JP2013002819A - Flatness measuring device - Google Patents

Flatness measuring device Download PDF

Info

Publication number
JP2013002819A
JP2013002819A JP2011130723A JP2011130723A JP2013002819A JP 2013002819 A JP2013002819 A JP 2013002819A JP 2011130723 A JP2011130723 A JP 2011130723A JP 2011130723 A JP2011130723 A JP 2011130723A JP 2013002819 A JP2013002819 A JP 2013002819A
Authority
JP
Japan
Prior art keywords
light
flatness
lens
separated
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011130723A
Other languages
Japanese (ja)
Inventor
Seichi Sato
世智 佐藤
Motoaki Hamada
基明 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2011130723A priority Critical patent/JP2013002819A/en
Priority to KR1020120061354A priority patent/KR20120137274A/en
Publication of JP2013002819A publication Critical patent/JP2013002819A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy and a region resolution in a flatness measuring device using a Shack Hartmann wavefront sensor.SOLUTION: A flatness measuring device comprises a light source 1 which emits primary light flux B1 that is light flux which can be made parallel, light guide means 2 which guides the primary light flux B1 emitted from the light source 1 to a measurement target region Ar, reflects the primary light flux and outputs secondary light flux B2 that is the reflected light flux as light flux having a flat wavefront, a lens array 3 which is provided to be orthogonal with the secondary light flux B2 outputted from the light guide means 2, an aperture member 4 which is provided on an incident side optical axis of each of lenses constituting the lens array 3 and makes a diameter of light incident to each of the lenses smaller than that of the lens, respectively, photodetection means 5 which detects separated light beams D that passes through the lens array 3 and is separated for each lens, and a flatness calculation section 6 which calculates a value relating to flatness in the measurement target region AR on the basis of a position or inclination of each of the separated light beams D obtained in the photodetection means 5.

Description

本発明は、半導体ウェーハ等のワークにおける表面の平面度を測定する平面度測定装置に関するものである。   The present invention relates to a flatness measuring device that measures the flatness of a surface of a workpiece such as a semiconductor wafer.

表面の微細な反りや凹凸が問題となる半導体ウェーハなどの工業製品では、その表面の平面度が検査される。そのための平面度測定装置として例えば、特許文献1に示すようなシャック−ハルトマン(Shack-Hartmann)の波面センサを用いたものが知られている。この装置では、測定対象面から反射した光を波面センサに向けることにより、ウエハや光学部品の表面平面度を測定する。   In an industrial product such as a semiconductor wafer in which fine warpage or unevenness of the surface is a problem, the flatness of the surface is inspected. As a flatness measuring apparatus for this purpose, for example, a device using a Shack-Hartmann wavefront sensor as shown in Patent Document 1 is known. In this apparatus, the surface flatness of a wafer or an optical component is measured by directing light reflected from a measurement target surface to a wavefront sensor.

この波面センサには、図1に示すような、アレイ状に敷き詰められた多数の小型レンズが設けられており、測定対象面で反射した光(以下、入射光とも言う。)が小型レンズを通過し、アレイ状の光スポットを形成するように構成されている。もし、入射光の波面がレンズ光軸と垂直であれば、光スポットはレンズ光軸上に形成されるが、図2に示すように、測定対象面の部分的な傾き等に起因して、入射光の波面が傾いていた場合には、光スポットの位置はレンズ光軸からずれる。   This wavefront sensor is provided with a large number of small lenses laid out in an array as shown in FIG. 1, and light reflected from the measurement target surface (hereinafter also referred to as incident light) passes through the small lenses. However, it is configured to form an arrayed light spot. If the wavefront of the incident light is perpendicular to the lens optical axis, the light spot is formed on the lens optical axis, but, as shown in FIG. When the wavefront of the incident light is inclined, the position of the light spot is shifted from the lens optical axis.

したがって、このずれ量を2次元光検出器(例えば、CCDやCMOS等の光検出素子を2次元配列して構成したエリアイメージセンサ)で測定することによって、測定対象面の平面度を測定する。   Therefore, the flatness of the measurement target surface is measured by measuring this deviation amount with a two-dimensional photodetector (for example, an area image sensor configured by two-dimensionally arranging photodetection elements such as a CCD and a CMOS).

