JP4900678B2 - Aperture device having ND filter and optical apparatus - Google Patents

Aperture device having ND filter and optical apparatus Download PDF

Info

Publication number
JP4900678B2
JP4900678B2 JP2006216462A JP2006216462A JP4900678B2 JP 4900678 B2 JP4900678 B2 JP 4900678B2 JP 2006216462 A JP2006216462 A JP 2006216462A JP 2006216462 A JP2006216462 A JP 2006216462A JP 4900678 B2 JP4900678 B2 JP 4900678B2
Authority
JP
Japan
Prior art keywords
region
filter
density
concentration
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006216462A
Other languages
Japanese (ja)
Other versions
JP2007094385A5 (en
JP2007094385A (en
Inventor
孝幸 若林
道男 柳
真志 内山
康典 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006216462A priority Critical patent/JP4900678B2/en
Priority to US11/467,329 priority patent/US8755134B2/en
Publication of JP2007094385A publication Critical patent/JP2007094385A/en
Publication of JP2007094385A5 publication Critical patent/JP2007094385A5/ja
Application granted granted Critical
Publication of JP4900678B2 publication Critical patent/JP4900678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diaphragms For Cameras (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Description

本発明は、NDフィルタを有する絞り装置及び光学機器に関する。 The present invention relates to a diaphragm device and optical instruments having a N D filter.

従来、ビデオカメラ等の撮像装置においては、光量絞り装置にND(Neutral Density)フィルタを用いることによって、明るい被写界でも極端に絞り開口が小さくなるのを防ぎ、ハンチング現象や光の回折現象等の防止を図っている。   2. Description of the Related Art Conventionally, in an imaging apparatus such as a video camera, an ND (Neutral Density) filter is used for a light amount diaphragm device, so that the aperture aperture is prevented from becoming extremely small even in a bright field, and a hunting phenomenon, a light diffraction phenomenon, etc. To prevent this.

NDフィルタを用いた光量絞り装置の具体例として、例えば、特許文献1に示されている多段階に濃度を変化させたステップNDフィルタを用いたものが知られている。
また、特許文献2に示されている濃度変化領域が長く無段階に濃度が変化するグラデーションNDフィルタを用いたもの等が知られている。
特開2002−277612号公報 特許第03621941号公報
As a specific example of the light quantity reduction device using the ND filter, for example, a device using a step ND filter in which the density is changed in multiple stages shown in Patent Document 1 is known.
Further, there is known one using a gradation ND filter in which the density change region shown in Patent Document 2 is long and the density changes steplessly.
JP 2002-277612 A Japanese Patent No. 03621941

ところで、光量絞り装置に従来のNDフィルタを使用した場合、かなり複雑な制御が必要である。
具体的には、ある時点での光量絞り装置の透過光量の測光値に対して、適正な透過光量との差を計算し、その差分をあらかじめ決められているアルゴリズムに従って、絞りあるいはNDフィルタを作動させ、適正な露光量を得られるようになっている。
また、最適な露出あるいは最適な露出補正を得るため、被写体輝度により制御アルゴリズムを変化させたり、機種によってはズームレンズの使用焦点距離やレンズの合焦位置(距離)の情報も制御のパラメータとしている。
このように、その制御においては極めて複雑な制御要素が含まれている。
さらに、NDフィルタの濃度変化で透過光量変化をさせるときは、絞りの開口径が小さい場合が多く、NDフィルタの僅かな濃度の違いが大きな透過光量の違いとなってしまう。
したがって、NDフィルタを使用して光量の制御を行う場合、その作動量に従ってどの位置でも濃度が連続的に変化するグラデーションNDフィルタを使用した場合は特に、作動量と透過光量の関係を関係づけることが、きわめて難しくなる。
By the way, when a conventional ND filter is used in the light quantity diaphragm device, quite complicated control is required.
Specifically, the difference between the transmitted light quantity of the transmitted light quantity of the light quantity diaphragm device at a certain point in time and the appropriate transmitted light quantity is calculated, and the aperture or ND filter is operated according to a predetermined algorithm. Therefore, an appropriate exposure amount can be obtained.
Also, in order to obtain optimal exposure or optimal exposure compensation, the control algorithm is changed depending on the subject brightness, and the zoom lens use focal length and lens focus position (distance) information are also used as control parameters depending on the model. .
Thus, the control includes extremely complicated control elements.
Furthermore, when changing the transmitted light amount by changing the density of the ND filter, the aperture diameter of the stop is often small, and a slight difference in density of the ND filter results in a large difference in transmitted light amount.
Therefore, when controlling the amount of light using an ND filter, particularly when using a gradation ND filter whose density continuously changes at any position according to the amount of operation, the relationship between the amount of operation and the amount of transmitted light is related. However, it becomes extremely difficult.

一方、ステップNDフィルタは、その濃度の切り替わり部分の位置、言い換えれば濃度の薄い部分の面積と濃い部分の面積の比だけを注目すれば良いので、従来の単色のNDフィルタを使用した場合と似た考え方ができ、制御は比較的簡単となる。
しかしながら、ステップNDフィルタにおいて、光を波として考えたとき、通過するフィルタが有するND膜の光学膜厚の差により位相がずれて画質に影響がでることとなる。すなわち、特開2004−253892号公報(第22頁、第24図参照)に開示されているように、透過波面位相差により画質に影響が出ることとなる。
これは、ステップNDフィルタのうち、屈折率が同じ膜を、膜の厚さを変えることによって違う濃度を得るタイプのものでは、膜厚によって濃度の異なる領域を通過した光の位相が、光を弱め合うようにずれて干渉し解像度を悪化させることによる。最も影響が大きくなるのは、異なる濃度の部分の面積が等しくなるときである。この状態で両者の膜厚の差すなわち透過波面位相差を変化させてみると、周期λで軸上光学性能を表すMTF(moduration transfer function)値が変動する。
On the other hand, in the step ND filter, it is only necessary to pay attention to the position of the density switching portion, in other words, the ratio of the area of the low density portion to the area of the dark portion. The control is relatively easy.
However, in the step ND filter, when the light is considered as a wave, the phase is shifted due to the difference in the optical film thickness of the ND film of the passing filter, and the image quality is affected. That is, as disclosed in Japanese Patent Application Laid-Open No. 2004-253892 (see page 22 and FIG. 24), the transmission wavefront phase difference affects the image quality.
This is because the type of step ND filter that obtains a different density by changing the thickness of the film having the same refractive index, the phase of the light that has passed through the region having a different density depending on the film thickness By deviating and interfering with each other to deteriorate the resolution. The effect is greatest when the areas of different concentrations are equal. In this state, when the difference between the film thicknesses, that is, the transmitted wavefront phase difference is changed, the MTF (modulation transfer function) value representing the on-axis optical performance varies with the period λ.

