JP2004029577A - Light quantity controller, imaging optical system, and imaging apparatus - Google Patents

Light quantity controller, imaging optical system, and imaging apparatus Download PDF

Info

Publication number
JP2004029577A
JP2004029577A JP2002188578A JP2002188578A JP2004029577A JP 2004029577 A JP2004029577 A JP 2004029577A JP 2002188578 A JP2002188578 A JP 2002188578A JP 2002188578 A JP2002188578 A JP 2002188578A JP 2004029577 A JP2004029577 A JP 2004029577A
Authority
JP
Japan
Prior art keywords
light
filter
subject
base member
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188578A
Other languages
Japanese (ja)
Inventor
Norihiro Nanba
難波 則廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002188578A priority Critical patent/JP2004029577A/en
Publication of JP2004029577A publication Critical patent/JP2004029577A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light quantity controller which is provided with a multidensity optical filter using a multilayered film and prevents the occurrence of a ghost by the rereflection of the reflected light from an imaging device at the optical filter. <P>SOLUTION: The light quantity controller 13 is disposed within an imaging optical system for forming a subject image on the imaging device 12 and is provided with the optical filter 14 for attenuating the light quantity arriving at the imaging device by covering at least part of a diaphragm aperture, in which the optical filter comprises a base member 21 having light transparency, image side optical filters 23 and 24 covering the entire region of the surface of the base member on the subject side and a subject side optical film 22 covering a partial region of a ray effective section on the surface of the base member on the subject side and a plurality of density regions varying in light transmittance from each other are formed on at least either of the image side optical films and the subject side optical film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラやデジタルスチルカメラ等の撮像装置又は撮像光学系に搭載される光学フィルタ関するものである。
【0002】
【従来の技術】
ビデオカメラ等の撮像装置の撮像光学系には、複数枚の絞り羽根で形成される開口径を変化させて光量を調節する光量調節装置が使用されている。このような光量調節装置では、開口径が小さくなりすぎると光の回折による光学性能劣化が問題となる。
【0003】
そこで、明るい被写体条件でも開口径が小さくなり過ぎないようにするため、絞り羽根とND(Neutral Density )フィルタを併用した光量調節装置が提案されている。
【0004】
例えば、特許第 2,592,949号公報には、絞り羽根で形成される開口を覆うNDフィルタを絞り羽根に貼付け、NDフィルタにはそれぞれ異なる均一な透過率に設定された複数の濃度領域を設けた光量調節装置が開示されている。NDフィルタの複数の領域は、開口の外側から内側に向かって順に透過率が大きくなるよう設定されている。
【0005】
また、特開昭52−117127号公報には、開放から所定の開口面積までは機械的な絞り羽根を移動させ、一定の絞り値以下の小絞り制御は濃淡によって光透過率が連続的に変化しているNDフィルタを、透過率の高い側から順に開口に進入させる光量調節装置が提案されている。
【0006】
さらに、特開2000−106649号公報には、複数の濃度領域を有するNDフィルタの光透過率が与える光学性能への影響を軽減する露出制御機構を備えた撮像装置が提案されている。
【0007】
ところで、撮像素子を使用して被写体像を光電変換して撮像する撮像装置においては、上記NDフィルタを透過して撮像素子に入射する光の一部が撮像素子の表面(カバーガラス、水晶ローパスフィルタ、赤外カットフィルタ等の表面)で反射して被写体側に戻り、NDフィルタの撮像素子側の面や被写体側の面で再度反射し、この反射光が撮像素子に入射することによって、ゴーストが発生することがある。そして、この対策として、特開2000−36917号公報には、NDフィルタの撮像素子側面に反射防止膜を施した光量調節装置が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特開2000−36917号公報には、多濃度のNDフィルタの場合の反射防止、つまりはゴースト発生防止のための具体的な手法については開示されていない。
【0009】
多濃度のNDフィルタを実現するためには、ベースとなる透明部材の両面に、互いに異なる面積で光量減衰効果のある多層膜を形成する等の方法が考えられるが、このような多層膜を用いた多濃度NDフィルタにおける反射防止のための構成についての提案はいまだなされていない。
【0010】
なお、中間絞り状態での光学性能劣化の原因は、NDフィルタでの透過率差に起因する回折の影響もあるが、NDフィルタの厚み成分に起因する透過波面位相差も大きく影響している。
【0011】
絞り開口部の一部を厚みのあるフィルタが覆うと光学性能が劣化することは経験的に知られているが、フィルタの厚み成分がどのように光学性能に影響するかを解析し、その具体的な対策をなした例は知られていない。
【0012】
NDフィルタの厚みが光学性能に与える影響への回避策として、特開平6−265971号公報では、透明な部分と透過率が連続的または段階的に変化する部分を有するNDフィルタを固定の円形絞り開口を全て覆う状態で可動させて透過光量を調整する構成が提案されている。
【0013】
しかしながら、上記特開平6−265971号公報にて提案の光量調節装置では、フィルタを通過する部分としない部分との大きな位相差についてのみ着目したもので、実際に透過率変化のあるNDフィルタを実現するときに、透過率変化を与えるために生じるであろう微小厚み変化または微小屈折率変化による光の波長λ以下の微小な透過波面位相差については何ら示されていない。
【0014】
そこで本発明は、多濃度の光学フィルタを使用し、撮像素子で反射した光が光学フィルタでさらに反射して撮像素子に入射することにより発生するゴーストを減少させることができる光量調節装置、撮像光学系および撮像装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、撮像素子上に被写体像を形成する撮像光学系内に設けられ、絞り開口の少なくとも一部を覆って撮像素子に到達する光量を減衰させるために用いられる光学フィルタを備えた光量調節装置において、上記光学フィルタを、光透過性を有するベース部材と、このベース部材の撮像素子側の面における露出した全領域を覆う像側光学膜と、ベース部材の被写体側の面における光線有効部の一部領域を覆う被写体側光学膜とにより構成し、上記像側光学膜と被写体側光学膜のうち少なくとも一方に、光透過率が互いに異なる複数の濃度領域を形成している。
【0016】
このように、ベース部材の撮像素子側の面(撮像素子に対して露出した全領域)に光学膜(像側光学膜)を設けることにより、撮像素子で反射した光のベース部材の撮像素子側の面での反射を抑え、ゴーストの発生を減少させることが可能である。
【0017】
また、上記複数の濃度領域のいずれにもベース部材の光透過率よりも低い光透過率を持たせることにより、撮像素子で反射した光のうちベース部材の被写体側の面に到達する光の光量およびベース部材の被写体側の面に到達する光量を抑え、より効果的にゴーストの発生を減少させることが可能である。
【0018】
なお、Sを上記光線有効部の面積、S11を被写体側の光線有効部のうち被写体側光学膜で覆われていない領域の面積としたときに、
0.2<S11/S<0.6
なる条件を満たすようにするとよい。
【0019】
また、上記複数の濃度領域のそれぞれの膜構成が互いに異なり、相互に隣接する濃度領域の膜構成が異なることに起因するこれら濃度領域を透過する光の位相差を1/5λ以下に抑えたり、上記被写体側光学膜を透過してベース部材を透過する光と、ベース部材における被写体側の面のうち被写体側光学膜が形成されていない領域を通ってベース部材を透過する光との位相差を1/4λ以下に抑えることにより、MTF(Modulation Transfer Function)の低下を抑えることが可能である。
