JP2020074366A - Camera structure and imaging device - Google Patents

Camera structure and imaging device Download PDF

Info

Publication number
JP2020074366A
JP2020074366A JP2019166737A JP2019166737A JP2020074366A JP 2020074366 A JP2020074366 A JP 2020074366A JP 2019166737 A JP2019166737 A JP 2019166737A JP 2019166737 A JP2019166737 A JP 2019166737A JP 2020074366 A JP2020074366 A JP 2020074366A
Authority
JP
Japan
Prior art keywords
light
infrared light
infrared
film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166737A
Other languages
Japanese (ja)
Other versions
JP7148981B2 (en
Inventor
達也 小泉
Tatsuya Koizumi
達也 小泉
修一 島田
Shuichi Shimada
修一 島田
恵一 並木
Keiichi Namiki
恵一 並木
直哉 小泉
Naoya Koizumi
直哉 小泉
大刀夫 長谷川
Tachio Hasegawa
大刀夫 長谷川
津守 昌彦
Masahiko Tsumori
昌彦 津守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optorun Co Ltd
Original Assignee
Optorun Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optorun Co Ltd filed Critical Optorun Co Ltd
Publication of JP2020074366A publication Critical patent/JP2020074366A/en
Application granted granted Critical
Publication of JP7148981B2 publication Critical patent/JP7148981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)
  • Optical Filters (AREA)
  • Lens Barrels (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Air Bags (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a camera structure capable of reducing a ghost phenomenon and a flare phenomenon.SOLUTION: A camera structure that performs capturing of an image includes an optical lens group arranged on a light incident side, an imaging element that receives light incident through the optical lens group, a near-infrared light reflection unit that reflects light in a near-infrared region, and a near-infrared light absorption unit that absorbs light in the near-infrared region, and the near-infrared light reflecting unit and the near-infrared light absorption unit are integrated and are installed on the outside side of the optical lens group.SELECTED DRAWING: Figure 10

Description

本発明は撮像装置に設けられるカメラ構造に関する。   The present invention relates to a camera structure provided in an image pickup device.

今世紀に入り、撮像装置、すなわちカメラは、固体撮像素子(撮像素子)を用いた撮像装置、いわゆるデジタルカメラが主流になった。またパーソナルコンピューター(PC)、タブレットPCやスマートフォン等の情報通信機器が普及し、日常的に使用されるようになっている。これら情報通信機器は、小型のカメラモジュールを内蔵することが多く、現在は、撮像素子の画素数が1000万を超える高性能なものを備えることもある。情報通信機器、特に携帯通信機器であるスマートフォンは薄く軽くなる傾向が強く、その部品であるカメラモジュールも小型化、省スペース化が必要になっている。また使用者にとってスマートフォンが唯一の撮像装置であることも多くなったため、カメラモジュールが小型になってもより良い画質を求める要求は強い。   In this century, as the image pickup apparatus, that is, the camera, an image pickup apparatus using a solid-state image pickup element (image pickup element), that is, a so-called digital camera has become mainstream. In addition, information communication devices such as personal computers (PCs), tablet PCs and smartphones have become widespread and are being used on a daily basis. These information communication devices often have a small camera module built therein, and at present, there is a case where a high performance device having a pixel number of the image pickup element exceeding 10 million is provided. Information and communication devices, especially smartphones, which are mobile communication devices, tend to be thin and lightweight, and the camera module, which is a component thereof, is required to be downsized and space-saving. In addition, since smartphones are often the only imaging device for users, there is a strong demand for better image quality even when the camera module becomes smaller.

近年、自動車の自動運転に対するニーズも高まっており、一部の車種においては車載カメラを利用しての自動車庫入れや、自動ブレーキ、夜間運転の補助がすでに実用化されている。車載カメラに利用されるカメラモジュールも小型化、高性能化が進んでおり、また画像認識をするため、画像からゴーストなどのノイズを除去することが強く求められている。   In recent years, there is a growing need for automatic driving of automobiles, and in some vehicle types, vehicle parking using vehicle-mounted cameras, automatic braking, and assistance for night driving have already been put into practical use. The camera modules used in vehicle-mounted cameras are becoming smaller and more sophisticated, and in order to perform image recognition, it is strongly required to remove noise such as ghosts from images.

なお光強度の大きな光源方向に撮像装置が有するレンズを向けると、レンズ面等に光が反射を繰り返して、不要な画像が写り込む現象をフレア現象(フレア)、ゴースト現象(ゴースト)と呼ぶ。画像の一部が過度に露光される現象をフレア現象と呼び、レンズ面で光が反射を繰り返してはっきりとした不要画像が映り込む現象をゴースト現象と呼ぶ。   Note that when a lens of the imaging device is directed toward a light source having high light intensity, a phenomenon in which light is repeatedly reflected on a lens surface or the like and an unnecessary image is reflected is called a flare phenomenon (flare) or a ghost phenomenon (ghost). A phenomenon in which a part of an image is overexposed is called a flare phenomenon, and a phenomenon in which light is repeatedly reflected on a lens surface and a clear unnecessary image is reflected is called a ghost phenomenon.

図11(A)で示すように、従来のカメラ構造のカメラモジュール1は、レンズユニット50、レンズキャリア40、マグネットホルダ30、光学フィルタ60、撮像素子70から主に構成され、スマートフォン筐体20に固定されている(例えば、特開2013−153361号公報参照)。このうち光学フィルタ60は、主として近赤外領域の光をカットする役割を果たしている。人間の目は波長380nm〜780nmの可視領域の光(可視光)に対して感度を持つ。一方、撮像素子は一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子に捉えられた画像をそのまま写真にすると、人間の目には自然な色合いには見えず、違和感を生じさせる原因になる。そこでカメラモジュール1は、近赤外領域の光をカットする光学フィルタ60(近赤外光カットフィルタ)を内蔵する構成としてきた。   As shown in FIG. 11A, a camera module 1 having a conventional camera structure is mainly configured by a lens unit 50, a lens carrier 40, a magnet holder 30, an optical filter 60, and an image sensor 70, and is attached to a smartphone housing 20. It is fixed (see, for example, Japanese Patent Laid-Open No. 2013-153361). Of these, the optical filter 60 mainly plays a role of cutting light in the near infrared region. The human eye has sensitivity to light in the visible region (visible light) having a wavelength of 380 nm to 780 nm. On the other hand, the image sensor generally has sensitivity to light having a longer wavelength including visible light, that is, light having a wavelength of about 1.1 μm. Therefore, if the image captured by the image sensor is taken as it is, it does not look like a natural color to the human eye, which causes a sense of discomfort. Therefore, the camera module 1 has a configuration in which an optical filter 60 (near infrared light cut filter) that cuts light in the near infrared region is incorporated.

近赤外光カットフィルタ60としては、例えばブルーガラスと呼ばれる近赤外領域の光を吸収するリン酸塩あるいは弗リン酸塩を含むガラスが用いられている。   As the near infrared light cut filter 60, for example, glass called blue glass containing phosphate or fluorophosphate that absorbs light in the near infrared region is used.

なお従来のカメラ構造が備えるカバーガラス10は、材質として強化ガラスやサファイアガラスを用いる。   The cover glass 10 included in the conventional camera structure uses tempered glass or sapphire glass as a material.

本明細書では光学レンズ群を含むレンズユニット、レンズキャリア、撮像素子、マグネットホルダなど、撮像に必須な撮像装置の内部機構をカメラモジュールと定義する。またカメラモジュールに、撮像装置の内部機構を外界から保護するカバーガラスを含めたものを、カメラ構造と定義する。   In this specification, a camera module is defined as an internal mechanism of an image pickup apparatus that is essential for image pickup, such as a lens unit including an optical lens group, a lens carrier, an image pickup element, and a magnet holder. A camera structure is defined as a camera module that includes a cover glass that protects the internal mechanism of the imaging device from the outside.

図11(B)には、従来のカメラ構造でおこなった実験の実験方法を説明する説明図を示す。実験は特定の中心波長を有する発光ダイオードを光源として、その発光を撮像した。実験では、光源300として中心波長460nmの発光ダイオードを使用した。発生するフレア現象やゴースト現象を見やすくするために、光源300の背景には低反射材320を配置し、低反射材320の周囲に高反射材310を置いた。   FIG. 11B is an explanatory diagram illustrating an experimental method of an experiment performed with a conventional camera structure. In the experiment, a light emitting diode having a specific center wavelength was used as a light source, and the emitted light was imaged. In the experiment, a light emitting diode having a center wavelength of 460 nm was used as the light source 300. In order to make it easy to see the flare phenomenon and the ghost phenomenon that occur, a low reflection material 320 is arranged in the background of the light source 300, and a high reflection material 310 is placed around the low reflection material 320.

従来のカメラ構造は、光の入射側から順に、カバーガラス10と、光学レンズ群50と、近赤外光カットフィルタ60と、撮像素子70を備える。近赤外光カットフィルタ60は光学レンズ群50と撮像素子70の間に配置される。   The conventional camera structure includes a cover glass 10, an optical lens group 50, a near-infrared light cut filter 60, and an image sensor 70 in order from the light incident side. The near infrared light cut filter 60 is arranged between the optical lens group 50 and the image pickup element 70.

図11(C)は、カバーガラス10の断面図である。カバーガラス10は、透明ガラス360に反射防止膜370を備える。反射防止膜370は透明ガラス360の光学レンズ群50側に設けられる。   FIG. 11C is a sectional view of the cover glass 10. The cover glass 10 includes a transparent glass 360 and an antireflection film 370. The antireflection film 370 is provided on the transparent glass 360 on the optical lens group 50 side.

図11(D)は、近赤外光カットフィルタ60の断面図である。近赤外光カットフィルタ60は、基材であるブルーガラス380を基準として、入射側に近赤外光反射膜390を備え、撮像素子70側に、反射防止膜370を有する。ここでブルーガラス380は近赤外光を吸収する機能を有する。   FIG. 11D is a cross-sectional view of the near infrared light cut filter 60. The near-infrared light cut filter 60 includes a near-infrared light reflecting film 390 on the incident side and an antireflection film 370 on the image pickup device 70 side with reference to the blue glass 380 as a base material. Here, the blue glass 380 has a function of absorbing near infrared light.

図11(E)は、図11(A)〜図11(D)で説明した従来のカメラ構造の撮像素子70によって撮像した画像である。光源300を中心として花びら様のゴーストGが生じており、画質が劣化していることがわかる。このようなゴースト現象は、光源300の中心波長を420nm〜660nmと変えても生じうる。   FIG. 11E is an image captured by the image sensor 70 having the conventional camera structure described with reference to FIGS. 11A to 11D. It can be seen that a petal-like ghost G occurs around the light source 300 and the image quality is deteriorated. Such a ghost phenomenon may occur even when the center wavelength of the light source 300 is changed from 420 nm to 660 nm.

特開2013−153361号公報JP, 2013-153361, A

ゴースト現象、フレア現象を低減するためには、一般にはカメラが備える光学レンズ群をより高度で複雑な構造にすること、レンズ素子自体の光反射防止コーティングをより良くすることが必要である。しかし、小型軽量でしかも安価であることが求められる情報通信機器のカメラモジュールや、車載カメラのカメラモジュールにおいては、これは困難な課題であった。   In order to reduce the ghost phenomenon and the flare phenomenon, it is generally necessary to make the optical lens group included in the camera have a higher and more complicated structure and to improve the light reflection preventing coating of the lens element itself. However, this has been a difficult problem in the camera module of the information communication device and the camera module of the in-vehicle camera, which are required to be small, lightweight and inexpensive.

ゴースト現象の主要な原因として、近赤外光の反射膜を含む近赤外線カットフィルタが撮像素子の近傍にあることが挙げられる。したがって近赤外光反射部をカメラモジュールのなるべく外界側、例えばカバーガラスに配置することで、ゴースト現象を大幅に抑制することができる。また近赤外光反射部を外界側に持ってくることで、入射角度が大きな光がカメラモジュール内に入り込むことにより生じ得る、近赤外光のカットオフ波長のシフトを防止するために、近赤外光吸収部の分光特性と近赤外光反射部の分光特性を調整して、画質が入射光の角度に依存しないようにする。   The main cause of the ghost phenomenon is that a near-infrared cut filter including a near-infrared light reflecting film is located near the image sensor. Therefore, by disposing the near-infrared light reflecting portion on the outside of the camera module as much as possible, for example, on the cover glass, the ghost phenomenon can be significantly suppressed. In addition, by bringing the near-infrared light reflection part to the outside, in order to prevent the shift of the cut-off wavelength of the near-infrared light that may occur when light with a large incident angle enters the camera module, The spectral characteristics of the infrared absorbing section and the near infrared reflecting section are adjusted so that the image quality does not depend on the angle of incident light.

(1)本発明は、撮像をおこなうカメラ構造であって、光の入射側に配置される光学レンズ群と、前記光学レンズ群を介して入射した光を受光する撮像素子と、近赤外領域の光を反射する近赤外光反射部と、近赤外領域の光を吸収する近赤外光吸収部と、を備え、前記近赤外光反射部と、前記近赤外光吸収部は、別体であることを特徴とするカメラ構造を提供する。   (1) The present invention is a camera structure for performing imaging, which includes an optical lens group arranged on a light incident side, an image sensor for receiving light incident through the optical lens group, and a near infrared region. A near-infrared light reflecting portion that reflects light, and a near-infrared light absorbing portion that absorbs light in the near-infrared region, the near-infrared light reflecting portion, and the near-infrared light absorbing portion, And a camera structure characterized by being a separate body.

上記(1)の発明によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、画質の向上という顕著な効果を奏する。   According to the invention of the above (1), since there is a degree of freedom in a place where the near-infrared light reflecting part is arranged and a place where the near-infrared light absorbing part is arranged, they are respectively arranged at optimum positions in the camera structure. As a result, the remarkable effect of improving the image quality can be achieved.

(2)本発明は、前記近赤外光反射部と前記近赤外光吸収部が、光の入射側から順に、前記近赤外光反射部、前記近赤外光吸収部と配置されることを特徴とする上記(1)に記載のカメラ構造を提供する。   (2) In the present invention, the near-infrared light reflecting portion and the near-infrared light absorbing portion are arranged in order from the light incident side to the near-infrared light reflecting portion and the near-infrared light absorbing portion. A camera structure according to (1) above is provided.

近赤外光吸収部が吸収する波長の光よりも長波長側の光は透過してしまう場合がある。そのため、光の入射側から順に、近赤外光吸収部、近赤外光反射部、と配置されると、近赤外光吸収部が吸収する波長の光よりも長波長側の光がカメラモジュール内に入射しやすくなり、長波長側の光をカットできる近赤外光反射部に到達する前に、レンズ面などに反射して迷光となることで画質を落とす原因になる。   Light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing portion may be transmitted. Therefore, when the near-infrared light absorbing part and the near-infrared light reflecting part are arranged in order from the light incident side, the light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing part is stored in the camera. It becomes easier to enter the module, and before reaching the near-infrared light reflection part that can cut the light on the long wavelength side, it is reflected by the lens surface and becomes stray light, which causes deterioration of image quality.

上記(2)の発明によれば、近赤外光反射部と近赤外光吸収部が、光の入射側から順に、近赤外光反射部、近赤外光吸収部と配置されるので、長波長側の迷光を抑止しうるという効果を奏する。   According to the invention of (2) above, the near-infrared light reflecting portion and the near-infrared light absorbing portion are arranged in order from the light incident side to the near-infrared light reflecting portion and the near-infrared light absorbing portion. The effect that stray light on the long wavelength side can be suppressed is obtained.

(3)本発明は、前記近赤外光反射部が、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されることを特徴とする上記(1)または(2)に記載のカメラ構造を提供する。   (3) The present invention is characterized in that, in the camera structure, the near-infrared light reflecting portion includes a lens element that constitutes the optical lens group, and is arranged on a light incident side of the lens element. The camera structure according to (1) or (2) above is provided.

上記(3)の発明によれば、近赤外光反射部が光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されるので、従来の近赤外光カットフィルタの位置よりも、近赤外光反射部から撮像素子からの距離が大きくなる。近赤外光反射部は、光の入射角が軸方向垂直からずれると、紫外領域の光を通しやすくなる場合がある。撮像素子からの距離が大きくなれば、近赤外光反射部から撮像素子を見込む角度が小さくなるので、近赤外光反射部を透過して撮像素子に直接到達する余分な紫外領域の光を低減しうるという効果を奏する。   According to the invention of the above (3), the near-infrared light reflecting portion includes the lens element forming the optical lens group and is arranged on the light incident side of the lens element. The distance from the near-infrared light reflector to the image sensor is larger than the position of the filter. When the incident angle of light deviates from the vertical direction in the axial direction, the near-infrared light reflecting portion may easily pass light in the ultraviolet region. The larger the distance from the image sensor, the smaller the angle of view of the image sensor from the near-infrared light reflection section, so the extra ultraviolet light that passes through the near-infrared light reflection section and reaches the image sensor directly There is an effect that it can be reduced.

(4)本発明は、前記近赤外光吸収部が、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることを特徴とする上記(1)乃至(3)のうちのいずれかに記載のカメラ構造を提供する。   (4) The present invention is characterized in that, in the camera structure, the near-infrared light absorbing portion includes a lens element that constitutes the optical lens group, and is arranged closer to the image pickup element than the lens element. A camera structure according to any one of (1) to (3) above is provided.

上記(4)の発明によれば、近赤外光吸収部は、透過率が光の入射角によらないことが多い。したがって近赤外光吸収部が、カメラ構造において、光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることで、さまざまな方向から撮像素子に入射しようとする迷光を効果的に抑制しうるという顕著な効果を奏する。   According to the invention of the above (4), the transmittance of the near-infrared light absorbing portion often does not depend on the incident angle of light. Therefore, the near-infrared light absorbing section includes a lens element that constitutes an optical lens group in the camera structure, and is arranged closer to the image pickup element than the lens element, so that the near-infrared light tends to enter the image pickup element from various directions. There is a remarkable effect that stray light can be effectively suppressed.

(5)本発明は、光が入射する側から見て前記撮像素子の少なくとも一部を覆う撮像素子カバーが、前記光学レンズ群と前記撮像素子の間に配置されることを特徴とする上記(1)乃至(4)のうちのいずれかに記載のカメラ構造を提供する。   (5) The present invention is characterized in that an image pickup device cover that covers at least a part of the image pickup device when viewed from the side on which light is incident is arranged between the optical lens group and the image pickup device. A camera structure according to any one of 1) to (4) is provided.

撮像素子上に光を透過しにくいゴミが付着すると、画質が劣化する。上記(5)の発明によれば、光が入射する側から見て撮像素子の少なくとも一部を覆う撮像素子カバーが、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置されるので、撮像素子に付着しうるゴミを低減して、画質の劣化を防ぎうるという顕著な効果を奏する。   If dust that is difficult to transmit light adheres to the image sensor, the image quality deteriorates. According to the invention of the above (5), the image sensor cover covering at least a part of the image sensor as viewed from the light incident side is disposed at a position between the optical lens group and the image sensor and close to the image sensor. Therefore, it is possible to reduce dust that may be attached to the image pickup element and prevent deterioration of image quality.

(6)本発明は、前記撮像素子カバーが、ガラスであることを特徴とする上記(5)に記載のカメラ構造を提供する。   (6) The present invention provides the camera structure according to (5), wherein the image pickup device cover is glass.

上記(6)の発明によれば、温度変化による変形が少ない撮像素子カバーを安価に作製できるという効果を奏する。   According to the invention of (6) above, there is an effect that it is possible to inexpensively manufacture an image pickup device cover that is less deformed by temperature change.

(7)本発明は、前記撮像素子カバーが、合成樹脂フィルムであることを特徴とする上記(5)に記載のカメラ構造を提供する。   (7) The present invention provides the camera structure according to (5), wherein the image pickup element cover is a synthetic resin film.

合成樹脂フィルムは、厚さ100μm以下のものが容易に作製できる。上記(7)の発明によれば、薄く安価な撮像素子カバーを安価に作製できるという効果を奏する。   A synthetic resin film having a thickness of 100 μm or less can be easily manufactured. According to the invention of (7) above, there is an effect that a thin and inexpensive imaging element cover can be manufactured at low cost.

(8)本発明は、前記撮像素子カバーの厚みが、0.2mm以下であることを特徴とする上記(5)乃至(7)のうちのいずれかに記載のカメラ構造を提供する。   (8) The present invention provides the camera structure according to any one of the above (5) to (7), wherein the thickness of the image pickup device cover is 0.2 mm or less.

上記(8)の発明によれば、従来よりも厚みの薄いカメラモジュールを提供しうるという顕著な効果を奏する。   According to the invention of the above (8), there is a remarkable effect that it is possible to provide a camera module which is thinner than the conventional one.

(9)本発明は、前記撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする上記(5)乃至(8)のうちのいずれかに記載のカメラ構造を提供する。   (9) The camera according to any one of (5) to (8) above, wherein the image pickup device cover includes an antireflection layer that prevents reflection of light in at least a visible region. Provide structure.

撮像素子カバーは、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置される。したがって撮像素子カバーが光を反射すると、撮像素子が取得する画像の画質を著しく劣化させる原因となる。   The image sensor cover is arranged at a position between the optical lens group and the image sensor and close to the image sensor. Therefore, when the image sensor cover reflects light, it causes the image quality of the image acquired by the image sensor to be significantly deteriorated.

上記(9)の発明によれば、撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることで、画質が向上するという顕著な効果を奏する。   According to the invention of the above (9), the image pickup device cover has the antireflection layer for preventing the reflection of the light in at least the visible region, so that the image quality is improved.

(10)本発明は、前記撮像素子カバーの両面に、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする上記(5)乃至(8)のうちのいずれかに記載のカメラ構造を提供する。   (10) The present invention is any one of the above (5) to (8), characterized in that an antireflection layer for preventing reflection of light in at least the visible region is provided on both surfaces of the image pickup device cover. To provide the camera structure of.