両者の位相差がゼロのときから増していくにしたがいMTFは低下し、位相差2λ/4で極値をとり上昇に転じ、4λ/4で極値をとり再び低下、6λ/4で極値をとり上昇に転じ、8λ/4でまた極値をとるというような変化を示す。
また、このステップNDフィルタとグラデーションNDフィルタとを比較してみると、ステップNDフィルタでは、特に濃度差が大きい場合、濃度境界部の濃度変化が不連続なために回折が起こり画質が劣化する。
以上のように、ステップNDフィルタには回折と透過波面位相差という問題があり、グラデーションNDフィルタに比べ画質が劣る場合がある。
しかしながら、光量絞り装置の制御においては、ステップNDフィルタの方がグラデーションNDフィルタより容易であり、また、制御プログラムの開発においても短期間で可能である場合が多い。
As the phase difference between the two increases, the MTF decreases, the extreme value is increased at the phase difference 2λ / 4, then increased, and the extreme value is decreased again at 4λ / 4, and the extreme value is decreased at 6λ / 4. It turns to rise and shows an extreme value again at 8λ / 4.
Further, when comparing the step ND filter and the gradation ND filter, in the step ND filter, particularly when the density difference is large, the density change at the density boundary part is discontinuous, so that diffraction occurs and the image quality deteriorates.
As described above, the step ND filter has a problem of diffraction and transmitted wavefront phase difference, and the image quality may be inferior to that of the gradation ND filter.
However, the step ND filter is easier than the gradation ND filter in controlling the light quantity reduction device, and the development of the control program is often possible in a short period of time.

本発明は、上記課題に鑑み、光量絞り装置の制御が、ステップNDフィルタのように比較的簡単でありながら、光学性能の低下を低減させることが可能となるNDフィルタを有する絞り装置及び光学機器の提供を目的とする。 In view of the above problems, the control of the aperture diaphragm device, while being relatively easy to step ND filter, a diaphragm device and a N D filter Do that is possible to reduce deterioration in optical performance The purpose is to provide optical equipment.

本発明は、上記課題を解決するため、つぎのように構成したNDフィルタを有する絞り装置及び光学機器を提供するものである
発明の絞り装置は、開口を形成する絞り部材と、
該開口を通過する光の光量を減衰するためのNDフィルタを備え、
該NDフィルタは、
一定の濃度のND膜を有する第1の領域と、
該第1の領域とは濃度の異なる一定の濃度のND膜を有する第2の領域と、
前記第1の領域と第2の領域の間に設けられた濃度変化領域を有し、
該濃度変化領域は前記第1の領域の濃度から前記第2の領域の濃度まで、濃度が連続的に変化するND膜を有し、
前記濃度変化領域の幅は、前記開口内において前記第1の領域と第2の領域の面積が同一となるときに、前記開口内の前記濃度変化領域の面積が、前記開口の面積の20%以下となるような幅に設定されていることを特徴とする。
また、本発明の光学機器は、上記した絞り装置を備える光学系と、
該光学系によって形成される像を受光する固体撮像素子を備えることを特徴とする。
The present invention, in order to solve the above problems, there is provided a diaphragm device and optical instruments having a N D filter constituted as follows.
The diaphragm device of the present invention includes a diaphragm member that forms an opening;
An ND filter for attenuating the amount of light passing through the opening;
The ND filter is
A first region having a certain concentration of ND film;
A second region having an ND film having a constant concentration different from that of the first region;
A concentration change region provided between the first region and the second region;
The concentration changing region has an ND film whose concentration continuously changes from the concentration of the first region to the concentration of the second region,
The width of the concentration change region is such that when the areas of the first region and the second region are the same in the opening, the area of the concentration change region in the opening is 20% of the area of the opening. The width is set to be as follows.
An optical apparatus of the present invention includes an optical system including a diaphragm Ri device described above,
A solid-state image sensor that receives an image formed by the optical system is provided.

本発明によれば、光量絞り装置の制御が、従来のステップNDフィルタのように比較的簡単であり、しかも光学性能の低下が少ないNDフィルタを有する絞り装置及び光学機器を実現することができる。 According to the present invention, control of the aperture diaphragm device is relatively simple as the conventional step ND filter, moreover is possible to realize a throttle device and an optical device having a N D filter has little decrease in optical performance it can.

本発明を実施するための最良の形態を、以下の実施例により説明する。   The best mode for carrying out the present invention will be described by the following examples.

本実施例の絞り装置に適用される光量調整用NDフィルタについて、図1を用いて説明する。 The light quantity adjustment ND filter applied to the diaphragm device of this embodiment will be described with reference to FIG.

図1(a)〜(c)において、10は透明基材、11a〜11dはそれぞれ多層膜で構成されたND膜である。
本実施例のNDフィルタは、単一濃度(一定濃度)のND膜を有する領域1と、ND領域1とは異なる単一濃度のND膜を有する領域2との間に、濃度が連続的に変化するND膜を有する濃度変化領域を備えている。
図1(a)は、透明基材10の一方の面だけにND膜11aを形成することで、上記構成を実現した例である。
図1(b)は、透明基材10の両方の面にND膜11b,11cを形成することで、上記構成を実現した例である。
図1(c)は、図1(a)の例の変形例であり、領域2と透過率100%の領域(ND膜が形成されていない領域)との間に濃度変化領域を形成した例である。なお、図1(a)〜(c)においては、ND膜や基材の厚みは実際とは誇張した形状で示されている。
1A to 1C, 10 is a transparent substrate, and 11a to 11d are ND films each formed of a multilayer film.
In the ND filter of this embodiment, the concentration is continuously between the region 1 having an ND film having a single concentration (constant concentration) and the region 2 having an ND film having a single concentration different from the ND region 1. A density change region having a changing ND film is provided.
FIG. 1A is an example in which the above-described configuration is realized by forming the ND film 11 a only on one surface of the transparent substrate 10.
FIG. 1B is an example in which the above configuration is realized by forming ND films 11 b and 11 c on both surfaces of the transparent substrate 10.
FIG. 1C is a modification of the example of FIG. 1A, in which a concentration change region is formed between the region 2 and a region with a transmittance of 100% (a region where no ND film is formed). It is. In FIGS. 1A to 1C, the thickness of the ND film and the base material is shown in an exaggerated shape.