【0020】
【発明の実施の形態】
本発明の実施形態の光量調節装置および撮像光学系の説明をする前に、透過波面位相差が像に対してどのような影響を与えるかについて説明する。
【0021】
まず、絞り開口の一部を厚みのあるフィルタが覆うと光学的にどのような現象が発生するかについて図8を用いて説明する。
【0022】
図8(a)〜(e)は、無収差の理想レンズLの前方(物体側)にフィルタPと開口絞りASを配置し、波長λの単色光の平面波である平行光線が入射した場合の幾何光学的な結像点Iの近傍の点像強度分布Qを示している。
【0023】
図8(a)は、フィルタPが厚みゼロで透過波面に影響を与えていない状態を示している。この場合、強度分布QはFナンバーFと光線の波長λの関係による回折像となる。
【0024】
開口絞りASが円形開口を有する場合、半径が1.22Fλの1つの強度の大きい点像Qaが結像され、その周りにリング状の弱い光の回折光が形成される。ここで、開口絞りASの開口の半分に相当するフィルタPの紙面下側の領域の厚みを微小量増加させ、図8(b)に示すように、透過波面位相差が(1/4)λになるよう設定すると、強い強度の点像の横にやや強度の大きい点像Qbが出現する。
【0025】
更にフィルタPの下側領域の厚みを増加させ、図8(c)に示すように透過波面位相差が(2/4)λになるよう設定すると、強度分布Qは1つの点像にならず、紙面内で上下方向に分離した2つの強度の大きい点像Qcが出現する。これは、幾何光学的な結像点Iに集光するべき光のうち、瞳の紙面上側半分を通過する光の波面と紙面下側半分の波面の位相が(1/2)λずれているため、波動光学的に波の打ち消し合い現象が発生し、結像点I上での強度がゼロになってしまうからである。その一方で、エネルギー保存法則により結像点Iに集光するべき光エネルギーが消失することはないので、結像点Iの紙面上下方向に分散され2つの点に集まることになる。
【0026】
更にフィルタPの下側領域の厚みを増加させ、図8(d)に示すように透過波面位相差が(3/4)λになるよう設定すると、上記2点像のうち上側の点像Qc’の強度が下側の点像Qcの強度に対して弱くなる。
【0027】
更にフィルタPの下側領域の厚みを増加させ、図8(e)に示すように透過波面位相差が(4/4)λになるよう設定すると、強度分布Qは再び1つの点像Qeの回折像になり、図8(a)と同様な状態に戻る。
【0028】
更にフィルタPの下側領域の厚みを増加させると、強度分布Qは透過波面位相差に応じて図8(a)〜図8(d)に示した状態を周期的に変化を繰り返すことになる。
【0029】
図8(c)に示した透過波面位相差が(1/2)λの場合に分離する2点像Qcの間隔Δyは、
Δy≒2Fλ
の関係があり、Fナンバーと波長λに比例する。例えば、FナンバーF=4で、波長λ=550nmの場合は、2点像の間隔は、
Δy≒4.4μm
になる。これは2点分離のローパスフィルタと同じ原理で、カットオフ周波数が1/(2Δy)=114本/mmのローパスフィルタをかけた場合と同じような効果が発生し、光学系のMTFが劣化することを意味している。
【0030】
ところで、実際に撮像光学系で使用される光は単色光ではなく、種々の波長の光が混合した白色光である。この場合、図8(c)において、結像点にて強度ゼロとなるフィルタPの厚みが各波長で異なる。
【0031】
逆にある特定のフィルタの厚みにおいては、波長により位相差が異なるため、特定の波長が図8(c)の状態のときにはこの波長からずれた波長ほど図8(b)側もしくは(d)側にずれた状態となる。白色光としては各波長の強度分布の影響を受けるため、中心波長が図8(c)に相当しても白色としては強度ゼロにはならない。
【0032】
白色光として標準比視感度に合わせて可視光400nm〜700nmの範囲で550nm近傍に感度ピークをもつカラーウエイトを設定し、白色光における透過波面位相差とMTFの関係を図9に示す。なお、図9では、NDフィルターの透過率に起因する回折の影響は考慮せず、フィルタの厚み成分に起因した透過波面位相差によるMTF値の変化のみを示している。
【0033】
図9は、絞り開口の下側半分領域のフィルタの厚みをゼロから徐々に増加させ、透過波面位相差(膜厚に対応する)を6λまで変化させた場合の無収差理想レンズ系での白色光の波動光学的なMTFの計算値である。
【0034】
図9(a)は空間周波数50本/mm、図9(b)は空間周波数100本/mmの白色MTF値をグラフ表示している。グラフの縦軸はMTF値、横軸は波長λ=550nmでの透過波面位相差である。円形開口のFナンバーがF1,F1.4、F2、F2.8、F4、F5.6,F8の状態での各MTF値をグラフに示している。
【0035】
なお、撮像素子が解像できる限界の空間周波数は1/(2×画素ピッチ)までであるが、画質評価として重要な空間周波数は限界周波数の半分程度である。そこで、評価周波数を1/(4×画素ピッチ)と定義すると、画素ピッチ5μm、2.5μmにて各々50本/mm、100本/mmが評価周波数となる。
【0036】
図9では、位相差がλ/2の整数倍の位置にてMTFが落ち込むいわゆる谷の部分が発生している。550nm単波長であればいずれの谷の部分もMTFはゼロとなるが、他波長の影響を受けてゼロとはなっていない。
【0037】
さらに、谷部分同士を比べると、位相差が大きいほど他波長において図8(c)から離れた状態となるので、谷部分の位置におけるMTF値は上がる傾向にある。
【0038】
また、MTFのいわゆる山の部分同士を比べると、位相差が大きいほど他波長において図8(e)から離れた状態となるので、山部分の位置のMTFは下がる傾向にある。これにより、結果として、位相差が5λ程度からMTFの山部分と谷部分との差が小さくなり、収束傾向が見られる。
【0039】
位相差が5λ以上の領域は、具体的にはフィルタ端面が光路内に半分かかった状態(絞り開口の半分をフィルタで覆った状態)が当てはまる。また、位相差が2λ以内の領域は、具体的には光路内にフィルタが入りきった状態(絞り開口の全体をフィルタで覆った状態)にて蒸着膜を有する領域と蒸着膜がない領域とが混在する場合、もしくは膜厚の異なる複数の蒸着膜領域が混在する場合が当てはまる。
【0040】
これらの場合、MTFの低下を防ぐには、極力位相差を小さくすることが有効であり、位相差が5λ以上での性能よりも良くするには、蒸着膜を有する領域を通過する光と蒸着膜がない領域を通過する波長λの光の位相差をλ/4以下とするのがよい。
【0041】
特に、隣接する複数の蒸着膜を設けてフィルタを構成する場合は、極力位相差を低減するように各蒸着膜領域の膜構成を工夫するのがよい。この場合、隣接する蒸着膜領域の膜構成が異なることに起因するこれら領域を透過する波長λの光の位相差がλ/5以下の位相差として、MTFの低下を防ぐのが好ましい。
【0042】
ところで、NDフィルタとしては、フィルタ材料の中に光を吸収する有機色素または顔料を混ぜ練り込むタイプのものと、ベースとなる材料(ベース部材)の表面に光学薄膜を蒸着するものとが知られている。
【0043】
練り込みタイプNDフィルタの特徴は、均一な濃度のフィルタを大量に安価で加工可能な点であるが、蒸着タイプNDフィルタに比べて分光透過率の波長依存性が劣るため、撮像装置用の光量調節装置に用いられるNDフィルタとしては蒸着タイプが多い。
【0044】
蒸着タイプNDフィルタは、金属膜や誘電体膜を複数層重ねることで分光透過率の波長依存性を少なくすることができ、また蒸着膜に反射防止膜としての作用も併せ持たせることができる。
【0045】
(第1実施形態)
本発明の第1実施形態である、NDフィルタを有する光量調節装置を備えた撮像光学系の構成を図1に示す。
【0046】
図1において、11は被写体像を結像させるための対物レンズ、12はCCDやCMOS等の固体撮像素子であり、被写体像を光電変換して電気信号を出力する。12aは撮像素子12の受光面である。
【0047】
13は撮像光学系のFナンバーを変化させるための絞り装置、14は絞り装置13の絞り開口を通過する光量を減衰させるためのNDフィルタである。このNDフィルタ14は、透明な樹脂によりフィルム状に形成されたベース部材に、多層膜として光学膜を蒸着したものである。絞り装置13とNDフィルタ14により撮像光学系の光量を調節するための光量調節装置が構成される。
【0048】
なお、NDフィルタ14は絞り装置13の絞り羽根に一体的に取り付けられていてもよいし、絞り羽根とは別体として設けてもよい。絞り羽根と別体として設ける場合は、絞り装置13内に、NDフィルタ14を撮像光路に対して進退する方向に駆動するフィルタ駆動機構を設ける。いずれの場合も、不図示のアクチュエータにより撮像光路内に対して進退するよう駆動され、絞り開口の少なくとも一部を覆うことによって撮像素子12に至る光量を減衰させる。
【0049】
また、15は水晶ローパスフィルタを示し、16は撮像素子12の受光面12aの前方に設けられたカバーガラスを示す。撮像素子12は受光面12aとカバーガラス16を含むユニットとして構成されている。
【0050】
以上説明した構成要素のうち、撮像素子12およびカバーガラス16を除いた部分によって撮像光学系が構成される。この撮像光学系は、不図示の撮像装置本体(コンパクトデジタルカメラやレンズ一体型ビデオカメラ等)に一体的に設けられてもよいし、撮像装置本体(一眼レフレックスデジタルカメラやレンズ交換式ビデオカメラ等)に対して着脱可能に設けられてもよい。
【0051】
NDフィルタ14の蒸着例を図2に示す。図2はNDフィルタ14の断面を示しており、紙面左側が被写体側、紙面右側が撮像素子側である。NDフィルタ14が光路から退避している場合(絞り開口を全く覆っていない場合)に、光軸に近い端面が紙面上側の端面である。
【0052】
21は透明樹脂により形成されたフィルム状のベース部材、22,23,24はいずれも光量を減衰させるための光学膜としての多層膜である。多層膜22,23は透過率32%程度、多層膜24は透過率10%程度の膜である。これらの膜により、NDフィルタ14は、光の透過率が互いに異なる3つの領域2A,2B,2Cに分けられ、各領域の透過率は順に32%,10%,0.32%となる。
【0053】
また、各領域の面積sの比は、
s(2A):s(2B):s(2C)=1:1:2
としている。なお、図2では、ベース部材21および多層膜22,23,24の厚みを説明のために誇張表現している。
【0054】