より具体的に説明すると、例えば測定対象領域は、図3に示すように、隣接する矩形状の単位領域に区分けされていて、各単位領域で反射した光の略全てが各小型レンズにそれぞれ導かれる。そして、図3でハッチングを施した単位領域で反射した光は、対応する小型レンズを通過して図4に示すようなエリアイメージセンサの光検出面上に集光される。その集光された位置は、エリアイメージセンサの出力から特定できるので、その位置に基づいて前記ずれ量Δeがわかり、単位領域毎の平面度が算出される。このように、平面度は単位領域毎に求められ、かつ、求められた各値は単位領域毎の、言わば平均した代表的な平面度を示す値となる。   More specifically, for example, as shown in FIG. 3, the measurement target region is divided into adjacent rectangular unit regions, and almost all of the light reflected by each unit region is guided to each small lens. It is burned. Then, the light reflected by the unit area hatched in FIG. 3 passes through the corresponding small lens and is condensed on the light detection surface of the area image sensor as shown in FIG. Since the condensed position can be specified from the output of the area image sensor, the deviation amount Δe is known based on the position, and the flatness for each unit region is calculated. As described above, the flatness is obtained for each unit region, and each obtained value is a value indicating the average flatness averaged for each unit region.

特表2003−503726号公報Special table 2003-503726 gazette

しかしながら、上述した構成であると、各小型レンズの周縁部にも光が透過するので、周縁部での収差の影響を受けてスポット光がぼけたりずれたりして、測定精度に悪影響を及ぼす場合がある。   However, with the above-described configuration, light is transmitted also to the peripheral portion of each small lens, and spot light is blurred or shifted due to the influence of aberration at the peripheral portion, which adversely affects measurement accuracy. There is.

また、実際の測定では光スポットの位置を特定するまでに、光検出器での光電変換時間や読み出し時間等が必要である。しかしながら、CVD中のウェーハの平面度を測定する場合など、検査物が動いている状態では、上述した単位領域が隣接している構成だと、当該単位領域に係る平面度測定の最中に、次の単位領域が移動してきてその反射光も受光することとなり、測定値の信頼性が落ちるという問題もある。   In actual measurement, photoelectric conversion time, readout time, and the like in the photodetector are required until the position of the light spot is specified. However, in the state where the inspection object is moving, such as when measuring the flatness of the wafer during CVD, if the unit area described above is adjacent, during the flatness measurement related to the unit area, There is also a problem that the reliability of the measured value is lowered because the next unit region moves and receives the reflected light.

さらに、従来のものでは、単位領域を小さくしてピンポイントでの平面度測定をしようにも、レンズの大きさの制限によって単位領域を所定以上小さくすることができず、平面度測定に係る領域分解能を簡単には向上させることができないという不具合もある。   Furthermore, in the conventional device, even when trying to measure the flatness at a pinpoint by reducing the unit area, the unit area cannot be reduced more than a predetermined due to the restriction of the size of the lens. There is also a problem that the resolution cannot be easily improved.

本発明は、かかる課題を鑑みてなされたものであって、シャック−ハルトマンの波面センサを用いた平面度測定装置において、測定精度及び領域分解能を簡単な構成で飛躍的に向上させることを主たる目的とするものである。   SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and a main object of the present invention is to dramatically improve measurement accuracy and area resolution with a simple configuration in a flatness measuring apparatus using a Shack-Hartmann wavefront sensor. It is what.