上記(10)の発明によれば、入射光をより多く取り込むことが可能になり、且つ、撮像素子カバーに起因する反射光、特に撮像素子自身からの反射光が、さらに撮像素子カバーに反射されて撮像素子に戻ることを防止し、画質が向上するという顕著な効果を奏する。   According to the invention of the above (10), it is possible to capture a larger amount of incident light, and the reflected light caused by the image sensor cover, particularly the reflected light from the image sensor itself, is further reflected by the image sensor cover. It is possible to prevent the image sensor from returning to the image pickup device and improve the image quality.

(11)本発明は、前記反射防止層が、前記撮像素子カバーの表面に形成される微細な突起からなる微細突起構造であることを特徴とする上記(9)または(10)に記載のカメラ構造を提供する。   (11) The camera according to (9) or (10) above, wherein the antireflection layer has a fine protrusion structure formed of fine protrusions formed on the surface of the image sensor cover. Provide structure.

撮像素子カバーの表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造の反射防止層は、広帯域に渡って光の反射を防止する。したがって上記(12)の発明によれば、モスアイ構造の反射防止層を形成することで、撮像素子カバーに起因する反射光が広帯域に渡って著しく低減され、画質が向上されうるという顕著な効果を奏する。   An antireflection layer having a so-called moth-eye structure, which is a fine projection structure formed of fine projections, is formed on the surface of the image sensor cover to prevent light reflection over a wide band. Therefore, according to the invention of the above (12), by forming the antireflection layer having the moth-eye structure, the reflected light caused by the image sensor cover can be significantly reduced over a wide band, and the remarkable effect that the image quality can be improved. Play.

(12)本発明は、前記反射防止層は、前記内側透明プレートの表面に形成される塗膜であることを特徴とする上記(9)または(10)に記載のカメラ構造を提供する。   (12) The present invention provides the camera structure as described in (9) or (10) above, wherein the antireflection layer is a coating film formed on the surface of the inner transparent plate.

互いに異なる光の屈折率を持つ2種類の薄膜を交互に積層した多層膜は、光の反射防止膜を形成しうる。そしてこのような多層膜は、合成樹脂を塗布することでも得られることが知られている。上記(12)の発明によれば、安価で大量に安定した品質の反射防止膜を備えた内側透明プレートを製造できるという著しい効果を奏する。   A multilayer film in which two types of thin films having different refractive indexes of light are alternately laminated can form a light antireflection film. It is known that such a multilayer film can also be obtained by applying a synthetic resin. According to the invention of the above (12), there is a remarkable effect that an inner transparent plate provided with an antireflection film having a stable quality in large quantities at a low cost can be manufactured.

(13)本発明は、前記撮像素子カバーが前記近赤外光吸収部を含むことを特徴とする上記(5)乃至(12)のうちのいずれかに記載のカメラ構造を提供する。   (13) The present invention provides the camera structure according to any one of the above (5) to (12), wherein the image pickup device cover includes the near-infrared light absorbing portion.

上記(13)の発明によれば、撮像素子カバーが近赤外光吸収部を含むので部品点数の低減、及び、カメラ構造作製における工程数の削減という顕著な効果を奏する。   According to the invention of the above (13), since the image pickup device cover includes the near-infrared light absorbing portion, the number of parts is reduced and the number of steps in manufacturing the camera structure is reduced.

(14)本発明は、前記近赤外光吸収部が、近赤外領域の光を吸収する近赤外光吸収膜であり、有機色素を含むことを特徴とする上記(1)乃至(13)のうちいずれかに記載のカメラ構造を提供する。   (14) In the invention, the near-infrared light absorbing portion is a near-infrared light absorbing film that absorbs light in the near-infrared region, and contains an organic dye. A).

上記(14)の発明によれば、近赤外光吸収部が近赤外光吸収膜を有し、近赤外光吸収膜には、近赤外光を吸収する有機色素が含まれるので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。   According to the invention of the above (14), since the near-infrared light absorbing portion has a near-infrared light absorbing film, and the near-infrared light absorbing film contains an organic dye that absorbs near-infrared light, It is possible to suppress light in the near-infrared light region with little dependency on the incident angle of light without using blue glass that is commonly used as a filter material for absorbing light in the near-infrared region. Has the effect of becoming.

(15)本発明は、前記カメラ構造が、撮像装置の内部機構を外界から保護するカバーガラスをさらに有し、該カバーガラスが前記近赤外光反射部を含むことを特徴とする上記(1)乃至(14)のうちのいずれかに記載のカメラ構造を提供する。   (15) The present invention is characterized in that the camera structure further includes a cover glass that protects an internal mechanism of the imaging device from the outside, and the cover glass includes the near-infrared light reflecting section. The present invention provides a camera structure according to any one of (1) to (14).

上記(15)の発明によれば、カバーガラスが、光を反射する近赤外光反射膜を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射膜を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。   According to the invention of (15) above, since the cover glass has the near-infrared light reflecting film that reflects light, it is possible to obtain an effect of preventing near-infrared light from the outside from entering the internal mechanism of the image pickup apparatus. Further, since it is not necessary to put a member having a near-infrared light reflecting film in a region close to the image sensor, reflection of light incident on the internal mechanism of the image pickup device can be suppressed, and as a result, stray light can be suppressed. , It can exert the effect of reducing the cause of ghost and flare.

(16)本発明は、撮像をおこなうカメラ構造であって、光の入射側に配置される光学レンズ群と、前記光学レンズ群を介して入射した光を受光する撮像素子と、近赤外領域の光を反射する近赤外光反射部と、近赤外領域の光を吸収する近赤外光吸収部とを備え、前記近赤外光反射部、及び、前記近赤外光吸収部が、前記光学レンズ群に含まれる一体の光学素子に含まれることを特徴とするカメラ構造を提供する。   (16) The present invention is a camera structure for performing imaging, comprising an optical lens group arranged on a light incident side, an image pickup element for receiving light incident through the optical lens group, and a near infrared region. A near-infrared light reflecting portion that reflects light of, and a near-infrared light absorbing portion that absorbs light in the near-infrared region, the near-infrared light reflecting portion, and the near-infrared light absorbing portion And a camera structure characterized by being included in an integrated optical element included in the optical lens group.

上記(16)の発明によれば、近赤外光反射部と近赤外光吸収部を同時に含む一体の光学素子が光学レンズ群に含まれるので、撮像素子に近接した位置に近赤外光反射膜を備えた部材を入れる必要が無くなる。したがって撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。   According to the invention of the above (16), since the optical lens group includes an integrated optical element that includes the near-infrared light reflecting portion and the near-infrared light absorbing portion at the same time, the near-infrared light is located near the image pickup element. It is not necessary to insert a member having a reflective film. Therefore, it is possible to suppress reflection of light that has entered the internal mechanism of the image pickup apparatus, and as a result, it is possible to suppress stray light and reduce the causes of ghost and flare.

(17)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部は、光の波長として685nm〜755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、前記近赤外光反射部への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光反射部は、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、前記近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とするカメラ構造を提供する。   (17) The present invention comprises a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region. Has a light absorption wavelength region having a light transmittance of less than 2% in the region of 685 nm to 755 nm as the wavelength of light, and the wavelength of the incident light to the near infrared light reflection part increases. Accordingly, when the wavelength at which the light transmittance decreases to 50% is defined as the near-infrared light cutoff wavelength, the near-infrared light reflecting portion has a light wavelength longer than the near-infrared light cutoff wavelength. When the incident angle of the incident light on the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength is always the above-mentioned. Provided is a camera structure characterized by being included in a light absorption wavelength region.

近赤外光吸収部と近赤外光反射部を合わせた効果として、所定の波長における光の透過率が1%以上となると取得画像に影響を与える。したがって近赤外光吸収部の分光特性として、光透過率が2%以上の光波長領域において、近赤外光反射部の光透過率が50%になると、取得画像の画質が肉眼で見た色味とは異なることになる。また近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。特に赤外線反射部を、カメラモジュールの外界側、具体的にはカバーガラスに配置した場合には、入射角の大きな光がカメラモジュール内に入射可能になるため、この画質悪化が顕著になる。   As a combined effect of the near-infrared light absorbing portion and the near-infrared light reflecting portion, when the light transmittance at a predetermined wavelength is 1% or more, the acquired image is affected. Therefore, as the spectral characteristic of the near-infrared light absorbing portion, when the light transmittance of the near-infrared light reflecting portion becomes 50% in the light wavelength region where the light transmittance is 2% or more, the quality of the acquired image is visually observed. It will be different from the color. In addition, when the near-infrared light reflector is formed of, for example, a dielectric multilayer film, the light transmittance changes depending on the incident angle of the incident light, so the light wavelength dependence of the transmittance at the peripheral portion and the central portion of the acquired image. Are different from each other, which causes a so-called “red drop”, which is a deterioration phenomenon of image quality. In particular, when the infrared reflecting portion is arranged on the outer side of the camera module, specifically, on the cover glass, light with a large incident angle can enter the camera module, and this image quality deterioration becomes remarkable.

上記(17)に記載の発明によれば、近赤外光吸収部と近赤外光反射部を合わせた効果として、685nm〜755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。また近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で透過率の光波長依存性が変わらなくなるため画質が向上するという優れた効果を奏する。   According to the invention described in (17) above, as a combined effect of the near-infrared light absorbing portion and the near-infrared light reflecting portion, light longer than the near-infrared light cutoff wavelength in the light wavelength region of 685 nm to 755 nm is used. Since the light transmittance is less than 1% in the wavelength region, there is an excellent effect that the difference between the image quality of the acquired image and that observed with the naked eye becomes small. Further, when the incident angle of the incident light on the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength of the near-infrared light reflecting portion always has a light transmittance of 2 Since the light absorption wavelength region is less than%, the incident angle dependence of the spectral characteristics for light in the near infrared region becomes small, and the light wavelength dependence of the transmittance does not change between the peripheral portion and the central portion of the acquired image. It has an excellent effect of improving the image quality.

(18)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部は、光の波長として685nm〜755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、前記近赤外光反射部は、光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、前記近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とする上記(1)乃至上記(16)のうちのいずれかに記載のカメラ構造を提供する。   (18) The present invention comprises a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region. Has a light absorption wavelength region having a light transmittance of less than 2% in a region of 685 nm to 755 nm as a wavelength of light, and the near-infrared light reflecting portion has a light transmittance of 50% or less. % Is defined as a near-infrared light cutoff wavelength, it has a characteristic of substantially total reflection of light having a wavelength longer than the near-infrared light cutoff wavelength, and is incident on the near-infrared light reflecting portion. When the incident angle of light is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength is always included in the light absorption wavelength region (1) to (1). A camera structure according to any one of (16) is provided.

近赤外光反射部が、カメラ構造の外界に近い側、例えばカバーガラスに設けられる場合には、入射角の大きな光までカメラ構造内に入り込む。近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
上記(18)に記載の発明によれば、近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。
When the near-infrared light reflector is provided on the side closer to the outside of the camera structure, for example, on the cover glass, even light with a large incident angle enters the camera structure. When the near-infrared light reflector is formed of, for example, a dielectric multilayer film, the light transmittance changes depending on the incident angle of the incident light, so the light transmittance changes depending on the incident angle of the incident light. The light wavelength dependence of the transmittance is different between the central part and the central part, and a so-called "red defect", which is a phenomenon of deterioration of image quality, occurs.
According to the invention described in (18) above, when the incident angle of the incident light on the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °, the near-red light of the near-infrared light reflecting portion is always displayed. Since the external light cutoff wavelength falls within the light absorption wavelength region where the light transmittance is less than 2%, the incident angle dependence of the spectral characteristics for light in the near infrared region is reduced, and the peripheral portion and the central portion of the acquired image are reduced. Since the wavelength of light that can be acquired does not change, the image quality is improved.

また赤外光吸収部と近赤外光反射部を合わせた効果として、685nm〜755nm685nm〜755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。   Further, as an effect of combining the infrared light absorbing portion and the near infrared light reflecting portion, the light transmittance is 1% in the light wavelength region longer than the near infrared light cutoff wavelength in the light wavelength region of 685 nm to 755 nm 685 nm to 755 nm. Therefore, the difference between the quality of the acquired image and that observed with the naked eye is reduced, which is also an excellent effect.

(19)本発明は、撮像装置の内部機構を外界から保護するカバーガラスと前記カバーガラス側に配置される光学レンズ群と前記カバーガラス及び前記光学レンズ群を介して入射した光を受光する撮像素子とを備え、前記カバーガラスは光を透過する透明基板と、前記近赤外光吸収部と、前記近赤外光反射部と、を有し、前記光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴とする上記(17)に記載のカメラ構造を提供する。   (19) According to the present invention, a cover glass that protects an internal mechanism of an image pickup device from the outside, an optical lens group disposed on the cover glass side, an image that receives light incident through the cover glass and the optical lens group, and imaging. An optical path from the optical lens group to the image pickup device, the cover glass including a transparent substrate that transmits light, the near-infrared light absorbing portion, and the near-infrared light reflecting portion. There is provided a camera structure according to (17) above, in which a near-infrared light cut filter for cutting light in the near-infrared region is not arranged.

近赤外光反射部が、カメラ構造の外界に最も近い側、すなわちカバーガラスに設けられので入射角の大きな光までカメラ構造内に入り込む。近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。   Since the near-infrared light reflecting portion is provided on the side closest to the outside of the camera structure, that is, on the cover glass, even light having a large incident angle enters the camera structure. When the near-infrared light reflecting portion is formed of, for example, a dielectric multilayer film, the light transmittance changes depending on the incident angle of the incident light, so that the light wavelength dependence of the light transmittance in the peripheral portion and the central portion of the acquired image is different. They are different from each other, and a phenomenon of so-called “red drop” that deteriorates the image quality occurs.

上記(19)に記載の発明によれば、近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で透過率の光波長依存性が変わらなくなるため画質が向上するという優れた効果を奏する。   According to the invention described in (19) above, when the incident angle of the incident light on the near infrared light reflecting portion is changed in the range of 0 ° to 30 °, the near red light of the near infrared light reflecting portion is always displayed. Since the external light cutoff wavelength falls within the light absorption wavelength region where the light transmittance is less than 2%, the incident angle dependence of the spectral characteristics for light in the near infrared region is reduced, and the peripheral portion and the central portion of the acquired image are reduced. Since the light wavelength dependence of the transmittance does not change, the image quality is improved.

また赤外光吸収部と近赤外光反射部を合わせた効果として、685nm〜755nmの光波長領域685nm〜755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。   In addition, as an effect of combining the infrared light absorbing portion and the near infrared light reflecting portion, the light in the light wavelength region of 685 nm to 755 nm in the light wavelength region of 685 nm to 755 nm that is longer than the near infrared light cutoff wavelength Since the transmittance is less than 1%, there is also an excellent effect that the difference between the image quality of the acquired image and that observed with the naked eye becomes small.

さらに光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないので、カメラ構造全体としての低背化に資する。   Furthermore, since no near-infrared light cut filter that cuts light in the near-infrared region is not provided between the optical paths from the optical lens group to the image pickup device, it contributes to reduction in height of the camera structure as a whole.

(20)本発明は、近赤外領域の光を遮断する近赤外光カットフィルタを備えるカメラ構造であって、前記近赤外光カットフィルタは、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義すると、前記入射光の入射角度を0°〜30°の範囲で変えた時の前記近赤外光遮断波長の角度依存変化幅が5nm以下であることを特徴とするカメラ構造を提供する。   (20) The present invention provides a camera structure including a near-infrared light cut filter that blocks light in the near-infrared region, wherein the near-infrared light cut filter emits light when the wavelength of incident light is increased. Is defined as a near-infrared light cutoff wavelength, the wavelength of which the transmittance decreases to 10% is defined as the near-infrared light cutoff wavelength when the incident angle of the incident light is changed in the range of 0 ° to 30 °. Provided is a camera structure having an angle-dependent change width of 5 nm or less.

近赤外光カットフィルタが、例えば誘電体多層膜を備える近赤外光反射部を有する場合、近赤外光反射部における光の透過率の波長依存性は、入射光の入射角度により変化する。すなわち例えば近赤外光反射部の近赤外光遮断波長が、入射光の入射角度が0°であるとき約700nm程度だったものが、入射光の入射角度が30°になると約675nmになるような入射角度依存性が生じることがある。すると近赤外光カットフィルタが近赤外光吸収部を有するとして、近赤外光反射部と組み合わせられて実現する光透過率が、入射光の入射角度によって大きく変化してしまうことがあり得る。具体的には、近赤外光反射部と近赤外吸収部を有する近赤外光カットフィルタは、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがあり得る。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動してしまうということである。例えば光の波長が660〜690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。   When the near-infrared light cut filter has a near-infrared light reflecting portion including, for example, a dielectric multilayer film, the wavelength dependence of the light transmittance in the near-infrared light reflecting portion changes depending on the incident angle of the incident light. .. That is, for example, the near-infrared light cutoff wavelength of the near-infrared light reflection part was about 700 nm when the incident angle of the incident light was 0 °, but was about 675 nm when the incident angle of the incident light was 30 °. Such incident angle dependence may occur. Then, assuming that the near-infrared light cut filter has a near-infrared light absorbing portion, the light transmittance realized by combining with the near-infrared light reflecting portion may change greatly depending on the incident angle of the incident light. .. Specifically, a near-infrared light cut filter having a near-infrared light reflecting portion and a near-infrared light absorbing portion blocks near-infrared light when the incident angle of incident light is changed in the range of 0 ° to 30 °. The angle-dependent change width of the wavelength may be about 30 nm. Conversely speaking, the light transmittance of the near-infrared light cut filter largely changes depending on the incident angle of the incident light at a predetermined light wavelength in the near-infrared light region. For example, if light with a wavelength of 660 to 690 nm is incident, the light transmittance is about 20% when the incident angle is small at the central portion of the acquired image, and the light transmission is large when the incident angle is large at the peripheral portion of the acquired image. The phenomenon that the transmittance becomes almost 0% occurs, and as a result, the light wavelength dependency of the transmittance is different between the peripheral portion and the central portion of the acquired image, so that a so-called "red defect" that deteriorates the image quality occurs.

上記(20)に記載の発明によれば、近赤外光カットフィルタにおいて、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が5nm以下なので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。   According to the invention described in (20) above, in the near-infrared light cut filter, the angle-dependent change width of the near-infrared light cutoff wavelength when the incident angle of the incident light is changed in the range of 0 ° to 30 °. Since the thickness is 5 nm or less, a difference in color expression in the acquired image is less likely to occur, and an excellent effect of improving image quality is achieved.

(21)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部の光透過率は、光の波長について700nm〜750nmの範囲で2%未満であり、光の波長について630nm〜750nmの範囲、且つ、光の透過率が2%以上の範囲で、前記近赤外光吸収部の光透過率の周波数依存曲線が、前記近赤外光反射部に入射する入射角度が0°〜30°の時の前記近赤外光反射部の光透過率の周波数依存曲線よりも、短波長側にあることを特徴とするカメラ構造を提供する。   (21) The present invention comprises a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region. Has a light transmittance of less than 2% in a wavelength range of 700 nm to 750 nm, a light wavelength of 630 nm to 750 nm, and a light transmittance of 2% or more in the near infrared range. From the frequency dependence curve of the light transmittance of the light absorption portion, the frequency dependence curve of the light transmittance of the near infrared light reflection portion when the incident angle of the light incident on the near infrared light reflection portion is 0 ° to 30 ° Also provides a camera structure characterized by being on the short wavelength side.

上記(21)に記載の発明によれば、近赤外光反射部における光透過率の波長依存性が入射光の入射角度によって変化する現象が生じても、近赤外光反射部と近赤外光吸収部を合わせて考えたときの近赤外光領域における光透過率の分光特性が、近赤外光吸収部の光透過率の分光特性に支配されるので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。   According to the invention described in (21) above, even if the wavelength dependency of the light transmittance in the near infrared light reflecting portion changes depending on the incident angle of the incident light, the near infrared light reflecting portion and the near infrared light reflecting portion Since the spectral characteristics of light transmittance in the near-infrared light region when considering the external light absorption part together are governed by the spectral characteristics of the light transmittance of the near-infrared light absorption part, the color in the acquired image The difference is less likely to occur in the expression of, and the excellent effect of improving the image quality is achieved.

(22)本発明は、上記(1)乃至上記(21)のいずれかに記載のカメラ構造を有することを特徴とする撮像装置を提供する。   (22) The present invention provides an imaging device having the camera structure according to any one of (1) to (21) above.

上記(22)の発明によれば、従来よりも画質が向上したカメラ構造を搭載する撮像装置を安価に実現できるという著しい効果を奏する。   According to the invention of the above (22), there is a remarkable effect that an image pickup apparatus equipped with a camera structure having improved image quality can be realized at a low cost as compared with the related art.

本発明によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、撮像装置における画質の向上という顕著な効果を奏しうる。   According to the present invention, since there is a degree of freedom in the place where the near-infrared light reflecting part is arranged and the place where the near-infrared light absorbing part is arranged, it becomes possible to arrange them in the optimum positions in the camera structure. The remarkable effect of improving the image quality in the imaging device can be achieved.