濃度構成に関しては、単一濃度領域が3領域以上と多濃度になっても構わないが、基材や膜の応力の関係から考えて4領域から5領域が限界と考えられる。
各領域の濃度は所望する濃度で良いので、本実施例では領域1で濃度D=1.0、膜厚500nm、領域2が濃度D=0.5、膜厚250nmの構造をしているものについて説明をする。
なお、ここで濃度D=−log10(透過率)であり、透過率10%のときD=1.0、透過率32%のときD=0.5である。
上述のように領域1の濃度Dを1.0、領域2の濃度Dを0.5に設定した場合、領域1と領域2との透過波面の位相差はほぼλ/2となっている。
これは、透過波面位相差としては好ましくない関係であるが、濃度としては従来のステップNDフィルタとして使われてきた値であり、実用的なステップNDフィルタとして求められる濃度の関係となっている。
Concerning the concentration structure, the single concentration region may be a multi-concentration with 3 or more regions, but 4 to 5 regions are considered to be the limit in consideration of the stress of the substrate and the film.
Since the concentration of each region may be a desired concentration, in this embodiment, the region 1 has a structure with a concentration D = 1.0 and a film thickness of 500 nm, and the region 2 has a structure with a concentration D = 0.5 and a film thickness of 250 nm. Will be explained.
Here, the density D = −log 10 (transmittance), D = 1.0 when the transmittance is 10%, and D = 0.5 when the transmittance is 32%.
As described above, when the density D of the region 1 is set to 1.0 and the density D of the region 2 is set to 0.5, the phase difference of the transmitted wave front between the region 1 and the region 2 is approximately λ / 2.
This is an unfavorable relationship for the transmitted wavefront phase difference, but the concentration is a value that has been used as a conventional step ND filter, and is a relationship of the concentration required as a practical step ND filter.

ND膜の積層は、蒸着にてD=0.5の単一濃度膜を2回成膜する構造としている。前述したように、図1(a)では、透明樹脂基材10の片面に、このような単一濃度膜を2回重ねて形成した例である。図1(b)は、透明基材10の片面に単一濃度膜を1回形成し、他面にもう1回形成した例である。図1(c)は、NDフィルタが絞り開口の一部分に挿入される状態が起こる場合の最適な構造である。図1(c)のように、領域2の切断端面も連続的に濃度を変化させることにより、画像劣化を抑えることが可能となる。   The lamination of the ND film has a structure in which a single concentration film of D = 0.5 is formed twice by vapor deposition. As described above, FIG. 1A shows an example in which such a single concentration film is formed twice on one side of the transparent resin substrate 10. FIG. 1B shows an example in which a single-concentration film is formed once on one side of the transparent substrate 10 and formed once more on the other side. FIG. 1C shows an optimum structure in a case where the ND filter is inserted into a part of the aperture opening. As shown in FIG. 1C, it is possible to suppress image degradation by continuously changing the density of the cut end surface of the region 2 as well.

このような構成において、異なる2濃度領域の境界部で濃度変化が不連続であると、急激な濃度差による回折が生じる。
さらに両者の面積の比率によっては、透過波面位相差の影響が大きくなり、画質劣化(解像度の低下)の原因となってしまう。
透過波面位相差は、境界部が特に不連続でなくとも、両者の膜厚の関係により発生する。特に2つの濃度領域の関係において、両者の面積の割合が50%ずつであるときが最も画質劣化が大きくなる。
本実施例では、この2つの濃度領域の間に濃度が連続的に変化する一定の幅の領域を設けることによって、画質劣化を緩和することが可能となる。
例えば、2つの単一濃度領域の面積の割合がそれぞれ40%である場合に、20%の面積の割合を持つ濃度変化領域を設けることによって、透過波面位相差に起因した画質劣化を緩和することが可能となる。
In such a configuration, if the density change is discontinuous at the boundary between two different density regions, diffraction due to a rapid density difference occurs.
Further, depending on the ratio of the areas, the influence of the transmitted wavefront phase difference becomes large, which causes image quality deterioration (decrease in resolution).
The transmitted wavefront phase difference is generated due to the relationship between the thicknesses of the two even if the boundary is not particularly discontinuous. In particular, in the relationship between two density regions, the image quality degradation is greatest when the ratio of the areas of both is 50%.
In the present embodiment, it is possible to alleviate image quality degradation by providing a region having a certain width in which the density continuously changes between the two density regions.
For example, when the ratio of the area of two single density regions is 40%, the image quality deterioration due to the transmitted wavefront phase difference is alleviated by providing a density change region having a ratio of 20%. Is possible.

このように本実施例のNDフィルタによれば、2つの単一濃度領域間の濃度段差が大きくても、回折の影響を低減することができる。
しかも、透過波面位相差が2λ/4や6λ/4のときのように解像度を悪化させる関係にある場合においても、解像度の劣化も緩和することが可能となる。
また、同時に、濃度変化領域の幅を所定の上限を超えない幅とすることにより、従来のステップNDフィルタを用いた光量絞り装置の制御と同等の制御が可能となり、制御系の開発の負荷を低減することが可能となる。
また、従来のステップNDフィルタ、あるいは本発明によるNDフィルタのいずれを搭載した機種を開発する場合においても、光量絞り装置の制御回路は同一でも良いことになる。
したがって、制御回路の開発や製造の省力化を達成することができる。
As described above, according to the ND filter of this embodiment, even if the density step between the two single density regions is large, the influence of diffraction can be reduced.
Moreover, even when the transmitted wavefront phase difference is in a relationship of degrading the resolution as in the case of 2λ / 4 or 6λ / 4, it is possible to alleviate the degradation of the resolution.
At the same time, by making the width of the density change area not to exceed the predetermined upper limit, it becomes possible to perform control equivalent to the control of the light quantity diaphragm device using the conventional step ND filter, and the load of development of the control system is reduced. It becomes possible to reduce.
In addition, when developing a model equipped with either the conventional step ND filter or the ND filter according to the present invention, the control circuit of the light quantity diaphragm device may be the same.
Therefore, it is possible to achieve labor saving in development and manufacturing of the control circuit.

次に上述した濃度変化領域を備えたNDフィルタの製造方法について説明する。本実施では、真空蒸着法によるNDフィルタを製造した。
図2は、真空蒸着装置におけるチャンバー内の簡易図である。
図2(a)において、12は成膜を施す基板、15は蒸着傘、16は蒸着源、17はマスクである。なお、図2(a)における基板12は、図2(b)に示すように、基板治具14に基材13(透明基材10)がセットされた状態を示している。
Next, a manufacturing method of the ND filter having the above-described density change region will be described. In this implementation, an ND filter by a vacuum deposition method was manufactured.
FIG. 2 is a simplified view of the inside of the chamber in the vacuum deposition apparatus.
In FIG. 2A, 12 is a substrate on which a film is formed, 15 is a vapor deposition umbrella, 16 is a vapor deposition source, and 17 is a mask. In addition, the board | substrate 12 in Fig.2 (a) has shown the state by which the base material 13 (transparent base material 10) was set to the board | substrate jig | tool 14, as shown in FIG.2 (b).

