JP4671410B2 - Light aperture device and camera with ND filter with IR cut function - Google Patents

Light aperture device and camera with ND filter with IR cut function Download PDF

Info

Publication number
JP4671410B2
JP4671410B2 JP2005150443A JP2005150443A JP4671410B2 JP 4671410 B2 JP4671410 B2 JP 4671410B2 JP 2005150443 A JP2005150443 A JP 2005150443A JP 2005150443 A JP2005150443 A JP 2005150443A JP 4671410 B2 JP4671410 B2 JP 4671410B2
Authority
JP
Japan
Prior art keywords
film
filter
cut
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005150443A
Other languages
Japanese (ja)
Other versions
JP2006330128A (en
Inventor
孝幸 若林
真志 内山
康典 斎藤
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2005150443A priority Critical patent/JP4671410B2/en
Publication of JP2006330128A publication Critical patent/JP2006330128A/en
Application granted granted Critical
Publication of JP4671410B2 publication Critical patent/JP4671410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、IRカット機能付きNDフィルタを備えた光量絞り装置及びカメラに関するものである。 The present invention relates aperture diaphragm apparatus and a camera equipped with an ND filter with IR cut function.

従来のビデオカメラやデジタルカメラでは、撮像素子の前面に赤外線カットフィルタが配置されている。これは、固体撮像素子は700nmより長い波長の光を感じない人間の目の感度と異なり、撮像素子の感度が赤外線領域である波長1100nm付近まであるため、不要光により視覚と異なって画像化されてしまうことを防止するためである。   In conventional video cameras and digital cameras, an infrared cut filter is disposed in front of the image sensor. This differs from the sensitivity of the human eye that does not sense light having a wavelength longer than 700 nm, and the sensitivity of the imaging device is up to a wavelength of about 1100 nm in the infrared region. This is to prevent this from happening.

このような撮像装置の光学系に用いられる従来の赤外線カットフィルタには、厚さと吸収剤の量により透過率特性が変化する赤外線吸収ガラスタイプと、屈折率の異なる2種類以上の薄膜を交互にガラス基材上に積層することにより透過率特性を変化させる多層膜コーティングタイプとがある。このように、赤外線吸収ガラスやガラス基材にコーティングする従来のものでは、ガラス自体に厚みがあることから、光学系を小型化することが困難である。   In the conventional infrared cut filter used in the optical system of such an imaging apparatus, an infrared absorbing glass type whose transmittance characteristics change depending on the thickness and the amount of the absorbent and two or more types of thin films having different refractive indexes are alternately arranged. There is a multilayer coating type in which the transmittance characteristics are changed by laminating on a glass substrate. Thus, in the conventional thing which coats infrared rays absorption glass or a glass base material, since glass has thickness, it is difficult to reduce an optical system in size.

一方、濃度が連続的に変化するND(Neutral Density)フィルタが、例えば、表示パネルの濃度分布を補正する補正板として、あるいは顕微鏡等に光を供給する光量調整用のフィルタとして使用され、また近年ではマイクロレンズアレイ作製用のフォトマスクに使用される等、多岐の分野で用いられている。   On the other hand, an ND (Neutral Density) filter whose density changes continuously is used, for example, as a correction plate for correcting the density distribution of a display panel or as a filter for adjusting the amount of light for supplying light to a microscope or the like. However, it is used in various fields such as a photomask for producing a microlens array.

以下に、光量絞りに用いられるNDフィルタの例について説明する。
光量絞りは銀塩フィルムあるいはCCD等への固体撮像素子へ入射する光量を制御するため、撮影光学系の光路中に設けられており、被写界が明るい場合に光量をより小さく絞り込まれるように構成されている。
従って、快晴時や高輝度の被写界を撮影すると絞りは小絞りとなり、絞りのハンチング現象や光の回折の影響も受け易く、像性能の劣化を生じる。
これに対する対策として、絞り羽根にフィルム状のND(Neutral Density)フィルタを取り付けて被写界の明るさが同一でも絞りの開口が大きくなる様な工夫がされている。
Hereinafter, an example of the ND filter used for the light quantity stop will be described.
The aperture stop is provided in the optical path of the photographic optical system in order to control the amount of light incident on the solid-state image sensor on a silver salt film or CCD, etc. It is configured.
Therefore, when shooting a clear or high-brightness field, the aperture becomes a small aperture, which is easily affected by the hunting phenomenon of the aperture and light diffraction, resulting in degradation of image performance.
As a countermeasure against this, a ND (Neutral Density) filter is attached to the aperture blade so that the aperture of the aperture is enlarged even if the brightness of the object field is the same.

