WO2014192715A1 - Optical filter, and device using said filter - Google Patents
Optical filter, and device using said filter Download PDFInfo
- Publication number
- WO2014192715A1 WO2014192715A1 PCT/JP2014/063908 JP2014063908W WO2014192715A1 WO 2014192715 A1 WO2014192715 A1 WO 2014192715A1 JP 2014063908 W JP2014063908 W JP 2014063908W WO 2014192715 A1 WO2014192715 A1 WO 2014192715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin
- optical filter
- carbon atoms
- transmittance
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 119
- 229920005989 resin Polymers 0.000 claims abstract description 179
- 239000011347 resin Substances 0.000 claims abstract description 179
- 239000000758 substrate Substances 0.000 claims abstract description 98
- 238000002834 transmittance Methods 0.000 claims abstract description 57
- 238000010521 absorption reaction Methods 0.000 claims abstract description 40
- 150000001875 compounds Chemical class 0.000 claims description 55
- -1 polyparaphenylene Polymers 0.000 claims description 46
- 125000004432 carbon atom Chemical group C* 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 30
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 28
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 25
- 238000003384 imaging method Methods 0.000 claims description 21
- 125000000623 heterocyclic group Chemical group 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 229920005668 polycarbonate resin Polymers 0.000 claims description 14
- 239000004431 polycarbonate resin Substances 0.000 claims description 14
- 229920001721 polyimide Polymers 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 239000009719 polyimide resin Substances 0.000 claims description 11
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 10
- 125000005843 halogen group Chemical group 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 229920001225 polyester resin Polymers 0.000 claims description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 8
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 239000004645 polyester resin Substances 0.000 claims description 7
- 229920000570 polyether Polymers 0.000 claims description 7
- 229920005672 polyolefin resin Polymers 0.000 claims description 7
- 239000004695 Polyether sulfone Substances 0.000 claims description 6
- 229920006393 polyether sulfone Polymers 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 5
- 239000002952 polymeric resin Substances 0.000 claims description 5
- 229920003002 synthetic resin Polymers 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 125000002723 alicyclic group Chemical group 0.000 claims description 4
- 239000004962 Polyamide-imide Substances 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 claims description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002312 polyamide-imide Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical class [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 125000002252 acyl group Chemical group 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims description 2
- 229920001230 polyarylate Polymers 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 13
- 230000006872 improvement Effects 0.000 abstract description 4
- 239000000049 pigment Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 114
- 239000010410 layer Substances 0.000 description 101
- 239000000975 dye Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 41
- 239000000243 solution Substances 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 21
- 239000002904 solvent Substances 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000000377 silicon dioxide Substances 0.000 description 18
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000012788 optical film Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000009477 glass transition Effects 0.000 description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 8
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 125000001309 chloro group Chemical group Cl* 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 101150059062 apln gene Proteins 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WLTSXAIICPDFKI-FNORWQNLSA-N (E)-3-dodecene Chemical compound CCCCCCCC\C=C\CC WLTSXAIICPDFKI-FNORWQNLSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- BNBRIFIJRKJGEI-UHFFFAOYSA-N 2,6-difluorobenzonitrile Chemical compound FC1=CC=CC(F)=C1C#N BNBRIFIJRKJGEI-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- IRTFFZWZLVOXMG-UHFFFAOYSA-N 2-[4-[9-[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluoren-9-yl]-2,6-dimethylphenoxy]ethanol Chemical compound CC1=C(OCCO)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(OCCO)=C(C)C=2)=C1 IRTFFZWZLVOXMG-UHFFFAOYSA-N 0.000 description 1
- NQXNYVAALXGLQT-UHFFFAOYSA-N 2-[4-[9-[4-(2-hydroxyethoxy)phenyl]fluoren-9-yl]phenoxy]ethanol Chemical compound C1=CC(OCCO)=CC=C1C1(C=2C=CC(OCCO)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 NQXNYVAALXGLQT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- GIXNHONPKYUROG-UHFFFAOYSA-N 4-(9h-fluoren-1-yl)phenol Chemical compound C1=CC(O)=CC=C1C1=CC=CC2=C1CC1=CC=CC=C12 GIXNHONPKYUROG-UHFFFAOYSA-N 0.000 description 1
- HESXPOICBNWMPI-UHFFFAOYSA-N 4-[2-[4-[2-(4-aminophenyl)propan-2-yl]phenyl]propan-2-yl]aniline Chemical compound C=1C=C(C(C)(C)C=2C=CC(N)=CC=2)C=CC=1C(C)(C)C1=CC=C(N)C=C1 HESXPOICBNWMPI-UHFFFAOYSA-N 0.000 description 1
- HYDATEKARGDBKU-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]phenoxy]aniline Chemical group C1=CC(N)=CC=C1OC1=CC=C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 HYDATEKARGDBKU-UHFFFAOYSA-N 0.000 description 1
- YWFPGFJLYRKYJZ-UHFFFAOYSA-N 9,9-bis(4-hydroxyphenyl)fluorene Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YWFPGFJLYRKYJZ-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- WFDDWAUSJNNXIT-NRYMNODQSA-N CC(C)N(/C(/C1(C)C)=C/C(C(O)=C2/C=C(/C3(C)C)\N(C(C)C)c4c3c3ccccc3cc4)=C2O)c2c1c(cccc1)c1cc2 Chemical compound CC(C)N(/C(/C1(C)C)=C/C(C(O)=C2/C=C(/C3(C)C)\N(C(C)C)c4c3c3ccccc3cc4)=C2O)c2c1c(cccc1)c1cc2 WFDDWAUSJNNXIT-NRYMNODQSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- BCTOWEAPQVVELZ-UHFFFAOYSA-L [F-].[F-].F.F.F.F.[Na+].[Na+] Chemical compound [F-].[F-].F.F.F.F.[Na+].[Na+] BCTOWEAPQVVELZ-UHFFFAOYSA-L 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- DQEPMTIXHXSFOR-UHFFFAOYSA-N benzo[a]pyrene diol epoxide I Chemical compound C1=C2C(C3OC3C(C3O)O)=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 DQEPMTIXHXSFOR-UHFFFAOYSA-N 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000000869 ion-assisted deposition Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical class Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2551/00—Optical elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
Definitions
- the present invention relates to an optical filter and an apparatus using the filter. Specifically, it has a wide viewing angle in the “light transmission wavelength range close to the light cut wavelength range” (hereinafter also referred to as “near the bottom of the transmission wavelength range”) in the near infrared wavelength range, and in particular, a CCD, a CMOS image sensor, etc.
- the present invention relates to an optical filter that can be suitably used as a visual sensitivity correction filter for a solid-state imaging device, and a solid-state imaging device and a camera module using the filter.
- a CCD or CMOS image sensor which is a solid-state imaging device for color images is used.
- These solid-state imaging devices use a silicon photodiode having sensitivity to near infrared rays in the light receiving portion.
- These solid-state image sensors need to perform visibility correction to make them look natural when viewed by the human eye, and are optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
- Patent Document 1 describes a near-infrared cut filter using a substrate made of a transparent resin and containing a near-infrared absorbing dye in the transparent resin.
- the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
- the present applicant has proposed a near-infrared cut filter having a norbornene-based resin substrate and a near-infrared reflective film in Patent Document 2.
- the near-infrared cut filter described in Patent Document 2 is excellent in near-infrared cut characteristics, moisture absorption resistance and impact resistance, but cannot take a wide viewing angle.
- the present applicant uses a transparent resin substrate containing a near-infrared absorbing dye having an absorption maximum at a specific wavelength, so that the light transmission wavelength region and the light cut wavelength region can be changed even when the incident angle is changed.
- a near-infrared cut filter with little change in optical properties near the middle was obtained, and proposed a near-infrared cut filter with a wide viewing angle and high visible light transmittance in Patent Document 3. ing.
- An object of the present invention is to improve the problems of conventional optical filters such as a near-infrared cut filter, have a wide viewing angle near the bottom of the transmission wavelength region, and have a visible light transmittance and a red color.
- An object of the present invention is to provide an optical filter excellent in external light cut characteristics and an apparatus using the filter.
- An optical system having a transparent resin substrate containing a near-infrared absorbing dye and a near-infrared reflective film formed on at least one surface of the substrate and satisfying the following requirements (A) to (C) filter: (A) In the wavelength range of 430 to 580 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 75% or more. (B) In the wavelength range of 800 to 1000 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 20% or less.
- the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value
- the transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, poly Allylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin 4.
- the optical filter according to any one of [1] to [3], which is at least one resin selected from the group consisting of allyl ester resins and silsesquioxane resins.
- the transparent resin substrate is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds and porphyrin compounds.
- dye contains at least 1 sort (s) chosen from the group which consists of the squarylium type compound represented by the squarylium type compound represented by the formula (I) mentioned later, and the formula (II) mentioned later [
- the optical filter according to any one of [1] to [5].
- optical filter according to any one of [1] to [7] which is for a solid-state imaging device.
- a solid-state imaging device comprising the optical filter according to any one of [1] to [7].
- a camera module comprising the optical filter according to any one of [1] to [7].
- an optical filter that has a wide viewing angle even near the bottom of the transmission wavelength region and is excellent in visible light transmittance and infrared ray cut characteristics.
- an optical filter is used for a solid-state imaging device, it is possible to obtain a camera image with excellent image reproducibility and excellent color reproducibility with respect to light incident from an oblique direction as compared with a conventional optical filter.
- FIG. 1A is a schematic cross-sectional view showing an example of a conventional camera module.
- FIG. 1B is a schematic cross-sectional view showing an example of a camera module when the optical filter 6 ′ of the present invention is used.
- FIG. 2A is a schematic diagram illustrating a method for measuring the transmittance when measured from the vertical direction of the optical filter.
- FIG. 2B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
- FIG. 3 is a schematic view showing an example of characteristics of a near-infrared reflective film formed on a transparent resin substrate containing a near-infrared absorbing dye.
- the optical filter of the present invention has a transparent resin substrate and a near-infrared reflective film formed on at least one surface of the substrate.
- the near-infrared reflective film is provided on both surfaces of the transparent resin substrate, the warp of the optical filter can be further reduced as compared with the case where the near-infrared reflective film is provided only on one side.
- the optical filter of the present invention satisfies the following requirements (A) to (C).
- (A) In a wavelength range of 430 to 580 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 75% or more. This average value is preferably 78% or more, more preferably 80% or more.
- an optical filter having a high transmittance in such a wavelength region of 430 to 580 nm can be obtained by using a transparent resin described later and an absorbent having no absorption maximum wavelength in the wavelength region. it can.
- the average value of the transmittance when measured from the vertical direction of the optical filter is 20% or less. This average value is preferably 15% or less, more preferably 10% or less.
- an optical filter having a sufficiently low transmittance in such a wavelength region of 800 to 1000 nm is obtained by providing a predetermined near-infrared reflective film having high near-infrared reflectivity on a transparent resin substrate. be able to.
- the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value
- is preferably 22 nm or less, more preferably 18 nm or less, and particularly preferably 15 nm or less.
- an optical filter in which the absolute value of the difference in wavelength that achieves a predetermined transmittance falls within the above range by combining light absorption by a near-infrared absorbing dye and light reflection by a near-infrared reflecting film in an optimal balance.
- the transmittance at the absorption maximum wavelength when measured from the vertical direction of a resin substrate containing a near infrared absorbing dye is preferably 10% or less, more preferably 8% or less, and particularly preferably 6% or less. So that there is absorption by the near-infrared absorbing dye contained in the resin substrate from the wavelength range cut by the near-infrared reflective film to the wavelength range that passes through the near-infrared reflective film. It is desirable to design a near-infrared reflective film.
- the transmittance in the wavelength region of 560 to 800 nm is obtained in the final optical filter.
- the wavelength that will be 10% will be determined.
- the optical property has a small incident angle dependency near the bottom of the transmission wavelength range, and has excellent color reproducibility.
- An optical filter with a wide angle can be obtained, and in particular, when the filter is used in a lens unit such as a camera module, a low-profile lens unit can be realized.
- a transparent resin substrate containing a near-infrared absorbing dye having absorption in a specific wavelength region is used, and the characteristics of the near-infrared reflecting film are controlled, thereby satisfying the requirement (A).
- An optical filter satisfying all of (C) with a good balance can be obtained. Since the optical filter of the present invention satisfies all the requirements (A) to (C), a satisfactory high image quality can be obtained particularly when used in a solid-state imaging device application as compared with the conventional optical filter.
- the optical filter of the present invention further satisfies the following requirement (D).
- D The haze value (JIS K7105 method) is 2.0% or less. This haze value is more preferably 1.5% or less, and particularly preferably 1.0% or less. When the haze value is within this range, not only a clear camera image can be obtained when the optical filter of the present invention is used for a solid-state imaging device, but also flare and ghost when a light source is photographed particularly in dark conditions. Since it can reduce, it is preferable.
- the transparent resin substrate (hereinafter also referred to as “resin substrate”) constituting the optical filter of the present invention contains a transparent resin and a near-infrared absorbing dye, and preferably has an absorption maximum in the wavelength range of 600 to 800 nm. is there. If the absorption maximum wavelength of the substrate is within this range, the substrate can selectively and efficiently cut near infrared rays.
- the resin substrate preferably has a transmittance of 10% or less, more preferably 8% or less, when measured from the vertical direction of the resin substrate at the absorption maximum wavelength. Particularly preferably, it is 6% or less.
- the resin substrate may be a single layer or multiple layers.
- the thickness of the resin substrate can be appropriately selected according to the desired application, and is not particularly limited. However, it is preferable to adjust the substrate so that the incident angle dependency is improved as described above, and more preferably. Is 30 to 250 ⁇ m, more preferably 40 to 200 ⁇ m, particularly preferably 50 to 150 ⁇ m.
- the optical filter using the substrate can be reduced in size and weight, and can be suitably used for various applications such as a solid-state imaging device.
- the filter when the filter is used in a lens unit such as a camera module, the height of the lens unit can be reduced.
- the resin substrate can be formed using a transparent resin.
- the transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher.
- Tg glass transition temperature
- the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
- the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, Particularly preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
- the weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000;
- the average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
- the transparent resin examples include cyclic olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples include ester resins and silsesquioxane resins.
- Cyclic olefin-based resin The cyclic olefin-based resin is at least one selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin obtained from these monomers and a resin obtained by hydrogenating the resin are preferred.
- R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
- (Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
- R y1 and R y2 each independently represents an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently 0 or a positive integer.
- Aromatic polyether-based resin is at least one selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2). It preferably has a structural unit.
- R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represent an integer of 0 to 4.
- the aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
- R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms
- Z represents a single bond, —O—, —S—, —SO 2 —,> C ⁇ O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms
- e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
- R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in the formula (2), and R 5 , R 6 , Z, n, e and f are independently the same as R 5 , R 6 , Z, n, e and f in the formula (3).
- the polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit. For example, it is described in JP-A-2006-199945 and JP-A-2008-163107. It can be synthesized by the method that has been.
- Fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194. .
- Fluorene polyester-based resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety, and is described in, for example, JP 2010-285505 A or JP 2011-197450 A. Can be synthesized by any method.
- Fluorinated aromatic polymer resin is not particularly limited, but has at least one fluorine-containing aromatic ring, an ether bond, a ketone bond, a sulfone bond, an amide bond, and an imide bond. And a polymer containing a repeating unit containing at least one bond selected from the group consisting of ester bonds, and can be synthesized, for example, by the method described in JP-A-2008-181121.
- Examples of commercially available transparent resins include the following commercially available products.
- Examples of commercially available cyclic olefin-based resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation.
- Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd.
- Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd.
- Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited.
- Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd.
- Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd.
- acrylic resin there can be cited NIPPON CATALYST ACRYVIEWER Co., Ltd.
- Examples of commercially available silsesquioxane resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
- the resin substrate contains a near infrared absorbing dye.
- the near-infrared absorbing dye is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds, and porphyrin compounds. Is preferred. More preferably, the near-infrared absorbing dye contains at least a squarylium compound. More preferably, the near-infrared absorbing dye contains a squarylium-based compound and another near-infrared absorbing dye.
- the maximum absorption wavelength of the squarylium compound is preferably 600 nm or more, more preferably 620 nm or more, particularly preferably 650 nm or more, and preferably less than 800 nm, more preferably 760 nm or less, particularly preferably 740 nm or less.
- the absorption maximum wavelength is in such a wavelength range, sufficient near-infrared absorption characteristics and visible light transmittance can be compatible.
- At least one absorption maximum wavelength of the other near infrared absorbing dye is preferably more than 600 nm, more preferably 640 nm or more, particularly preferably 670 nm or more. And preferably 800 nm or less, more preferably 780 nm or less, particularly preferably 760 nm or less.
- the absorption maximum wavelength of other near-infrared absorbing dyes is in such a wavelength range, sufficient near-infrared absorption characteristics and visible light transmittance can be achieved at the same time, and a squarylium compound and other near-infrared absorbing dyes can be obtained.
- the near-infrared absorbing dye can effectively absorb the fluorescence generated from the squarylium compound, and the scattered light intensity of the optical filter can be suppressed.
- the other near-infrared absorbing dye preferably contains at least one selected from the group consisting of a cyanine compound and a phthalocyanine compound, and particularly preferably contains a phthalocyanine compound.
- the content of the squarylium compound is preferably 20 to 95% by weight, more preferably 25 to 85% by weight, and particularly preferably 30 to 80% by weight.
- the content ratio of the squarylium-based compound is within the above range, it is possible to achieve both good visible light transmittance and incident angle dependency improvement property and scattered light reduction effect.
- Two or more squarylium compounds and other near infrared absorbing dyes may be used for each compound.
- the content of the near infrared absorbing dye is preferably 0.01 to 5.0 parts by weight, more preferably 0.02 to 3. 5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight.
- the content of the near-infrared absorbing dye is within the above range, both good near-infrared absorption characteristics and high visible light transmittance can be achieved.
- the near-infrared absorbing dye is preferably used at a concentration at which the transmittance of the resin substrate at the absorption maximum wavelength is 10% or less, particularly 8% or less, more particularly 6% or less.
- the squarylium-based compound preferably includes at least one selected from the group consisting of a squarylium-based compound represented by the formula (I) and a squarylium-based compound represented by the formula (II).
- a squarylium-based compound represented by the formula (I) and a squarylium-based compound represented by the formula (II).
- compounds (I) and “compound (II) are also referred to as “compound (I)” and “compound (II)”, respectively.
- R a , R b and Y satisfy the following condition (i) or (ii).
- Condition (i) A plurality of R a each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, an —L 1 or an —NR e R f group.
- R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
- a plurality of R b s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group.
- R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
- a plurality of Y each independently represents a —NR j R k group.
- R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
- L 1 is L a , L b , L c , L d , Le , L f , L g or L h .
- L a to L h are (L a ) an aliphatic hydrocarbon group having 1 to 9 carbon atoms, (L b ) a halogen-substituted alkyl group having 1 to 9 carbon atoms, (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms, (L d ) an aromatic hydrocarbon group having 6 to 14 carbon atoms, (L e ) a heterocyclic group having 3 to 14 carbon atoms, (L f ) an alkoxy group having 1 to 9 carbon atoms, (L g ) represents an acyl group having 1 to 9 carbon atoms, or (L h ) represents an alkoxycarbonyl group having 1 to 9 carbon atoms, and L a to L h may have a substituent L.
- the substituent L is an aliphatic hydrocarbon group having 1 to 9 carbon atoms, a halogen-substituted alkyl group having 1 to 9 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, or an aromatic carbon group having 6 to 14 carbon atoms. It is at least one selected from the group consisting of a hydrogen group and a heterocyclic group having 3 to 14 carbon atoms.
- L a to L h further have at least one atom or group selected from the group consisting of a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an amino group. Also good.
- the total number of carbon atoms including the substituents of L a to L h is preferably 50 or less, more preferably 40 or less, and particularly preferably 30 or less. When the number of carbon atoms is larger than this range, it may be difficult to synthesize the dye, and the absorption intensity per unit weight tends to decrease.
- At least one of two R a on one benzene ring is bonded to Y on the same benzene ring to form a heterocycle having 5 or 6 member atoms containing at least one nitrogen atom;
- the heterocyclic ring may have a substituent, and R b and R a that does not participate in the formation of the heterocyclic ring are each independently synonymous with R b and R a in the above (i).
- R a in the above condition (i) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group Cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, nitro group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group. .
- R b in the above condition (i) is preferably a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
- Cyclohexyl group phenyl group, hydroxyl group, amino group, dimethylamino group, cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group T-butanoylamino group, cyclohexinoylamino group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group, dimethylamino group, nitro group , Acetylamino group, propionylamino group, trifluoromethanoylamino group, pentafur B ethanoyl group, t-butanoyl group, a cyclohexylene Sino-yl-amino group.
- Y is preferably an amino group, methylamino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di-t-butylamino group, N -Ethyl-N-methylamino group, N-cyclohexyl-N-methylamino group, more preferably dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group , A di-t-butylamino group.
- the heterocyclic ring having 5 or 6 constituent atoms may include pyrrolidine, pyrrole, imidazole, pyrazole, piperidine, pyridine, piperazine, pyridazine, pyrimidine and pyrazine.
- a heterocyclic ring that constitutes the heterocyclic ring and in which one atom adjacent to the carbon atom constituting the benzene ring is a nitrogen atom is preferable, and pyrrolidine is more preferable.
- the substituent that the heterocyclic ring may have include a substituent L, and an aliphatic hydrocarbon group having 1 to 9 carbon atoms is preferable.
- X represents —O—, —S—, —Se—,> N—R c or> CR d 2 ;
- a plurality of R c are each independently a hydrogen atom, —L a , -L b , -L c , -L d, or -L e ;
- a plurality of R d s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, or a phosphate group , -L 1 or -NR e R f group, adjacent R d groups may be linked to form an optionally substituted ring;
- L a to L e , L 1 , R e and R f have the same meanings as L a to L e , L 1 , R e and R f defined in the formula (I).
- R c in the formula (II) is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or an n-pentyl group.
- R d in the formula (II) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl.
- n-pentyl group n-hexyl group, cyclohexyl group, phenyl group, methoxy group, trifluoromethyl group, pentafluoroethyl group, 4-aminocyclohexyl group, more preferably hydrogen atom, chlorine atom, fluorine atom Methyl group, ethyl group, n-propyl group, isopropyl group, trifluoromethyl group and pentafluoroethyl group.
- X is preferably —O—, —S—, —Se—,>N—Me,>N—Et,> CH 2 ,> C (Me) 2 ,> C (Et) 2 , and more.
- Preferred are -S-,> C (Me) 2 , and> C (Et) 2 .
- Me and Et each represent a methyl group and an ethyl group.
- adjacent R ds may be linked to form a ring.
- a ring formed by linking adjacent R d s to the ring in which R c and R d are bonded in Formula (II) include, for example, a benzoindolenin ring, ⁇ -Naphthoimidazole ring, ⁇ -naphthimidazole ring, ⁇ -naphthoxazole ring, ⁇ -naphthoxazole ring, ⁇ -naphthothiazole ring, ⁇ -naphthothiazole ring, ⁇ -naphthoselenazole ring, ⁇ -naphthoselenazole ring Can be mentioned.
- Compound (I) and Compound (II) are represented by the following formulas (I-2) and (II-2) in addition to the following formulas (I-1) and (II-1).
- the structure can also be expressed by a description method that takes a resonance structure. That is, the difference between the following formula (I-1) and the following formula (I-2), and the difference between the following formula (II-1) and the following formula (II-2) is only the method of describing the structure. Both represent the same thing.
- the structure of the squarylium compound is represented by a description method such as the following formula (I-1) and the following formula (II-1).
- the structures of the compound (I) and the compound (II) are not particularly limited as long as they satisfy the requirements of the above formula (I) and the above formula (II).
