilize and remove the solvent. At this time, the coating conditions of the spin coater were adjusted so that the thickness after drying was 2 μm. Next, exposure (exposure amount 500 mJ / cm 2 , 200 mW) is performed using a conveyor type exposure machine to cure the coating film, and a substrate made of a transparent glass substrate having a transparent resin layer containing the compound (S) is obtained. Obtained. The spectral transmittance of this base material was measured to determine (Ta), (Tb), (Xc) and (Xf). The results are shown in Table 7.

樹脂組成物(3)(TSC:35%):トリシクロデカンジメタノールアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1−ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(s−5) 1.5重量部、化合物(a−2) 1.5重量部、化合物(a−3) 1.5重量部、メチルエチルケトン(溶剤)   Resin composition (3) (TSC: 35%): 20 parts by weight of tricyclodecane dimethanol acrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, compound (s-5) 1. 5 parts by weight, compound (a-2) 1.5 parts by weight, compound (a-3) 1.5 parts by weight, methyl ethyl ketone (solvent)

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(XIII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(XIV)を形成し、厚さ約0.210mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例2と同じ設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Then, as in Example 1, a dielectric multilayer film (XIII) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed on the other surface of the substrate, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (total 18 layers) to form a dielectric multilayer film (XIV). An optical filter having a thickness of about 0.210 mm was obtained. The dielectric multilayer film was designed by using the same design parameters as in Example 2 in consideration of the wavelength dependence of the refractive index of the base material as in Example 1. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[比較例1]
実施例1において、化合物(S)を用いなかったこと以外は、実施例1と同様にして基材を作成した。続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(XV)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(XVI)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を図7および表7に示す。
[Comparative Example 1]
A base material was prepared in the same manner as in Example 1 except that the compound (S) was not used. Subsequently, as in Example 1, a dielectric multilayer film (XV) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer were alternately laminated on one surface of the obtained substrate (total of 24 layers). ) Is formed on the other surface of the base material, and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (total 18 layers) to form a dielectric multilayer film (XVI). An optical filter having a thickness of about 0.106 mm was obtained. The dielectric multilayer film was designed using the same design parameters as in Example 1 after considering the wavelength dependence of the refractive index of the base material. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in FIG. 7 and Table 7.

[比較例2]
基材として、縦60mm、横60mmの大きさにカットした近赤外線吸収ガラス基板「BS−6(厚み210μm)」(松浪硝子工業(株)製)を用いたこと以外は、実施例1と同様にして、基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(XVII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(XVIII)を形成し、厚さ約0.216mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、下記表6のような設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を図8および表7に示す。
[Comparative example 2]
Similar to Example 1, except that a near infrared ray absorbing glass substrate “BS-6 (210 μm in thickness)” (manufactured by Matsunami Glass Industry Co., Ltd.) cut into a size of 60 mm in length and 60 mm in width was used as a base material. Then, a dielectric multilayer film (XVII) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated (24 layers in total) is formed on one surface of the substrate, and An optical filter having a thickness of about 0.216 mm is formed on one surface by forming a dielectric multilayer film (XVIII) in which silica (SiO 2 ) layers and titania (TiO 2 ) layers are alternately laminated (total of 18 layers). Got The dielectric multilayer film was designed by using the design parameters as shown in Table 6 below in consideration of the wavelength dependence of the refractive index of the base material. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in FIG. 8 and Table 7.

[比較例3]
実施例1において、化合物(S)の代わりに前記化合物(a−2)0.03部および前記化合物(a−3)0.03部を用いたこと以外は、実施例1と同様にして基材を作成した。
[Comparative Example 3]
A group similar to Example 1 except that 0.03 parts of the compound (a-2) and 0.03 part of the compound (a-3) were used in place of the compound (S) in Example 1. I made wood.

