WO2023157403A1 - Optical filter and imaging device - Google Patents

Optical filter and imaging device Download PDF

Info

Publication number
WO2023157403A1
WO2023157403A1 PCT/JP2022/042430 JP2022042430W WO2023157403A1 WO 2023157403 A1 WO2023157403 A1 WO 2023157403A1 JP 2022042430 W JP2022042430 W JP 2022042430W WO 2023157403 A1 WO2023157403 A1 WO 2023157403A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
optical filter
absorbing resin
resin member
filter according
Prior art date
Application number
PCT/JP2022/042430
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 高山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023157403A1 publication Critical patent/WO2023157403A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present disclosure relates to optical filters and imaging devices.
  • Patent Document 1 discloses an optical filter in which an optical multilayer film is provided on near-infrared cut glass.
  • Patent Document 2 describes a compound (A ) and a compound (S) having an absorption maximum at a wavelength of 750 nm or more and 1050 nm or less.
  • An object of the present disclosure is to provide an optical filter and an imaging device with improved spectral transmittance characteristics.
  • the optical filter according to the present disclosure is a translucent member having one principal surface and the other principal surface facing the one principal surface; an infrared light absorbing resin member provided on the one main surface of the translucent member; an infrared light shielding film provided on the other main surface of the translucent member and shielding infrared light transmitted through the infrared light absorbing resin member.
  • the imaging device is the optical filter; and an imaging device, The imaging element is arranged on the one main surface side of the translucent member.
  • the present disclosure can provide an optical filter and an imaging device with improved spectral transmittance characteristics.
  • FIG. 1 is a schematic diagram of one embodiment of an imaging device comprising an optical filter of the present disclosure.
  • FIG. 2 is a graph showing the spectral transmittance of the infrared light absorbing resin member of the optical filter of the present disclosure.
  • FIG. 3 is a graph showing the spectral transmittance of the infrared light shielding film of the optical filter of the present disclosure.
  • FIG. 4 is a graph showing the spectral transmittance of an optical filter of the present disclosure;
  • FIG. 5 is a schematic diagram of an embodiment of an imaging device having an optical filter of a comparative example.
  • FIG. 6 is a graph showing the spectral transmittance of the optical filter of Comparative Example.
  • Imaging devices equipped with imaging elements such as CCD or CMOS image sensors are known, but the imaging elements are sensitive to light with wavelengths in the infrared light region or ultraviolet light region that cannot be detected by the human eye. ing. An optical filter is used to cut these unnecessary wavelength components.
  • Patent Document 1 discloses an optical filter in which an optical multilayer film is provided on near-infrared cut glass.
  • an optical multilayer film is used in combination with near-infrared absorption type colored glass to sufficiently cut light in the near-infrared region.
  • the optical filter using the near-infrared cut glass described in Patent Document 1, as shown in FIGS. Insufficient light shielding. As a result, the near-infrared light is incident on the imaging device, causing ghosts, flares, and the like.
  • an optical filter composed of an optical multilayer film is a reflective optical filter that utilizes the refractive index of the multilayer film, unlike an absorption optical filter. It is known that when the incident angle of light increases, the optical characteristics shift to the short wavelength side (for example, about 20 to 30 nm shift). In other words, the optical multilayer film has an optical characteristic of reflecting light shifted to the shorter wavelength side. Therefore, by shifting to the short wavelength side (for example, within the visible region with a wavelength shorter than 700 nm), the reflected light remains in the imaging device, and the reflected light is detected by the imaging device, resulting in the above-described ghost, flare, etc. was a problem.
  • optical filter and imaging device of the present disclosure will be described in more detail. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity and to facilitate understanding by those skilled in the art.
  • the visible light region means a wavelength region of 400 nm or more and 700 nm or less
  • the ultraviolet light region means a wavelength region of less than 400 nm
  • the infrared light region means a wavelength region longer than 700 nm. Note that there may be an error of about ⁇ 10% in any wavelength region.
  • optical filter 10 of the present disclosure includes a translucent member 11 having one principal surface 11a and the other principal surface 11b facing the one principal surface, and one principal surface 11a of the translucent member 11.
  • An infrared light absorbing resin member 12 and an infrared light shielding film 13 provided on the other main surface 11b of the translucent member 11 and blocking infrared light transmitted through the infrared light absorbing resin member 12. ing.
  • light shielding means that the spectral transmittance is less than 1%.
  • transmission of light refers to a state in which light is not blocked, specifically, a spectral transmittance of 1% or more, preferably a spectral transmittance of 90% or more. intended.
  • the infrared light-absorbing resin member 12 can provide steep filter characteristics. Furthermore, the infrared light absorbing resin member 12 of the present disclosure transmits infrared light, but the optical filter 10 of the present disclosure includes the infrared light shielding film 13 that shields the infrared light. It is possible to reduce ghosts, flares, etc. caused by Each component will be specifically described below.
  • the translucent member 11 is a member capable of transmitting at least light in the visible light range.
  • the translucent member 11 may be clear glass (transparent glass).
  • the spectral transmittance can be improved by using clear glass.
  • it is clear glass it is not necessary to design a material and/or thickness for shielding infrared light, unlike IR cut glass, and it can be prepared simply.
  • the translucent member of the present disclosure is not limited to clear glass, and colored glass such as IR cut glass may be used.
  • known glass such as silicate glass, borosilicate glass, borate glass and/or phosphate glass may be used.
  • the thickness of the substrate is preferably 0.05 mm or more, more preferably 0.1 mm or more, from the viewpoint of ensuring strength, and preferably 5.0 mm or less from the viewpoint of thinning to be accommodated in an imaging device. 0 mm or less is more preferable. That is, it can be made thinner than the conventional IR cut glass.
  • the spectral transmittance characteristics of conventional optical filters are determined by the thickness of the IR-cut glass (colored glass), so there are design restrictions to achieve compatibility between the spectral transmittance characteristics and the size of the optical filter. .
  • the translucent member 11 (clear glass as an example) is used, and the spectral transmittance characteristics are determined by the infrared light absorbing resin member 12 and the infrared light shielding film 13, which will be described later. It is possible to improve the degree of freedom in design for achieving both the index characteristics and the size of the optical filter.
  • the infrared light absorbing resin member 12 is arranged on one main surface 11a of the translucent member 11 and is a member containing a resin that absorbs infrared light without reflecting it.
  • it may be a resin material containing at least a thermoplastic resin and an oxocarbon compound.
  • Thermoplastic resins serve as base resins, for example, (meth) acrylic resins, (meth) acrylic urethane resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyolefin resins (e.g., polyethylene resins, polypropylene resin), cycloolefin resin, urethane resin, styrene resin, polyvinyl acetate, polyamide resin (e.g., nylon), aramid resin, polyimide resin, polyamideimide resin, polyester resin (e.g., polybutylene terephthalate (PBT), polyethylene Terephthalate (PET), etc.), butyral resin, polycarbonate resin, polyether resin, polysulfone resin, ABS resin (acrylonitrile butadiene styrene resin), AS resin (acrylonitrile-styrene copolymer), fluorine resin (e.g., fluorinated aromatic polytetrafluoroethylene (
  • (meth)acrylic resins cycloolefin resins, polyimide resins, polyamideimide resins, polyester resins, polyarylate resins, polyamide resins, polycarbonate resins, and polysulfone resins are preferred because of their excellent transparency and/or heat resistance. and/or fluorinated aromatic polymers are preferred.
  • Oxocarbon-based compounds have spectral characteristics that allow them to transmit light in the visible light range with high spectral transmittance while absorbing light in the infrared light range.
  • the oxocarbon-based compound it is preferable to use a squarylium compound and/or a croconium compound that has an absorption wavelength of at least 700 nm or more and 750 nm or less and has a relatively high spectral transmittance in the visible light region.
  • the infrared light absorbing resin member 12 may be a coated material provided by coating. Specifically, the infrared light absorbing resin member 12 may be a coating layer. Therefore, the coating layer thickness is, for example, thicker than a single film of a typical chemical vapor deposition film and/or physical vapor deposition film. It is preferable that the coating material is obtained by dissolving the resin material described above in a solvent. Solvents include, for example, ketones such as methyl ethyl ketone; glycol derivatives such as PGMEA (2-acetoxy-1-methoxypropane) (ether compounds, ester compounds, ether ester compounds, etc.); amides such as N,N-dimethylacetamide.
  • pyrrolidones such as ethyl acetate
  • aromatic hydrocarbons such as toluene
  • aliphatic hydrocarbons such as cyclohexane
  • ethers such as tetrahydrofuran
  • the resin material dissolved in the solvent may contain an infrared light absorbing dye other than the oxocarbon compound.
  • the infrared light absorbing pigment may be an infrared light absorbing pigment.
  • infrared light absorbing dyes include cyclic tetrapyrrole dyes, cyanine dyes, and azo dyes. When such an infrared light absorbing dye is contained, the infrared light absorbing effect can be enhanced.
  • a preferred embodiment of the infrared light absorbing resin member 12 may be a single layer.