- the above formula (I-1) and the above formula (II-1) ) The right and left substituents bonded to the central four-membered ring may be the same or different, but it is preferable that they are the same because synthesis is easier.
- the compound represented by the following formula (I-3) and the compound represented by the following formula (I-4) can be regarded as the same compound.
- Compound (I) and Compound (II) may be synthesized by a generally known method.
- JP-A-1-228960, JP-A-2001-40234, JP-A-3196383, etc. It can be synthesized with reference to the method described.
- the resin substrate can further contain a near ultraviolet absorber in addition to the near infrared absorbing dye.
- a near ultraviolet absorber examples include at least one selected from the group consisting of azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds.
- the near-ultraviolet absorber preferably has at least one absorption maximum at a wavelength of 300 to 420 nm.
- the above squarylium compound, phthalocyanine compound, cyanine compound, near-UV absorber and other dyes can be synthesized by generally known methods, for example, Japanese Patent No. 336697, Japanese Patent No. 2846091. Patent No. 2,864,475, Patent No. 3703869, JP-A-60-228448, JP-A-1-14684, JP-A-1-228960, JP-A-4081149, JP-A-63. No. -125454, “Phthalocyanine—Chemistry and Function” (IPC, 1997), JP 2007-169315 A, JP 2009-108267 A, JP 2010-241873 A, JP 3699464 A. Described in Japanese Patent No. 4740631 Law can be referred to the composite.
- the resin substrate may further contain additives such as an antioxidant, a UV absorber other than the near UV absorber, a fluorescence quencher, and a metal complex compound, as long as the effects of the present invention are not impaired.
- additives such as an antioxidant, a UV absorber other than the near UV absorber, a fluorescence quencher, and a metal complex compound, as long as the effects of the present invention are not impaired.
- substrate can be made easy by adding a leveling agent and an antifoamer.
- These other components may be used individually by 1 type, and may use 2 or more types together.
- Antioxidants include, for example, 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane.
- additives may be mixed with a transparent resin or the like when producing a resin substrate, or may be added when producing a transparent resin.
- the addition amount of the additive is appropriately selected according to the desired characteristics, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the transparent resin. 2.0 parts by weight.
- the resin substrate can be formed by, for example, melt molding or cast molding, and if necessary, a coating agent containing one or more of an antireflection agent, a hard coating agent, an antistatic agent and the like is coated after the molding. It can be manufactured by a method.
- a melt-molded resin substrate is, for example, a method of melt-molding pellets obtained by melt-kneading a transparent resin and a near-infrared absorbing dye; a resin composition containing a transparent resin and a near-infrared absorbing dye
- a pellet obtained by removing a solvent from a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent can be produced by a melt molding method.
- the melt molding method include injection molding, melt extrusion molding, and blow molding.
- a cast-molded resin substrate is, for example, a method in which a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent is applied onto a suitable substrate to remove the solvent; a near-infrared absorbing dye is contained It can also be produced by a method of applying the curable resin composition to be applied onto a suitable substrate and drying and curing.
- the substrate examples include glass plates, steel belts, steel drums, and transparent resin films (for example, polyester films and cyclic olefin resin films).
- the resin substrate can be obtained by peeling from the base material, and unless the effect of the present invention is impaired, the laminate of the base material and the coating film can be used as the resin substrate without peeling from the base material. Good. Further, a method of coating an optical component such as a glass plate, a quartz component or a transparent plastic component with the resin composition and drying the solvent, or a method of coating and drying and curing the curable resin composition For example, a resin substrate can be formed directly on the optical component.
- an optical component such as a glass plate, a quartz component or a transparent plastic component
- a method of coating and drying and curing the curable resin composition For example, a resin substrate can be formed directly on the optical component.
- the solvent is not particularly limited as long as it is a solvent usually used for organic synthesis and the like.
- hydrocarbons such as hexane and cyclohexane
- alcohols such as methanol, ethanol, isopropanol, butanol, octanol
- acetone methyl ethyl ketone, methyl Ketones
- esters such as ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate
- ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether
- Aromatic hydrocarbons such as benzene, toluene and xylene
- Halogenated carbonization such as methylene chloride, chloroform and carbon te
- the amount of residual solvent in the resin substrate obtained by the above method should be as small as possible.
- the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less with respect to the weight of the resin substrate.
- the amount of residual solvent is in the above range, a resin substrate that can easily exhibit a desired function is obtained, in which deformation and characteristics hardly change.
- the near-infrared reflective film constituting the optical filter of the present invention is a film having the ability to reflect near-infrared light.
- the near-infrared reflective film may be provided on one side of the resin substrate or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained.
- the warpage of the optical filter is small from the viewpoint of ease of mounting on the camera module, etc., so that a near-infrared reflective film is provided on both sides of the resin substrate. Is more preferable.
- Examples of the near-infrared reflective film include an aluminum vapor-deposited film, a noble metal thin film, a resin film in which metal oxide fine particles mainly containing indium oxide and containing a small amount of tin oxide are dispersed, a high refractive index material layer, and a low refractive index material.
- a dielectric multilayer film in which layers are alternately stacked can be mentioned.
- a dielectric multilayer film in which high refractive index material layers and low refractive index material layers are alternately laminated is more preferable.
- a material having a refractive index greater than 1.7 can be used, and a material having a refractive index of usually more than 1.7 and 2.5 or less is selected.
- examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide, and the like, and titanium oxide, tin oxide. And / or those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component).
- a material having a refractive index of 1.7 or less can be used, and a material having a refractive index of usually 1.2 or more and 1.7 or less is selected.
- examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
- the refractive index is a refractive index in light having a wavelength of 550 nm.
- the dielectric multilayer film is a multilayer in which a high refractive index material layer having a refractive index of more than 1.7 and 2.5 or less and a low refractive material layer having a refractive index of 1.2 to 1.7 are alternately stacked.
- a membrane is preferred.
- the refractive index ratio between the highest refractive index layer and the lowest refractive index layer is preferably 1.3 or more, more preferably 1.4 or more, particularly preferably 1.5 or more. It is.
- the ratio of the optical film thickness (physical film thickness x refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0. It is preferable to have 10 or more consecutive portions that are 8 to 1.2, more preferably 12 or more layers.
- the near infrared reflection characteristics will improve and the near infrared cut characteristics will tend to improve. This is preferable.
- each of the dielectric multilayer films formed on both surfaces of the substrate has an arbitrary “10 consecutive layers satisfying (h) below”.
- the average optical film thickness is compared, that is, when the average optical film thickness on one surface is compared with the average optical film thickness on the other surface, the dielectric multilayer film having the larger average optical film thickness
- the average optical film thickness is preferably 1.05 to 1.60 times, more preferably 1.10 to 1.55 times the average optical film thickness of the other dielectric multilayer film.
- the ratio of the optical film thickness (physical film thickness ⁇ refractive index) of the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2.
- the film configuration of the dielectric multilayer film formed on both surfaces of the substrate satisfies the above conditions, for example, near infrared rays in a wide wavelength range such as 700 to 1200 nm can be reflected more effectively, and the near infrared cut characteristics tend to be improved. Therefore, it is preferable.
- the method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed.
- a body multilayer film can be formed.
- each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1 ⁇ to 0.5 ⁇ , where ⁇ (nm) is the near infrared wavelength to be blocked.
- the value of ⁇ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm.
- the product of the refractive index (n) and the physical thickness (d) (n ⁇ d) is calculated by ⁇ / 4, the optical thickness, the high refractive index material layer, and the low refractive index.
- the thickness of each layer of the material layer becomes almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
- the total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 5 to 60 layers, more preferably 10 to 50 layers, as a whole, 12 More preferably, there are ⁇ 50 layers.
- the difference in the number of layers of the dielectric multilayer film formed on both surfaces of the substrate is 12 or less, particularly preferably 10 or less
- the difference in physical film thickness is 500 nm or less.
- the difference in the number of layers and the difference in physical film thickness of the dielectric multilayer films formed on both surfaces of the substrate are in the above ranges because the warpage of the optical filter tends to be further reduced.
- an optical filter that satisfies the requirement (C) can be obtained by designing the near-infrared reflective film by appropriately selecting the thickness of each material layer, the order of lamination, and the number of laminations.
- the optimization of the near-infrared reflecting film is performed by using, for example, optical thin film design software (for example, manufactured by Essential Macleod, Thin Film Center) from the wavelength range cut by the near-infrared reflecting film as shown in FIG.
- the near-infrared reflective film can be designed so that the absorption by the near-infrared absorbing dye contained in the resin substrate exists over the wavelength range that transmits the infrared reflective film.
- the design target transmittance from the visible region to the absorption maximum wavelength of the dye is 100%, etc.
- the design target transmittance from the wavelength of the absorption maximum wavelength of the dye + 10 nm to the wavelength of the absorption maximum wavelength of the dye + 250 nm is set to 0% or the like.
- the surface hardness of the resin substrate or near-infrared reflective film is between the resin substrate and the near-infrared reflective film such as a dielectric multilayer film within a range not impairing the effects of the present invention.
- Functional films such as an antireflection film, a hard coat film, and an antistatic film can be provided as appropriate for the purpose of improvement, chemical resistance improvement, antistatic and scratch removal.
- the surface of the resin substrate or functional film is subjected to corona treatment, plasma treatment, etc.
- the surface treatment may be performed.
- the optical filter of the present invention includes the transparent resin substrate and the near-infrared reflective film formed on at least one surface thereof. For this reason, the optical filter of the present invention has a wide viewing angle even near the bottom of the transmission wavelength region, and is excellent in visible light transmittance and infrared ray cut characteristics. When such an optical filter is used for a solid-state imaging device, it is possible to obtain a high-quality image with excellent color reproducibility even for light incident from an oblique direction.
- near infrared light can be efficiently absorbed by using, for example, a dye having an absorption maximum at a wavelength of 600 to 800 nm as at least one kind of near infrared absorbing dye contained in the resin substrate. Therefore, by combining such a transparent resin substrate and a near-infrared reflective film, an optical filter with little incident angle dependency can be obtained.
- the optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
- a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
- it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
- the solid-state imaging device of the present invention includes the optical filter of the present invention.
- the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor, and specifically includes a digital still camera, a mobile phone camera, a digital video camera, and the like.
- the camera module of the present invention includes the optical filter of the present invention.
- the case where the optical filter of this invention is used for a camera module is demonstrated concretely.
- FIG. 1 is a schematic sectional view of the camera module.
- FIG. 1A is a schematic cross-sectional view of the structure of a conventional camera module
- FIG. 1B shows the structure of a camera module that can be obtained when the optical filter 6 ′ of the present invention is used.
- It is a section schematic diagram showing one.
- the optical filter 6 ′ of the present invention is disposed on the upper portion of the lens 5.
- the optical filter 6 ′ of the present invention includes the lens 5 and the sensor as shown in FIG. 1 (a). 7 can also be arranged.
- the light 10 has to be incident substantially perpendicular to the optical filter 6. Therefore, the filter 6 has to be disposed between the lens 5 and the sensor 7.
- the filter 6 disposed on the upper part of the sensor 7 does not generate dust or dust. It was necessary to be a thing which does not contain a foreign material.
- the filter 6 ′ of the present invention there is no great difference between the transmission wavelengths of light incident from the vertical direction of the filter 6 ′ and light incident from 30 ° with respect to the vertical direction of the filter 6 ′. (As described above, since the incident angle dependency of the absorption (transmission) wavelength is small even near the bottom of the transmission wavelength region), the filter 6 ′ does not need to be disposed between the lens 5 and the sensor 7. It can also be placed on top of 5.
- the optical filter 6 ′ of the present invention when used in a camera module, the camera module becomes easy to handle, and it is not necessary to provide a predetermined interval between the filter 6 ′ and the sensor 7. This makes it possible to reduce the height of the camera module.
- Parts means “parts by weight” unless otherwise specified.
- the measurement method of each physical property value and the evaluation method of the physical property are as follows.
- the molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
- the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by these methods.
- a weight average molecular weight (Mw) and a number average molecular weight (Mn) in terms of standard polystyrene were measured using a GPC apparatus (HLC-8220 type, column: TSKgel ⁇ -M, developing solvent: tetrahydrofuran) manufactured by Tosoh Corporation.
- Tg Glass transition temperature
- the absorption maximum wavelength of the resin substrate and the transmittance at that wavelength, the transmittance in each wavelength region of the optical filter, and the aforementioned (Za) and (Zb) are spectrophotometers (U-4100 manufactured by Hitachi High-Technologies Corporation). ).
- the transmittance when measured from the vertical direction of the optical filter the light transmitted perpendicular to the filter surface was measured as shown in FIG. The same applies to a resin substrate. Further, with respect to the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, light transmitted at an angle of 30 ° with respect to the vertical direction of the filter surface was measured as shown in FIG. .
- permeability was measured using the said spectrophotometer on the conditions that light injects perpendicularly with respect to a filter surface or a resin-made substrate surface except the case where (Zb) is measured.
- (Zb) it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter surface.
- ⁇ Haze value> The haze value of the optical filter was measured by a method according to JIS K7105 using a haze meter (HZ-2) manufactured by Suga Test Instruments Co., Ltd.
- ⁇ Refractive index> A sample in which the target layers (silica layer and titanium oxide layer) whose refractive index is to be measured is formed as a single layer on a glass substrate is prepared, and a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation is used. The transmittance and reflectance of the sample thus prepared were measured (the transmittance was measured from the direction perpendicular to the sample surface, and the reflectance was measured from an angle of 5 ° with respect to the direction perpendicular to the sample surface).
- the obtained transmittance and reflectance data were input to optical thin film design software (Essential Macintosh, manufactured by Thin Film Center), and function fitting was performed to obtain the refractive index of each target layer with respect to light having a wavelength of 550 nm.
- Dodec-3-ene hereinafter also referred to as “DNM”) 100 parts, 1-hexene (molecular weight regulator) 18 parts, and toluene (ring-opening polymerization solvent) 300 parts nitrogen-substituted reaction The vessel was charged and the solution was heated to 80 ° C.
- the obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
- the resulting solution was reacted at 140 ° C. for 3 hours, and the generated water was removed from the Dean-Stark tube as needed. When no more water was observed, the temperature was gradually raised to 160 ° C. and reacted at that temperature for 6 hours.
- the obtained filtrate was vacuum-dried overnight at 60 ° C. to obtain a white powder (hereinafter also referred to as “resin B”) (yield 95%).
- the obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
- this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide.
- the polyimide separated by filtration was washed with methanol and dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”).
- the IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed.
- the obtained resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
- the temperature was raised to 240 ° C. at a rate of 37.5 ° C./Hr, and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes.
- the polymerization reaction was further carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. and 1 Torr or less.
- resin D polycarbonate resin
- Mw weight average molecular weight
- Tg glass transition temperature
- the precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”).
- the obtained resin F had a number average molecular weight (Mn) of 71,000 and a glass transition temperature (Tg) of 242 ° C.
- Example 1 In a container, 100 parts of Resin A obtained in Synthesis Example 1, 0.03 part of a squarylium compound represented by the following formula (a-1) (hereinafter also referred to as “compound (a-1)”), A solution having a resin concentration of 20% by weight was obtained by adding 0.01 part of a phthalocyanine compound represented by (b-1) (hereinafter also referred to as “compound (b-1)”) and methylene chloride. .
- the obtained solution was cast on a smooth glass plate and dried at 20 ° C. for 8 hours, and then the coating film was peeled off from the glass plate.
- the peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
- the spectral transmittance of the resin substrate was measured to determine the absorption maximum wavelength. The results are shown in Table 4.
- the absorption maximum wavelength was 698 nm, and the transmittance at that wavelength was 1%.
- a near-infrared reflective film (I) is formed on one surface of the obtained resin substrate, and a near-infrared reflective film (II) is formed on the other surface of the resin substrate, and the thickness is 0.106 mm.
- An optical filter was obtained.
- the near-infrared reflective film (I) is formed by alternately laminating a silica (SiO 2 ) layer and a titanium oxide (TiO 2 ) layer at a deposition temperature of 100 ° C. (20 layers in total).
- the near-infrared reflective film (II) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total).
- the silica layer and the titanium oxide layer are formed from the resin substrate side from the titanium oxide layer, silica layer, titanium oxide layer,..., Silica layer, titanium oxide layer,
- the silica layers were alternately laminated in this order, and the outermost layer of the optical filter was a silica layer.
- the near-infrared reflective films (I) and (II) were designed as follows.
- the thickness of each layer and the number of layers are optically matched to the characteristics of the resin substrate and near-infrared absorbing dye so that both the antireflection effect in the visible region and the light-cutting effect in the near-infrared region can be achieved, taking into consideration the absorption characteristics of the pigment Optimization was performed using thin film design software (Essential Macleod, Thin Film Center).
- the input parameters (Target values) to the software are as shown in Table 1 below.
- the near-infrared reflective film (I) has a stacking number of 20 in which a silica layer having a thickness of 88 to 185 nm and a titanium oxide layer having a thickness of 98 to 108 nm are alternately stacked.
- the near-infrared reflective film (II) is a multilayer deposited film having 26 layers, in which a silica layer having a thickness of 78 to 156 nm and a titanium oxide layer having a thickness of 82 to 90 nm are alternately stacked. It was.
- the refractive index of the silica layer was 1.445, and the refractive index of the titanium oxide layer was 2.479.
- the film (II) has 25 layers.
- Table 2 shows an example of the optimized film configuration.
- the spectral transmittance of this optical filter was measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 4.
- the average transmittance at a wavelength of 430 to 580 nm was 91%
- the average transmittance at a wavelength of 800 to 1000 nm was 1% or less
- was 10 nm.
- Example 2 A near-infrared reflective film (III) is formed on one surface of a resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm obtained in Example 1, and the near-infrared reflection film is formed on the other surface of the resin substrate. Film (IV) was formed, and an optical filter having a thickness of 0.105 mm was obtained.
- the near-infrared reflective film (III) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (18 layers in total).
- the near-infrared reflective film (IV) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (18 layers in total).
- the silica layer and the titanium oxide layer are the titanium oxide layer, silica layer, titanium oxide layer,..., Silica layer, titanium oxide layer, from the resin substrate side.
- the silica layers were alternately laminated in this order, and the outermost layer of the optical filter was a silica layer.
- the near-infrared reflective films (III) and (IV) were designed as follows. As a result of optimization in the same manner as in Example 1, in Example 2, the near-infrared reflective film (III) was formed by alternately laminating a silica layer having a film thickness of 36 to 186 nm and a titanium oxide layer having a film thickness of 11 to 109 nm. The near-infrared reflective film (IV) is formed by alternately laminating a silica layer having a film thickness of 31 to 156 nm and a titanium oxide layer having a film thickness of 10 to 94 nm. The multilayer deposited film became.
- the refractive index of the silica layer was 1.445, and the refractive index of the titanium oxide layer was 2.479.
- the portion where the ratio of the optical film thickness (physical film thickness ⁇ refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2 is continuous, and the film (III) is 15
- the film (IV) has 15 layers. Table 3 shows an example of the optimized film configuration.
- Table 4 shows the evaluation results of the optical characteristics.
- Example 3 to [Example 14] and [Comparative Example 1] to [Comparative Example 2]
- Example 1 a transparent resin, a near infrared absorbing dye, a solvent, and a film drying condition shown in Table 4 were used to produce a resin substrate, and further, the thickness and the number of layers of each multilayer deposited film were optimized.
- An optical filter having a thickness of 0.106 mm was obtained in the same manner as in Example 1 except for the above. The results are shown in Table 4.
- the resin concentration of the solution is 20% by weight.
- Resin A Cyclic olefin resin (resin synthesis example 1)
- Resin B Aromatic polyether resin (resin synthesis example 2)
- Resin C Polyimide resin (resin synthesis example 3)
- Resin D Fluorene polycarbonate resin (resin synthesis example 4)
- Resin E Fluorene polyester resin (resin synthesis example 5)
- Resin F Fluorinated polyether ketone (resin synthesis example 6)
- Resin G Cyclic Olefin Resin “Zeonor 1420R” (Nippon Zeon Corporation)
- Resin H Cyclic olefin resin “APEL # 6015” (Mitsui Chemicals)
- Resin I Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
- Resin J Polyethersulfone resin “Sumilite FS-1300” (Sumitomo Bakelite Co., Ltd.)
- Resin K Heat
- Solvent (1) Methylene chloride
- Solvent (2) N, N-dimethylacetamide
- Solvent (3) Ethyl acetate / toluene (weight ratio: 5/5)
- Solvent (4) cyclohexane / xylene (weight ratio: 7/3)
- Solvent (5) cyclohexane / methylene chloride (weight ratio: 99/1)
- Solvent (6) N-methyl-2-pyrrolidone
- Example 4 the film drying conditions of Examples and Comparative Examples in Table 4 are as follows.
- Condition (1) 20 ° C./8 hr ⁇ under reduced pressure 100 ° C./8 hr
- Condition (2) 60 ° C./8 hr ⁇ 80 ° C./8 hr ⁇ Under reduced pressure 140 °C / 8hr
- Condition (3) 60 ° C./8 hr ⁇ 80 ° C./8 hr ⁇ Under reduced pressure 100 °C / 24hr
- the coating film was peeled from the glass plate before drying under reduced pressure.
- the optical filter satisfying the above requirements of the present invention has excellent visible light transmittance and near-infrared cut characteristics, and also has a wide viewing angle near the bottom of the transmission wavelength region.
- various characteristics required for a solid-state imaging device can be satisfied in a balanced manner.
- the optical filter of the present invention can be suitably used particularly for solid-state imaging device applications as compared with conventional optical filters.
- Camera module 2 Lens barrel 3: Flexible substrate 4: Hollow package 5: Lens 6, 6 ': Optical filter 7: CCD or CMOS image sensor 8: Optical filter 9: Spectrophotometer 10: Light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
[Problem] To provide an optical filter with which improvements are made with respect to problems of conventional optical filters such as near infrared cut-off filters, which has a broad angular field of view even in the vicinity of a lower end of a transmission wavelength range, and which exhibits excellent visible light transmittance and excellent infrared-beam cut-off properties. [Solution] Provided is an optical filter provided with: a transparent resin substrate including a near-infrared absorption pigment; and a near-infrared reflective film formed upon at least one surface of the substrate. The optical filter satisfies conditions (A) to (C): (A) that the average transmittance of the filter measured from an orthogonal direction be at least 75% for wavelengths in the range 430-580 nm; (B) that the average transmittance of the filter measured from the orthogonal direction be not more than 20% for wavelengths in the range 800-1000 nm; and (C) that the absolute value of the difference between the value (Za) of the longest wavelength at which the transmittance of the filter measured from the orthogonal direction is 10% for wavelengths in the range 560-800 nm, and the value (Zb) of the longest wavelength at which the transmittance of the filter measured from an angle of 30˚ with respect to the orthogonal direction is 10% for wavelengths in the range 560-800 nm, be less than 25 nm.
Description
本発明は、光学フィルターおよび前記フィルターを用いた装置に関する。詳しくは、近赤外波長域における「光線カット波長域に近い光線透過波長域」(以下「透過波長域の裾付近」ともいう。)においても広い視野角を持ち、特にCCDやCMOSイメージセンサー等の固体撮像素子用視感度補正フィルターとして好適に用いることができる光学フィルター、ならびに前記フィルターを用いた固体撮像装置およびカメラモジュールに関する。
The present invention relates to an optical filter and an apparatus using the filter. Specifically, it has a wide viewing angle in the “light transmission wavelength range close to the light cut wavelength range” (hereinafter also referred to as “near the bottom of the transmission wavelength range”) in the near infrared wavelength range, and in particular, a CCD, a CMOS image sensor, etc. The present invention relates to an optical filter that can be suitably used as a visual sensitivity correction filter for a solid-state imaging device, and a solid-state imaging device and a camera module using the filter.
ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話等の固体撮像装置には、カラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されている。これらの固体撮像素子は、その受光部において近赤外線に感度を有するシリコンフォトダイオードを使用している。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過またはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。
In a solid-state imaging device such as a video camera, a digital still camera, and a mobile phone with a camera function, a CCD or CMOS image sensor which is a solid-state imaging device for color images is used. These solid-state imaging devices use a silicon photodiode having sensitivity to near infrared rays in the light receiving portion. These solid-state image sensors need to perform visibility correction to make them look natural when viewed by the human eye, and are optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、特許文献1には、透明樹脂からなる基板を用い、透明樹脂中に近赤外線吸収色素を含有させた近赤外線カットフィルターが記載されている。しかしながら、特許文献1に記載された近赤外線カットフィルターは、近赤外線吸収特性が必ずしも充分ではない場合があった。
As such a near-infrared cut filter, those manufactured by various methods are conventionally used. For example, Patent Document 1 describes a near-infrared cut filter using a substrate made of a transparent resin and containing a near-infrared absorbing dye in the transparent resin. However, the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
また、当出願人は、特許文献2にて、ノルボルネン系樹脂製基板と近赤外線反射膜とを有する近赤外線カットフィルターを提案している。特許文献2に記載された近赤外線カットフィルターは、近赤外線カット特性、耐吸湿性および耐衝撃性に優れるが、広い視野角の値をとることはできなかった。
Further, the present applicant has proposed a near-infrared cut filter having a norbornene-based resin substrate and a near-infrared reflective film in Patent Document 2. The near-infrared cut filter described in Patent Document 2 is excellent in near-infrared cut characteristics, moisture absorption resistance and impact resistance, but cannot take a wide viewing angle.
当出願人は鋭意検討の結果、特定波長に吸収極大がある近赤外線吸収色素を含有する透明樹脂製基板を用いることで、入射角度を変化させても光線透過波長域と光線カット波長域との中間付近(透過率50%)の光学特性の変化が少ない近赤外線カットフィルターが得られることを見出し、特許文献3にて広い視野角および高い可視光透過率を兼ね備えた近赤外線カットフィルターを提案している。
As a result of intensive studies, the present applicant uses a transparent resin substrate containing a near-infrared absorbing dye having an absorption maximum at a specific wavelength, so that the light transmission wavelength region and the light cut wavelength region can be changed even when the incident angle is changed. We found that a near-infrared cut filter with little change in optical properties near the middle (transmittance 50%) was obtained, and proposed a near-infrared cut filter with a wide viewing angle and high visible light transmittance in Patent Document 3. ing.
近年ではモバイル機器等においてもカメラ画像に要求される画質レベルが非常に高くなってきている。本発明者らの検討によれば、従来の透過率50%の波長付近における視野角改良だけでは、色再現性等の高画質化の要求を満たすことができない場合があった。
In recent years, the image quality level required for camera images has become very high even in mobile devices. According to the study by the present inventors, there has been a case where it is not possible to satisfy the demand for high image quality such as color reproducibility only by improving the viewing angle in the vicinity of the conventional wavelength of 50% transmittance.
本発明の課題は、従来の近赤外線カットフィルター等の光学フィルターが有していた問題点を改良し、透過波長域の裾付近においても広い視野角を有し、且つ、可視光透過率と赤外光線カット特性に優れた光学フィルター、および前記フィルターを用いた装置を提供することにある。
An object of the present invention is to improve the problems of conventional optical filters such as a near-infrared cut filter, have a wide viewing angle near the bottom of the transmission wavelength region, and have a visible light transmittance and a red color. An object of the present invention is to provide an optical filter excellent in external light cut characteristics and an apparatus using the filter.
本発明者らは鋭意検討した結果、下記(A)~(C)の要件を満たす光学フィルターにより前記課題を解決できることを見出し、本発明を完成するに至った。本発明の態様の例を以下に示す。
As a result of intensive studies, the present inventors have found that the above problems can be solved by an optical filter that satisfies the following requirements (A) to (C), and have completed the present invention. Examples of embodiments of the present invention are shown below.
[1]近赤外線吸収色素を含有する透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有し、下記(A)~(C)の要件を満たす光学フィルター:
(A)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上。
(B)波長800~1000nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が20%以下。
(C)波長560~800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率が10%となる最も長い波長の値(Za)と、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率が10%となる最も長い波長の値(Zb)との差の絶対値|Za-Zb|が25nm未満。 [1] An optical system having a transparent resin substrate containing a near-infrared absorbing dye and a near-infrared reflective film formed on at least one surface of the substrate and satisfying the following requirements (A) to (C) filter:
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 75% or more.
(B) In the wavelength range of 800 to 1000 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 20% or less.
(C) In the wavelength range of 560 to 800 nm, the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value | Za−Zb | of the difference from the longest wavelength value (Zb) at which the transmittance is 10% when measured from is less than 25 nm.
(A)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上。
(B)波長800~1000nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が20%以下。
(C)波長560~800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率が10%となる最も長い波長の値(Za)と、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率が10%となる最も長い波長の値(Zb)との差の絶対値|Za-Zb|が25nm未満。 [1] An optical system having a transparent resin substrate containing a near-infrared absorbing dye and a near-infrared reflective film formed on at least one surface of the substrate and satisfying the following requirements (A) to (C) filter:
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 75% or more.
(B) In the wavelength range of 800 to 1000 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 20% or less.
(C) In the wavelength range of 560 to 800 nm, the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value | Za−Zb | of the difference from the longest wavelength value (Zb) at which the transmittance is 10% when measured from is less than 25 nm.
[2]近赤外線吸収色素を含有する透明樹脂製基板の吸収極大波長が600~800nmである前記[1]に記載の光学フィルター。
[3]近赤外線吸収色素を含有する樹脂製基板の垂直方向から測定した場合の吸収極大波長における透過率が10%以下である前記[1]または[2]に記載の光学フィルター。 [2] The optical filter as described in [1] above, wherein the absorption maximum wavelength of the transparent resin substrate containing a near-infrared absorbing dye is 600 to 800 nm.
[3] The optical filter according to [1] or [2], wherein a transmittance at an absorption maximum wavelength when measured from a vertical direction of a resin substrate containing a near-infrared absorbing dye is 10% or less.
[3]近赤外線吸収色素を含有する樹脂製基板の垂直方向から測定した場合の吸収極大波長における透過率が10%以下である前記[1]または[2]に記載の光学フィルター。 [2] The optical filter as described in [1] above, wherein the absorption maximum wavelength of the transparent resin substrate containing a near-infrared absorbing dye is 600 to 800 nm.
[3] The optical filter according to [1] or [2], wherein a transmittance at an absorption maximum wavelength when measured from a vertical direction of a resin substrate containing a near-infrared absorbing dye is 10% or less.
[4]前記透明樹脂製基板を構成する透明樹脂が、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂である前記[1]~[3]のいずれか1項に記載の光学フィルター。
[4] The transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, poly Allylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin 4. The optical filter according to any one of [1] to [3], which is at least one resin selected from the group consisting of allyl ester resins and silsesquioxane resins.
[5]前記透明樹脂製基板が、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ジチオール系化合物、ジイモニウム系化合物およびポルフィリン系化合物からなる群より選ばれる少なくとも1種の近赤外線吸収色素を含有する前記[1]~[4]のいずれか1項に記載の光学フィルター。
[5] The transparent resin substrate is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds and porphyrin compounds. 6. The optical filter according to any one of [1] to [4], which contains a kind of near-infrared absorbing dye.
[6]前記近赤外線吸収色素が、後述する式(I)で表されるスクアリリウム系化合物および後述する式(II)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含む前記[1]~[5]のいずれか1項に記載の光学フィルター。
[6] The said near-infrared absorption pigment | dye contains at least 1 sort (s) chosen from the group which consists of the squarylium type compound represented by the squarylium type compound represented by the formula (I) mentioned later, and the formula (II) mentioned later [ The optical filter according to any one of [1] to [5].
[7]前記透明樹脂製基板と、前記基板の両面上に形成された前記近赤外線反射膜とを有する前記[1]~[6]のいずれか1項に記載の光学フィルター。
[8]固体撮像装置用である前記[1]~[7]のいずれか1項に記載の光学フィルター。 [7] The optical filter according to any one of [1] to [6], including the transparent resin substrate and the near-infrared reflective film formed on both surfaces of the substrate.
[8] The optical filter according to any one of [1] to [7], which is for a solid-state imaging device.
[8]固体撮像装置用である前記[1]~[7]のいずれか1項に記載の光学フィルター。 [7] The optical filter according to any one of [1] to [6], including the transparent resin substrate and the near-infrared reflective film formed on both surfaces of the substrate.
[8] The optical filter according to any one of [1] to [7], which is for a solid-state imaging device.
[9]前記[1]~[7]のいずれか1項に記載の光学フィルターを具備する固体撮像装置。
[10]前記[1]~[7]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 [9] A solid-state imaging device comprising the optical filter according to any one of [1] to [7].
[10] A camera module comprising the optical filter according to any one of [1] to [7].
[10]前記[1]~[7]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 [9] A solid-state imaging device comprising the optical filter according to any one of [1] to [7].
[10] A camera module comprising the optical filter according to any one of [1] to [7].
本発明によれば、透過波長域の裾付近においても広い視野角を有し、且つ、可視光透過率と赤外光線カット特性に優れた光学フィルターを提供することができる。このような光学フィルターを固体撮像素子用途に使用すると、従来の光学フィルター以上に斜め方向から入射した光に対しても色再現性に優れた画質の良いカメラ画像を得ることができる。
According to the present invention, it is possible to provide an optical filter that has a wide viewing angle even near the bottom of the transmission wavelength region and is excellent in visible light transmittance and infrared ray cut characteristics. When such an optical filter is used for a solid-state imaging device, it is possible to obtain a camera image with excellent image reproducibility and excellent color reproducibility with respect to light incident from an oblique direction as compared with a conventional optical filter.
以下、本発明について具体的に説明する。
〔光学フィルター〕
本発明の光学フィルターは、透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有する。透明樹脂製基板の両面に近赤外線反射膜を有すると、片面のみに近赤外線反射膜を有する場合と比較して、光学フィルターの反りをさらに低減することができる。 Hereinafter, the present invention will be specifically described.
[Optical filter]
The optical filter of the present invention has a transparent resin substrate and a near-infrared reflective film formed on at least one surface of the substrate. When the near-infrared reflective film is provided on both surfaces of the transparent resin substrate, the warp of the optical filter can be further reduced as compared with the case where the near-infrared reflective film is provided only on one side.
〔光学フィルター〕
本発明の光学フィルターは、透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有する。透明樹脂製基板の両面に近赤外線反射膜を有すると、片面のみに近赤外線反射膜を有する場合と比較して、光学フィルターの反りをさらに低減することができる。 Hereinafter, the present invention will be specifically described.
[Optical filter]
The optical filter of the present invention has a transparent resin substrate and a near-infrared reflective film formed on at least one surface of the substrate. When the near-infrared reflective film is provided on both surfaces of the transparent resin substrate, the warp of the optical filter can be further reduced as compared with the case where the near-infrared reflective film is provided only on one side.
本発明の光学フィルターは、下記(A)~(C)の要件を満たす。
(A)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上であること。この平均値は、好ましくは78%以上、さらに好ましくは80%以上である。 The optical filter of the present invention satisfies the following requirements (A) to (C).
(A) In a wavelength range of 430 to 580 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 75% or more. This average value is preferably 78% or more, more preferably 80% or more.
(A)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上であること。この平均値は、好ましくは78%以上、さらに好ましくは80%以上である。 The optical filter of the present invention satisfies the following requirements (A) to (C).
(A) In a wavelength range of 430 to 580 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 75% or more. This average value is preferably 78% or more, more preferably 80% or more.
本発明では、例えば、後述する透明樹脂および前記波長領域に吸収極大波長を持たない吸収剤を用いることで、このような波長430~580nmの領域において、高い透過率を有する光学フィルターを得ることができる。
In the present invention, for example, an optical filter having a high transmittance in such a wavelength region of 430 to 580 nm can be obtained by using a transparent resin described later and an absorbent having no absorption maximum wavelength in the wavelength region. it can.
(B)波長800~1000nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が20%以下であること。この平均値は、好ましくは15%以下、さらに好ましくは10%以下である。
本発明では、透明樹脂製基板上に高い近赤外線反射能を有する所定の近赤外線反射膜を設けることで、このような波長800~1000nmの領域において、充分に低い透過率を有する光学フィルターを得ることができる。 (B) In the wavelength range of 800 to 1000 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 20% or less. This average value is preferably 15% or less, more preferably 10% or less.
In the present invention, an optical filter having a sufficiently low transmittance in such a wavelength region of 800 to 1000 nm is obtained by providing a predetermined near-infrared reflective film having high near-infrared reflectivity on a transparent resin substrate. be able to.
本発明では、透明樹脂製基板上に高い近赤外線反射能を有する所定の近赤外線反射膜を設けることで、このような波長800~1000nmの領域において、充分に低い透過率を有する光学フィルターを得ることができる。 (B) In the wavelength range of 800 to 1000 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 20% or less. This average value is preferably 15% or less, more preferably 10% or less.
In the present invention, an optical filter having a sufficiently low transmittance in such a wavelength region of 800 to 1000 nm is obtained by providing a predetermined near-infrared reflective film having high near-infrared reflectivity on a transparent resin substrate. be able to.
(C)波長560~800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率が10%となる最も長い波長の値(Za)と、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率が10%となる最も長い波長の値(Zb)との差の絶対値|Za-Zb|が25nm未満であること。この絶対値|Za-Zb|は、好ましくは22nm以下、より好ましくは18nm以下、特に好ましくは15nm以下である。
(C) In the wavelength range of 560 to 800 nm, the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value | Za−Zb | of the difference from the longest wavelength value (Zb) at which the transmittance when measured from the above is 10% is less than 25 nm. This absolute value | Za−Zb | is preferably 22 nm or less, more preferably 18 nm or less, and particularly preferably 15 nm or less.
本発明では、近赤外線吸収色素による光線吸収と近赤外線反射膜による光線反射とを最適なバランスで併用することで、所定の透過率となる波長の差の絶対値が上記範囲となる光学フィルターを得ることができる。
In the present invention, an optical filter in which the absolute value of the difference in wavelength that achieves a predetermined transmittance falls within the above range by combining light absorption by a near-infrared absorbing dye and light reflection by a near-infrared reflecting film in an optimal balance. Obtainable.
より具体的には、近赤外線吸収色素を含有する樹脂製基板の垂直方向から測定した場合の吸収極大波長における透過率が好ましくは10%以下、さらに好ましくは8%以下、特に好ましくは6%以下となるよう色素濃度を調整した上で、近赤外線反射膜によってカットされる波長域から近赤外線反射膜を透過する波長域にわたって、樹脂製基板に含まれる近赤外線吸収色素による吸収が存在するように、近赤外線反射膜を設計することが望ましい。ここで、近赤外線吸収色素の吸収波長域と近赤外線反射膜によってカットされる波長域との一部が重なることで、最終的な光学フィルターとした際に波長560~800nmの領域において透過率が10%となる波長が決定されることとなる。
More specifically, the transmittance at the absorption maximum wavelength when measured from the vertical direction of a resin substrate containing a near infrared absorbing dye is preferably 10% or less, more preferably 8% or less, and particularly preferably 6% or less. So that there is absorption by the near-infrared absorbing dye contained in the resin substrate from the wavelength range cut by the near-infrared reflective film to the wavelength range that passes through the near-infrared reflective film. It is desirable to design a near-infrared reflective film. Here, a part of the absorption wavelength region of the near-infrared absorbing dye and the wavelength region cut by the near-infrared reflecting film overlap, so that the transmittance in the wavelength region of 560 to 800 nm is obtained in the final optical filter. The wavelength that will be 10% will be determined.
このように、波長560~800nmの領域において絶対値|Za-Zb|が上記範囲にあると、透過波長域の裾付近においても光学特性の入射角依存性が小さく、色再現性に優れた視野角の広い光学フィルターを得ることができ、特に、前記フィルターをカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化を実現することができる。
Thus, when the absolute value | Za−Zb | is in the above-mentioned range in the wavelength range of 560 to 800 nm, the optical property has a small incident angle dependency near the bottom of the transmission wavelength range, and has excellent color reproducibility. An optical filter with a wide angle can be obtained, and in particular, when the filter is used in a lens unit such as a camera module, a low-profile lens unit can be realized.
本発明では、上記のように例えば、特定の波長領域に吸収を有する近赤外線吸収色素を含有する透明樹脂製基板を使用し、かつ近赤外線反射膜の特性をコントロールすることで、要件(A)~(C)の全てをバランスよく満たす光学フィルターを得ることができる。本発明の光学フィルターは、要件(A)~(C)を全て満たすことから、従来の光学フィルターと比べて、特に固体撮像素子用途で使用する場合に満足な高画質を得ることができる。
In the present invention, as described above, for example, a transparent resin substrate containing a near-infrared absorbing dye having absorption in a specific wavelength region is used, and the characteristics of the near-infrared reflecting film are controlled, thereby satisfying the requirement (A). An optical filter satisfying all of (C) with a good balance can be obtained. Since the optical filter of the present invention satisfies all the requirements (A) to (C), a satisfactory high image quality can be obtained particularly when used in a solid-state imaging device application as compared with the conventional optical filter.
本発明の光学フィルターは、さらに下記(D)の要件を満たすことが好ましい。
(D)ヘーズ値(JIS K7105法)が2.0%以下であること。このヘーズ値は、さらに好ましくは1.5%以下、特に好ましくは1.0%以下である。ヘーズ値がこの範囲にあると、本発明の光学フィルターを固体撮像素子用途で使用した際にクリアなカメラ画像が得られるだけでなく、特に暗闇条件下で光源を撮影した際のフレアやゴーストを低減できるため好ましい。 It is preferable that the optical filter of the present invention further satisfies the following requirement (D).
(D) The haze value (JIS K7105 method) is 2.0% or less. This haze value is more preferably 1.5% or less, and particularly preferably 1.0% or less. When the haze value is within this range, not only a clear camera image can be obtained when the optical filter of the present invention is used for a solid-state imaging device, but also flare and ghost when a light source is photographed particularly in dark conditions. Since it can reduce, it is preferable.
(D)ヘーズ値(JIS K7105法)が2.0%以下であること。このヘーズ値は、さらに好ましくは1.5%以下、特に好ましくは1.0%以下である。ヘーズ値がこの範囲にあると、本発明の光学フィルターを固体撮像素子用途で使用した際にクリアなカメラ画像が得られるだけでなく、特に暗闇条件下で光源を撮影した際のフレアやゴーストを低減できるため好ましい。 It is preferable that the optical filter of the present invention further satisfies the following requirement (D).
(D) The haze value (JIS K7105 method) is 2.0% or less. This haze value is more preferably 1.5% or less, and particularly preferably 1.0% or less. When the haze value is within this range, not only a clear camera image can be obtained when the optical filter of the present invention is used for a solid-state imaging device, but also flare and ghost when a light source is photographed particularly in dark conditions. Since it can reduce, it is preferable.
[透明樹脂製基板]
本発明の光学フィルターを構成する透明樹脂製基板(以下「樹脂製基板」ともいう。)は、透明樹脂および近赤外線吸収色素を含有しており、好ましくは吸収極大が波長600~800nmの範囲にある。前記基板の吸収極大波長がこの範囲にあれば、前記基板は近赤外線を選択的に効率よくカットすることができる。 [Transparent resin substrate]
The transparent resin substrate (hereinafter also referred to as “resin substrate”) constituting the optical filter of the present invention contains a transparent resin and a near-infrared absorbing dye, and preferably has an absorption maximum in the wavelength range of 600 to 800 nm. is there. If the absorption maximum wavelength of the substrate is within this range, the substrate can selectively and efficiently cut near infrared rays.
本発明の光学フィルターを構成する透明樹脂製基板(以下「樹脂製基板」ともいう。)は、透明樹脂および近赤外線吸収色素を含有しており、好ましくは吸収極大が波長600~800nmの範囲にある。前記基板の吸収極大波長がこの範囲にあれば、前記基板は近赤外線を選択的に効率よくカットすることができる。 [Transparent resin substrate]
The transparent resin substrate (hereinafter also referred to as “resin substrate”) constituting the optical filter of the present invention contains a transparent resin and a near-infrared absorbing dye, and preferably has an absorption maximum in the wavelength range of 600 to 800 nm. is there. If the absorption maximum wavelength of the substrate is within this range, the substrate can selectively and efficiently cut near infrared rays.
また、樹脂製基板は、前述したように、上記吸収極大波長における、樹脂製基板の垂直方向から測定した場合の透過率が10%以下であることが好ましく、さらに好ましくは8%以下であり、特に好ましくは6%以下である。
Further, as described above, the resin substrate preferably has a transmittance of 10% or less, more preferably 8% or less, when measured from the vertical direction of the resin substrate at the absorption maximum wavelength. Particularly preferably, it is 6% or less.
樹脂製基板は、単層であっても多層であってもよい。
樹脂製基板の厚さは、所望の用途に応じて適宜選択することができ、特に制限されないが、当該基板が前記のような入射角依存改良性を有するように調整することが好ましく、より好ましくは30~250μm、さらに好ましくは40~200μm、特に好ましくは50~150μmである。 The resin substrate may be a single layer or multiple layers.
The thickness of the resin substrate can be appropriately selected according to the desired application, and is not particularly limited. However, it is preferable to adjust the substrate so that the incident angle dependency is improved as described above, and more preferably. Is 30 to 250 μm, more preferably 40 to 200 μm, particularly preferably 50 to 150 μm.
樹脂製基板の厚さは、所望の用途に応じて適宜選択することができ、特に制限されないが、当該基板が前記のような入射角依存改良性を有するように調整することが好ましく、より好ましくは30~250μm、さらに好ましくは40~200μm、特に好ましくは50~150μmである。 The resin substrate may be a single layer or multiple layers.
The thickness of the resin substrate can be appropriately selected according to the desired application, and is not particularly limited. However, it is preferable to adjust the substrate so that the incident angle dependency is improved as described above, and more preferably. Is 30 to 250 μm, more preferably 40 to 200 μm, particularly preferably 50 to 150 μm.
樹脂製基板の厚さが前記範囲にあると、前記基板を用いた光学フィルターを小型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記フィルターをカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化を実現することができる。
When the thickness of the resin substrate is within the above range, the optical filter using the substrate can be reduced in size and weight, and can be suitably used for various applications such as a solid-state imaging device. In particular, when the filter is used in a lens unit such as a camera module, the height of the lens unit can be reduced.
<透明樹脂>
樹脂製基板は、透明樹脂を用いて形成することができる。
透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。 <Transparent resin>
The resin substrate can be formed using a transparent resin.
The transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher. For example, a resin having a glass transition temperature (Tg) of preferably 110 to 380.degree. C., more preferably 110 to 370.degree. C., and still more preferably 120 to 360.degree. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
樹脂製基板は、透明樹脂を用いて形成することができる。
透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。 <Transparent resin>
The resin substrate can be formed using a transparent resin.
The transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher. For example, a resin having a glass transition temperature (Tg) of preferably 110 to 380.degree. C., more preferably 110 to 370.degree. C., and still more preferably 120 to 360.degree. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板を形成した場合に、この樹脂板の全光線透過率(JIS K7105)が、好ましくは75~95%、さらに好ましくは78~95%、特に好ましくは80~95%となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基板は光学フィルムとして良好な透明性を示す。
As the transparent resin, when a resin plate made of the resin having a thickness of 0.1 mm is formed, the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, Particularly preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり;数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。
The weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000; The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
透明樹脂としては、例えば、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂を挙げることができる。
Examples of the transparent resin include cyclic olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples include ester resins and silsesquioxane resins.
(1)環状オレフィン系樹脂
環状オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。 (1) Cyclic olefin-based resin The cyclic olefin-based resin is at least one selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin obtained from these monomers and a resin obtained by hydrogenating the resin are preferred.