また、多層膜23および多層膜24によってベース部材21の撮像素子側において互いに透過率(濃度)が異なる2つの濃度領域が形成されている。
【0055】
ベース部材21の材料としては、セルロースアセテート、ポリエチレンテレフタレート、塩化ビニル、アクリル樹脂等の合成樹脂フィルムが用いられ、厚みは50〜100μm程度である。
【0056】
また、多層膜22,23,24はベース部材21側からND層およびARコート層から形成される。さらに、多層膜23には、ベース部材21とND層との間に、ベース部材21の屈折率に近い誘電体膜を設けることで、隣接する多層膜24との透過波面位相差を低減することが可能である。
【0057】
また、図3には、NDフィルタ14が光量減衰のために移動する様子を示す。31は絞り装置13の絞り羽根により形成される絞り開口(小絞り状態)を示し、図3(a)はNDフィルタ14が絞り開口31より外に退避した状態を、(e)はNDフィルタ14の領域2Cが絞り開口31を覆いきった状態を、(b),(c),(d)は(a)から(e)に至る途中の状態を示す。 図3では、絞り羽根とNDフィルタ14とは別体駆動されており、絞り開口31の面積を一定としてNDフィルタ14によってのみ光量を減衰させている。これにより、小絞り回折によるMTFの低下を防いでいる。
【0058】
図2に示す実施形態では、NDフィルタ14のベース部材21の撮像素子側の面(ここでは当該面の全体が撮像素子に対して露出している)の全体に多層膜23,24を形成している。
【0059】
これは、撮像素子12のカバーガラス16等で反射して被写体側に戻った光が、NDフィルタ14(ベース部材21)の撮像素子側の面で反射して、再度、撮像素子12に入射することにより発生するゴーストを抑制するために有効である。
【0060】
図7にはゴーストの例を示す。71は対物レンズ11に入射して面反射ゴーストとなる光束を示している。光束71はカバーガラス16で反射した後、さらにNDフィルタ14の撮像素子側の面にて反射して撮像素子12の受光面12に至り、ゴースト像を形成する。
【0061】
このような経路のゴーストは、特にNDフィルタにおいてアフォーカルとなる対物レンズにて結像性が強く目立ちやすい。このゴーストの強度を低減させるには、NDフィルタ14においては撮像素子側の面に反射防止膜を構成するのが効果的である。
【0062】
本実施形態では、NDフィルタ14の撮像素子側の面全体に形成した多層膜23,24に反射防止膜としての機能を併せ持たせて光量抑制と反射防止の機能を両立させており、なお、複数のND膜で構成する場合は前述のようにその膜厚段差を位相差がλ/5以下となるように設定するのが好ましい。これにより位相差に起因するMTF劣化の低減とND反射によるゴースト強度低減の両立が可能となる。
【0063】
なお、ゴースト低減の観点からは、NDフィルタ14の被写体側の面にも反射防止効果を持つ蒸着膜(多層膜)を施すとさらによい。これは、NDフィルタ14の撮像素子側から入射した光のベース部材21での裏面反射を抑制するためである。しかも、撮像素子側から入射する光および裏面反射した光は、多層膜23,24での光量減衰作用を受けてその光量自体が少なくなり、撮像素子12に至る光量がきわめて小さくなる。
【0064】
しかしながら、所望の濃度パターンにて被写体側の面(光線有効部分)も全面覆うには、全体として濃度段数以上の膜数を要するため、コスト面で課題を有する。
【0065】
そこで、本実施形態では、ベース部材21の被写体側の面は一部のみ光量減衰機能と反射防止効果を有する多層膜22で覆い、所望の濃度段差を得るために必要最低限の蒸着回数にてゴースト強度の低減に効果のある構成としている。
【0066】
図2では、被写体側の面の50%を多層膜22で覆っている。なお、多層膜22を、ここを透過する光と多層膜のない領域を通過する光との透過位相差がλ/4以下となるように設定して、位相差に起因するMTFの劣化を極力低減するのが好ましい。
【0067】
(第2実施形態)
図4には、本発明の第2実施形態である光量調節装置に用いられるNDフィルタ14’を示す。図4において、41,42,43はいずれも光量を減衰させるためにベース部材21の被写体側(図中左側)の面および撮像素子側(図中右側)の面に蒸着された多層膜であり、多層膜41,42は透過率32%程度、多層膜43は透過率10%程度を有する。
【0068】
また、多層膜42および多層膜43によってベース部材21の撮像素子側の面(撮像素子に対して露出した領域)の全体が覆われ、多層膜41によってベース部材21の被写体側の面(光線有効部)の一部が覆われている。多層膜42および多層膜43によってベース部材21の撮像素子側において互いに透過率(濃度)が異なる2つの濃度領域が形成されている。
【0069】
これらの多層膜により、NDフィルタ14’は、透過率の異なる3つの領域4A,4B,4Cに分けられ、各領域の透過率は順に32%、10%、0.32%となる。
【0070】
また、各領域の面積sの比率は、
s(4A):s(4B):s(4C)=1:1:2
である。
【0071】
本実施形態のNDフィルタ14’の透過率(濃度)パターンは図2に示したNDフィルタ14と同じであるが、各多層膜の蒸着範囲が異なる。特に、ベース部材21の被写体側の面(光線有効部)のうち75%を多層膜41が占めている。
【0072】
これにより、図2に示したNDフィルタ14と同様に撮像素子側からの光がベース部材21の撮像素子側の面で反射するのを抑える効果が得られるとともに、図2のNDフィルタ14に比べてゴースト光のベース部材21での裏面反射を抑制できる範囲が広いというメリットがある。
(第3実施形態)
図5には、本発明の第3実施形態である光量調節装置に用いられるNDフィルタ14”を示す。図5において、51,52,53はいずれも光量を減衰させるためにベース部材21の被写体側(図中左側)の面および撮像素子側(図中右側)の面に蒸着された多層膜であり、多層膜51は透過率32%程度、多層膜53は透過率10%程度を有し、多層膜52は、多層膜53を透過する光との位相差が生じないように設けられた反射防止膜であり、透過率はベース部材21の透過率とほぼ同じ(100%に近い透過率)である。
【0073】
これらの多層膜51〜53により、NDフィルタ14”は、透過率は互いに異なる3つの領域5A,5B,5Cに分けられ、各領域の透過率は順に95%、32%、0.32%となる。
【0074】
また、各領域の面積sの比率は、
s(5A):s(5B):s(5C)=1:1:2
である。
【0075】
なお、領域5Aが透過率100%とならないのは主に被写体側の面での反射光があるからである。
【0076】
また、多層膜52および多層膜53によってベース部材21の撮像素子側の面(撮像素子に対して露出した領域)の全体が覆われ、多層膜51によってベース部材21の被写体側の面(光線有効部)の一部が覆われている。多層膜52および多層膜53によってベース部材21の撮像素子側において互いに透過率(濃度)が異なる2つの濃度領域が形成されている。
【0077】
図4に示したNDフィルタ14’と異なるのは、多層膜52をND機能を有さない反射防止膜とした点である。このようにすると、紙面上部のフィルタ先端が撮像光路に挿入されても光量を減衰させる効果がないため、図4のフィルタ構成と比べると、領域5A,5Bにて光量を減衰させるには、NDフィルタ14”の撮像光路への挿入量を増やす必要がある。これにより、NDフィルタ14”の先端が撮像光路に半掛りする頻度が減る。前述のように、フィルタ先端が撮像光路に半掛りしたときは、図9の位相差が5λ以上におけるMTF低下を招くが、本実施形態では、この頻度を減らす効果がある。
【0078】
また、本実施形態においても、第2実施形態のNDフィルタ14’と同様の効果がある。
【0079】
(第4実施形態)
図6には、本発明の第4実施形態である光量調節装置に用いられるNDフィルタ14”’を示す。図6において、61,62,63はいずれも光量を減衰させるための多層膜であり、多層膜61,63は透過率32%程度、多層膜62は透過率10%程度を有する。
【0080】
これらの多層膜61〜63により、NDフィルタ14”’は、透過率が互いに異なる3つの領域6A,6B,6Cに分けられ、各透過率は順に32%、10%、0.32%となる。
【0081】
各領域の面積sの比率は、
s(6A):s(6B):s(6C)=1:1:2
である。
【0082】
また、多層膜63によってベース部材21の撮像素子側の面(撮像素子に対して露出した領域)の全体が覆われ、多層膜61および多層膜62によってベース部材21の被写体側の面(光線有効部)の一部が覆われている。多層膜61および多層膜62によってベース部材21の被写体側において互いに透過率(濃度)が異なる2つの濃度領域が形成されている。
【0083】
本実施形態のNDフィルタ14”’における透過率(濃度)パターンは図4に示したNDフィルタ14’と同じであるが、被写体側の多層膜を2種類の濃度とし、撮像素子側の多層膜を1種類の濃度とした点が異なる。
【0084】
NDフィルタを安価に量産するには、大きめの透明シートに複数のフィルタ分の多層膜を蒸着し、NDフィルタとして必要な大きさに切断するのが有効である。この際、図6に示すようなフィルタ構成とすると、多層膜63は切断寸法内に膜境界がないため、透明シート全体に均一に蒸着した後切断すればよく、撮像素子側の面に関しては複雑な蒸着マスクを必要としないというメリットがある。
ここで、以上説明した各実施形態においては、NDフィルタに関して以下の条件式を満足するのが好ましい。
【0085】
0.2<S11/S<0.6  …(1)
ただし、Sはベース部材21の光線有効部の面積、S11はベース部材21の被写体側の面において多層膜で覆われていない領域の面積である。
【0086】
条件式(1)は、NDフィルタの被写体側の面の多層膜がない領域の面積を規定するものである。条件式(1)の下限を超えて多層膜のない領域の面積が小さすぎると、多層膜がある領域と多層膜のない領域との境界(膜境界)位置がフィルタ先端に近づく。このようにすると、絞り開口にフィルタ先端と上記膜境界とがともに掛かりやすくなる。
【0087】
フィルタ先端は、図9に示した位相差5λ以上におけるMTF低下要因となり、膜境界は図2に示したλ/4以下におけるMTF低下要因となる。したがって、絞り開口にフィルタ先端と上記膜境界とがともに掛かると、絞り開口内にMTF低下要因が複数存在することとなり、MTF低下が顕著となるため好ましくない。
【0088】