近年、撮像素子の感度が向上するに従い、前記NDフィルタの濃度を濃くして、光の透過率をさらに低下させ、被写界の明るさが同一でも絞りの開口を大きくする様な工夫がなされてきている。しかしながら、この様にNDフィルタの濃度が濃くなると、図6に示す様にフィルムを通過した光aと通過しない光bの光量差が大きく異なり、画面内で明るさが異なる“シェーディング”現象が起きたり、解像度が低下してしまうという欠点がある。この欠点を解決するためにNDフィルタの濃度を光軸中心に向かって順次透過率が大となる様な構造を採る必要が出てきている。   In recent years, as the sensitivity of the image sensor has improved, the density of the ND filter is increased to further reduce the light transmittance, and the device has been devised to increase the aperture of the aperture even if the brightness of the object field is the same. It is coming. However, when the density of the ND filter is increased in this way, as shown in FIG. 6, the difference in light quantity between the light a that has passed through the film and the light b that has not passed is greatly different, resulting in a “shading” phenomenon in which the brightness differs within the screen. There is a drawback that the resolution is lowered. In order to solve this drawback, it has become necessary to adopt a structure in which the transmittance of the ND filter increases gradually toward the center of the optical axis.

因みに図6で21A,21B,21C,21Dは撮影光学系21を構成するレンズ、22は固体撮像素子で23はローパスフィルタである。また24から27は絞り装置で、24がNDフィルタ、25と26が対向的に移動する絞り羽根で、2枚の絞り羽根は略菱形の開口を形成する。NDフィルタは普通、絞り羽根に接着されている。27は絞り羽根支持板である。   In FIG. 6, reference numerals 21A, 21B, 21C, and 21D denote lenses constituting the photographing optical system 21, reference numeral 22 denotes a solid-state image sensor, and reference numeral 23 denotes a low-pass filter. Reference numerals 24 to 27 are diaphragm devices, 24 is an ND filter, and 25 and 26 are opposed diaphragm blades, and the two diaphragm blades form a substantially rhombic opening. The ND filter is usually bonded to the diaphragm blade. Reference numeral 27 denotes a diaphragm blade support plate.

一般的にNDフィルタの作製方法としては、フィルム状をなす材料(セルロースアセテート、PET(ポリエチレンテレフタレート)、塩化ビニル等)中に光を吸収する有機色素または顔料を混ぜ、練り込むタイプのものと、前記材料に光を吸収する有機色素または顔料を塗布するタイプのものがある。これらの製造方法では、濃度が均一なフィルタは作製可能であるが、濃度が変化するタイプのフィルタ(グラデーションフィルタ)は作製が著しく困難である。   In general, as a method for producing an ND filter, a film-like material (cellulose acetate, PET (polyethylene terephthalate), vinyl chloride, etc.) is mixed with an organic dye or pigment that absorbs light, and kneaded. There is a type in which an organic dye or pigment that absorbs light is applied to the material. In these manufacturing methods, it is possible to produce a filter having a uniform density, but it is extremely difficult to produce a filter (gradation filter) of a type in which the density changes.

これらの高画質対応への対策として、単一濃度のNDフィルタを複数の絞り羽根に接着して、駆動させることにより、単一濃度フィルタでも複数重なった部分と重ならない部分とから、濃度変化させることは可能である。
また、特許文献1では、日中の可視光下における可視光撮影と夜間における近赤外光撮影とに共用できるようにするため、連続的に濃度が変化するNDフィルタを有する部分とIRカットフィルタのみを有する部分を兼ね備え、ガラス基材一方側に連続的に濃度が変化するND膜が成膜され、他方側にIRカット膜を成膜した構成が提案されている。
特開平5−110938号公報
As a measure for dealing with these high image quality, a single density ND filter is bonded to a plurality of diaphragm blades and driven to change the density from a portion where even a single density filter does not overlap a plurality of overlapping portions. It is possible.
Further, in Patent Document 1, a portion having an ND filter whose density changes continuously and an IR cut filter so that it can be used for both visible light photographing under visible light during the day and near infrared light photographing at night. A configuration has been proposed in which an ND film having a continuous concentration is formed on one side of the glass substrate and an IR cut film is formed on the other side.
Japanese Patent Laid-Open No. 5-110938

しかしながら、上記した従来例のものでは、いずれも近年の小型化あるいは省スペース化に対応することが困難であるという問題を有している。
すなわち、上記した、単一濃度のNDフィルタを複数の絞り羽根に接着して駆動させるものでは、絞り羽根に複数枚NDフィルタが存在するために厚くなり、小型化あるいは省スペース化することは困難である。
また、特許文献1のものにおいても、ガラス基材の一方側に連続的に濃度が変化するND膜が成膜され、他方側にIRカット膜が成膜された構成が採られており、前述したようにガラス自体に厚みがあることから、光学系を小型化することが困難である。また、その際、このようなガラス基材に代え薄い透明樹脂基材等を用いたとしても、特許文献1のように片面にND膜、他の面にIRカット膜を成膜すると、圧倒的にIRカット膜の積層数が多いためその膜厚が厚くなり、基材のバランスが崩れ、ソリや膜のクラックが発生してしまうこととなる。
However, each of the conventional examples described above has a problem that it is difficult to cope with recent miniaturization or space saving.
That is, in the above-described one in which a single-concentration ND filter is bonded to a plurality of diaphragm blades and driven, a plurality of ND filters are present on the diaphragm blades, so that it is thick and difficult to downsize or save space. It is.
Further, the one of Patent Document 1 adopts a configuration in which an ND film having a continuously changing concentration is formed on one side of a glass substrate and an IR cut film is formed on the other side. As described above, since the glass itself has a thickness, it is difficult to reduce the size of the optical system. At that time, even if a thin transparent resin substrate or the like is used instead of such a glass substrate, if an ND film is formed on one side and an IR cut film is formed on the other side as in Patent Document 1, it is overwhelming. In addition, since the number of laminated IR cut films is large, the film thickness becomes thick, the balance of the base material is lost, and warping and cracks in the film are generated.