すなわち、本発明に係る平面度測定装置は、工業製品等の検査物における測定対象領域の平面度をするものであって、以下の構成要件を具備するものである。
(1)略平面状、略部分球面状、又は略部分円筒状の波頭を有する光束などの平行化可能な光束である一次光束を射出する光源。なお、「平行化可能」における平行化の程度とは、平面度の測定精度によって定まる。
(2)前記光源から射出された一次光束を前記測定対象領域に導いて反射させ、その反射した光束である二次光束を、仮に前記測定対象領域が所定基準を満たす平面であった場合に、略平行なあるいは略平面状の波頭を有する光束として出力する導光手段。ここで「略平行」とは、後述するレンズアレイにアパーチャ部材を介して入射する二次光束において、隣のレンズに入射すべき光が入らない程度の平行度のことである。(3)仮に前記測定対象領域が所定基準を満たす平面であった場合に、前記導光手段から出力された二次光束と直交するように設けられたレンズアレイ。
(4)前記レンズアレイを構成する各レンズの入射側又は出射側に設けられて、各レンズに入射する又は各レンズから出射される光径をそれぞれレンズの実効径よりも小さくする、言い換えれば、各レンズに入射するときの又は各レンズから出射されるときの光の断面外輪郭が、レンズの実質的な外輪郭の内側になるようにするアパーチャ部材。
(5)前記レンズアレイを通ってレンズ毎に分離された光である分離光の位置を検出する光検出手段
(6)前記光検出手段で得られた各分離光の傾き又は位置に基づいて、前記測定対象領域の平面度に係る値を算出する平面度算出部。なお、平面度に係る値とは、面の傾き、曲率半径、平面粗さなどの他、これらから算出される値、例えば、検査物がウェーハなどであれば、Sori値やWarp値、Bow値なども含む。
That is, the flatness measuring apparatus according to the present invention measures the flatness of a measurement target region in an inspection product such as an industrial product, and has the following configuration requirements.
(1) A light source that emits a primary light beam that is a collimated light beam, such as a light beam having a substantially planar, substantially spherical, or substantially cylindrical wavefront. In addition, the degree of parallelization in “parallelization possible” is determined by the measurement accuracy of flatness.
(2) When the primary light beam emitted from the light source is guided and reflected to the measurement target region, and the secondary light beam that is the reflected light beam is a plane that satisfies the predetermined standard, Light guide means for outputting as a light beam having a substantially parallel or substantially planar wave front. Here, “substantially parallel” refers to a degree of parallelism that does not allow light to be incident on an adjacent lens to enter in a secondary light beam incident on a lens array, which will be described later, via an aperture member. (3) A lens array provided so as to be orthogonal to the secondary light beam output from the light guide means if the measurement target region is a plane that satisfies a predetermined standard.
(4) It is provided on the incident side or the emission side of each lens constituting the lens array so that the light diameter incident on each lens or emitted from each lens is smaller than the effective diameter of each lens, in other words, An aperture member that causes the outer cross-sectional contour of light when entering or exiting each lens to be inside the substantial outer contour of the lens.
(5) Light detecting means for detecting the position of separated light that is light separated for each lens through the lens array (6) Based on the inclination or position of each separated light obtained by the light detecting means, A flatness calculation unit that calculates a value related to the flatness of the measurement target region. In addition, the value relating to the flatness is a value calculated from these in addition to the inclination of the surface, the radius of curvature, the surface roughness, etc. For example, if the inspection object is a wafer or the like, the Sori value, Warp value, Bow value Including.

このようなものであれば、アパーチャ部材が、各レンズの周縁部を通って出る光を遮断し、各レンズの中央部分にのみ光を利用することとなるので、各レンズの周縁部分で生じる収差が低減し、光検出手段の受光面における分離光の光強度分布が、レンズに収差が無い場合の理想的な曲線に近くなる。その結果、分離光の位置測定精度が向上し、ひいては平面度をより精度良く測定できることとなる。   In such a case, the aperture member blocks the light emitted through the peripheral portion of each lens, and uses the light only at the central portion of each lens. , And the light intensity distribution of the separated light on the light receiving surface of the light detecting means becomes close to an ideal curve when there is no aberration in the lens. As a result, the position measurement accuracy of the separated light is improved, and as a result, the flatness can be measured with higher accuracy.