また、条件式(1)の上限を超えて多層膜のない領域の面積が大きすぎると、前述したベース部材21での裏面反射を抑制するための範囲が狭くなり、ゴースト低減効果が薄れて好ましくない。
【0089】
以下の表1には、上記各実施形態における条件式(1)の値を示す。
【0090】
【表1】

Figure 2004029577
【0091】
なお、上記各実施形態にて説明したNDフィルタに設けられる多層膜の数および各多層膜の透過率はいずれも例に過ぎず、これら以外の多層膜数および透過率を選択してもよい。
【0092】
また、上記各実施形態では、NDフィルタに多層膜を形成した場合について説明したが、必ずしも多層膜を形成する必要はなく、単層膜でもよい。
【0093】
【発明の効果】
以上説明したように本発明によれば、多濃度の光学フィルタでの反射に起因するゴーストの発生を抑制してクリアな画像を撮影できる光量調節装置、撮像光学系および撮像装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態である撮像光学系の構成を示す断面図。
【図2】上記第1実施形態の撮像光学系内に設けられた光量調節装置のNDフィルタの構成を示す断面図。
【図3】上記NDフィルタが絞り開口に対して移動する様子を示す図。
【図4】本発明の第3実施形態である光量調節装置のNDフィルタの構成を示す断面図。
【図5】本発明の第3実施形態である光量調節装置のNDフィルタの構成を示す断面図。
【図6】本発明の第4実施形態である光量調節装置のNDフィルタの構成を示す断面図。
【図7】ゴースト発生例を示す撮像光学系の断面図。
【図8】透過波面位相差が光学性能へ与える影響を説明するための図。
【図9】透過波面位相差と白色MTF値の関係を示す図。
【符号の説明】
11 対物レンズ
12 固体撮像素子
13 光量調節装置
14,14’,14”,14”’ NDフィルタ
15 水晶ローパスフィルタ
16 カバーガラス
21 ベース部材
22,23,24,41〜43,51〜53,61〜63 多層膜
31 絞り開口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical filter mounted on an imaging device or an imaging optical system such as a video camera and a digital still camera.
[0002]
[Prior art]
2. Description of the Related Art In an imaging optical system of an imaging device such as a video camera, a light amount adjusting device that adjusts a light amount by changing an opening diameter formed by a plurality of aperture blades is used. In such a light amount adjusting device, if the aperture diameter is too small, optical performance degradation due to light diffraction becomes a problem.
[0003]
Therefore, in order to prevent the aperture diameter from becoming too small even under a bright subject condition, a light amount adjusting device using both an aperture blade and an ND (Neutral Density) filter has been proposed.
[0004]
For example, in Japanese Patent No. 2,592,949, an ND filter that covers an opening formed by an aperture blade is attached to the aperture blade, and the ND filter includes a plurality of density regions set to different uniform transmittances. The provided light amount adjusting device is disclosed. The plurality of regions of the ND filter are set so that the transmittance increases in order from the outside to the inside of the opening.
[0005]
Japanese Patent Application Laid-Open No. Sho 52-117127 discloses that a mechanical aperture blade is moved from an open state to a predetermined aperture area, and that a small aperture control below a certain aperture value continuously changes light transmittance depending on shading. There has been proposed a light amount adjusting device that causes the ND filter to enter the opening in order from the side with the highest transmittance.
[0006]
Further, Japanese Patent Application Laid-Open No. 2000-106649 proposes an imaging apparatus including an exposure control mechanism for reducing the influence of the light transmittance of an ND filter having a plurality of density regions on optical performance.
[0007]
By the way, in an imaging apparatus that photoelectrically converts and captures a subject image using an imaging device, part of the light that passes through the ND filter and enters the imaging device is partially exposed to the surface of the imaging device (cover glass, quartz low-pass filter). , The surface of the infrared cut filter, etc.), returns to the subject side, and is reflected again on the imaging element side surface or the object side surface of the ND filter, and the reflected light is incident on the imaging element, thereby causing a ghost. May occur. As a countermeasure against this, Japanese Patent Application Laid-Open No. 2000-36917 proposes a light amount adjusting device in which an anti-reflection film is provided on a side surface of an image sensor of an ND filter.
[0008]
[Problems to be solved by the invention]
However, Japanese Patent Application Laid-Open No. 2000-36917 does not disclose a specific method for preventing reflection in the case of a multi-density ND filter, that is, for preventing ghost from occurring.
[0009]
In order to realize a multi-density ND filter, it is conceivable to form a multilayer film having a light amount attenuating effect with different areas on both surfaces of a transparent member serving as a base. However, such a multilayer film is used. There has not yet been proposed a configuration for preventing reflection in a multi-density ND filter.
[0010]
In addition, the cause of the deterioration of the optical performance in the intermediate stop state is the influence of diffraction caused by the transmittance difference in the ND filter, but the transmitted wavefront phase difference caused by the thickness component of the ND filter is also greatly affected.