  • the term "single layer” as used herein refers to a layer composed of the same type of component, and is meant to exclude a laminated structure in which two or more layers composed of different types of components are laminated. In other words, the purpose is to eliminate the reflection of light at the interface of each layer by stacking layers having different refractive indices. Therefore, according to the single-layer infrared light absorbing resin member 12, it is possible to suppress the wavelength shift of the optical characteristics due to the oblique incidence.
  • the upper limit of the thickness of the infrared light absorbing resin member 12 may be, for example, 1 mm or less, 500 ⁇ m or less, 200 ⁇ m or less, or 50 ⁇ m or less.
  • the thickness of the infrared light absorbing resin member 12 can be made even thinner.
  • FIG. 2 shows an example of spectral transmittance characteristics of the infrared light absorbing resin member 12 .
  • the infrared light absorbing resin member 12 has a spectral transmittance of 90% or more for light with a wavelength of 459 to 580 nm. rate is 97.8%.
  • the spectral transmittance is higher than that of IR cut glass.
  • the infrared light absorbing resin member 12 has a characteristic of less than 1% spectral transmittance for light with a wavelength of 698 to 755 nm. That is, at least light with a wavelength of 700 nm or more and 750 nm or less is absorbed without being reflected.
  • the absorption wavelength region absorbed by the infrared light absorbing resin member 12 corresponds to the wavelength width in which the transmission characteristics of the infrared light shielding film 13 described later shift due to the light obliquely incident on the optical filter 10 .
  • the infrared light absorbing resin member 12 preferably has a characteristic of having a spectral transmittance of 90% or more for light with a wavelength of 795 nm or more. That is, it has a characteristic of transmitting light with a wavelength of at least 800 nm or more. Therefore, it is necessary to shield the light of the wavelength by the infrared light shielding film 13, which will be described later.
  • the infrared light-absorbing resin member 12 preferably has the property of not transmitting light in the ultraviolet region. Therefore, the infrared light shielding film 13, which will be described later, may transmit light in the ultraviolet region.
  • the infrared light shielding film 13 is disposed on the other main surface 11b of the translucent member 11 and shields at least infrared light transmitted through the infrared light absorbing resin member 12 .
  • the infrared light shielding film 13 is a film that transmits light in the visible light region.
  • the infrared light shielding film 13 may transmit light in the ultraviolet region.
  • the infrared light shielding film 13 is a multilayer film including a low refractive index layer and a high refractive index layer.
  • low refractive index is meant here materials with a refractive index of less than 1.6, more preferably between 1.35 and 1.55.
  • high refractive index means a material with a refractive index of 1.6 or more, more preferably a material with a refractive index of 2.2 to 2.5.
  • the low refractive index layer includes at least one selected from the group consisting of SiOx , SiNx and MgFx
  • the high refractive index layer is selected from the group consisting of TiOx , ZrOx and TaOx . contains at least one
  • the refractive index intends the refractive index for light with a wavelength of 589 nm at 20°C.
  • the infrared light shielding film 13 is designed to transmit at least light with a wavelength of 400 nm or more and 765 nm or less. That is, the low refractive index layers and the high refractive index layers are alternately laminated so as to transmit light of the above wavelengths.
  • the total film thickness of the infrared light shielding film 13 is preferably 5 ⁇ m or less.
  • the thickness of the infrared light shielding film 13 is preferably set thinner than the thickness of the infrared light absorbing resin member 12 .
  • the low refractive index layer and the high refractive index layer in the infrared light shielding film 13 may be deposited films.
  • the method of forming the vapor deposition film may be performed by a vapor deposition device.
  • the film may be formed using a sputtering device.
  • FIG. 3 shows an example of spectral transmittance characteristics of the infrared light shielding film 13.
  • the infrared light shielding film 13 has a spectral transmittance of more than 1% for light with a wavelength of 390 nm, and a spectral transmittance of more than 90% for light with a wavelength of 402 nm. Further, the spectral transmittance of light with a wavelength of 737 nm is less than 90%, and the spectral transmittance of light with a wavelength of 765 nm or longer is less than 1%, thereby shielding light. That is, since the infrared light-absorbing resin member 12 blocks the infrared light that is transmitted therethrough, it is possible to reduce ghosts, flares, etc. caused by the infrared light.
  • the infrared light shielding film 13 transmits at least light of 400 to 765 nm. More specifically, the absorption wavelength range (700 to 755 nm) in which the infrared light absorbing resin member 12 absorbs infrared light is included in the wavelength range (390 to 765 nm) of light transmitted by the infrared light shielding film 13. It is According to such a configuration, even if the optical filter 10 is obliquely incident at an angle of about ⁇ 30° and the spectral transmittance shifts to the short wavelength side by about 20 to 30 nm, the influence of infrared light due to the shift can be reduced. That is, the shift in spectral transmittance due to oblique incidence described above corresponds to the absorption wavelength region of the infrared light absorbing resin member 12 .
  • the infrared light shielding film 13 of the present disclosure exemplifies a mode of shielding light with a wavelength of less than 390 nm.
  • the external light shielding film 13 may transmit light of the wavelength. In other words, light in the ultraviolet region may be transmitted.
  • an antireflection film 14 may be provided on one main surface 11a of the translucent member 11 .
  • the antireflection film 14 is provided on one main surface 11a of the translucent member 11 with the infrared light absorbing resin member 12 interposed therebetween.
  • the antireflection film 14 is a film having a function of improving spectral transmittance by preventing reflection of light incident on the optical filter 10 and efficiently utilizing the incident light.
  • Materials that can be used as the antireflection coating 14 include, for example, SiO x or MgF x used as a single-layer antireflection coating, or TiO x , ZrO x or TaO x used in combination.
  • the antireflection film 14 may be a vapor deposition film.
  • the method of forming the vapor deposition film may be performed by a vapor deposition device.
  • the film may be formed using a sputtering device.
  • the imaging device of the present disclosure includes the optical filter 10 and the imaging element S described above. It should be noted that an optical component such as a lens L for allowing light to enter the optical filter 10 may be provided.
  • the image sensor S is intended to be a component that converts light into electrical signals.
  • a CCD or CMOS sensor or the like may be used.
  • the imaging element S is preferably arranged on one main surface 11a side of the translucent member 11 .
  • the imaging device S is provided on one main surface 11a side of the translucent member 11 with an infrared light absorbing resin member 12 interposed therebetween. That is, the distance from the imaging device S to the infrared light absorbing resin member 12 is shorter than the distance from the imaging device S to the infrared light shielding film 13 .
  • the distance between the image sensor S and the infrared light shielding film 13 is set as much as possible. They are arranged apart from each other to reduce ghosts, flares, and the like that occur in the imaging device 1 .
  • optical filter according to the present disclosure. Specifically, optical filters of Comparative Examples and Examples shown below were manufactured. Since the antireflection film is an optional additional structure, the description thereof is omitted.
  • An optical filter comprising a translucent member 11 shown in FIG. 1, an infrared light absorbing resin member 12, and an infrared light shielding film 13.
  • ⁇ Translucent member Clear glass (D263Teco manufactured by SHOTT, thickness 0.7 mm)
  • ⁇ Infrared light absorbing resin material Nippon Shokubai Co., Ltd. (Part number: KT-B)
  • ⁇ Infrared light shielding film multilayer film containing SiO 2 and Ti 2 O 3
  • ⁇ Optical filter of comparative example> An optical filter comprising an IR cut glass 11' and an optical multilayer film 13' shown in FIG. 5 without using an infrared light absorbing resin member.
  • Optical multilayer film multilayer film containing SiO2 and Ti2O3
  • the spectral transmittance was measured using Hitachi U-4100, the measurement wavelength range was 350 to 1200 nm, the light source was a 50 W halogen lamp, and the measurement mode was transmittance (%T).
  • the spectral transmittance of the optical filter of Example is shown in FIG. 4, and the spectral transmittance of the optical filter of Comparative Example is shown in FIG.
  • the spectral transmittance of the infrared light-absorbing resin member and the spectral transmittance of the infrared light shielding film of the example are the same as those shown in FIGS.
  • the optical filters of the examples have steeper filter characteristics than the optical filters of the comparative examples, and the result that infrared light can be blocked appropriately was obtained.
  • the absorption wavelength region (390 to 765 nm) of the infrared light absorbing resin member is the same as that of the infrared light shielding film. Since it is included in the wavelength region (700 to 755 nm) of transmitted light, the influence of infrared light caused by the shift can be reduced, and ghosts, flares, etc. can be reduced.
  • the optical filter of the comparative example when a wavelength shift occurs due to oblique incidence, light caused by the wavelength shift is detected by the imaging device, and ghosts, flares, and the like occur.
  • the optical filters of Examples exhibited a relatively high spectral transmittance of 97.5% between 510 and 520 nm.
  • the optical filter of the comparative example had a spectral transmittance of 96.1% between 495 and 500 nm, which was lower than the spectral transmittance of the optical filter of the example.
  • the technical idea of the present disclosure can be applied to optical filters and imaging devices.
  • Reference Signs List 1 1' imaging device 10, 10' optical filter 11 translucent member 11a one main surface 11b the other main surface 11' IR cut glass 12 infrared light absorbing resin member 13 infrared light shielding film 13' optical multilayer film 14 antireflection film L lens S imaging device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)