本発明は、上記課題に鑑み、基材両側の膜応力による反りやクラックの発生を抑制し、小型化あるいは省スペース化を図ることができ
ND膜のないIRカット膜領域のみを設けることにより光量を減少しない時でも赤外線をカットすることが可能となるIRカット機能付きNDフィルタを備えた光量絞り装置及びカメラを提供することを目的とするものである。
In view of the above problems, depression won the occurrence of warpage or cracks due to substrate on both sides of the film stress can be reduced in size or space saving,
It aims to provide an aperture diaphragm apparatus and a camera equipped with an IR cut function ND filter which makes it possible to cut the infrared even when not decrease the amount of light by providing only IR cut film free region ND film To do.

上記課題を達成するために、以下のように構成したIRカット膜付きNDフィルタを備えた光量絞り装置及びカメラを提供するものである。
すなわち、本発明のIRカット機能付きNDフィルタを備えた光量絞り装置は、相対的に駆動することで開口の大きさが変えられる複数の絞り羽根と、前記開口内での位置が変えられるNDフィルタとを備えた光量絞り装置において、
前記NDフィルタは、薄い透明樹脂からなるシート状基材と、前記基材の両面に成膜された赤外線を減衰するIRカット膜と、前記IRカット膜が成膜された前記基材の少なくとも一方の面のIRカット膜上に、一部成膜されない領域が残るように成膜された、光の透過率を減衰するND膜とを備え、
前記ND膜が一部成膜されない領域は、前記ND膜のないIRカット機能のみの領域であり、且つ前記開口が開放の場合に前記開口をカバーできる大きさであることを特徴としている。
また、本発明のカメラは、光学系と、該光学系を通過する光量を制限する上記したIRカット機能付きNDフィルタを備えた光量絞り装置と、該光学系によって形成される像を受ける固体撮像素子を有することを特徴としている。
To achieve the above object, there is provided an aperture diaphragm apparatus and a camera equipped with an IR cut film with ND filter configured as follows.
That is , the light quantity diaphragm device provided with the ND filter with IR cut function according to the present invention includes a plurality of diaphragm blades whose opening size can be changed by relative driving, and an ND filter whose position within the opening can be changed. In the light quantity reduction device provided with
The ND filter has a sheet-like base material made of a thin transparent resin, and the IR cut film for attenuating the infrared which is formed on both surfaces of the substrate, at least one of said substrates the IR cut film is formed comprising of the IR cutoff film on the surface, areas not part deposited is deposited to remain, and a ND film for attenuating the transmittance of light,
The region where the ND film is not partially formed is a region having only the IR cut function without the ND film, and having a size that can cover the opening when the opening is open .
In addition, the camera of the present invention includes an optical system, a light amount diaphragm device including the above-described ND filter with an IR cut function for limiting the amount of light passing through the optical system, and a solid-state imaging that receives an image formed by the optical system. It is characterized by having an element.

本発明によれば、光学系のスペースをコンパクトにすることができ、基材の反りが少なく、クラック発生を抑制することができ
ND膜のないIRカット膜領域のみを設けることにより光量を減少しない時でも赤外線をカットすることが可能となるIRカット機能付きNDフィルタを備えた量絞り装置及びカメラ提供することができる。
According to the present invention, the space of the optical system can be made compact, the substrate is less warped, and the occurrence of cracks can be suppressed .
It is possible to provide an amount throttle device and a camera equipped with an IR cut function ND filter is possible to cut the infrared even when not decrease the amount of light by providing only IR cut film free region ND film.