(A)本発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。(C)近赤外光吸収部を含む近赤外光吸収機能付き撮像素子カバーの構造図である。(A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is the imaging device which concerns on 1st embodiment of this invention. (B) is a structural diagram of a cover glass having a near-infrared light reflecting function including a near-infrared light reflecting portion. (C) is a structural diagram of an image sensor cover with a near-infrared light absorbing function including a near-infrared light absorbing portion. (A)光学フィルタ機能付きカバーガラスの構造図である。(B)近赤外光反射膜についての分光透過率の入射角度依存性を示す図である。(C)入射角度の定義を説明する説明図である。(A) It is a structural diagram of a cover glass with an optical filter function. (B) is a diagram showing the incident angle dependence of the spectral transmittance of the near-infrared light reflecting film. (C) It is explanatory drawing explaining the definition of an incident angle. 近赤外光吸収膜と近赤外光反射膜を備えた光学フィルタ機能付きカバーガラスにおける分光透過率の入射角度依存性を示す図である。It is a figure which shows the incident angle dependence of the spectral transmittance in the cover glass with an optical filter function provided with the near-infrared light absorption film and the near-infrared light reflection film. 光学フィルタ機能付きカバーガラス、近赤外光吸収膜を備えたガラス、近赤外光反射膜を備えたガラスについて分光透過率を比較した図である。It is a figure which compared the spectral transmittance about the cover glass with an optical filter function, the glass provided with the near-infrared light absorption film, and the glass provided with the near-infrared light reflection film. デュアルバンドのカバーガラスについての分光透過率を説明する説明図である。It is explanatory drawing explaining the spectral transmittance about the cover glass of a dual band. (A)本発明の第三の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。(C)近赤外光吸収機能付きプレートの構造図である。(D)透明ガラスを基材として反射防止層を複数備えた撮像素子カバーの構造図である。(E)両面に反射防止機能を発揮するモスアイ構造を備えた透明合成樹脂フィルムを基材とした撮像カバーの構造図である。(A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is an imaging device which concerns on 3rd embodiment of this invention. (B) is a structural diagram of a cover glass having a near-infrared light reflecting function including a near-infrared light reflecting portion. (C) is a structural diagram of a plate with a near-infrared light absorbing function. (D) is a structural diagram of an image pickup device cover including a plurality of antireflection layers using transparent glass as a base material. (E) is a structural diagram of an image pickup cover using a transparent synthetic resin film as a base material having a moth-eye structure exhibiting an antireflection function on both sides. (A)本発明の第四の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光吸収部を備えた光学レンズ素子をふくむレンズユニットの断面図である。(C)近赤外光吸収部を備えた光学レンズ素子をふくむレンズユニットの断面図である。(A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is the imaging device which concerns on 4th Embodiment of this invention. (B) is a cross-sectional view of a lens unit including an optical lens element having a near-infrared light absorbing portion. (C) is a cross-sectional view of a lens unit including an optical lens element having a near-infrared light absorbing portion. (A)本発明の第五の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む光学レンズ素子と近赤外光吸収部を含む光学レンズ素子を備えるレンズユニットの断面図である。(A) It is sectional drawing of the camera structure applied to the imaging device which concerns on 5th Embodiment of this invention. FIG. 3B is a cross-sectional view of a lens unit including an optical lens element including a near infrared light reflecting portion and an optical lens element including a near infrared light absorbing portion. (A)本発明の第六の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光吸収部を含む近赤外光吸収機能付き光学素子を備えるレンズユニットの断面図である。(C)近赤外光吸収機能付き光学素子の構造図である。(A) It is sectional drawing of the camera structure applied to the imaging device which concerns on the 6th Embodiment of this invention. (B) is a cross-sectional view of a lens unit including an optical element having a near-infrared light absorbing function including a near-infrared light absorbing portion. FIG. 3C is a structural diagram of an optical element with a near infrared light absorption function. (A)本発明の第7の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光反射部、及び、近赤外光吸収部を含む光学フィルタ機能付き光学素子を備えるレンズユニットの断面図である。(C)光学フィルタ機能付き光学素子530の構造図である。(A) It is sectional drawing of the camera structure applied to the imaging device which concerns on the 7th Embodiment of this invention. FIG. 3B is a cross-sectional view of a lens unit including an optical element with an optical filter function that includes a near-infrared light reflecting portion and a near-infrared light absorbing portion. (C) is a structural diagram of an optical element 530 with an optical filter function. (A)携帯通信機器における従来のカメラ構造の断面図である。(B)従来のカメラ構造でおこなった実験の実験方法を説明する説明図である。(C)従来のカバーガラスの断面図である。(D)従来の近赤外光カットフィルタの断面図である。(E)従来のカメラ構造によって撮像した画像である。(A) It is sectional drawing of the conventional camera structure in a mobile communication apparatus. (B) It is explanatory drawing explaining the experiment method of the experiment conducted with the conventional camera structure. (C) It is sectional drawing of the conventional cover glass. (D) It is sectional drawing of the conventional near-infrared light cut filter. (E) An image taken by a conventional camera structure. (A)従来の光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。(B)近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。(A) is a graph showing the spectral characteristics of light transmittance in the near-infrared light absorbing section using the conventional light-absorbing ink and the incident light angle dependence of the spectral characteristics of light transmittance in the near-infrared light reflecting section. .. (B) is a graph showing the incident light angle dependency of the spectral characteristics of the light transmittance when the near-infrared light absorbing portion and the near-infrared light reflecting portion are combined. (A)近赤外光領域において光吸収帯が従来よりも広い光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。(B)近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。(A) Spectral characteristics of light transmittance in the near-infrared light absorbing portion and light transmittance spectrum in the near-infrared light reflecting portion using a light-absorbing ink having a light absorption band wider than that in the near-infrared light region It is a graph which shows the incident light angle dependence of a characteristic. (B) is a graph showing the incident light angle dependency of the spectral characteristics of the light transmittance when the near-infrared light absorbing portion and the near-infrared light reflecting portion are combined. (A)本発明の第九実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)反射防止膜を複数備えた光学フィルタ機能付きカバーガラスの構造図である。(A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is the imaging device which concerns on 9th Embodiment of this invention. FIG. 3B is a structural diagram of a cover glass with an optical filter function, which includes a plurality of antireflection films.

以下、本発明の実施の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図10及び図12〜図14は、発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。   1 to 10 and FIGS. 12 to 14 are examples of embodiments for carrying out the invention, and in the drawings, parts denoted by the same reference numerals represent the same things.

図1(A)は、本発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。   FIG. 1A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging device according to the first embodiment of the present invention.

当該カメラ構造は、撮像装置の内部機構を外界から保護する近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、撮像装置の内部機構である光学レンズ群、すなわちレンズユニット50と、レンズユニット50を保持するレンズキャリア40と、自動焦点機能を実現するためにレンズユニット50を軸方向に移動させるマグネットホルダ30と、近赤外光反射機能付きカバーガラス215及びレンズユニット50を介して入射した光を受光する撮像素子70と、レンズユニット50と撮像素子70の間に配置され、光を透過する透明ガラスを基材とした、近赤外光吸収機能付き撮像素子カバー244を備える。近赤外光吸収機能付き撮像素子カバー244は、軸方向、レンズユニット50側から撮像素子70を見たときに、撮像素子70表面の少なくとも一部分を覆っている。   The camera structure includes a cover glass 215 with a near-infrared light reflecting function that protects the internal mechanism of the imaging device from the outside world, and the camera module 1. The camera module 1 moves the lens unit 50 in the axial direction to realize an optical lens group which is an internal mechanism of the image pickup apparatus, that is, a lens unit 50, a lens carrier 40 holding the lens unit 50, and an autofocus function. The magnet holder 30, the image pickup device 70 that receives light that has entered through the cover glass 215 with a near-infrared light reflecting function, and the lens unit 50 are arranged between the lens unit 50 and the image pickup device 70, and transmit light. An image sensor cover 244 having a near-infrared light absorbing function, which is made of transparent glass as a base material, is provided. The image sensor cover 244 with a near-infrared light absorbing function covers at least a part of the surface of the image sensor 70 when the image sensor 70 is viewed from the lens unit 50 side in the axial direction.

図1(B)は、近赤外光反射部を含む近赤外光反射機能付きカバーガラス215の構造図である。近赤外光反射機能付きカバーガラス215は、光を透過する透明基板として結晶化ガラス130を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120が、結晶化ガラス130を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜110を備える。光の出射側に、結晶化ガラス130を基準として最も遠い側から順に、反射防止膜120と、近赤外領域の光を反射する近赤外反射部である近赤外光反射膜150を形成する。   FIG. 1B is a structural diagram of a cover glass 215 having a near infrared light reflecting function including a near infrared light reflecting portion. The cover glass 215 with a near-infrared light reflecting function uses the crystallized glass 130 as a transparent substrate that transmits light, and reflects the light in the ultraviolet region and prevents the reflection of the light in the visible region. Are formed on the light incident side with reference to the crystallized glass 130. An antifouling coating film 110 for preventing contamination from the outside is provided on the outermost side of the light incident side. An antireflection film 120 and a near-infrared light reflection film 150 that is a near-infrared reflection part that reflects light in the near-infrared region are formed on the light emission side in order from the farthest side with respect to the crystallized glass 130. To do.

なお、近赤外光反射機能付きカバーガラス215において、最も撮像素子70側の反射防止膜120は無くても良い。   In the cover glass 215 with a near-infrared light reflecting function, the antireflection film 120 closest to the image pickup device 70 may be omitted.

図1(C)は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収部である近赤外光吸収膜140をさらに備える近赤外光吸収機能付き撮像素子カバー244の構造図である。すなわち近赤外光吸収機能付き撮像素子カバー244は両面に、少なくとも可視領域の光の反射を防止する反射防止層230を備える。反射防止層230は、反射防止膜120と類似した材質、構造を持ち、作製方法も同様である。   FIG. 1C includes a plurality of antireflection layers 230 that prevent reflection of light at least in the visible region, and further includes a near-infrared light absorption film 140 that is a near-infrared light absorption portion with a near-infrared light absorption function. 6 is a structural diagram of an image sensor cover 244. FIG. That is, the image pickup device cover 244 with a near infrared light absorption function is provided on both sides with an antireflection layer 230 that prevents reflection of light in at least the visible region. The antireflection layer 230 has a material and structure similar to those of the antireflection film 120, and the manufacturing method is also the same.

近赤外光吸収機能付き撮像素子カバー244は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230は、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。   The imaging element cover 244 with a near infrared light absorption function uses the transparent glass 220 as a base material, and the near infrared light absorption film 140 is provided adjacent to the transparent glass 220. The antireflection layer 230 is formed on the light incident side with respect to the transparent glass 220, and the antireflection layer 230 and the near-infrared light absorbing film are sequentially arranged on the light emission side from the farthest side with respect to the transparent glass 220. 140 is provided.

すなわち発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造は、光の入射側に配置される光学レンズ群(光学ユニット50)と、レンズユニット50を介して入射した光を受光する撮像素子70と、近赤外領域の光を反射する近赤外光反射部である近赤外光反射膜150と、近赤外領域の光を吸収する近赤外光吸収部である近赤外光吸収膜140とを備え、近赤外光反射部と、近赤外光吸収部は、別体に形成されることを特徴とするカメラ構造である。近赤外光反射部である近赤外光反射膜150と、近赤外光吸収部である近赤外光吸収膜140が、光の入射側から順に、近赤外光反射膜150、近赤外光吸収膜140と配置される。近赤外光反射部である近赤外光反射膜150が、当該カメラ構造において、レンズユニット50を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置される。近赤外光吸収部である近赤外光吸収膜140が、当該カメラ構造において、レンズユニット50を構成するレンズ素子を含み、該レンズ素子よりも撮像素子70側に配置される。光が入射する側から見て撮像素子70の少なくとも一部を覆う近赤外光吸収機能付き撮像素子カバー244が、レンズユニット50と撮像素子70の間に配置される。近赤外光吸収機能付き撮像素子カバー244は前記撮像素子近赤外光吸収部を含む。近赤外光吸収部は、近赤外領域の光を吸収する近赤外光吸収膜140であり、有機色素を含む。当該カメラ構造は、撮像装置の内部機構を外界から保護する近赤外光反射機能付きカバーガラス215をさらに有し、該カバーガラスが近赤外光反射部である近赤外光反射膜150を含む。   That is, the camera structure applied to the mobile communication device A, which is the image pickup apparatus according to the first embodiment of the present invention, includes an optical lens group (optical unit 50) arranged on the light incident side and an incident light through the lens unit 50. Image sensor 70 that receives the light, a near-infrared light reflecting film 150 that is a near-infrared light reflecting portion that reflects light in the near-infrared region, and a near-infrared light absorption that absorbs light in the near-infrared region. The near-infrared light absorbing film 140, which is a portion, is formed, and the near-infrared light reflecting portion and the near-infrared light absorbing portion are formed as separate bodies. The near-infrared light reflecting film 150, which is a near-infrared light reflecting portion, and the near-infrared light absorbing film 140, which is a near-infrared light absorbing portion, are arranged in this order from the light incident side. It is arranged with the infrared light absorbing film 140. The near-infrared light reflecting film 150, which is a near-infrared light reflecting portion, includes a lens element that constitutes the lens unit 50 in the camera structure, and is arranged on the light incident side of the lens element. The near-infrared light absorbing film 140 that is a near-infrared light absorbing portion includes a lens element that forms the lens unit 50 in the camera structure, and is arranged closer to the image pickup element 70 than the lens element. An image sensor cover 244 with a near-infrared light absorbing function, which covers at least a part of the image sensor 70 when viewed from the side on which light is incident, is arranged between the lens unit 50 and the image sensor 70. The image pickup device cover 244 with a near infrared light absorption function includes the image pickup device near infrared light absorption section. The near infrared light absorbing section is a near infrared light absorbing film 140 that absorbs light in the near infrared region, and contains an organic dye. The camera structure further includes a cover glass 215 with a near-infrared light reflecting function that protects the internal mechanism of the image pickup device from the outside, and the cover glass includes a near-infrared light reflecting film 150 that is a near-infrared light reflecting portion. Including.

なお近赤外光吸収機能付き撮像素子カバー244を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。   As a means for realizing the image pickup element cover 244 with a near-infrared light absorption function, for example, as a base material, a thin plate of synthetic resin containing at least a part of an organic dye absorbing light in the near-infrared region is used. Is also good. Further, a so-called blue glass plate that absorbs light in the near infrared region may be used as in the conventional near infrared light cut filter. It is also possible to attach a film that cuts near-infrared light to a transparent plate to realize it.

一般に結晶化ガラスは、結晶粒子が大きいため光を通しにくかった。しかし最近の技術の進歩により、例えば株式会社オハラ社製の耐衝撃・高硬度クリアガラスセラミックスのように、結晶粒子をナノメートルサイズに制御することが可能になり光の透過率が高まった。このような結晶化ガラスを使えば、耐衝撃性とクラックが入りにくい破壊靱性を兼ね備えたカバーガラスを製造することができる。そしてこのようなカバーガラスに上記の積層構造を形成することで近赤外光反射機能付きカバーガラス215が実現される。なお近赤外光反射機能付きカバーガラス215としてブルーガラスを使用することも理論上は考えられるが、耐衝撃性が低く、またクラックが入りにくい破壊靱性に欠けるため適切でない。強化ガラスに、後述する近赤外光反射膜150を成膜して近赤外光反射機能付きカバーガラス215とすることも考えられるが、結晶化ガラス130を使う場合に比べて耐衝撃性が低い欠点を持つ。また硬度が高いサファイアガラスに、近赤外光反射膜150を成膜して近赤外光反射機能付きカバーガラス215とすることも考えられるが、コストが著しく上がり、また結晶化ガラス130を使う場合に比べて加工性が低い。   In general, crystallized glass has a large crystal grain, which makes it difficult to transmit light. However, recent technological advances have made it possible to control the crystal particles to a nanometer size, as in the case of impact-resistant and high-hardness clear glass ceramics manufactured by Ohara Co., Ltd., thereby increasing the light transmittance. By using such a crystallized glass, it is possible to produce a cover glass having both impact resistance and fracture toughness in which cracking is unlikely to occur. The cover glass 215 with a near-infrared light reflecting function is realized by forming the above laminated structure on such a cover glass. Although it is theoretically possible to use blue glass as the cover glass 215 with a near-infrared light reflecting function, it is not suitable because it has low impact resistance and lacks fracture toughness in which cracks are less likely to occur. It is conceivable to form a near-infrared light reflecting film 150, which will be described later, on the tempered glass to form the cover glass 215 with a near-infrared light reflecting function, but the impact resistance is higher than that when the crystallized glass 130 is used. Has a low drawback. It is also conceivable to form the near-infrared light reflection film 150 on the sapphire glass having high hardness to form the cover glass 215 with a near-infrared light reflection function, but the cost is significantly increased, and the crystallized glass 130 is used. Workability is low compared to the case.

防汚コート膜110は、指紋汚れ、皮脂汚れを防ぐとともに、汚れを拭き取りやすくする。防汚コート膜110はフッ素系のコーティング剤等で形成され、塗布やスプレーにより、カバーガラスの積層構造において光の入射側の最も外側に成膜される。   The antifouling coat film 110 prevents fingerprint stains and sebum stains and makes it easier to wipe the stains. The antifouling coating film 110 is formed of a fluorine-based coating agent or the like, and is formed by coating or spraying on the outermost side of the cover glass laminated structure on the light incident side.

反射防止膜120は、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する。反射防止膜120は誘電体多層膜であり、且つ、窒化膜と酸化膜を交互に積層して構成される。反射防止膜120を構成する誘電体膜は、窒化膜と酸化膜を交互に複数積層して構成される。窒化膜としては、窒化ケイ素、酸窒化ケイ素または窒化アルミニウムなどを用いることができる。酸窒化ケイ素を用いる場合には、酸素と窒素との化学量論比(酸素/窒素)が1以下であることが望ましい。酸化膜としては、酸化ケイ素(SiO2)、酸化アルミニウム(Al2O3)などを用いることができる。反射防止膜120の膜として窒化ケイ素または酸窒化ケイ素を用いることにより、後述する近赤外光反射膜150と同じ成膜方法及び成膜装置を用いて反射防止膜120を形成することができるのでプロセス的に有利である。   The antireflection film 120 reflects light in the ultraviolet region and suppresses reflection of light in the visible region. The antireflection film 120 is a dielectric multi-layer film and is formed by alternately laminating a nitride film and an oxide film. The dielectric film forming the antireflection film 120 is formed by alternately stacking a plurality of nitride films and oxide films. As the nitride film, silicon nitride, silicon oxynitride, aluminum nitride, or the like can be used. When using silicon oxynitride, the stoichiometric ratio of oxygen to nitrogen (oxygen / nitrogen) is preferably 1 or less. Silicon oxide (SiO2), aluminum oxide (Al2O3), or the like can be used as the oxide film. By using silicon nitride or silicon oxynitride as the film of the antireflection film 120, the antireflection film 120 can be formed by using the same film forming method and film forming apparatus as those of the near infrared light reflecting film 150 described later. It has a process advantage.

反射防止膜120は、窒化膜の代わりに酸化膜を用いることもできる。このような酸化膜の材質としては、酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いることができる。なお反射防止膜120を屈折率の異なる複数種類の酸化膜で構成する場合には、前記酸化物から適宜選択する。   As the antireflection film 120, an oxide film may be used instead of the nitride film. As a material of such an oxide film, in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), etc. may be used. it can. When the antireflection film 120 is composed of a plurality of types of oxide films having different refractive indexes, it is appropriately selected from the above oxides.

反射防止膜120は、公知の成膜方法、たとえば真空蒸着法、スパッタ法、イオンビームアシスト蒸着法(IAD法)、イオンプレーティング法(IP法)、イオンビームスパッタ法(IBS法)などを用いることができる。窒化膜の成膜には、スパッタ法、イオンビームスパッタ法を用いることが望ましい。   The antireflection film 120 uses a known film forming method, for example, a vacuum evaporation method, a sputtering method, an ion beam assisted evaporation method (IAD method), an ion plating method (IP method), an ion beam sputtering method (IBS method), or the like. be able to. It is desirable to use a sputtering method or an ion beam sputtering method for forming the nitride film.

近赤外光吸収膜140は、可視領域の光を透過するとともに、赤色領域から近赤外領域の光の一部を吸収する機能を有する。近赤外光吸収膜140には、有機色素が含まれ、650nmから750nmの範囲に最大吸収波長を有する樹脂膜から構成される(図4破線参照)。近赤外光吸収膜140は、結晶化ガラス130に隣接するため、両者の屈折率差を小さくして界面での反射率を低下させることが望ましい。このような近赤外光吸収膜140を有することにより、入射角度による分光透過率特性の依存性を低減して優れた近赤外光カット性を有することができる。   The near-infrared light absorption film 140 has a function of transmitting light in the visible region and absorbing part of light in the red region to the near-infrared region. The near-infrared light absorption film 140 contains an organic dye and is composed of a resin film having a maximum absorption wavelength in the range of 650 nm to 750 nm (see broken line in FIG. 4). Since the near-infrared light absorbing film 140 is adjacent to the crystallized glass 130, it is desirable to reduce the difference in refractive index between the two and reduce the reflectance at the interface. By having such a near-infrared light absorption film 140, it is possible to reduce the dependence of the spectral transmittance characteristic depending on the incident angle and to have an excellent near-infrared light cutting property.

有機色素としては、アゾ系化合物、フタロシアニン系化合物、シアニン系化合物、ジイ
モニウム系化合物などを用いることができる。近赤外光吸収膜140を構成するバインダー(色素の結着剤)としての樹脂材料としては、ポリアクリル、ポリエステル、ポリカーボネイト、ポリスチレン、ポリオレフィンなどを用いることができる。樹脂材料は、複数の樹脂を混合してもよく、また上記樹脂のモノマーを用いた共重合体であってもよい。また、樹脂材料は、可視領域の光に対して透過率の高いものであればよく、有機色素との相性、成膜プロセス、コスト等を考慮して選択される。また、近赤外光吸収膜140の耐紫外線性を向上させるために、樹脂材料に硫黄化合物などのクエンチャー(消光色素)を添加してもよい。
As the organic dye, an azo compound, a phthalocyanine compound, a cyanine compound, a diimonium compound, or the like can be used. As a resin material as a binder (a binder for a dye) forming the near infrared light absorbing film 140, polyacryl, polyester, polycarbonate, polystyrene, polyolefin, or the like can be used. The resin material may be a mixture of a plurality of resins, or may be a copolymer using monomers of the above resins. Further, the resin material may be any material as long as it has a high transmittance for light in the visible region, and is selected in consideration of compatibility with the organic dye, film forming process, cost and the like. Further, a quencher (quenching dye) such as a sulfur compound may be added to the resin material in order to improve the ultraviolet resistance of the near infrared light absorption film 140.