Abstract

Provided are an optical filter and an imaging device which have further improved incidence angle dependency. An optical filter according to the present disclosure comprises: a transmissive member 11 having one main surface 11a and the other main surface 11b facing the one main surface 11a; an infrared-absorbing resin member 12 provided on the one main surface 11a of the transmissive member 11; and an infrared-blocking film 13 provided on the other main surface 11b of the transmissive member 11 and blocks infrared light passing through the infrared-absorbing resin member 12. 

Description

光学フィルターおよび撮像装置Optical filters and imagers
 本開示は、光学フィルターおよび撮像装置に関する。 The present disclosure relates to optical filters and imaging devices.
 特許文献1は、近赤外線カットガラス上に光学多層膜が設けられた、光学フィルターを開示する。特許文献2は、入射角度依存性が少なく、近赤外光が斜め方向から入射した際の多重反射を低減可能な光学フィルターとして、基材が波長600nm以上750nm未満に吸収極大を有する化合物(A)と、波長750nm以上1050nm以下に吸収極大を有する化合物(S)を備えた光学フィルターを開示する。 Patent Document 1 discloses an optical filter in which an optical multilayer film is provided on near-infrared cut glass. Patent Document 2 describes a compound (A ) and a compound (S) having an absorption maximum at a wavelength of 750 nm or more and 1050 nm or less.
国際公開第2014/192670号WO2014/192670 国際公開第2016/158461号WO2016/158461
 本開示は、分光透過率特性を向上させた光学フィルターおよび撮像装置を提供することを目的とする。 An object of the present disclosure is to provide an optical filter and an imaging device with improved spectral transmittance characteristics.
 本開示に係る光学フィルターは、
 一方の主面と前記一方の主面に対向する他方の主面を有する透光性部材と、
 前記透光性部材の前記一方の主面に設けられた赤外光吸収樹脂部材と、
 前記透光性部材の前記他方の主面に設けられ、前記赤外光吸収樹脂部材が透過する赤外光を遮光する赤外光遮光膜と、を備えている。
The optical filter according to the present disclosure is
a translucent member having one principal surface and the other principal surface facing the one principal surface;
an infrared light absorbing resin member provided on the one main surface of the translucent member;
an infrared light shielding film provided on the other main surface of the translucent member and shielding infrared light transmitted through the infrared light absorbing resin member.
 本開示に係る撮像装置は、
 上記光学フィルターと、
 撮像素子と、を備え、
 前記透光性部材の前記一方の主面側に前記撮像素子が配置されている。
The imaging device according to the present disclosure is
the optical filter;
and an imaging device,
The imaging element is arranged on the one main surface side of the translucent member.
 本開示では、分光透過率特性を向上させた光学フィルターおよび撮像装置を提供することができる。 The present disclosure can provide an optical filter and an imaging device with improved spectral transmittance characteristics.
図1は、本開示の光学フィルターを備えた撮像装置の一実施形態の模式図である。FIG. 1 is a schematic diagram of one embodiment of an imaging device comprising an optical filter of the present disclosure. 図2は、本開示の光学フィルターの赤外光吸収樹脂部材の分光透過率を示すグラフである。FIG. 2 is a graph showing the spectral transmittance of the infrared light absorbing resin member of the optical filter of the present disclosure. 図3は、本開示の光学フィルターの赤外光遮光膜の分光透過率を示すグラフである。FIG. 3 is a graph showing the spectral transmittance of the infrared light shielding film of the optical filter of the present disclosure. 図4は、本開示の光学フィルターの分光透過率を示すグラフである。FIG. 4 is a graph showing the spectral transmittance of an optical filter of the present disclosure; 図5は、比較例の光学フィルターを備えた撮像装置の一実施形態の模式図である。FIG. 5 is a schematic diagram of an embodiment of an imaging device having an optical filter of a comparative example. 図6は、比較例の光学フィルターの分光透過率を示すグラフである。FIG. 6 is a graph showing the spectral transmittance of the optical filter of Comparative Example.
[本開示の基礎となった知見等]
 CCDまたはCMOSイメージセンサ等の撮像素子を備えた撮像装置が知られているが、撮像素子は、人間の目では感知できない赤外光領域または紫外光領域の波長の光に対して感度を有している。これらの余計な波長成分をカットするため、光学フィルターが用いられている。
[Knowledge, etc. on which this disclosure is based]
Imaging devices equipped with imaging elements such as CCD or CMOS image sensors are known, but the imaging elements are sensitive to light with wavelengths in the infrared light region or ultraviolet light region that cannot be detected by the human eye. ing. An optical filter is used to cut these unnecessary wavelength components.
 例えば、特許文献1には、近赤外線カットガラス上に光学多層膜が設けられた光学フィルターが開示されている。つまり、近赤外線吸収タイプの色ガラスに対し、近赤外光領域の光を十分にカットするために光学多層膜が併用されている。 For example, Patent Document 1 discloses an optical filter in which an optical multilayer film is provided on near-infrared cut glass. In other words, an optical multilayer film is used in combination with near-infrared absorption type colored glass to sufficiently cut light in the near-infrared region.
 特許文献1に記載の近赤外線カットガラスを用いた光学フィルターは、特許文献1の図6~9に示すとおり、長波長側の透過率の急峻度合いが緩やかであり、例えば700nm近傍の近赤外光の遮光が不十分であった。そのため、当該近赤外光が撮像素子に入射し、ゴースト・フレア等が生じていた。 The optical filter using the near-infrared cut glass described in Patent Document 1, as shown in FIGS. Insufficient light shielding. As a result, the near-infrared light is incident on the imaging device, causing ghosts, flares, and the like.
 上記光学フィルターにおいて、遮光が不十分な近赤外光領域の光を適切に遮光するため、光学多層膜の光学特性を適切に設計することが考えられる。つまり、特許文献1に記載の光学フィルターにおいて、700nm近傍の光を遮光するように光学多層膜を設計することが考えられる。 In the above optical filter, it is conceivable to appropriately design the optical characteristics of the optical multilayer film in order to appropriately shield light in the near-infrared region, which is insufficiently shielded. In other words, in the optical filter described in Patent Document 1, it is conceivable to design the optical multilayer film so as to block light in the vicinity of 700 nm.
 ここで、光学多層膜で構成された光学フィルターは、吸収型の光学フィルターとは異なり、多層膜の屈折率を利用した反射型の光学フィルターである。そして、光の入射角度が大きくなると、光学特性が短波長側にシフト(一例として、20~30nm程度シフト)することが知られている。つまり、光学多層膜は、より短波長側にシフトされた光を反射させる光学特性となっている。そのため、短波長側にシフトすることで(例えば700nmより短波長な可視域内で)反射された光が撮像装置内に残存し、当該反射光を撮像素子が検知することによって上述したゴースト・フレア等が生じる問題があった。 Here, an optical filter composed of an optical multilayer film is a reflective optical filter that utilizes the refractive index of the multilayer film, unlike an absorption optical filter. It is known that when the incident angle of light increases, the optical characteristics shift to the short wavelength side (for example, about 20 to 30 nm shift). In other words, the optical multilayer film has an optical characteristic of reflecting light shifted to the shorter wavelength side. Therefore, by shifting to the short wavelength side (for example, within the visible region with a wavelength shorter than 700 nm), the reflected light remains in the imaging device, and the reflected light is detected by the imaging device, resulting in the above-described ghost, flare, etc. was a problem.
 入射角度依存性を解決する方法として、特許文献2に記載の光学フィルターが開示されているが、入射角度特性を向上させる要求は留まるものではなく、更なる改良の余地を残していた。 As a method of solving the incident angle dependence, the optical filter described in Patent Document 2 is disclosed, but the demand for improving the incident angle characteristics does not stop, leaving room for further improvement.
 そこで、本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された光学フィルターおよび撮像装置の開示に至った。 Therefore, the inventor of the present application attempted to solve the above problem by dealing with it in a new direction, rather than dealing with it on the extension of the conventional technology. As a result, we have disclosed an optical filter and an imaging device that achieve the above main objectives.
 以下では、本開示の光学フィルターおよび撮像装置をより詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既に良く知られた事項の詳細な説明、あるいは実質的に同一の構成に対する重複説明を省略する場合がある。これは、説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。 Below, the optical filter and imaging device of the present disclosure will be described in more detail. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity and to facilitate understanding by those skilled in the art.
 出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。なお、図面における各種の要素は、本開示の光学フィルターおよび撮像装置の理解のために模式的かつ例示的に示したにすぎず、外観および/または寸法比などは実物と異なり得る。 Applicants provide the accompanying drawings and the following descriptions for the full understanding of the present disclosure by those skilled in the art, and are not intended to limit the claimed subject matter. Various elements in the drawings are only schematically and exemplarily shown for understanding of the optical filter and imaging device of the present disclosure, and the appearance and/or dimensional ratios may differ from the actual ones.
 また、本開示において、可視光領域は、400nm以上700nm以下の波長領域、紫外光領域は、400nm未満の波長領域、赤外光領域は、700nmより長波長側の波長領域を意図している。なお、いずれの波長領域において、±10%程度の誤差があってもよい。 In addition, in the present disclosure, the visible light region means a wavelength region of 400 nm or more and 700 nm or less, the ultraviolet light region means a wavelength region of less than 400 nm, and the infrared light region means a wavelength region longer than 700 nm. Note that there may be an error of about ±10% in any wavelength region.
 また、本開示で言及する各種の数値範囲は、特に明記しない限り、下限および/または上限の数値そのものも含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、下限値の“1”を含むと共に、上限値の“10”をも含むものとして解釈され得る。また、各種数値に“約”または“程度”が付されている場合もあるが、この“約”および“程度”といった用語は、数パーセント、例えば±10%の変動を含み得ることを意味する。 In addition, the various numerical ranges referred to in this disclosure are intended to include the lower and/or upper numerical values themselves, unless otherwise specified. That is, taking a numerical range of 1 to 10 as an example, it can be interpreted as including the lower limit of "1" and the upper limit of "10". In addition, various numerical values may be "about" or "about", and the terms "about" and "about" mean that they may include variations of several percent, such as ±10%. .