つぎに、本発明の実施の形態について説明する。
図1に、本実施の形態におけるIRカット機能付きNDフィルタを備えた光量絞り装置に適用されるIRカット膜付きNDフィルタの構成を示す。
図1において、1はIRカット膜、2はND膜、13は基材である。
本発明の実施においては、薄い透明樹脂基材の両面に、蒸着法を用いてIRカット膜1を形成し、IRカット膜1上にND膜2を形成した。
本実施の形態のIRカット膜付きNDフィルタは、このように、基材13の両面にND膜に比して圧倒的に積層数が多いIRカット膜が成膜されているから、基材上での膜厚バランスが保たれ、ソリや膜のクラックの発生を防止することが可能となる。
本実施の形態のIRカット膜付きNDフィルタにおいては、ND膜は基材の両面だけてなく片面だけに形成してもよい
また、それらは図1(b)に示されるようにND膜を形成しない領域を設けるように形成される
また、本実施の形態のIRカット膜付きNDフィルタにおいては、連続的に濃度変化するグラデーション濃度勾配を有するもの以外に、多段階に濃度変化するもの、あるいは単一濃度の膜であっても良い。
以上の本発明の実施の形態によれば、同一の薄い透明樹脂基材にIRカット膜とND膜を形成することで、コンパクトでシンプルな光学系を提供することが可能となる。
Next, an embodiment of the present invention will be described.
FIG. 1 shows a configuration of an ND filter with an IR cut film that is applied to a light quantity reduction device provided with an ND filter with an IR cut function in the present embodiment.
In FIG. 1, 1 is an IR cut film, 2 is an ND film, and 13 is a substrate.
In the practice of the present invention, the IR cut film 1 was formed on both surfaces of the thin transparent resin base material by vapor deposition, and the ND film 2 was formed on the IR cut film 1.
In the ND filter with IR cut film of the present embodiment, the IR cut film having an overwhelmingly large number of layers as compared with the ND film is formed on both surfaces of the base material 13 as described above. Therefore, it is possible to prevent the generation of warpage and film cracks.
In the ND filter with IR cut film of the present embodiment, the ND film may be formed not only on both sides of the substrate but also on one side .
Further, they are formed so as to provide a region where an ND film is not formed as shown in FIG .
In addition, the ND filter with an IR cut film of the present embodiment may be a multi-stage density change film or a single density film in addition to a gradation density gradient that continuously changes density. .
According to the embodiment of the present invention described above, it is possible to provide a compact and simple optical system by forming the IR cut film and the ND film on the same thin transparent resin substrate.

つぎに、本実施の形態におけるグラデーション濃度勾配を有するIRカット膜付きNDフィルタの成膜に用いられる真空蒸着機の一例について説明する。
図2は真空蒸着機におけるチャンバー内の簡易図であり、12は成膜を施す基板、13は実際に成膜を実施する基材、14は基材13を固定する為の基板治具、15は蒸着傘、16は蒸着源である。また、本実施の形態として説明する基板12とは、図2(b)に示すように基板治具14に基材13がセットされた状態のものを意味している。
Next, an example of a vacuum vapor deposition machine used for forming an ND filter with an IR cut film having a gradation density gradient in the present embodiment will be described.
FIG. 2 is a simplified view of the inside of a chamber in a vacuum evaporation machine, 12 is a substrate on which a film is formed, 13 is a base material on which actual film formation is performed, 14 is a substrate jig for fixing the base material 13, 15 Is a vapor deposition umbrella, and 16 is a vapor deposition source. Moreover, the board | substrate 12 demonstrated as this Embodiment means the thing of the state by which the base material 13 was set to the board | substrate jig | tool 14 as shown in FIG.2 (b).

一般的に真空蒸着法においては、図2(a)の様にチャンバー内の基板は蒸着傘15に備え付けられ、この蒸着傘15と共に基板12が回転し成膜が行われる。この各基板上の蒸着源側に、基板平面と平行な平面上で基板から任意の距離だけ離した位置に、図3に示すようなマスク17を設けることにより、グラデーション濃度分布を有する膜が形成される。すなわち、蒸着源16と基板12及びマスク17との幾何学的位置関係から、蒸着する蒸着粒子はマスク17を通過し基板12まで到達できたり、マスク17に遮られ基板12まで到達できなかったりすることにより、基板12に膜厚分布を有する膜が得られる。   In general, in the vacuum vapor deposition method, as shown in FIG. 2A, the substrate in the chamber is provided on the vapor deposition umbrella 15, and the substrate 12 is rotated together with the vapor deposition umbrella 15 to form a film. A film having a gradation density distribution is formed by providing a mask 17 as shown in FIG. 3 on the deposition source side on each substrate at a position separated from the substrate by an arbitrary distance on a plane parallel to the substrate plane. Is done. That is, due to the geometric positional relationship between the vapor deposition source 16 and the substrate 12 and the mask 17, vapor deposition particles to be vaporized can pass through the mask 17 and reach the substrate 12, or are blocked by the mask 17 and cannot reach the substrate 12. Thus, a film having a film thickness distribution on the substrate 12 is obtained.

以上においては、真空蒸着法により基材上に薄膜を形成した場合を説明したが、本発明はこのような真空蒸着法に限らず、スパッタリング法、スプレー法、インクジェットプリンティング法、等にも適用することができるものである。なお、これらの成膜法は一般的に知られているため、ここではその説明を省略する。   In the above, the case where a thin film is formed on a substrate by a vacuum deposition method has been described. However, the present invention is not limited to such a vacuum deposition method, but is also applied to a sputtering method, a spray method, an inkjet printing method, and the like. It is something that can be done. In addition, since these film-forming methods are generally known, the description is abbreviate | omitted here.