近赤外光吸収膜140の形成には、たとえば以下の方法を用いることができる。まず、樹脂バインダーをメチルエチルケトン、トルエン等の公知の溶剤によって溶解し、さらに上述の有機色素を添加して塗布液を調製する。次いで、この塗布液をたとえばスピンコート法により結晶化ガラス130に所望の膜厚で塗布し、乾燥炉にて乾燥、硬化させる。   For example, the following method can be used to form the near infrared light absorption film 140. First, a resin binder is dissolved in a known solvent such as methyl ethyl ketone or toluene, and the above-mentioned organic dye is added to prepare a coating liquid. Next, this coating solution is applied to the crystallized glass 130 with a desired film thickness by, for example, a spin coating method, and dried and cured in a drying furnace.

近赤外光反射膜150は、反射防止膜120と同様に屈折率の異なる誘電体を交互に複数積層して形成される誘電体多層膜である。ただし近赤外光反射膜150を構成する誘電体多層膜は、屈折率が互いに異なる複数種類の酸化膜を複数積層させることで形成され、隣接する前記酸化膜は互いに異なる種類の酸化膜である。本第一実施形態で近赤外光反射膜150は、2種類の酸化膜を交互に数十層積層して形成される。酸化膜としては酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いる。   The near-infrared light reflection film 150 is a dielectric multi-layer film formed by alternately laminating a plurality of dielectrics having different refractive indexes, like the antireflection film 120. However, the dielectric multilayer film forming the near-infrared light reflecting film 150 is formed by stacking a plurality of types of oxide films having different refractive indexes, and the adjacent oxide films are different types of oxide films. .. In the first embodiment, the near-infrared light reflecting film 150 is formed by alternately stacking dozens of layers of two kinds of oxide films. As the oxide film, in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), or the like is used.

近赤外光反射膜150において、それぞれの酸化膜の膜厚は、反射をしたい光の波長をλとして、λ/4の厚みで形成する。こうすることで交互層のすべての界面から反射された光は、入射面に達すると同じ位相になり、光は強め合う結果になる、つまり波長λ付近で反射率が大きくなって光反射膜として機能する。本実施形態においては、λとして近赤外領域の光を反射するように膜の設計を行えば良い。なお近赤外光反射膜150についても、上述の反射防止膜120と同様の成膜方法及び成膜装置を用いて成膜する。   In the near-infrared light reflection film 150, each oxide film is formed to have a thickness of λ / 4, where λ is the wavelength of light to be reflected. By doing so, the light reflected from all the interfaces of the alternating layers will have the same phase when reaching the incident surface, and the light will be mutually strengthened. Function. In the present embodiment, the film may be designed to reflect light in the near infrared region as λ. Note that the near-infrared light reflecting film 150 is also formed by using the same film forming method and film forming apparatus as those for the antireflection film 120 described above.

人間の目は、波長380nm〜780nmのいわゆる可視光に対して感度を持つ。一方、撮像素子は、一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子で捉える画像をそのまま写真にすると、自然な色合いには見えず、違和感を生じる原因になる。   The human eye has sensitivity to so-called visible light having a wavelength of 380 nm to 780 nm. On the other hand, the image sensor generally has sensitivity to light having a longer wavelength including visible light, that is, light having a wavelength of about 1.1 μm. Therefore, if the image captured by the image sensor is taken as a photograph, it does not look like a natural color, which causes a feeling of strangeness.

近赤外光反射部、及び、近赤外光吸収部を有する一体の光学フィルタ機能付きカバーガラス100を、例えば図2(A)のような積層構造として形成すると、誘電体多層膜による近赤外光反射膜150を備えるため、近赤外光吸収膜140では吸収しきれない700nm以上の長さの波長の光をカットして、自然な色合いの画像を取得することが可能になる。また近赤外光反射膜150だけで近赤外領域の光をカットしようとすると、後述するように入射光の入射角度により反射率が大きく変化してしまう。近赤外光反射膜150と、光吸収率について入射角度依存性のない近赤外光吸収膜140とを組み合わせることで、光の透過率が、光の入射角度に対して依存性の少ない近赤外光カットフィルタを構成することが可能になる。   When the integrated cover glass 100 having an optical filter function, which has a near-infrared light reflecting portion and a near-infrared light absorbing portion, is formed as a laminated structure as shown in FIG. Since the external light reflection film 150 is provided, it becomes possible to cut light having a wavelength of 700 nm or more that cannot be completely absorbed by the near-infrared light absorption film 140, and obtain an image with a natural hue. Further, if it is attempted to cut the light in the near-infrared region only by the near-infrared light reflecting film 150, the reflectance will largely change depending on the incident angle of the incident light, as will be described later. By combining the near-infrared light reflection film 150 and the near-infrared light absorption film 140 that does not depend on the incident angle of the light absorption rate, the light transmittance of the near-infrared light absorption film has little dependence on the incident angle of light. It becomes possible to configure an infrared light cut filter.

また、スマートフォン筐体20内のカメラを外界から保護するカバーガラス100が反射防止膜120により紫外領域の光をカットすることができるので、カメラの構成部品である合成樹脂で形成された光学レンズ群(レンズユニット50)が紫外線によって劣化することを防ぐことができ、且つ、有機色素を含む近赤外光吸収膜140が紫外線により劣化することも防ぐことができる。また、可視領域の光に対する反射防止機能により、入射光をより多く取り込み、明るい画像を取得できる。   Further, since the cover glass 100 that protects the camera inside the smartphone housing 20 from the outside world can block the light in the ultraviolet region by the antireflection film 120, an optical lens group formed of synthetic resin that is a component of the camera. It is possible to prevent the (lens unit 50) from being deteriorated by ultraviolet rays, and also it is possible to prevent the near-infrared light absorbing film 140 containing an organic dye from being deteriorated by ultraviolet rays. Further, due to the antireflection function for light in the visible region, more incident light can be captured and a bright image can be obtained.

なお反射防止膜120は、窒化膜と酸化膜を交互に積層して構成されるが、一般に窒化膜は、酸化膜と比べて高硬度であり、鉛筆硬度試験において、9H以上の硬度に達する。したがって反射防止膜120を窒化膜も含めて構成することで、耐傷性を高める効果を奏する。また窒化膜は、酸化膜と比べて充填密度が高く緻密である。成分として酸素を含まないため、酸素の供給源にもならない。したがって窒化膜を近赤外光吸収膜140より外側に設けることで、近赤外光吸収膜140への酸素および水分の侵入を防ぎ、近赤外光吸収膜140の劣化を抑制する効果を奏する。   The antireflection film 120 is configured by alternately stacking a nitride film and an oxide film, but the nitride film generally has a higher hardness than the oxide film, and reaches a hardness of 9H or more in a pencil hardness test. Therefore, by configuring the antireflection film 120 including the nitride film, the effect of enhancing the scratch resistance can be obtained. Further, the nitride film has a higher packing density and is denser than the oxide film. Since it does not contain oxygen as a component, it does not serve as a source of oxygen. Therefore, by providing the nitride film on the outer side of the near-infrared light absorbing film 140, oxygen and moisture are prevented from entering the near-infrared light absorbing film 140 and the deterioration of the near-infrared light absorbing film 140 is suppressed. ..

一般に光学フィルタは、多数の光学境界面を持っている。一方レンズには高度な反射防止膜を施している。近赤外領域の光をカットする光学フィルタでレンズ並みの透過率を実現することは難しく、レンズ側に反射光を戻すことが生じる。これが画像にゴーストを生む迷光の原因になる。従来のカメラ構造においては、光学フィルタ60がレンズユニット50と撮像素子70の間の光路上で、撮像素子70直近に置かれているため、上記のようなゴーストを生じることは避けがたかった。しかし本実施形態に係るカメラ構造によれば、上述のような迷光を生じることはないため画質を向上させる著しい効果を奏する。   Generally, an optical filter has many optical boundary surfaces. On the other hand, the lens has an advanced antireflection film. It is difficult to achieve a transmittance equal to that of a lens with an optical filter that cuts light in the near-infrared region, and reflected light may be returned to the lens side. This causes stray light that creates ghosts in the image. In the conventional camera structure, since the optical filter 60 is placed in the optical path between the lens unit 50 and the image pickup device 70 and in the vicinity of the image pickup device 70, it is inevitable that the ghost as described above is generated. However, according to the camera structure of the present embodiment, the above-mentioned stray light is not generated, so that a remarkable effect of improving the image quality is achieved.

次に参考のために、近赤外光反射部、及び、近赤外光吸収部を有する一体の光学フィルタ機能付きカバーガラス100の分光透過率特性について説明する。光学フィルタ機能付きカバーガラス100の機能を、例えば、別体である、近赤外光反射機能付きカバーガラス215と、近赤外光吸収機能付き撮像素子カバー244に分けた場合でも、同様の効果が得られる。   Next, for reference, the spectral transmittance characteristics of the integrated cover glass 100 with an optical filter function having a near infrared light reflecting portion and a near infrared light absorbing portion will be described. Even if the functions of the cover glass 100 with an optical filter function are divided into, for example, a cover glass 215 with a near-infrared light reflecting function and an image sensor cover 244 with a near-infrared light absorbing function, which are separate bodies, the same effect is obtained. Is obtained.

図2(B)は、誘電体膜によって構成された近赤外光反射膜の分光透過率特性が、光の入射角度に対してどのように依存するかについての実験結果を示す。入射角度Aは図2(C)のように定義する。また、縦軸の「T」は、分光透過率を示し、単位は%(パーセント)である。また横軸の「λ」は光の波長を示し、単位はnm(ナノメートル)である(以下の図でも同様)。サンプルはガラスに二酸化チタン(TiO2)と二酸化ケイ素(SiO2)とを所定の膜厚で交互に40層積層したものである。実線が光の入射角度0度の場合、破線が光の入射角度が30度の場合の分光透過率を示す。図2(B)から赤色領域である波長700nm付近の光に対して、光の入射角度0度と30度で著しい分光透過率の差が生じてしまうことが確認された。このような差があると、画像の色合いが画像中心と周辺部で大きく変わってしまうことにつながり、最終的な画質低下の原因となる。   FIG. 2B shows an experimental result as to how the spectral transmittance characteristic of the near-infrared light reflecting film formed of the dielectric film depends on the incident angle of light. The incident angle A is defined as shown in FIG. In addition, “T” on the vertical axis represents the spectral transmittance, and the unit is% (percent). Further, “λ” on the horizontal axis indicates the wavelength of light, and the unit is nm (nanometer) (the same applies to the following figures). The sample is 40 layers of titanium dioxide (TiO2) and silicon dioxide (SiO2) alternately laminated in a predetermined thickness on glass. The solid line shows the spectral transmittance when the incident angle of light is 0 degree, and the broken line shows the spectral transmittance when the incident angle of light is 30 degrees. From FIG. 2 (B), it was confirmed that a remarkable difference in spectral transmittance occurs between the incident angle of light of 0 ° and the incident angle of 30 ° with respect to the light in the red region near the wavelength of 700 nm. If there is such a difference, the hue of the image is greatly changed between the center and the peripheral portion of the image, which eventually causes deterioration of the image quality.

図3は、近赤外光吸収膜と近赤外反射膜の両者を備えた光学フィルタ機能付きカバーガラス100の分光透過率が、光の入射角度に対してどのように依存するかについての実験結果を示す。近赤外光吸収膜としては、有機色素を含む厚さ5μm以下の樹脂膜を用いており、近赤外光反射膜としては図2の場合と同様の構成である。実線が光の入射角度0度の場合、破線が光の入射角度が15度の場合、一点鎖線が光の入射角度が30度の場合の分光透過率を示す。図2の場合と比べて入射角度依存性が小さくなっているのが確認できる。   FIG. 3 is an experiment on how the spectral transmittance of the cover glass 100 with an optical filter function including both the near-infrared light absorbing film and the near-infrared reflecting film depends on the incident angle of light. The results are shown. A resin film containing an organic dye and having a thickness of 5 μm or less is used as the near-infrared light absorbing film, and the near-infrared light reflecting film has the same configuration as in the case of FIG. The solid line indicates the spectral transmittance when the incident angle of light is 0 degrees, the broken line indicates the incident angle of light of 15 degrees, and the alternate long and short dash line indicates the spectral transmittance when the incident angle of light is 30 degrees. It can be confirmed that the incident angle dependency is smaller than that in the case of FIG.

図4は、近赤外光吸収膜140及び近赤外光反射膜150を備えた光学フィルタ機能付きカバーガラス100(実線)と、近赤外光吸収膜140のみを形成したカバーガラス(破線)と、近赤外光反射膜150のみを形成したカバーガラス(一点鎖線)の分光透過率測定における実験結果を比較した図である。近赤外光吸収膜140と近赤外光反射膜150の構成は図2、図3の場合と同様なので説明を省略する。ただしすべて光の入射角度は0度である。近赤外光吸収膜140のみの場合だと、650〜750nmの光については、強い光吸収をするが、800nm以上の光は、ほとんど透過してしまう。前述のように人間の目は、波長380nm〜780nmのいわゆる可視光に対して主に感度を持つため、撮像素子70が感度を持つ800nm以上の領域まで画像化すると上述のように人間の目には不自然な画像となる。近赤外光反射膜150は、波長700nm以上の光についてはカットするように設計されており、実際に700nm付近で急峻な分光透過率の減少が測定されている。近赤外光吸収膜140と近赤外光反射膜150を組み合わせて、構成したのが光学フィルタ機能付きカバーガラス100であり、図4の実線で示すように、可視領域の光のうち400〜650nmについては、高い透過率を実現し、且つ、波長700nm以上の光をカットしていることが確認できる。   FIG. 4 shows a cover glass 100 with an optical filter function (solid line) having a near-infrared light absorbing film 140 and a near-infrared light reflecting film 150, and a cover glass having only the near-infrared light absorbing film 140 (broken line). FIG. 5 is a diagram comparing experimental results in measuring spectral transmittance of a cover glass (dashed line) formed with only the near-infrared light reflecting film 150. Since the configurations of the near-infrared light absorbing film 140 and the near-infrared light reflecting film 150 are the same as those in FIGS. 2 and 3, description thereof will be omitted. However, the incident angle of all light is 0 degree. In the case of only the near infrared light absorption film 140, light having a wavelength of 650 to 750 nm is strongly absorbed, but light having a wavelength of 800 nm or more is almost transmitted. As described above, the human eye is mainly sensitive to so-called visible light having a wavelength of 380 nm to 780 nm. Therefore, when imaging is performed up to a region of 800 nm or more at which the image sensor 70 has sensitivity, the human eye as described above. Gives an unnatural image. The near-infrared light reflecting film 150 is designed so as to cut off light having a wavelength of 700 nm or more, and a sharp decrease in spectral transmittance is actually measured near 700 nm. The cover glass 100 with an optical filter function is configured by combining the near-infrared light absorbing film 140 and the near-infrared light reflecting film 150. As shown by the solid line in FIG. It can be confirmed that at 650 nm, a high transmittance is realized and light having a wavelength of 700 nm or more is cut.

本発明の実施形態に係るカメラ構造によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、画質の向上という顕著な効果を奏する。   According to the camera structure of the embodiment of the present invention, a degree of freedom is created in the place where the near-infrared light reflecting portion is arranged and the place where the near-infrared light absorbing portion is arranged. Since it can be arranged at a position, the remarkable effect of improving the image quality is achieved.

近赤外光吸収部が吸収する波長の光よりも長波長側の光は透過してしまう場合がある。そのため、光の入射側から順に、近赤外光吸収部、近赤外光反射部、と配置されると、近赤外光吸収部が吸収する波長の光よりも長波長側の光がカメラモジュール内に入射しやすくなり、長波長側の光をカットできる近赤外光反射部に到達する前に、レンズ面などに反射して迷光となることで画質を落とす原因になる。   Light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing portion may be transmitted. Therefore, when the near-infrared light absorbing part and the near-infrared light reflecting part are arranged in order from the light incident side, the light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing part is stored in the camera. It becomes easier to enter the module, and before reaching the near-infrared light reflection part that can cut the light on the long wavelength side, it is reflected by the lens surface and becomes stray light, which causes deterioration of image quality.

本発明の実施形態に係るカメラ構造によれば、近赤外光反射部と近赤外光吸収部が、光の入射側から順に、近赤外光反射部、近赤外光吸収部と配置されるので、長波長側の迷光を抑止しうるという効果を奏する。   According to the camera structure of the embodiment of the present invention, the near-infrared light reflecting portion and the near-infrared light absorbing portion are arranged in order from the light incident side to the near-infrared light reflecting portion and the near-infrared light absorbing portion. Therefore, there is an effect that stray light on the long wavelength side can be suppressed.

本発明の実施形態に係るカメラ構造によれば、近赤外光反射部が光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されるので、従来の近赤外光カットフィルタの位置よりも、近赤外光反射部から撮像素子からの距離が大きくなる。近赤外光反射部は、光の入射角が軸方向垂直からずれると、紫外領域の光を通しやすくなる場合がある。撮像素子からの距離が大きくなれば、近赤外光反射部から撮像素子を見込む角度が小さくなるので、近赤外光反射部を透過して撮像素子に直接到達する余分な紫外領域の光を低減しうるという効果を奏する。   According to the camera structure of the embodiment of the present invention, the near-infrared light reflecting portion includes the lens element that constitutes the optical lens group, and is arranged on the light incident side of the lens element. The distance from the near-infrared light reflecting section to the image sensor is larger than the position of the external light cut filter. When the incident angle of light deviates from the vertical direction in the axial direction, the near-infrared light reflecting portion may easily pass light in the ultraviolet region. The larger the distance from the image sensor, the smaller the angle of view of the image sensor from the near-infrared light reflection section, so the extra ultraviolet light that passes through the near-infrared light reflection section and reaches the image sensor directly There is an effect that it can be reduced.

本発明の実施形態に係るカメラ構造によれば、近赤外光吸収部は、透過率が光の入射角によらないことが多い。したがって近赤外光吸収部が、カメラ構造において、光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることで、さまざまな方向から撮像素子に入射しようとする迷光を効果的に抑制しうるという顕著な効果を奏する。   According to the camera structure of the embodiment of the present invention, the transmittance of the near-infrared light absorbing portion often does not depend on the incident angle of light. Therefore, the near-infrared light absorbing section includes a lens element that constitutes an optical lens group in the camera structure, and is arranged closer to the image pickup element than the lens element, so that the near-infrared light tends to enter the image pickup element from various directions. There is a remarkable effect that stray light can be effectively suppressed.

撮像素子上に光を透過しにくいゴミが付着すると、画質が劣化する。本発明の実施形態に係るカメラ構造によれば、光が入射する側から見て撮像素子の少なくとも一部を覆う撮像素子カバーが、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置されるので、撮像素子に付着しうるゴミを低減して、画質の劣化を防ぎうるという顕著な効果を奏する。   If dust that is difficult to transmit light adheres to the image sensor, the image quality deteriorates. According to the camera structure of the embodiment of the present invention, the image sensor cover that covers at least a part of the image sensor when viewed from the light incident side is located at a position between the optical lens group and the image sensor and close to the image sensor. Since they are arranged, there is a remarkable effect that dust that may adhere to the image pickup device is reduced and deterioration of image quality can be prevented.

本発明の実施形態に係るカメラ構造によれば、温度変化による変形が少ない撮像素子カバーを安価に作製できるという効果を奏する。   According to the camera structure of the embodiment of the present invention, it is possible to inexpensively manufacture an image pickup device cover that is less likely to be deformed due to a temperature change.

撮像素子カバーは、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置される。したがって撮像素子カバーが光を反射すると、撮像素子が取得する画像の画質を著しく劣化させる原因となる。本発明の実施形態に係るカメラ構造によれば、撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることで、画質が向上するという顕著な効果を奏する。   The image sensor cover is arranged at a position between the optical lens group and the image sensor and close to the image sensor. Therefore, when the image sensor cover reflects light, it causes the image quality of the image acquired by the image sensor to be significantly deteriorated. According to the camera structure of the embodiment of the present invention, the image pickup device cover includes the antireflection layer that prevents the reflection of light in at least the visible region, and thus the image quality is improved.

本発明の実施形態に係るカメラ構造によれば、入射光をより多く取り込むことが可能になり、且つ、撮像素子カバーに起因する反射光、特に撮像素子自身からの反射光が、さらに撮像素子カバーに反射されて撮像素子に戻ることを防止し、画質が向上するという顕著な効果を奏する。   According to the camera structure of the embodiment of the present invention, it is possible to capture a larger amount of incident light, and the reflected light caused by the image sensor cover, particularly the reflected light from the image sensor itself, is further absorbed by the image sensor cover. It is possible to prevent the light from being reflected back to the image pickup element and to improve the image quality.

本発明の実施形態に係るカメラ構造によれば、撮像素子カバーが近赤外光吸収部を含むので部品点数の低減、及び、カメラ構造作製における工程数の削減という顕著な効果を奏する。   According to the camera structure of the embodiment of the present invention, the image sensor cover includes the near-infrared light absorbing portion, so that it is possible to reduce the number of components and the number of steps for manufacturing the camera structure.