環状オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。 (1) Cyclic olefin-based resin The cyclic olefin-based resin is at least one selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin obtained from these monomers and a resin obtained by hydrogenating the resin are preferred.
式(X0)中、Rx1~Rx4は、それぞれ独立に下記(i')~(ix')より選ばれる原子または基を表し、kx、mxおよびpxは、それぞれ独立に0または正の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2とが、またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2とが、またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。) In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or asilicon atom 30 to 30 hydrocarbon group (v ′) substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (iv ′))
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are each independently (It represents an atom or group selected from (i ′) to (vi ′).)
(Viii ′) a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring formed by combining R x1 and R x2 or R x3 and R x4 with each other (provided that R does not participate in the bonding) x1 to R x4 each independently represents an atom or group selected from (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2とが、またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2とが、またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。) In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are each independently (It represents an atom or group selected from (i ′) to (vi ′).)
(Viii ′) a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring formed by combining R x1 and R x2 or R x3 and R x4 with each other (provided that R does not participate in the bonding) x1 to R x4 each independently represents an atom or group selected from (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
式(Y0)中、Ry1およびRy2は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyは、それぞれ独立に0または正の整数を表す。
In the formula (Y 0 ), R y1 and R y2 each independently represents an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently 0 or a positive integer.
(2)芳香族ポリエーテル系樹脂
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 (2) Aromatic polyether-based resin The aromatic polyether-based resin is at least one selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2). It preferably has a structural unit.
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 (2) Aromatic polyether-based resin The aromatic polyether-based resin is at least one selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2). It preferably has a structural unit.
式(1)中、R1~R4は、それぞれ独立に炭素数1~12の1価の有機基を示し、a~dは、それぞれ独立に0~4の整数を示す。
In formula (1), R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represent an integer of 0 to 4.
式(2)中、R1~R4およびa~dは、それぞれ独立に前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または>C=Oを示し、R7およびR8は、それぞれ独立にハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhは、それぞれ独立に0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
Wherein (2), R 1 ~ R 4 and a ~ d are the same as R 1 ~ R 4 and a ~ d of each in independently on the formula (1), Y a single bond, -SO 2 -Or> C = O, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represent 0 to 4 And m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.
また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
The aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
式(3)中、R5およびR6は、それぞれ独立に炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、>C=O、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfは、それぞれ独立に0~4の整数を示し、nは0または1を示す。
In the formula (3), R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms, Z represents a single bond, —O—, —S—, —SO 2 —,> C═O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
式(4)中、R7、R8、Y、m、gおよびhは、それぞれ独立に前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfは、それぞれ独立に前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
In the formula (4), R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in the formula (2), and R 5 , R 6 , Z, n, e and f are independently the same as R 5 , R 6 , Z, n, e and f in the formula (3).
(3)ポリイミド系樹脂
ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。 (3) Polyimide resin The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit. For example, it is described in JP-A-2006-199945 and JP-A-2008-163107. It can be synthesized by the method that has been.
ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。 (3) Polyimide resin The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit. For example, it is described in JP-A-2006-199945 and JP-A-2008-163107. It can be synthesized by the method that has been.
(4)フルオレンポリカーボネート系樹脂
フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば特開2008-163194号公報に記載されている方法で合成することができる。 (4) Fluorene polycarbonate resin The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194. .
フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば特開2008-163194号公報に記載されている方法で合成することができる。 (4) Fluorene polycarbonate resin The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194. .
(5)フルオレンポリエステル系樹脂
フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。 (5) Fluorene polyester-based resin The fluorene polyester-based resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety, and is described in, for example, JP 2010-285505 A or JP 2011-197450 A. Can be synthesized by any method.
フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。 (5) Fluorene polyester-based resin The fluorene polyester-based resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety, and is described in, for example, JP 2010-285505 A or JP 2011-197450 A. Can be synthesized by any method.
(6)フッ素化芳香族ポリマー系樹脂
フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、少なくとも1つのフッ素を有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであればよく、例えば特開2008-181121号公報に記載されている方法で合成することができる。 (6) Fluorinated aromatic polymer resin The fluorinated aromatic polymer resin is not particularly limited, but has at least one fluorine-containing aromatic ring, an ether bond, a ketone bond, a sulfone bond, an amide bond, and an imide bond. And a polymer containing a repeating unit containing at least one bond selected from the group consisting of ester bonds, and can be synthesized, for example, by the method described in JP-A-2008-181121.
フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、少なくとも1つのフッ素を有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであればよく、例えば特開2008-181121号公報に記載されている方法で合成することができる。 (6) Fluorinated aromatic polymer resin The fluorinated aromatic polymer resin is not particularly limited, but has at least one fluorine-containing aromatic ring, an ether bond, a ketone bond, a sulfone bond, an amide bond, and an imide bond. And a polymer containing a repeating unit containing at least one bond selected from the group consisting of ester bonds, and can be synthesized, for example, by the method described in JP-A-2008-181121.
(7)市販品
透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状オレフィン系樹脂の市販品としては、JSR株式会社製アートン、日本ゼオン株式会社製ゼオノア、三井化学株式会社製APEL、ポリプラスチックス株式会社製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学株式会社製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学株式会社製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人株式会社製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学株式会社製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル株式会社製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、株式会社日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系樹脂の市販品としては、新日鐵化学株式会社製シルプラスなどを挙げることができる。 (7) Commercially available products Examples of commercially available transparent resins include the following commercially available products. Examples of commercially available cyclic olefin-based resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. As a commercial item of acrylic resin, there can be cited NIPPON CATALYST ACRYVIEWER Co., Ltd. Examples of commercially available silsesquioxane resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状オレフィン系樹脂の市販品としては、JSR株式会社製アートン、日本ゼオン株式会社製ゼオノア、三井化学株式会社製APEL、ポリプラスチックス株式会社製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学株式会社製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学株式会社製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人株式会社製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学株式会社製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル株式会社製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、株式会社日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系樹脂の市販品としては、新日鐵化学株式会社製シルプラスなどを挙げることができる。 (7) Commercially available products Examples of commercially available transparent resins include the following commercially available products. Examples of commercially available cyclic olefin-based resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. As a commercial item of acrylic resin, there can be cited NIPPON CATALYST ACRYVIEWER Co., Ltd. Examples of commercially available silsesquioxane resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
<近赤外線吸収色素>
樹脂製基板は、近赤外線吸収色素を含有する。
近赤外線吸収色素は、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ジチオール系化合物、ジイモニウム系化合物およびポルフィリン系化合物からなる群より選ばれる少なくとも1種であることが好ましい。近赤外線吸収色素は、スクアリリウム系化合物を少なくとも含むことがより好ましい。近赤外線吸収色素は、スクアリリウム系化合物とその他の近赤外線吸収色素とを含むことがさらに好ましい。 <Near-infrared absorbing dye>
The resin substrate contains a near infrared absorbing dye.
The near-infrared absorbing dye is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds, and porphyrin compounds. Is preferred. More preferably, the near-infrared absorbing dye contains at least a squarylium compound. More preferably, the near-infrared absorbing dye contains a squarylium-based compound and another near-infrared absorbing dye.
樹脂製基板は、近赤外線吸収色素を含有する。
近赤外線吸収色素は、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ジチオール系化合物、ジイモニウム系化合物およびポルフィリン系化合物からなる群より選ばれる少なくとも1種であることが好ましい。近赤外線吸収色素は、スクアリリウム系化合物を少なくとも含むことがより好ましい。近赤外線吸収色素は、スクアリリウム系化合物とその他の近赤外線吸収色素とを含むことがさらに好ましい。 <Near-infrared absorbing dye>
The resin substrate contains a near infrared absorbing dye.
The near-infrared absorbing dye is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds, and porphyrin compounds. Is preferred. More preferably, the near-infrared absorbing dye contains at least a squarylium compound. More preferably, the near-infrared absorbing dye contains a squarylium-based compound and another near-infrared absorbing dye.
スクアリリウム系化合物の吸収極大波長は、好ましくは600nm以上、さらに好ましくは620nm以上、特に好ましくは650nm以上であり、かつ、好ましくは800nm未満、さらに好ましくは760nm以下、特に好ましくは740nm以下である。吸収極大波長がこのような波長範囲にあると、充分な近赤外線吸収特性と可視光透過率とを両立することができる。
The maximum absorption wavelength of the squarylium compound is preferably 600 nm or more, more preferably 620 nm or more, particularly preferably 650 nm or more, and preferably less than 800 nm, more preferably 760 nm or less, particularly preferably 740 nm or less. When the absorption maximum wavelength is in such a wavelength range, sufficient near-infrared absorption characteristics and visible light transmittance can be compatible.
スクアリリウム系化合物とその他の近赤外線吸収色素とを組み合わせて使用する場合、その他の近赤外線吸収色素の少なくとも1種の吸収極大波長は、好ましくは600nm超、さらに好ましくは640nm以上、特に好ましくは670nm以上であり、かつ、好ましくは800nm以下、さらに好ましくは780nm以下、特に好ましくは760nm以下である。その他の近赤外線吸収色素の吸収極大波長がこのような波長範囲にあると、充分な近赤外線吸収特性と可視光透過率とを両立することができるとともに、スクアリリウム系化合物とその他の近赤外線吸収色素とを併用した場合、スクアリリウム系化合物から発生した蛍光をその他の近赤外線吸収色素が効果的に吸収することができ、光学フィルターの散乱光強度を抑制することができる。
When the squarylium-based compound and other near infrared absorbing dye are used in combination, at least one absorption maximum wavelength of the other near infrared absorbing dye is preferably more than 600 nm, more preferably 640 nm or more, particularly preferably 670 nm or more. And preferably 800 nm or less, more preferably 780 nm or less, particularly preferably 760 nm or less. When the absorption maximum wavelength of other near-infrared absorbing dyes is in such a wavelength range, sufficient near-infrared absorption characteristics and visible light transmittance can be achieved at the same time, and a squarylium compound and other near-infrared absorbing dyes can be obtained. In combination with the other, the near-infrared absorbing dye can effectively absorb the fluorescence generated from the squarylium compound, and the scattered light intensity of the optical filter can be suppressed.
その他の近赤外線吸収色素は、具体的には、シアニン系化合物およびフタロシアニン系化合物からなる群より選ばれる少なくとも1種を含むことが好ましく、フタロシアニン系化合物を含むことが特に好ましい。スクアリリウム系化合物と前記化合物とを併用することで、散乱光が少なくカメラ画質がより良好な光学フィルターを得ることができる。
Specifically, the other near-infrared absorbing dye preferably contains at least one selected from the group consisting of a cyanine compound and a phthalocyanine compound, and particularly preferably contains a phthalocyanine compound. By using the squarylium compound in combination with the compound, an optical filter with less scattered light and better camera image quality can be obtained.
近赤外線吸収色素全体を100重量%とした場合、スクアリリウム系化合物の含有割合は、好ましくは20~95重量%、より好ましくは25~85重量%、特に好ましくは30~80重量%である。スクアリリウム系化合物の含有割合が前記範囲内にあると、良好な可視光透過率および入射角依存改良性と散乱光低減効果とを両立させることができる。また、スクアリリウム系化合物とその他の近赤外線吸収色素は、それぞれの化合物について2種以上を使用してもよい。
When the entire near-infrared absorbing dye is 100% by weight, the content of the squarylium compound is preferably 20 to 95% by weight, more preferably 25 to 85% by weight, and particularly preferably 30 to 80% by weight. When the content ratio of the squarylium-based compound is within the above range, it is possible to achieve both good visible light transmittance and incident angle dependency improvement property and scattered light reduction effect. Two or more squarylium compounds and other near infrared absorbing dyes may be used for each compound.
樹脂製基板において、近赤外線吸収色素の含有量は、樹脂製基板製造時に用いる透明樹脂100重量部に対して、好ましくは0.01~5.0重量部、より好ましくは0.02~3.5重量部、特に好ましくは0.03~2.5重量部である。近赤外線吸収色素の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率を両立させることができる。また、近赤外線吸収色素は、前述したように、樹脂製基板の吸収極大波長での透過率が10%以下、特に8%以下、さらに特に6%以下となる濃度で用いることが好ましい。
In the resin substrate, the content of the near infrared absorbing dye is preferably 0.01 to 5.0 parts by weight, more preferably 0.02 to 3. 5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight. When the content of the near-infrared absorbing dye is within the above range, both good near-infrared absorption characteristics and high visible light transmittance can be achieved. Further, as described above, the near-infrared absorbing dye is preferably used at a concentration at which the transmittance of the resin substrate at the absorption maximum wavelength is 10% or less, particularly 8% or less, more particularly 6% or less.
《スクアリリウム系化合物》
スクアリリウム系化合物としては、式(I)で表されるスクアリリウム系化合物および式(II)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。以下、それぞれ「化合物(I)」および「化合物(II)」ともいう。 《Squaryllium compound》
The squarylium-based compound preferably includes at least one selected from the group consisting of a squarylium-based compound represented by the formula (I) and a squarylium-based compound represented by the formula (II). Hereinafter, they are also referred to as “compound (I)” and “compound (II)”, respectively.
スクアリリウム系化合物としては、式(I)で表されるスクアリリウム系化合物および式(II)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。以下、それぞれ「化合物(I)」および「化合物(II)」ともいう。 《Squaryllium compound》
The squarylium-based compound preferably includes at least one selected from the group consisting of a squarylium-based compound represented by the formula (I) and a squarylium-based compound represented by the formula (II). Hereinafter, they are also referred to as “compound (I)” and “compound (II)”, respectively.
式(I)中、Ra、RbおよびYは、下記(i)または(ii)の条件を満たす。
条件(i)
複数あるRaは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NReRf基を表す。ReおよびRfは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。 In the formula (I), R a , R b and Y satisfy the following condition (i) or (ii).
Condition (i)
A plurality of R a each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, an —L 1 or an —NR e R f group. R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
条件(i)
複数あるRaは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NReRf基を表す。ReおよびRfは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。 In the formula (I), R a , R b and Y satisfy the following condition (i) or (ii).
Condition (i)
A plurality of R a each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, an —L 1 or an —NR e R f group. R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
複数あるRbは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgRh基を表す。RgおよびRhは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す。
A plurality of R b s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group. R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
複数あるYは、それぞれ独立に-NRjRk基を表す。RjおよびRkは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。
L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhである。 A plurality of Y each independently represents a —NR j R k group. R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
L 1 is L a , L b , L c , L d , Le , L f , L g or L h .
L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhである。 A plurality of Y each independently represents a —NR j R k group. R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
L 1 is L a , L b , L c , L d , Le , L f , L g or L h .
前記La~Lhは、
(La)炭素数1~9の脂肪族炭化水素基、
(Lb)炭素数1~9のハロゲン置換アルキル基、
(Lc)炭素数3~14の脂環式炭化水素基、
(Ld)炭素数6~14の芳香族炭化水素基、
(Le)炭素数3~14の複素環基、
(Lf)炭素数1~9のアルコキシ基、
(Lg)炭素数1~9のアシル基、または
(Lh)炭素数1~9のアルコキシカルボニル基
を表し、前記La~Lhは、置換基Lを有していてもよい。 L a to L h are
(L a ) an aliphatic hydrocarbon group having 1 to 9 carbon atoms,
(L b ) a halogen-substituted alkyl group having 1 to 9 carbon atoms,
(L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms,
(L d ) an aromatic hydrocarbon group having 6 to 14 carbon atoms,
(L e ) a heterocyclic group having 3 to 14 carbon atoms,
(L f ) an alkoxy group having 1 to 9 carbon atoms,
(L g ) represents an acyl group having 1 to 9 carbon atoms, or (L h ) represents an alkoxycarbonyl group having 1 to 9 carbon atoms, and L a to L h may have a substituent L.
(La)炭素数1~9の脂肪族炭化水素基、
(Lb)炭素数1~9のハロゲン置換アルキル基、
(Lc)炭素数3~14の脂環式炭化水素基、
(Ld)炭素数6~14の芳香族炭化水素基、
(Le)炭素数3~14の複素環基、
(Lf)炭素数1~9のアルコキシ基、
(Lg)炭素数1~9のアシル基、または
(Lh)炭素数1~9のアルコキシカルボニル基
を表し、前記La~Lhは、置換基Lを有していてもよい。 L a to L h are
(L a ) an aliphatic hydrocarbon group having 1 to 9 carbon atoms,
(L b ) a halogen-substituted alkyl group having 1 to 9 carbon atoms,
(L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms,
(L d ) an aromatic hydrocarbon group having 6 to 14 carbon atoms,
(L e ) a heterocyclic group having 3 to 14 carbon atoms,
(L f ) an alkoxy group having 1 to 9 carbon atoms,
(L g ) represents an acyl group having 1 to 9 carbon atoms, or (L h ) represents an alkoxycarbonyl group having 1 to 9 carbon atoms, and L a to L h may have a substituent L.
置換基Lは、炭素数1~9の脂肪族炭化水素基、炭素数1~9のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種である。
The substituent L is an aliphatic hydrocarbon group having 1 to 9 carbon atoms, a halogen-substituted alkyl group having 1 to 9 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, or an aromatic carbon group having 6 to 14 carbon atoms. It is at least one selected from the group consisting of a hydrogen group and a heterocyclic group having 3 to 14 carbon atoms.
前記La~Lhは、さらにハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種の原子または基を有していてもよい。
L a to L h further have at least one atom or group selected from the group consisting of a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an amino group. Also good.
前記La~Lhは、置換基を含めた炭素数の合計が、それぞれ50以下であることが好ましく、炭素数40以下であることが更に好ましく、炭素数30以下であることが特に好ましい。炭素数がこの範囲よりも多いと、色素の合成が困難となる場合があるとともに、単位重量あたりの吸収強度が小さくなってしまう傾向がある。
The total number of carbon atoms including the substituents of L a to L h is preferably 50 or less, more preferably 40 or less, and particularly preferably 30 or less. When the number of carbon atoms is larger than this range, it may be difficult to synthesize the dye, and the absorption intensity per unit weight tends to decrease.
条件(ii)
1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記(i)のRbおよびRaと同義である。 Condition (ii)
At least one of two R a on one benzene ring is bonded to Y on the same benzene ring to form a heterocycle having 5 or 6 member atoms containing at least one nitrogen atom; The heterocyclic ring may have a substituent, and R b and R a that does not participate in the formation of the heterocyclic ring are each independently synonymous with R b and R a in the above (i).
1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記(i)のRbおよびRaと同義である。 Condition (ii)
At least one of two R a on one benzene ring is bonded to Y on the same benzene ring to form a heterocycle having 5 or 6 member atoms containing at least one nitrogen atom; The heterocyclic ring may have a substituent, and R b and R a that does not participate in the formation of the heterocyclic ring are each independently synonymous with R b and R a in the above (i).
前記条件(i)におけるRaとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ニトロ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、水酸基である。
R a in the above condition (i) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group Cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, nitro group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group. .
前記条件(i)におけるRbとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、水酸基、ジメチルアミノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基である。
R b in the above condition (i) is preferably a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. Cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group T-butanoylamino group, cyclohexinoylamino group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group, dimethylamino group, nitro group , Acetylamino group, propionylamino group, trifluoromethanoylamino group, pentafur B ethanoyl group, t-butanoyl group, a cyclohexylene Sino-yl-amino group.
前記Yとしては、好ましくはアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-t-ブチルアミノ基、N-エチル-N-メチルアミノ基、N-シクロヘキシル-N-メチルアミノ基であり、より好ましくはジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-t-ブチルアミノ基である。
Y is preferably an amino group, methylamino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di-t-butylamino group, N -Ethyl-N-methylamino group, N-cyclohexyl-N-methylamino group, more preferably dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group , A di-t-butylamino group.
前記式(I)の条件(ii)における、1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して形成される、窒素原子を少なくとも1つ含む構成原子数5または6の複素環としては、例えば、ピロリジン、ピロール、イミダゾール、ピラゾール、ピペリジン、ピリジン、ピペラジン、ピリダジン、ピリミジンおよびピラジン等を挙げることができる。これらの複素環のうち、当該複素環を構成し、かつ、前記ベンゼン環を構成する炭素原子の隣の1つの原子が窒素原子である複素環が好ましく、ピロリジンがさらに好ましい。複素環が有してもよい置換基としては、例えば、置換基Lが挙げられ、好ましくは炭素数1~9の脂肪族炭化水素基である。
In the condition (ii) of the formula (I), at least one of two R a on one benzene ring is bonded to Y on the same benzene ring, and at least 1 nitrogen atom is formed. Examples of the heterocyclic ring having 5 or 6 constituent atoms may include pyrrolidine, pyrrole, imidazole, pyrazole, piperidine, pyridine, piperazine, pyridazine, pyrimidine and pyrazine. Among these heterocyclic rings, a heterocyclic ring that constitutes the heterocyclic ring and in which one atom adjacent to the carbon atom constituting the benzene ring is a nitrogen atom is preferable, and pyrrolidine is more preferable. Examples of the substituent that the heterocyclic ring may have include a substituent L, and an aliphatic hydrocarbon group having 1 to 9 carbon atoms is preferable.
式(II)中、Xは、-O-、-S-、-Se-、>N-Rcまたは>CRd
2を表し;複数あるRcは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表し;複数あるRdは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NReRf基を表し、隣り合うRd同士は連結して置換基を有していてもよい環を形成してもよく;La~Le、L1、ReおよびRfは、前記式(I)において定義したLa~Le、L1、ReおよびRfと同義である。
In the formula (II), X represents —O—, —S—, —Se—,> N—R c or> CR d 2 ; a plurality of R c are each independently a hydrogen atom, —L a , -L b , -L c , -L d, or -L e ; a plurality of R d s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, or a phosphate group , -L 1 or -NR e R f group, adjacent R d groups may be linked to form an optionally substituted ring; L a to L e , L 1 , R e and R f have the same meanings as L a to L e , L 1 , R e and R f defined in the formula (I).
前記式(II)中のRcとしては、好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、トルフルオロメチル基、ペンタフルオロエチル基であり、より好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基である。
R c in the formula (II) is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or an n-pentyl group. N-hexyl group, cyclohexyl group, phenyl group, trifluoromethyl group and pentafluoroethyl group, more preferably hydrogen atom, methyl group, ethyl group, n-propyl group and isopropyl group.
前記式(II)中のRdとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、メトキシ基、トリフルオロメチル基、ペンタフルオロエチル基、4-アミノシクロヘキシル基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、トリフルオロメチル基、ペンタフルオロエチル基である。
R d in the formula (II) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl. Group, n-pentyl group, n-hexyl group, cyclohexyl group, phenyl group, methoxy group, trifluoromethyl group, pentafluoroethyl group, 4-aminocyclohexyl group, more preferably hydrogen atom, chlorine atom, fluorine atom Methyl group, ethyl group, n-propyl group, isopropyl group, trifluoromethyl group and pentafluoroethyl group.
前記Xとしては、好ましくは-O-、-S-、-Se-、>N-Me、>N-Et、>CH2、>C(Me)2、>C(Et)2であり、より好ましくは-S-、>C(Me)2、>C(Et)2である。MeおよびEtは、それぞれメチル基およびエチル基を示す。
X is preferably —O—, —S—, —Se—,>N—Me,>N—Et,> CH 2 ,> C (Me) 2 ,> C (Et) 2 , and more. Preferred are -S-,> C (Me) 2 , and> C (Et) 2 . Me and Et each represent a methyl group and an ethyl group.