[本開示の光学フィルター]
 本開示の光学フィルター10の一実施形態について、図1を参照しながら説明する。本開示の光学フィルター10は、一方の主面11aと一方の主面に対向する他方の主面11bを有する透光性部材11と、透光性部材11の一方の主面11aに設けられた赤外光吸収樹脂部材12と、透光性部材11の他方の主面11bに設けられ、赤外光吸収樹脂部材12が透過する赤外光を遮光する赤外光遮光膜13と、を備えている。なお、本明細書でいう「光の遮光」とは、分光透過率が1%未満であることを意図している。また「光の透過」とは、光が遮光されていない状態、具体的には、分光透過率が1%以上であることを意図し、好ましくは、分光透過率が90%以上であることを意図している。
[Optical filter of the present disclosure]
One embodiment of an optical filter 10 of the present disclosure will be described with reference to FIG. The optical filter 10 of the present disclosure includes a translucent member 11 having one principal surface 11a and the other principal surface 11b facing the one principal surface, and one principal surface 11a of the translucent member 11. An infrared light absorbing resin member 12 and an infrared light shielding film 13 provided on the other main surface 11b of the translucent member 11 and blocking infrared light transmitted through the infrared light absorbing resin member 12. ing. It should be noted that the term "light shielding" as used herein means that the spectral transmittance is less than 1%. The term "transmission of light" refers to a state in which light is not blocked, specifically, a spectral transmittance of 1% or more, preferably a spectral transmittance of 90% or more. intended.
 このような構成によれば、従来技術である近赤外線カットガラスと異なり、赤外光吸収樹脂部材12によって急峻なフィルター特性を得ることができる。さらに、本開示の赤外光吸収樹脂部材12は、赤外光を透過するが、本開示の光学フィルター10は、当該赤外光を遮光する赤外光遮光膜13を備えるため、赤外光に起因するゴースト・フレア等を低減することができる。以下、各構成要素について、具体的に説明する。 With such a configuration, unlike the conventional near-infrared cut glass, the infrared light-absorbing resin member 12 can provide steep filter characteristics. Furthermore, the infrared light absorbing resin member 12 of the present disclosure transmits infrared light, but the optical filter 10 of the present disclosure includes the infrared light shielding film 13 that shields the infrared light. It is possible to reduce ghosts, flares, etc. caused by Each component will be specifically described below.
-透光性部材-
 透光性部材11は、少なくとも可視光領域の光を透過させることができる部材である。透光性部材11は、一例として、クリアガラス(透明ガラス)としてよい。クリアガラスを用いることにより分光透過率を向上することができる。また、クリアガラスであれば、IRカットガラスのように赤外光を遮光する材料および/または厚み等の設計を不要とし、簡素に準備することができる。なお、本開示の透光性部材は、クリアガラスに限定するものではなく、IRカットガラス等の色ガラスを用いてもよい。クリアガラスの具体的な態様として、ケイ酸ガラス、ホウケイ酸ガラス、ホウ酸ガラスおよび/またはリン酸ガラス等の公知のガラスを用いてよい。
-translucent member-
The translucent member 11 is a member capable of transmitting at least light in the visible light range. As an example, the translucent member 11 may be clear glass (transparent glass). The spectral transmittance can be improved by using clear glass. In addition, if it is clear glass, it is not necessary to design a material and/or thickness for shielding infrared light, unlike IR cut glass, and it can be prepared simply. Note that the translucent member of the present disclosure is not limited to clear glass, and colored glass such as IR cut glass may be used. As a specific embodiment of the clear glass, known glass such as silicate glass, borosilicate glass, borate glass and/or phosphate glass may be used.
 基板の厚みは、強度を確保する点から、0.05mm以上が好ましく、0.1mm以上がより好ましく、また撮像装置に収容するための薄型化の点から、5.0mm以下が好ましく、1.0mm以下がより好ましい。つまり、従来のIRカットガラスよりも薄型化にすることができる。詳述すると、従来の光学フィルターは、分光透過率特性がIRカットガラス(色ガラス)の厚みで決まるため、分光透過率特性および光学フィルターの大きさの両立を図るための設計制約を伴っていた。しかしながら、本開示では、透光性部材11(一例としてクリアガラス)を用いており、分光透過率特性は、後述する赤外光吸収樹脂部材12および赤外光遮光膜13によって決まるため、分光透過率特性および光学フィルターの大きさの両立を図るための設計の自由度を向上させることができる。 The thickness of the substrate is preferably 0.05 mm or more, more preferably 0.1 mm or more, from the viewpoint of ensuring strength, and preferably 5.0 mm or less from the viewpoint of thinning to be accommodated in an imaging device. 0 mm or less is more preferable. That is, it can be made thinner than the conventional IR cut glass. Specifically, the spectral transmittance characteristics of conventional optical filters are determined by the thickness of the IR-cut glass (colored glass), so there are design restrictions to achieve compatibility between the spectral transmittance characteristics and the size of the optical filter. . However, in the present disclosure, the translucent member 11 (clear glass as an example) is used, and the spectral transmittance characteristics are determined by the infrared light absorbing resin member 12 and the infrared light shielding film 13, which will be described later. It is possible to improve the degree of freedom in design for achieving both the index characteristics and the size of the optical filter.
-赤外光吸収樹脂部材-
 赤外光吸収樹脂部材12は、透光性部材11の一方の主面11aに配置され、赤外光を反射させずに吸収する樹脂を含有する部材である。一例として、少なくとも熱可塑性樹脂およびオキソカーボン系化合物を含有する樹脂材料であってよい。
-Infrared light absorbing resin material-
The infrared light absorbing resin member 12 is arranged on one main surface 11a of the translucent member 11 and is a member containing a resin that absorbs infrared light without reflecting it. As an example, it may be a resin material containing at least a thermoplastic resin and an oxocarbon compound.
 熱可塑性樹脂は、ベース樹脂となるものであり、例えば、(メタ)アクリル系樹脂、(メタ)アクリルウレタン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ポリオレフィン樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂)、シクロオレフィン系樹脂、ウレタン樹脂、スチレン系樹脂、ポリ酢酸ビニル、ポリアミド樹脂(例えば、ナイロン)、アラミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂(例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等)、ブチラール樹脂、ポリカーボネート樹脂、ポリエーテル系樹脂、ポリスルホン樹脂、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂(アクリロニトリル-スチレン共重合体)、フッ素系樹脂(例えば、フッ素化芳香族ポリマー、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシフッ素樹脂(PFA)、フッ素化ポリアリールエーテルケトン(FPEK)、フッ素化ポリイミド(FPI)、フッ素化ポリアミド酸(FPAA)および/またはフッ素化ポリエーテルニトリル(FPEN)等)等が挙げられる。これらの中でも、透明性および/または耐熱性に優れる点から、(メタ)アクリル系樹脂、シクロオレフィン系樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリスルホン樹脂および/またはフッ素化芳香族ポリマーが好ましい。 Thermoplastic resins serve as base resins, for example, (meth) acrylic resins, (meth) acrylic urethane resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyolefin resins (e.g., polyethylene resins, polypropylene resin), cycloolefin resin, urethane resin, styrene resin, polyvinyl acetate, polyamide resin (e.g., nylon), aramid resin, polyimide resin, polyamideimide resin, polyester resin (e.g., polybutylene terephthalate (PBT), polyethylene Terephthalate (PET), etc.), butyral resin, polycarbonate resin, polyether resin, polysulfone resin, ABS resin (acrylonitrile butadiene styrene resin), AS resin (acrylonitrile-styrene copolymer), fluorine resin (e.g., fluorinated aromatic polytetrafluoroethylene (PTFE), perfluoroalkoxy fluoroplastic (PFA), fluorinated polyaryletherketone (FPEK), fluorinated polyimide (FPI), fluorinated polyamic acid (FPAA) and/or fluorinated poly ether nitrile (FPEN), etc.). Among these, (meth)acrylic resins, cycloolefin resins, polyimide resins, polyamideimide resins, polyester resins, polyarylate resins, polyamide resins, polycarbonate resins, and polysulfone resins are preferred because of their excellent transparency and/or heat resistance. and/or fluorinated aromatic polymers are preferred.
 オキソカーボン系化合物は、可視光領域の光を高い分光透過率で透過させつつ、赤外光領域の光を吸収することができるという分光特性を有している。オキソカーボン系化合物の一例として、少なくとも700nm以上750nm以下の吸収波長を有しており、可視光領域の分光透過率が比較的高いスクアリリウム化合物および/またはクロコニウム化合物を用いることが好ましい。 Oxocarbon-based compounds have spectral characteristics that allow them to transmit light in the visible light range with high spectral transmittance while absorbing light in the infrared light range. As an example of the oxocarbon-based compound, it is preferable to use a squarylium compound and/or a croconium compound that has an absorption wavelength of at least 700 nm or more and 750 nm or less and has a relatively high spectral transmittance in the visible light region.
 赤外光吸収樹脂部材12は、塗工によって設けられる塗工物であってよい。具体的には、赤外光吸収樹脂部材12は、塗工層であってよい。それ故に、塗工層厚は、例えば、一般的な化学蒸着膜および/または物理蒸着膜の単一膜よりも厚くなっている。塗工物は、上述した樹脂材料が溶媒に溶解されていることが好ましい。溶媒は、例えば、メチルエチルケトン等のケトン類;PGMEA(2-アセトキシ-1-メトキシプロパン)等のグリコール誘導体類(エーテル化合物、エステル化合物、エーテルエステル化合物等);N,N-ジメチルアセトアミド等のアミド類;酢酸エチル等のピロリドン類;トルエン等の芳香族炭化水素類;シクロヘキサン等の脂肪族炭化水素類;テトラヒドロフラン等のエーテル類;等が挙げられる。これらの溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。 The infrared light absorbing resin member 12 may be a coated material provided by coating. Specifically, the infrared light absorbing resin member 12 may be a coating layer. Therefore, the coating layer thickness is, for example, thicker than a single film of a typical chemical vapor deposition film and/or physical vapor deposition film. It is preferable that the coating material is obtained by dissolving the resin material described above in a solvent. Solvents include, for example, ketones such as methyl ethyl ketone; glycol derivatives such as PGMEA (2-acetoxy-1-methoxypropane) (ether compounds, ester compounds, ether ester compounds, etc.); amides such as N,N-dimethylacetamide. pyrrolidones such as ethyl acetate; aromatic hydrocarbons such as toluene; aliphatic hydrocarbons such as cyclohexane; ethers such as tetrahydrofuran; These solvents may be used alone or in combination of two or more.
 溶媒に溶解されている樹脂材料には、オキソカーボン系化合物以外の赤外光吸収色素が含有されていてもよい。また、赤外光吸収色素は、赤外光吸収顔料であってもよい。赤外光吸収色素の一例として、環状テトラピロール系色素、シアニン系色素、アゾ系色素等が挙げられる。このような赤外光吸収色素が含有されていると、赤外光吸収効果を高めることができる。 The resin material dissolved in the solvent may contain an infrared light absorbing dye other than the oxocarbon compound. Also, the infrared light absorbing pigment may be an infrared light absorbing pigment. Examples of infrared light absorbing dyes include cyclic tetrapyrrole dyes, cyanine dyes, and azo dyes. When such an infrared light absorbing dye is contained, the infrared light absorbing effect can be enhanced.