一般的に真空蒸着法においては、図2(a)の様にチャンバー内の基板12は蒸着傘15に備え付けられ、この蒸着傘15と共に基板12を回転させることにより成膜を行う。
本実施例においては、各基板12の蒸着源16側に、基板12から任意の距離だけ離した位置に、図3に示すようなマスク17を基板12と平行に設けている。このような構成により、蒸着源16と基板12及びマスク17との幾何学的位置関係から、蒸着する蒸着粒子はマスク17を通過し、基板12まで到達できたり、マスク17に遮られ基板12まで到達できなかったりする。
これにより、2つの単一濃度領域間で連続的に変化する濃度変化領域の膜厚分布が得られることとなる。
ここで、蒸着時に基板12とマスク17とを密着させると、膜の付着した部分と付着していない部分にシャープ(不連続)な境界が得られる。一方、基板12とマスク17との間隔が広がるにつれ、境界部がぼけてくる。
In general, in the vacuum vapor deposition method, as shown in FIG. 2A, the substrate 12 in the chamber is provided on the vapor deposition umbrella 15, and film formation is performed by rotating the substrate 12 together with the vapor deposition umbrella 15.
In this embodiment, a mask 17 as shown in FIG. 3 is provided in parallel to the substrate 12 at a position separated from the substrate 12 by an arbitrary distance on the evaporation source 16 side of each substrate 12. With such a configuration, the vapor deposition particles to be deposited can pass through the mask 17 and reach the substrate 12 due to the geometric positional relationship between the vapor deposition source 16 and the substrate 12 and the mask 17. I cannot reach it.
As a result, a film thickness distribution in the concentration changing region that continuously changes between the two single concentration regions is obtained.
Here, when the substrate 12 and the mask 17 are brought into close contact with each other at the time of vapor deposition, a sharp (discontinuous) boundary is obtained between a portion where the film is attached and a portion where the film is not attached. On the other hand, the boundary portion becomes blurred as the distance between the substrate 12 and the mask 17 increases.

図4に、濃度変化領域の幅(濃度変化幅)と、基板12とマスク17との空間距離(GAP距離)との関係を示す。
この図4によれば、本実施例のように0.1mm以上0.3mm以下の幅で濃度を変化させる場合には、0.2mm以上0.6mm以下のGAP距離を設けるのが好ましいことがわかる。
このような手法を用いて、図1に示したような、単一濃度の領域1および領域2の2つの異なる濃度領域の境界部に、濃度を連続的に変化させた濃度変化領域を有するNDフィルタを製造した。
以上においては、真空蒸着法により基材上に薄膜を形成した場合を説明したが、本発明のNDフィルタは、このような真空蒸着法に限らず、スパッタリング法、あるいはインクジェットプリンティング法、等も適用することができる。
なお、これらの成膜法は一般的に知られているため、ここではその説明を省略する。
FIG. 4 shows the relationship between the width of the density change region (density change width) and the spatial distance (GAP distance) between the substrate 12 and the mask 17.
According to FIG. 4, when the concentration is changed with a width of 0.1 mm or more and 0.3 mm or less as in this embodiment, it is preferable to provide a GAP distance of 0.2 mm or more and 0.6 mm or less. Recognize.
By using such a technique, as shown in FIG. 1, an ND having a density change region in which the density is continuously changed at the boundary between two different density areas of the single density area 1 and the area 2. A filter was manufactured.
In the above description, the case where a thin film is formed on a substrate by a vacuum deposition method has been described. However, the ND filter of the present invention is not limited to such a vacuum deposition method, and a sputtering method, an inkjet printing method, or the like is also applied. can do.
In addition, since these film-forming methods are generally known, the description is abbreviate | omitted here.

次に、本実施例のNDフィルタの製造条件について説明する。
まず、各成膜基板上の蒸着源側に図3で示すようなマスクを2つ設置し、真空蒸着法により図5に示す膜構成のうち、第1層から最表層手前までを形成した。基材13としては厚さ75μmのPET基材を使用した。
真空蒸着法は、膜厚を比較的に容易に制御でき、かつ可視光の波長域で散乱が非常に小さい膜を成膜できることから選択した。
基材の材質は、耐熱性(ガラス転移点Tg)が高く、可視光の波長域で透明性が高く、また吸水率が低いPETを選択した。
基材に関しては、ポリカーボネートやノルボルネン系樹脂を用いても良い。
つぎに、チャンバーから各基板に設けたマスクを取り外し、最表層を光学膜厚n×d(nは屈折率、dは機械膜厚)でλ/4(λ:540nm)の条件により成膜した。
この最表層の膜の屈折率nは可視域の波長域で1.5以下のものを選んだ。具体的にはMgF2を使用した。
ここで、第1層から最表層まで、図3で示す様なマスクを用い、全層を膜厚変化させ成膜すると、反射防止条件と合致しなくなる。
この結果、反射率の上昇が起きて、画質上の問題として“ゴースト現象”や“フレア現象”が発生してしまう
。このことを考慮し、最表層ではマスクを外し基板全面の膜厚が等しくなる様に成膜した。
Next, manufacturing conditions for the ND filter of this embodiment will be described.
First, two masks as shown in FIG. 3 were installed on the deposition source side on each film formation substrate, and the layers from the first layer to the outermost layer in the film configuration shown in FIG. 5 were formed by vacuum deposition. As the substrate 13, a PET substrate having a thickness of 75 μm was used.
The vacuum deposition method was selected because the film thickness can be controlled relatively easily and a film having very little scattering in the visible light wavelength region can be formed.
As the material of the base material, PET having high heat resistance (glass transition point Tg), high transparency in the visible light wavelength region, and low water absorption was selected.
Regarding the substrate, polycarbonate or norbornene resin may be used.
Next, the mask provided on each substrate was removed from the chamber, and the outermost layer was formed under the condition of λ / 4 (λ: 540 nm) with an optical film thickness n × d (where n is the refractive index and d is the mechanical film thickness). .
The refractive index n of the outermost layer film was selected to be 1.5 or less in the visible wavelength range. Specifically, MgF 2 was used.
Here, if the mask as shown in FIG. 3 is used from the first layer to the outermost layer and the film thickness is changed for all the layers, the antireflection conditions are not met.
As a result, the reflectance increases, and “ghost phenomenon” and “flare phenomenon” occur as image quality problems. Considering this, the mask was removed from the outermost layer, and the film was formed so that the film thickness on the entire surface of the substrate was equal.