つぎに、本発明の実施例について説明する。
まず、図1(a)を用いて、薄い透明樹脂基材の両面に、IRカット膜とND膜が形成された構成のIRカット機能付きのグラデーション濃度分布を有するNDフィルタの作成方法について説明する
作成に際しては、透明樹脂基材の材質としては、耐熱性(ガラス転移点Tg)が高く、可視域の波長域で透明性が高く、また吸水率が低いプラスチック基材(PET基材)を選択した。材質厚は75μmとした。基材に関しては、この他にポリカーボネートやノルボルネン系樹脂を用いても良い。
Next, examples of the present invention will be described.
First, a method for creating an ND filter having a gradation density distribution with an IR cut function in which an IR cut film and an ND film are formed on both surfaces of a thin transparent resin substrate will be described with reference to FIG. .
At the time of preparation, a plastic substrate (PET substrate) having high heat resistance (glass transition point Tg), high transparency in the visible wavelength range, and low water absorption is selected as the material of the transparent resin substrate. did. The material thickness was 75 μm. In addition to this, a polycarbonate or a norbornene-based resin may be used.

IRカットフィルタは、700nm以上の波長光をカットするためのものである。このIRカットフィルタによると、図5のように、赤外光がカットされて可視光のみが透過する。
本実施例では、IRカットフィルタは、TiO2、ZrO2、ITO、SiO2などの透明酸化物を用いて、PET基材上に積層成膜した。なお、IRカットフィルタの材料は、特に以上のものに限定されるものではなく、赤外線吸収能がある無機及び有機材料をコーティングしても良い。
各フィルタの物理膜厚に関しては材料、層数により膜厚が異なるが、本実施例では、IRカット膜は6μm程度で40層膜となる構成とし、ND膜は0.25μm程度で9層膜の構成を採用した。
IRカット膜40層における成膜時間は4時間以上にもなり、基板温度が100℃設定時でも実際の基板は150℃以上まで上昇するため、ガラス転移点70℃のPETへの成膜は難しい。そのため、本実施例では、基材の両面にIRカット膜を20層程度づつ半分に分割して積層成膜した。これにより、1回の成膜時間が短縮でき、電子銃のパワーが同じであれば基板温度の上昇を軽減させることができる。更に基板を冷却するなどの機構を用いれば、透明樹脂基材への成膜は容易なものとなる。
The IR cut filter is for cutting light having a wavelength of 700 nm or more. According to this IR cut filter, as shown in FIG. 5, infrared light is cut and only visible light is transmitted.
In this example, the IR cut filter was laminated on a PET substrate using a transparent oxide such as TiO 2 , ZrO 2 , ITO, or SiO 2 . In addition, the material of IR cut filter is not specifically limited to the above, You may coat the inorganic and organic material which have infrared absorption ability.
Regarding the physical film thickness of each filter, the film thickness differs depending on the material and the number of layers, but in this embodiment, the IR cut film has a structure of about 6 μm and a 40-layer film, and the ND film has a structure of about 0.25 μm and a 9-layer film. The configuration of was adopted.
The film formation time in the IR cut film 40 layer is 4 hours or more, and even when the substrate temperature is set to 100 ° C., the actual substrate rises to 150 ° C. or more, so it is difficult to form a film on PET having a glass transition point of 70 ° C. . For this reason, in this example, the IR cut film was divided into two halves on both sides of the base material, and the film was laminated. Thereby, the time for one film formation can be shortened, and the increase in the substrate temperature can be reduced if the power of the electron gun is the same. Furthermore, if a mechanism such as cooling the substrate is used, film formation on the transparent resin base material becomes easy.

以上のように積層成膜したIRカット膜上に、ND膜をつぎのように成膜した。
まず、各成膜基板上の蒸着源側に、図3に示すようなマスクを2つ設置し、IRカット膜が積層成膜されたPET基材上に、真空蒸着法により図4に示す膜構成のうち、第1層から最表層手前までを形成した。
成膜に際して、膜厚を比較的に容易に制御でき、かつ可視域の波長域で散乱が非常に小さいことから、上記の真空蒸着法を選択した。
An ND film was formed as follows on the IR cut film formed by lamination as described above.
First, two masks as shown in FIG. 3 are installed on the deposition source side on each film formation substrate, and the film shown in FIG. 4 is formed on the PET substrate on which the IR cut film is laminated by vacuum evaporation. Of the configuration, the layers from the first layer to the front of the outermost layer were formed.
In the film formation, the above-described vacuum deposition method was selected because the film thickness can be controlled relatively easily and the scattering is very small in the visible wavelength range.