本発明の実施形態に係るカメラ構造によれば、近赤外光吸収部が近赤外光吸収膜を有し、近赤外光吸収膜には、近赤外光を吸収する有機色素が含まれるので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。   According to the camera structure of the embodiment of the present invention, the near infrared light absorbing portion has a near infrared light absorbing film, and the near infrared light absorbing film contains an organic dye that absorbs near infrared light. Therefore, it suppresses light in the near-infrared light region with little dependence on the incident angle of light without using blue glass that is generally used as a material for a filter for absorbing light in the near-infrared region. There is an effect that it becomes possible.

本発明の実施形態に係るカメラ構造によれば、カバーガラスが、光を反射する近赤外光反射膜を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射膜を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。   According to the camera structure of the embodiment of the present invention, since the cover glass has the near-infrared light reflecting film that reflects light, it has an effect of not allowing near-infrared light from the outside to enter the internal mechanism of the imaging device. sell. Further, since it is not necessary to put a member having a near-infrared light reflecting film in a region close to the image sensor, reflection of light incident on the internal mechanism of the image pickup device can be suppressed, and as a result, stray light can be suppressed. , It can exert the effect of reducing the cause of ghost and flare.

図5は、本発明の第二実施形態に係るカメラ構造が有する光学フィルタ機能付きカバーガラスの分光透過率を示す図である。本実施形態では、夜間でも画像を取得できる、いわゆるデュアルバンドの光学フィルタ機能付きカバーガラスとカメラ構造を提供する。カメラ構造の基本構成は第一実施形態と同様だが、近赤外光反射機能付きカバーガラス215の代わりに、近赤外光吸収膜140及び近赤外光反射膜150を備える光学フィルタ機能付きカバーガラス100を配置し、近赤外光吸収機能付き撮像素子カバー244を省略している(図示省略)。   FIG. 5 is a diagram showing the spectral transmittance of the cover glass with an optical filter function included in the camera structure according to the second embodiment of the present invention. The present embodiment provides a so-called dual-band cover glass with an optical filter function and a camera structure capable of acquiring images even at night. The basic structure of the camera structure is the same as that of the first embodiment, but instead of the cover glass 215 having a near-infrared light reflecting function, a cover having an optical filter function including a near-infrared light absorbing film 140 and a near-infrared light reflecting film 150. The glass 100 is arranged, and the image pickup element cover 244 with a near infrared light absorbing function is omitted (not shown).

また近赤外光反射機能付きカバーガラス215は、近赤外領域の光の一部について光透過率を高くした近赤外光反射膜Dを備える。近赤外光反射膜Dの膜構造は公知技術なので説明を省略する。   Further, the cover glass 215 with a near-infrared light reflecting function is provided with a near-infrared light reflecting film D having a high light transmittance for a part of the light in the near-infrared region. Since the film structure of the near-infrared light reflecting film D is a known technique, its explanation is omitted.

図5の破線で示す近赤外光吸収膜140と、図5の一点鎖線で示す近赤外領域の光の一部について光透過率を高くした近赤外反射膜Dを組み合わせると、図5の実線のように可視領域の光と近赤外領域の光の一部を透過するデュアルバンドカバーガラスを実現できる。ただし図5において、近赤外光反射膜D及びデュアルバンドカバーガラスの分光透過率については、750nm以上の波長においては、計算値を表している。このようなデュアルバンドカバーガラスを備えたカメラ構造によれば、夜間の道路において車線境界線や車道外側線が見えやすくなるという著しい効果が得られるため、車載カメラに好適である。   When the near-infrared light absorbing film 140 shown by the broken line in FIG. 5 and the near-infrared reflecting film D having a high light transmittance for a part of the near-infrared region light shown by the dashed line in FIG. It is possible to realize a dual band cover glass that transmits a part of the light in the visible region and a part of the light in the near infrared region as shown by the solid line. However, in FIG. 5, the spectral transmittances of the near-infrared light reflecting film D and the dual band cover glass represent calculated values at wavelengths of 750 nm or more. The camera structure provided with such a dual-band cover glass has a remarkable effect that the lane boundary line and the roadway outside line can be easily seen on the road at night, and is therefore suitable for a vehicle-mounted camera.

図6(A)は、本発明の第三の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。本カメラ構造は、近赤外光を反射する近赤外光反射機能付きカバーガラス215と、近赤外光を吸収する近赤外光吸収機能付きプレート217と、透明ガラスを基材とした撮像素子カバー240を備える。他の構成は前述の第一実施形態と同様であるから記載を省略する。   FIG. 6A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging device according to the third embodiment of the present invention. This camera structure has a cover glass 215 having a near-infrared light reflecting function that reflects near-infrared light, a plate 217 having a near-infrared light absorbing function that absorbs near-infrared light, and an image pickup using transparent glass as a base material. An element cover 240 is provided. Other configurations are similar to those of the above-described first embodiment, and therefore description thereof is omitted.

図6(B)は、近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。近赤外光反射機能付きカバーガラス215は、光を透過する透明基板として結晶化ガラス130を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120が、結晶化ガラス130を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜110を備える。光の出射側に、結晶化ガラス130を基準として最も遠い側から順に、少なくとも可視領域の光の反射を防止する反射防止膜120と、近赤外領域の光を反射する近赤外光反射膜150を形成する。   FIG. 6B is a structural diagram of a cover glass with a near infrared light reflecting function including a near infrared light reflecting portion. The cover glass 215 with a near-infrared light reflecting function uses the crystallized glass 130 as a transparent substrate that transmits light, and reflects the light in the ultraviolet region and prevents the reflection of the light in the visible region. Are formed on the light incident side with reference to the crystallized glass 130. An antifouling coating film 110 for preventing contamination from the outside is provided on the outermost side of the light incident side. An antireflection film 120 for preventing reflection of light in at least the visible region, and a near-infrared light reflection film for reflecting light in the near-infrared region in order from the farthest side on the light emission side with respect to the crystallized glass 130. Form 150.

なお、近赤外光反射機能付きカバーガラス215において、最も撮像素子70側の反射防止膜120は無くても良い。   In the cover glass 215 with a near-infrared light reflecting function, the antireflection film 120 closest to the image pickup device 70 may be omitted.

図6(C)は、近赤外光吸収機能付きプレート217の構造図である。近赤外光吸収機能付きプレート217は少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。近赤外光吸収機能付きプレート217は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。   FIG. 6C is a structural diagram of the plate 217 with a near-infrared light absorbing function. The plate 217 having a near-infrared light absorption function includes a plurality of antireflection layers 230 that prevent at least reflection of light in the visible region, and further includes a near-infrared light absorption film 140. The near-infrared light absorbing plate 217 has a transparent glass 220 as a base material, and a near-infrared light absorbing film 140 is provided adjacent to the transparent glass 220. The antireflection layer 230 is formed on the light incident side with the transparent glass 220 as a reference, and the antireflection layer 230 and the near-infrared light absorbing film are sequentially provided on the light emission side from the farthest side with the transparent glass 220 as a reference. 140 is provided.

近赤外光吸収機能付きプレート217は、近赤外光反射機能付きカバーガラス215より、内部構造側、すなわちレンズユニット50側に配置される。   The near-infrared light absorbing function plate 217 is arranged closer to the internal structure, that is, the lens unit 50 side than the near-infrared light reflecting function cover glass 215.

なお、近赤外光吸収機能付きプレート217を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。   As a means for realizing the plate 217 having the near-infrared light absorption function, for example, a thin plate of synthetic resin containing an organic dye absorbing at least part of the light in the near-infrared region as a base material may be used. good. Further, a so-called blue glass plate that absorbs light in the near infrared region may be used as in the conventional near infrared light cut filter. It is also possible to attach a film that cuts near-infrared light to a transparent plate to realize it.

図6(D)は、透明ガラス220を基材として反射防止層230を複数備えた、透明ガラスを基材とした撮像素子カバー240の構造図である。撮像素子カバー240は、透明ガラス220の両面に反射防止層230を備える。   FIG. 6D is a structural diagram of an image sensor cover 240 that uses transparent glass 220 as a base material and that includes a plurality of antireflection layers 230 and that uses transparent glass as a base material. The image sensor cover 240 includes antireflection layers 230 on both surfaces of the transparent glass 220.

図6(E)は、第三実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造において、透明ガラスを基材とした撮像素子カバー240を、透明合成樹脂フィルム222を基材とした撮像素子カバー242に置き換えた変形実施例の一部である。すなわち、透明合成樹脂フィルム222を基材として、両面に反射防止機能を発揮するモスアイ構造を備えた透明合成樹脂フィルムを基材とした撮像素子カバー242の構造図である。透明合成樹脂フィルムを基材とした撮像素子カバー242の厚みは、0.2mm以下である。透明合成樹脂フィルムを基材とした撮像素子カバー242は、少なくとも可視領域の光の反射を防止するモスアイ構造232を両面に備える。   FIG. 6E shows an image sensor cover 240 using transparent glass as a base material and a transparent synthetic resin film 222 as a base material in the camera structure applied to the mobile communication device A which is the image capturing apparatus according to the third embodiment. Is a part of a modified example in which the image pickup device cover 242 is replaced with the above. That is, it is a structural diagram of an image pickup element cover 242 using a transparent synthetic resin film 222 as a base material and a transparent synthetic resin film having a moth-eye structure exhibiting an antireflection function on both surfaces as a base material. The thickness of the image pickup element cover 242 using a transparent synthetic resin film as a base material is 0.2 mm or less. The image pickup element cover 242 using a transparent synthetic resin film as a base material has a moth-eye structure 232 on both sides for preventing reflection of light in at least the visible region.

モスアイ構造とは、誘電体多層膜のように干渉効果を利用して反射を低減するのでは無く、屈折率が急激に変化する境界面を排除することで反射を低減する。具体的には、表面に数百nm程度の高さを持つ多数の微細な突起からなる微細突起構造が形成され、その突起の繰り返し周期が反射低減の効果の現れる波長範囲と関連する。モスアイ構造については周知技術なので記載を省くが、本変形実施例の場合、例えば、透明合成樹脂フィルム222として透明なアクリル樹脂を使用し、転写や成型加工によってモスアイ構造を形成することで反射防止機能を実現する。   The moth-eye structure does not reduce reflection by utilizing the interference effect unlike the dielectric multilayer film, but reduces reflection by eliminating the boundary surface where the refractive index changes abruptly. Specifically, a fine protrusion structure is formed on the surface, which is composed of a large number of fine protrusions having a height of about several hundreds of nm, and the repetition period of the protrusions is related to the wavelength range in which the effect of reducing reflection is exhibited. Since the moth-eye structure is a well-known technique, description thereof will be omitted. However, in the case of the present modified embodiment, for example, a transparent acrylic resin is used as the transparent synthetic resin film 222, and the moth-eye structure is formed by transfer or molding so that the anti-reflection function is achieved. To achieve.

すなわち透明合成樹脂フィルムを基材とした撮像素子カバー242の表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造232は、広帯域に渡って光の反射を防止する。モスアイ構造232は、少なくとも可視領域の光の反射防止機能を有し、紫外領域の光と、近赤外領域の光についても反射防止機能を有することが望ましい。   That is, the so-called moth-eye structure 232, which is a fine projection structure formed of fine projections formed on the surface of the image pickup element cover 242 using a transparent synthetic resin film as a base material, prevents reflection of light over a wide band. The moth-eye structure 232 has at least a reflection preventing function for light in the visible region, and preferably has a reflection preventing function for light in the ultraviolet region and light in the near infrared region.

合成樹脂フィルムは、厚さ100μm以下のものが容易に作製できる。本発明の実施形態に係るカメラ構造によれば、薄く安価な撮像素子カバーを安価に作製できるという効果を奏する。   A synthetic resin film having a thickness of 100 μm or less can be easily manufactured. According to the camera structure of the embodiment of the present invention, there is an effect that a thin and inexpensive image pickup element cover can be manufactured at low cost.

本発明の実施形態に係るカメラ構造によれば、従来よりも厚みの薄いカメラモジュールを提供しうるという顕著な効果を奏する。   The camera structure according to the embodiment of the present invention has the remarkable effect of providing a camera module having a smaller thickness than conventional ones.

撮像素子カバーの表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造の反射防止層は、広帯域に渡って光の反射を防止する。したがって本発明の実施形態に係るカメラ構造によれば、モスアイ構造の反射防止層を形成することで、撮像素子カバーに起因する反射光が広帯域に渡って著しく低減され、画質が向上されうるという顕著な効果を奏する。   An antireflection layer having a so-called moth-eye structure, which is a fine projection structure formed of fine projections, is formed on the surface of the image sensor cover to prevent light reflection over a wide band. Therefore, according to the camera structure of the embodiment of the present invention, by forming the antireflection layer having the moth-eye structure, the reflected light caused by the image sensor cover can be significantly reduced over a wide band, and the image quality can be improved. Has a great effect.

さらに内側透明プレート240についての他の変形実施例としては、基材である透明合成樹脂フィルム222の表面に反射防止層として、合成樹脂を塗布することで得られる多層膜を形成したものも考えられる。一般に互いに異なる光の屈折率を持つ2種類の薄膜を交互に積層して得られる多層膜は、光の反射防止膜を形成しうる。そしてこのような多層膜は、合成樹脂を塗布することでも得られることが知られている。   Further, as another modified example of the inner transparent plate 240, one in which a multilayer film obtained by applying a synthetic resin is formed as an antireflection layer on the surface of the transparent synthetic resin film 222 which is a base material may be considered. .. Generally, a multilayer film obtained by alternately laminating two kinds of thin films having different refractive indexes of light can form a light antireflection film. It is known that such a multilayer film can also be obtained by applying a synthetic resin.

例えば、光の屈折率が互いに異なる2種類の合成樹脂であって、それらの屈折率が、いずれも空気の屈折率より大きく、且つ、透明合成樹脂フィルム222の屈折率より小さいものを用意する。これらを交互に透明合成樹脂フィルム222に塗布することで、安価に安定した品質の反射防止膜を備えた内側透明プレート240を製造しうる。透明合成樹脂フィルム222への合成樹脂の塗布の方法としては、例えばローラーコート法などが考えられる。本変形実施例によれば、反射防止膜を備えた内側透明プレートを、安定した品質のもと、大量に、しかも安価に製造できるという著しい効果を奏する。   For example, two kinds of synthetic resins having different refractive indexes of light, both of which are larger than the refractive index of air and smaller than the refractive index of the transparent synthetic resin film 222, are prepared. By alternately applying these to the transparent synthetic resin film 222, it is possible to inexpensively manufacture the inner transparent plate 240 provided with the antireflection film of stable quality. As a method of applying the synthetic resin to the transparent synthetic resin film 222, for example, a roller coating method or the like can be considered. According to this modification, the inner transparent plate provided with the antireflection film has a remarkable effect that it can be manufactured in large quantities and at low cost with stable quality.

図7(A)は、本発明の第四の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。当該カメラ構造は、近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。近赤外光反射機能付きカバーガラス215と、撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。また近赤外反射膜150、反射防止膜120の作製方法は第一実施形態と同様なので記載を省略する。   FIG. 7A is a cross-sectional view of the camera structure applied to the mobile communication device A that is the imaging device according to the fourth embodiment of the present invention. The camera structure includes a cover glass 215 with a near-infrared light reflecting function and the camera module 1. The camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. The structures of the cover glass 215 with a near-infrared light reflecting function and the image pickup device cover 240 are the same as those described in the third embodiment, and will be omitted. The method for producing the near-infrared reflective film 150 and the antireflection film 120 is the same as that in the first embodiment, and thus the description thereof is omitted.

図7(B)は、近赤外光吸収部を備えたレンズ素子をふくむレンズユニットの断面図である。レンズユニット50、すなわち光学レンズ群は複数のレンズ素子から構成される。光学レンズ群のうち最も撮像素子70側に配置されたレンズ素子が、近赤外光吸収部を備えるレンズ素子250である。近赤外光吸収部は有機色素であり、近赤外光吸収部を備えるレンズ素子250を形成する合成樹脂中均一に含有される。   FIG. 7B is a cross-sectional view of a lens unit including a lens element having a near infrared light absorption section. The lens unit 50, that is, the optical lens group is composed of a plurality of lens elements. The lens element arranged closest to the image pickup element 70 in the optical lens group is the lens element 250 including the near-infrared light absorbing section. The near-infrared light absorbing portion is an organic dye and is uniformly contained in the synthetic resin forming the lens element 250 including the near-infrared light absorbing portion.

図7(C)は、近赤外光吸収部を備えたレンズ素子をふくむレンズユニットの断面図である。本変形実施例では、近赤外光吸収部を備えたレンズ素子は、透明なレンズ素子255の最も撮像素子70側表面に、近赤外光吸収膜140を設けることで実現される。近赤外光吸収膜140の作製方法は、第一の実施形態に記載したものと同様なので省略する。   FIG. 7C is a cross-sectional view of a lens unit including a lens element provided with a near infrared light absorption section. In the present modified example, the lens element having the near-infrared light absorbing portion is realized by providing the near-infrared light absorbing film 140 on the surface of the transparent lens element 255 closest to the image pickup element 70. The method of manufacturing the near-infrared light absorbing film 140 is the same as that described in the first embodiment, and therefore will be omitted.

なお近赤外光吸収膜140のさらに撮像素子70側に、反射防止層230を設けても良い。   Note that the antireflection layer 230 may be provided further on the imaging element 70 side of the near infrared light absorption film 140.

本発明の実施形態によれば、光を反射する近赤外光反射部を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射部を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。   According to the embodiment of the present invention, since the near-infrared light reflecting portion that reflects light is included, it is possible to obtain the effect of preventing near-infrared light from the outside from entering the internal mechanism of the image pickup apparatus. In addition, since it is not necessary to insert a member having a near infrared light reflecting portion in a region close to the image pickup element, it is possible to suppress reflection of light that has entered the internal mechanism of the image pickup apparatus, and consequently suppress stray light. , It can exert the effect of reducing the cause of ghost and flare.

本発明の実施形態によれば、近赤外光吸収部が近赤外光を吸収する有機色素が含むので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。   According to the embodiment of the present invention, since the near-infrared light absorbing portion contains an organic dye that absorbs near-infrared light, blue glass that is generally used as a material for a filter for absorbing light in the near-infrared region. It is possible to suppress the light in the near-infrared light region in a state where the incident angle dependence of the light is small without using.

図8(A)は、本発明の第五の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造のカメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70を有し、車体22に固定される。すなわち、当該カメラ構造は、いわゆる車載カメラの構造である。   FIG. 8A is a cross-sectional view of a camera structure applied to the imaging device according to the fifth embodiment of the present invention. The camera module 1 having the camera structure includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, and an imaging element 70, and is fixed to the vehicle body 22. That is, the camera structure is a so-called on-vehicle camera structure.

図8(B)は、近赤外光反射部を含む光学レンズ素子270と、近赤外光吸収部を含む光学レンズ素子250を備えるレンズユニットの断面図である。近赤外光反射部を備えるレンズ素子270の光入射側表面には、近赤外光反射膜150が設けられる。近赤外光吸収部を備えるレンズ素子250において、近赤外光吸収部は有機色素であり、近赤外光吸収部を備えるレンズ素子250を形成する合成樹脂中均一に含有される。変形実施例として、近赤外光吸収部を備えるレンズ素子250は、近赤外光吸収膜140を最も撮像素子70側に設けた透明なレンズ素子255であっても良い(図7(C)参照)。本実施形態では、アクチュエータなど機械的に動く部材が含まれないため、ダストが発生しにくい。また撮像素子70の表面が地面と略垂直なので、撮像素子70にダストが付着しにくい。そのため撮像素子カバー240を省いている。レンズユニット50の光入射側に、汚れよけのためのカバーガラスを備えても良い。もちろん撮像素子70に近接して、撮像素子カバー240を設けても良い。   FIG. 8B is a cross-sectional view of a lens unit including an optical lens element 270 including a near infrared light reflecting portion and an optical lens element 250 including a near infrared light absorbing portion. The near-infrared light reflecting film 150 is provided on the light incident side surface of the lens element 270 including the near-infrared light reflecting portion. In the lens element 250 including the near-infrared light absorbing portion, the near-infrared light absorbing portion is an organic dye and is uniformly contained in the synthetic resin forming the lens element 250 including the near-infrared light absorbing portion. As a modified example, the lens element 250 including the near-infrared light absorbing section may be a transparent lens element 255 in which the near-infrared light absorbing film 140 is provided closest to the image pickup element 70 (FIG. 7C). reference). In this embodiment, since a mechanically moving member such as an actuator is not included, dust is unlikely to be generated. Moreover, since the surface of the image sensor 70 is substantially perpendicular to the ground, dust is unlikely to adhere to the image sensor 70. Therefore, the image sensor cover 240 is omitted. A cover glass for preventing dirt may be provided on the light incident side of the lens unit 50. Of course, the image sensor cover 240 may be provided near the image sensor 70.

このような構造であれば、部品点数も少なくて済み、生産工程も著しく省略できるため安価に製造することが可能である。もちろん近赤外光反射部と、近赤外光吸収部を有するので画質の向上という効果も奏する。   With such a structure, the number of parts can be small, and the manufacturing process can be remarkably omitted, so that it can be manufactured at low cost. Of course, since it has the near-infrared light reflecting portion and the near-infrared light absorbing portion, the effect of improving image quality is also obtained.

また変形実施例として、カメラ構造において近赤外光反射部を備えるレンズ素子270はそのままに、撮像素子カバーについては第一実施形態の図1(C)に示した、近赤外光吸収機能付き撮像素子カバー244を用いることで、レンズ素子に近赤外領域の光吸収機能を持たせないことも考えられる。   As a modified example, the lens element 270 having the near-infrared light reflecting portion in the camera structure is left as it is, and the image pickup element cover has the near-infrared light absorption function shown in FIG. 1C of the first embodiment. By using the image sensor cover 244, it may be considered that the lens element does not have a light absorbing function in the near infrared region.