また、アパーチャ部材によって分離光の周縁部分がカットされるということは、そのカットされた分離光が由来する、測定対象領域における単位領域が互いに離れることになる。そうすると、その単位領域の離間距離、すなわちアパーチャ部材によるカット領域を適正に設定することによって、検査物が移動していたとしても、その検査物の移動によって測定中に隣の分離光の影響を受けてしまうといった不具合を排除できる。より具体的に説明すると、例えば、平面度を知りたい単位となる領域(以下、単位測定面とも言う)が、レンズアレイの並びに対応した数に設定されていて、かつそれら単位測定面が矩形状に隣接して設定されていたとして、この平面度検出装置による単位領域は、アパーチャ部材によって単位測定面からの反射光の周縁部が削られるので、前記単位測定面よりも小さな面積となる。この状態で検査物が移動しても、1回の測定にかかる時間内に前記単位領域が、単位測定面を出ない範囲に設定しておけば、移動による若干の平均化はあるものの、単位測定面の代表的な平面度を、隣の単位測定面の影響を全く受けることなく、確実に測定することができる。   Further, the fact that the peripheral portion of the separated light is cut by the aperture member means that the unit regions in the measurement target region from which the cut separated light originates are separated from each other. Then, even if the inspection object is moved by appropriately setting the separation distance between the unit areas, that is, the cutting area by the aperture member, the movement of the inspection object is influenced by the adjacent separated light during the measurement. It is possible to eliminate problems such as More specifically, for example, a region (hereinafter also referred to as a unit measurement surface) that is a unit for which the flatness is to be known is set to a corresponding number of lens arrays, and the unit measurement surfaces are rectangular. In the unit region of the flatness detecting device, the peripheral portion of the reflected light from the unit measurement surface is scraped by the aperture member, so that the unit region has a smaller area than the unit measurement surface. Even if the inspection object moves in this state, if the unit area is set within a range that does not exit the unit measurement surface within the time required for one measurement, the unit may be slightly averaged due to movement. The typical flatness of the measurement surface can be reliably measured without being affected by the adjacent unit measurement surface.

さらに、アパーチャ部材によって分離光の周縁部分がカットされるということは、そのカットされた分離光が由来する単位領域も小さくなる。したがって、従来より小さな面積での平面度測定が可能となり、領域分解能を向上させることができるようになる。   Furthermore, the fact that the peripheral portion of the separated light is cut by the aperture member means that the unit area from which the cut separated light is derived also becomes smaller. Therefore, it is possible to measure the flatness with a smaller area than before, and to improve the region resolution.

前記光検出手段が受光素子を平面状に敷き詰めたエリアイメージセンサであり、その受光面が前記分離光の収束位置から光軸方向にずれた位置に設定されていれば、光スポット径は広がるが、その分、分離光が多くの受光素子に分散されるので、各受光素子のサチュレーションを回避でき、測定レンジを広く取れる。また、光軸位置は、複数の受光素子からの光強度信号値に基づいて算出するが、その受光素子の数が増えるので、光軸位置の算出精度を向上させることができ、ひいては平面度を精度良く測定できる。   If the light detection means is an area image sensor in which light receiving elements are spread in a plane, and the light receiving surface is set at a position shifted in the optical axis direction from the convergence position of the separated light, the light spot diameter is widened. Therefore, since the separated light is dispersed to many light receiving elements, saturation of each light receiving element can be avoided and a wide measurement range can be taken. The optical axis position is calculated based on the light intensity signal values from a plurality of light receiving elements. However, since the number of the light receiving elements increases, the calculation accuracy of the optical axis position can be improved, and the flatness can be improved. It can measure with high accuracy.

簡単な構成のアパーチャ部材としては、各レンズの光軸に対応した位置に、レンズの実質径よりも小さな径の光透過窓を設けた薄板状をなすものを挙げることができる。   Examples of the aperture member having a simple configuration include a thin plate-like member in which a light transmission window having a diameter smaller than the actual diameter of the lens is provided at a position corresponding to the optical axis of each lens.

アパーチャ部材での光回折による測定への悪影響を回避するには、前記光透過窓において、レンズ光軸と交わる位置である中央部分が最も光透過度を大きく設定してあり、周縁部に向かうに連れ、光透過度が小さくなるなど、光透過度が途中で変化するように構成してあるものが好ましい。   In order to avoid an adverse effect on the measurement due to light diffraction at the aperture member, the light transmission window has the largest light transmittance at the center portion that intersects the lens optical axis, and is directed toward the periphery. Accordingly, it is preferable that the light transmittance is changed in the middle, for example, the light transmittance is reduced.