つぎに、チャンバーから各基板に設けたマスクを取り外し、最表層を光学膜厚n×d(nは屈折率、dは機械膜厚)でλ/4 λ:540nmの条件により成膜した。この最表層の膜の屈折率nは、可視域の波長域で1.5以下のものを選んだ。具体的にはMgF2を使用した。ここで、第1層から最表層まで、図3で示す様なマスクを用い、全層を膜厚変化させ成膜すると、グラデーション部の反射防止条件が合わなくなり、反射率の上昇が起き、画質上では“ゴースト現象”や“フレア現象”が発生してしまうこととなる。このことを考慮し、最表層ではマスクを外し基板全面の膜厚が等しくなる様に成膜した。 Next, the mask provided on each substrate was removed from the chamber, and the outermost layer was formed under the condition of λ / 4 λ: 540 nm with an optical film thickness n × d (where n is the refractive index and d is the mechanical film thickness). The refractive index n of the outermost layer film was selected to be 1.5 or less in the visible wavelength range. Specifically, MgF 2 was used. Here, if the mask as shown in FIG. 3 is used from the first layer to the outermost layer, and the film thickness is changed for all layers, the antireflection condition of the gradation portion is not met, the reflectance is increased, and the image quality is increased. Above, the “ghost phenomenon” and “flare phenomenon” will occur. Considering this, the mask was removed from the outermost layer, and the film was formed so that the film thickness on the entire surface of the substrate was equal.

以上のように第1層から最表層まで成膜した後、120℃ 1時間 空気中で熱処理を行った。120℃を選んだのは、100℃未満では環境安定性向上の効果が不十分であり、130℃を超えると基材の熱的劣化を生じて膜にクラックが発生する等問題が生じるためである。本実施例の条件下においては、熱処理の温度は、110℃から130℃の間が適当である。   After the film formation from the first layer to the outermost layer as described above, heat treatment was performed in air at 120 ° C. for 1 hour. The reason why 120 ° C. was selected is that the effect of improving the environmental stability is insufficient if the temperature is lower than 100 ° C., and if the temperature exceeds 130 ° C., problems such as thermal degradation of the substrate and cracks in the film occur. is there. Under the conditions of this embodiment, the heat treatment temperature is suitably between 110 ° C and 130 ° C.

環境安定性を調べるため、前記プラスチックNDフィルタを 60℃ 90% 240時間の放置試験を行い、試験前後での透過率を測定すると、その差が0.2%以下とほとんど差は見られなかった。参考として、熱処理を行わないものを同様な環境試験を行い、試験前後での透過率を測定すると2%前後増加していた。
このような現象が起きる要因としては、真空蒸着時の基板温度が低いことが挙げられる。膜の封止密度は成膜時の基板温度が大きく影響し、温度が低いと封止密度が低くなり、水分・酸素等を透過しやすく、そのため吸収膜であるTi自体の酸化が促進されること、及びそれを保護するAl23膜等の誘電体膜の保護効果が少ないことの両方の影響から透過率が上昇すものと考えられる。熱処理を行うと環境安定性が向上するのは、エージング効果であると考えられる。
In order to investigate the environmental stability, the plastic ND filter was subjected to a standing test at 60 ° C. 90% 240 hours, and the transmittance before and after the test was measured. . As a reference, when the same environmental test was performed on the sample without heat treatment, and the transmittance before and after the test was measured, it increased by about 2%.
A cause of such a phenomenon is that the substrate temperature during vacuum deposition is low. The sealing density of the film is greatly influenced by the substrate temperature at the time of film formation. When the temperature is low, the sealing density is low, and moisture, oxygen and the like are easily transmitted. Therefore, the oxidation of Ti X O Y itself as an absorption film is prevented. It is considered that the transmittance increases due to both the promotion and the less protective effect of a dielectric film such as an Al 2 O 3 film that protects it. It is thought that the environmental stability is improved by the heat treatment due to the aging effect.