図9(A)は、本発明の第六の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造は、近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。近赤外光反射機能付きカバーガラス215と、撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。   FIG. 9A is a cross-sectional view of the camera structure applied to the imaging device according to the sixth embodiment of the present invention. The camera structure includes a cover glass 215 with a near-infrared light reflecting function and the camera module 1. The camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. The structures of the cover glass 215 with a near-infrared light reflecting function and the image pickup device cover 240 are the same as those described in the third embodiment, and will be omitted.

図9(B)は、近赤外光吸収部を含む近赤外光吸収機能付き光学素子500を備えるレンズユニットの断面図である。レンズユニット50は、近赤外光吸収機能付き光学素子500を最も光の入射側に備えている。ただし近赤外光吸収機能付き光学素子500は、レンズユニット50の内部であれば、軸上のどの位置にあっても良い。   FIG. 9B is a cross-sectional view of a lens unit including an optical element 500 with a near-infrared light absorbing function including a near-infrared light absorbing portion. The lens unit 50 is provided with the optical element 500 with a near-infrared light absorbing function on the most light incident side. However, the optical element 500 with the near-infrared light absorbing function may be located at any position on the axis as long as it is inside the lens unit 50.

図9(C)は、近赤外光吸収機能付き光学素子500の構造図である。近赤外光吸収機能付き光学素子500は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。近赤外光吸収機能付きプレート217は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。   FIG. 9C is a structural diagram of the optical element 500 with a near-infrared light absorbing function. The optical element 500 with a near-infrared light absorbing function includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near-infrared light absorbing film 140. The near-infrared light absorbing plate 217 has a transparent glass 220 as a base material, and a near-infrared light absorbing film 140 is provided adjacent to the transparent glass 220. The antireflection layer 230 is formed on the light incident side with the transparent glass 220 as a reference, and the antireflection layer 230 and the near-infrared light absorbing film are sequentially provided on the light emission side from the farthest side with the transparent glass 220 as a reference. 140 is provided.

なお、近赤外光吸収機能付き光学素子500を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。   As a means for realizing the optical element 500 with a near-infrared light absorption function, for example, as a base material, a thin plate of synthetic resin containing at least a part of an organic dye absorbing light in the near-infrared region is used. Is also good. Further, a so-called blue glass plate that absorbs light in the near infrared region may be used as in the conventional near infrared light cut filter. It is also possible to attach a film that cuts near-infrared light to a transparent plate to realize it.

なお、近赤外反射膜150、反射防止膜120、近赤外光吸収膜140の作製方法は第一実施形態と同様なので記載を省略する。   The method of manufacturing the near-infrared reflective film 150, the antireflection film 120, and the near-infrared light absorbing film 140 is the same as that in the first embodiment, and thus the description thereof is omitted.

図10(A)は、本発明の第7の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造は、カバーガラス550と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。   FIG. 10A is a cross-sectional view of the camera structure applied to the imaging device according to the seventh embodiment of the present invention. The camera structure includes a cover glass 550 and a camera module 1. The camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. The structure of the image sensor cover 240 is the same as that described in the third embodiment, and will be omitted.

カバーガラス550は、基材として従来の強化ガラスやサファイアガラス等を用いてもよい。またもちろん結晶化ガラスを用いても良い。カバーガラス550は、その撮像素子70側表面に、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120を有する(図示省略)。   The cover glass 550 may use a conventional tempered glass, sapphire glass, or the like as a base material. Of course, crystallized glass may be used. The cover glass 550 has an antireflection film 120 (not shown) that reflects light in the ultraviolet region and suppresses reflection of light in the visible region on the surface of the image sensor 70 side.

図10(B)は、近赤外光反射部、及び、近赤外光吸収部を含む光学フィルタ機能付き光学素子530を備えるレンズユニットの断面図である。レンズユニット50は、光学フィルタ機能付き光学素子530を最も光の入射側に備えている。ただし光学フィルタ機能付き光学素子530は、レンズユニット50の内部であれば、軸上のどの位置にあっても良い。   FIG. 10B is a cross-sectional view of a lens unit including an optical element 530 having an optical filter function, which includes a near infrared light reflecting portion and a near infrared light absorbing portion. The lens unit 50 is provided with the optical element 530 with an optical filter function on the most light incident side. However, the optical element 530 with an optical filter function may be located at any position on the axis as long as it is inside the lens unit 50.

図10(C)は、光学フィルタ機能付き光学素子530の構造図である。光学フィルタ機能付き光学素子530は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。光学フィルタ機能付き光学素子530は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光反射膜150と、近赤外光吸収膜140が備えられる。   FIG. 10C is a structural diagram of the optical element 530 with an optical filter function. The optical element 530 with an optical filter function includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near infrared light absorption film 140. The optical element 530 with an optical filter function uses the transparent glass 220 as a base material, and the near infrared light absorption film 140 is provided adjacent to the transparent glass 220. The antireflection layer 230 is formed on the light incident side with the transparent glass 220 as a reference, and the antireflection layer 230 and the near-infrared light reflection film are sequentially provided on the light emitting side from the farthest side with the transparent glass 220 as a reference. 150 and a near infrared light absorption film 140 are provided.

なお、光学フィルタ機能付き光学素子530を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。
なお近赤外光吸収膜140、近赤外反射膜150、反射防止膜120の作製方法は第一実施形態と同様なので記載を省略する。
As a means for realizing the optical element 530 with an optical filter function, for example, as a base material, a thin plate of synthetic resin containing at least a part of an organic dye absorbing light in the near infrared region may be used. Further, a so-called blue glass plate that absorbs light in the near infrared region may be used as in the conventional near infrared light cut filter. It is also possible to attach a film that cuts near-infrared light to a transparent plate to realize it.
The manufacturing method of the near-infrared light absorption film 140, the near-infrared reflection film 150, and the antireflection film 120 is the same as that in the first embodiment, and thus the description thereof is omitted.

当該カメラ構造によれば、レンズユニット50に光学フィルタ機能付き光学素子530を追加するだけでよく、他の構成は従来の部材を流用できる。また、近赤外光反射部と近赤外光吸収部を同時に含む一体の光学素子が光学レンズ群に含まれるので、撮像素子の直近に、近赤外光反射膜を備えた部材を入れる必要が無くなる。したがって撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。   According to the camera structure, it is only necessary to add the optical element 530 with the optical filter function to the lens unit 50, and the other members can use conventional members. Also, since the optical lens group includes an integrated optical element that includes the near-infrared light reflecting portion and the near-infrared light absorbing portion at the same time, it is necessary to insert a member having a near-infrared light reflecting film in the immediate vicinity of the image pickup element Disappears. Therefore, it is possible to suppress reflection of light that has entered the internal mechanism of the image pickup apparatus, and as a result, it is possible to suppress stray light and reduce the causes of ghost and flare.

さて、発明者がさらに鋭意研究を行った結果、従来のカメラ構造については、取得画像の中心部と周縁部の間で色味の違いが生じるという別の課題が生じていることがわかった。この課題は、特に近赤外反射部をカバーガラスに備える態様において入射光の入射角度が大きくなり得る場合に顕著に生じる。   As a result of further diligent research by the inventor, it was found that the conventional camera structure has another problem that a difference in tint occurs between the central portion and the peripheral portion of the acquired image. This problem remarkably occurs particularly when the incident angle of incident light can be large in a mode in which the cover glass is provided with the near-infrared reflecting portion.

図12(A)は、従来の光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。縦軸に光の透過率T(単位は%)を示し、横軸に入射光の波長(単位はnm)を示す。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系を考える。   FIG. 12A shows the spectral characteristics of the light transmittance in the near-infrared light absorbing section using the conventional light-absorbing ink and the incident light angle dependence of the spectral characteristics of the light transmittance in the near-infrared light reflecting section. It is a graph shown. The vertical axis represents the light transmittance T (unit:%), and the horizontal axis represents the wavelength of incident light (unit: nm). Specifically, the near-infrared light absorption section has an imaging element cover 244 (see FIG. 1C) having a near-infrared light absorption film 140 as a near-infrared light absorption section and a near-infrared light reflection section. Consider an optical system including a cover glass 215 having a near-infrared light reflecting function, which has an infrared light reflecting film 150 (see FIG. 1B).

図12(A)において、実線A1は、近赤外光吸収機能付き撮像素子カバー244単体についての光透過率の分光特性を示す。点線R1は、入射光の入射角度が0°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示し、破線R2は、入射光の入射角度が30°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示す。従来の近赤外光吸収インクの分光特性を示す曲線A1と、入射角30°のときの従来の近赤外反射部の分光特性を示す破線R2が、光の波長領域として660〜700nmにおいて、ほぼ重なり合っていて、従来の近赤外光吸収インクの分光特性を示す実線A1と、入射角0°のときの従来の近赤外反射部の分光特性を示す点線R1は、720nm付近の交点まで重なりがない。   In FIG. 12A, a solid line A1 indicates the spectral characteristic of the light transmittance of the image pickup element cover 244 with a near infrared light absorption function. The dotted line R1 indicates the spectral characteristic of the light transmittance of the cover glass 215 alone with the near-infrared light reflection function when the incident angle of the incident light is 0 °, and the broken line R2 indicates when the incident angle of the incident light is 30 °. 7 shows the spectral characteristics of the light transmittance of the cover glass 215 alone having the near-infrared light reflection function. A curve A1 showing the spectral characteristics of the conventional near-infrared light absorbing ink, and a broken line R2 showing the spectral characteristics of the conventional near-infrared reflecting portion at an incident angle of 30 ° show a light wavelength region of 660 to 700 nm. The solid line A1 indicating the spectral characteristics of the conventional near-infrared light absorbing ink and the dotted line R1 indicating the spectral characteristics of the conventional near-infrared reflecting portion when the incident angle is 0 ° are almost overlapped with each other until the intersection near 720 nm. There is no overlap.

図12(B)は、近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。具体的には点線C1が入射角0°のときの分光特性であり、破線C2が入射角30°のときの分光特性である。言い換えると図12(A)における実線A1と点線R1を組み合わせた光学系の分光特性が点線C1であり、図12(A)における実線A1と破線R2を組み合わせた光学系の分光特性が破線C2である。660nm〜690nmの範囲で点線C1と破線C2の間にギャップG1が生じている。   FIG. 12B is a graph showing the incident light angle dependence of the spectral characteristics of the light transmittance when the near infrared light absorbing portion and the near infrared light reflecting portion are combined. Specifically, the dotted line C1 is the spectral characteristic when the incident angle is 0 °, and the broken line C2 is the spectral characteristic when the incident angle is 30 °. In other words, the spectral characteristic of the optical system that combines the solid line A1 and the dotted line R1 in FIG. 12A is the dotted line C1, and the spectral characteristic of the optical system that combines the solid line A1 and the broken line R2 in FIG. is there. A gap G1 is formed between the dotted line C1 and the broken line C2 in the range of 660 nm to 690 nm.

ここで、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義する。近赤外光反射部と近赤外吸収部を有する近赤外光カットフィルタを考えると、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがありうる。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動している。具体的には、例えば光の波長が660〜690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。   Here, the wavelength at which the light transmittance decreases to 10% when the wavelength of the incident light is increased is defined as the near infrared light cutoff wavelength. Considering a near-infrared light cut filter having a near-infrared light reflection part and a near-infrared absorption part, the angle of the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °. The dependent change width may be about 30 nm. Conversely, at a predetermined light wavelength in the near-infrared light region, the light transmittance of the near-infrared light cut filter largely varies depending on the incident angle of the incident light. Specifically, for example, if light with a wavelength of 660 to 690 nm is incident, the light transmittance is about 20% when the incident angle is small at the central portion of the acquired image, and the incident angle at the peripheral portion of the acquired image. When the value is large, the phenomenon that the light transmittance becomes almost 0% occurs, and as a result, the light wavelength dependence of the transmittance is different between the peripheral portion and the central portion of the acquired image. Deterioration phenomenon occurs.

本発明の第八の実施形態に係るカメラ構造として、図13(A)に分光特性を示す新たな光吸収インクを用いた近赤外光吸収部と、新たな近赤外光反射部の組み合わせを備えるカメラ構造を挙げる。近赤外光吸収部の構成は、図1(C)に示す近赤外光吸収機能付き撮像素子カバー244と同様であり、近赤外光反射部の構成は、図1(B)に示す近赤外光反射機能付きカバーガラス215と同様である。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系である。   As a camera structure according to the eighth embodiment of the present invention, a combination of a near infrared light absorbing portion using a new light absorbing ink having a spectral characteristic shown in FIG. 13A and a new near infrared light reflecting portion. The camera structure that includes The configuration of the near-infrared light absorbing portion is similar to that of the image pickup element cover 244 with a near-infrared light absorbing function shown in FIG. 1C, and the configuration of the near-infrared light reflecting portion is shown in FIG. 1B. It is similar to the cover glass 215 with a near infrared light reflecting function. Specifically, the near-infrared light absorption section has an imaging element cover 244 (see FIG. 1C) having a near-infrared light absorption film 140 as a near-infrared light absorption section and a near-infrared light reflection section. The optical system includes a cover glass 215 having a near-infrared light reflecting function, which has an infrared light reflecting film 150 (see FIG. 1B).

図13(A)は、新たな光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、新たな近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。縦軸に光の透過率T(単位は%)を示し、横軸に入射光の波長(単位はnm)を示す。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系を考える。   FIG. 13A shows the spectral characteristics of the light transmittance in the near infrared light absorbing section using the new light absorbing ink and the incident light angle dependence of the spectral characteristics of the light transmittance in the new near infrared reflecting section. It is a graph which shows sex. The vertical axis represents the light transmittance T (unit:%), and the horizontal axis represents the wavelength of incident light (unit: nm). Specifically, the near-infrared light absorption section has an imaging element cover 244 (see FIG. 1C) having a near-infrared light absorption film 140 as a near-infrared light absorption section and a near-infrared light reflection section. Consider an optical system including a cover glass 215 having a near-infrared light reflecting function, which has an infrared light reflecting film 150 (see FIG. 1B).

図13(A)において、実線A2は、近赤外光吸収機能付き撮像素子カバー244単体についての光透過率の分光特性を示す。点線R3は、入射光の入射角度が0°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示し、破線R4は、入射光の入射角度が30°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示す。   In FIG. 13A, a solid line A2 indicates the spectral characteristic of the light transmittance of the image pickup element cover 244 with the near infrared light absorption function. The dotted line R3 indicates the spectral characteristic of the light transmittance of the cover glass 215 alone with the near-infrared light reflection function when the incident angle of the incident light is 0 °, and the broken line R4 indicates when the incident angle of the incident light is 30 °. 7 shows the spectral characteristics of the light transmittance of the cover glass 215 alone having the near-infrared light reflection function.

具体的には、本発明の第八の実施形態に係るカメラ構造は、近赤外領域の光を吸収する近赤外光吸収部140と、近赤外領域の光を反射する近赤外光反射部150とを備え、近赤外光吸収部140は、光の波長として685nm〜755nmの領域の中に、光透過率が2%未満である光吸収波長領域700を有し、近赤外光反射部150への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、近赤外光反射部150は、近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、近赤外光反射部150への入射光の入射角度を0°〜30°の範囲で変化させたときに、近赤外光カットオフ波長は常に光吸収波長領域700の中に含まれることを特徴とする。   Specifically, the camera structure according to the eighth embodiment of the present invention includes a near infrared light absorbing section 140 that absorbs light in the near infrared region and a near infrared light that reflects light in the near infrared region. The near-infrared light absorption part 140 includes a reflection part 150, and the near-infrared light absorption part 140 has a light absorption wavelength region 700 having a light transmittance of less than 2% in a region of 685 nm to 755 nm as a wavelength of light. When the wavelength at which the light transmittance decreases to 50% as the wavelength of the incident light on the light reflecting portion 150 increases is defined as the near infrared light cutoff wavelength, the near infrared light reflecting portion 150 Has a characteristic of substantially totally reflecting light having a wavelength longer than the near-infrared light cutoff wavelength, and the incident angle of the incident light on the near-infrared light reflecting portion 150 was changed in the range of 0 ° to 30 °. At times, the near infrared light cutoff wavelength is always included in the light absorption wavelength region 700.

言い換えれば、入射光の入射角度が0°における近赤外光反射部150の近赤外光カットオフ波長CF1と、入射光の入射角度が30°における近赤外光反射部150の近赤外光カットオフ波長CF2が、光吸収波長領域700に含まれる。   In other words, the near-infrared light cutoff wavelength CF1 of the near-infrared light reflecting portion 150 when the incident angle of the incident light is 0 ° and the near-infrared light reflecting portion 150 when the incident angle of the incident light is 30 °. The light cutoff wavelength CF2 is included in the light absorption wavelength region 700.

なお近赤外光反射部150における、近赤外光カットオフ波長より長い波長の光に対する分光特性としては、750nm〜1000nm程度で1%未満の光透過率が望ましく、
1000nm程度より長い波長域では、若干の、例えば数%の光透過性があってもよい。
As the spectral characteristic of the near infrared light reflecting section 150 for light having a wavelength longer than the near infrared cutoff wavelength, a light transmittance of less than 1% at 750 nm to 1000 nm is desirable,
In the wavelength region longer than about 1000 nm, there may be some light transmittance, for example, several%.

図13(B)は、近赤外光吸収部140と近赤外光反射部150を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。具体的には点線C3が入射角0°のときの分光特性であり、破線C4が入射角30°のときの分光特性である。言い換えると図13(A)における実線A2と点線R3を組み合わせた光学系の分光特性が点線C3であり、図13(A)における実線A2と破線R4を組み合わせた光学系の分光特性が破線C4である。   FIG. 13B is a graph showing the incident light angle dependency of the spectral characteristics of the light transmittance when the near infrared light absorbing section 140 and the near infrared light reflecting section 150 are combined. Specifically, the dotted line C3 is the spectral characteristic when the incident angle is 0 °, and the broken line C4 is the spectral characteristic when the incident angle is 30 °. In other words, the spectral characteristic of the optical system that combines the solid line A2 and the dotted line R3 in FIG. 13A is the dotted line C3, and the spectral characteristic of the optical system that combines the solid line A2 and the broken line R4 in FIG. 13A is the broken line C4. is there.

ここで、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義する。   Here, the wavelength at which the light transmittance decreases to 10% when the wavelength of the incident light is increased is defined as the near infrared light cutoff wavelength.

近赤外光反射部150と近赤外吸収部140を有する近赤外光カットフィルタを考えると、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅G2が5nm以下になっている。すなわち近赤外光カットフィルタの光透過率が、入射光の入射角度依存をし難い。   Considering a near-infrared light cut filter having the near-infrared light reflection part 150 and the near-infrared absorption part 140, the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °. The angle-dependent change width G2 of is less than 5 nm. That is, it is difficult for the light transmittance of the near infrared light cut filter to depend on the incident angle of the incident light.

近赤外光カットフィルタが、例えば誘電体多層膜を備える近赤外光反射部150を有する場合、近赤外光反射部150における光の透過率の周波数依存性は、入射光の入射角度により変化する。すなわち例えば近赤外光反射部150の近赤外光遮断波長が、入射光の入射角度が0°であるとき約700nm程度だったものが、入射光の入射角度が30°になると約675nmになるような入射角度依存性が生じることがある。すると近赤外光カットフィルタが近赤外光吸収部140を有するとして、近赤外光反射部150と組み合わせられて実現する光透過率が、入射光の入射角度によって大きく変化してしまうことがあり得る。具体的には、近赤外光反射部150と近赤外吸収部140を有する近赤外光カットフィルタは、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがあり得る。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動してしまうということである。例えば光の波長が660〜690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。   When the near-infrared light cut filter has the near-infrared light reflector 150 including, for example, a dielectric multilayer film, the frequency dependence of the light transmittance in the near-infrared light reflector 150 depends on the incident angle of the incident light. Change. That is, for example, the near-infrared light blocking wavelength of the near-infrared light reflector 150 is about 700 nm when the incident angle of the incident light is 0 °, but is about 675 nm when the incident angle of the incident light is 30 °. In some cases, such incident angle dependence may occur. Then, assuming that the near-infrared light cut filter has the near-infrared light absorbing portion 140, the light transmittance realized by being combined with the near-infrared light reflecting portion 150 may greatly change depending on the incident angle of the incident light. possible. Specifically, the near-infrared light cut filter having the near-infrared light reflection part 150 and the near-infrared absorption part 140 is a near-infrared light when the incident angle of incident light is changed in the range of 0 ° to 30 °. The angle-dependent change width of the light cutoff wavelength may be about 30 nm. Conversely speaking, the light transmittance of the near-infrared light cut filter largely changes depending on the incident angle of the incident light at a predetermined light wavelength in the near-infrared light region. For example, if light with a wavelength of 660 to 690 nm is incident, the light transmittance is about 20% when the incident angle is small at the central portion of the acquired image, and the light transmission is large when the incident angle is large at the peripheral portion of the acquired image. The phenomenon that the transmittance becomes almost 0% occurs, and as a result, the light wavelength dependency of the transmittance is different between the peripheral portion and the central portion of the acquired image, so that a so-called "red defect" that deteriorates the image quality occurs.

本発明の第八実施形態に係るカメラ構造によれば、近赤外光カットフィルタにおいて、入射光の入射角度を0°〜30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が5nm以下なので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。   According to the camera structure of the eighth embodiment of the present invention, in the near infrared light cut filter, the angle dependence of the near infrared light cutoff wavelength when the incident angle of the incident light is changed in the range of 0 ° to 30 °. Since the change width is 5 nm or less, it is difficult to make a difference in color expression in the acquired image, and the excellent effect of improving the image quality is achieved.