 赤外光吸収樹脂部材12の好ましい態様として、単一層であってよい。本明細書でいう「単一層」とは、同じ種類の成分で構成された層を示し、異なる種類の成分で構成された層が2つ以上積層されている積層構造を除く趣旨である。つまり、屈折率が異なる層を積層させることによって、各層の界面で光を反射させることを除く趣旨である。したがって、単一層である赤外光吸収樹脂部材12によれば、斜入射による光学特性の波長シフトを抑えることができる。 A preferred embodiment of the infrared light absorbing resin member 12 may be a single layer. The term "single layer" as used herein refers to a layer composed of the same type of component, and is meant to exclude a laminated structure in which two or more layers composed of different types of components are laminated. In other words, the purpose is to eliminate the reflection of light at the interface of each layer by stacking layers having different refractive indices. Therefore, according to the single-layer infrared light absorbing resin member 12, it is possible to suppress the wavelength shift of the optical characteristics due to the oblique incidence.
 赤外光吸収樹脂部材12の厚みの上限は、光学特性の観点から、例えば1mm以下であってもよく、500μm以下、200μm以下、あるいは50μm以下であってもよい。溶媒に溶解されて塗料化された樹脂材料をスピンコート法により透光性部材11上に塗工する場合は、赤外光吸収樹脂部材12の厚みをさらに薄く形成することもできる。 From the viewpoint of optical properties, the upper limit of the thickness of the infrared light absorbing resin member 12 may be, for example, 1 mm or less, 500 μm or less, 200 μm or less, or 50 μm or less. When a resin material dissolved in a solvent and made into a paint is applied onto the translucent member 11 by spin coating, the thickness of the infrared light absorbing resin member 12 can be made even thinner.
 ここで、赤外光吸収樹脂部材12の分光透過率特性の一例を図2に示す。当該分光透過率特性によれば、赤外光吸収樹脂部材12は、波長459~580nmの光に対し分光透過率が90%以上の特性が得られており、波長510~515nmの間で分光透過率が97.8%となっている。当該分光透過率は、IRカットガラスの分光透過率よりも高くなっている。 Here, FIG. 2 shows an example of spectral transmittance characteristics of the infrared light absorbing resin member 12 . According to the spectral transmittance characteristics, the infrared light absorbing resin member 12 has a spectral transmittance of 90% or more for light with a wavelength of 459 to 580 nm. rate is 97.8%. The spectral transmittance is higher than that of IR cut glass.
 さらに、赤外光吸収樹脂部材12は、波長698~755nmの光に対し、分光透過率が1%未満となる特性が得られている。つまり、少なくとも波長700nm以上750nm以下の光を反射させずに吸収している。 Furthermore, the infrared light absorbing resin member 12 has a characteristic of less than 1% spectral transmittance for light with a wavelength of 698 to 755 nm. That is, at least light with a wavelength of 700 nm or more and 750 nm or less is absorbed without being reflected.
 さらに、赤外光吸収樹脂部材12が吸収する吸収波長領域は、光学フィルター10に斜入射する光によって後述する赤外光遮光膜13の透過特性がシフトする波長幅に相当する。 Furthermore, the absorption wavelength region absorbed by the infrared light absorbing resin member 12 corresponds to the wavelength width in which the transmission characteristics of the infrared light shielding film 13 described later shift due to the light obliquely incident on the optical filter 10 .
 さらに、赤外光吸収樹脂部材12は、好ましくは、795nm以上の波長の光に対して分光透過率が90%以上となる特性を有している。つまり、少なくとも800nm以上の波長の光を透過する特性を有している。そのため、後述する赤外光遮光膜13によって当該波長の光を遮光することを要する。 Furthermore, the infrared light absorbing resin member 12 preferably has a characteristic of having a spectral transmittance of 90% or more for light with a wavelength of 795 nm or more. That is, it has a characteristic of transmitting light with a wavelength of at least 800 nm or more. Therefore, it is necessary to shield the light of the wavelength by the infrared light shielding film 13, which will be described later.
 さらに、図2によれば、赤外光吸収樹脂部材12は、好ましくは、紫外光領域の光を透過しない特性を有している。したがって、後述する赤外光遮光膜13は、紫外光領域の光を透過させてもよい。 Furthermore, according to FIG. 2, the infrared light-absorbing resin member 12 preferably has the property of not transmitting light in the ultraviolet region. Therefore, the infrared light shielding film 13, which will be described later, may transmit light in the ultraviolet region.
-赤外光遮光膜-
 赤外光遮光膜13は、透光性部材11の他方の主面11bに配置され、少なくとも赤外光吸収樹脂部材12が透過する赤外光を遮光するものである。一例として、赤外光遮光膜13は、可視光領域の光を透過する膜である。なお、赤外光遮光膜13は、紫外光領域の光を透過してもよい。
- Infrared light shielding film -
The infrared light shielding film 13 is disposed on the other main surface 11b of the translucent member 11 and shields at least infrared light transmitted through the infrared light absorbing resin member 12 . As an example, the infrared light shielding film 13 is a film that transmits light in the visible light region. The infrared light shielding film 13 may transmit light in the ultraviolet region.
 赤外光遮光膜13は、低屈折率層と高屈折率層を含む多層膜である。ここで、低屈折率とは、屈折率1.6未満の材料、より好ましくは、1.35~1.55の材料を意図している。また、高屈折率とは、屈折率1.6以上の材質、より好ましくは、2.2~2.5の材料を意図している。一例として、低屈折率層は、SiO,SiNおよびMgFから成る群から選択される少なくとも一種を含み、高屈折率層は、TiO,ZrOおよびTaOから成る群から選択される少なくとも一種を含んでいる。なお、本明細書では、屈折率は、20℃における波長589nmの光に対する屈折率を意図している。 The infrared light shielding film 13 is a multilayer film including a low refractive index layer and a high refractive index layer. By low refractive index is meant here materials with a refractive index of less than 1.6, more preferably between 1.35 and 1.55. Also, high refractive index means a material with a refractive index of 1.6 or more, more preferably a material with a refractive index of 2.2 to 2.5. As an example, the low refractive index layer includes at least one selected from the group consisting of SiOx , SiNx and MgFx , and the high refractive index layer is selected from the group consisting of TiOx , ZrOx and TaOx . contains at least one In addition, in this specification, the refractive index intends the refractive index for light with a wavelength of 589 nm at 20°C.
 赤外光遮光膜13は、少なくとも400nm以上765nm以下の波長の光を透過するように設計されている。つまり、上記波長の光を透過するように、低屈折率層と高屈折率層とが交互に積層されている。一例として、5~60nm程度のSiO層およびTi層の厚みとして、総層数を40~50層とすることが好ましい。つまり、赤外光遮光膜13の総膜厚は、5μm以下であることが好ましい。換言すると、赤外光遮光膜13の厚みは、赤外光吸収樹脂部材12の厚みよりも薄く設定されていることが好ましい。 The infrared light shielding film 13 is designed to transmit at least light with a wavelength of 400 nm or more and 765 nm or less. That is, the low refractive index layers and the high refractive index layers are alternately laminated so as to transmit light of the above wavelengths. As an example, it is preferable to set the total number of layers to 40 to 50 layers, with the thickness of the SiO 2 layer and the Ti 2 O 3 layer having a thickness of about 5 to 60 nm. In other words, the total film thickness of the infrared light shielding film 13 is preferably 5 μm or less. In other words, the thickness of the infrared light shielding film 13 is preferably set thinner than the thickness of the infrared light absorbing resin member 12 .
 赤外光遮光膜13における低屈折率層と高屈折率層は、蒸着膜であってよい。当該蒸着膜の成膜手法は、蒸着装置によって行われてよい。または、スパッタ装置を用いて成膜してもよい。 The low refractive index layer and the high refractive index layer in the infrared light shielding film 13 may be deposited films. The method of forming the vapor deposition film may be performed by a vapor deposition device. Alternatively, the film may be formed using a sputtering device.
 ここで、赤外光遮光膜13の分光透過率特性の一例を図3に示す。当該分光透過率特性によれば、赤外光遮光膜13は、波長390nmの光に対し分光透過率が1%を越え、波長402nmでは分光透過率が90%を越えている。また、波長737nmの光に対し分光透過が90%を下回り、波長765nm以上の光に対し分光透過率が1%を下回って光を遮光する。つまり、赤外光吸収樹脂部材12が透過する赤外光を遮光するため、赤外光に起因するゴースト・フレア等を低減することができる。 FIG. 3 shows an example of spectral transmittance characteristics of the infrared light shielding film 13. FIG. According to the spectral transmittance characteristics, the infrared light shielding film 13 has a spectral transmittance of more than 1% for light with a wavelength of 390 nm, and a spectral transmittance of more than 90% for light with a wavelength of 402 nm. Further, the spectral transmittance of light with a wavelength of 737 nm is less than 90%, and the spectral transmittance of light with a wavelength of 765 nm or longer is less than 1%, thereby shielding light. That is, since the infrared light-absorbing resin member 12 blocks the infrared light that is transmitted therethrough, it is possible to reduce ghosts, flares, etc. caused by the infrared light.
 さらに、赤外光遮光膜13は、少なくとも400~765nmの光を透過している。より詳述すると、赤外光遮光膜13が透過する光の波長領域(390~765nm)に対し、赤外光吸収樹脂部材12が赤外光を吸収する吸収波長領域(700~755nm)が包含されている。このような構成によれば、光学フィルター10に±30°程度の角度で斜入射し、分光透過率が短波長側に20~30nm程度シフトしても、当該シフトに起因する赤外光の影響を低減することができる。つまり、上述の斜入射による分光透過率のシフトは、赤外光吸収樹脂部材12の吸収波長領域に対応している。 Furthermore, the infrared light shielding film 13 transmits at least light of 400 to 765 nm. More specifically, the absorption wavelength range (700 to 755 nm) in which the infrared light absorbing resin member 12 absorbs infrared light is included in the wavelength range (390 to 765 nm) of light transmitted by the infrared light shielding film 13. It is According to such a configuration, even if the optical filter 10 is obliquely incident at an angle of about ±30° and the spectral transmittance shifts to the short wavelength side by about 20 to 30 nm, the influence of infrared light due to the shift can be reduced. That is, the shift in spectral transmittance due to oblique incidence described above corresponds to the absorption wavelength region of the infrared light absorbing resin member 12 .
 なお、本開示の赤外光遮光膜13は、390nm未満の波長の光を遮光する態様を例示しているが、赤外光吸収樹脂部材12によって当該波長の光を遮光することができれば、赤外光遮光膜13は、当該波長の光を透過してもよい。つまり、紫外光領域の光を透過してもよい。 Note that the infrared light shielding film 13 of the present disclosure exemplifies a mode of shielding light with a wavelength of less than 390 nm. The external light shielding film 13 may transmit light of the wavelength. In other words, light in the ultraviolet region may be transmitted.