[0011]
It is empirically known that the optical performance deteriorates when a thick filter covers a part of the aperture opening.However, it is analyzed how the thickness component of the filter affects the optical performance, There are no known examples of such measures.
[0012]
As a workaround for the influence of the thickness of the ND filter on the optical performance, Japanese Patent Application Laid-Open No. 6-259971 discloses a method in which an ND filter having a transparent portion and a portion where the transmittance changes continuously or stepwise is fixed to a circular diaphragm. There has been proposed a configuration in which the amount of transmitted light is adjusted by moving the opening so as to cover the entire opening.
[0013]
However, the light amount adjusting device proposed in Japanese Patent Application Laid-Open No. 6-265971 focuses only on a large phase difference between a portion that passes through the filter and a portion that does not pass through the filter, and realizes an ND filter that actually has a transmittance change. At this time, there is no description about a small transmitted wavefront phase difference equal to or less than the wavelength λ of light due to a small change in thickness or a small change in refractive index that would occur due to a change in transmittance.
[0014]
Accordingly, the present invention provides a light amount adjusting device and an imaging optical device that use a multi-density optical filter and reduce ghost generated when light reflected by the image sensor is further reflected by the optical filter and incident on the image sensor. It is an object to provide a system and an imaging device.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in order to attenuate the amount of light that is provided in an imaging optical system that forms a subject image on an imaging element and that covers at least a part of an aperture opening and reaches the imaging element. In the light amount adjusting device including an optical filter to be used, the optical filter includes a base member having a light-transmitting property, an image-side optical film that covers an entire exposed area of the base member on the image sensor side, and a base member. A plurality of density regions having different light transmittances in at least one of the image-side optical film and the subject-side optical film. Is formed.
[0016]
Thus, by providing the optical film (image-side optical film) on the surface of the base member on the image sensor side (the entire area exposed to the image sensor), the light reflected by the image sensor on the image sensor side of the base member It is possible to suppress the reflection on the surface and reduce the occurrence of ghost.
[0017]
In addition, by making each of the plurality of density regions have a light transmittance lower than the light transmittance of the base member, the light amount of the light that reaches the subject-side surface of the base member out of the light reflected by the image sensor. In addition, the amount of light reaching the subject-side surface of the base member can be suppressed, and the occurrence of ghost can be more effectively reduced.
[0018]
Here, when S is the area of the above-mentioned effective ray portion, and S11 is the area of the region of the effective ray portion on the subject side that is not covered with the subject-side optical film,
0.2 <S11 / S <0.6
It is better to satisfy the following conditions.
[0019]
Further, the film configuration of each of the plurality of concentration regions is different from each other, and the phase difference of light transmitted through these concentration regions due to the difference in the film configuration of the concentration regions adjacent to each other is suppressed to 1 / 5λ or less. The phase difference between the light transmitted through the subject-side optical film and transmitted through the base member and the light transmitted through the base member through a region of the base-side surface on the subject side where the subject-side optical film is not formed is calculated. By controlling to に λ or less, it is possible to suppress a decrease in MTF (Modulation Transfer Function).
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Before describing the light amount adjusting device and the imaging optical system according to the embodiment of the present invention, how the transmitted wavefront phase difference affects an image will be described.
[0021]
First, what phenomenon occurs optically when a thick filter covers a part of the aperture will be described with reference to FIG.
[0022]
FIGS. 8A to 8E show a case in which a filter P and an aperture stop AS are arranged in front (on the object side) of an ideal lens L having no aberration, and parallel light rays, which are plane waves of monochromatic light having a wavelength λ, are incident. The point image intensity distribution Q near the geometrical optical imaging point I is shown.
[0023]
FIG. 8A shows a state where the filter P has a thickness of zero and does not affect the transmitted wavefront. In this case, the intensity distribution Q becomes a diffraction image based on the relationship between the F number F and the wavelength λ of the light beam.
[0024]
When the aperture stop AS has a circular aperture, one high-intensity point image Qa having a radius of 1.22 Fλ is formed, and a ring-like weak light diffracted light is formed around the point image Qa. Here, the thickness of the lower region of the filter P corresponding to half of the aperture of the aperture stop AS is increased by a small amount, and as shown in FIG. 8B, the transmitted wavefront phase difference becomes (4) λ. When set to, a point image Qb with a relatively high intensity appears beside the point image with a high intensity.
[0025]
When the thickness of the lower region of the filter P is further increased and the phase difference of the transmitted wavefront is set to (2/4) λ as shown in FIG. 8C, the intensity distribution Q does not become one point image. Then, two point images Qc having large intensities separated vertically in the paper surface appear. This is because the phase of the wavefront of the light passing through the upper half of the pupil of the paper and the wavefront of the lower half of the paper among the light to be condensed at the geometrical optical imaging point I are shifted by (1/2) λ. Therefore, a wave canceling phenomenon occurs in the wave optics, and the intensity on the image forming point I becomes zero. On the other hand, since the light energy to be condensed on the imaging point I does not disappear according to the law of conservation of energy, the light energy is dispersed in the vertical direction of the imaging point I and converges on two points.
[0026]
When the thickness of the lower region of the filter P is further increased and the phase difference of the transmitted wavefront is set to (3/4) λ as shown in FIG. 8D, the upper point image Qc of the two point images is obtained. Is weaker than the intensity of the lower point image Qc.
[0027]
Further, if the thickness of the lower region of the filter P is increased and the transmitted wavefront phase difference is set to (4/4) λ as shown in FIG. 8E, the intensity distribution Q becomes one point image Qe again. It becomes a diffraction image and returns to the state similar to FIG.
[0028]
When the thickness of the lower region of the filter P is further increased, the intensity distribution Q periodically changes from the state shown in FIGS. 8A to 8D according to the transmitted wavefront phase difference. .
[0029]
The interval Δy between the two-point images Qc separated when the transmitted wavefront phase difference is (1/2) λ shown in FIG.
Δy ≒ 2Fλ
And is proportional to the F number and the wavelength λ. For example, when the F number F = 4 and the wavelength λ = 550 nm, the interval between the two point images is
Δy ≒ 4.4 μm
become. This is based on the same principle as that of the low-pass filter of the two-point separation. The same effect as when a low-pass filter with a cutoff frequency of 1 / (2Δy) = 114 lines / mm is applied, and the MTF of the optical system deteriorates. Means that.
[0030]
Incidentally, the light actually used in the imaging optical system is not monochromatic light, but white light in which lights of various wavelengths are mixed. In this case, in FIG. 8C, the thickness of the filter P at which the intensity becomes zero at the image forming point differs for each wavelength.
[0031]
Conversely, for a specific filter thickness, the phase difference varies depending on the wavelength, so that when the specific wavelength is in the state of FIG. 8C, the wavelength that deviates from this wavelength is closer to FIG. 8B or 8D. The state is shifted. Since white light is affected by the intensity distribution of each wavelength, even if the center wavelength corresponds to FIG. 8C, the intensity does not become zero as white light.
[0032]
A color weight having a sensitivity peak near 550 nm in the range of visible light of 400 nm to 700 nm in accordance with the standard relative luminosity is set as white light, and the relationship between the transmitted wavefront phase difference and the MTF in white light is shown in FIG. Note that FIG. 9 does not consider the influence of diffraction caused by the transmittance of the ND filter, and shows only the change in the MTF value due to the transmitted wavefront phase difference caused by the thickness component of the filter.
[0033]
FIG. 9 shows the white color in the ideal aberration-free lens system when the thickness of the filter in the lower half region of the aperture opening is gradually increased from zero and the transmitted wavefront phase difference (corresponding to the film thickness) is changed to 6λ. This is a calculated value of the MTF of light wave optics.
[0034]
FIG. 9A is a graph showing white MTF values at a spatial frequency of 50 lines / mm, and FIG. 9B is a graph showing white MTF values at a spatial frequency of 100 lines / mm. The vertical axis of the graph is the MTF value, and the horizontal axis is the transmitted wavefront phase difference at a wavelength λ = 550 nm. The MTF values in the state where the F number of the circular aperture is F1, F1.4, F2, F2.8, F4, F5.6, and F8 are shown in the graph.
[0035]
Note that the limit spatial frequency at which the image sensor can resolve is up to 1 / (2 × pixel pitch), but the spatial frequency important for image quality evaluation is about half of the limit frequency. Thus, if the evaluation frequency is defined as 1 / (4 × pixel pitch), the evaluation frequency is 50 lines / mm and 100 lines / mm at a pixel pitch of 5 μm and 2.5 μm, respectively.