つぎに、このようにして製作されたNDフィルタを使用した光量絞り装置について説明する。
この光量絞り装置を取り付けた撮影装置の受光素子のサイズは、ビデオカメラの一般的な固体撮像素子サイズである1/2インチである。
絞り開放径は、Φ5mmという条件を想定した。一般的にビデオカメラ等の撮影装置の撮影光学系には、複数枚の絞り羽根で形成する開口径を変化させて光量を調整する光量絞り装置が使用されている。
このような光量絞り装置では、開口径が小さくなり過ぎないようにするため、絞り羽根と絞り開口を通過する光の光量を減衰するためのNDフィルタを併用し、図6に示すように構成する。
図6において、4はNDフィルタ、5及び6は絞り羽根である。
図6のような絞り羽根5,6とNDフィルタ4を用いて光量を制御する場合、たとえば、不図示の絞り羽根駆動用モータ、NDフィルタ駆動用モータの近傍に置かれたホール素子と検出回路により駆動制御する方法が用いられる。
その際、モータ内のロータの回転に応じたそれぞれのホール素子の出力電圧と、絞り羽根、NDフィルタの位置の関係とをあらかじめ把握しておき、ホール素子の出力電圧をモニタしながらモータを駆動し制御する。
Next, a light quantity reduction device using the ND filter manufactured in this way will be described.
The size of the light receiving element of the photographing apparatus to which the light quantity diaphragm is attached is ½ inch, which is a general solid-state image sensor size of a video camera.
The aperture diameter was assumed to be Φ5 mm. In general, a photographing optical system of a photographing apparatus such as a video camera uses a light amount diaphragm device that adjusts a light amount by changing an aperture diameter formed by a plurality of diaphragm blades.
In such a light quantity diaphragm device, in order to prevent the aperture diameter from becoming too small, a diaphragm blade and an ND filter for attenuating the light quantity of light passing through the diaphragm aperture are used in combination, and is configured as shown in FIG. .
In FIG. 6, 4 is an ND filter, and 5 and 6 are aperture blades.
When the amount of light is controlled using the diaphragm blades 5 and 6 and the ND filter 4 as shown in FIG. 6, for example, a hall element and a detection circuit placed in the vicinity of a diaphragm blade driving motor (not shown) and an ND filter driving motor. The driving control method is used.
At that time, grasp the output voltage of each Hall element according to the rotation of the rotor in the motor and the relationship between the position of the diaphragm blade and ND filter in advance, and drive the motor while monitoring the output voltage of the Hall element Control.

ここで、濃度境界部での濃度変化が不連続なステップNDフィルタとグラデーションNDフィルタを着け換えて、ホール素子の出力電圧が等しくなる位置で光量を比較してみると、NDフィルタの位置によっては0.5Ev以上の差がある場合があった。
これは前記課題でも述べたように、グラデーションNDフィルタの連続的な濃度変化による透過光量の変化とステップNDフィルタのそれとはおのずと差が出ることに起因する。
これに対し、濃度境界部での濃度変化が不連続なステップNDフィルタと、濃度変化領域が0.2mmから0.3mmの幅である本実施例のNDフィルタを比較すると、光量の差は最大で約0.09EVであり、問題にならない程度であった。
これは濃度変化領域の位置等のばらつきにより透過光量に差が出たとしても、その面積が絞り口径の面積に比して小さいため、問題にならないレベルとなることによる。
Here, if the step ND filter and the gradation ND filter in which the density change at the density boundary part is discontinuous are changed, and the light amount is compared at the position where the output voltages of the Hall elements are equal, depending on the position of the ND filter, There was a case where there was a difference of 0.5 Ev or more.
As described in the above problem, this is due to the fact that there is a difference between the change in the amount of transmitted light due to the continuous density change of the gradation ND filter and that of the step ND filter.
On the other hand, when the step ND filter in which the density change at the density boundary part is discontinuous and the ND filter of the present embodiment in which the density change region has a width of 0.2 mm to 0.3 mm are compared, the difference in light amount is the largest. It was about 0.09 EV, which was not a problem.
This is because even if there is a difference in the amount of transmitted light due to variations in the position of the density change region, the area is smaller than the area of the aperture diameter, so that the level does not become a problem.

この実験で使った制御系は、開放(Fナンバー2.0)から約Fナンバー3.0までは絞り羽根により開口径を小さくした(図7(a))。
一方、約Fナンバー3.0から約Fナンバー10(減光した光量をF値に換算)までは絞り羽根の動きを固定(したがって絞り羽根は約Fナンバー3.0の位置)したままとした。
そして、2つの濃度領域を持つNDフィルタを開口内に進入させて減光し(図7(b))、約Fナンバー10では、濃度変化領域が開口内から出て濃度の濃い部分が開口全面に進入した状態(図7(c))とした。
その後は、NDフィルタの動きを停止し、絞り羽根のみを駆動した(このような駆動系については、例えば特開2000−106649号公報参照)。
NDフィルタの作動と光量の関係を実験した約Fナンバー3.0のポイントでは、絞り羽根による開口面積7.1mm2、四角形の開口形状の対角線が3.77mmであった。
In the control system used in this experiment, the aperture diameter was reduced by the diaphragm blades from the open position (F number 2.0) to about F number 3.0 (FIG. 7A).
On the other hand, from about F number 3.0 to about F number 10 (converted light intensity is converted into F value), the movement of the diaphragm blades is fixed (therefore, the diaphragm blades remain at the position of about F number 3.0). .
Then, an ND filter having two density regions enters the opening to attenuate the light (FIG. 7 (b)), and at about F number 10, the density changing region comes out of the opening and the dark portion is the entire surface of the opening. (Fig. 7 (c)).
After that, the movement of the ND filter was stopped, and only the diaphragm blades were driven (see, for example, Japanese Patent Laid-Open No. 2000-106649 for such a drive system).
At the point of about F number 3.0 where the relationship between the operation of the ND filter and the amount of light was tested, the aperture area by the diaphragm blades was 7.1 mm 2 , and the diagonal of the square aperture shape was 3.77 mm.

このときNDフィルタの移動方向は、ほぼ前記対角線の方向である。濃度境界部(濃度変化領域)は、NDフィルタの移動方向に濃度勾配を持ち、移動方向と直交する方向には濃度変化は持たない。
濃度変化領域の開口部の面積に対する比率は、幅0.1mm時で5.26%、幅0.2mm時で10.4%、幅0.3mm時には15.5%となる。
なお、濃度変化領域は開口部に対して移動するため、開口部に占める面積および面積比は変化する。上記濃度変化する領域の開口部の面積に対する比率は、透過波面位相差の影響が最も出やすい、濃度変化領域がほぼ中央にあるときの値である。
At this time, the moving direction of the ND filter is substantially the direction of the diagonal line. The density boundary portion (density change region) has a density gradient in the moving direction of the ND filter, and has no density change in the direction orthogonal to the moving direction.
The ratio of the density change region to the area of the opening is 5.26% when the width is 0.1 mm, 10.4% when the width is 0.2 mm, and 15.5% when the width is 0.3 mm.
Since the density change region moves relative to the opening, the area and area ratio of the opening change. The ratio of the density-changing region to the area of the opening is a value when the density-changing region is almost at the center where the influence of the transmitted wavefront phase difference is most likely to occur.