具体的な平面度算出方法としては、前記測定対象領域が規定以内の平面度である標準検査物に前記一次光を照射したときに得られる各分離光の位置である標準位置と、測定すべき検査物に前記一次光を照射したときに得られる各分離光から位置である測定位置との偏差に基づいて、前記測定対象領域の平面度に係る値を算出するものを挙げることができる。   As a specific flatness calculation method, a standard position that is a position of each separated light obtained when the measurement object region is irradiated with the primary light on a standard inspection object having a flatness within a specified range should be measured. An example of calculating a value related to the flatness of the measurement target region based on a deviation from a measurement position that is a position from each separated light obtained when the inspection object is irradiated with the primary light can be given.

具体的な光源としてはコヒーレントな平行光を射出するレーザを挙げることができる。
大面積の測定対象領域にも対応できるようにするには、測定対象領域と平面度測定装置とを相対的に移動させ、測定対象領域を走査するようにすればよい。
A specific example of the light source is a laser that emits coherent parallel light.
In order to be able to cope with a measurement target region having a large area, the measurement target region and the flatness measuring apparatus may be relatively moved to scan the measurement target region.

また、より緻密に測定対象領域を測定するには、次の測定までの相対移動距離を、単位領域と隣の単位領域との離間距離よりも小さく設定しておけばよい。1回の測定では埋めることのできない単位領域間をも測定できるからである。   In order to measure the measurement target region more precisely, the relative movement distance until the next measurement may be set smaller than the separation distance between the unit region and the adjacent unit region. This is because it is possible to measure even between unit regions that cannot be filled by one measurement.

このように構成した本発明によれば、シャック−ハルトマンの波面センサを用いた平面度測定装置において、上述した理由から、測定精度及び領域分解能を簡単な構成で飛躍的に向上させることができる。   According to the present invention configured as described above, in the flatness measuring apparatus using the Shack-Hartmann wavefront sensor, the measurement accuracy and the area resolution can be dramatically improved with a simple configuration for the reasons described above.

従来におけるシャック−ハルトマンの波面センサを用いた平面度測定装置の概要図。Schematic diagram of a flatness measuring apparatus using a conventional Shack-Hartmann wavefront sensor. 従来におけるシャック−ハルトマンの波面センサを用いた平面度測定装置の概要図。Schematic diagram of a flatness measuring apparatus using a conventional Shack-Hartmann wavefront sensor. 従来における対象物での測定対象領域と単位領域とを示す平面図。The top view which shows the measurement object area | region and unit area | region in the target object in the past. 従来におけるイメージエリアセンサに集光される光スポットを示す平面図。The top view which shows the light spot condensed on the image area sensor in the past. 本発明の第1実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in 1st Embodiment of this invention. 同実施形態のアパーチャ部材、レンズアレイ、エリアイメージセンサを示す分解斜視図。The disassembled perspective view which shows the aperture member of the same embodiment, a lens array, and an area image sensor. 同実施形態におけるアパーチャ部材、レンズアレイ及びエリアイメージセンサの位置関係を説明する模式的縦断面図。The typical longitudinal cross-sectional view explaining the positional relationship of the aperture member in the same embodiment, a lens array, and an area image sensor. 同実施形態におけるエリアイメージセンサを受光面から視た状態を示す平面図。The top view which shows the state which looked at the area image sensor in the embodiment from the light-receiving surface. 同実施形態における測定対象領域、単位領域及び単位測定面との関係を示す平面図。The top view which shows the relationship with the measurement object area | region in the same embodiment, a unit area | region, and a unit measurement surface. 本発明の第2実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in 2nd Embodiment of this invention. 本発明の第3実施形態におけるアパーチャ部材、レンズアレイ及びエリアイメージセンサの位置関係を説明する模式的縦断面図。The typical longitudinal cross-sectional view explaining the positional relationship of the aperture member in the 3rd Embodiment of this invention, a lens array, and an area image sensor. 本発明の第1実施形態におけるイメージエリアセンサに集光される光スポットを示す平面図。The top view which shows the light spot condensed on the image area sensor in 1st Embodiment of this invention. 本発明の第3実施形態におけるイメージエリアセンサに集光される光スポットを示す平面図。The top view which shows the light spot condensed on the image area sensor in 3rd Embodiment of this invention. 本発明の第4実施形態におけるアパーチャ部材を示す平面図。The top view which shows the aperture member in 4th Embodiment of this invention. 本発明の第1実施形態におけるアパーチャ部材を示す平面図。The top view which shows the aperture member in 1st Embodiment of this invention. 前記第4実施形態の変形例におけるアパーチャ部材を示す平面図。The top view which shows the aperture member in the modification of the said 4th Embodiment. 本発明の第5実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in 5th Embodiment of this invention. 本発明の第6実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in 6th Embodiment of this invention. 本発明のその他の実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in other embodiment of this invention. 本発明のその他の実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in other embodiment of this invention. 本発明のその他の実施形態における平面度測定装置を示す全体模式図。The whole schematic diagram which shows the flatness measuring apparatus in other embodiment of this invention.