[0036]
In FIG. 9, a so-called valley portion where the MTF falls at a position where the phase difference is an integral multiple of λ / 2 occurs. In the case of a single wavelength of 550 nm, the MTF is zero at any valley portion, but is not zero due to the influence of other wavelengths.
[0037]
Further, when comparing the valley portions, the larger the phase difference, the more the wavelength is different from that of FIG. 8C at other wavelengths, so that the MTF value at the position of the valley portion tends to increase.
[0038]
Further, comparing the so-called peak portions of the MTF, the larger the phase difference is, the more the wavelength is different from that of FIG. 8E at other wavelengths, so that the MTF at the position of the peak portion tends to decrease. As a result, as a result, the difference between the peak and the valley of the MTF becomes small when the phase difference is about 5λ, and a convergence tendency is observed.
[0039]
Specifically, a region where the phase difference is 5λ or more corresponds to a state where the filter end face is half in the optical path (a state where half of the aperture is covered with the filter). In addition, the region where the phase difference is within 2λ is, specifically, a region having a vapor deposition film in a state where the filter has completely entered the optical path (a state where the entire aperture opening is covered with the filter) and a region having no vapor deposition film. Are applied, or a case where a plurality of deposited film regions having different film thicknesses are applied.
[0040]
In these cases, it is effective to reduce the phase difference as much as possible in order to prevent the MTF from decreasing. In order to improve the performance when the phase difference is 5λ or more, light passing through the region having a deposition film and deposition It is preferable that the phase difference of the light of wavelength λ passing through the region without the film be λ / 4 or less.
[0041]
In particular, when a filter is formed by providing a plurality of adjacent vapor-deposited films, it is preferable to devise a film configuration of each vapor-deposited film region so as to reduce a phase difference as much as possible. In this case, it is preferable to prevent the MTF from being lowered by setting the phase difference of the light having the wavelength λ transmitted through these regions caused by the difference in the film configuration of the adjacent deposited film regions to be λ / 5 or less.
[0042]
As the ND filter, there are known a type in which an organic dye or a pigment which absorbs light is mixed and kneaded in a filter material, and a type in which an optical thin film is deposited on the surface of a base material (base member). ing.
[0043]
The feature of the kneading type ND filter is that a large number of filters having a uniform density can be processed inexpensively. As the ND filter used for the adjusting device, there are many vapor deposition types.
[0044]
The deposition type ND filter can reduce the wavelength dependence of the spectral transmittance by stacking a plurality of metal films and dielectric films, and can also have the deposited film also function as an antireflection film.
[0045]
(1st Embodiment)
FIG. 1 shows a configuration of an imaging optical system including a light amount adjusting device having an ND filter according to a first embodiment of the present invention.
[0046]
In FIG. 1, reference numeral 11 denotes an objective lens for forming a subject image, and reference numeral 12 denotes a solid-state image sensor such as a CCD or a CMOS, which photoelectrically converts the subject image and outputs an electric signal. Reference numeral 12a denotes a light receiving surface of the image sensor 12.
[0047]
Reference numeral 13 denotes a diaphragm device for changing the F-number of the imaging optical system, and 14 denotes an ND filter for attenuating the amount of light passing through the diaphragm opening of the diaphragm device 13. The ND filter 14 is obtained by depositing an optical film as a multilayer film on a base member formed of a transparent resin into a film shape. The stop device 13 and the ND filter 14 constitute a light amount adjusting device for adjusting the light amount of the imaging optical system.
[0048]
The ND filter 14 may be integrally attached to the diaphragm blade of the diaphragm device 13, or may be provided separately from the diaphragm blade. When provided separately from the aperture blades, a filter drive mechanism that drives the ND filter 14 in a direction to advance and retreat with respect to the imaging optical path is provided in the aperture device 13. In any case, the actuator is driven by an actuator (not shown) so as to advance and retreat in the imaging optical path, and attenuates the amount of light reaching the imaging element 12 by covering at least a part of the aperture opening.
[0049]
Reference numeral 15 denotes a quartz low-pass filter, and reference numeral 16 denotes a cover glass provided in front of the light receiving surface 12a of the image sensor 12. The imaging device 12 is configured as a unit including a light receiving surface 12a and a cover glass 16.
[0050]
Of the components described above, the imaging optical system is configured by a portion excluding the imaging element 12 and the cover glass 16. This imaging optical system may be provided integrally with an imaging device body (not shown) (such as a compact digital camera or a lens-integrated video camera) or an imaging device body (a single-lens reflex digital camera or a lens-interchangeable video camera). Etc.).
[0051]
FIG. 2 shows an example of deposition of the ND filter 14. FIG. 2 shows a cross section of the ND filter 14, in which the left side of the paper is the subject side and the right side of the paper is the image sensor side. When the ND filter 14 is retracted from the optical path (when the ND filter 14 does not cover the aperture opening at all), the end face near the optical axis is the end face on the upper side of the paper.
[0052]
Reference numeral 21 denotes a film-like base member formed of a transparent resin, and reference numerals 22, 23, and 24 denote multilayer films as optical films for attenuating the amount of light. The multilayer films 22 and 23 have a transmittance of about 32%, and the multilayer film 24 has a transmittance of about 10%. With these films, the ND filter 14 is divided into three regions 2A, 2B, and 2C having different light transmittances, and the transmittance of each region is 32%, 10%, and 0.32%, respectively.
[0053]
The ratio of the area s of each region is
s (2A): s (2B): s (2C) = 1: 1: 2
And In FIG. 2, the thicknesses of the base member 21 and the multilayer films 22, 23, 24 are exaggerated for the sake of explanation.
[0054]
Further, two density regions having different transmittances (densities) are formed on the image pickup element side of the base member 21 by the multilayer film 23 and the multilayer film 24.
[0055]
As a material of the base member 21, a synthetic resin film such as cellulose acetate, polyethylene terephthalate, vinyl chloride, and acrylic resin is used, and has a thickness of about 50 to 100 μm.
[0056]
The multilayer films 22, 23, and 24 are formed from the ND layer and the AR coat layer from the base member 21 side. Further, by providing a dielectric film close to the refractive index of the base member 21 between the base member 21 and the ND layer in the multilayer film 23, the transmitted wavefront phase difference with the adjacent multilayer film 24 can be reduced. Is possible.
[0057]
FIG. 3 shows how the ND filter 14 moves to attenuate the amount of light. Reference numeral 31 denotes an aperture opening (small aperture state) formed by the aperture blades of the aperture device 13. FIG. 3A shows a state in which the ND filter 14 has retracted outside the aperture opening 31, and FIG. 2C shows a state in which the area 2C covers the aperture 31 and (b), (c), and (d) show states in the course of (a) to (e). In FIG. 3, the diaphragm blade and the ND filter 14 are driven separately, and the light amount is attenuated only by the ND filter 14 while keeping the area of the diaphragm opening 31 constant. This prevents a decrease in MTF due to small-aperture diffraction.
[0058]
In the embodiment shown in FIG. 2, multilayer films 23 and 24 are formed on the entire surface of the base member 21 of the ND filter 14 on the image sensor side (here, the entire surface is exposed to the image sensor). ing.
[0059]
This is because light reflected by the cover glass 16 or the like of the image sensor 12 and returned to the subject side is reflected by the surface of the ND filter 14 (base member 21) on the image sensor side and enters the image sensor 12 again. This is effective for suppressing ghosts caused by the above.
[0060]
FIG. 7 shows an example of a ghost. Reference numeral 71 denotes a light beam which enters the objective lens 11 and becomes a surface reflection ghost. After being reflected by the cover glass 16, the light beam 71 is further reflected by the surface of the ND filter 14 on the image sensor side, reaches the light receiving surface 12 of the image sensor 12, and forms a ghost image.
[0061]
Ghosts in such a path are particularly noticeable in image forming properties with an afocal objective lens in an ND filter. In order to reduce the intensity of the ghost, it is effective to form an anti-reflection film on the surface of the ND filter 14 on the image sensor side.
[0062]
In the present embodiment, the multilayer films 23 and 24 formed on the entire surface of the ND filter 14 on the image sensor side have a function as an anti-reflection film so as to achieve both light quantity suppression and anti-reflection functions. When a plurality of ND films are used, it is preferable to set the film thickness step so that the phase difference is λ / 5 or less as described above. This makes it possible to reduce MTF degradation due to the phase difference and to reduce ghost intensity due to ND reflection.