続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24)誘電体多層膜(XIX)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計18層)誘電体多層膜(XX)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、実施例2と同様の設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。 Then, as in Example 1, a dielectric multilayer film (XIX) in which silica (SiO 2 ) layers and titania (TiO 2 ) layers were alternately laminated on one surface of the obtained substrate (total 24). And a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on the other surface of the base material (total 18 layers) to form a dielectric multilayer film (XX), An optical filter having a thickness of about 0.106 mm was obtained. The dielectric multilayer film was designed using the same design parameters as in Example 2 after considering the wavelength dependence of the refractive index of the base material. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[比較例4]
基材として、縦60mm、横60mmの大きさにカットした透明ガラス基板「OA−10G(厚み200μm)」(日本電気硝子(株)製)を用いたこと以外は、実施例1と同様にして、基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計24層)誘電体多層膜(XXI)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XXII)を形成し、厚さ約0.206mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表7に示す。
[Comparative Example 4]
As in Example 1, except that a transparent glass substrate “OA-10G (thickness 200 μm)” (manufactured by Nippon Electric Glass Co., Ltd.) cut into a size of 60 mm in length and 60 mm in width was used as a base material. , A silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the substrate (total of 24 layers) to form a dielectric multilayer film (XXI), and further, on the other side of the substrate. A silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on the surface (20 layers in total) to form a dielectric multilayer film (XXII), and an optical filter having a thickness of about 0.206 mm is obtained. It was The dielectric multilayer film was designed using the same design parameters as in Example 1 after considering the wavelength dependence of the refractive index of the base material. The spectral transmittance of this optical filter was measured to evaluate the optical characteristics in each wavelength region. The results are shown in Table 7.

[実施例8〜13]
樹脂、溶媒、樹脂製基板の乾燥条件、化合物(S)および化合物(A)を表7に示すように変更したこと以外は、実施例5と同様にして、基材および光学フィルターを作成した。得られた基材および光学フィルターの光学特性を表7に示す。
[Examples 8 to 13]
A substrate and an optical filter were prepared in the same manner as in Example 5 except that the resin, solvent, drying conditions of the resin substrate, compound (S) and compound (A) were changed as shown in Table 7. Table 7 shows the optical properties of the obtained substrate and optical filter.

実施例および比較例で適用した基材の構成、各種化合物などは下記の通りである。   The constitution of the base material and various compounds applied in the examples and comparative examples are as follows.

<基材の形態>
形態(1):化合物(S)を含む透明樹脂製基板
形態(2):化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する
形態(3):樹脂製基板の両面に化合物(S)を含む透明樹脂層を有する
形態(4):ガラス基板の片方の面に化合物(S)を含む透明樹脂層を有する
形態(5):化合物(S)を含まない樹脂製基板(比較例)
形態(6):近赤外線吸収ガラス基板(比較例)
形態(7):ガラス基板(比較例)
<Form of base material>
Form (1): transparent resin substrate containing compound (S) Form (2): transparent resin substrate containing compound (S) has resin layers on both sides Form (3): compound (S) on both sides of resin substrate Form (4): A transparent resin layer containing S) is included. Form (4): A transparent resin layer containing the compound (S) is provided on one surface of the glass substrate. Form (5): Resin substrate not containing the compound (S) (Comparative Example). )
Form (6): Near infrared absorbing glass substrate (comparative example)
Form (7): Glass substrate (comparative example)

<透明樹脂>
樹脂A:環状オレフィン系樹脂(樹脂合成例1)
樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
樹脂C:ポリイミド系樹脂(樹脂合成例3)
樹脂D:環状オレフィン系樹脂「ゼオノア 1420R」(日本ゼオン(株)製)
<Transparent resin>
Resin A: Cyclic olefin resin (resin synthesis example 1)
Resin B: Aromatic polyether resin (resin synthesis example 2)
Resin C: Polyimide resin (resin synthesis example 3)
Resin D: Cyclic olefin resin "Zeonor 1420R" (manufactured by Nippon Zeon Co., Ltd.)

<ガラス基板>
ガラス基板(1): 縦60mm、横60mmの大きさにカットした透明ガラス基板「OA−10G(厚み200μm)」(日本電気硝子(株)製)
ガラス基板(2): 縦60mm、横60mmの大きさにカットした近赤外線吸収ガラス基板「BS−6(厚み210μm)」(松浪硝子工業(株)製)
<Glass substrate>
Glass substrate (1): Transparent glass substrate “OA-10G (thickness 200 μm)” cut into a size of 60 mm in length and 60 mm in width (manufactured by Nippon Electric Glass Co., Ltd.)
Glass substrate (2): Near-infrared absorbing glass substrate “BS-6 (thickness 210 μm)” cut into a size of 60 mm in length and 60 mm in width (manufactured by Matsunami Glass Industry Co., Ltd.)

<化合物(S)>
化合物(s−5):前記表1に記載の化合物(s−5)(ジクロロメタン中での吸収極大波長770nm)
化合物(s−11):前記表1に記載の化合物(s−11)(ジクロロメタン中での吸収極大波長776nm)
化合物(s−21):前記表1に記載の化合物(s−21)(ジクロロメタン中での吸収極大波長782nm)
化合物(s−23):前記表1に記載の化合物(s−23)(ジクロロメタン中での吸収極大波長784nm)
<Compound (S)>
Compound (s-5): Compound (s-5) described in Table 1 (absorption maximum wavelength in dichloromethane: 770 nm)
Compound (s-11): Compound (s-11) described in Table 1 (absorption maximum wavelength in dichloromethane: 776 nm)
Compound (s-21): Compound (s-21) described in Table 1 (absorption maximum wavelength in dichloromethane: 782 nm)
Compound (s-23): Compound (s-23) described in Table 1 above (absorption maximum wavelength in dichloromethane: 784 nm)

<化合物(A)>
化合物(a−1):前記化合物(a−1)(ジクロロメタン中での吸収極大波長698nm)
化合物(a−2):前記化合物(a−2)(ジクロロメタン中での吸収極大波長733nm)
化合物(a−3):前記化合物(a−3)(ジクロロメタン中での吸収極大波長703nm)
化合物(a−4):前記化合物(a−4)(ジクロロメタン中での吸収極大波長736nm)
<Compound (A)>
Compound (a-1): Compound (a-1) (absorption maximum wavelength in dichloromethane 698 nm)
Compound (a-2): the compound (a-2) (absorption maximum wavelength 733 nm in dichloromethane)
Compound (a-3): the compound (a-3) (absorption maximum wavelength in dichloromethane: 703 nm)
Compound (a-4): the compound (a-4) (absorption maximum wavelength in dichloromethane: 736 nm)

<溶媒>
溶媒(1):塩化メチレン
溶媒(2):N,N−ジメチルアセトアミド
溶媒(3):シクロヘキサン/キシレン(重量比:7/3)
<Solvent>
Solvent (1): Methylene chloride Solvent (2): N, N-dimethylacetamide Solvent (3): Cyclohexane / xylene (weight ratio: 7/3)

<樹脂製基板乾燥条件>
表7における、実施例および比較例の(透明)樹脂製基板の乾燥条件は以下の通りである。なお、減圧乾燥前に、塗膜をガラス板から剥離した。
条件(1):20℃/8hr→減圧下 100℃/8hr
条件(2):60℃/8hr→80℃/8hr→減圧下 140℃/8hr
条件(3):60℃/8hr→80℃/8hr→減圧下 100℃/24hr
<Resin substrate drying conditions>
The drying conditions for the (transparent) resin substrates of Examples and Comparative Examples in Table 7 are as follows. The coating film was peeled from the glass plate before drying under reduced pressure.
Condition (1): 20 ° C./8 hr → under reduced pressure 100 ° C./8 hr
Condition (2): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 140 ° C./8 hr
Condition (3): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 100 ° C./24 hr

<樹脂層形成用組成物>
表7の実施例における、樹脂層を形成する樹脂組成物は、以下の通りである。
樹脂組成物(1)(TSC:30%):トリシクロデカンジメタノールアクリレート 60重量部、ジペンタエリスリトールヘキサアクリレート 40重量部、1−ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤)
樹脂組成物(2)(TSC:25%):トリシクロデカンジメタノールアクリレート 100重量部、1−ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(s−5) 0.75重量部、化合物(a−2)0.75重量部、化合物(a−3) 0.75重量部、メチルエチルケトン(溶剤)
樹脂組成物(3)(TSC:35%):トリシクロデカンジメタノールアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1−ヒドロキシシクロヘキシルフェニルケトン 4重量部、化合物(s−5) 1.5重量部、化合物(a−2) 1.5重量部、化合物(a−3) 1.5重量部、メチルエチルケトン(溶剤)
<Resin layer forming composition>
The resin composition forming the resin layer in the examples of Table 7 is as follows.
Resin composition (1) (TSC: 30%): tricyclodecane dimethanol acrylate 60 parts by weight, dipentaerythritol hexaacrylate 40 parts by weight, 1-hydroxycyclohexyl phenyl ketone 5 parts by weight, methyl ethyl ketone (solvent)
Resin composition (2) (TSC: 25%): tricyclodecane dimethanol acrylate 100 parts by weight, 1-hydroxycyclohexyl phenyl ketone 4 parts by weight, compound (s-5) 0.75 parts by weight, compound (a-2) ) 0.75 part by weight, compound (a-3) 0.75 part by weight, methyl ethyl ketone (solvent)
Resin composition (3) (TSC: 35%): 20 parts by weight of tricyclodecane dimethanol acrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, compound (s-5) 1. 5 parts by weight, compound (a-2) 1.5 parts by weight, compound (a-3) 1.5 parts by weight, methyl ethyl ketone (solvent)

本発明の光学フィルターは、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、暗視カメラ、モーションキャプチャー、レーザー距離計、バーチャル試着、ナンバープレート認識装置、テレビ、カーナビゲーション、携帯情報端末、パソコン、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に好適に用いることができる。   The optical filter of the present invention includes a digital still camera, a smartphone camera, a mobile phone camera, a digital video camera, a wearable device camera, a PC camera, a surveillance camera, an automobile camera, a night vision camera, a motion capture, a laser rangefinder, It can be suitably used for virtual fitting, license plate recognition device, television, car navigation, personal digital assistant, personal computer, video game machine, portable game machine, fingerprint authentication system, digital music player and the like.

1:光学フィルター
2:分光光度計
3:光
1: Optical filter 2: Spectrophotometer 3: Light

Claims (15)

可視光線と一部の近赤外線を選択的に透過させる光学フィルターであって、
波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
波長800nmにおける、光学フィルターの垂直方向から測定した場合の透過率が20%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率が50%以下であり、
前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値を(Xa)とし、
前記Zbに相当する帯域において、光学フィルターの垂直方向に対して30°の角度から測定した場合に透過率が50%となる、最も短波長側の波長の値を(Xa')としたとき、
|Xa−Xa'|が、30nm以下である、光学フィルター。
An optical filter that selectively transmits visible light and part of near infrared rays,
It has a light ray stop band Za, a light ray transmission band Zb, and a light ray stop band Zc in the wavelength region of 650 nm or more, and the center wavelength of each band is Za <Zb <Zc,
The transmittance at a wavelength of 800 nm when measured from the vertical direction of the optical filter is 20% or less, and the transmittance when measured from the direction of 30 ° with respect to the vertical direction of the optical filter is 50% or less,
Of the Zb, the value of the wavelength on the shortest wavelength side, which has a transmittance of 50% when measured from the vertical direction of the optical filter, is (Xa),
In the band corresponding to Zb, the transmittance is 50% when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, and the value of the wavelength on the shortest wavelength side is (Xa ′),
An optical filter having | Xa-Xa ′ | of 30 nm or less.
波長430〜580nmの領域において、光学フィルターの垂直方向から測定した場合の平均透過率が75%以上である、請求項1に記載の光学フィルター。   The optical filter according to claim 1, which has an average transmittance of 75% or more when measured in the vertical direction of the optical filter in a wavelength range of 430 to 580 nm. 波長700〜800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下であり、光学フィルターの垂直方向に対して30°の方向から測定した場合の透過率の平均値が10%以下である、請求項1または2に記載の光学フィルター。   In the wavelength range of 700 to 800 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 5% or less, and the transmittance when measured from the direction of 30 ° with respect to the vertical direction of the optical filter. The optical filter according to claim 1 or 2, which has an average value of 10% or less. 前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb−Xaが5〜150nmであり、Y=(Xa+Xb)/2で表されるYの値が820〜950nmである、請求項1〜3のいずれか1項に記載の光学フィルター。   Of the Zb, the difference Xb between the value of the wavelength on the shortest wavelength side (Xa) and the value of the wavelength on the longest wavelength side (Xb), which has a transmittance of 50% when measured from the vertical direction of the optical filter. -Xa is 5-150 nm, The value of Y represented by Y = (Xa + Xb) / 2 is 820-950 nm, The optical filter of any one of Claims 1-3. 前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値(Xa)が810〜900nmである、請求項1〜4のいずれか1項に記載の光学フィルター。   The wavelength value (Xa) on the shortest wavelength side of the Zb, which has a transmittance of 50% when measured from the direction perpendicular to the optical filter, is 810 to 900 nm, and any one of claims 1 to 4. An optical filter according to item. 前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ4%以下であり、前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である、請求項1〜5のいずれか1項に記載の光学フィルター。   The minimum transmittance of each of the Za and Zc measured in the vertical direction of the optical filter is 4% or less, and the maximum transmittance of the Zb measured in the vertical direction of the optical filter is 55% or more. Item 6. The optical filter according to any one of Items 1 to 5. 前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率が50%となる、最も短波長側の波長の値をXa、最も長波長側の波長の値をXbとし、(Xa+Xb)/2の値をYとした場合において、
波長Y−10nm〜Y+10nmの領域における、光学フィルターの垂直方向から測定した平均透過率が60%以上である、請求項1〜6いずれか1項に記載の光学フィルター。
Among the Zb, the wavelength value on the shortest wavelength side, which has a transmittance of 50% when measured from the vertical direction of the optical filter, is Xa, the wavelength value on the longest wavelength side is Xb, and (Xa + Xb) / When the value of 2 is Y,
The optical filter according to any one of claims 1 to 6, wherein the average transmittance measured in the vertical direction of the optical filter in the wavelength range of Y-10 nm to Y + 10 nm is 60% or more.
前記光学フィルターが、基材(i)を有し、該基材(i)が波長750〜850nmに吸収極大を有する化合物(S)を含む透明樹脂層を有する、請求項1〜7いずれか1項に記載の光学フィルター。   The optical filter has a base material (i), and the base material (i) has a transparent resin layer containing a compound (S) having an absorption maximum at a wavelength of 750 to 850 nm. An optical filter according to item. 前記化合物(S)が、下記式(S1)で表される化合物である、請求項8に記載の光学フィルター。
[式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または−NR8−を表し、
1〜R8はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、−NRgh基、−SO2i基、−OSO2i基または下記La〜Lhのいずれかを表し、RgおよびRhはそれぞれ独立に、水素原子、−C(O)Ri基または下記La〜Leのいずれかを表し、Riは下記La〜Leのいずれかを表し、
(La)炭素数1〜12の脂肪族炭化水素基
(Lb)炭素数1〜12のハロゲン置換アルキル基
(Lc)炭素数3〜14の脂環式炭化水素基
(Ld)炭素数6〜14の芳香族炭化水素基
(Le)炭素数3〜14の複素環基
(Lf)炭素数1〜12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1〜12のアシル基
(Lh)置換基Lを有してもよい炭素数1〜12のアルコキシカルボニル基
置換基Lは、炭素数1〜12の脂肪族炭化水素基、炭素数1〜12のハロゲン置換アルキル基、炭素数3〜14の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基および炭素数3〜14の複素環基からなる群より選ばれる少なくとも1種である。]
The optical filter according to claim 8, wherein the compound (S) is a compound represented by the following formula (S1).
[In the formula (S1), X independently represents an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or —NR 8 —,
R 1 to R 8 are each independently a hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphoric acid group, —NR g R h group, —SO 2 R i group, —OSO. It represents either 2 R i group or a group represented by L a ~L h, are each R g and R h independently represent any of hydrogen atom, -C (O) R i groups or the following L a ~L e , R i represents any of the following L a ~L e,
(L a ) C 1-12 aliphatic hydrocarbon group (L b ) C 1-12 halogen-substituted alkyl group (L c ) C 3-14 alicyclic hydrocarbon group (L d ) carbon Number of carbon atoms which may have an aromatic hydrocarbon group (L e ) having 6 to 14 carbon atoms, a heterocyclic group having 3 to 14 carbon atoms (L f ) and an alkoxy group having 1 to 12 carbon atoms (L g ) substituent L 1-12 acyl group (L h ) C1-C12 alkoxycarbonyl group which may have a substituent L The substituent L is a C1-C12 aliphatic hydrocarbon group, a C1-C12 At least one selected from the group consisting of a halogen-substituted alkyl group having 3 to 14 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a heterocyclic group having 3 to 14 carbon atoms. is there. ]
前記透明樹脂層が、前記化合物(S)の他に波長600nm以上750nm未満に吸収極大を有する化合物(A)を含む、請求項8または9に記載の光学フィルター。   The optical filter according to claim 8, wherein the transparent resin layer contains, in addition to the compound (S), a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 750 nm. 前記透明樹脂層が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、請求項8〜10のいずれか1項に記載の光学フィルター。   The transparent resin layer is a cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, polysulfone resin. Resin, polyether sulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester curing type The resin, at least one resin selected from the group consisting of silsesquioxane-based UV-curable resin, acrylic UV-curable resin and vinyl-based UV-curable resin is contained in any one of claims 8 to 10. The optical filter described. 前記基材(i)の少なくとも一方の面に誘電体多層膜を有する、請求項8〜11のいずれか1項に記載の光学フィルター。   The optical filter according to any one of claims 8 to 11, which has a dielectric multilayer film on at least one surface of the base material (i). 固体撮像装置用である、請求項1〜12のいずれか1項に記載の光学フィルター。   The optical filter according to claim 1, which is for a solid-state imaging device. 請求項1〜13のいずれか1項に記載の光学フィルターを具備する固体撮像装置。   A solid-state imaging device comprising the optical filter according to claim 1. 請求項1〜13のいずれか1項に記載の光学フィルターを具備するカメラモジュール。   A camera module comprising the optical filter according to claim 1.
JP2019026433A 2019-02-18 2019-02-18 Optical filter and device using optical filter Active JP6693585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026433A JP6693585B2 (en) 2019-02-18 2019-02-18 Optical filter and device using optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026433A JP6693585B2 (en) 2019-02-18 2019-02-18 Optical filter and device using optical filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015082486A Division JP6578718B2 (en) 2015-04-14 2015-04-14 Optical filter and device using optical filter

Publications (2)

Publication Number Publication Date
JP2019124946A JP2019124946A (en) 2019-07-25
JP6693585B2 true JP6693585B2 (en) 2020-05-13

Family

ID=67398620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026433A Active JP6693585B2 (en) 2019-02-18 2019-02-18 Optical filter and device using optical filter

Country Status (1)

Country Link
JP (1) JP6693585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127670A1 (en) * 2021-12-27 2023-07-06 Agc株式会社 Optical filter
CN114637065B (en) * 2022-02-18 2024-02-27 湖南麓星光电科技有限公司 High-damage-threshold infrared dual-laser-channel filter and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705342B2 (en) * 2004-06-22 2011-06-22 日立マクセル株式会社 Optical filter
JP5741283B2 (en) * 2010-12-10 2015-07-01 旭硝子株式会社 Infrared light transmission filter and imaging apparatus using the same
US8630037B1 (en) * 2013-02-14 2014-01-14 L-C TEC Displays AB Optical shutter for day-night filter operation
JP5884953B2 (en) * 2013-10-17 2016-03-15 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
JP6358114B2 (en) * 2015-02-02 2018-07-18 Jsr株式会社 Optical filter and device using optical filter

Also Published As

Publication number Publication date
JP2019124946A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6358114B2 (en) Optical filter and device using optical filter
JP6627864B2 (en) Optical filter and device using optical filter
JP6508247B2 (en) Optical filter and solid-state imaging device and camera module using the optical filter
JP5884953B2 (en) Optical filter, solid-state imaging device, and camera module
JP7088261B2 (en) Optical filters and devices using optical filters
JP6578718B2 (en) Optical filter and device using optical filter
JP6256335B2 (en) Optical filter for solid-state imaging device and use thereof
JP6380390B2 (en) Optical filter and apparatus using the filter
WO2017164024A1 (en) Optical filter and apparatus using optical filter
JPWO2019022069A1 (en) Near infrared cut filter and device using the near infrared cut filter
WO2015022892A1 (en) Optical filter and device using optical filter
JP6398980B2 (en) Optical filter and device using optical filter
WO2014192715A1 (en) Optical filter, and device using said filter
JP6693585B2 (en) Optical filter and device using optical filter
JP2022167805A (en) Substrate, optical filter, solid-state image pickup device and camera module
JP2019053157A (en) Optical filter and device using optical filter
JP2021070782A (en) Resin composition, resin layer, and optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250