-反射防止膜(付加的構成)-
 本実施態様における光学フィルター10において、透光性部材11の一方の主面11a側に反射防止膜14を備えていてよい。具体的には、反射防止膜14は、透光性部材11の一方の主面11aに赤外光吸収樹脂部材12を介在させた状態で設けられている。
- Antireflection film (additional structure) -
In the optical filter 10 of this embodiment, an antireflection film 14 may be provided on one main surface 11a of the translucent member 11 . Specifically, the antireflection film 14 is provided on one main surface 11a of the translucent member 11 with the infrared light absorbing resin member 12 interposed therebetween.
 反射防止膜14は、光学フィルター10に入射した光の反射を防止することにより分光透過率を向上させ、効率よく入射光を利用する機能を有する膜である。反射防止膜14として用いることができる材料は、例えば、単層反射防止膜として用いられるSiOまたはMgFもしくは組み合わせで使用されるTiO,ZrOまたはTaOが挙げられる。 The antireflection film 14 is a film having a function of improving spectral transmittance by preventing reflection of light incident on the optical filter 10 and efficiently utilizing the incident light. Materials that can be used as the antireflection coating 14 include, for example, SiO x or MgF x used as a single-layer antireflection coating, or TiO x , ZrO x or TaO x used in combination.
 反射防止膜14は、蒸着膜であってよい。当該蒸着膜の成膜手法は、蒸着装置によって行われてよい。または、スパッタ装置を用いて成膜してもよい。 The antireflection film 14 may be a vapor deposition film. The method of forming the vapor deposition film may be performed by a vapor deposition device. Alternatively, the film may be formed using a sputtering device.
[本開示の撮像装置]
 次に、本開示の撮像装置1について説明する。本開示の撮像装置は、上述した光学フィルター10と、撮像素子Sと、を備えている。なお、光学フィルター10に光を入射するためのレンズL等の光学部品を設けてもよい。
[Imaging device of the present disclosure]
Next, the imaging device 1 of the present disclosure will be described. The imaging device of the present disclosure includes the optical filter 10 and the imaging element S described above. It should be noted that an optical component such as a lens L for allowing light to enter the optical filter 10 may be provided.
 撮像素子Sは、光を電気信号に変換する部品のことを意図している。例えば、CCDまたはCMOSセンサー等を用いてよい。 The image sensor S is intended to be a component that converts light into electrical signals. For example, a CCD or CMOS sensor or the like may be used.
 撮像素子Sは、透光性部材11の一方の主面11a側に配置されることが好ましい。具体的には、撮像素子Sは、透光性部材11の一方の主面11a側に赤外光吸収樹脂部材12を介して設けられている。つまり、撮像素子Sから赤外光吸収樹脂部材12までの距離は、撮像素子Sから赤外光遮光膜13までの距離よりも短くなっている。 The imaging element S is preferably arranged on one main surface 11a side of the translucent member 11 . Specifically, the imaging device S is provided on one main surface 11a side of the translucent member 11 with an infrared light absorbing resin member 12 interposed therebetween. That is, the distance from the imaging device S to the infrared light absorbing resin member 12 is shorter than the distance from the imaging device S to the infrared light shielding film 13 .
 このような配置とすることにより、斜入射による波長シフトの影響を低減することができる。詳述すると、多層膜である赤外光遮光膜13の各層からの反射光を撮像素子Sが検出することを抑える観点から、撮像素子Sと赤外光遮光膜13との間の距離をできるだけ離すように配置し、撮像装置1に生じるゴースト・フレア等を低減している。 With such an arrangement, it is possible to reduce the influence of wavelength shift due to oblique incidence. More specifically, from the viewpoint of preventing the imaging device S from detecting reflected light from each layer of the infrared light shielding film 13, which is a multilayer film, the distance between the image sensor S and the infrared light shielding film 13 is set as much as possible. They are arranged apart from each other to reduce ghosts, flares, and the like that occur in the imaging device 1 .
 本開示に係る「光学フィルター」に関して実証試験を行った。具体的に、以下に示す比較例、実施例の光学フィルターを製造した。なお、反射防止膜は、任意付加的構成であるため、説明を省略する。 A verification test was conducted on the "optical filter" according to the present disclosure. Specifically, optical filters of Comparative Examples and Examples shown below were manufactured. Since the antireflection film is an optional additional structure, the description thereof is omitted.
<実施例の光学フィルター>
 図1に示す透光性部材11と、赤外光吸収樹脂部材12と、赤外光遮光膜13と、を備えた、光学フィルター。
・透光性部材:クリアガラス(SHOTT社製D263Teco,厚み0.7mm)
・赤外光吸収樹脂部材:(株)日本触媒(品番:KT-B)
・赤外光遮光膜:SiOおよびTiを含む多層膜
<Optical Filters of Examples>
An optical filter comprising a translucent member 11 shown in FIG. 1, an infrared light absorbing resin member 12, and an infrared light shielding film 13.
・ Translucent member: Clear glass (D263Teco manufactured by SHOTT, thickness 0.7 mm)
・Infrared light absorbing resin material: Nippon Shokubai Co., Ltd. (Part number: KT-B)
・Infrared light shielding film: multilayer film containing SiO 2 and Ti 2 O 3
<比較例の光学フィルター>
 赤外光吸収樹脂部材を用いずに、図5に示すIRカットガラス11’と光学多層膜13’と、を備えた光学フィルター。
・IRカットガラス:(成都光明光電社製QB52,厚み0.7mm)
・光学多層膜:SiOおよびTiを含む多層膜
<Optical filter of comparative example>
An optical filter comprising an IR cut glass 11' and an optical multilayer film 13' shown in FIG. 5 without using an infrared light absorbing resin member.
・ IR cut glass: (QB52 manufactured by Chengdu Guangming Photoelectric Co., Ltd., thickness 0.7 mm)
- Optical multilayer film: multilayer film containing SiO2 and Ti2O3
 分光透過率は、日立製作所社製U-4100を用い、測定波長範囲は350~1200nm、光源は50Wハロゲンランプ、測定モードを透過率(%T)で測定を行った。 The spectral transmittance was measured using Hitachi U-4100, the measurement wavelength range was 350 to 1200 nm, the light source was a 50 W halogen lamp, and the measurement mode was transmittance (%T).
 実施例の光学フィルターの分光透過率を図4に示し、比較例の光学フィルターの分光透過率を図6に示す。なお、実施例の赤外光吸収樹脂部材の分光透過率および赤外光遮光膜の分光透過率は、図2および図3で示したものと同じである。 The spectral transmittance of the optical filter of Example is shown in FIG. 4, and the spectral transmittance of the optical filter of Comparative Example is shown in FIG. The spectral transmittance of the infrared light-absorbing resin member and the spectral transmittance of the infrared light shielding film of the example are the same as those shown in FIGS.
 実施例の光学フィルターは、波長579nmで分光透過率が90%を下回り、波長697nmで分光透過率が1%を下回るため、その傾きは、
 (90%-1%)/(579nm-697nm)=-0.75
と、算出できる。
 一方、比較例の光学フィルターは、波長549nmで分光透過率が90%を下回り、波長691nmで分光透過率が1%を下回るため、その傾きは、
 (90%-1%)/(549nm-691nm)=-0.62
と、算出できる。
 つまり、実施例の光学フィルターは、比較例の光学フィルターと比較してフィルター特性が急峻であり、適切に赤外光を遮光できる結果が得られた。
The optical filters of Examples have a spectral transmittance of less than 90% at a wavelength of 579 nm and a spectral transmittance of less than 1% at a wavelength of 697 nm.
(90%−1%)/(579 nm−697 nm)=−0.75
can be calculated.
On the other hand, the optical filter of the comparative example has a spectral transmittance of less than 90% at a wavelength of 549 nm and a spectral transmittance of less than 1% at a wavelength of 691 nm.
(90%−1%)/(549 nm−691 nm)=−0.62
can be calculated.
In other words, the optical filters of the examples have steeper filter characteristics than the optical filters of the comparative examples, and the result that infrared light can be blocked appropriately was obtained.
 また、実施例の光学フィルターは、±30°程度の角度で斜入射して波長シフトが生じても、赤外光吸収樹脂部材の吸収波長領域(390~765nm)が、赤外光遮光膜が透過する光の波長領域(700~755nm)に包含されているため、当該シフトに起因する赤外光の影響を低減し、ゴースト・フレア等を低減することができた。
 一方で、比較例の光学フィルターは、斜入射による波長シフトが生じると、当該波長シフトに起因する光が撮像素子に検出され、ゴースト・フレア等が発生した。
Further, in the optical filters of the examples, even if wavelength shift occurs due to oblique incidence at an angle of about ±30°, the absorption wavelength region (390 to 765 nm) of the infrared light absorbing resin member is the same as that of the infrared light shielding film. Since it is included in the wavelength region (700 to 755 nm) of transmitted light, the influence of infrared light caused by the shift can be reduced, and ghosts, flares, etc. can be reduced.
On the other hand, in the optical filter of the comparative example, when a wavelength shift occurs due to oblique incidence, light caused by the wavelength shift is detected by the imaging device, and ghosts, flares, and the like occur.
 また、実施例の光学フィルターは、510~520nmの間で分光透過率が97.5%と比較的高い分光率を示した。
 一方で、比較例の光学フィルターは、495~500nmの間で分光透過率が96.1%となり、実施例の光学フィルターよりも分光透過率が低かった。
Further, the optical filters of Examples exhibited a relatively high spectral transmittance of 97.5% between 510 and 520 nm.
On the other hand, the optical filter of the comparative example had a spectral transmittance of 96.1% between 495 and 500 nm, which was lower than the spectral transmittance of the optical filter of the example.
 なお、今回開示した実施態様は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本開示の技術的範囲は、上記した実施態様のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本開示の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 It should be noted that the embodiments disclosed this time are examples in all respects and are not grounds for restrictive interpretation. Therefore, the technical scope of the present disclosure is not to be construed solely by the above-described embodiments, but is defined based on the claims. In addition, the technical scope of the present disclosure includes all modifications within the meaning and range of equivalence to the claims.
 本開示の技術的思想は、光学フィルターおよび撮像装置に適用することができる。 The technical idea of the present disclosure can be applied to optical filters and imaging devices.
1,1’ 撮像装置
10,10’ 光学フィルター
11 透光性部材
11a 一方の主面
11b 他方の主面
11’ IRカットガラス
12 赤外光吸収樹脂部材
13 赤外光遮光膜
13’ 光学多層膜
14 反射防止膜
L レンズ
S 撮像素子
Reference Signs List 1, 1' imaging device 10, 10' optical filter 11 translucent member 11a one main surface 11b the other main surface 11' IR cut glass 12 infrared light absorbing resin member 13 infrared light shielding film 13' optical multilayer film 14 antireflection film L lens S imaging device