[0063]
From the viewpoint of ghost reduction, it is more preferable to apply a vapor deposition film (multilayer film) having an antireflection effect to the surface of the ND filter 14 on the subject side. This is to suppress the reflection of light incident from the image sensor side of the ND filter 14 on the back surface of the base member 21. In addition, the light incident from the image sensor side and the light reflected from the back surface are subjected to the light amount attenuating action in the multilayer films 23 and 24, so that the light amount itself decreases, and the light amount reaching the image sensor 12 becomes extremely small.
[0064]
However, in order to cover the entire surface on the object side (light ray effective portion) with the desired density pattern, the number of films equal to or greater than the number of density steps is required as a whole, and thus there is a problem in cost.
[0065]
Therefore, in the present embodiment, only a part of the surface of the base member 21 on the subject side is covered with the multilayer film 22 having the light amount attenuation function and the anti-reflection effect, and the number of evaporations is the minimum necessary to obtain a desired density step. The configuration is effective in reducing ghost strength.
[0066]
In FIG. 2, 50% of the object side surface is covered with the multilayer film 22. The multilayer film 22 is set so that the transmission phase difference between the light passing therethrough and the light passing through the region without the multilayer film is λ / 4 or less, so that the deterioration of the MTF due to the phase difference is minimized. Preferably, it is reduced.
[0067]
(2nd Embodiment)
FIG. 4 shows an ND filter 14 'used in the light amount adjusting device according to the second embodiment of the present invention. In FIG. 4, reference numerals 41, 42, and 43 denote multilayer films deposited on the surface of the base member 21 on the subject side (left side in the figure) and on the imaging element side (right side in the figure) to attenuate the light amount. The multilayer films 41 and 42 have a transmittance of about 32%, and the multilayer film 43 has a transmittance of about 10%.
[0068]
Further, the entire surface of the base member 21 on the image sensor side (region exposed to the image sensor) is covered with the multilayer film 42 and the multilayer film 43, and the surface of the base member 21 on the subject side (light-effective area) is covered with the multilayer film 41. Part) is covered. The multilayer film 42 and the multilayer film 43 form two density regions having different transmittances (densities) on the imaging element side of the base member 21.
[0069]
With these multilayer films, the ND filter 14 'is divided into three regions 4A, 4B, and 4C having different transmittances, and the transmittances of the respective regions are 32%, 10%, and 0.32%, respectively.
[0070]
The ratio of the area s of each region is
s (4A): s (4B): s (4C) = 1: 1: 2
It is.
[0071]
The transmittance (density) pattern of the ND filter 14 'of this embodiment is the same as that of the ND filter 14 shown in FIG. 2, but the deposition range of each multilayer film is different. In particular, the multilayer film 41 occupies 75% of the subject-side surface (light-effective portion) of the base member 21.
[0072]
Thereby, similarly to the ND filter 14 shown in FIG. 2, the effect of suppressing the light from the image sensor side from being reflected on the surface of the base member 21 on the image sensor side can be obtained, and compared with the ND filter 14 of FIG. Therefore, there is an advantage that the range in which the reflection of the ghost light on the back surface of the base member 21 can be suppressed is wide.
(Third embodiment)
FIG. 5 shows an ND filter 14 ″ used in the light amount adjusting device according to the third embodiment of the present invention. In FIG. 5, reference numerals 51, 52, and 53 denote an object on the base member 21 for attenuating the light amount. The multilayer film 51 has a transmittance of about 32%, and the multilayer film 53 has a transmittance of about 10%. The multilayer film 52 is an anti-reflection film provided so as not to cause a phase difference with light transmitted through the multilayer film 53, and has a transmittance substantially equal to the transmittance of the base member 21 (a transmittance close to 100%). ).
[0073]
By these multilayer films 51 to 53, the ND filter 14 ″ is divided into three regions 5A, 5B, and 5C having different transmittances, and the transmittance of each region is 95%, 32%, and 0.32%, respectively. Become.
[0074]
The ratio of the area s of each region is
s (5A): s (5B): s (5C) = 1: 1: 2
It is.
[0075]
Note that the transmittance of the area 5A does not become 100% mainly because there is light reflected on the surface on the subject side.
[0076]
The entire surface of the base member 21 on the image sensor side (the area exposed to the image sensor) is covered by the multilayer films 52 and 53, and the surface of the base member 21 on the subject side (light-effective area) is covered by the multilayer film 51. Part) is covered. The multilayer film 52 and the multilayer film 53 form two density regions having different transmittances (densities) on the imaging element side of the base member 21.
[0077]
The difference from the ND filter 14 'shown in FIG. 4 is that the multilayer film 52 is an anti-reflection film having no ND function. In this case, even if the filter tip at the top of the paper is inserted into the imaging optical path, there is no effect of attenuating the light amount. Therefore, compared to the filter configuration of FIG. It is necessary to increase the amount of insertion of the filter 14 "into the imaging optical path. This reduces the frequency with which the tip of the ND filter 14" half-hangs on the imaging optical path. As described above, when the filter tip is half-hung on the imaging optical path, the MTF is reduced when the phase difference in FIG. 9 is 5λ or more, but this embodiment has the effect of reducing this frequency.
[0078]
In addition, this embodiment has the same effect as the ND filter 14 'of the second embodiment.
[0079]
(Fourth embodiment)
Fig. 6 shows an ND filter 14 "'used in a light amount adjusting device according to a fourth embodiment of the present invention. In Fig. 6, 61, 62 and 63 are multilayer films for attenuating the light amount. The multilayer films 61 and 63 have a transmittance of about 32%, and the multilayer film 62 has a transmittance of about 10%.
[0080]
With these multilayer films 61 to 63, the ND filter 14 "'is divided into three regions 6A, 6B, and 6C having different transmittances, and the transmittances are 32%, 10%, and 0.32%, respectively. .
[0081]
The ratio of the area s of each region is
s (6A): s (6B): s (6C) = 1: 1: 2
It is.
[0082]
The entire surface of the base member 21 on the image sensor side (the area exposed to the image sensor) is covered with the multilayer film 63, and the surface of the base member 21 on the subject side (light-effective area) is covered with the multilayer films 61 and 62. Part) is covered. The multilayer film 61 and the multilayer film 62 form two density regions having different transmittances (densities) on the subject side of the base member 21.
[0083]
The transmittance (density) pattern of the ND filter 14 "" of the present embodiment is the same as that of the ND filter 14 'shown in FIG. 4 except that the multilayer film on the object side has two types of densities, and the multilayer film on the image sensor side. Are different from each other.
[0084]
In order to mass-produce the ND filter at low cost, it is effective to deposit a multilayer film for a plurality of filters on a large transparent sheet and cut the ND filter into a required size. At this time, if the filter configuration as shown in FIG. 6 is used, since the multilayer film 63 has no film boundary within the cutting dimension, it is sufficient to uniformly vapor-deposit the entire transparent sheet and then cut, and the surface on the image sensor side is complicated. There is an advantage that a simple evaporation mask is not required.
Here, in each of the embodiments described above, it is preferable that the ND filter satisfies the following conditional expressions.
[0085]
0.2 <S11 / S <0.6 (1)
Here, S is the area of the effective ray portion of the base member 21, and S11 is the area of the region of the base member 21 on the object side that is not covered with the multilayer film.
[0086]
Conditional expression (1) defines the area of the region on the object side of the ND filter where there is no multilayer film. If the area of the region without the multilayer film is too small below the lower limit of the conditional expression (1), the boundary (film boundary) between the region with the multilayer film and the region without the multilayer film approaches the tip of the filter. This makes it easier for both the filter tip and the film boundary to hang over the aperture opening.
[0087]
The filter tip causes an MTF reduction at a phase difference of 5λ or more shown in FIG. 9, and a membrane boundary causes an MTF reduction at a wavelength of λ / 4 or less shown in FIG. Therefore, if both the filter tip and the film boundary hang over the aperture opening, there are a plurality of MTF reduction factors in the aperture opening, and the MTF reduction becomes remarkable, which is not preferable.
[0088]
If the area of the region without the multilayer film is too large beyond the upper limit of the conditional expression (1), the range for suppressing the back surface reflection on the base member 21 described above becomes narrow, and the ghost reduction effect is weakened. Absent.