前記式(II)において、隣り合うRd同士は連結して環を形成してもよい。このような、式(II)においてRcおよびRd結合している環に、隣り合うRd同士が連結して形成された環が付加された構造としては、例えば、ベンゾインドレニン環、α-ナフトイミダゾール環、β-ナフトイミダゾール環、α-ナフトオキサゾール環、β-ナフトオキサゾール環、α-ナフトチアゾール環、β-ナフトチアダゾール環、α-ナフトセレナゾール環、β-ナフトセレナゾール環を挙げることができる。
In the formula (II), adjacent R ds may be linked to form a ring. Examples of such a structure in which a ring formed by linking adjacent R d s to the ring in which R c and R d are bonded in Formula (II) include, for example, a benzoindolenin ring, α -Naphthoimidazole ring, β-naphthimidazole ring, α-naphthoxazole ring, β-naphthoxazole ring, α-naphthothiazole ring, β-naphthothiazole ring, α-naphthoselenazole ring, β-naphthoselenazole ring Can be mentioned.
化合物(I)および化合物(II)は、下記式(I-1)および下記式(II-1)のような記載方法に加え、下記式(I-2)および下記式(II-2)のように共鳴構造を取るような記載方法でも構造を表すことができる。つまり、下記式(I-1)と下記式(I-2)の違い、および下記式(II-1)と下記式(II-2)の違いは構造の記載方法のみであり、化合物としてはどちらも同一のものを表す。本発明中では特に断りのない限り、下記式(I-1)および下記式(II-1)のような記載方法にてスクアリリウム系化合物の構造を表すものとする。
Compound (I) and Compound (II) are represented by the following formulas (I-2) and (II-2) in addition to the following formulas (I-1) and (II-1). Thus, the structure can also be expressed by a description method that takes a resonance structure. That is, the difference between the following formula (I-1) and the following formula (I-2), and the difference between the following formula (II-1) and the following formula (II-2) is only the method of describing the structure. Both represent the same thing. In the present invention, unless otherwise specified, the structure of the squarylium compound is represented by a description method such as the following formula (I-1) and the following formula (II-1).
化合物(I)および化合物(II)は、それぞれ上記式(I)および上記式(II)の要件を満たせば特に構造は限定されないが、例えば上記式(I-1)および上記式(II-1)のように構造を表した場合、中央の四員環に結合している左右の置換基は同一であっても異なっていてもよいが、同一であった方が合成上容易であるため好ましい。なお、例えば、下記式(I-3)で表される化合物と下記式(I-4)で表される化合物は、同一の化合物であると見なすことができる。
The structures of the compound (I) and the compound (II) are not particularly limited as long as they satisfy the requirements of the above formula (I) and the above formula (II). For example, the above formula (I-1) and the above formula (II-1) ), The right and left substituents bonded to the central four-membered ring may be the same or different, but it is preferable that they are the same because synthesis is easier. . For example, the compound represented by the following formula (I-3) and the compound represented by the following formula (I-4) can be regarded as the same compound.
化合物(I)および化合物(II)は、一般的に知られている方法で合成すればよく、例えば、特開平1-228960号公報、特開2001-40234号公報、特許第3196383号公報等に記載されている方法等を参照して合成することができる。
Compound (I) and Compound (II) may be synthesized by a generally known method. For example, JP-A-1-228960, JP-A-2001-40234, JP-A-3196383, etc. It can be synthesized with reference to the method described.
<近紫外線吸収剤>
樹脂製基板は、近赤外線吸収色素に加え、さらに、近紫外線吸収剤を含有することができる。近紫外線吸収剤としては、例えば、アゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物およびトリアジン系化合物からなる群より選ばれる少なくとも1種が挙げられる。近紫外線吸収剤は、波長300~420nmに少なくとも一つの吸収極大を持つことが好ましい。このような樹脂製基板を用いることにより、近紫外線波長領域においても入射角依存性が小さく、視野角の広い光学フィルターを得ることができる。 <Near UV absorber>
The resin substrate can further contain a near ultraviolet absorber in addition to the near infrared absorbing dye. Examples of the near-ultraviolet absorber include at least one selected from the group consisting of azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds. The near-ultraviolet absorber preferably has at least one absorption maximum at a wavelength of 300 to 420 nm. By using such a resin substrate, an optical filter having a small incident angle dependency and a wide viewing angle can be obtained even in the near ultraviolet wavelength region.
樹脂製基板は、近赤外線吸収色素に加え、さらに、近紫外線吸収剤を含有することができる。近紫外線吸収剤としては、例えば、アゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物およびトリアジン系化合物からなる群より選ばれる少なくとも1種が挙げられる。近紫外線吸収剤は、波長300~420nmに少なくとも一つの吸収極大を持つことが好ましい。このような樹脂製基板を用いることにより、近紫外線波長領域においても入射角依存性が小さく、視野角の広い光学フィルターを得ることができる。 <Near UV absorber>
The resin substrate can further contain a near ultraviolet absorber in addition to the near infrared absorbing dye. Examples of the near-ultraviolet absorber include at least one selected from the group consisting of azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds. The near-ultraviolet absorber preferably has at least one absorption maximum at a wavelength of 300 to 420 nm. By using such a resin substrate, an optical filter having a small incident angle dependency and a wide viewing angle can be obtained even in the near ultraviolet wavelength region.
以上のスクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、近紫外線吸収剤およびその他の色素は、一般的に知られている方法で合成することができ、例えば、特許第3366697号公報、特許第2846091号公報、特許第2864475号公報、特許第3703869号公報、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、特開昭63-124054号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開2007-169315号公報、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報等に記載されている方法を参照して合成することができる。
The above squarylium compound, phthalocyanine compound, cyanine compound, near-UV absorber and other dyes can be synthesized by generally known methods, for example, Japanese Patent No. 336697, Japanese Patent No. 2846091. Patent No. 2,864,475, Patent No. 3703869, JP-A-60-228448, JP-A-1-14684, JP-A-1-228960, JP-A-4081149, JP-A-63. No. -125454, “Phthalocyanine—Chemistry and Function” (IPC, 1997), JP 2007-169315 A, JP 2009-108267 A, JP 2010-241873 A, JP 3699464 A. Described in Japanese Patent No. 4740631 Law can be referred to the composite.
<その他成分>
樹脂製基板は、本発明の効果を損なわない範囲において、さらに、酸化防止剤、近紫外線吸収剤以外の紫外線吸収剤、蛍光消光剤および金属錯体系化合物等の添加剤を含有してもよい。また、後述するキャスト成形により樹脂製基板を製造する場合には、レベリング剤や消泡剤を添加することで樹脂製基板の製造を容易にすることができる。これらのその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 <Other ingredients>
The resin substrate may further contain additives such as an antioxidant, a UV absorber other than the near UV absorber, a fluorescence quencher, and a metal complex compound, as long as the effects of the present invention are not impaired. Moreover, when manufacturing a resin-made board | substrate by cast shaping | molding mentioned later, manufacture of a resin-made board | substrate can be made easy by adding a leveling agent and an antifoamer. These other components may be used individually by 1 type, and may use 2 or more types together.
樹脂製基板は、本発明の効果を損なわない範囲において、さらに、酸化防止剤、近紫外線吸収剤以外の紫外線吸収剤、蛍光消光剤および金属錯体系化合物等の添加剤を含有してもよい。また、後述するキャスト成形により樹脂製基板を製造する場合には、レベリング剤や消泡剤を添加することで樹脂製基板の製造を容易にすることができる。これらのその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 <Other ingredients>
The resin substrate may further contain additives such as an antioxidant, a UV absorber other than the near UV absorber, a fluorescence quencher, and a metal complex compound, as long as the effects of the present invention are not impaired. Moreover, when manufacturing a resin-made board | substrate by cast shaping | molding mentioned later, manufacture of a resin-made board | substrate can be made easy by adding a leveling agent and an antifoamer. These other components may be used individually by 1 type, and may use 2 or more types together.
酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、およびテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが挙げられる。
Antioxidants include, for example, 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane.
なお、これらの添加剤は、樹脂製基板を製造する際に、透明樹脂などとともに混合してもよいし、透明樹脂を製造する際に添加してもよい。また、添加剤の添加量は、所望の特性に応じて適宜選択されるものであるが、透明樹脂100重量部に対して、通常0.01~5.0重量部、好ましくは0.05~2.0重量部である。
These additives may be mixed with a transparent resin or the like when producing a resin substrate, or may be added when producing a transparent resin. The addition amount of the additive is appropriately selected according to the desired characteristics, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the transparent resin. 2.0 parts by weight.
<樹脂製基板の製造方法>
樹脂製基板は、例えば、溶融成形またはキャスト成形により形成することができ、必要により、成形後に、反射防止剤、ハードコート剤および帯電防止剤等を1種または2種以上含むコーティング剤をコーティングする方法により製造することができる。 <Manufacturing method of resin substrate>
The resin substrate can be formed by, for example, melt molding or cast molding, and if necessary, a coating agent containing one or more of an antireflection agent, a hard coating agent, an antistatic agent and the like is coated after the molding. It can be manufactured by a method.
樹脂製基板は、例えば、溶融成形またはキャスト成形により形成することができ、必要により、成形後に、反射防止剤、ハードコート剤および帯電防止剤等を1種または2種以上含むコーティング剤をコーティングする方法により製造することができる。 <Manufacturing method of resin substrate>
The resin substrate can be formed by, for example, melt molding or cast molding, and if necessary, a coating agent containing one or more of an antireflection agent, a hard coating agent, an antistatic agent and the like is coated after the molding. It can be manufactured by a method.
(1)溶融成形
樹脂製基板は、例えば、透明樹脂と近赤外線吸収色素とを溶融混練りして得られたペレットを溶融成形する方法;透明樹脂と近赤外線吸収色素とを含有する樹脂組成物を溶融成形する方法;透明樹脂、近赤外線吸収色素および溶媒を含有する樹脂組成物から溶媒を除去して得られたペレットを溶融成形する方法により製造することができる。溶融成形方法としては、例えば、射出成形、溶融押出成形、ブロー成形が挙げられる。 (1) A melt-molded resin substrate is, for example, a method of melt-molding pellets obtained by melt-kneading a transparent resin and a near-infrared absorbing dye; a resin composition containing a transparent resin and a near-infrared absorbing dye A pellet obtained by removing a solvent from a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent can be produced by a melt molding method. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.
樹脂製基板は、例えば、透明樹脂と近赤外線吸収色素とを溶融混練りして得られたペレットを溶融成形する方法;透明樹脂と近赤外線吸収色素とを含有する樹脂組成物を溶融成形する方法;透明樹脂、近赤外線吸収色素および溶媒を含有する樹脂組成物から溶媒を除去して得られたペレットを溶融成形する方法により製造することができる。溶融成形方法としては、例えば、射出成形、溶融押出成形、ブロー成形が挙げられる。 (1) A melt-molded resin substrate is, for example, a method of melt-molding pellets obtained by melt-kneading a transparent resin and a near-infrared absorbing dye; a resin composition containing a transparent resin and a near-infrared absorbing dye A pellet obtained by removing a solvent from a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent can be produced by a melt molding method. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.
(2)キャスト成形
樹脂製基板は、例えば、透明樹脂、近赤外線吸収色素および溶媒を含有する樹脂組成物を適当な基材の上に塗布して溶媒を除去する方法;近赤外線吸収色素を含有する硬化性樹脂組成物を適当な基材の上に塗布して乾燥および硬化させる方法により製造することもできる。 (2) A cast-molded resin substrate is, for example, a method in which a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent is applied onto a suitable substrate to remove the solvent; a near-infrared absorbing dye is contained It can also be produced by a method of applying the curable resin composition to be applied onto a suitable substrate and drying and curing.
樹脂製基板は、例えば、透明樹脂、近赤外線吸収色素および溶媒を含有する樹脂組成物を適当な基材の上に塗布して溶媒を除去する方法;近赤外線吸収色素を含有する硬化性樹脂組成物を適当な基材の上に塗布して乾燥および硬化させる方法により製造することもできる。 (2) A cast-molded resin substrate is, for example, a method in which a resin composition containing a transparent resin, a near-infrared absorbing dye and a solvent is applied onto a suitable substrate to remove the solvent; a near-infrared absorbing dye is contained It can also be produced by a method of applying the curable resin composition to be applied onto a suitable substrate and drying and curing.
前記基材としては、例えば、ガラス板、スチールベルト、スチールドラムおよび透明樹脂フィルム(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)が挙げられる。
Examples of the substrate include glass plates, steel belts, steel drums, and transparent resin films (for example, polyester films and cyclic olefin resin films).
樹脂製基板は、基材から剥離することにより得ることができ、また、本発明の効果を損なわない限り、基材から剥離せずに基材と塗膜との積層体を樹脂製基板としてもよい。
さらに、ガラス板、石英製部品または透明プラスチック製部品等の光学部品に、前記樹脂組成物をコーティングして溶媒を乾燥させる方法、または、前記硬化性樹脂組成物をコーティングして乾燥および硬化させる方法等により、光学部品上に直接樹脂製基板を形成することもできる。 The resin substrate can be obtained by peeling from the base material, and unless the effect of the present invention is impaired, the laminate of the base material and the coating film can be used as the resin substrate without peeling from the base material. Good.
Further, a method of coating an optical component such as a glass plate, a quartz component or a transparent plastic component with the resin composition and drying the solvent, or a method of coating and drying and curing the curable resin composition For example, a resin substrate can be formed directly on the optical component.
さらに、ガラス板、石英製部品または透明プラスチック製部品等の光学部品に、前記樹脂組成物をコーティングして溶媒を乾燥させる方法、または、前記硬化性樹脂組成物をコーティングして乾燥および硬化させる方法等により、光学部品上に直接樹脂製基板を形成することもできる。 The resin substrate can be obtained by peeling from the base material, and unless the effect of the present invention is impaired, the laminate of the base material and the coating film can be used as the resin substrate without peeling from the base material. Good.
Further, a method of coating an optical component such as a glass plate, a quartz component or a transparent plastic component with the resin composition and drying the solvent, or a method of coating and drying and curing the curable resin composition For example, a resin substrate can be formed directly on the optical component.
前記溶媒としては通常有機合成などに用いられる溶媒であれば特に限定されないが、例えば、ヘキサン、シクロヘキサンなどの炭化水素類;メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類を挙げることができる。これらの溶媒は、1種単独で用いてもよいし、2種以上を併用してもよい。
The solvent is not particularly limited as long as it is a solvent usually used for organic synthesis and the like. For example, hydrocarbons such as hexane and cyclohexane; alcohols such as methanol, ethanol, isopropanol, butanol, octanol; acetone, methyl ethyl ketone, methyl Ketones such as isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated carbonization such as methylene chloride, chloroform and carbon tetrachloride Motorui; dimethylformamide, dimethylacetamide, it may be mentioned amides such as N- methylpyrrolidone. These solvents may be used alone or in combination of two or more.
前記方法で得られた樹脂製基板中の残留溶媒量は可能な限り少ない方がよい。具体的には、前記残留溶媒量は、樹脂製基板の重さに対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶媒量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる樹脂製基板が得られる。
The amount of residual solvent in the resin substrate obtained by the above method should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less with respect to the weight of the resin substrate. When the amount of residual solvent is in the above range, a resin substrate that can easily exhibit a desired function is obtained, in which deformation and characteristics hardly change.
[近赤外線反射膜]
本発明の光学フィルターを構成する近赤外線反射膜は、近赤外線を反射する能力を有する膜である。本発明では、近赤外線反射膜は樹脂製基板の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に使用する場合は、カメラモジュールへの実装工程の容易さなどの観点から光学フィルターの反りが小さいことが好ましいため、近赤外線反射膜を樹脂製基板の両側に有することがより好ましい。 [Near-infrared reflective film]
The near-infrared reflective film constituting the optical filter of the present invention is a film having the ability to reflect near-infrared light. In the present invention, the near-infrared reflective film may be provided on one side of the resin substrate or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained. When using an optical filter for a solid-state image sensor application, it is preferable that the warpage of the optical filter is small from the viewpoint of ease of mounting on the camera module, etc., so that a near-infrared reflective film is provided on both sides of the resin substrate. Is more preferable.
本発明の光学フィルターを構成する近赤外線反射膜は、近赤外線を反射する能力を有する膜である。本発明では、近赤外線反射膜は樹脂製基板の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に使用する場合は、カメラモジュールへの実装工程の容易さなどの観点から光学フィルターの反りが小さいことが好ましいため、近赤外線反射膜を樹脂製基板の両側に有することがより好ましい。 [Near-infrared reflective film]
The near-infrared reflective film constituting the optical filter of the present invention is a film having the ability to reflect near-infrared light. In the present invention, the near-infrared reflective film may be provided on one side of the resin substrate or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained. When using an optical filter for a solid-state image sensor application, it is preferable that the warpage of the optical filter is small from the viewpoint of ease of mounting on the camera module, etc., so that a near-infrared reflective film is provided on both sides of the resin substrate. Is more preferable.
近赤外線反射膜としては、例えば、アルミ蒸着膜、貴金属薄膜、酸化インジウムを主成分とし酸化錫を少量含有させた金属酸化物微粒子を分散させた樹脂膜、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜が挙げられる。近赤外線反射膜の中では、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜がより好ましい。
Examples of the near-infrared reflective film include an aluminum vapor-deposited film, a noble metal thin film, a resin film in which metal oxide fine particles mainly containing indium oxide and containing a small amount of tin oxide are dispersed, a high refractive index material layer, and a low refractive index material. A dielectric multilayer film in which layers are alternately stacked can be mentioned. Among the near-infrared reflective films, a dielectric multilayer film in which high refractive index material layers and low refractive index material layers are alternately laminated is more preferable.
高屈折率材料層を構成する材料としては、屈折率が1.7より大きい材料を用いることができ、屈折率が通常は1.7超2.5以下の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、または、酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10重量%)含有させたものが挙げられる。
As the material constituting the high refractive index material layer, a material having a refractive index greater than 1.7 can be used, and a material having a refractive index of usually more than 1.7 and 2.5 or less is selected. Examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide, and the like, and titanium oxide, tin oxide. And / or those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component).
低屈折率材料層を構成する材料としては、屈折率が1.7以下の材料を用いることができ、屈折率が通常は1.2以上1.7以下の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。
As the material constituting the low refractive index material layer, a material having a refractive index of 1.7 or less can be used, and a material having a refractive index of usually 1.2 or more and 1.7 or less is selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
上記屈折率は、波長550nmの光における屈折率である。
誘電体多層膜は、屈折率が1.7超2.5以下である高屈折率材料層と屈折率が1.2以上1.7以下である低屈折材料層とが交互に積層された多層膜であることが好ましい。 The refractive index is a refractive index in light having a wavelength of 550 nm.
The dielectric multilayer film is a multilayer in which a high refractive index material layer having a refractive index of more than 1.7 and 2.5 or less and a low refractive material layer having a refractive index of 1.2 to 1.7 are alternately stacked. A membrane is preferred.
誘電体多層膜は、屈折率が1.7超2.5以下である高屈折率材料層と屈折率が1.2以上1.7以下である低屈折材料層とが交互に積層された多層膜であることが好ましい。 The refractive index is a refractive index in light having a wavelength of 550 nm.
The dielectric multilayer film is a multilayer in which a high refractive index material layer having a refractive index of more than 1.7 and 2.5 or less and a low refractive material layer having a refractive index of 1.2 to 1.7 are alternately stacked. A membrane is preferred.
誘電体多層膜において、最も屈折率が高い層と最も屈折率が低い層との屈折率比は1.3以上であることが好ましく、さらに好ましくは1.4以上、特に好ましくは1.5以上である。
In the dielectric multilayer film, the refractive index ratio between the highest refractive index layer and the lowest refractive index layer is preferably 1.3 or more, more preferably 1.4 or more, particularly preferably 1.5 or more. It is.
また、交互に積層した高屈折率材料層と低屈折率材料層において、隣り合う高屈折率材料層と低屈折率材料層との光学膜厚(物理膜厚×屈折率)の比が0.8~1.2となる部分を連続で10層以上有することが好ましく、さらに好ましくは12層以上である。
Further, in the high refractive index material layer and the low refractive index material layer laminated alternately, the ratio of the optical film thickness (physical film thickness x refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0. It is preferable to have 10 or more consecutive portions that are 8 to 1.2, more preferably 12 or more layers.
高屈折率材料層と低屈折率材料層の屈折率比や誘電体多層膜の膜設計が上記のような範囲にあると近赤外線の反射特性が向上し、近赤外線カット特性が向上する傾向にあるため好ましい。
If the refractive index ratio between the high refractive index material layer and the low refractive index material layer or the film design of the dielectric multilayer film are within the above ranges, the near infrared reflection characteristics will improve and the near infrared cut characteristics will tend to improve. This is preferable.
光学フィルターが誘電体多層膜を樹脂製基板の両面上に有する場合では、基板の両面上に形成されたそれぞれの誘電体多層膜において、任意の“下記(h)を満たす連続した10層”の平均光学膜厚同士を比較した場合、すなわち一方の面上の前記平均光学膜厚と他方の面上の前記平均光学膜厚とを比較した場合、平均光学膜厚が厚い方の誘電体多層膜の平均光学膜厚がもう一方の誘電体多層膜の平均光学膜厚の1.05~1.60倍であることが好ましく、1.10~1.55倍であることが特に好ましい。
(h)隣り合う高屈折率材料層と低屈折率材料層の光学膜厚(物理膜厚×屈折率)の比が0.8~1.2。 When the optical filter has a dielectric multilayer film on both surfaces of the resin substrate, each of the dielectric multilayer films formed on both surfaces of the substrate has an arbitrary “10 consecutive layers satisfying (h) below”. When the average optical film thickness is compared, that is, when the average optical film thickness on one surface is compared with the average optical film thickness on the other surface, the dielectric multilayer film having the larger average optical film thickness The average optical film thickness is preferably 1.05 to 1.60 times, more preferably 1.10 to 1.55 times the average optical film thickness of the other dielectric multilayer film.
(H) The ratio of the optical film thickness (physical film thickness × refractive index) of the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2.
(h)隣り合う高屈折率材料層と低屈折率材料層の光学膜厚(物理膜厚×屈折率)の比が0.8~1.2。 When the optical filter has a dielectric multilayer film on both surfaces of the resin substrate, each of the dielectric multilayer films formed on both surfaces of the substrate has an arbitrary “10 consecutive layers satisfying (h) below”. When the average optical film thickness is compared, that is, when the average optical film thickness on one surface is compared with the average optical film thickness on the other surface, the dielectric multilayer film having the larger average optical film thickness The average optical film thickness is preferably 1.05 to 1.60 times, more preferably 1.10 to 1.55 times the average optical film thickness of the other dielectric multilayer film.
(H) The ratio of the optical film thickness (physical film thickness × refractive index) of the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2.
基板の両面上に形成された誘電体多層膜の膜構成が上記条件を満たす場合、例えば、700~1200nmなど広い波長範囲の近赤外線をより効果的に反射でき、近赤外線カット特性が向上する傾向にあるため好ましい。
When the film configuration of the dielectric multilayer film formed on both surfaces of the substrate satisfies the above conditions, for example, near infrared rays in a wide wavelength range such as 700 to 1200 nm can be reflected more effectively, and the near infrared cut characteristics tend to be improved. Therefore, it is preferable.
高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、樹脂製基板上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。
The method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a dielectric in which high-refractive index material layers and low-refractive index material layers are alternately laminated directly on a resin substrate by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating. A body multilayer film can be formed.