NDフィルタは透過率を制御するためのもので、あらゆる連続的濃度変化幅の仕様にすることが可能である。
通常の撮影時は、NDフィルタの連続的に濃度が変化する部分で光の透過率を減少させる機能を持たせ、且つ、IRフィルタによって赤外光が固体撮像素子に入射されるのを防止している部分を使用する。
以上述べたようなIRカット機能を有したNDフィルタを、例えば図6の撮像装置におけるNDフィルタ24に代えて、絞り羽根の近傍で撮像素子に対して移動可能に配置して用いられる
本実施例のIRカット機能付きNDフィルタを備えた光量絞り装置では、図1(b)に示すようなND膜の形成されていない領域を有するもの用いられる。
その際、有害な赤外光を減衰したい場合、絞り口径をカバーできる大きさに合わせ、ND膜のないIRカット膜領域のみを設けた構成を採ることができる。これにより、光量を減少しない時でも赤外線をカットすることが可能となる。
また、入射量が大きい場合、入射光量に合わせてND膜で入射光量を変えることもでき、細かい光量調整が可能である。
また、連続濃度変化する分光透過率特性を有するNDフィルタ膜を用いた場合には、開放絞りから徐々に絞り込んでいく場合でも、濃度変化が急変することがなく、望ましいが、前述したように本発明は必ずしもこのような連続的に濃度変化するグラデーション濃度勾配を有するもの以外に、多段階に濃度変化するもの、あるいは単一濃度の膜であっても良い。
また、夜間や暗所の撮影時には、ND膜とIRカット膜を光路から退避できるように構成すると、夜間や暗所の撮影も可能である。
なお、IRカット機能を有したNDフィルタは、絞り羽根支持板に固定する構造でも、固定しない構造のどちらでも良い。
以上、本実施例によれば、IRカット機能付きNDフィルタを備えた光量絞り装置及びカメラを提供することができる。
The ND filter is for controlling the transmittance, and can be set to any continuous density change width.
During normal shooting, the ND filter has a function to reduce the light transmittance at the part where the density continuously changes, and the IR filter prevents the infrared light from entering the solid-state image sensor. Use the part that is.
The ND filter such having an IR cut function as described above, for example, in place of the ND filter 24 in the image pickup apparatus of FIG. 6, is used to movably arranged relative to the imaging device in the vicinity of the aperture blades.
In the light quantity reduction device provided with the ND filter with IR cut function of this embodiment, a device having a region where no ND film is formed as shown in FIG. 1B is used .
At this time, if it is desired to attenuate harmful infrared light, a configuration in which only an IR cut film region without an ND film is provided in accordance with a size capable of covering the aperture diameter can be adopted. This makes it possible to cut infrared rays even when the amount of light is not reduced.
When the incident amount is large, the incident light amount can be changed by the ND film in accordance with the incident light amount, and fine light amount adjustment is possible.
In addition, when an ND filter film having a spectral transmittance characteristic with a continuous density change is used, it is desirable that the density change does not change suddenly even when the aperture is gradually reduced from the open aperture. The invention may be a film having a density change in multiple steps, or a single density film, in addition to the gradation density gradient that continuously changes the density.
Further, at the time of photographing at night or in a dark place, it is possible to photograph at night or in a dark place if the ND film and the IR cut film are configured to be retracted from the optical path.
Note that the ND filter having the IR cut function may be either fixed to the diaphragm blade support plate or not fixed.
As described above, according to this embodiment, it is possible to provide a light amount diaphragm device and a camera equipped with the I R-cut function ND filter.

本発明の実施の形態におけるIRカット膜付きNDフィルタの構成を示す図。The figure which shows the structure of ND filter with IR cut film | membrane in embodiment of this invention. 本発明の実施の形態におけるIRカット膜付きNDフィルタの製造に用いる真空蒸着機のチャンバー内簡易図。The simplified view in the chamber of the vacuum evaporation machine used for manufacture of ND filter with IR cut film in an embodiment of the invention. 本発明の実施の形態におけるIRカット膜付きNDフィルタの製造に用いるマスクの構成を示す図。The figure which shows the structure of the mask used for manufacture of ND filter with IR cut film in embodiment of this invention. 本発明の実施例の膜構成を示す図。The figure which shows the film | membrane structure of the Example of this invention. 本発明の実施例におけるIRカット膜付きNDフィルタによる赤外光カットを説明する図。The figure explaining the infrared cut by the ND filter with IR cut film in the example of the present invention. 従来例におけるビデオカメラに使用される撮影光学系の構成を示す図。The figure which shows the structure of the imaging | photography optical system used for the video camera in a prior art example.

符号の説明Explanation of symbols

1:IRカット膜
2:ND膜
12:基板
13:基材
14:基板治具
15:蒸着傘
16:蒸着源
17:マスク
1: IR cut film 2: ND film 12: Substrate 13: Base material 14: Substrate jig 15: Deposition umbrella 16: Deposition source 17: Mask

Claims (5)