[0089]
Table 1 below shows values of the conditional expression (1) in each of the above embodiments.
[0090]
[Table 1]
Figure 2004029577
[0091]
Note that the number of multilayer films and the transmittance of each multilayer film provided in the ND filter described in each of the above embodiments are merely examples, and other numbers of multilayer films and transmittances may be selected.
[0092]
Further, in each of the above embodiments, the case where a multilayer film is formed on the ND filter has been described. However, it is not always necessary to form a multilayer film, and a single layer film may be used.
[0093]
【The invention's effect】
As described above, according to the embodiments of the present invention, it is possible to realize a light amount adjustment device, an imaging optical system, and an imaging device that can capture a clear image while suppressing generation of ghost due to reflection by a multi-density optical filter. it can.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of an imaging optical system according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a configuration of an ND filter of the light amount adjusting device provided in the imaging optical system according to the first embodiment.
FIG. 3 is a diagram showing a state in which the ND filter moves with respect to a diaphragm aperture.
FIG. 4 is a cross-sectional view illustrating a configuration of an ND filter of a light amount adjusting device according to a third embodiment of the invention.
FIG. 5 is a cross-sectional view illustrating a configuration of an ND filter of a light quantity adjusting device according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view illustrating a configuration of an ND filter of a light amount adjusting device according to a fourth embodiment of the present invention.
FIG. 7 is a cross-sectional view of an imaging optical system showing an example of occurrence of a ghost.
FIG. 8 is a diagram for explaining the effect of a transmitted wavefront phase difference on optical performance.
FIG. 9 is a diagram illustrating a relationship between a transmitted wavefront phase difference and a white MTF value.
[Explanation of symbols]
11 Objective lens
12 solid-state imaging device
13 Light intensity adjustment device
14, 14 ', 14 ", 14"' ND filter
15 Crystal low-pass filter
16 Cover glass
21 Base member
22,23,24,41-43,51-53,61-63 Multilayer film
31 Aperture aperture

Claims (7)

撮像素子上に被写体像を形成する撮像光学系内に設けられ、絞り開口の少なくとも一部を覆って前記撮像素子に到達する光量を減衰させる光学フィルタを有する光量調節装置であって、
前記光学フィルタは、
光透過性を有するベース部材と、
このベース部材の撮像素子側の面における露出した全領域を覆う像側光学膜と、
前記ベース部材の被写体側の面における光線有効部の一部領域を覆う被写体側光学膜とを有し、
前記像側光学膜と被写体側光学膜のうち少なくとも一方が、光透過率が互いに異なる複数の濃度領域を有することを特徴とする光量調節装置。
A light amount adjustment device provided in an image pickup optical system that forms a subject image on an image pickup device, and having an optical filter that attenuates a light amount reaching the image pickup device by covering at least a part of an aperture opening,
The optical filter,
A base member having optical transparency,
An image-side optical film that covers the entire exposed area of the surface of the base member on the image sensor side;
A subject-side optical film that covers a partial area of the ray effective portion on the subject-side surface of the base member,
At least one of the image-side optical film and the subject-side optical film has a plurality of density regions having different light transmittances from each other.
前記光学フィルタにおける前記複数の濃度領域のいずれもが、前記ベース部材の光透過率よりも低い光透過率を有することを特徴とする請求項1に記載の光量調節装置。The light amount adjusting device according to claim 1, wherein each of the plurality of density regions in the optical filter has a light transmittance lower than a light transmittance of the base member. 以下の条件を満足することを特徴とする請求項1に記載の光量調節装置。
0.2<S11/S<0.6
但し、Sは前記光学フィルタの光線有効部の面積、S11は前記光学フィルタの被写体側の光線有効部のうち前記被写体側光学膜で覆われていない領域の面積。
The light amount adjusting device according to claim 1, wherein the following conditions are satisfied.
0.2 <S11 / S <0.6
Here, S is the area of the light beam effective portion of the optical filter, and S11 is the area of the region of the light effective portion on the subject side of the optical filter that is not covered with the subject side optical film.
前記光学フィルタにおける前記複数の濃度領域のそれぞれの膜構成が互いに異なり、相互に隣接する濃度領域の膜構成が異なることに起因するこれら濃度領域を透過する波長λの光の位相差が1/5λ以下であることを特徴とする請求項1に記載の光量調節装置。The film configuration of the plurality of density regions in the optical filter is different from each other, and the phase difference of light of wavelength λ passing through these density regions due to the difference in the film configuration of the density regions adjacent to each other is 1 / 5λ. The light amount adjusting device according to claim 1, wherein: 前記ベース部材の被写体側において、前記被写体側光学膜を透過する波長λの光と、前記被写体側光学膜が形成されていない領域を通過する波長λの光との位相差が1/4λ以下であることを特徴とする請求項1に記載の光量調節装置。On the subject side of the base member, the phase difference between the light of wavelength λ passing through the subject-side optical film and the light of wavelength λ passing through the area where the subject-side optical film is not formed is 1 / λ or less. The light amount adjusting device according to claim 1, wherein: 対物光学系と、請求項1から5のいずれかに記載の光量調節装置とを有することを特徴とする撮像光学系。An imaging optical system comprising: an objective optical system; and the light amount adjusting device according to claim 1. 撮像素子と、請求項6に記載の撮像光学系とを備えたことを特徴とする撮像装置。An imaging apparatus comprising: an imaging element; and the imaging optical system according to claim 6.
JP2002188578A 2002-06-27 2002-06-27 Light quantity controller, imaging optical system, and imaging apparatus Pending JP2004029577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188578A JP2004029577A (en) 2002-06-27 2002-06-27 Light quantity controller, imaging optical system, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188578A JP2004029577A (en) 2002-06-27 2002-06-27 Light quantity controller, imaging optical system, and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2004029577A true JP2004029577A (en) 2004-01-29

Family

ID=31183292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188578A Pending JP2004029577A (en) 2002-06-27 2002-06-27 Light quantity controller, imaging optical system, and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2004029577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330128A (en) * 2005-05-24 2006-12-07 Canon Electronics Inc Nd filter with ir cut film, method for manufacturing same, and light quantity diaphragm device and camera having nd filter
JP2011048026A (en) * 2009-08-25 2011-03-10 Ricoh Co Ltd Imaging optical system, camera and personal digital assistant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330128A (en) * 2005-05-24 2006-12-07 Canon Electronics Inc Nd filter with ir cut film, method for manufacturing same, and light quantity diaphragm device and camera having nd filter
JP4671410B2 (en) * 2005-05-24 2011-04-20 キヤノン電子株式会社 Light aperture device and camera with ND filter with IR cut function
JP2011048026A (en) * 2009-08-25 2011-03-10 Ricoh Co Ltd Imaging optical system, camera and personal digital assistant

Similar Documents

Publication Publication Date Title
US7042662B2 (en) Light amount adjusting device, and optical device using the light amount adjusting device
JP5428504B2 (en) LIGHT CONTROL DEVICE, IMAGING DEVICE, AND LIGHT CONTROL METHOD
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP6808355B2 (en) Optical filter and optical system with it, imaging device
JP4801442B2 (en) ND filter for diaphragm
KR100611437B1 (en) Light quantity regulating device and optical system having it and photographing device
US10551534B2 (en) Optical element, optical system, image pickup apparatus, and lens apparatus
JP4164355B2 (en) Light amount adjusting device and optical apparatus using the same
JP6136661B2 (en) Near-infrared cut filter
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP5942472B2 (en) Light intensity adjustment device
JP2004029577A (en) Light quantity controller, imaging optical system, and imaging apparatus
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
JP3621941B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having this ND filter
JP2004253892A (en) Light quantity adjuster
JP2007065109A (en) Nd filter, light quantity reducing device and camera
JP3701932B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
JP3768858B2 (en) Light amount adjusting device, optical system having the same, and photographing device
JP3768898B2 (en) Light amount adjusting device, optical system having the same, and photographing device
US10158791B2 (en) Camera device with red halo reduction
JP3685331B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having these ND filters
JP2005157197A (en) Light quantity controller, optical device and photographing device
JP2003240919A (en) Device for controlling light quantity, and optical system and photographing device having the same
JP2020134571A (en) Optical element, optical system, imaging device and lens device
JP4623724B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device