高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ~0.5λの厚さが好ましい。λ(nm)の値としては、例えば700~1400nm、好ましくは750~1300nmである。厚さがこの範囲であると、屈折率(n)と物理膜厚(d)との積(n×d)がλ/4で算出される光学膜厚と高屈折率材料層および低屈折率材料層の各層の厚さとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。
The thickness of each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1λ to 0.5λ, where λ (nm) is the near infrared wavelength to be blocked. The value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness is within this range, the product of the refractive index (n) and the physical thickness (d) (n × d) is calculated by λ / 4, the optical thickness, the high refractive index material layer, and the low refractive index. The thickness of each layer of the material layer becomes almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として5~60層であることが好ましく、10~50層であることがより好ましく、12~50層であることがさらに好ましい。光学フィルターが誘電体多層膜を樹脂製基板の両面に有する場合では、基板の両面上に形成された誘電体多層膜の層数差(すなわち一方の多層膜の層数と他方の多層膜の層数との差)が12以下、特に好ましくは10以下であり、且つ、物理膜厚の差(すなわち一方の多層膜の物理膜厚と他方の多層膜の物理膜厚との差)が500nm以下、さらに好ましくは450nm以下、特に好ましくは400nm以下である。基板の両面上に形成された誘電体多層膜の層数差や物理膜厚差が上記範囲にあると光学フィルターの反りをより低減できる傾向にあるため好ましい。
The total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 5 to 60 layers, more preferably 10 to 50 layers, as a whole, 12 More preferably, there are ˜50 layers. When the optical filter has a dielectric multilayer film on both surfaces of the resin substrate, the difference in the number of layers of the dielectric multilayer film formed on both surfaces of the substrate (that is, the number of layers of one multilayer film and the layer of the other multilayer film) The difference in number) is 12 or less, particularly preferably 10 or less, and the difference in physical film thickness (that is, the difference between the physical film thickness of one multilayer film and the physical film thickness of the other multilayer film) is 500 nm or less. More preferably, it is 450 nm or less, and particularly preferably 400 nm or less. It is preferable that the difference in the number of layers and the difference in physical film thickness of the dielectric multilayer films formed on both surfaces of the substrate are in the above ranges because the warpage of the optical filter tends to be further reduced.
本発明では、例えば、近赤外線吸収色素を含有する樹脂製基板の吸収波長域を考慮の上、高屈折率材料層および低屈折率材料層を構成する材料、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択して近赤外線反射膜を設計することで、要件(C)を満たす光学フィルターを得ることができる。
In the present invention, for example, considering the absorption wavelength region of a resin substrate containing a near-infrared absorbing dye, the material constituting the high refractive index material layer and the low refractive index material layer, the high refractive index material layer, and the low refractive index An optical filter that satisfies the requirement (C) can be obtained by designing the near-infrared reflective film by appropriately selecting the thickness of each material layer, the order of lamination, and the number of laminations.
ここで、近赤外線反射膜の最適化は、例えば光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、図3に示すように近赤外線反射膜によってカットされる波長域から近赤外線反射膜を透過する波長域にわたって、樹脂製基板に含まれる近赤外線吸収色素による吸収が存在するように、近赤外線反射膜を設計することができる。近赤外線吸収色素の吸収波形や添加量にもよるが、上記ソフトの場合、例えば、少なくとも一方の近赤外線反射膜について、可視域から前記色素の吸収極大波長までの設計目標透過率を100%等とし、前記色素の吸収極大波長+10nmの波長から前記色素の吸収極大波長+250nmの波長までの設計目標透過率を0%等とすることが挙げられる。
Here, the optimization of the near-infrared reflecting film is performed by using, for example, optical thin film design software (for example, manufactured by Essential Macleod, Thin Film Center) from the wavelength range cut by the near-infrared reflecting film as shown in FIG. The near-infrared reflective film can be designed so that the absorption by the near-infrared absorbing dye contained in the resin substrate exists over the wavelength range that transmits the infrared reflective film. Depending on the absorption waveform and addition amount of the near-infrared absorbing dye, in the case of the above-mentioned software, for example, for at least one near-infrared reflecting film, the design target transmittance from the visible region to the absorption maximum wavelength of the dye is 100%, etc. And the design target transmittance from the wavelength of the absorption maximum wavelength of the dye + 10 nm to the wavelength of the absorption maximum wavelength of the dye + 250 nm is set to 0% or the like.
[その他の機能膜]
本発明の光学フィルターには、本発明の効果を損なわない範囲において、樹脂製基板と誘電体多層膜等の近赤外線反射膜との間などに、樹脂製基板や近赤外線反射膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消し等の目的で、反射防止膜、ハードコート膜および帯電防止膜等の機能膜を適宜設けることができる。 [Other functional membranes]
In the optical filter of the present invention, the surface hardness of the resin substrate or near-infrared reflective film is between the resin substrate and the near-infrared reflective film such as a dielectric multilayer film within a range not impairing the effects of the present invention. Functional films such as an antireflection film, a hard coat film, and an antistatic film can be provided as appropriate for the purpose of improvement, chemical resistance improvement, antistatic and scratch removal.
本発明の光学フィルターには、本発明の効果を損なわない範囲において、樹脂製基板と誘電体多層膜等の近赤外線反射膜との間などに、樹脂製基板や近赤外線反射膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消し等の目的で、反射防止膜、ハードコート膜および帯電防止膜等の機能膜を適宜設けることができる。 [Other functional membranes]
In the optical filter of the present invention, the surface hardness of the resin substrate or near-infrared reflective film is between the resin substrate and the near-infrared reflective film such as a dielectric multilayer film within a range not impairing the effects of the present invention. Functional films such as an antireflection film, a hard coat film, and an antistatic film can be provided as appropriate for the purpose of improvement, chemical resistance improvement, antistatic and scratch removal.
樹脂製基板と機能膜および/または近赤外線反射膜との密着性や、機能膜と近赤外線反射膜との密着性を上げる目的で、樹脂製基板や機能膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。
For the purpose of improving the adhesion between the resin substrate and the functional film and / or near-infrared reflective film, and the adhesion between the functional film and the near-infrared reflective film, the surface of the resin substrate or functional film is subjected to corona treatment, plasma treatment, etc. The surface treatment may be performed.
[光学フィルターの特性等]
本発明の光学フィルターは、前記透明樹脂製基板とその少なくとも片面に形成された前記近赤外線反射膜とを有する。このため、本発明の光学フィルターは、特に透過波長域の裾付近においても広い視野角を有し、且つ、可視光透過率と赤外光線カット特性とに優れる。このような光学フィルターを固体撮像素子用途に使用すると、斜め方向から入射した光に対しても色再現性に優れた画質の良い画像を得ることができる。 [Characteristics etc. of optical filter]
The optical filter of the present invention includes the transparent resin substrate and the near-infrared reflective film formed on at least one surface thereof. For this reason, the optical filter of the present invention has a wide viewing angle even near the bottom of the transmission wavelength region, and is excellent in visible light transmittance and infrared ray cut characteristics. When such an optical filter is used for a solid-state imaging device, it is possible to obtain a high-quality image with excellent color reproducibility even for light incident from an oblique direction.
本発明の光学フィルターは、前記透明樹脂製基板とその少なくとも片面に形成された前記近赤外線反射膜とを有する。このため、本発明の光学フィルターは、特に透過波長域の裾付近においても広い視野角を有し、且つ、可視光透過率と赤外光線カット特性とに優れる。このような光学フィルターを固体撮像素子用途に使用すると、斜め方向から入射した光に対しても色再現性に優れた画質の良い画像を得ることができる。 [Characteristics etc. of optical filter]
The optical filter of the present invention includes the transparent resin substrate and the near-infrared reflective film formed on at least one surface thereof. For this reason, the optical filter of the present invention has a wide viewing angle even near the bottom of the transmission wavelength region, and is excellent in visible light transmittance and infrared ray cut characteristics. When such an optical filter is used for a solid-state imaging device, it is possible to obtain a high-quality image with excellent color reproducibility even for light incident from an oblique direction.
また、樹脂製基板に含まれる近赤外線吸収色素の少なくとも1種として、例えば波長600~800nmに吸収極大を有する色素を用いることで、近赤外光を効率的に吸収することができる。したがって、このような透明樹脂製基板と近赤外線反射膜と組み合わせることにより、入射角依存性の少ない光学フィルターを得ることができる。
Also, near infrared light can be efficiently absorbed by using, for example, a dye having an absorption maximum at a wavelength of 600 to 800 nm as at least one kind of near infrared absorbing dye contained in the resin substrate. Therefore, by combining such a transparent resin substrate and a near-infrared reflective film, an optical filter with little incident angle dependency can be obtained.
[光学フィルターの用途]
本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、パーソナルコンピューター用カメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーションシステム用車載装置、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム用装置、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。 [Use of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, mobile phone cameras, digital video cameras, personal computer cameras, surveillance cameras, automotive cameras, TVs, in-vehicle devices for car navigation systems, personal digital assistants, video game machines, portable game machines, fingerprint authentication Useful for system devices, digital music players, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、パーソナルコンピューター用カメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーションシステム用車載装置、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム用装置、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。 [Use of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, mobile phone cameras, digital video cameras, personal computer cameras, surveillance cameras, automotive cameras, TVs, in-vehicle devices for car navigation systems, personal digital assistants, video game machines, portable game machines, fingerprint authentication Useful for system devices, digital music players, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
〔固体撮像装置〕
本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ等である。 [Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor, and specifically includes a digital still camera, a mobile phone camera, a digital video camera, and the like.
本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ等である。 [Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor, and specifically includes a digital still camera, a mobile phone camera, a digital video camera, and the like.
〔カメラモジュール〕
本発明のカメラモジュールは、本発明の光学フィルターを具備する。ここで、本発明の光学フィルターをカメラモジュールに用いる場合について具体的に説明する。図1に、カメラモジュールの断面概略図を示す。 〔The camera module〕
The camera module of the present invention includes the optical filter of the present invention. Here, the case where the optical filter of this invention is used for a camera module is demonstrated concretely. FIG. 1 is a schematic sectional view of the camera module.
本発明のカメラモジュールは、本発明の光学フィルターを具備する。ここで、本発明の光学フィルターをカメラモジュールに用いる場合について具体的に説明する。図1に、カメラモジュールの断面概略図を示す。 〔The camera module〕
The camera module of the present invention includes the optical filter of the present invention. Here, the case where the optical filter of this invention is used for a camera module is demonstrated concretely. FIG. 1 is a schematic sectional view of the camera module.
図1(a)は、従来のカメラモジュールの構造の断面概略図であり、図1(b)は、本発明の光学フィルター6'を用いた場合の、とり得ることができるカメラモジュールの構造の一つを表す断面概略図である。なお、図1(b)では、本発明の光学フィルター6'をレンズ5の上部に配置しているが、本発明の光学フィルター6'は、図1(a)に示すようにレンズ5とセンサー7の間に配置することもできる。
FIG. 1A is a schematic cross-sectional view of the structure of a conventional camera module, and FIG. 1B shows the structure of a camera module that can be obtained when the optical filter 6 ′ of the present invention is used. It is a section schematic diagram showing one. In FIG. 1 (b), the optical filter 6 ′ of the present invention is disposed on the upper portion of the lens 5. However, the optical filter 6 ′ of the present invention includes the lens 5 and the sensor as shown in FIG. 1 (a). 7 can also be arranged.
従来のカメラモジュールでは、光学フィルター6に対してほぼ垂直に光10が入射する必要があった。そのため、フィルター6は、レンズ5とセンサー7の間に配置する必要があった。
In the conventional camera module, the light 10 has to be incident substantially perpendicular to the optical filter 6. Therefore, the filter 6 has to be disposed between the lens 5 and the sensor 7.
ここで、センサー7は、高感度であり、5μm程度のちりやほこりが触れるだけで正確に作動しなくなるおそれがあるため、センサー7の上部に配置されるフィルター6は、ちりやほこりの出ないものであり、異物を含まないものである必要があった。また、前記センサー7の特性から、フィルター6とセンサー7の間には、所定の間隔を設ける必要があり、このことがカメラモジュールの低背化を妨げる一因となっていた。
Here, since the sensor 7 is highly sensitive and there is a possibility that the sensor 7 may not operate correctly just by touching dust or dust of about 5 μm, the filter 6 disposed on the upper part of the sensor 7 does not generate dust or dust. It was necessary to be a thing which does not contain a foreign material. In addition, due to the characteristics of the sensor 7, it is necessary to provide a predetermined distance between the filter 6 and the sensor 7, which is one factor that hinders the reduction in the height of the camera module.
これに対して、本発明の光学フィルター6'の場合、フィルター6'の垂直方向から入射する光と、フィルター6'の垂直方向に対して30°から入射する光の透過波長に大きな差はない(前述したように、透過波長域の裾付近においても、吸収(透過)波長の入射角依存性が小さい)ため、フィルター6'は、レンズ5とセンサー7の間に配置する必要がなく、レンズ5の上部に配置することもできる。
On the other hand, in the case of the optical filter 6 ′ of the present invention, there is no great difference between the transmission wavelengths of light incident from the vertical direction of the filter 6 ′ and light incident from 30 ° with respect to the vertical direction of the filter 6 ′. (As described above, since the incident angle dependency of the absorption (transmission) wavelength is small even near the bottom of the transmission wavelength region), the filter 6 ′ does not need to be disposed between the lens 5 and the sensor 7. It can also be placed on top of 5.
このため、本発明の光学フィルター6'をカメラモジュールに用いる場合には、当該カメラモジュールの取り扱い性が容易になり、また、フィルター6'とセンサー7の間に所定の間隔を設ける必要がないため、カメラモジュールの低背化が可能となる。
For this reason, when the optical filter 6 ′ of the present invention is used in a camera module, the camera module becomes easy to handle, and it is not necessary to provide a predetermined interval between the filter 6 ′ and the sensor 7. This makes it possible to reduce the height of the camera module.
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。
Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. “Parts” means “parts by weight” unless otherwise specified. Moreover, the measurement method of each physical property value and the evaluation method of the physical property are as follows.
<分子量>
樹脂の分子量は、各樹脂の溶媒への溶解性等を考慮し、下記(a)または(b)の方法にて測定を行った。なお、後述する樹脂合成例3で合成した樹脂については、これらの方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。 <Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent. In addition, about the resin synthesize | combined in the resin synthesis example 3 mentioned later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by these methods.
樹脂の分子量は、各樹脂の溶媒への溶解性等を考慮し、下記(a)または(b)の方法にて測定を行った。なお、後述する樹脂合成例3で合成した樹脂については、これらの方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。 <Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent. In addition, about the resin synthesize | combined in the resin synthesis example 3 mentioned later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by these methods.
(a)ウオターズ(WATERS)社製GPC装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶媒:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(A) Weight average molecular weight (Mw) and number average molecular weight (Mw) in terms of standard polystyrene using a GPC apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by WATERS Mn) was measured.
(b)東ソー社製GPC装置(HLC-8220型、カラム:TSKgelα-M、展開溶媒:テトラヒドロフラン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(B) A weight average molecular weight (Mw) and a number average molecular weight (Mn) in terms of standard polystyrene were measured using a GPC apparatus (HLC-8220 type, column: TSKgelα-M, developing solvent: tetrahydrofuran) manufactured by Tosoh Corporation.
(c)ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体から分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解し、キャノン-フェンスケ粘度計を使用して、30℃における対数粘度(μ)を下記式により求めた。
(C) A part of the polyimide resin solution was put into anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer. 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity (μ) at 30 ° C. is expressed by the following formula using a Canon-Fenske viscometer. Determined by
μ={ln(ts/t0)}/C
t0:溶媒の流下時間
ts:希薄高分子溶液の流下時間
C:0.5g/dL μ = {ln (ts / t0)} / C
t0: Flowing time of solvent ts: Flowing time of dilute polymer solution C: 0.5 g / dL
t0:溶媒の流下時間
ts:希薄高分子溶液の流下時間
C:0.5g/dL μ = {ln (ts / t0)} / C
t0: Flowing time of solvent ts: Flowing time of dilute polymer solution C: 0.5 g / dL
<ガラス転移温度(Tg)>
樹脂のガラス転移温度(Tg)は、エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。 <Glass transition temperature (Tg)>
The glass transition temperature (Tg) of the resin was measured using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc. at a rate of temperature increase of 20 ° C. per minute under a nitrogen stream.
樹脂のガラス転移温度(Tg)は、エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。 <Glass transition temperature (Tg)>
The glass transition temperature (Tg) of the resin was measured using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc. at a rate of temperature increase of 20 ° C. per minute under a nitrogen stream.
<分光透過率>
樹脂製基板の吸収極大波長および当該波長における透過率、光学フィルターの各波長領域における透過率、ならびに前述の(Za)および(Zb)は、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。 <Spectral transmittance>
The absorption maximum wavelength of the resin substrate and the transmittance at that wavelength, the transmittance in each wavelength region of the optical filter, and the aforementioned (Za) and (Zb) are spectrophotometers (U-4100 manufactured by Hitachi High-Technologies Corporation). ).
樹脂製基板の吸収極大波長および当該波長における透過率、光学フィルターの各波長領域における透過率、ならびに前述の(Za)および(Zb)は、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。 <Spectral transmittance>
The absorption maximum wavelength of the resin substrate and the transmittance at that wavelength, the transmittance in each wavelength region of the optical filter, and the aforementioned (Za) and (Zb) are spectrophotometers (U-4100 manufactured by Hitachi High-Technologies Corporation). ).
ここで、光学フィルターの垂直方向から測定した場合の透過率では、図2(a)のようにフィルター面に対して垂直に透過した光を測定した。樹脂製基板の場合も同様である。また、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率では、図2(b)のようにフィルター面の垂直方向に対して30°の角度で透過した光を測定した。
Here, with respect to the transmittance when measured from the vertical direction of the optical filter, the light transmitted perpendicular to the filter surface was measured as shown in FIG. The same applies to a resin substrate. Further, with respect to the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, light transmitted at an angle of 30 ° with respect to the vertical direction of the filter surface was measured as shown in FIG. .
なお、この透過率は、(Zb)を測定する場合を除き、光がフィルター面または樹脂製基板面に対して垂直に入射する条件で、前記分光光度計を使用して測定したものである。(Zb)を測定する場合には、光がフィルター面の垂直方向に対して30°の角度で入射する条件で、前記分光光度計を使用して測定したものである。
In addition, this transmittance | permeability was measured using the said spectrophotometer on the conditions that light injects perpendicularly with respect to a filter surface or a resin-made substrate surface except the case where (Zb) is measured. When (Zb) is measured, it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter surface.
<ヘーズ値>
光学フィルターのヘーズ値は、スガ試験機株式会社製のヘーズメーター(HZ-2)を用いてJIS K7105準拠の方法にて測定を行った。 <Haze value>
The haze value of the optical filter was measured by a method according to JIS K7105 using a haze meter (HZ-2) manufactured by Suga Test Instruments Co., Ltd.
光学フィルターのヘーズ値は、スガ試験機株式会社製のヘーズメーター(HZ-2)を用いてJIS K7105準拠の方法にて測定を行った。 <Haze value>
The haze value of the optical filter was measured by a method according to JIS K7105 using a haze meter (HZ-2) manufactured by Suga Test Instruments Co., Ltd.
<屈折率>
ガラス基板上に屈折率を測定する対象層(シリカ層、酸化チタン層)をそれぞれ単層で蒸着成膜したサンプルを作製し、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて作製したサンプルの透過率および反射率を測定した(透過率はサンプル面の垂直方向から測定を行い、反射率はサンプル面の垂直方向に対して5°の角度から測定を行った)。得られた透過率、反射率データを光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)に入力し、関数フィッティングを行うことで各対象層の波長550nmの光に対する屈折率を求めた。 <Refractive index>
A sample in which the target layers (silica layer and titanium oxide layer) whose refractive index is to be measured is formed as a single layer on a glass substrate is prepared, and a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation is used. The transmittance and reflectance of the sample thus prepared were measured (the transmittance was measured from the direction perpendicular to the sample surface, and the reflectance was measured from an angle of 5 ° with respect to the direction perpendicular to the sample surface). The obtained transmittance and reflectance data were input to optical thin film design software (Essential Macintosh, manufactured by Thin Film Center), and function fitting was performed to obtain the refractive index of each target layer with respect to light having a wavelength of 550 nm.
ガラス基板上に屈折率を測定する対象層(シリカ層、酸化チタン層)をそれぞれ単層で蒸着成膜したサンプルを作製し、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて作製したサンプルの透過率および反射率を測定した(透過率はサンプル面の垂直方向から測定を行い、反射率はサンプル面の垂直方向に対して5°の角度から測定を行った)。得られた透過率、反射率データを光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)に入力し、関数フィッティングを行うことで各対象層の波長550nmの光に対する屈折率を求めた。 <Refractive index>
A sample in which the target layers (silica layer and titanium oxide layer) whose refractive index is to be measured is formed as a single layer on a glass substrate is prepared, and a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation is used. The transmittance and reflectance of the sample thus prepared were measured (the transmittance was measured from the direction perpendicular to the sample surface, and the reflectance was measured from an angle of 5 ° with respect to the direction perpendicular to the sample surface). The obtained transmittance and reflectance data were input to optical thin film design software (Essential Macintosh, manufactured by Thin Film Center), and function fitting was performed to obtain the refractive index of each target layer with respect to light having a wavelength of 550 nm.
<樹脂合成例1>
下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100部、1-ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(濃度0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。 <Resin synthesis example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodec-3-ene (hereinafter also referred to as “DNM”) 100 parts, 1-hexene (molecular weight regulator) 18 parts, and toluene (ring-opening polymerization solvent) 300 parts nitrogen-substituted reaction The vessel was charged and the solution was heated to 80 ° C. Next, 0.2 parts of a toluene solution of triethylaluminum (concentration 0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) 0 as a polymerization catalyst were added to the solution in the reaction vessel. .9 parts was added and the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100部、1-ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(濃度0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。 <Resin synthesis example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodec-3-ene (hereinafter also referred to as “DNM”) 100 parts, 1-hexene (molecular weight regulator) 18 parts, and toluene (ring-opening polymerization solvent) 300 parts nitrogen-substituted reaction The vessel was charged and the solution was heated to 80 ° C. Next, 0.2 parts of a toluene solution of triethylaluminum (concentration 0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) 0 as a polymerization catalyst were added to the solution in the reaction vessel. .9 parts was added and the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
このようにして得られた開環重合体溶液1,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6H5)3]3を0.12部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。
1,000 parts of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 part of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Then, the hydrogenation reaction was performed by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C.
得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。
After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, and dried to obtain a hydrogenated polymer (hereinafter also referred to as “resin A”). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
<樹脂合成例2>
3Lの4つ口フラスコに2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。 <Resin synthesis example 2>
In a 3 L four-necked flask, 35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate ( 0.300 mol), 443 g of N, N-dimethylacetamide (hereinafter also referred to as “DMAc”) and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask.
3Lの4つ口フラスコに2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。 <Resin synthesis example 2>
In a 3 L four-necked flask, 35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate ( 0.300 mol), 443 g of N, N-dimethylacetamide (hereinafter also referred to as “DMAc”) and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask.
次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。
Next, after the flask was purged with nitrogen, the resulting solution was reacted at 140 ° C. for 3 hours, and the generated water was removed from the Dean-Stark tube as needed. When no more water was observed, the temperature was gradually raised to 160 ° C. and reacted at that temperature for 6 hours.