以下に本発明に係る平面度測定装置100の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a flatness measuring apparatus 100 according to the present invention will be described with reference to the drawings.

<第1実施形態>
この平面度測定装置100は、例えばCVD(MOCVD)などの半導体製造システムの一部に組み込まれて、平板状の検査物であるウェーハWの表面に設定された測定対象領域ARの平面度を測定するものであり、図5、図6等に示すように、平面状の波頭を有する光束である一次光束B1を射出する光源1と、前記光源1から射出された一次光束B1を前記測定対象領域ARに導いて反射させ、その反射した光束である二次光束B2を平面状の波頭を有する光束として出力する、光学部材で構成された導光手段2と、前記二次光束B2の光軸と直交するように設けられたレンズアレイ3と、前記レンズアレイ3を構成する各レンズ31の入射側光軸上に設けられて、各レンズ31に入射する光径を各レンズ31の実効径よりも小さくするアパーチャ部材4と、前記レンズアレイ3を通ってレンズ31毎に分離された光である分離光Dの位置を検出する光検出手段5と、前記光検出手段5で得られた各分離光Dの位置に基づいて、前記測定対象領域ARの平面度に係る値を算出する平面度算出部6とを具備している。
<First Embodiment>
The flatness measuring apparatus 100 is incorporated in a part of a semiconductor manufacturing system such as CVD (MOCVD), for example, and measures the flatness of a measurement target area AR set on the surface of a wafer W that is a flat inspection object. As shown in FIGS. 5 and 6, etc., the light source 1 that emits a primary light beam B1 that is a light beam having a planar wave front, and the primary light beam B1 emitted from the light source 1 are used as the measurement target region. A light guide means 2 composed of an optical member for guiding and reflecting to the AR and outputting the reflected secondary light beam B2 as a light beam having a planar wavefront; and the optical axis of the secondary light beam B2. The lens array 3 provided so as to be orthogonal to each other, and provided on the incident side optical axis of each lens 31 constituting the lens array 3, the light diameter incident on each lens 31 is larger than the effective diameter of each lens 31. Make smaller A detection member 5 for detecting the position of the separation light D, which is the light separated for each lens 31 through the lens array 3, and the separated light D obtained by the light detection means 5; A flatness calculating unit 6 for calculating a value related to the flatness of the measurement target area AR based on the position;

各部を説明する。
光源1は、ここでは、コヒーレントで単一波長の平行光束である一次光を射出するレーザであるが、その他、LED等を用いた白色光を射出するものでも構わない。
Each part will be described.
Here, the light source 1 is a laser that emits primary light that is a coherent, single-wavelength parallel light beam, but may also emit white light using an LED or the like.