連続的に濃度変化する領域の幅が0.1mm未満であると、濃度境界部の濃度変化が不連続な時と同様に、濃度変化領域が絞り開口の端部近傍にあるとき絞り羽根と高濃度の単一濃度領域との間にできる開口形状が、小絞り時に似たような状態となる。
これにより、回折と透過波面位相差の影響により画像の劣化が大きくなる。これらの影響を無くすためには、最低0.1mmの濃度変化領域が必要であった。
また、透過波面位相差と回折の影響の起こらない0.4mmの濃度変化領域を設けると、グラデーションNDフィルタに近い構成となるため、上記と同一の実験条件では露光量誤差が大きくなった。
If the width of the region where the density changes continuously is less than 0.1 mm, when the density change region is in the vicinity of the end of the aperture opening, the height of the diaphragm blade is high. The shape of the opening formed between the single density region of density is similar to that at the time of small aperture.
As a result, image degradation is increased due to the influence of diffraction and transmitted wavefront phase difference. In order to eliminate these influences, a density change region of at least 0.1 mm was necessary.
In addition, when a 0.4 mm density change region that is not affected by the transmitted wavefront phase difference and diffraction is provided, the configuration is close to that of a gradation ND filter, so that an exposure error becomes large under the same experimental conditions as described above.

ここで、同一の条件下での適正開口面積と実際の開口面積の誤差による光量絞り装置の透過光量の差(露光量誤差EV)は、以下の式で表される。
Log(S2/S1)/Log2=露光量誤差EV
S2=実際の絞り面積
S1=適正(目標)絞り面積。
この式は、絞り面積が倍あるいは半分になったとき、透過光量(露光量)は1EV変化することを表している。
Here, the difference (exposure amount error EV) of the transmitted light amount of the light amount diaphragm device due to the error between the appropriate opening area and the actual opening area under the same conditions is expressed by the following equation.
Log (S2 / S1) / Log2 = Exposure amount error EV
S2 = actual aperture area S1 = appropriate (target) aperture area.
This expression indicates that the transmitted light amount (exposure amount) changes by 1 EV when the aperture area is doubled or halved.

通常、CCD等の固体撮像素子を使用したビデオカメラやデジタルスチルカメラ等においては、適正絞りに対して許容される誤差は最大±0.15EV、望ましくは±0.1EV以内と言われている。
そこで±0.15EVを上記式に代入すると、
Log(S2/S1)/Log2=±0.15EV
S2/S1=1.11,0.90
となる。
すなわち、適正絞り位置に対して絞り開口が大きい方へは11%、小さい方へは10%まで実開口面積が変化しても良いこととなる。
これは、例えば通常の絞り羽根が絞りを構成するときのように、透過率0%の部分と100%の部分のみで絞りを構成しているときの許容露光量誤差である。
この境界上に濃度が連続的に変化する領域を設けたとすると、その領域が存在することによる透過光量(露光量)の変化を+11%から−10%の間に収めるために、濃度が連続的に変化する領域の面積の許容される上限は、つぎのようになる。
すなわち、濃度が連続的に変化する領域の面積の許容される上限は、露光量の11%までの増加を許容することを考慮すると22%である。
しかし露光量の10%までの減少を許容することを考慮すると20%までということになる。
Usually, in a video camera, a digital still camera, or the like using a solid-state image pickup device such as a CCD, it is said that the maximum allowable error is ± 0.15 EV, preferably within ± 0.1 EV.
Therefore, substituting ± 0.15 EV into the above equation,
Log (S2 / S1) /Log2=±0.15EV
S2 / S1 = 1.11, 0.90
It becomes.
In other words, the actual aperture area may vary up to 11% when the aperture aperture is large with respect to the appropriate aperture position and 10% when the aperture aperture is small.
This is an allowable exposure amount error when the stop is composed of only a portion having a transmittance of 0% and a portion having a transmittance of 100%, as in a case where, for example, a normal diaphragm blade forms a stop.
If an area in which the density continuously changes is provided on this boundary, the density is continuously increased so that the change in the amount of transmitted light (exposure amount) due to the existence of the area falls between + 11% and −10%. The allowable upper limit of the area of the region that changes to is as follows.
In other words, the allowable upper limit of the area of the region where the density continuously changes is 22% in consideration of allowing the increase of the exposure amount to 11%.
However, in consideration of allowing the reduction of the exposure amount to 10%, it is up to 20%.

実際には、絞りを構成するのにNDフィルタを用いているので、完全に遮光しないが、前記のように通常の光量絞り装置に使用され、同じく前記のような課題を有するNDフィルタは透過率10%から30%程度の高濃度のものである。
したがって、ほぼこの式に近い結果を示す。また、濃度の薄いNDフィルタは回析などの問題を起こしにくいため本発明を適用する必要はない。
さらに言えば、濃度が連続的に変化する領域の中間点が絞り開口の中心位置に来るように設定すれば、理論的には露光誤差は0にできる。
しかし、連続的に変化する領域の製造方法を考えると技術的に難しく、また光量制御方法が難しくなるのを防ぐため、最悪の場合を考えると濃度が連続的に変化する範囲は前記の幅に制限する事が望ましい。
Actually, since the ND filter is used to form the diaphragm, it is not completely shielded from light. However, as described above, the ND filter having the above-mentioned problem is used in the normal light quantity diaphragm device. High concentration of about 10% to 30%.
Therefore, the result almost similar to this equation is shown. In addition, since the ND filter having a low concentration hardly causes problems such as diffraction, it is not necessary to apply the present invention.
Furthermore, the exposure error can theoretically be reduced to zero by setting the midpoint of the region where the density changes continuously to the center position of the aperture opening.
However, considering the manufacturing method of the continuously changing region, it is technically difficult to prevent the light quantity control method from becoming difficult. It is desirable to restrict.

つまり、露光量に影響する割合が最大となる、絞り口径内で隣り合う単一濃度領域の面積が略同一となるとき、濃度が連続的に変化する領域(濃度変化領域)の面積を、その時の絞り開口面積の少なくとも20%以内とすれば良い。
すなわち、開口内の濃度変化領域の面積がその開口面積の20%以内となるように、濃度変化領域の幅を設定すれば、露光量誤差は±0.15EV以内となる。したがって、従来タイプのステップNDフィルタを備えた光量絞り装置の制御回路と同一制御回路で制御できることになる。
因に、本実施例のNDフィルタを用いた光量絞り装置では露光量誤差が0.09EVであるのに対し、NDフィルタなしでの計算上の開口面積の許容誤差は6.44%となる。
本実施例のNDフィルタの濃度が連続的に変化する領域の許容最大面積は、開口面積に対して上記値の約2倍の12.9%となり(許容最大幅は約0.25mmとなり)本計算結果と略一致する。
したがって、露光量誤差が0.15EVまで許容される場合は、濃度が連続的に変化する領域の許容最大面積は開口面積に対して20%となり、濃度が連続的に変化する領域の幅を約0.4mmまで広げてもよい。
したがって、濃度境界部に濃度変化を持たせた領域の幅の許容範囲は、0.1mm以上となり、濃度変化領域の許容上限面積は、隣り合う濃度領域の絞り開口内の面積が略同一となるときの絞り開口面積の20%となる。濃度変化領域の面積は、さらに好ましくは、同絞り開口面積の15%以内である事が望ましい。
なお、本実施例では2つの濃度を持つNDフィルタで説明したが、3つ以上の濃度を持つ場合でも同様である。
In other words, when the area of adjacent single density regions within the aperture diameter where the ratio that affects the exposure amount is maximized is substantially the same, the area of the region where the density continuously changes (density change region) is The aperture area of the aperture may be at least 20%.
That is, if the width of the density change region is set so that the area of the density change region in the opening is within 20% of the opening area, the exposure amount error is within ± 0.15 EV. Therefore, it can be controlled by the same control circuit as the control circuit of the light quantity diaphragm device provided with the conventional type step ND filter.
Incidentally, while the exposure amount error is 0.09 EV in the light quantity diaphragm using the ND filter of this embodiment, the allowable error of the calculated aperture area without the ND filter is 6.44%.
The maximum allowable area of the region in which the density of the ND filter of this embodiment continuously changes is 12.9%, which is about twice the above value with respect to the opening area (the maximum allowable width is about 0.25 mm). It almost agrees with the calculation result.
Therefore, when the exposure error is allowed up to 0.15 EV, the allowable maximum area of the area where the density continuously changes is 20% of the opening area, and the width of the area where the density continuously changes is about You may extend to 0.4 mm.
Therefore, the allowable range of the width of the region having the density change at the density boundary portion is 0.1 mm or more, and the allowable upper limit area of the density change region is substantially the same as the area in the aperture opening of the adjacent density region. 20% of the aperture area at the time. The area of the density change region is more preferably 15% or less of the aperture area of the aperture.
In this embodiment, the ND filter having two densities has been described. However, the same applies to the case of having three or more densities.

次に本発明のNDフィルタを備える光量絞り装置を光学機器(ビデオカメラ)に適用した実施例について図8を用いて説明する。
図8において、1はレンズユニット1A〜1Dを有する撮影光学系である。2はCCD等の固体撮像素子であり、撮影光学系1によって形成される像を受光し、電気信号に変換する。3は光学ローパスフィルタである。撮影光学系1は、図6に示したNDフィルタ4、絞り羽根5,6で構成される光量絞り装置を有している。
Next, an embodiment in which the light quantity stop device including the ND filter of the present invention is applied to an optical apparatus (video camera) will be described with reference to FIG.
In FIG. 8, reference numeral 1 denotes a photographing optical system having lens units 1A to 1D. A solid-state image sensor 2 such as a CCD receives an image formed by the photographing optical system 1 and converts it into an electric signal. Reference numeral 3 denotes an optical low-pass filter. The photographing optical system 1 has a light amount diaphragm device including the ND filter 4 and the diaphragm blades 5 and 6 shown in FIG.

以上の実施例の構成によれば、解像度を向上させることができるNDフィルタを提供することができる。
また、これを使用した光量絞り装置を、固体撮像素子と撮影光学系を有する光学機器に使用することにより、制御回路の開発や製造の省力化が達成できる。
すなわち、同一シリーズで機種により従来タイプのステップNDフィルタを搭載する機種と、本発明によるNDフィルタを搭載した機種の両方を開発する場合においても、光量絞り装置の制御回路は同一でも良いことになる。
これにより制御回路の開発や製造の省力化が達成できる。
According to the structure of the above Example, the ND filter which can improve the resolution can be provided.
Further, by using the light quantity reduction device using this in an optical apparatus having a solid-state imaging device and a photographing optical system, it is possible to achieve labor saving in development and manufacturing of a control circuit.
That is, the control circuit of the light quantity diaphragm device may be the same when developing both a model of the same series with a conventional step ND filter and a model with the ND filter according to the present invention. .
As a result, it is possible to achieve labor saving in the development and manufacture of the control circuit.

本発明の実施例1の絞り装置に適用される、透明基板と単一濃度領域を持つNDフィルタ領域1およびNDフィルタ領域2における2濃度の領域の領域境界部に、濃度を連続的に変化させた濃度変化領域を形成した光量絞り用NDフィルタの構成例を示す図。The density is continuously changed at the boundary between the two density areas in the ND filter area 1 and the ND filter area 2 having a transparent substrate and a single density area , which is applied to the diaphragm apparatus according to the first embodiment of the present invention. The figure which shows the structural example of the ND filter for light quantity diaphragms which formed the density | concentration change area | region. 本発明の実施を説明する真空蒸着機におけるチャンバー内の構成を示す簡易図。The simple figure which shows the structure in the chamber in the vacuum evaporation machine explaining the Example of this invention. 本発明の実施における濃度変化領域を作製する際の原理基板とマスクの配置を説明するための図。The figure for demonstrating arrangement | positioning of the principle board | substrate and mask at the time of producing the density | concentration change area | region in the Example of this invention. 本発明の実施を説明するための濃度変化幅とGAP量の関係を表わしたグラフ。The graph showing the relationship between the density | concentration change width and GAP amount for demonstrating the Example of this invention. 本発明の実施例の絞り装置に適用されるND膜フィルタの構成例を示す断面図。Sectional drawing which shows the structural example of ND film | membrane filter applied to the aperture_diaphragm | restriction apparatus of the Example of this invention. 絞り装置の構成図である羽根図。Configuration diagram der Ru wing roots view of the throttle device. 本発明の実施例絞り装置におけるNDフィルタの動作を説明するための図。The figure for demonstrating operation | movement of the ND filter in the aperture_diaphragm | restriction apparatus of the Example of this invention. 光学機器の実施例の要部概略図である。It is a principal part schematic of the Example of an optical instrument.

符号の説明Explanation of symbols

1:撮影光学系
1A、1B、1C、1D:レンズユニット
2:固体撮像素子
3:光学ローパスフィルタ
4:NDフィルタ
5:絞り羽根
6:絞り羽根
10:透明基材
11a、11b、11c、11d:ND膜
12:基板
13:基材
14:基板治具
15:蒸着傘
16:蒸着源
17:マスク
1: Shooting optical system 1A, 1B, 1C, 1D: Lens unit 2: Solid-state imaging device 3: Optical low-pass filter 4: ND filter 5: Diaphragm blade 6: Diaphragm blade 10: Transparent substrates 11a, 11b, 11c, 11d: ND film 12: substrate 13: base material 14: substrate jig 15: vapor deposition umbrella 16: vapor deposition source 17: mask

Claims (2)

開口を形成する絞り部材と、
該開口を通過する光の光量を減衰するためのNDフィルタを備え、
該NDフィルタは、
一定の濃度のND膜を有する第1の領域と、
該第1の領域とは濃度の異なる一定の濃度のND膜を有する第2の領域と、
前記第1の領域と第2の領域の間に設けられた濃度変化領域を有し、
該濃度変化領域は前記第1の領域の濃度から前記第2の領域の濃度まで、濃度が連続的に変化するND膜を有し、
前記濃度変化領域の幅は、前記開口内において前記第1の領域と第2の領域の面積が同一となるときに、前記開口内の前記濃度変化領域の面積が、前記開口の面積の20%以下となるような幅に設定されていることを特徴とする絞り装置。
An aperture member that forms an opening;
An ND filter for attenuating the amount of light passing through the opening;
The ND filter is
A first region having a certain concentration of ND film;
A second region having an ND film having a constant concentration different from that of the first region;
A concentration change region provided between the first region and the second region;
The concentration changing region has an ND film whose concentration continuously changes from the concentration of the first region to the concentration of the second region,
The width of the concentration change region is such that when the areas of the first region and the second region are the same in the opening, the area of the concentration change region in the opening is 20% of the area of the opening. A diaphragm device characterized in that the width is set to be as follows.
請求項1に記載の絞り装置を備える光学系と、
該光学系によって形成される像を受光する固体撮像素子を備えることを特徴とする光学機器。
An optical system comprising the diaphragm device according to claim 1 ;
An optical apparatus comprising a solid-state imaging device that receives an image formed by the optical system.
JP2006216462A 2005-08-30 2006-08-09 Aperture device having ND filter and optical apparatus Active JP4900678B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006216462A JP4900678B2 (en) 2005-08-30 2006-08-09 Aperture device having ND filter and optical apparatus
US11/467,329 US8755134B2 (en) 2005-08-30 2006-08-25 ND filter, and iris device and optical apparatus having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005248717 2005-08-30
JP2005248717 2005-08-30
JP2006216462A JP4900678B2 (en) 2005-08-30 2006-08-09 Aperture device having ND filter and optical apparatus

Publications (3)

Publication Number Publication Date
JP2007094385A JP2007094385A (en) 2007-04-12
JP2007094385A5 JP2007094385A5 (en) 2009-09-24
JP4900678B2 true JP4900678B2 (en) 2012-03-21

Family

ID=37803724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216462A Active JP4900678B2 (en) 2005-08-30 2006-08-09 Aperture device having ND filter and optical apparatus

Country Status (2)

Country Link
US (1) US8755134B2 (en)
JP (1) JP4900678B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296902B2 (en) * 2005-07-27 2007-11-20 Christie Digital Systems Canada, Inc. Opto-mechanical filter for blending of images from a digital projector
JP5174588B2 (en) * 2008-08-29 2013-04-03 キヤノン電子株式会社 Optical filter and optical filter manufacturing method
JP5731772B2 (en) * 2010-08-30 2015-06-10 キヤノン株式会社 Imaging apparatus and control method thereof
JP5711921B2 (en) * 2010-09-01 2015-05-07 キヤノン電子株式会社 Optical filter and gradation ND filter
JP2013002819A (en) * 2011-06-10 2013-01-07 Horiba Ltd Flatness measuring device
EP2871500A1 (en) * 2013-11-08 2015-05-13 Barco, Naamloze Vennootschap (N.V) Optical filter and method for preparing same
JP2015175865A (en) * 2014-03-13 2015-10-05 セイコーエプソン株式会社 Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP7093194B2 (en) * 2018-02-14 2022-06-29 キヤノン電子株式会社 Light source angle measuring device and artificial satellite
FR3092396B1 (en) * 2019-01-31 2021-04-09 Centre Nat Rech Scient Density gradient filter optical wave surface control system
CN111314594B (en) * 2020-03-19 2021-11-12 闻泰通讯股份有限公司 Camera module, control method and device, electronic equipment and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078442A (en) * 1997-06-27 2000-06-20 Asahi Seimitsu Kabushiki Kaisha ND filter
JP4637383B2 (en) 2001-03-15 2011-02-23 キヤノン電子株式会社 ND filter, ND filter manufacturing method, light amount adjusting device, and photographing device
US6866431B2 (en) * 2002-02-19 2005-03-15 Canon Kabushiki Kaisha Light amount adjustment apparatus, manufacturing method, and photographing apparatus
JP3621941B2 (en) 2002-09-24 2005-02-23 キヤノン電子株式会社 Manufacturing method of ND filter, light quantity diaphragm device and camera having this ND filter
US7042662B2 (en) * 2002-12-26 2006-05-09 Canon Kabushiki Kaisha Light amount adjusting device, and optical device using the light amount adjusting device
JP2004253892A (en) 2003-02-18 2004-09-09 Canon Inc Light quantity adjuster
JP4345962B2 (en) 2003-06-30 2009-10-14 キヤノン電子株式会社 Light amount diaphragm device and camera with ND filter
JP4464184B2 (en) * 2004-04-15 2010-05-19 キヤノン株式会社 Optical filter
JP2006227432A (en) * 2005-02-18 2006-08-31 Nisca Corp Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same

Also Published As

Publication number Publication date
US20070047118A1 (en) 2007-03-01
US8755134B2 (en) 2014-06-17
JP2007094385A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP5789373B2 (en) Optical filter
US7042662B2 (en) Light amount adjusting device, and optical device using the light amount adjusting device
JP2007178822A (en) Light quantity control nd filter
JP2009162852A (en) Optical element
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP2007171542A (en) Nd filter for optical diaphragm and optical diaphragm device provided with nd filter
WO2012004989A1 (en) Light-reduction device and imaging device
US7710670B2 (en) ND filter
JP2007199447A (en) Nd filter, its manufacturing method, and light quantity reducing device
JP2005266096A (en) Optical filter and imaging apparatus
JP2013174818A (en) Optical filter
JP2007316238A (en) Nd filter
JP2008145889A (en) Light control device, lens device and imaging apparatus
JP2004117470A (en) Method of manufacturing nd filter, and aperture device and camera having the nd filter
JP3816048B2 (en) Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters
JP2011103591A (en) Imaging device
JP3701931B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
EP3185534B1 (en) Camera device with red halo reduction
JP2004061903A (en) Method for manufacturing nd filter and nd filter, and light quantity reducing device and camera having such nd filter
JP2008065227A (en) Nd filter
JP2004029577A (en) Light quantity controller, imaging optical system, and imaging apparatus
JP4623711B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4900678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250