室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。
After cooling to room temperature (25 ° C.), the produced salt was removed with filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filtrate was vacuum-dried overnight at 60 ° C. to obtain a white powder (hereinafter also referred to as “resin B”) (yield 95%). The obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
<樹脂合成例3>
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れて、γ―ブチロラクトン68.65gおよびN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却し、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎいれてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。得られた樹脂Cは、ガラス転移温度(Tg)が310℃であり、対数粘度が0.87であった。 <Resin synthesis example 3>
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introducing tube, dropping funnel with side tube, Dean-Stark tube and condenser tube, 1,4-bis (4-amino-α, α -Dimethylbenzyl) benzene (27.66 g, 0.08 mol) and 4,4′-bis (4-aminophenoxy) biphenyl (7.38 g, 0.02 mol) were added, and γ-butyrolactone (68.65 g) and N, It was dissolved in 17.16 g of N-dimethylacetamide. The obtained solution was cooled to 5 ° C. using an ice-water bath, and while maintaining the same temperature, 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst As a result, 0.50 g (0.005 mol) of triethylamine was added all at once. After completion of the addition, the temperature was raised to 180 ° C. and refluxed for 6 hours while distilling off the distillate as needed. After completion of the reaction, the reaction solution was air-cooled until the internal temperature reached 100 ° C., diluted by adding 143.6 g of N, N-dimethylacetamide, cooled with stirring, and 264.16 g of a polyimide resin solution having a solid content concentration of 20% by weight. Got. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. The obtained resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れて、γ―ブチロラクトン68.65gおよびN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却し、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎいれてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。得られた樹脂Cは、ガラス転移温度(Tg)が310℃であり、対数粘度が0.87であった。 <Resin synthesis example 3>
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introducing tube, dropping funnel with side tube, Dean-Stark tube and condenser tube, 1,4-bis (4-amino-α, α -Dimethylbenzyl) benzene (27.66 g, 0.08 mol) and 4,4′-bis (4-aminophenoxy) biphenyl (7.38 g, 0.02 mol) were added, and γ-butyrolactone (68.65 g) and N, It was dissolved in 17.16 g of N-dimethylacetamide. The obtained solution was cooled to 5 ° C. using an ice-water bath, and while maintaining the same temperature, 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst As a result, 0.50 g (0.005 mol) of triethylamine was added all at once. After completion of the addition, the temperature was raised to 180 ° C. and refluxed for 6 hours while distilling off the distillate as needed. After completion of the reaction, the reaction solution was air-cooled until the internal temperature reached 100 ° C., diluted by adding 143.6 g of N, N-dimethylacetamide, cooled with stirring, and 264.16 g of a polyimide resin solution having a solid content concentration of 20% by weight. Got. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. The obtained resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
<樹脂合成例4>
9,9-ビス{4-(2-ヒドロキシエトキシ)フェニル}フルオレン9.167kg(20.90モル)、ビスフェノールA 4.585kg(20.084モル)、ジフェニルカーボネート9.000kg(42.01モル)、および炭酸水素ナトリウム0.02066kg(2.459×10-4モル)を、攪拌機および留出装置を備えた50L反応器に入れ、窒素雰囲気で760Torrの下、1時間かけて215℃に加熱・攪拌した。その後、15分かけて減圧度を150Torrに調整し、215℃、150Torrの条件下で20分間保持し、エステル交換反応を行った。さらに37.5℃/Hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。更に40分かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌して重合反応を行った。反応終了後、反応器内に窒素を導入し加圧にし、生成したポリカーボネート樹脂(以下「樹脂D」ともいう。)をペレット化しながら抜き出した。得られた樹脂Dは、重量平均分子量(Mw)が41,000であり、ガラス転移温度(Tg)が152℃であった。 <Resin synthesis example 4>
9.167 kg (20.90 mol) of 9,9-bis {4- (2-hydroxyethoxy) phenyl} fluorene, 4.585 kg (20.08 mol) of bisphenol A, 9.000 kg (42.01 mol) of diphenyl carbonate , And 0.02066 kg (2.459 × 10 −4 mol) of sodium bicarbonate were placed in a 50 L reactor equipped with a stirrer and a distillation apparatus, and heated to 215 ° C. over 1 hour under a nitrogen atmosphere under 760 Torr. Stir. Thereafter, the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 215 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./Hr, and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. The polymerization reaction was further carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. and 1 Torr or less. After completion of the reaction, nitrogen was introduced into the reactor to increase the pressure, and the produced polycarbonate resin (hereinafter also referred to as “resin D”) was extracted while being pelletized. The obtained resin D had a weight average molecular weight (Mw) of 41,000 and a glass transition temperature (Tg) of 152 ° C.
9,9-ビス{4-(2-ヒドロキシエトキシ)フェニル}フルオレン9.167kg(20.90モル)、ビスフェノールA 4.585kg(20.084モル)、ジフェニルカーボネート9.000kg(42.01モル)、および炭酸水素ナトリウム0.02066kg(2.459×10-4モル)を、攪拌機および留出装置を備えた50L反応器に入れ、窒素雰囲気で760Torrの下、1時間かけて215℃に加熱・攪拌した。その後、15分かけて減圧度を150Torrに調整し、215℃、150Torrの条件下で20分間保持し、エステル交換反応を行った。さらに37.5℃/Hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。更に40分かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌して重合反応を行った。反応終了後、反応器内に窒素を導入し加圧にし、生成したポリカーボネート樹脂(以下「樹脂D」ともいう。)をペレット化しながら抜き出した。得られた樹脂Dは、重量平均分子量(Mw)が41,000であり、ガラス転移温度(Tg)が152℃であった。 <Resin synthesis example 4>
9.167 kg (20.90 mol) of 9,9-bis {4- (2-hydroxyethoxy) phenyl} fluorene, 4.585 kg (20.08 mol) of bisphenol A, 9.000 kg (42.01 mol) of diphenyl carbonate , And 0.02066 kg (2.459 × 10 −4 mol) of sodium bicarbonate were placed in a 50 L reactor equipped with a stirrer and a distillation apparatus, and heated to 215 ° C. over 1 hour under a nitrogen atmosphere under 760 Torr. Stir. Thereafter, the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 215 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./Hr, and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. The polymerization reaction was further carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. and 1 Torr or less. After completion of the reaction, nitrogen was introduced into the reactor to increase the pressure, and the produced polycarbonate resin (hereinafter also referred to as “resin D”) was extracted while being pelletized. The obtained resin D had a weight average molecular weight (Mw) of 41,000 and a glass transition temperature (Tg) of 152 ° C.
<樹脂合成例5>
反応器に、9,9-ビス{4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル}フルオレン0.8モル、エチレングリコール2.2モルおよびイソフタル酸ジメチル1.0モルを加え、攪拌しながら徐々に加熱溶融してエステル交換反応を行った後、酸化ゲルマニウム20×10-4モルを加え、290℃、1Torr以下に到達するまで徐々に昇温および減圧を行いながらエチレングリコールを除去した。この後、内容物を反応器から取り出し、ポリエステル樹脂(以下「樹脂E」ともいう。)のペレットを得た。得られた樹脂Eは、数平均分子量(Mn)が40,000であり、ガラス転移温度(Tg)が145℃であった。 <Resin synthesis example 5>
To the reactor, 0.8 mol of 9,9-bis {4- (2-hydroxyethoxy) -3,5-dimethylphenyl} fluorene, 2.2 mol of ethylene glycol and 1.0 mol of dimethyl isophthalate were added and stirred. The mixture was gradually heated and melted to carry out the transesterification reaction, and then 20 × 10 −4 moles of germanium oxide was added, and ethylene glycol was removed while gradually increasing the temperature and reducing the pressure until reaching 290 ° C. and 1 Torr or less. . Thereafter, the contents were taken out of the reactor to obtain pellets of polyester resin (hereinafter also referred to as “resin E”). The obtained resin E had a number average molecular weight (Mn) of 40,000 and a glass transition temperature (Tg) of 145 ° C.
反応器に、9,9-ビス{4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル}フルオレン0.8モル、エチレングリコール2.2モルおよびイソフタル酸ジメチル1.0モルを加え、攪拌しながら徐々に加熱溶融してエステル交換反応を行った後、酸化ゲルマニウム20×10-4モルを加え、290℃、1Torr以下に到達するまで徐々に昇温および減圧を行いながらエチレングリコールを除去した。この後、内容物を反応器から取り出し、ポリエステル樹脂(以下「樹脂E」ともいう。)のペレットを得た。得られた樹脂Eは、数平均分子量(Mn)が40,000であり、ガラス転移温度(Tg)が145℃であった。 <Resin synthesis example 5>
To the reactor, 0.8 mol of 9,9-bis {4- (2-hydroxyethoxy) -3,5-dimethylphenyl} fluorene, 2.2 mol of ethylene glycol and 1.0 mol of dimethyl isophthalate were added and stirred. The mixture was gradually heated and melted to carry out the transesterification reaction, and then 20 × 10 −4 moles of germanium oxide was added, and ethylene glycol was removed while gradually increasing the temperature and reducing the pressure until reaching 290 ° C. and 1 Torr or less. . Thereafter, the contents were taken out of the reactor to obtain pellets of polyester resin (hereinafter also referred to as “resin E”). The obtained resin E had a number average molecular weight (Mn) of 40,000 and a glass transition temperature (Tg) of 145 ° C.
<樹脂合成例6>
温度計、冷却管、ガス導入管および攪拌機を備えた反応器に、4,4'-ビス(2,3,4,5,6-ペンタフルオロベンゾイル)ジフェニルエーテル(BPDE)16.74部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(HF)10.5部、炭酸カリウム4.34部およびDMAc90部を仕込んだ。この混合物を80℃に加温し、8時間反応させた。反応終了後、反応溶液をブレンダーで激しく攪拌しながら、1%酢酸水溶液中に添加した。析出した反応物を濾別し、蒸留水およびメタノールで洗浄した後、減圧乾燥して、フッ素化ポリエーテルケトン(以下「樹脂F」ともいう。)を得た。得られた樹脂Fは、数平均分子量(Mn)が71,000であり、ガラス転移温度(Tg)が242℃であった。 <Resin synthesis example 6>
To a reactor equipped with a thermometer, a cooling pipe, a gas introduction pipe and a stirrer, 4,74′-bis (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether (BPDE) 16.74 parts, 10.5 parts of 9-bis (4-hydroxyphenyl) fluorene (HF), 4.34 parts of potassium carbonate and 90 parts of DMAc were charged. The mixture was warmed to 80 ° C. and reacted for 8 hours. After completion of the reaction, the reaction solution was added into a 1% aqueous acetic acid solution with vigorous stirring with a blender. The precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”). The obtained resin F had a number average molecular weight (Mn) of 71,000 and a glass transition temperature (Tg) of 242 ° C.
温度計、冷却管、ガス導入管および攪拌機を備えた反応器に、4,4'-ビス(2,3,4,5,6-ペンタフルオロベンゾイル)ジフェニルエーテル(BPDE)16.74部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(HF)10.5部、炭酸カリウム4.34部およびDMAc90部を仕込んだ。この混合物を80℃に加温し、8時間反応させた。反応終了後、反応溶液をブレンダーで激しく攪拌しながら、1%酢酸水溶液中に添加した。析出した反応物を濾別し、蒸留水およびメタノールで洗浄した後、減圧乾燥して、フッ素化ポリエーテルケトン(以下「樹脂F」ともいう。)を得た。得られた樹脂Fは、数平均分子量(Mn)が71,000であり、ガラス転移温度(Tg)が242℃であった。 <Resin synthesis example 6>
To a reactor equipped with a thermometer, a cooling pipe, a gas introduction pipe and a stirrer, 4,74′-bis (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether (BPDE) 16.74 parts, 10.5 parts of 9-bis (4-hydroxyphenyl) fluorene (HF), 4.34 parts of potassium carbonate and 90 parts of DMAc were charged. The mixture was warmed to 80 ° C. and reacted for 8 hours. After completion of the reaction, the reaction solution was added into a 1% aqueous acetic acid solution with vigorous stirring with a blender. The precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”). The obtained resin F had a number average molecular weight (Mn) of 71,000 and a glass transition temperature (Tg) of 242 ° C.
[実施例1]
容器に、合成例1で得られた樹脂A 100部、下記式(a-1)で表されるスクアリリウム系化合物(以下「化合物(a-1)」ともいう。)0.03部、下記式(b-1)で表されるフタロシアニン系化合物(以下「化合物(b-1)」ともいう。)0.01部、さらに塩化メチレンを加えることで、樹脂濃度が20重量%の溶液を得た。 [Example 1]
In a container, 100 parts of Resin A obtained in Synthesis Example 1, 0.03 part of a squarylium compound represented by the following formula (a-1) (hereinafter also referred to as “compound (a-1)”), A solution having a resin concentration of 20% by weight was obtained by adding 0.01 part of a phthalocyanine compound represented by (b-1) (hereinafter also referred to as “compound (b-1)”) and methylene chloride. .
容器に、合成例1で得られた樹脂A 100部、下記式(a-1)で表されるスクアリリウム系化合物(以下「化合物(a-1)」ともいう。)0.03部、下記式(b-1)で表されるフタロシアニン系化合物(以下「化合物(b-1)」ともいう。)0.01部、さらに塩化メチレンを加えることで、樹脂濃度が20重量%の溶液を得た。 [Example 1]
In a container, 100 parts of Resin A obtained in Synthesis Example 1, 0.03 part of a squarylium compound represented by the following formula (a-1) (hereinafter also referred to as “compound (a-1)”), A solution having a resin concentration of 20% by weight was obtained by adding 0.01 part of a phthalocyanine compound represented by (b-1) (hereinafter also referred to as “compound (b-1)”) and methylene chloride. .
次いで、得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、塗膜をガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの樹脂製基板を得た。この樹脂製基板の分光透過率を測定し、吸収極大波長を求めた。結果を表4に示す。吸収極大波長は698nmであり、当該波長での透過率は1%であった。
Next, the obtained solution was cast on a smooth glass plate and dried at 20 ° C. for 8 hours, and then the coating film was peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm. The spectral transmittance of the resin substrate was measured to determine the absorption maximum wavelength. The results are shown in Table 4. The absorption maximum wavelength was 698 nm, and the transmittance at that wavelength was 1%.
続いて、得られた樹脂製基板の片面に近赤外線反射膜(I)を形成し、さらに樹脂製基板のもう一方の面に近赤外線反射膜(II)を形成し、厚さ0.106mmの光学フィルターを得た。
Subsequently, a near-infrared reflective film (I) is formed on one surface of the obtained resin substrate, and a near-infrared reflective film (II) is formed on the other surface of the resin substrate, and the thickness is 0.106 mm. An optical filter was obtained.
近赤外線反射膜(I)は、蒸着温度100℃でシリカ(SiO2)層と酸化チタン(TiO2)層とが交互に積層されてなる(合計20層)。近赤外線反射膜(II)は、蒸着温度100℃でシリカ(SiO2)層と酸化チタン(TiO2)層とが交互に積層されてなる(合計26層)。近赤外線反射膜(I)および(II)のいずれにおいても、シリカ層および酸化チタン層は、樹脂製基板側から酸化チタン層、シリカ層、酸化チタン層、・・・シリカ層、酸化チタン層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。
The near-infrared reflective film (I) is formed by alternately laminating a silica (SiO 2 ) layer and a titanium oxide (TiO 2 ) layer at a deposition temperature of 100 ° C. (20 layers in total). The near-infrared reflective film (II) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total). In any of the near-infrared reflective films (I) and (II), the silica layer and the titanium oxide layer are formed from the resin substrate side from the titanium oxide layer, silica layer, titanium oxide layer,..., Silica layer, titanium oxide layer, The silica layers were alternately laminated in this order, and the outermost layer of the optical filter was a silica layer.
近赤外線反射膜(I)および(II)の設計は、以下のようにして行った。
各層の厚さと層数については、色素の吸収特性を考慮した上で可視域の反射防止効果と近赤外域の光線カット効果を両立できるよう樹脂製基板や近赤外線吸収色素の特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメーター(Target値)を下記表1の通りとした。 The near-infrared reflective films (I) and (II) were designed as follows.
The thickness of each layer and the number of layers are optically matched to the characteristics of the resin substrate and near-infrared absorbing dye so that both the antireflection effect in the visible region and the light-cutting effect in the near-infrared region can be achieved, taking into consideration the absorption characteristics of the pigment Optimization was performed using thin film design software (Essential Macleod, Thin Film Center). When performing optimization, in this example, the input parameters (Target values) to the software are as shown in Table 1 below.
各層の厚さと層数については、色素の吸収特性を考慮した上で可視域の反射防止効果と近赤外域の光線カット効果を両立できるよう樹脂製基板や近赤外線吸収色素の特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメーター(Target値)を下記表1の通りとした。 The near-infrared reflective films (I) and (II) were designed as follows.
The thickness of each layer and the number of layers are optically matched to the characteristics of the resin substrate and near-infrared absorbing dye so that both the antireflection effect in the visible region and the light-cutting effect in the near-infrared region can be achieved, taking into consideration the absorption characteristics of the pigment Optimization was performed using thin film design software (Essential Macleod, Thin Film Center). When performing optimization, in this example, the input parameters (Target values) to the software are as shown in Table 1 below.
最適化の結果、実施例1では、近赤外線反射膜(I)は、膜厚88~185nmのシリカ層と膜厚98~108nmの酸化チタン層とが交互に積層されてなる、積層数20の多層蒸着膜となり、近赤外線反射膜(II)は、膜厚78~156nmのシリカ層と膜厚82~90nmの酸化チタン層とが交互に積層されてなる、積層数26の多層蒸着膜となった。シリカ層の屈折率は1.445であり、酸化チタン層の屈折率は2.479であった。隣り合う高屈折率材料層と低屈折率材料層との光学膜厚(物理膜厚×屈折率)の比が0.8~1.2となる部分を連続で、前記膜(I)は19層有しており、前記膜(II)は25層有している。最適化を行った膜構成の一例を表2に示す。
As a result of optimization, in Example 1, the near-infrared reflective film (I) has a stacking number of 20 in which a silica layer having a thickness of 88 to 185 nm and a titanium oxide layer having a thickness of 98 to 108 nm are alternately stacked. The near-infrared reflective film (II) is a multilayer deposited film having 26 layers, in which a silica layer having a thickness of 78 to 156 nm and a titanium oxide layer having a thickness of 82 to 90 nm are alternately stacked. It was. The refractive index of the silica layer was 1.445, and the refractive index of the titanium oxide layer was 2.479. A portion where the ratio of the optical film thickness (physical film thickness × refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2 is continuous, and the film (I) is 19 The film (II) has 25 layers. Table 2 shows an example of the optimized film configuration.
この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を表4に示す。波長430~580nmにおける透過率の平均値は91%、波長800~1000nmにおける透過率の平均値は1%以下、絶対値|Za-Zb|は10nmであった。
The spectral transmittance of this optical filter was measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 4. The average transmittance at a wavelength of 430 to 580 nm was 91%, the average transmittance at a wavelength of 800 to 1000 nm was 1% or less, and the absolute value | Za−Zb | was 10 nm.
[実施例2]
実施例1で得られた、厚さ0.1mm、縦60mm、横60mmの樹脂製基板の片面に近赤外線反射膜(III)を形成し、さらに樹脂製基板のもう一方の面に近赤外線反射膜(IV)を形成し、厚さ0.105mmの光学フィルターを得た。 [Example 2]
A near-infrared reflective film (III) is formed on one surface of a resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm obtained in Example 1, and the near-infrared reflection film is formed on the other surface of the resin substrate. Film (IV) was formed, and an optical filter having a thickness of 0.105 mm was obtained.
実施例1で得られた、厚さ0.1mm、縦60mm、横60mmの樹脂製基板の片面に近赤外線反射膜(III)を形成し、さらに樹脂製基板のもう一方の面に近赤外線反射膜(IV)を形成し、厚さ0.105mmの光学フィルターを得た。 [Example 2]
A near-infrared reflective film (III) is formed on one surface of a resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm obtained in Example 1, and the near-infrared reflection film is formed on the other surface of the resin substrate. Film (IV) was formed, and an optical filter having a thickness of 0.105 mm was obtained.
近赤外線反射膜(III)は、蒸着温度100℃でシリカ(SiO2)層と酸化チタン(TiO2)層とが交互に積層されてなる(合計18層)。近赤外線反射膜(IV)は、蒸着温度100℃でシリカ(SiO2)層と酸化チタン(TiO2)層とが交互に積層されてなる(合計18層)。近赤外線反射膜(III)および(IV)のいずれにおいても、シリカ層および酸化チタン層は、樹脂製基板側から酸化チタン層、シリカ層、酸化チタン層、・・・シリカ層、酸化チタン層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。
The near-infrared reflective film (III) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (18 layers in total). The near-infrared reflective film (IV) is formed by alternately laminating silica (SiO 2 ) layers and titanium oxide (TiO 2 ) layers at a deposition temperature of 100 ° C. (18 layers in total). In any of the near-infrared reflective films (III) and (IV), the silica layer and the titanium oxide layer are the titanium oxide layer, silica layer, titanium oxide layer,..., Silica layer, titanium oxide layer, from the resin substrate side. The silica layers were alternately laminated in this order, and the outermost layer of the optical filter was a silica layer.
近赤外線反射膜(III)および(IV)の設計は、以下のようにして行った。
実施例1と同様に最適化した結果、実施例2では、近赤外線反射膜(III)は、膜厚36~186nmのシリカ層と膜厚11~109nmの酸化チタン層とが交互に積層されてなる、積層数18の多層蒸着膜となり、近赤外線反射膜(IV)は、膜厚31~156nmのシリカ層と膜厚10~94nmの酸化チタン層とが交互に積層されてなる、積層数18の多層蒸着膜となった。シリカ層の屈折率は1.445であり、酸化チタン層の屈折率は2.479であった。隣り合う高屈折率材料層と低屈折率材料層との光学膜厚(物理膜厚×屈折率)の比が0.8~1.2となる部分を連続で、前記膜(III)は15層有しており、前記膜(IV)は15層有している。最適化を行った膜構成の一例を表3に示す。 The near-infrared reflective films (III) and (IV) were designed as follows.
As a result of optimization in the same manner as in Example 1, in Example 2, the near-infrared reflective film (III) was formed by alternately laminating a silica layer having a film thickness of 36 to 186 nm and a titanium oxide layer having a film thickness of 11 to 109 nm. The near-infrared reflective film (IV) is formed by alternately laminating a silica layer having a film thickness of 31 to 156 nm and a titanium oxide layer having a film thickness of 10 to 94 nm. The multilayer deposited film became. The refractive index of the silica layer was 1.445, and the refractive index of the titanium oxide layer was 2.479. The portion where the ratio of the optical film thickness (physical film thickness × refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2 is continuous, and the film (III) is 15 The film (IV) has 15 layers. Table 3 shows an example of the optimized film configuration.
実施例1と同様に最適化した結果、実施例2では、近赤外線反射膜(III)は、膜厚36~186nmのシリカ層と膜厚11~109nmの酸化チタン層とが交互に積層されてなる、積層数18の多層蒸着膜となり、近赤外線反射膜(IV)は、膜厚31~156nmのシリカ層と膜厚10~94nmの酸化チタン層とが交互に積層されてなる、積層数18の多層蒸着膜となった。シリカ層の屈折率は1.445であり、酸化チタン層の屈折率は2.479であった。隣り合う高屈折率材料層と低屈折率材料層との光学膜厚(物理膜厚×屈折率)の比が0.8~1.2となる部分を連続で、前記膜(III)は15層有しており、前記膜(IV)は15層有している。最適化を行った膜構成の一例を表3に示す。 The near-infrared reflective films (III) and (IV) were designed as follows.
As a result of optimization in the same manner as in Example 1, in Example 2, the near-infrared reflective film (III) was formed by alternately laminating a silica layer having a film thickness of 36 to 186 nm and a titanium oxide layer having a film thickness of 11 to 109 nm. The near-infrared reflective film (IV) is formed by alternately laminating a silica layer having a film thickness of 31 to 156 nm and a titanium oxide layer having a film thickness of 10 to 94 nm. The multilayer deposited film became. The refractive index of the silica layer was 1.445, and the refractive index of the titanium oxide layer was 2.479. The portion where the ratio of the optical film thickness (physical film thickness × refractive index) between the adjacent high refractive index material layer and low refractive index material layer is 0.8 to 1.2 is continuous, and the film (III) is 15 The film (IV) has 15 layers. Table 3 shows an example of the optimized film configuration.
光学特性の評価結果を表4に示す。
[実施例3]~[実施例14]および[比較例1]~[比較例2]
実施例1において、表4に示す透明樹脂、近赤外線吸収色素、溶媒およびフィルム乾燥条件を採用して樹脂製基板を製造し、さらにそれぞれ多層蒸着膜の各層の厚さと層数についての最適化を行ったこと以外は実施例1と同様にして、厚さ0.106mmの光学フィルターを得た。結果を表4に示す。なお、表4において、溶液の樹脂濃度はいずれも20重量%である。 Table 4 shows the evaluation results of the optical characteristics.