近赤外光吸収部140と近赤外光反射部150を合わせた効果として、所定の波長における光の透過率が1%以上となると取得画像に影響を与える。したがって近赤外光吸収部140の分光特性として、光透過率が2%以上の光波長領域において、近赤外光反射部150の光透過率が50%になると、取得画像の画質が肉眼で見た色味とは異なることになる。また近赤外光反射部150を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。   As a combined effect of the near-infrared light absorbing portion 140 and the near-infrared light reflecting portion 150, when the transmittance of light at a predetermined wavelength is 1% or more, the acquired image is affected. Therefore, as the spectral characteristic of the near-infrared light absorbing portion 140, when the light transmittance of the near-infrared light reflecting portion 150 becomes 50% in the light wavelength region where the light transmittance is 2% or more, the image quality of the acquired image is visible to the naked eye. It will be different from the color you see. Further, when the near-infrared light reflector 150 is formed of, for example, a dielectric multilayer film, the light transmittance changes depending on the incident angle of the incident light. Therefore, the transmittance depends on the light wavelength at the peripheral portion and the central portion of the acquired image. As a result, the so-called “red dropout” is caused and the image quality deteriorates.

本発明の第八実施形態に係るカメラ構造によれば、近赤外光吸収部140と近赤外光反射部150を合わせた効果として685nm〜755nmの光波長領域で光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。また近赤外光反射部150への入射光の入射角度を0°〜30°の範囲で変化させたとき、常に、近赤外光反射部150の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域700に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。   According to the camera structure of the eighth embodiment of the present invention, as a combined effect of the near-infrared light absorbing portion 140 and the near-infrared light reflecting portion 150, the light transmittance is 1% in the light wavelength region of 685 nm to 755 nm. Therefore, the difference between the quality of the acquired image and that observed with the naked eye is reduced, which is also an excellent effect. Further, when the incident angle of the incident light on the near infrared light reflecting portion 150 is changed in the range of 0 ° to 30 °, the near infrared light cutoff wavelength of the near infrared light reflecting portion 150 is always the light transmittance. Is less than 2%, the incident angle dependence of the spectral characteristics for light in the near infrared region is reduced, and the light wavelengths that can be acquired in the peripheral part and the central part of the acquired image do not change. Therefore, it has an excellent effect of improving the image quality.

図14(A)は、本発明の第九実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。本実施形態の場合、固体撮像装置は情報通信機器、携帯通信機器Aである。カメラ構造は、光の入射する側から、光学フィルタ機能付きカバーガラス400と、スマートフォン等の携帯通信機器Aの筐体520内に収容されるカメラモジュール501を有する。カメラモジュール501は、光学フィルタ機能付きカバーガラス400側に配置される光学レンズ群であるレンズユニット450と、光学フィルタ機能付きカバーガラス400及びレンズユニット450を介して入射した光を受光する撮像素子570とを備え、レンズユニット450から撮像素子570までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴としている。詳細には図14(A)のように、光学フィルタ機能付きカバーガラス400、レンズユニット450、レンズキャリア540、マグネットホルダ430。撮像素子570、そして基板580から主に構成され、スマートフォン筐体520に固定される。撮像素子570と基板580の接続についてはワイヤボンディングでつないでも、フリップチップ実装をおこなっても良い。   FIG. 14A is a cross-sectional view of a camera structure applied to the mobile communication device A that is an imaging device according to the ninth embodiment of the present invention. In the case of this embodiment, the solid-state imaging device is an information communication device or a mobile communication device A. The camera structure has a cover glass 400 with an optical filter function and a camera module 501 housed in a housing 520 of a mobile communication device A such as a smartphone from the light incident side. The camera module 501 includes a lens unit 450, which is an optical lens group disposed on the cover glass 400 side with optical filter function, and an image sensor 570 that receives light incident through the cover glass 400 with optical filter function and the lens unit 450. And a near-infrared light cut filter for cutting light in the near-infrared region is not arranged in the optical path from the lens unit 450 to the image sensor 570. Specifically, as shown in FIG. 14A, a cover glass 400 with an optical filter function, a lens unit 450, a lens carrier 540, and a magnet holder 430. The image sensor 570 and the board 580 are mainly included and are fixed to the smartphone housing 520. The image sensor 570 and the substrate 580 may be connected by wire bonding or flip chip mounting.

図11(A)の従来のカメラ構造と大きく違うのは、従来、画質向上のために必要だった近赤外光をカットする光学フィルタ60(図11(A)参照)を省略した点である。その代わりに従来は、カメラモジュール1を保護する役割を主に担っていたカバーガラス10に近赤外領域の光をカットするフィルタ機能を付加した。このような構造にすることで、カメラ構造全体の長さを従来よりも短くすることができるとともに、撮像素子70の近傍に光学フィルタ60を配置しないため、光学フィルタ60の製造過程で、該フィルタの表面に付着する粒状のゴミ(パーティクル)が、撮像素子70の表面に落下して画像を悪化させることもなくなる著しい効果を奏する。また、カメラモジュール1の組立工程において、近赤外光カットフィルタ60を配置、組み付けるための工程も必要なくなり、一層のコスト低減、歩留まりの向上、作業の効率化に資する。   A major difference from the conventional camera structure shown in FIG. 11A is that an optical filter 60 (see FIG. 11A) that cuts near-infrared light, which is conventionally required for improving image quality, is omitted. .. Instead of this, a filter function for cutting light in the near-infrared region has been added to the cover glass 10 which has conventionally been mainly responsible for protecting the camera module 1. With such a structure, the length of the entire camera structure can be made shorter than before, and since the optical filter 60 is not arranged in the vicinity of the image sensor 70, the optical filter 60 is not manufactured in the manufacturing process. There is a remarkable effect that granular dust (particles) attached to the surface of the device does not drop on the surface of the image sensor 70 and deteriorate the image. Further, in the assembling process of the camera module 1, the process for disposing and assembling the near-infrared light cut filter 60 is not necessary, which contributes to further cost reduction, improvement in yield, and work efficiency.

また図14(A)のカメラ構造を備えることで、携帯通信機器Aは、より小型に、より薄く、より安価に製造できる効果を奏する。   Further, by providing the camera structure of FIG. 14 (A), the mobile communication device A has an effect that it can be made smaller, thinner, and cheaper.

図14(B)に、携帯通信機器Aの筐体に連続して設置され、内部機構であるカメラモジュールを外界から保護する光学フィルタ機能付きカバーガラス400の積層構造を示す。光学フィルタ機能付きカバーガラス400は、光を透過する透明基板として結晶化ガラス630を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜620が、結晶化ガラス630を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜610を備える。光の出射側に、結晶化ガラス630を基準として最も遠い側から順に、近赤外領域の光を反射する近赤外反射部としての近赤外光反射膜650と、近赤外領域の光を吸収する近赤外光吸収部としての近赤外光吸収膜640とが形成される。光の出射側の最遠い側に、さらに反射防止膜620を形成しても良い。   FIG. 14B shows a laminated structure of the cover glass 400 with an optical filter function, which is continuously installed in the housing of the mobile communication device A and protects the camera module which is the internal mechanism from the outside. The cover glass 400 with an optical filter function uses the crystallized glass 630 as a transparent substrate that transmits light, and the antireflection film 620 that reflects light in the ultraviolet region and suppresses reflection of light in the visible region is a crystal. It is formed on the light incident side with reference to the fog glass 630. An antifouling coating film 610 for preventing dirt from the outside is provided on the outermost side on which light is incident. A near-infrared light reflecting film 650 as a near-infrared reflecting portion that reflects light in the near-infrared region in order from the farthest side with respect to the crystallized glass 630 on the light emission side, and light in the near-infrared region. And a near-infrared light absorbing film 640 serving as a near-infrared light absorbing portion that absorbs. An antireflection film 620 may be further formed on the farthest side from which light is emitted.

一般に結晶化ガラスは、結晶粒子が大きいため光を通しにくかった。しかし最近の技術の進歩により、例えば株式会社オハラ社製の耐衝撃・高硬度クリアガラスセラミックスのように、結晶粒子をナノメートルサイズに制御することが可能になり光の透過率が高まった。このような結晶化ガラスを使えば、耐衝撃性とクラックが入りにくい破壊靱性を兼ね備えたカバーガラスを製造することができる。そしてこのようなカバーガラスに上記の積層構造を形成することで光学フィルタ機能付きカバーガラス400が実現される。なお光学フィルタ機能付きカバーガラス400としてブルーガラスを使用することも理論上は考えられるが、耐衝撃性が低く、またクラックが入りにくい破壊靱性に欠けるため適切でない。強化ガラスに、後述する近赤外光吸収膜640や近赤外光反射膜650を成膜して光学フィルタ機能付きカバーガラス400とすることも考えられるが、結晶化ガラス630を使う場合に比べて耐衝撃性が低い欠点を持つ。また硬度が高いサファイアガラスに、近赤外光吸収膜640や近赤外光反射膜650を成膜して光学フィルタ機能付きカバーガラス400とすることも考えられるが、コストが著しく上がり、また結晶化ガラス630を使う場合に比べて加工性が低い。   In general, crystallized glass has a large crystal grain, which makes it difficult to transmit light. However, recent technological advances have made it possible to control the crystal particles to a nanometer size, as in the case of impact-resistant and high-hardness clear glass ceramics manufactured by Ohara Co., Ltd., thereby increasing the light transmittance. By using such a crystallized glass, it is possible to produce a cover glass having both impact resistance and fracture toughness in which cracking is unlikely to occur. The cover glass 400 with an optical filter function is realized by forming the above-mentioned laminated structure on such a cover glass. Note that it is theoretically possible to use blue glass as the cover glass 400 with an optical filter function, but it is not appropriate because it has low impact resistance and lacks fracture toughness in which cracks hardly occur. It is conceivable to form a near-infrared light absorbing film 640 and a near-infrared light reflecting film 650, which will be described later, on the tempered glass to form the cover glass 400 with an optical filter function. It has the drawback of low impact resistance. It is also conceivable to form the near-infrared light absorbing film 640 and the near-infrared light reflecting film 650 on sapphire glass having high hardness to form the cover glass 400 with an optical filter function, but the cost is significantly increased and the crystal is also used. Workability is low as compared with the case where the fog glass 630 is used.

防汚コート膜610は、指紋汚れ、皮脂汚れを防ぐとともに、汚れを拭き取りやすくする。防汚コート膜610はフッ素系のコーティング剤等で形成され、塗布やスプレーにより、カバーガラスの積層構造において光の入射側の最も外側に成膜される。   The antifouling coat film 610 prevents fingerprint stains and sebum stains and makes it easier to wipe the stains. The antifouling coating film 610 is formed of a fluorine-based coating agent or the like, and is formed by coating or spraying on the outermost side of the cover glass laminated structure on the light incident side.

反射防止膜620は、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する。反射防止膜620は誘電体多層膜であり、且つ、窒化膜と酸化膜を交互に積層して構成される。反射防止膜620を構成する誘電体膜は、窒化膜と酸化膜を交互に複数積層して構成される。窒化膜としては、窒化ケイ素、酸窒化ケイ素または窒化アルミニウムなどを用いることができる。酸窒化ケイ素を用いる場合には、酸素と窒素との化学量論比(酸素/窒素)が1以下であることが望ましい。酸化膜としては、酸化ケイ素(SiO2)、酸化アルミニウム(Al2O3)などを用いることができる。反射防止膜620の膜として窒化ケイ素または酸窒化ケイ素を用いることにより、後述する近赤外光反射膜150と同じ成膜方法及び成膜装置を用いて反射防止膜620を形成することができるのでプロセス的に有利である。   The antireflection film 620 reflects light in the ultraviolet region and suppresses reflection of light in the visible region. The antireflection film 620 is a dielectric multi-layer film and is formed by alternately laminating a nitride film and an oxide film. The dielectric film forming the antireflection film 620 is formed by alternately stacking a plurality of nitride films and oxide films. As the nitride film, silicon nitride, silicon oxynitride, aluminum nitride, or the like can be used. When using silicon oxynitride, the stoichiometric ratio of oxygen to nitrogen (oxygen / nitrogen) is preferably 1 or less. Silicon oxide (SiO2), aluminum oxide (Al2O3), or the like can be used as the oxide film. By using silicon nitride or silicon oxynitride as the film of the antireflection film 620, the antireflection film 620 can be formed by using the same film forming method and film forming apparatus as those of the near infrared light reflecting film 150 described later. It has a process advantage.

反射防止膜620は、窒化膜の代わりに酸化膜を用いることもできる。このような酸化膜の材質としては、酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いることができる。なお反射防止膜120を屈折率の異なる複数種類の酸化膜で構成する場合には、前記酸化物から適宜選択する。   As the antireflection film 620, an oxide film may be used instead of the nitride film. As a material of such an oxide film, in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), etc. may be used. it can. When the antireflection film 120 is composed of a plurality of types of oxide films having different refractive indexes, it is appropriately selected from the above oxides.

反射防止膜620は、公知の成膜方法、たとえば真空蒸着法、スパッタ法、イオンビームアシスト蒸着法(IAD法)、イオンプレーティング法(IP法)、イオンビームスパッタ法(IBS法)などを用いることができる。窒化膜の成膜には、スパッタ法、イオンビームスパッタ法を用いることが望ましい。   The antireflection film 620 uses a known film forming method, for example, a vacuum evaporation method, a sputtering method, an ion beam assisted evaporation method (IAD method), an ion plating method (IP method), an ion beam sputtering method (IBS method), or the like. be able to. It is desirable to use a sputtering method or an ion beam sputtering method for forming the nitride film.

近赤外光吸収膜640は、結晶化ガラス630において上述の反射防止膜620とは反対側の面、すなわち光学フィルタ機能付きカバーガラス400の撮像素子570側(図14(A)参照)に形成される。近赤外光吸収膜640は、可視領域の光を透過するとともに、赤色領域から近赤外領域の光の一部を吸収する機能を有する。近赤外光吸収膜640には、有機色素が含まれ、700nmから750nmの範囲に最大吸収波長を有する樹脂膜から構成される(図13(A)実線A2参照)。近赤外光吸収膜640は、結晶化ガラス630に隣接するため、両者の屈折率差を小さくして界面での反射率を低下させることが望ましい。このような近赤外光吸収膜640を有することにより、入射角度による分光透過率特性の依存性を低減して優れた近赤外光カット性を有することができる。   The near infrared light absorption film 640 is formed on the surface of the crystallized glass 630 opposite to the antireflection film 620 described above, that is, on the image sensor 570 side of the cover glass 400 with an optical filter function (see FIG. 14A). To be done. The near-infrared light absorption film 640 has a function of transmitting light in the visible region and absorbing a part of light in the red region to the near-infrared region. The near-infrared light absorption film 640 contains an organic dye and is composed of a resin film having a maximum absorption wavelength in the range of 700 nm to 750 nm (see a solid line A2 in FIG. 13A). Since the near-infrared light absorption film 640 is adjacent to the crystallized glass 630, it is desirable to reduce the difference in refractive index between the two and reduce the reflectance at the interface. By having such a near-infrared light absorption film 640, it is possible to reduce the dependence of the spectral transmittance characteristics depending on the incident angle and to have an excellent near-infrared light cutting property.

有機色素としては、アゾ系化合物、フタロシアニン系化合物、シアニン系化合物、ジイモニウム系化合物などを用いることができる。近赤外光吸収膜640を構成するバインダー(色素の結着剤)としての樹脂材料としては、ポリアクリル、ポリエステル、ポリカーボネイト、ポリスチレン、ポリオレフィンなどを用いることができる。樹脂材料は、複数の樹脂を混合してもよく、また上記樹脂のモノマーを用いた共重合体であってもよい。また、樹脂材料は、可視領域の光に対して透過率の高いものであればよく、有機色素との相性、成膜プロセス、コスト等を考慮して選択される。また、近赤外光吸収膜640の耐紫外線性を向上させるために、樹脂材料に硫黄化合物などのクエンチャー(消光色素)を添加してもよい。   As the organic dye, an azo compound, a phthalocyanine compound, a cyanine compound, a diimonium compound, or the like can be used. As a resin material as a binder (a binder for a dye) forming the near infrared light absorption film 640, polyacryl, polyester, polycarbonate, polystyrene, polyolefin, or the like can be used. The resin material may be a mixture of a plurality of resins, or may be a copolymer using monomers of the above resins. Further, the resin material may be any material as long as it has a high transmittance for light in the visible region, and is selected in consideration of compatibility with the organic dye, film forming process, cost and the like. Further, a quencher (quenching dye) such as a sulfur compound may be added to the resin material in order to improve the ultraviolet resistance of the near infrared light absorption film 640.

近赤外光吸収膜640の形成には、たとえば以下の方法を用いることができる。まず、樹脂バインダーをメチルエチルケトン、トルエン等の公知の溶剤によって溶解し、さらに上述の有機色素を添加して塗布液を調製する。次いで、この塗布液をたとえばスピンコート法により結晶化ガラス630に所望の膜厚で塗布し、乾燥炉にて乾燥、硬化させる。   For example, the following method can be used for forming the near infrared light absorption film 640. First, a resin binder is dissolved in a known solvent such as methyl ethyl ketone or toluene, and the above-mentioned organic dye is added to prepare a coating liquid. Next, this coating solution is applied to the crystallized glass 630 with a desired film thickness by, for example, a spin coating method, and dried and cured in a drying oven.

近赤外光反射膜650は、反射防止膜620と同様に屈折率の異なる誘電体を交互に複数積層して形成される誘電体多層膜である。ただし近赤外光反射膜650を構成する誘電体多層膜は、屈折率が互いに異なる複数種類の酸化膜を複数積層させることで形成され、隣接する前記酸化膜は互いに異なる種類の酸化膜である。本第一実施形態で近赤外光反射膜650は、2種類の酸化膜を交互に数十層積層して形成される。酸化膜としては酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いる。   The near-infrared light reflection film 650 is a dielectric multilayer film formed by alternately laminating a plurality of dielectrics having different refractive indexes, like the antireflection film 620. However, the dielectric multilayer film forming the near-infrared light reflecting film 650 is formed by laminating a plurality of types of oxide films having different refractive indexes, and the adjacent oxide films are different types of oxide films. .. In the first embodiment, the near-infrared light reflecting film 650 is formed by alternately stacking several tens layers of two types of oxide films. As the oxide film, in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), or the like is used.

近赤外光反射膜650において、それぞれの酸化膜の膜厚は、反射をしたい光の波長をλとして、λ/4の厚みで形成する。こうすることで交互層のすべての界面から反射された光は、入射面に達すると同じ位相になり、光は強め合う結果になる、つまり波長λ付近で反射率が大きくなって光反射膜として機能する。本実施形態においては、λとして近赤外領域の光を反射するように膜の設計を行えば良い。なお近赤外光反射膜650についても、上述の反射防止膜620と同様の成膜方法及び成膜装置を用いて成膜する。   In the near-infrared light reflection film 650, the thickness of each oxide film is formed with a thickness of λ / 4, where λ is the wavelength of light to be reflected. By doing so, the light reflected from all the interfaces of the alternating layers will have the same phase when reaching the incident surface, and the light will be mutually strengthened. Function. In the present embodiment, the film may be designed to reflect light in the near infrared region as λ. Note that the near-infrared light reflecting film 650 is also formed by using the same film forming method and film forming apparatus as those for the antireflection film 620 described above.

人間の目は、波長380nm〜780nmのいわゆる可視光に対して感度を持つ。一方、撮像素子は、一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子で捉える画像をそのまま写真にすると、自然な色合いには見えず、違和感を生じる原因になる。   The human eye has sensitivity to so-called visible light having a wavelength of 380 nm to 780 nm. On the other hand, the image sensor generally has sensitivity to light having a longer wavelength including visible light, that is, light having a wavelength of about 1.1 μm. Therefore, if the image captured by the image sensor is taken as a photograph, it does not look like a natural color, which causes a feeling of strangeness.

光学フィルタ機能付きカバーガラス400を上記図14(B)のような積層構造にすると、誘電体多層膜による近赤外光反射膜650を備えるため、近赤外光吸収膜640では吸収しきれない700nm以上の長さの波長の光をカットして、自然な色合いの画像を取得することが可能になる。   When the cover glass 400 with an optical filter function has a laminated structure as shown in FIG. 14B, since the near-infrared light reflecting film 650 including a dielectric multilayer film is provided, the near-infrared light absorbing film 640 cannot completely absorb the light. It becomes possible to obtain a natural color image by cutting light with a wavelength of 700 nm or more.

近赤外光反射膜650の光透過率の光波長依存性については、図13(A)に示す。具体的には、点線R3は、入射光の入射角度が0°の時の近赤外光反射膜650単体における光透過率の分光特性を示し、破線R4は、入射光の入射角度が30°の時の近赤外光反射膜650単体における光透過率の分光特性を示す。   The light wavelength dependence of the light transmittance of the near infrared light reflection film 650 is shown in FIG. Specifically, the dotted line R3 shows the spectral characteristic of the light transmittance of the near infrared light reflection film 650 alone when the incident angle of the incident light is 0 °, and the broken line R4 shows the incident angle of 30 °. 9 shows the spectral characteristics of the light transmittance of the near infrared light reflection film 650 alone at the time of.

本実施形態において、近赤外光反射膜650への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、
近赤外光反射部650への入射光の入射角度を0°〜30°の範囲で変化させても、常に、近赤外光反射部650の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域700に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。
In the present embodiment, the wavelength at which the light transmittance decreases to 50% as the wavelength of the incident light on the near-infrared light reflecting film 650 increases is defined as the near-infrared light cutoff wavelength. ,
Even if the incident angle of the incident light on the near-infrared light reflector 650 is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength of the near-infrared light reflector 650 always has the light transmittance. Since it falls within the light absorption wavelength region 700 of less than 2%, the incident angle dependence of the spectral characteristics for light in the near infrared region is reduced, and the light wavelength that can be acquired in the peripheral part and the central part of the acquired image does not change. It has an excellent effect of improving the image quality.