相対的に駆動することで開口の大きさが変えられる複数の絞り羽根と、前記開口内での位置が変えられるNDフィルタとを備えた光量絞り装置において、
前記NDフィルタは、薄い透明樹脂からなるシート状基材と、前記基材の両面に成膜された赤外線を減衰するIRカット膜と、前記IRカット膜が成膜された前記基材の少なくとも一方の面のIRカット膜上に、一部成膜されない領域が残るように成膜された、光の透過率を減衰するND膜とを備え、
前記ND膜が一部成膜されない領域は、前記ND膜のないIRカット機能のみの領域であり、且つ前記開口が開放の場合に前記開口をカバーできる大きさであることを特徴とするIRカット機能付きNDフィルタを備えた光量絞り装置
In a light quantity diaphragm apparatus comprising a plurality of diaphragm blades whose aperture size can be changed by being driven relatively, and an ND filter whose position within the aperture can be changed,
The ND filter has a sheet-like base material made of a thin transparent resin, and the IR cut film for attenuating the infrared which is formed on both surfaces of the substrate, at least one of said substrates the IR cut film is formed comprising of the IR cutoff film on the surface, areas not part deposited is deposited to remain, and a ND film for attenuating the transmittance of light,
The region where the ND film is not partially formed is a region having only the IR cut function without the ND film, and having a size that can cover the opening when the opening is open. A light quantity reduction device equipped with a function-equipped ND filter
前記IRカット膜とND膜は、蒸着法で成膜されていることを特徴とする請求項1に記載のIRカット機能付きNDフィルタを備えた光量絞り装置2. The light quantity stop device having an ND filter with an IR cut function according to claim 1 , wherein the IR cut film and the ND film are formed by vapor deposition. 前記IRカット膜は、TiO、ZrO、ITO、SiOなどの透明酸化材料からなることを特徴とする請求項1または請求項2に記載のIRカット機能付きNDフィルタを備えた光量絞り装置 3. The light quantity reduction device having an ND filter with an IR cut function according to claim 1 , wherein the IR cut film is made of a transparent oxide material such as TiO 2 , ZrO 2 , ITO, or SiO 2. . 前記ND膜は、2種類以上の層からなる膜を積層して複数の濃度分布を形成し、光の透過率を多段階に減衰させるように構成されていることを特徴とする請求項1〜3のいずれか1項に記載のIRカット機能付きNDフィルタを備えた光量絞り装置The ND film is configured to form a plurality of concentration distributions by laminating films of two or more kinds of layers, and to attenuate the light transmittance in multiple steps . aperture diaphragm device having an IR cut function ND filter according to any one of 3. 光学系と、該光学系を通過する光量を制限する請求項1〜4いずれか1項に記載のIRカット機能付きNDフィルタを備えた光量絞り装置と、該光学系によって形成される像を受ける固体撮像素子を有することを特徴とするカメラ。 5. An optical system, a light quantity stop device including the ND filter with an IR cut function according to claim 1, which limits an amount of light passing through the optical system, and an image formed by the optical system. A camera comprising a solid-state imaging device.
JP2005150443A 2005-05-24 2005-05-24 Light aperture device and camera with ND filter with IR cut function Active JP4671410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150443A JP4671410B2 (en) 2005-05-24 2005-05-24 Light aperture device and camera with ND filter with IR cut function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150443A JP4671410B2 (en) 2005-05-24 2005-05-24 Light aperture device and camera with ND filter with IR cut function

Publications (2)

Publication Number Publication Date
JP2006330128A JP2006330128A (en) 2006-12-07
JP4671410B2 true JP4671410B2 (en) 2011-04-20

Family

ID=37551904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150443A Active JP4671410B2 (en) 2005-05-24 2005-05-24 Light aperture device and camera with ND filter with IR cut function

Country Status (1)

Country Link
JP (1) JP4671410B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827782A (en) * 2006-12-28 2008-07-01 Nippon Catalytic Chem Ind Selectively light-transmitting filter
JP5517405B2 (en) * 2007-12-27 2014-06-11 株式会社日本触媒 Light selective transmission filter
JP5310478B2 (en) * 2008-10-24 2013-10-09 Jsr株式会社 Manufacturing method of ND filter
CN101581807B (en) * 2009-06-23 2011-05-18 安徽华东光电技术研究所 Special filter plate and night viewing compatible backlight optical membrane group
KR20130115219A (en) * 2010-08-04 2013-10-21 니혼 세이미츠 속키 카부시키가이샤 Aperture device, camera, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2004029577A (en) * 2002-06-27 2004-01-29 Canon Inc Light quantity controller, imaging optical system, and imaging apparatus
JP2004246018A (en) * 2003-02-13 2004-09-02 Canon Electronics Inc Light quantity adjusting device and optical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2004029577A (en) * 2002-06-27 2004-01-29 Canon Inc Light quantity controller, imaging optical system, and imaging apparatus
JP2004246018A (en) * 2003-02-13 2004-09-02 Canon Electronics Inc Light quantity adjusting device and optical equipment

Also Published As

Publication number Publication date
JP2006330128A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP5823119B2 (en) Optical filter for UV-IR cut
JP4801442B2 (en) ND filter for diaphragm
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP2008276112A (en) Nd filter
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP4963028B2 (en) ND filter and light quantity reduction device using the ND filter
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP4240458B2 (en) ND filter for light quantity diaphragm, light quantity diaphragm device, camera having the light quantity diaphragm device, and filter manufacturing method
JP2007171542A (en) Nd filter for optical diaphragm and optical diaphragm device provided with nd filter
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
JP2013174818A (en) Optical filter
JP4976698B2 (en) ND filter
JP3816048B2 (en) Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters
JP4493411B2 (en) Manufacturing method of ND filter
JP4623724B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device
JP3701931B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
JP2006078519A (en) Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
JP2004061903A (en) Method for manufacturing nd filter and nd filter, and light quantity reducing device and camera having such nd filter
JP2018180430A (en) Optical filter
JP4623725B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device
JP3685331B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having these ND filters
JP4493412B2 (en) Manufacturing method of ND filter
JP4493413B2 (en) Manufacturing method of ND filter
JP4493410B2 (en) Manufacturing method of ND filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Ref document number: 4671410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250