[Example 3] to [Example 14] and [Comparative Example 1] to [Comparative Example 2]
In Example 1, a transparent resin, a near infrared absorbing dye, a solvent, and a film drying condition shown in Table 4 were used to produce a resin substrate, and further, the thickness and the number of layers of each multilayer deposited film were optimized. An optical filter having a thickness of 0.106 mm was obtained in the same manner as in Example 1 except for the above. The results are shown in Table 4. In Table 4, the resin concentration of the solution is 20% by weight.
[実施例3]~[実施例14]および[比較例1]~[比較例2]
実施例1において、表4に示す透明樹脂、近赤外線吸収色素、溶媒およびフィルム乾燥条件を採用して樹脂製基板を製造し、さらにそれぞれ多層蒸着膜の各層の厚さと層数についての最適化を行ったこと以外は実施例1と同様にして、厚さ0.106mmの光学フィルターを得た。結果を表4に示す。なお、表4において、溶液の樹脂濃度はいずれも20重量%である。 Table 4 shows the evaluation results of the optical characteristics.
[Example 3] to [Example 14] and [Comparative Example 1] to [Comparative Example 2]
In Example 1, a transparent resin, a near infrared absorbing dye, a solvent, and a film drying condition shown in Table 4 were used to produce a resin substrate, and further, the thickness and the number of layers of each multilayer deposited film were optimized. An optical filter having a thickness of 0.106 mm was obtained in the same manner as in Example 1 except for the above. The results are shown in Table 4. In Table 4, the resin concentration of the solution is 20% by weight.
実施例および比較例で使用した各種化合物は以下のとおりである。
樹脂A:環状オレフィン系樹脂(樹脂合成例1)
樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
樹脂C:ポリイミド系樹脂(樹脂合成例3)
樹脂D:フルオレンポリカーボネート系樹脂(樹脂合成例4)
樹脂E:フルオレンポリエステル系樹脂(樹脂合成例5)
樹脂F:フッ素化ポリエーテルケトン(樹脂合成例6)
樹脂G:環状オレフィン系樹脂「ゼオノア 1420R」
(日本ゼオン(株)製)
樹脂H:環状オレフィン系樹脂「APEL #6015」
(三井化学(株)製)
樹脂I:ポリカーボネート系樹脂「ピュアエース」(帝人(株)製)
樹脂J:ポリエーテルサルホン系樹脂「スミライト FS-1300」
(住友ベークライト(株)製)
樹脂K:耐熱アクリル系樹脂「アクリビュア」((株)日本触媒製)
化合物(a-1):下記式(a-1)で表されるスクアリリウム系化合物 Various compounds used in Examples and Comparative Examples are as follows.
Resin A: Cyclic olefin resin (resin synthesis example 1)
Resin B: Aromatic polyether resin (resin synthesis example 2)
Resin C: Polyimide resin (resin synthesis example 3)
Resin D: Fluorene polycarbonate resin (resin synthesis example 4)
Resin E: Fluorene polyester resin (resin synthesis example 5)
Resin F: Fluorinated polyether ketone (resin synthesis example 6)
Resin G: Cyclic Olefin Resin “Zeonor 1420R”
(Nippon Zeon Corporation)
Resin H: Cyclic olefin resin “APEL # 6015”
(Mitsui Chemicals)
Resin I: Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
Resin J: Polyethersulfone resin “Sumilite FS-1300”
(Sumitomo Bakelite Co., Ltd.)
Resin K: Heat-resistant acrylic resin "Acryviewer" (Nippon Shokubai Co., Ltd.)
Compound (a-1): A squarylium compound represented by the following formula (a-1)
樹脂A:環状オレフィン系樹脂(樹脂合成例1)
樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
樹脂C:ポリイミド系樹脂(樹脂合成例3)
樹脂D:フルオレンポリカーボネート系樹脂(樹脂合成例4)
樹脂E:フルオレンポリエステル系樹脂(樹脂合成例5)
樹脂F:フッ素化ポリエーテルケトン(樹脂合成例6)
樹脂G:環状オレフィン系樹脂「ゼオノア 1420R」
(日本ゼオン(株)製)
樹脂H:環状オレフィン系樹脂「APEL #6015」
(三井化学(株)製)
樹脂I:ポリカーボネート系樹脂「ピュアエース」(帝人(株)製)
樹脂J:ポリエーテルサルホン系樹脂「スミライト FS-1300」
(住友ベークライト(株)製)
樹脂K:耐熱アクリル系樹脂「アクリビュア」((株)日本触媒製)
化合物(a-1):下記式(a-1)で表されるスクアリリウム系化合物 Various compounds used in Examples and Comparative Examples are as follows.
Resin A: Cyclic olefin resin (resin synthesis example 1)
Resin B: Aromatic polyether resin (resin synthesis example 2)
Resin C: Polyimide resin (resin synthesis example 3)
Resin D: Fluorene polycarbonate resin (resin synthesis example 4)
Resin E: Fluorene polyester resin (resin synthesis example 5)
Resin F: Fluorinated polyether ketone (resin synthesis example 6)
Resin G: Cyclic Olefin Resin “Zeonor 1420R”
(Nippon Zeon Corporation)
Resin H: Cyclic olefin resin “APEL # 6015”
(Mitsui Chemicals)
Resin I: Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
Resin J: Polyethersulfone resin “Sumilite FS-1300”
(Sumitomo Bakelite Co., Ltd.)
Resin K: Heat-resistant acrylic resin "Acryviewer" (Nippon Shokubai Co., Ltd.)
Compound (a-1): A squarylium compound represented by the following formula (a-1)
化合物(a-2):下記式(a-2)で表されるスクアリリウム系化合物
Compound (a-2): A squarylium compound represented by the following formula (a-2)
化合物(b-1):下記式(b-1)で表されるフタロシアニン系化合物
Compound (b-1): phthalocyanine compound represented by the following formula (b-1)
化合物(b-2):下記式(b-2)で表されるフタロシアニン系化合物
Compound (b-2): phthalocyanine compound represented by the following formula (b-2)
化合物(c-1):下記式(c-1)で表されるシアニン系化合物
Compound (c-1): Cyanine compound represented by the following formula (c-1)
溶媒(1):塩化メチレン
溶媒(2):N,N-ジメチルアセトアミド
溶媒(3):酢酸エチル/トルエン(重量比:5/5)
溶媒(4):シクロヘキサン/キシレン(重量比:7/3)
溶媒(5):シクロヘキサン/塩化メチレン(重量比:99/1)
溶媒(6):N-メチル-2-ピロリドン Solvent (1): Methylene chloride Solvent (2): N, N-dimethylacetamide Solvent (3): Ethyl acetate / toluene (weight ratio: 5/5)
Solvent (4): cyclohexane / xylene (weight ratio: 7/3)
Solvent (5): cyclohexane / methylene chloride (weight ratio: 99/1)
Solvent (6): N-methyl-2-pyrrolidone
溶媒(2):N,N-ジメチルアセトアミド
溶媒(3):酢酸エチル/トルエン(重量比:5/5)
溶媒(4):シクロヘキサン/キシレン(重量比:7/3)
溶媒(5):シクロヘキサン/塩化メチレン(重量比:99/1)
溶媒(6):N-メチル-2-ピロリドン Solvent (1): Methylene chloride Solvent (2): N, N-dimethylacetamide Solvent (3): Ethyl acetate / toluene (weight ratio: 5/5)
Solvent (4): cyclohexane / xylene (weight ratio: 7/3)
Solvent (5): cyclohexane / methylene chloride (weight ratio: 99/1)
Solvent (6): N-methyl-2-pyrrolidone
また、表4における、実施例および比較例のフィルム乾燥条件は以下の通りである。
条件(1):20℃/8hr→減圧下 100℃/8hr
条件(2):60℃/8hr→80℃/8hr
→減圧下 140℃/8hr
条件(3):60℃/8hr→80℃/8hr
→減圧下 100℃/24hr
条件(4):40℃/4hr→60℃/4hr
→減圧下 100℃/8hr
なお、減圧乾燥前に、塗膜をガラス板から剥離した。 Moreover, the film drying conditions of Examples and Comparative Examples in Table 4 are as follows.
Condition (1): 20 ° C./8 hr → under reducedpressure 100 ° C./8 hr
Condition (2): 60 ° C./8 hr → 80 ° C./8 hr
→ Under reduced pressure 140 ℃ / 8hr
Condition (3): 60 ° C./8 hr → 80 ° C./8 hr
→ Underreduced pressure 100 ℃ / 24hr
Condition (4): 40 ° C./4 hr → 60 ° C./4 hr
→ Underreduced pressure 100 ℃ / 8hr
In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
条件(1):20℃/8hr→減圧下 100℃/8hr
条件(2):60℃/8hr→80℃/8hr
→減圧下 140℃/8hr
条件(3):60℃/8hr→80℃/8hr
→減圧下 100℃/24hr
条件(4):40℃/4hr→60℃/4hr
→減圧下 100℃/8hr
なお、減圧乾燥前に、塗膜をガラス板から剥離した。 Moreover, the film drying conditions of Examples and Comparative Examples in Table 4 are as follows.
Condition (1): 20 ° C./8 hr → under reduced
Condition (2): 60 ° C./8 hr → 80 ° C./8 hr
→ Under reduced pressure 140 ℃ / 8hr
Condition (3): 60 ° C./8 hr → 80 ° C./8 hr
→ Under
Condition (4): 40 ° C./4 hr → 60 ° C./4 hr
→ Under
In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
各実施例の結果から明らかなように、本発明の上記要件を満たす光学フィルターは、可視光透過率や近赤外線カット特性に優れている上に透過波長域の裾付近においても広い視野角を有し、固体撮像素子用途として要求される様々な特性を同時にバランスよく満たすことが出来る。このため、本発明の光学フィルターは、従来の光学フィルターと比べて特に固体撮像素子用途に好適に用いることが出来る。
As is clear from the results of each example, the optical filter satisfying the above requirements of the present invention has excellent visible light transmittance and near-infrared cut characteristics, and also has a wide viewing angle near the bottom of the transmission wavelength region. In addition, various characteristics required for a solid-state imaging device can be satisfied in a balanced manner. For this reason, the optical filter of the present invention can be suitably used particularly for solid-state imaging device applications as compared with conventional optical filters.
1:カメラモジュール
2:レンズ鏡筒
3:フレキシブル基板
4:中空パッケージ
5:レンズ
6、6':光学フィルター
7:CCDまたはCMOSイメージセンサー
8:光学フィルター
9:分光光度計
10:光 1: Camera module 2: Lens barrel 3: Flexible substrate 4: Hollow package 5: Lens 6, 6 ': Optical filter 7: CCD or CMOS image sensor 8: Optical filter 9: Spectrophotometer 10: Light
2:レンズ鏡筒
3:フレキシブル基板
4:中空パッケージ
5:レンズ
6、6':光学フィルター
7:CCDまたはCMOSイメージセンサー
8:光学フィルター
9:分光光度計
10:光 1: Camera module 2: Lens barrel 3: Flexible substrate 4: Hollow package 5: Lens 6, 6 ': Optical filter 7: CCD or CMOS image sensor 8: Optical filter 9: Spectrophotometer 10: Light
Claims (10)
- 近赤外線吸収色素を含有する透明樹脂製基板と、
前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有し、
下記(A)~(C)の要件を満たす光学フィルター:
(A)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上。
(B)波長800~1000nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が20%以下。
(C)波長560~800nmの領域において、光学フィルターの垂直方向から測定した場合の透過率が10%となる最も長い波長の値(Za)と、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率が10%となる最も長い波長の値(Zb)との差の絶対値|Za-Zb|が25nm未満。 A transparent resin substrate containing a near-infrared absorbing dye,
A near-infrared reflective film formed on at least one surface of the substrate;
An optical filter that satisfies the following requirements (A) to (C):
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 75% or more.
(B) In the wavelength range of 800 to 1000 nm, the average value of transmittance when measured from the vertical direction of the optical filter is 20% or less.
(C) In the wavelength range of 560 to 800 nm, the longest wavelength value (Za) at which the transmittance when measured from the vertical direction of the optical filter is 10%, and an angle of 30 ° with respect to the vertical direction of the optical filter The absolute value | Za−Zb | of the difference from the longest wavelength value (Zb) at which the transmittance is 10% when measured from is less than 25 nm. - 近赤外線吸収色素を含有する透明樹脂製基板の吸収極大波長が600~800nmである請求項1に記載の光学フィルター。 The optical filter according to claim 1, wherein the absorption maximum wavelength of the transparent resin substrate containing a near-infrared absorbing dye is 600 to 800 nm.
- 近赤外線吸収色素を含有する樹脂製基板の垂直方向から測定した場合の吸収極大波長における透過率が10%以下である請求項1または2に記載の光学フィルター。 The optical filter according to claim 1 or 2, wherein a transmittance at a maximum absorption wavelength when measured from the vertical direction of a resin substrate containing a near-infrared absorbing dye is 10% or less.
- 前記透明樹脂製基板を構成する透明樹脂が、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂である請求項1~3のいずれか1項に記載の光学フィルター。 The transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin , Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester The optical filter according to any one of claims 1 to 3, wherein the optical filter is at least one resin selected from the group consisting of a series resin and a silsesquioxane resin.
- 前記透明樹脂製基板が、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ジチオール系化合物、ジイモニウム系化合物およびポルフィリン系化合物からなる群より選ばれる少なくとも1種の近赤外線吸収色素を含有する請求項1~4のいずれか1項に記載の光学フィルター。 The transparent resin substrate is at least one kind selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, dithiol compounds, diimonium compounds and porphyrin compounds. The optical filter according to any one of claims 1 to 4, comprising an infrared absorbing dye.
- 前記近赤外線吸収色素が、式(I)で表されるスクアリリウム系化合物および式(II)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含む請求項1~5のいずれか1項に記載の光学フィルター。
(i)複数あるRaは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NReRf基を表し、ここでReおよびRfは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表し;
複数あるRbは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgRh基を表し、ここでRgおよびRhは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表し;
複数あるYは、それぞれ独立に-NRjRk基を表し、ここでRjおよびRkは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表し;
L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhであり;
前記La~Lhは、
(La)炭素数1~9の脂肪族炭化水素基、
(Lb)炭素数1~9のハロゲン置換アルキル基、
(Lc)炭素数3~14の脂環式炭化水素基、
(Ld)炭素数6~14の芳香族炭化水素基、
(Le)炭素数3~14の複素環基、
(Lf)炭素数1~9のアルコキシ基、
(Lg)炭素数1~9のアシル基、または
(Lh)炭素数1~9のアルコキシカルボニル基
を表し、前記La~Lhは、置換基Lを有していてもよく;
置換基Lは、炭素数1~9の脂肪族炭化水素基、炭素数1~9のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり;
前記La~Lhは、さらにハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種の原子または基を有していてもよく;
(ii)1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記(i)のRbおよびRaと同義である。]
(I) a plurality of R a s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, —L 1 or —NR e R f group, And R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d or -L e ;
A plurality of R b s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, —L 1 or —NR g R h group, where R g And R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , -L b represents -L c , -L d or -L e );
A plurality of Y's independently represent an —NR j R k group, wherein R j and R k are each independently a hydrogen atom, —L a , —L b , —L c , —L d, or —L represents e ;
L 1 is an L a, L b, L c , L d, L e, L f, L g or L h;
L a to L h are
(L a ) an aliphatic hydrocarbon group having 1 to 9 carbon atoms,
(L b ) a halogen-substituted alkyl group having 1 to 9 carbon atoms,
(L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms,
(L d ) an aromatic hydrocarbon group having 6 to 14 carbon atoms,
(L e ) a heterocyclic group having 3 to 14 carbon atoms,
(L f ) an alkoxy group having 1 to 9 carbon atoms,
(L g ) represents an acyl group having 1 to 9 carbon atoms, or (L h ) represents an alkoxycarbonyl group having 1 to 9 carbon atoms, and the L a to L h may have a substituent L;
The substituent L is an aliphatic hydrocarbon group having 1 to 9 carbon atoms, a halogen-substituted alkyl group having 1 to 9 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, or an aromatic carbon group having 6 to 14 carbon atoms. At least one selected from the group consisting of a hydrogen group and a heterocyclic group having 3 to 14 carbon atoms;
L a to L h further have at least one atom or group selected from the group consisting of a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an amino group. Well;
(Ii) At least one of two R a on one benzene ring is bonded to Y on the same benzene ring to form a heterocyclic ring having 5 or 6 constituent atoms containing at least one nitrogen atom. And the heterocyclic ring may have a substituent, and R b and R a that is not involved in the formation of the heterocyclic ring are independently the same as R b and R a in (i) above. ]
- 前記透明樹脂製基板と、
前記基板の両面上に形成された前記近赤外線反射膜と
を有する請求項1~6のいずれか1項に記載の光学フィルター。 The transparent resin substrate;
The optical filter according to any one of claims 1 to 6, further comprising the near-infrared reflective film formed on both surfaces of the substrate. - 固体撮像装置用である請求項1~7のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 7, which is used for a solid-state imaging device.
- 請求項1~7のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 A solid-state imaging device comprising the optical filter according to any one of claims 1 to 7.
- 請求項1~7のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 A camera module comprising the optical filter according to any one of claims 1 to 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013112885 | 2013-05-29 | ||
JP2013-112885 | 2013-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192715A1 true WO2014192715A1 (en) | 2014-12-04 |
Family
ID=51988744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063908 WO2014192715A1 (en) | 2013-05-29 | 2014-05-27 | Optical filter, and device using said filter |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201506462A (en) |
WO (1) | WO2014192715A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155634A1 (en) * | 2017-02-24 | 2018-08-30 | 株式会社オプトラン | Camera structure and image capturing device |
US10310150B2 (en) | 2015-01-14 | 2019-06-04 | AGC Inc. | Near-infrared cut filter and solid-state imaging device |
JP2019086771A (en) * | 2017-11-01 | 2019-06-06 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Optical filter, and camera module, and electronic device comprising the same |
US10351718B2 (en) | 2015-02-18 | 2019-07-16 | AGC Inc. | Optical filter and imaging device |
US10365417B2 (en) | 2015-01-14 | 2019-07-30 | AGC Inc. | Near-infrared cut filter and imaging device |
US10598834B2 (en) | 2015-12-01 | 2020-03-24 | AGC Inc. | Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter |
CN112368612A (en) * | 2018-07-03 | 2021-02-12 | 株式会社Lms | Optical substrate for fingerprint identification sensor and optical filter comprising same |
US11059977B2 (en) | 2016-02-02 | 2021-07-13 | AGC Inc. | Near-infrared-absorbing dye, optical filter, and imaging device |
WO2023095901A1 (en) | 2021-11-29 | 2023-06-01 | 三井化学株式会社 | Resin composition for forming optical component, molded object, and optical component |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102547262B1 (en) * | 2015-03-27 | 2023-06-22 | 제이에스알 가부시끼가이샤 | Optical filters and devices using optical filters |
JP6087464B1 (en) * | 2016-06-30 | 2017-03-01 | 日本板硝子株式会社 | Infrared cut filter and imaging optical system |
DE102017004828B4 (en) * | 2017-05-20 | 2019-03-14 | Optics Balzers Ag | Optical filter and method of making an optical filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012008532A (en) * | 2010-05-26 | 2012-01-12 | Jsr Corp | Near-infrared ray cut filter and device using near-infrared ray cut filter |
WO2012169447A1 (en) * | 2011-06-06 | 2012-12-13 | 旭硝子株式会社 | Optical filter, solid-state imaging element, imaging device lens and imaging device |
WO2013054864A1 (en) * | 2011-10-14 | 2013-04-18 | Jsr株式会社 | Optical filter, solid state image-capturing device using same, and camera module using same |
-
2014
- 2014-05-27 WO PCT/JP2014/063908 patent/WO2014192715A1/en active Application Filing
- 2014-05-28 TW TW103118513A patent/TW201506462A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012008532A (en) * | 2010-05-26 | 2012-01-12 | Jsr Corp | Near-infrared ray cut filter and device using near-infrared ray cut filter |
WO2012169447A1 (en) * | 2011-06-06 | 2012-12-13 | 旭硝子株式会社 | Optical filter, solid-state imaging element, imaging device lens and imaging device |
WO2013054864A1 (en) * | 2011-10-14 | 2013-04-18 | Jsr株式会社 | Optical filter, solid state image-capturing device using same, and camera module using same |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10310150B2 (en) | 2015-01-14 | 2019-06-04 | AGC Inc. | Near-infrared cut filter and solid-state imaging device |
US10365417B2 (en) | 2015-01-14 | 2019-07-30 | AGC Inc. | Near-infrared cut filter and imaging device |
US10745572B2 (en) | 2015-02-18 | 2020-08-18 | AGC Inc. | Squarylium-based dye for near-infrared optical filter |
US10351718B2 (en) | 2015-02-18 | 2019-07-16 | AGC Inc. | Optical filter and imaging device |
US10598834B2 (en) | 2015-12-01 | 2020-03-24 | AGC Inc. | Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter |
US11059977B2 (en) | 2016-02-02 | 2021-07-13 | AGC Inc. | Near-infrared-absorbing dye, optical filter, and imaging device |
JP2020074366A (en) * | 2017-02-24 | 2020-05-14 | 株式会社オプトラン | Camera structure and imaging device |
WO2018155634A1 (en) * | 2017-02-24 | 2018-08-30 | 株式会社オプトラン | Camera structure and image capturing device |
JP7148981B2 (en) | 2017-02-24 | 2022-10-06 | 株式会社オプトラン | camera structure, imaging device |
JP2019086771A (en) * | 2017-11-01 | 2019-06-06 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Optical filter, and camera module, and electronic device comprising the same |
JP7158243B2 (en) | 2017-11-01 | 2022-10-21 | 三星電子株式会社 | Optical filter, camera module and electronic device including the same |
US11719867B2 (en) | 2017-11-01 | 2023-08-08 | Samsung Electronics Co., Ltd. | Optical filter, and camera module and electronic device comprising the same |
CN112368612A (en) * | 2018-07-03 | 2021-02-12 | 株式会社Lms | Optical substrate for fingerprint identification sensor and optical filter comprising same |
WO2023095901A1 (en) | 2021-11-29 | 2023-06-01 | 三井化学株式会社 | Resin composition for forming optical component, molded object, and optical component |
KR20240039000A (en) | 2021-11-29 | 2024-03-26 | 미쓰이 가가쿠 가부시키가이샤 | Resin compositions for forming optical components, molded bodies, and optical components |
Also Published As
Publication number | Publication date |
---|---|
TW201506462A (en) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380390B2 (en) | Optical filter and apparatus using the filter | |
JP6508247B2 (en) | Optical filter and solid-state imaging device and camera module using the optical filter | |
WO2014192715A1 (en) | Optical filter, and device using said filter | |
JP6627864B2 (en) | Optical filter and device using optical filter | |
JP6256335B2 (en) | Optical filter for solid-state imaging device and use thereof | |
WO2015022892A1 (en) | Optical filter and device using optical filter | |
JP6358114B2 (en) | Optical filter and device using optical filter | |
JP6791251B2 (en) | Optical filter and equipment using optical filter | |
WO2015056734A1 (en) | Optical filter, solid-state image pickup device, and camera module | |
JP2021039369A (en) | Optical filter and device having the same | |
JP7200985B2 (en) | Optical filters, camera modules and electronics | |
JP6578718B2 (en) | Optical filter and device using optical filter | |
JP6398980B2 (en) | Optical filter and device using optical filter | |
JPWO2019022069A1 (en) | Near infrared cut filter and device using the near infrared cut filter | |
JP2015040895A (en) | Optical filter, and apparatus using optical filter | |
JP6693585B2 (en) | Optical filter and device using optical filter | |
JP7505259B2 (en) | Optical filters and their uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14803558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |