JP2013174818A - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP2013174818A
JP2013174818A JP2012040589A JP2012040589A JP2013174818A JP 2013174818 A JP2013174818 A JP 2013174818A JP 2012040589 A JP2012040589 A JP 2012040589A JP 2012040589 A JP2012040589 A JP 2012040589A JP 2013174818 A JP2013174818 A JP 2013174818A
Authority
JP
Japan
Prior art keywords
light wavelength
infrared light
film
optical filter
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012040589A
Other languages
Japanese (ja)
Other versions
JP2013174818A5 (en
JP5942472B2 (en
Inventor
Yasuhiro Sato
安紘 佐藤
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2012040589A priority Critical patent/JP5942472B2/en
Publication of JP2013174818A publication Critical patent/JP2013174818A/en
Publication of JP2013174818A5 publication Critical patent/JP2013174818A5/ja
Application granted granted Critical
Publication of JP5942472B2 publication Critical patent/JP5942472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter that enables adjustment of light amounts in both color photography and monochromatic photography in order to obtain an excellent image.SOLUTION: An optical filter 12 includes a light wavelength attenuation film 22 that attenuates transmittance of visible light wavelength and infrared light wavelength on one face of a transparent substrate 21 of the optical filter 12, and an infrared light wavelength shielding film 22 that shields infrared light wavelength is formed on part of the other face of the transparent substrate 21. The optical filter 12 is arranged in an optical imaging system so as to enable adjustment of light amounts in both color photography and monochromatic photography, thereby contributing to miniaturization of an imaging apparatus.

Description

本発明は、監視カメラ等のカラー撮影、モノクロ撮影を行うカメラに搭載される光学フィルタに関するものである。   The present invention relates to an optical filter mounted on a camera that performs color photography and monochrome photography such as a surveillance camera.

通常、デジタルスチルカメラ或いはビデオカメラ等の撮影系には、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサ等から成る撮像素子が用いられている。そして、この撮像素子に入射する光量を調節するために、絞り装置や赤外線カットフィルタが設けられている。   Usually, an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) sensor is used in a photographing system such as a digital still camera or a video camera. An aperture device and an infrared cut filter are provided to adjust the amount of light incident on the image sensor.

絞り装置は、被写体の輝度により絞り羽根を駆動させ開口径を調整し、被写体の輝度が大きくなるに従って、撮像素子に入射する光量を低減させるために開口径は小さくなる。しかし、開口径が小さくなり過ぎると、ハンチング現象や光の回折による画質の劣化を引き起こしてしまう。   The aperture device adjusts the aperture diameter by driving the aperture blades according to the luminance of the subject. As the luminance of the subject increases, the aperture diameter decreases to reduce the amount of light incident on the image sensor. However, if the aperture diameter becomes too small, the image quality deteriorates due to hunting phenomenon or light diffraction.

更に近年では、撮像素子の感度が向上しており、より光量を抑制する要求が高まっている。そこで、絞り羽根の近辺にND(Neutral Density)フィルタを配置し、開口径を大きく維持したまま光量を抑制している。具体的には、被写体の輝度が大きくなるに従い、開口径を徐々に小さくしてゆくが、開口径が或る一定の大きさとなると開口径はその大きさで維持し、光路上にNDフィルタを挿入し撮像素子に入射する光量を調整している。NDフィルタは絞り羽根に接着させて絞り羽根と一緒に駆動させたり、絞り羽根には直接接着させずに、別の駆動手段により独立して駆動することにより光路上に挿入する。   Furthermore, in recent years, the sensitivity of the image sensor has been improved, and there is an increasing demand for suppressing the amount of light. Therefore, an ND (Neutral Density) filter is disposed in the vicinity of the diaphragm blades to suppress the amount of light while maintaining a large aperture diameter. Specifically, the aperture diameter is gradually reduced as the luminance of the subject increases. However, when the aperture diameter becomes a certain size, the aperture diameter is maintained at that size, and an ND filter is provided on the optical path. The amount of light that is inserted and incident on the image sensor is adjusted. The ND filter is inserted into the optical path by being adhered to the diaphragm blades and driven together with the diaphragm blades or by being independently driven by another driving means without being directly adhered to the diaphragm blades.

また、近年の撮像素子の感度の向上により、開口径が小さくなり過ぎないように、光学濃度の濃いNDフィルタの需要も高まってきている。NDフィルタは基板上に、真空蒸着法やスパッタリング法を介して誘電体層と光吸収層とを交互に成膜したり、光吸収を有する染料や顔料等の色素を基板に練り込んだり、或いは基板上にコーティングすることにより作製している。   In addition, with the recent improvement in sensitivity of image pickup devices, there is an increasing demand for ND filters having a high optical density so that the aperture diameter does not become too small. The ND filter is formed by alternately forming a dielectric layer and a light absorption layer on a substrate through a vacuum deposition method or a sputtering method, or kneading a dye such as a dye or a pigment having light absorption on the substrate, or It is manufactured by coating on a substrate.

近年、NDフィルタは小型化、軽量化や任意形状への加工性の要求が年々高まってきており、これに対応するために基板に合成樹脂製のものも使用されるようになってきている。   In recent years, demands for ND filters that are smaller, lighter, and workable to an arbitrary shape have been increasing year by year. In order to meet this demand, synthetic resin substrates have been used.

一方、赤外線カットフィルタはカラー撮影時において可視光波長の光量が十分な際に、不要な赤外光波長の光が撮像素子に入射することを防止するために、光路上に挿入して使用される。これにより、撮像素子が人眼には感知することのできない赤外光波長の光を認知することなく、人眼で感じた色味とほぼ同様の色味の映像を得ることができる。   On the other hand, the infrared cut filter is used by inserting it into the optical path to prevent unnecessary infrared light wavelength from entering the image sensor when the amount of visible light wavelength is sufficient during color photography. The As a result, an image having substantially the same color as the color felt by the human eye can be obtained without recognizing light having an infrared light wavelength that cannot be detected by the human eye.

また、赤外光波長の光を使用したモノクロ撮影時においては、光路上から赤外線カットフィルタを退避させ、赤外光波長の光を利用したモノクロ撮影が可能となる。赤外線カットフィルタはガラスや樹脂基板に赤外光吸収剤を練り込んだり、赤外光吸収剤を基板上にコーティングしたり、真空蒸着法やスパッタリング法等により複数層の誘電体と吸収層を交互に積層することにより作製している。   In monochrome photography using light of infrared light wavelength, monochrome photography using light of infrared light wavelength is possible by retracting the infrared cut filter from the optical path. Infrared cut filter kneads an infrared light absorber on glass or resin substrate, coats the infrared light absorber on the substrate, or alternates multiple layers of dielectric and absorption layers by vacuum evaporation method or sputtering method etc. It is produced by laminating.

また、近年では、赤外線カットフィルタもNDフィルタと同様に、薄型化を目的として合成樹脂製の基板が用いられてきている。   In recent years, a substrate made of a synthetic resin has been used for an infrared cut filter as well as an ND filter for the purpose of thinning.

特開2002−107509号公報JP 2002-107509 A 特開2007−219210号公報JP 2007-219210 A

一般的な撮像光学系においては、可視光の透過光量を調整するNDフィルタと、赤外光波長の光を遮蔽する赤外線カットフィルタとは別個に設けられている。   In a general imaging optical system, an ND filter that adjusts the amount of transmitted visible light and an infrared cut filter that blocks light having an infrared light wavelength are provided separately.

しかし、近年の撮像装置の小型化に対応し、撮像光学系の小型化の要望が高まっており、この要望に対応するために特許文献1においては、1枚の基板の両面にND膜と赤外線カット膜をそれぞれ設けた光学フィルタが開示されている。   However, in response to the recent miniaturization of imaging devices, there is an increasing demand for miniaturization of the imaging optical system. In order to meet this demand, Patent Document 1 discloses an ND film and an infrared ray on both surfaces of a single substrate. An optical filter provided with a cut film is disclosed.

また、特許文献2においては、赤外光波長を吸収する特性を有する基板上にND膜を形成する技術が開示されている。   Patent Document 2 discloses a technique for forming an ND film on a substrate having a characteristic of absorbing infrared light wavelengths.

従来のカメラ用途においては、NDフィルタは可視光波長領域において略均一な透過率を有していれば十分であった。しかし、監視カメラ等の用途においては、可視光波長を用いたカラー撮影のみでなく、赤外光波長を用いたモノクロ撮影を行うことがある。モノクロ撮影においては、赤外光波長の光量を調整するために、赤外光波長における透過率を略均一に制限する光学フィルタが求められる。   In conventional camera applications, it is sufficient for the ND filter to have a substantially uniform transmittance in the visible light wavelength region. However, in applications such as surveillance cameras, monochrome photography using infrared light wavelengths may be performed in addition to color photography using visible light wavelengths. In monochrome photography, in order to adjust the amount of light at the infrared light wavelength, an optical filter that restricts the transmittance at the infrared light wavelength substantially uniformly is required.

特許文献1、2の光学フィルタは、可視光波長を用いた撮影の際に、光路上に挿入され、可視光波長の光量を調整すると共に、赤外光波長の光を遮蔽することにより、良好な映像を得ることができる。しかし、赤外光波長の光を用いた撮影の際には、光学フィルタは光路上から退避しているため、赤外光波長の光量を調整することができなかった。   The optical filters of Patent Documents 1 and 2 are inserted into the optical path during photographing using visible light wavelengths, and adjust the amount of visible light wavelengths and shield infrared light wavelengths. Can get a good picture. However, when photographing using light having an infrared light wavelength, the optical filter is retracted from the optical path, and thus the amount of light having the infrared light wavelength cannot be adjusted.

更には、特許文献2におけるフィルタにおいて、赤外光領域の光を十分に遮蔽しようとすると、基板が厚くなり、近年求められている小型化への要望に相反してしまうと云う問題を有している。   Furthermore, the filter in Patent Document 2 has a problem that if the light in the infrared light region is sufficiently shielded, the substrate becomes thick, which is contrary to the demand for downsizing that has been demanded in recent years. ing.

本発明の目的は、小型化の要望を満たし、可視光波長によるカラー撮影、赤外光波長によるモノクロ撮影の何れにおいても光量を調整でき、良好な映像を得ることが可能な光学フィルタを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical filter that satisfies the demand for miniaturization, can adjust the light amount in both color photography using a visible light wavelength and monochrome photography using an infrared light wavelength, and can obtain a good image. There is.

上記目的を達成するための本発明に係る光学フィルタは、透明基板の片面に可視光波長から赤外光波長にかけて略均一な透過率を有する光波長減衰膜を形成し、前記透明基板の他面の一部に赤外光波長遮蔽膜を形成したことを特徴とする。   In order to achieve the above object, an optical filter according to the present invention includes a light wavelength attenuation film having a substantially uniform transmittance from a visible light wavelength to an infrared light wavelength on one surface of a transparent substrate, and the other surface of the transparent substrate. An infrared wavelength blocking film is formed on a part of the film.

本発明に係る光学フィルタを用いることにより、可視光波長を使用したカラー撮影や赤外光波長を利用したモノクロ撮影の何れにおいても光量調整が可能な光学フィルタを提供することができる。   By using the optical filter according to the present invention, it is possible to provide an optical filter capable of adjusting the light amount in both color photography using a visible light wavelength and monochrome photography using an infrared light wavelength.

また、本発明の光学フィルタはNDフィルタと赤外線カットフィルタの双方の機能を有しており、撮像光学系の小型化に貢献することができる。   The optical filter of the present invention has both functions of an ND filter and an infrared cut filter, and can contribute to downsizing of the imaging optical system.

実施例1の撮像光学系の構成図である。1 is a configuration diagram of an imaging optical system of Example 1. FIG. 光学フィルタの構成図である。It is a block diagram of an optical filter. 光波長減衰膜の分光特性図である。It is a spectral characteristic figure of a light wavelength attenuation film. 赤外光波長遮蔽膜の分光特性図である。It is a spectral characteristic figure of an infrared-light wavelength shielding film. 光学フィルタの構成図である。It is a block diagram of an optical filter. 赤外光波長透過膜の分光特性図である。It is a spectral characteristic figure of an infrared-light wavelength transmission film. 実施例2の光学フィルタの構成図である。6 is a configuration diagram of an optical filter of Example 2. FIG. 可視光波長減衰膜の分光特性図である。It is a spectral characteristic figure of a visible light wavelength attenuation film. 赤外光波長減衰膜の分光特性である。It is a spectral characteristic of an infrared light wavelength attenuation film. 撮像素子の相対感度を示したグラフ図である。It is the graph which showed the relative sensitivity of the image pick-up element. 実施例3の光学フィルタの構成図である。6 is a configuration diagram of an optical filter according to Embodiment 3. FIG. 変形例の光学フィルタの構成図である。It is a block diagram of the optical filter of a modification.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は本実施例1における撮像光学系の構成図を示し、光軸Lに沿って、レンズ1、光量調整装置2、レンズ3〜5、ローパスフィルタ6、CCD等から成る撮像素子7が順次に配列されている。撮像素子7の出力は光量制御部8を介してフィルタ駆動部9に接続されている。   FIG. 1 is a configuration diagram of an image pickup optical system according to the first embodiment. An image pickup device 7 including a lens 1, a light amount adjusting device 2, lenses 3 to 5, a low-pass filter 6, and a CCD is sequentially arranged along an optical axis L. Is arranged. The output of the image sensor 7 is connected to the filter drive unit 9 via the light amount control unit 8.

光量調整装置2においては、絞り羽根支持板10に一対の絞り羽根11a、11bが可動に取り付けられている。更に、絞り羽根11a、11bの近傍には、絞り羽根11a、11bにより形成される開口を通過する光量を調整するための例えばNDフィルタから成る光学フィルタ12が光軸Lに対して挿脱自在に設けられている。また、光学フィルタ12はフィルタ駆動部9により駆動されるようになっている。   In the light amount adjusting device 2, a pair of aperture blades 11 a and 11 b are movably attached to the aperture blade support plate 10. Further, in the vicinity of the diaphragm blades 11a and 11b, an optical filter 12 made of, for example, an ND filter for adjusting the amount of light passing through the openings formed by the diaphragm blades 11a and 11b is detachable with respect to the optical axis L. Is provided. The optical filter 12 is driven by a filter driving unit 9.

絞り羽根11a、11bは、光軸Lと直交する方向に自在に進退可能となっており、光量に応じて絞り羽根11a、11bを図示しない駆動部により駆動し、絞り羽根11a、11bによって形成される開口の大きさを調整する。光学フィルタ12は撮影に使用する光波長に応じて、絞り羽根11a、11bによって形成される開口を覆う領域が異なる。   The diaphragm blades 11a and 11b can freely advance and retreat in a direction perpendicular to the optical axis L, and are formed by the diaphragm blades 11a and 11b by driving the diaphragm blades 11a and 11b by a driving unit (not shown) according to the light amount. Adjust the size of the opening. The optical filter 12 has a different area covering the opening formed by the aperture blades 11a and 11b according to the light wavelength used for photographing.

図2は本実施例1の光学フィルタ12の膜構成図を示し、PETから成る透明基板21の片面には、図3に示すような可視光から赤外光波長領域において略均一又は略同程度な透過特性を有する光波長減衰膜22が全面に成膜されている。一方、透明基板21の他面の領域Aには、図4に示すように可視光波長(λ=400〜700nm程度)の光を透過させ、赤外光波長(λ=700〜1200nm程度)の光に対して遮光する赤外光波長遮蔽膜23が成膜されている。   FIG. 2 shows a film configuration diagram of the optical filter 12 according to the first embodiment. On one surface of the transparent substrate 21 made of PET, substantially uniform or substantially the same in the visible to infrared wavelength region as shown in FIG. An optical wavelength attenuating film 22 having excellent transmission characteristics is formed on the entire surface. On the other hand, as shown in FIG. 4, the region A on the other surface of the transparent substrate 21 transmits light having a visible light wavelength (λ = 400 to 700 nm) and has an infrared light wavelength (λ = 700 to 1200 nm). An infrared wavelength shielding film 23 that shields against light is formed.

透明基板21の両面に上述のような分光特性を有する光波長減衰膜22、赤外光波長遮蔽膜23を成膜することにより、赤外光波長遮蔽膜23を成膜した領域Aにおいては、可視光領域の光量を調整すると同時に、赤外光波長の光を遮蔽することができる。また、赤外光波長遮蔽膜23が成膜されていない領域Bにおいては、可視光波長の光量を調整することができる。   In the region A where the infrared light wavelength shielding film 23 is formed by forming the light wavelength attenuation film 22 and the infrared light wavelength shielding film 23 having the above-described spectral characteristics on both surfaces of the transparent substrate 21, At the same time as adjusting the amount of light in the visible light region, it is possible to block light of the infrared wavelength. In the region B where the infrared light wavelength shielding film 23 is not formed, the amount of visible light wavelength can be adjusted.

光学フィルタ12は図1に示す撮像光学系に組み込まれ、カラー撮影を行う際には赤外光波長遮蔽膜23を有する領域Aが絞り羽根11a、11bによって形成される開口を覆うように配置される。一方、モノクロ撮影を行う際には赤外光波長遮蔽膜23を有しない領域Bが開口を覆うように配置される。   The optical filter 12 is incorporated in the imaging optical system shown in FIG. 1, and is arranged so that the area A having the infrared light wavelength shielding film 23 covers the opening formed by the diaphragm blades 11a and 11b when performing color photography. The On the other hand, when performing monochrome photography, the region B that does not have the infrared light wavelength shielding film 23 is arranged so as to cover the opening.

光学フィルタ12の透明基板21は、少なくとも可視光から赤外光波長の波長領域において透明であるものが用いられる。具体的には、ガラス又はポリエステル系、ノルボルネン系、ポリエーテル系、アクリル系、スチレン系、PES(ポリエーテルスルホン)、ポリスルホン、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、ポリイミド系樹脂等の種々の合成樹脂製基板が挙げられる。なお、本実施例においては薄型化が可能な合成樹脂製基板を用い、具体的には板厚75μmのPET(ポリエチレンテレフタレート)が用いられている。   As the transparent substrate 21 of the optical filter 12, a substrate that is transparent at least in the wavelength region from the visible light to the infrared light wavelength is used. Specifically, glass, polyester, norbornene, polyether, acrylic, styrene, PES (polyethersulfone), polysulfone, PEN (polyethylene naphthalate), PC (polycarbonate), polyimide resin, etc. And a synthetic resin substrate. In this embodiment, a synthetic resin substrate that can be thinned is used, and specifically, PET (polyethylene terephthalate) having a plate thickness of 75 μm is used.

本実施例1では透明基板21にPETを用いたが、光波長減衰膜22や赤外光波長遮蔽膜23の成膜による膜応力や熱応力による変形、水分による分光変化等を考慮すると、ガラス転移温度Tgが高く、曲げ弾性率が大きく、吸水性の小さいものが好ましい。具体的には、ノルボルネン系やポリイミド系樹脂は最適な材料の1つである。   In the first embodiment, PET is used for the transparent substrate 21, but in consideration of film stress due to film formation of the light wavelength attenuation film 22 and infrared light wavelength shielding film 23, deformation due to thermal stress, spectral change due to moisture, etc. Those having a high transition temperature Tg, a high flexural modulus, and a low water absorption are preferred. Specifically, norbornene-based and polyimide-based resins are one of the optimum materials.

また、透明基板21の板厚としては、厚過ぎると透明基板21内での光の散乱等により画質に悪影響が生ずる虞れがある。板厚tは剛性を保てる範囲で可能な限り薄い方が良く、10μm≦t≦100μmが好適であり、25μm≦t≦75μmであることが更に好ましい。   If the transparent substrate 21 is too thick, the image quality may be adversely affected by light scattering within the transparent substrate 21. The plate thickness t is preferably as thin as possible within the range where rigidity can be maintained, preferably 10 μm ≦ t ≦ 100 μm, and more preferably 25 μm ≦ t ≦ 75 μm.

光波長減衰膜22は複数層の誘電体層と光吸収層とを交互に積層することにより、任意の透過率を得ることができる。本実施例においては、誘電体層としてAl23膜、光吸収層としてTiOx膜を用いている。しかし、これらの材料に限らず、誘電体層としてはSiO2、MgF2、光吸収層としてはNi、Cr、Nb、Ta、Ti、Zr、Si、Ge等の金属やその合金、酸化物等を用いることもできる。 The optical wavelength attenuation film 22 can obtain an arbitrary transmittance by alternately laminating a plurality of dielectric layers and light absorption layers. In this embodiment, an Al 2 O 3 film is used as the dielectric layer, and a TiO x film is used as the light absorption layer. However, not limited to these materials, SiO 2, MgF 2 as the dielectric layer, the light absorbing layer Ni, Cr, Nb, Ta, Ti, Zr, Si, Ge or the like of a metal or an alloy, oxide, etc. Can also be used.

光波長減衰膜22の成膜には、先ず透明基板21を成膜冶具に固定し、透明基板21上の所望の領域に成膜できる蒸着マスクをセットし、これを図示しない蒸着器の蒸着傘に取り付ける。蒸着傘は基板21の取付位置により、膜厚や透明基板21の温度の変化が生じないように、任意の速度で回転させる。   In forming the optical wavelength attenuating film 22, first, the transparent substrate 21 is fixed to a film forming jig, a vapor deposition mask capable of forming a film on a desired region on the transparent substrate 21 is set, and this is attached to a vapor deposition umbrella of a vapor deposition device (not shown). Attach to. The vapor deposition umbrella is rotated at an arbitrary speed so that the film thickness and the temperature of the transparent substrate 21 do not change depending on the mounting position of the substrate 21.

蒸着器内の温度・圧力が所定の温度・圧力となると、1層目の蒸着材料であるAl23の収納されているハースライナを加熱してシャッタを開き、所定の膜厚となった後にシャッタを閉じる。次に、2層目の蒸着材料であるTiOxの収納されているハースライナを加熱し、Al23膜と同様に所定の膜厚を成膜する。 When the temperature and pressure in the vapor deposition chamber reach the predetermined temperature and pressure, the hearth liner in which the first layer of vapor deposition material Al 2 O 3 is stored is heated to open the shutter, and after the predetermined film thickness is reached Close the shutter. Next, the hearth liner in which TiO x as the second layer vapor deposition material is stored is heated to form a predetermined film thickness in the same manner as the Al 2 O 3 film.

そして、Al23膜とTiOx膜を交互に任意の層数を積層した後に、最表層にMgF2膜を成膜する。最表層をMgF2膜としたのは、MgF2は屈折率が小さく反射防止効果があるためであり、より反射防止効果を高めるために、膜厚は光学膜厚(n・d)でλ/4程度となっている。ここで、λは対応する光波長領域の中心となる光波長である。 Then, after an arbitrary number of layers are alternately stacked on the Al 2 O 3 film and the TiO x film, an MgF 2 film is formed as the outermost layer. The reason why the outermost layer is an MgF 2 film is that MgF 2 has a small refractive index and has an antireflection effect, and in order to further improve the antireflection effect, the film thickness is λ // in the optical film thickness (n · d). It is about 4. Here, λ is the light wavelength that becomes the center of the corresponding light wavelength region.

光波長減衰膜22としては、合成樹脂基板に光吸収剤を練り込んだり、基板上に光吸収材を分散させた樹脂をコーティングすることでも得られるが、本実施例のように誘電体層と光吸収層との干渉を利用した方が分光特性が良好で、薄く作製することができる。   The light wavelength attenuating film 22 can also be obtained by kneading a light absorbent into a synthetic resin substrate or coating a resin in which a light absorbing material is dispersed on the substrate. The use of interference with the light absorption layer has better spectral characteristics and can be made thin.

本実施例の赤外光波長遮蔽膜23は、複数層の低屈折材料であるSiO2膜と高屈折材料であるTiO2膜を交互に積層することにより成膜する。この他にも、低屈折材料としてはMgF2等、高屈折材料としてはTa25、ZrO2、Nb25等を用いることができ、必要に応じて中間的な屈折率を有するAl23、MgO等の層を設けてもよい。このように成膜した赤外光波長遮蔽膜23は、各層の光学膜厚を調整することにより可視光波長の光を透過し、赤外光波長の光を反射させる分光を得ることができる。本実施例における赤外光波長遮蔽膜23は、光波長(λ=450〜650nm)における平均透過率が90%以上、平均反射率が5%以下で、かつ光波長(λ=750〜900nm)における平均光透過率が3%以下となっている。 The infrared light wavelength shielding film 23 of this embodiment is formed by alternately laminating a plurality of layers of SiO 2 films, which are low refractive materials, and TiO 2 films, which are high refractive materials. In addition, MgF 2 or the like can be used as the low refractive material, and Ta 2 O 5 , ZrO 2 , Nb 2 O 5 or the like can be used as the high refractive material, and Al having an intermediate refractive index as necessary. A layer of 2 O 3 , MgO or the like may be provided. The infrared light wavelength shielding film 23 thus formed can obtain a spectrum that transmits light of visible light wavelength and reflects light of infrared light wavelength by adjusting the optical film thickness of each layer. The infrared light wavelength shielding film 23 in this example has an average transmittance of 90% or more and an average reflectance of 5% or less at a light wavelength (λ = 450 to 650 nm), and a light wavelength (λ = 750 to 900 nm). The average light transmittance is 3% or less.

赤外光波長遮蔽膜23の成膜方法については、蒸着材料は異なるが、上述の光波長減衰膜22の成膜方法とほぼ同様である。赤外光波長遮蔽膜23としては、基板上に赤外光波長吸収剤を分散させた樹脂をコーティングすることでも得られる。しかし、本実施例に示すように屈折率が異なる薄膜の多重干渉を利用した方が、透過帯と不透過帯との遷移領域が急峻となり、また透過帯の透過率をより高く維持できるため、カラーバランスの良好な赤外光波長遮蔽膜23を成膜することができる。   The method for forming the infrared light wavelength shielding film 23 is substantially the same as the method for forming the light wavelength attenuation film 22 described above, although the vapor deposition material is different. The infrared light wavelength shielding film 23 can also be obtained by coating a resin in which an infrared light wavelength absorber is dispersed on a substrate. However, as shown in the present embodiment, using the multiple interference of thin films having different refractive indexes, the transition region between the transmission band and the non-transmission band becomes steep, and the transmittance of the transmission band can be maintained higher. An infrared light wavelength shielding film 23 with good color balance can be formed.

本実施例においては、光波長減衰膜22、赤外光波長遮蔽膜23の成膜は何れも真空蒸着法で行ったが、スパッタリング法やイオンプレーティング法、イオンアシスト法等で成膜することも可能であり、目的や条件に適した成膜方法を適宜に選択すればよい。   In this embodiment, the light wavelength attenuating film 22 and the infrared light wavelength shielding film 23 are both formed by a vacuum deposition method, but they are formed by a sputtering method, an ion plating method, an ion assist method, or the like. It is possible to select a film formation method suitable for the purpose and conditions.

また図5に示すように、透明基板21の赤外光波長遮蔽膜23を形成した面の赤外光波長遮蔽膜23が形成されていない領域Bに、図6に示すように、少なくとも赤外光波長の光を透過する分光特性を有する赤外光波長透過膜24を成膜するようにしてもよい。   Further, as shown in FIG. 5, at least the infrared region as shown in FIG. 6 is formed in the region B where the infrared light wavelength shielding film 23 is formed on the surface of the transparent substrate 21 on which the infrared light wavelength shielding film 23 is formed. An infrared light wavelength transmission film 24 having spectral characteristics that transmits light of a light wavelength may be formed.

本実施例において、赤外光波長透過膜24は赤外光波長遮蔽膜23と同様に、屈折率が異なる薄膜の多重干渉を利用して所望の分光特性を得ている。低屈折材料としてSiO2、高屈折材料としてTiO2を使用しているが、赤外光波長遮蔽膜23と同様にMgF2、Al23、MgO、Ta23、ZrO2、Nb25等を用いることもできる。赤外光波長透過膜24の成膜には、光波長減衰膜22、赤外光波長遮蔽膜23と同様に真空蒸着法で成膜したが、スパッタリング法やイオンプレーティング法、イオンアシスト法等で成膜することも可能である。ここで、赤外光波長透過膜24の膜厚は、赤外光波長遮蔽膜23と略等しい光学膜厚とすることが最適である。 In this embodiment, the infrared light wavelength transmission film 24 obtains desired spectral characteristics by utilizing multiple interference of thin films having different refractive indexes, similarly to the infrared light wavelength shielding film 23. SiO 2 is used as the low refractive material, and TiO 2 is used as the high refractive material. However, similarly to the infrared light wavelength shielding film 23, MgF 2 , Al 2 O 3 , MgO, Ta 2 O 3 , ZrO 2 , Nb 2 are used. O 5 or the like can also be used. The infrared light wavelength transmission film 24 is formed by a vacuum deposition method in the same manner as the light wavelength attenuation film 22 and the infrared light wavelength shielding film 23, but a sputtering method, an ion plating method, an ion assist method, etc. It is also possible to form a film. Here, it is optimal that the film thickness of the infrared light wavelength transmission film 24 is an optical film thickness substantially equal to that of the infrared light wavelength shielding film 23.

このようにすることにより、光学フィルタ12の赤外光波長遮蔽膜23を有する領域A、赤外光波長透過膜24を有する領域Bの何れを絞り開口上に配置しても、撮影光のピント位置が大きくずれることがない。従って、赤外光波長遮蔽膜23を有する領域A、赤外光波長透過膜24を有する領域Bの何れの領域を用いて撮影しても良好な映像を得ることができる。   By doing so, the focus of the photographic light can be adjusted regardless of which of the region A having the infrared light wavelength shielding film 23 and the region B having the infrared light wavelength transmission film 24 of the optical filter 12 is disposed on the aperture opening. The position does not shift greatly. Therefore, a good image can be obtained even if an image is taken using any one of the region A having the infrared light wavelength shielding film 23 and the region B having the infrared light wavelength transmission film 24.

図7は実施例2の光学フィルタ12の構成図を示しており、実施例1と同一の部材には同一の符号を付し、説明は省略する。PETから成る透明基板21の一方の面の領域Aには、可視光波長の光を略均一又は略同程度に減衰する可視光波長減衰膜31が成膜され、領域Bには赤外光波長の光を略均一に減衰する赤外光波長減衰膜32がそれぞれ成膜されている。一方、透明基板21の他面の領域Aには、実施例1と同様に赤外光波長の光を遮蔽する赤外光波長遮蔽膜23が成膜されている。   FIG. 7 shows a configuration diagram of the optical filter 12 of the second embodiment. The same members as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. A visible light wavelength attenuation film 31 that attenuates light of visible light wavelength to a substantially uniform or substantially the same level is formed in the area A on one surface of the transparent substrate 21 made of PET, and an infrared light wavelength is applied to the area B. Infrared light wavelength attenuating films 32 for substantially uniformly attenuating the light are respectively formed. On the other hand, in the region A on the other surface of the transparent substrate 21, an infrared light wavelength shielding film 23 that shields light having an infrared light wavelength is formed as in the first embodiment.

可視光波長減衰膜31の可視光波長における光学濃度(OD)と赤外光波長減衰膜32における赤外光波長における光学濃度は異なり、本実施例2においては赤外光波長減衰膜32の光学濃度が可視光波長減衰膜31の光学濃度よりも小さくなっている。ここで、光学濃度(OD)は透過率をTとすると、OD=Log(1/T)で示される。   The optical density (OD) of the visible light wavelength attenuation film 31 at the visible light wavelength is different from the optical density of the infrared light wavelength attenuation film 32 at the infrared light wavelength. In the second embodiment, the optical density of the infrared light wavelength attenuation film 32 is different. The density is smaller than the optical density of the visible light wavelength attenuation film 31. Here, the optical density (OD) is represented by OD = Log (1 / T), where T is the transmittance.

本実施例2では、可視光波長減衰膜31、赤外光波長減衰膜32の分光特性はそれぞれ図8、図9に示すようになっており、それぞれの光学濃度は1.5、0.55とされている。本実施例2においては、赤外光波長減衰膜32の光学濃度を可視光波長減衰膜31の光学濃度よりも小さくした。これはカラー撮影を行う撮像装置に組み込まれる一般的な撮像素子7の相対感度が図10に示すように、可視光波長の感度の方が赤外光波長における感度よりも高くなっているためである。撮像素子の感度や組み込む光学系によっては、赤外光波長減衰膜32の光学濃度の方が高くなるようにしてもよい。   In Example 2, the spectral characteristics of the visible light wavelength attenuation film 31 and the infrared light wavelength attenuation film 32 are as shown in FIGS. 8 and 9, respectively, and the optical densities thereof are 1.5 and 0.55, respectively. It is said that. In the second embodiment, the optical density of the infrared light wavelength attenuation film 32 is made smaller than the optical density of the visible light wavelength attenuation film 31. This is because, as shown in FIG. 10, the relative sensitivity of a general imaging device 7 incorporated in an imaging apparatus that performs color photography is higher in the sensitivity of the visible light wavelength than in the infrared light wavelength. is there. Depending on the sensitivity of the image sensor and the optical system to be incorporated, the optical density of the infrared wavelength attenuation film 32 may be higher.

また、実施例1と同様に、透明基板21の赤外光波長遮蔽膜23を有する面の領域Bに、赤外光波長透過膜24を成膜するようにしてもよい。この際に、赤外光波長透過膜24は赤外光波長減衰膜32と対向して透明基板21の反対面に成膜される。   Similarly to the first embodiment, the infrared light wavelength transmission film 24 may be formed in the region B of the surface of the transparent substrate 21 having the infrared light wavelength shielding film 23. At this time, the infrared wavelength transmission film 24 is formed on the opposite surface of the transparent substrate 21 so as to face the infrared wavelength attenuation film 32.

このような光学フィルタ12を撮像光学系に組み込むことにより、撮像素子7の感度が異なる可視光波長、赤外光波長の何れの光を用いた撮影を行っても、最適な光量調整が可能となる。   By incorporating such an optical filter 12 in the imaging optical system, it is possible to adjust the optimal amount of light regardless of whether the imaging element 7 has a sensitivity of visible light wavelength or infrared light wavelength. Become.

図11は本実施例3における光学フィルタ12の構成図を示し、実施例1、2と同一の部材には同一の符号を付している。本実施例3の光学フィルタ12は、透明基板21の片面の一部に光波長減衰膜22を設け、透明基板21の他面の一部に赤外光波長遮蔽膜23を設け、可視光波長或いは赤外光波長又はその両方の透過率を制限しない領域Fが設けられている。なお、領域Fは絞り羽根11a、11bによって形成される開口を覆うだけの面積を有している。   FIG. 11 is a configuration diagram of the optical filter 12 in the third embodiment, and the same members as those in the first and second embodiments are denoted by the same reference numerals. In the optical filter 12 of the third embodiment, a light wavelength attenuation film 22 is provided on a part of one surface of the transparent substrate 21, and an infrared light wavelength shielding film 23 is provided on a part of the other surface of the transparent substrate 21. Or the area | region F which does not restrict | limit the transmittance | permeability of an infrared-light wavelength or both is provided. The region F has an area sufficient to cover the opening formed by the diaphragm blades 11a and 11b.

図11に示す光学フィルタ12が撮像光学系に組み込まれ、カラー撮影を行う際には、撮影に使用する光量が、絞り羽根11a、11bの開口径の調整のみで制御可能な場合には、領域Cが光軸上に配置される。また、可視光の光量が多く開口径が一定の大きさ以下となる場合は領域Dが光軸上に配置される。   When the optical filter 12 shown in FIG. 11 is incorporated in the imaging optical system and color imaging is performed, the region is used when the amount of light used for imaging can be controlled only by adjusting the aperture diameters of the aperture blades 11a and 11b. C is arranged on the optical axis. Further, when the amount of visible light is large and the aperture diameter is equal to or smaller than a certain size, the region D is arranged on the optical axis.

一方、モノクロ撮影を行う際に、撮影に使用する光量が絞り羽根11a、11bの開口径の調整のみで制御できる場合は領域Fが光軸上に配置され、光量が多く開口径が一定の大きさ以下となる場合は領域Eが光軸上に配置される。   On the other hand, when performing monochrome photography, if the amount of light used for photography can be controlled only by adjusting the aperture diameter of the aperture blades 11a and 11b, the region F is arranged on the optical axis, and the amount of light is large and the aperture diameter is constant. If it is less than or equal to, the region E is arranged on the optical axis.

また、図12に示す変形例の光学フィルタ12は、透明基板21の片面の一部ずつに可視光波長減衰膜31、赤外光波長減衰膜32が平行して設けられている。透明基板21の他面の一部に赤外光波長遮蔽膜23が可視光波長減衰膜31の領域G及び透明部分の領域Hに対応する位置に設けられている。   Further, in the optical filter 12 of the modified example shown in FIG. 12, the visible light wavelength attenuation film 31 and the infrared light wavelength attenuation film 32 are provided in parallel on each part of one surface of the transparent substrate 21. An infrared light wavelength shielding film 23 is provided on a part of the other surface of the transparent substrate 21 at a position corresponding to the region G of the visible light wavelength attenuation film 31 and the region H of the transparent part.

そして、この光学フィルタ12を撮像光学系に組み込み、カラー撮影を行う際には、絞り羽根11a、11bのみで光量調整が可能な場合には領域Hが光軸上に配置され、絞り羽根11a、11bの開口径が一定以下となる光量の場合には領域Gが光軸に配置される。   When the optical filter 12 is incorporated in the imaging optical system and color photography is performed, the region H is arranged on the optical axis when the light amount can be adjusted only by the diaphragm blades 11a and 11b. In the case of a light amount with which the opening diameter of 11b is a certain value or less, the region G is disposed on the optical axis.

一方、モノクロ撮影を行う際に、絞り羽根11a、11bのみで光量調整が可能な場合は領域Jが光軸L上に配置され、絞り羽根11a、11bの開口径が一定以下となる光量の場合は領域Iが光軸L上に配置される。   On the other hand, when performing monochrome photography, if the light amount can be adjusted only with the diaphragm blades 11a and 11b, the region J is arranged on the optical axis L, and the light amount is such that the aperture diameter of the diaphragm blades 11a and 11b is less than a certain value. The region I is arranged on the optical axis L.

実施例3の光学フィルタ12は、図11又は図12のような形態としているが、可視光波長又は赤外光波長の透過率を制限しない領域を有していればよく、図11、図12の形態に限定されるものではない。   The optical filter 12 according to the third embodiment is configured as shown in FIG. 11 or FIG. 12, but may have a region that does not limit the transmittance of visible light wavelength or infrared light wavelength. It is not limited to the form.

また、実施例1と同様に、透明基板21の赤外光波長遮蔽膜23を有する面の赤外光波長遮蔽膜23が形成されていない領域に、赤外光波長透過膜24を形成してもよい。赤外光波長透過膜24は赤外光波長遮蔽膜23と光学膜厚を略等しくすると、カラー撮影、モノクロ撮影切換え時のピント調整が容易となりより好ましい。   Further, similarly to Example 1, an infrared light wavelength transmission film 24 is formed in a region where the infrared light wavelength shielding film 23 is not formed on the surface of the transparent substrate 21 having the infrared light wavelength shielding film 23. Also good. It is more preferable that the infrared light wavelength transmission film 24 has an optical film thickness substantially equal to that of the infrared light wavelength shielding film 23 because the focus adjustment at the time of switching between color photography and monochrome photography is facilitated.

実施例3に示す光学フィルタ12を内蔵した撮像光学系は、カラー撮影、モノクロ撮影の両撮影方法において、より広い範囲で光量の調整が可能となり、より最適な映像を得ることができる。   The imaging optical system incorporating the optical filter 12 shown in the third embodiment can adjust the light amount in a wider range in both color photography and monochrome photography, and can obtain a more optimal image.

昼間のような可視光波長の光量が十分な際には、光学フィルタ12の赤外光波長遮蔽膜23を有する領域C、D、G、Hが、絞り11a、11bによって形成される開口を覆うように配置され、カラー撮影が行われる。一方、可視光波長の光量が不十分な際には、光学フィルタ12の赤外光波長遮蔽膜23が形成されていない領域E、F、I、Jが開口を覆うように配置され、主に赤外光波長を利用したモノクロ撮影が行われる。   When the amount of visible light wavelength is sufficient during the daytime, the regions C, D, G, and H having the infrared light wavelength shielding film 23 of the optical filter 12 cover the openings formed by the apertures 11a and 11b. The color shooting is performed. On the other hand, when the amount of visible light wavelength is insufficient, the regions E, F, I, and J where the infrared wavelength blocking film 23 of the optical filter 12 is not formed are arranged so as to cover the opening. Monochrome shooting using infrared light wavelengths is performed.

実施例3の光学フィルタ12を用いる際は、撮影に使用する光波長の光量に応じて、撮影に使用する光波長を減衰しない領域、減衰する領域の何れかが光軸L上に配置される。   When the optical filter 12 according to the third embodiment is used, either the region where the light wavelength used for photographing is not attenuated or the region where it is attenuated is arranged on the optical axis L in accordance with the amount of light wavelength used for photographing. .

このように、光学フィルタ12の光軸Lに掛かる領域を調整することにより、可視光波長を利用した撮影の際には、人眼が感ずる色味に近いカラー映像が得られると共に、赤外光波長を利用したモノクロ撮影においても良好な画質を有する映像を得ることができる。   In this way, by adjusting the region of the optical filter 12 that affects the optical axis L, a color image close to the color perceived by the human eye can be obtained in photographing using the visible light wavelength, and infrared light can be obtained. An image having a good image quality can be obtained even in monochrome photography using a wavelength.

1、3〜5 レンズ
2 光量調整装置
6 ローパスフィルタ
7 撮像素子
8 光量制御部
9 フィルタ駆動部
11a、11b 絞り羽根
12 光学フィルタ
21 透明基板
22 光波長減衰膜
23 赤外光波長遮蔽膜
24 赤外光波長透過膜
31 可視光波長減衰膜
32 赤外光波長減衰膜
DESCRIPTION OF SYMBOLS 1, 3-5 Lens 2 Light quantity adjusting device 6 Low pass filter 7 Image sensor 8 Light quantity control part 9 Filter drive part 11a, 11b Aperture blade 12 Optical filter 21 Transparent substrate 22 Light wavelength attenuation film 23 Infrared light wavelength shielding film 24 Infrared Light wavelength transmission film 31 Visible light wavelength attenuation film 32 Infrared light wavelength attenuation film

Claims (9)

透明基板の片面に可視光波長から赤外光波長にかけて略均一な透過率を有する光波長減衰膜を形成し、前記透明基板の他面の一部に赤外光波長遮蔽膜を形成したことを特徴とする光学フィルタ。   Forming a light wavelength attenuation film having a substantially uniform transmittance from the visible light wavelength to the infrared light wavelength on one side of the transparent substrate, and forming an infrared light wavelength shielding film on a part of the other surface of the transparent substrate. A characteristic optical filter. 可視光波長或いは赤外光波長の何れか又は双方の光を制限しない領域を有していることを特徴とする請求項1に記載の光学フィルタ。   2. The optical filter according to claim 1, wherein the optical filter has a region that does not restrict either visible light wavelength, infrared light wavelength, or both. 前記光波長減衰膜は前記透明基板の前記片面と平行する方向に可視光波長減衰膜と赤外光波長減衰膜をそれぞれ有し、前記赤外光波長遮蔽膜を前記可視光波長減衰膜と対向する前記透明基板の他面に形成することを特徴とする請求項1又は2に記載の光学フィルタ。   The light wavelength attenuation film has a visible light wavelength attenuation film and an infrared light wavelength attenuation film in a direction parallel to the one surface of the transparent substrate, and the infrared light wavelength shielding film faces the visible light wavelength attenuation film. The optical filter according to claim 1, wherein the optical filter is formed on the other surface of the transparent substrate. 前記赤外光波長減衰膜と対向する前記透明基板の前記他面には、前記赤外光波長遮蔽膜が形成していないことを特徴とする請求項3に記載の光学フィルタ。   The optical filter according to claim 3, wherein the infrared light wavelength shielding film is not formed on the other surface of the transparent substrate facing the infrared light wavelength attenuation film. 前記可視光波長減衰膜と前記赤外光波長減衰膜の対応する波長に対する光学濃度が異なることを特徴とする請求項3又は4に記載の光学フィルタ。   5. The optical filter according to claim 3, wherein the visible light wavelength attenuation film and the infrared light wavelength attenuation film have different optical densities with respect to corresponding wavelengths. 前記赤外光波長減衰膜と対向する前記透明基板の他面に、少なくとも赤外光波長の光を透過する赤外光波長透過膜を設けたことを特徴とする請求項3〜5の何れか1項に記載の光学フィルタ。   6. The infrared light wavelength transmission film that transmits at least light having an infrared light wavelength is provided on the other surface of the transparent substrate facing the infrared light wavelength attenuation film. The optical filter according to item 1. 前記透明基板が合成樹脂製基板であることを特徴とする請求項1〜6の何れか1項に記載の光学フィルタ。   The optical filter according to claim 1, wherein the transparent substrate is a synthetic resin substrate. NDフィルタであることを特徴とする請求項1〜7の何れか1項に記載の光学フィルタ。   The optical filter according to claim 1, wherein the optical filter is an ND filter. 開口を形成する絞り装置と、光軸上の光量を調節する請求項1〜8に記載の光学フィルタを有する光量調整装置において、前記光学フィルタの透過率を制御する領域を切換える駆動部を有することを特徴とする光量調整装置。   9. A light amount adjusting device having an aperture device for forming an aperture and an optical filter according to claim 1 for adjusting an amount of light on an optical axis, comprising a drive unit for switching a region for controlling the transmittance of the optical filter. A light amount adjusting device characterized by the above.
JP2012040589A 2012-02-27 2012-02-27 Light intensity adjustment device Active JP5942472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040589A JP5942472B2 (en) 2012-02-27 2012-02-27 Light intensity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040589A JP5942472B2 (en) 2012-02-27 2012-02-27 Light intensity adjustment device

Publications (3)

Publication Number Publication Date
JP2013174818A true JP2013174818A (en) 2013-09-05
JP2013174818A5 JP2013174818A5 (en) 2015-05-07
JP5942472B2 JP5942472B2 (en) 2016-06-29

Family

ID=49267742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040589A Active JP5942472B2 (en) 2012-02-27 2012-02-27 Light intensity adjustment device

Country Status (1)

Country Link
JP (1) JP5942472B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera
WO2017217053A1 (en) * 2016-06-17 2017-12-21 シャープ株式会社 Imaging device and filter
JP2020056874A (en) * 2018-10-01 2020-04-09 キヤノン電子株式会社 Optical filter and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070407A (en) * 1990-05-11 1991-12-03 Wheeler Ernest E Filter changing mechanism for a video camera
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2003279747A (en) * 2001-07-25 2003-10-02 Daishinku Corp Optical low-pass filter and imaging apparatus using the same
JP2005099208A (en) * 2003-09-22 2005-04-14 Olympus Corp Filter device and imaging apparatus
JP2011237638A (en) * 2010-05-11 2011-11-24 Fujifilm Corp Photographing apparatus
JP2012037610A (en) * 2010-08-04 2012-02-23 Tanaka Engineering Inc Nd filter with ir cut-off function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070407A (en) * 1990-05-11 1991-12-03 Wheeler Ernest E Filter changing mechanism for a video camera
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2003279747A (en) * 2001-07-25 2003-10-02 Daishinku Corp Optical low-pass filter and imaging apparatus using the same
JP2005099208A (en) * 2003-09-22 2005-04-14 Olympus Corp Filter device and imaging apparatus
JP2011237638A (en) * 2010-05-11 2011-11-24 Fujifilm Corp Photographing apparatus
JP2012037610A (en) * 2010-08-04 2012-02-23 Tanaka Engineering Inc Nd filter with ir cut-off function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera
WO2017217053A1 (en) * 2016-06-17 2017-12-21 シャープ株式会社 Imaging device and filter
JPWO2017217053A1 (en) * 2016-06-17 2019-01-31 シャープ株式会社 Image pickup apparatus and filter
CN109313379A (en) * 2016-06-17 2019-02-05 夏普株式会社 Image pickup device and optical filter
JP2020056874A (en) * 2018-10-01 2020-04-09 キヤノン電子株式会社 Optical filter and optical device
JP7271121B2 (en) 2018-10-01 2023-05-11 キヤノン電子株式会社 Optical filters and optical devices

Also Published As

Publication number Publication date
JP5942472B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6241419B2 (en) Near-infrared cut filter
US9835779B2 (en) Near infrared cutoff filter
JP6119747B2 (en) Near-infrared cut filter
JP5568923B2 (en) Imaging optical system, camera device, and portable information terminal device
JP5823119B2 (en) Optical filter for UV-IR cut
JP5759717B2 (en) Imaging optical system for surveillance cameras
JP5428504B2 (en) LIGHT CONTROL DEVICE, IMAGING DEVICE, AND LIGHT CONTROL METHOD
JP6249950B2 (en) Light amount adjusting device, imaging optical system, and imaging device
JP4801442B2 (en) ND filter for diaphragm
TW201944102A (en) Optical image lens assembly, imaging apparatus and electronic device
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP5942472B2 (en) Light intensity adjustment device
JP6136661B2 (en) Near-infrared cut filter
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP5977956B2 (en) Light intensity adjustment device
JP2009037180A (en) Vacuum deposition method of multi-layer thin film for plastic optical component and photographing element having the plastic optical component
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
US10158791B2 (en) Camera device with red halo reduction
JP2020056873A (en) Optical filter and imaging apparatus
US20240118462A1 (en) Bokeh filter membrane, imaging optical lens assembly, imaging apparatus and electronic device
JP7194557B2 (en) Optical filter, light amount adjustment device, imaging device
JP2020064256A (en) Optical filter, light amount adjustment device, and imaging apparatus
JP2004029577A (en) Light quantity controller, imaging optical system, and imaging apparatus
JP2005157197A (en) Light quantity controller, optical device and photographing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5942472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250