Claims (12)

  1.  一方の主面と前記一方の主面に対向する他方の主面を有する透光性部材と、
     前記透光性部材の前記一方の主面に設けられた赤外光吸収樹脂部材と、
     前記透光性部材の前記他方の主面に設けられ、前記赤外光吸収樹脂部材が透過する赤外光を遮光する赤外光遮光膜と、を備えた、光学フィルター。
    a translucent member having one principal surface and the other principal surface facing the one principal surface;
    an infrared light absorbing resin member provided on the one main surface of the translucent member;
    and an infrared light shielding film provided on the other main surface of the translucent member and shielding infrared light transmitted by the infrared light absorbing resin member.
  2.  前記赤外光吸収樹脂部材が赤外光を吸収する吸収波長領域は、前記赤外光遮光膜が透過する光の波長領域に包含されている、請求項1に記載の光学フィルター。 The optical filter according to claim 1, wherein the absorption wavelength range in which the infrared light absorbing resin member absorbs infrared light is included in the wavelength range of light transmitted by the infrared light shielding film.
  3.  前記吸収波長領域は、少なくとも700nm以上750nm以下である、請求項2に記載の光学フィルター。 The optical filter according to claim 2, wherein the absorption wavelength region is at least 700 nm or more and 750 nm or less.
  4.  前記吸収波長領域は、前記光学フィルターに斜入射する光によって前記赤外光遮光膜の透過特性がシフトする波長幅である、請求項2または3に記載の光学フィルター。 The optical filter according to claim 2 or 3, wherein the absorption wavelength region is a wavelength width in which the transmission characteristics of the infrared light shielding film are shifted by light obliquely incident on the optical filter.
  5.  前記赤外光吸収樹脂部材は、800nm以上の波長の光を透過する特性を有している、請求項1~4のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 4, wherein the infrared light absorbing resin member has a property of transmitting light with a wavelength of 800 nm or more.
  6.  前記赤外光吸収樹脂部材は、紫外光領域の光を透過しない特性を有している、請求項1~5のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 5, wherein the infrared light absorbing resin member has a property of not transmitting light in the ultraviolet region.
  7.  前記赤外光吸収樹脂部材は、オキソカーボン系化合物を含有している、請求項1~6のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 6, wherein the infrared light absorbing resin member contains an oxocarbon compound.
  8.  前記赤外光吸収樹脂部材は、赤外光吸収色素を含有する塗工物である、請求項1~7のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 7, wherein the infrared light absorbing resin member is a coated material containing an infrared light absorbing dye.
  9.  前記赤外光遮光膜は、蒸着膜である、請求項1~8のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 8, wherein the infrared light shielding film is a vapor deposition film.
  10.  前記赤外光遮光膜は、少なくとも400nm以上765nm以下の波長の光を透過する、請求項1~9のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 9, wherein the infrared light shielding film transmits light with a wavelength of at least 400 nm or more and 765 nm or less.
  11.  前記赤外光吸収樹脂部材の厚みは、前記赤外光遮光膜の厚みよりも厚くされている、請求項1~10のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 10, wherein the infrared light absorbing resin member has a thickness greater than that of the infrared light shielding film.
  12.  請求項1~11のいずれか1項に記載の光学フィルターと、
     撮像素子と、を備え、
     前記透光性部材の前記一方の主面側に前記撮像素子が配置されている、撮像装置。
    an optical filter according to any one of claims 1 to 11;
    and an imaging device,
    An image pickup device, wherein the image pickup element is arranged on the one main surface side of the translucent member.
PCT/JP2022/042430 2022-02-21 2022-11-15 Optical filter and imaging device WO2023157403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024976 2022-02-21
JP2022024976 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157403A1 true WO2023157403A1 (en) 2023-08-24