すなわち近赤外光反射膜650と、光吸収率について入射角度依存性のない近赤外光吸収膜640とを組み合わせることで、光の透過率が、光の入射角度に対して依存性の少ない近赤外光カットフィルタを構成することが可能になる(図13(B)参照)。   That is, by combining the near-infrared light reflecting film 650 and the near-infrared light absorbing film 640 that does not have the incident angle dependency of the light absorption rate, the light transmittance has little dependency on the light incident angle. It is possible to configure a near infrared light cut filter (see FIG. 13B).

また、スマートフォン筐体520内のカメラを外界から保護するカバーガラス400が反射防止膜620により紫外領域の光をカットすることができるので、カメラの構成部品である合成樹脂で形成された光学レンズ群(レンズユニット450)が紫外線によって劣化することを防ぐことができ、且つ、有機色素を含む近赤外光吸収膜640が紫外線により劣化することも防ぐことができる。また、可視領域の光に対する反射防止機能により、入射光をより多く取り込み、明るい画像を取得できる。   Further, since the cover glass 400 that protects the camera inside the smartphone housing 520 from the outside world can block the light in the ultraviolet region by the antireflection film 620, an optical lens group formed of a synthetic resin which is a component of the camera. It is possible to prevent the (lens unit 450) from being deteriorated by ultraviolet rays, and it is also possible to prevent the near-infrared light absorbing film 640 containing an organic dye from being deteriorated by ultraviolet rays. Further, due to the antireflection function for light in the visible region, more incident light can be captured and a bright image can be obtained.

なお反射防止膜620は、窒化膜と酸化膜を交互に積層して構成されるが、一般に窒化膜は、酸化膜と比べて高硬度であり、鉛筆硬度試験において、9H以上の硬度に達する。したがって反射防止膜120を窒化膜も含めて構成することで、耐傷性を高める効果を奏する。また窒化膜は、酸化膜と比べて充填密度が高く緻密である。成分として酸素を含まないため、酸素の供給源にもならない。したがって窒化膜を近赤外光吸収膜640より外側に設けることで、近赤外光吸収膜640への酸素および水分の侵入を防ぎ、近赤外光吸収膜640の劣化を抑制する効果を奏する。   The antireflection film 620 is formed by alternately stacking a nitride film and an oxide film. Generally, the nitride film has a higher hardness than the oxide film, and reaches a hardness of 9H or more in the pencil hardness test. Therefore, by configuring the antireflection film 120 including the nitride film, the effect of enhancing the scratch resistance can be obtained. Further, the nitride film has a higher packing density and is denser than the oxide film. Since it does not contain oxygen as a component, it does not serve as a source of oxygen. Therefore, by providing the nitride film outside the near-infrared light absorbing film 640, oxygen and moisture are prevented from entering the near-infrared light absorbing film 640, and deterioration of the near-infrared light absorbing film 640 is suppressed. ..

一般に光学フィルタは、多数の光学境界面を持っている。一方レンズには高度な反射防止膜を施している。近赤外領域の光をカットする光学フィルタでレンズ並みの透過率を実現することは難しく、レンズ側に反射光を戻すことが生じる。これが画像にゴーストを生む迷光の原因になる。従来のカメラ構造においては、光学フィルタ60がレンズユニット50と撮像素子70の間の光路上で、撮像素子70直近に置かれているため、上記のようなゴーストを生じることは避けがたかった(図11(A)参照)。しかし本実施形態に係るカメラ構造によれば、上述のような迷光を生じることはないため画質を向上させる著しい効果を奏する。   Generally, an optical filter has many optical boundary surfaces. On the other hand, the lens has an advanced antireflection film. It is difficult to achieve a transmittance equal to that of a lens with an optical filter that cuts light in the near-infrared region, and reflected light may be returned to the lens side. This causes stray light that creates ghosts in the image. In the conventional camera structure, since the optical filter 60 is placed in the optical path between the lens unit 50 and the image pickup device 70 and in the immediate vicinity of the image pickup device 70, it is unavoidable to generate the ghost as described above ( (See FIG. 11A). However, according to the camera structure of the present embodiment, the above-mentioned stray light is not generated, so that a remarkable effect of improving the image quality is achieved.

本発明の第九実施形態によれば、従来よりも画質が向上したカメラ構造を搭載する撮像装置を安価に実現できるという著しい効果を奏する。   According to the ninth embodiment of the present invention, it is possible to realize a remarkable effect that an image pickup apparatus equipped with a camera structure having an improved image quality can be realized at a lower cost than ever.

尚、本発明の実施形態に係るカメラ構造及び撮像装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The camera structure and the image pickup apparatus according to the embodiments of the present invention are not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

1 カメラモジュール
10 カバーガラス
20 スマートフォン筐体
22 車体
30 マグネットホルダ
40 レンズキャリア
50 レンズユニット
60 光学フィルタ
70 撮像素子
80 基板
100 光学フィルタ機能付きカバーガラス
110 防汚コート膜
120 反射防止膜
130 結晶化ガラス
140 近赤外光吸収膜
150 近赤外光反射膜
160 入射面
170 出射面
180 測定対象
190 入射光
200 垂直軸
210 光学フィルタ機能付きカバーガラス
215 近赤外光反射機能付きカバーガラス
217 近赤外光吸収機能付きプレート
220 透明ガラス
222 透明合成樹脂フィルム
230 反射防止層
232 モスアイ構造
240 撮像素子カバー
242 透明合成樹脂フィルムを基材とした撮像素子カバー
244 近赤外光吸収機能付き撮像素子カバー
250 近赤外光吸収部を備えるレンズ素子
255 透明なレンズ素子
270 近赤外光反射部を備えるレンズ素子
300 光源
310 高反射材
320 低反射材
360 透明ガラス
370 反射防止膜
380 ブルーガラス
390 近赤外光反射膜
400 光学フィルタ機能付きカバーガラス
430 マグネットホルダ
450 レンズユニット
500 近赤外光吸収機能付き光学素子
501 カメラモジュール
520 スマートフォン筐体
530 光学フィルタ機能付き光学素子
540 レンズキャリア
550 カバーガラス
570 撮像素子
580 基板
610 防汚コート膜
620 反射防止膜
630 結晶化ガラス
640 近赤外光吸収膜(近赤外光吸収部)
650 近赤外光反射膜(近赤外光反射部)
700 光吸収波長領域
A 携帯通信機器
A1 従来の近赤外光吸収インクの分光特性
A2 新たな近赤外光吸収インクの分光特性
C1 入射角0°のときの分光特性
C2 入射角30°のときの分光特性
C3 入射角0°のときの分光特性
C4 入射角30°のときの分光特性
G ゴースト
R1 入射角0°のときの従来の近赤外反射部の分光特性
R2 入射角30°のときの従来の近赤外反射部の分光特性
R3 入射角0°のときの新たな近赤外反射部の分光特性
R4 入射角30°のときの新たな近赤外反射部の分光特性
1 camera module
10 Cover Glass 20 Smartphone Case 22 Car Body 30 Magnet Holder 40 Lens Carrier 50 Lens Unit 60 Optical Filter 70 Image Sensor 80 Substrate 100 Cover Glass with Optical Filter Function 110 Antifouling Coating Film 120 Antireflection Film 130 Crystallized Glass 140 Near Infrared Light absorption film 150 Near infrared light reflection film 160 Incident surface 170 Emission surface 180 Measurement target 190 Incident light 200 Vertical axis 210 Cover glass with optical filter function 215 Cover glass with near infrared light reflection function 217 Near infrared light absorption function Plate 220 Transparent glass 222 Transparent synthetic resin film 230 Antireflection layer 232 Moth-eye structure 240 Image sensor cover 242 Image sensor cover based on transparent synthetic resin film 244 Image sensor cover with near infrared light absorption function 250 Lens element having near infrared absorption part 255 Transparent lens element 270 Lens element having near infrared reflection part 300 Light source 310 High reflection material 320 Low reflection material 360 Transparent glass 370 Antireflection film 380 Blue glass 390 Near red External light reflection film 400 Cover glass with optical filter function 430 Magnet holder 450 Lens unit 500 Optical element with near infrared light absorption function 501 Camera module 520 Smartphone housing 530 Optical element with optical filter function 540 Lens carrier 550 Cover glass 570 Image sensor 580 Substrate 610 Antifouling coating film 620 Antireflection film 630 Crystallized glass 640 Near infrared absorption film (near infrared absorption part)
650 Near infrared light reflection film (near infrared light reflection part)
700 Optical absorption wavelength range A Portable communication device A1 Spectral characteristics of conventional near infrared absorbing ink A2 Spectral characteristics of new near infrared absorbing ink C1 Spectral characteristics when incident angle is 0 ° C2 When incident angle is 30 ° Spectral characteristics of C3 Spectral characteristics when incident angle is 0 ° C4 Spectral characteristics when incident angle is 30 ° G Ghost R1 Spectral characteristics of conventional near-infrared reflector when incident angle is 0 ° R2 When incident angle is 30 ° Conventional spectral characteristics of the near-infrared reflector R3 Spectral characteristics of the new near-infrared reflector when the incident angle is 0 ° R4 Spectral characteristics of the new near-infrared reflector when the incident angle is 30 °

Claims (6)

撮像をおこなうカメラ構造であって、
光の入射側に配置される光学レンズ群と、
前記光学レンズ群を介して入射した光を受光する撮像素子と、
近赤外領域の光を反射する近赤外光反射部と、
近赤外領域の光を吸収する近赤外光吸収部と、
を備え、
前記近赤外光反射部、及び、前記近赤外光吸収部が、前記光学レンズ群に含まれる一体の光学素子に含まれることを特徴とするカメラ構造。
A camera structure for performing imaging,
An optical lens group arranged on the incident side of light,
An image pickup device that receives light incident through the optical lens group,
A near-infrared light reflector that reflects light in the near-infrared region,
A near-infrared light absorbing portion that absorbs light in the near-infrared region,
Equipped with
A camera structure, wherein the near-infrared light reflecting portion and the near-infrared light absorbing portion are included in an integrated optical element included in the optical lens group.
近赤外領域の光を吸収する近赤外光吸収部と、
近赤外領域の光を反射する近赤外光反射部と、
を備え、
前記近赤外光吸収部は、光の波長として685nm〜755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、
前記近赤外光反射部への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光反射部は、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、
前記近赤外光反射部への入射光の入射角度を0°〜30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とするカメラ構造。
A near-infrared light absorbing portion that absorbs light in the near-infrared region,
A near-infrared light reflector that reflects light in the near-infrared region,
Equipped with
The near-infrared light absorbing portion has a light absorption wavelength region having a light transmittance of less than 2% in a region of 685 nm to 755 nm as a wavelength of light,
When the wavelength at which the light transmittance decreases to 50% as the wavelength of the incident light on the near-infrared light reflecting portion increases is defined as the near-infrared light cutoff wavelength, The light reflecting portion has a characteristic of substantially totally reflecting light having a wavelength longer than the near-infrared light cutoff wavelength,
The near-infrared light cutoff wavelength is always included in the light absorption wavelength region when the incident angle of the incident light on the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °. A camera structure characterized by.
撮像装置の内部機構を外界から保護するカバーガラスと
前記カバーガラス側に配置される光学レンズ群と
前記カバーガラス及び前記光学レンズ群を介して入射した光を受光する撮像素子と、
を備え、
前記カバーガラスは
光を透過する透明基板と、
前記近赤外光吸収部と、
前記近赤外光反射部と、
を有し、
前記光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴とする請求項1又は請求項2に記載のカメラ構造。
A cover glass that protects the internal mechanism of the imaging device from the outside, an optical lens group arranged on the cover glass side, an image sensor that receives light incident through the cover glass and the optical lens group,
Equipped with
The cover glass is a transparent substrate that transmits light,
The near-infrared light absorption section,
The near-infrared light reflector,
Have
The camera structure according to claim 1 or 2, wherein a near-infrared light cut filter that cuts light in a near-infrared region is not arranged in an optical path from the optical lens group to the image sensor.
近赤外領域の光を遮断する近赤外光カットフィルタを備えるカメラ構造であって、
前記近赤外光カットフィルタは、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義すると、前記入射光の入射角度を0°〜30°の範囲で変えた時の前記近赤外光遮断波長の角度依存変化幅が5nm以下であることを特徴とするカメラ構造。
A camera structure comprising a near-infrared light cut filter that blocks light in the near-infrared region,
The near-infrared light cut filter defines the incident angle of the incident light by defining the wavelength at which the light transmittance decreases to 10% when the wavelength of the incident light increases as the near-infrared light cutoff wavelength. A camera structure, wherein an angle-dependent change width of the near-infrared light blocking wavelength when changed in a range of 0 ° to 30 ° is 5 nm or less.
近赤外領域の光を吸収する近赤外光吸収部と、
近赤外領域の光を反射する近赤外光反射部と、
を備え、
前記近赤外光吸収部の光透過率は、光の波長について700nm〜750nmの範囲で2%未満であり、
光の波長について630nm〜750nmの範囲、且つ、光の透過率が2%以上の範囲で、前記近赤外光吸収部の光透過率の周波数依存曲線が、前記近赤外光反射部に入射する入射角度が0°〜30°の時の前記近赤外光反射部の光透過率の周波数依存曲線よりも、短波長側にあることを特徴とするカメラ構造。
A near-infrared light absorbing portion that absorbs light in the near-infrared region,
A near-infrared light reflector that reflects light in the near-infrared region,
Equipped with
The light transmittance of the near infrared light absorbing portion is less than 2% in the range of 700 nm to 750 nm with respect to the wavelength of light,
The frequency dependence curve of the light transmittance of the near-infrared light absorbing portion is incident on the near-infrared light reflecting portion in the range of 630 nm to 750 nm for the light wavelength and the light transmittance of 2% or more. A camera structure characterized by being on the shorter wavelength side than the frequency-dependent curve of the light transmittance of the near-infrared light reflecting portion when the incident angle is 0 ° to 30 °.
請求項1から請求項5までのうちのいずれか一項に記載のカメラ構造を有することを特徴とする撮像装置。   An image pickup apparatus, comprising the camera structure according to any one of claims 1 to 5.
JP2019166737A 2017-02-24 2019-09-13 camera structure, imaging device Active JP7148981B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033173 2017-02-24
JP2017033173 2017-02-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018529082A Division JP6589061B2 (en) 2017-02-24 2018-02-23 Camera structure, imaging device

Publications (2)

Publication Number Publication Date
JP2020074366A true JP2020074366A (en) 2020-05-14
JP7148981B2 JP7148981B2 (en) 2022-10-06

Family

ID=63252829

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018529082A Active JP6589061B2 (en) 2017-02-24 2018-02-23 Camera structure, imaging device
JP2019166737A Active JP7148981B2 (en) 2017-02-24 2019-09-13 camera structure, imaging device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018529082A Active JP6589061B2 (en) 2017-02-24 2018-02-23 Camera structure, imaging device

Country Status (5)

Country Link
JP (2) JP6589061B2 (en)
KR (1) KR102169130B1 (en)
CN (1) CN109478005B (en)
TW (3) TWI789043B (en)
WO (1) WO2018155634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008291A1 (en) * 2021-07-30 2023-02-02 Agc株式会社 Optical filter
WO2023157403A1 (en) * 2022-02-21 2023-08-24 パナソニックIpマネジメント株式会社 Optical filter and imaging device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232161B1 (en) 2017-07-27 2017-11-15 日本板硝子株式会社 Optical filter
JP6267823B1 (en) 2017-07-27 2018-01-24 日本板硝子株式会社 Optical filter, camera module, and information terminal
JP6778222B2 (en) * 2018-01-24 2020-10-28 日本板硝子株式会社 Optical filter and camera module
JP7255600B2 (en) * 2018-09-12 2023-04-11 Jsr株式会社 Optical filter and its use
EP3671837B1 (en) * 2018-12-21 2023-11-29 ams Sensors Belgium BVBA Pixel of a semiconductor image sensor and method of manufacturing a pixel
JP2021009271A (en) * 2019-07-03 2021-01-28 Jsr株式会社 Camera module and electronic equipment
JPWO2022138252A1 (en) * 2020-12-25 2022-06-30
TWI847209B (en) * 2021-09-01 2024-07-01 大立光電股份有限公司 Optical imaging lens assembly, imaging apparatus and electronic device
WO2023210475A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter
WO2023210474A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Optical filter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169447A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2014059550A (en) * 2012-08-23 2014-04-03 Asahi Glass Co Ltd Near-infrared cut filter
WO2014088063A1 (en) * 2012-12-06 2014-06-12 旭硝子株式会社 Near-infrared blocking filter
JP2014191346A (en) * 2013-03-28 2014-10-06 Konica Minolta Inc Ir cut filter, and imaging device having the same
WO2014168190A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared shielding filter, solid-state imaging element, and imaging/display device
WO2014192715A1 (en) * 2013-05-29 2014-12-04 Jsr株式会社 Optical filter, and device using said filter
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter
US20160259103A1 (en) * 2013-09-06 2016-09-08 Lms Co.,Ltd Optical filter, and imaging device comprising same
JP3206578U (en) * 2016-05-04 2016-09-23 白金科技股▲分▼有限公司 Absorption near-infrared filter and image sensor
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025687A (en) * 1988-06-22 1990-01-10 Toshiba Glass Co Ltd Front glass for image sensor
CN100474003C (en) * 2006-04-04 2009-04-01 精工爱普生株式会社 Optical multilayer filter, and electronic apparatus
JP2009141571A (en) * 2007-12-05 2009-06-25 Nikon Corp Imaging apparatus
JP2012137649A (en) * 2010-12-27 2012-07-19 Canon Electronics Inc Optical filter
JP2013041141A (en) * 2011-08-17 2013-02-28 Asahi Glass Co Ltd Imaging device, solid-state imaging element, lens for imaging device, and near infrared light cut-off filter
KR101483386B1 (en) * 2011-10-24 2015-01-14 아사히 가라스 가부시키가이샤 Optical filter, method for producing same, and image capturing device
CN103135155A (en) * 2011-12-02 2013-06-05 鸿富锦精密工业(深圳)有限公司 Lens module
JP2013153361A (en) 2012-01-26 2013-08-08 Konica Minolta Inc Camera module
JP6233308B2 (en) * 2012-08-23 2017-11-22 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
CN104871047B (en) * 2012-12-28 2017-04-26 旭硝子株式会社 Near-infrared cut-off filter
JP2014224892A (en) * 2013-05-16 2014-12-04 旭硝子株式会社 Rear housing
JP6465380B2 (en) * 2013-09-25 2019-02-06 大日本印刷株式会社 Monitoring system, transportation means and store
JP2016018068A (en) * 2014-07-08 2016-02-01 旭硝子株式会社 Substrate with anti-glare film, and articles having the same
CN106062591B (en) * 2015-01-14 2018-10-09 Agc株式会社 Near infrared ray cut-off filter and solid-state imaging apparatus
CN106104319B (en) * 2015-02-18 2018-12-07 Agc株式会社 Optical filter and photographic device
CN107430225B (en) * 2015-12-01 2019-11-08 Agc株式会社 Optical filter and photographic device
CN108700688B (en) * 2016-02-24 2021-05-11 光驰股份有限公司 Laminated structure of glass cover plate, camera structure and imaging device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169447A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Optical filter, solid-state imaging element, imaging device lens and imaging device
JP2014059550A (en) * 2012-08-23 2014-04-03 Asahi Glass Co Ltd Near-infrared cut filter
WO2014088063A1 (en) * 2012-12-06 2014-06-12 旭硝子株式会社 Near-infrared blocking filter
JP2014191346A (en) * 2013-03-28 2014-10-06 Konica Minolta Inc Ir cut filter, and imaging device having the same
WO2014168190A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared shielding filter, solid-state imaging element, and imaging/display device
WO2014192715A1 (en) * 2013-05-29 2014-12-04 Jsr株式会社 Optical filter, and device using said filter
US20160259103A1 (en) * 2013-09-06 2016-09-08 Lms Co.,Ltd Optical filter, and imaging device comprising same
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device
JP3206578U (en) * 2016-05-04 2016-09-23 白金科技股▲分▼有限公司 Absorption near-infrared filter and image sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008291A1 (en) * 2021-07-30 2023-02-02 Agc株式会社 Optical filter
WO2023157403A1 (en) * 2022-02-21 2023-08-24 パナソニックIpマネジメント株式会社 Optical filter and imaging device

Also Published As

Publication number Publication date
KR20190014531A (en) 2019-02-12
JPWO2018155634A1 (en) 2019-02-28
TW201833652A (en) 2018-09-16
CN109478005A (en) 2019-03-15
TW202205001A (en) 2022-02-01
TWI743874B (en) 2021-10-21
JP6589061B2 (en) 2019-10-09
KR102169130B1 (en) 2020-10-22
TW202040255A (en) 2020-11-01
WO2018155634A1 (en) 2018-08-30
TWI701496B (en) 2020-08-11
JP7148981B2 (en) 2022-10-06
TWI789043B (en) 2023-01-01
CN109478005B (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP7148981B2 (en) camera structure, imaging device
JP6625725B2 (en) Camera structure, information communication equipment
KR101878013B1 (en) Optical filter, solid-state imaging element, imaging device lens and imaging device
JP6241419B2 (en) Near-infrared cut filter
JP5741283B2 (en) Infrared light transmission filter and imaging apparatus using the same
JP5617063B1 (en) Near-infrared cut filter
JP5849719B2 (en) Light absorber and imaging device using the same
WO2014103921A1 (en) Ir cut filter and image capture device including same
CN103675970A (en) Infrared cut filter and imaging apparatus
EP1701182A1 (en) Camera module comprising an infrared cut filter, said filter comprising ultraviolet cut means
US20100271482A1 (en) Imaging element unit
JP6784761B2 (en) Package for optical filters and optics
JP6156468B2 (en) Light absorber and imaging device using the same
JP6980364B2 (en) Optical filter, light intensity adjuster and optical device
CN110703376A (en) Optical filter and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

R150 Certificate of patent or registration of utility model

Ref document number: 7148981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150