Family

ID=87577912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042430 WO2023157403A1 (en) 2022-02-21 2022-11-15 Optical filter and imaging device

Country Status (1)

Country Link
WO (1) WO2023157403A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158635A1 (en) * 2010-06-18 2011-12-22 株式会社大真空 Infrared blocking filter
WO2014088063A1 (en) * 2012-12-06 2014-06-12 旭硝子株式会社 Near-infrared blocking filter
WO2016114363A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and imaging device
JP3206578U (en) * 2016-05-04 2016-09-23 白金科技股▲分▼有限公司 Absorption near-infrared filter and image sensor
JP2017110209A (en) * 2015-02-18 2017-06-22 旭硝子株式会社 Squarylium-based dye, resin film, optical filter and imaging device
JP2018132609A (en) * 2017-02-14 2018-08-23 日本板硝子株式会社 Infrared cut filter and imaging optical system
KR20180101761A (en) * 2017-03-06 2018-09-14 나노스 주식회사 Near-infrared cut filter and Device including the same
JP2019200399A (en) * 2018-05-18 2019-11-21 Agc株式会社 Optical filter and imaging device
JP2020074366A (en) * 2017-02-24 2020-05-14 株式会社オプトラン Camera structure and imaging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158635A1 (en) * 2010-06-18 2011-12-22 株式会社大真空 Infrared blocking filter
WO2014088063A1 (en) * 2012-12-06 2014-06-12 旭硝子株式会社 Near-infrared blocking filter
WO2016114363A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and imaging device
JP2017110209A (en) * 2015-02-18 2017-06-22 旭硝子株式会社 Squarylium-based dye, resin film, optical filter and imaging device
JP3206578U (en) * 2016-05-04 2016-09-23 白金科技股▲分▼有限公司 Absorption near-infrared filter and image sensor
JP2018132609A (en) * 2017-02-14 2018-08-23 日本板硝子株式会社 Infrared cut filter and imaging optical system
JP2020074366A (en) * 2017-02-24 2020-05-14 株式会社オプトラン Camera structure and imaging device
KR20180101761A (en) * 2017-03-06 2018-09-14 나노스 주식회사 Near-infrared cut filter and Device including the same
JP2019200399A (en) * 2018-05-18 2019-11-21 Agc株式会社 Optical filter and imaging device

Similar Documents

Publication Publication Date Title
KR101815823B1 (en) Optical filter and imaging device
JP5741283B2 (en) Infrared light transmission filter and imaging apparatus using the same
JP6773161B2 (en) Optical filter
JP6332403B2 (en) Optical filter and solid-state imaging device
TWI574056B (en) Infrared light cut filter and photographing device
JP6020746B2 (en) Optical filter
US10184827B2 (en) Near-infrared absorbing filter and image sensor
CN104871047A (en) Near-infrared cut-off filter
JP5759717B2 (en) Imaging optical system for surveillance cameras
CN110873914B (en) Optical filter, method for manufacturing the same, solid-state imaging device, and camera module
JP2012137649A (en) Optical filter
JPWO2014084167A1 (en) Near-infrared cut filter
TW201819963A (en) Optical filter
KR19980025055A (en) Light absorber and optical device using the same
JPWO2019189039A1 (en) Optical filter
WO2020004641A1 (en) Optical filter and information acquisition device
US20130155495A1 (en) Lens for absorbing infrared light and lens module having same
JP6081753B2 (en) Optical element
WO2023157403A1 (en) Optical filter and imaging device
JP2019109514A (en) Absorption-type near-infrared filter
JP7347145B2 (en) Optical element and fingerprint detection device
JP2015225154A (en) Near-infrared cut filter
CN112437893A (en) Optical filter and ambient light sensor
WO2022016524A1 (en) Infrared cut filter, infrared cut lens and camera module
JP7155504B2 (en) detection system, wavelength selective element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927294

Country of ref document: EP

Kind code of ref document: A1