導光手段2は、ここでは以下の構成要素からなる。すなわち、前記レーザ1から出力された一次光束B1を拡開する第1レンズ部材21、拡開した一次光束B1をその光軸がウェーハWの測定対象領域ARに垂直に向かうように反射するハーフミラー等のビームスプリッタ23、ビームスプリッタ23で反射した一次光束B1を測定対象領域ARを覆うだけの断面を有した平行光束、すなわち平面状の波頭を有する光束にする第2レンズ部材22、前記測定対象領域ARで垂直に反射し、前記第2レンズ部材22及びビームスプリッタ23を通過した光束の光軸上に設けられて、該光束を平行光束、すなわち平面状の波頭を有する光束である二次光束B2に変換する第3レンズ部材24である。   Here, the light guide means 2 is composed of the following components. That is, the first lens member 21 that expands the primary light beam B1 output from the laser 1, and the half mirror that reflects the expanded primary light beam B1 so that the optical axis thereof is perpendicular to the measurement target area AR of the wafer W. The second lens member 22 that converts the primary light beam B1 reflected by the beam splitter 23 into a parallel light beam having a cross section sufficient to cover the measurement target area AR, that is, a light beam having a planar wavefront, and the measurement target A secondary light beam which is provided on the optical axis of the light beam reflected vertically in the area AR and passed through the second lens member 22 and the beam splitter 23, and which is a parallel light beam, that is, a light beam having a planar wavefront. It is the 3rd lens member 24 converted into B2.

なお、この導光手段2において、平面状の波頭を有する二次光束B2を出力する機能というのは、当業者であれば当然理解できようが、測定対象領域ARが平面であった場合の機能である。実際の平面度測定では、測定対象領域ARに凹凸や傾斜があった場合、その部分に対応する二次光束B2の波頭は平面ではなくなる。その部分を検出することこそが、シャック−ハルトマンの平面測定原理である。   It should be noted that the function of outputting the secondary light beam B2 having a planar wave front in the light guide means 2 can be understood by those skilled in the art, and is a function when the measurement target area AR is a plane. It is. In actual flatness measurement, when the measurement target area AR is uneven or inclined, the wave front of the secondary light beam B2 corresponding to that portion is not flat. It is the Shack-Hartmann's plane measurement principle that only this part is detected.

レンズアレイ3は、図6、図7に示すように、例えば矩形(正方形)状の透明板32における一方の面板部に複数の小型レンズ31を一体に2次元配列したものである。このレンズアレイ3において、光の入射面3aは前記透明板32の他方の面板部に設定してあり、この入射面3aが前記導光手段2から出力される二次光束B2の光軸と直交するように、該レンズアレイ3を配置してある。このレンズアレイ3に入射した前記二次光束B2は、各レンズ31をそれぞれ通過して分離光Dとなる。なお、レンズアレイ3の形状は、これに限られるものではなく、例えば円形状等でもかまわない。
また、図6、図7等では、入射側が平面のレンズを用いているが、入射側が曲面のレンズでもよい。収差等の影響を低減するには、入射側が曲面である方が好ましい。その他、両面が曲面のものでも構わない。
As shown in FIGS. 6 and 7, the lens array 3 is obtained by integrally arranging a plurality of small lenses 31 on one face plate portion of a rectangular (square) transparent plate 32. In this lens array 3, the light incident surface 3 a is set to the other face plate portion of the transparent plate 32, and this incident surface 3 a is orthogonal to the optical axis of the secondary light beam B <b> 2 output from the light guide means 2. Thus, the lens array 3 is arranged. The secondary light beam B2 incident on the lens array 3 passes through each lens 31 and becomes separated light D. The shape of the lens array 3 is not limited to this, and may be a circular shape, for example.
In FIGS. 6 and 7, etc., a lens having a flat incident side is used. However, a lens having a curved surface on the incident side may be used. In order to reduce the influence of aberration and the like, it is preferable that the incident side is a curved surface. In addition, both sides may be curved.

アパーチャ部材4は薄いシート状のものであり、ここでは前記レンズアレイ3の入射面3aに貼り付けてある。このアパーチャ部材4には、前記レンズ31の光軸を中心とした円形の光透過窓であるアパーチャ4aが、各レンズ31に対応して設けてある。ここでのアパーチャ4aは貫通孔であり、光を100%透過させる。また、その径はレンズ径よりも小さく設定してある。   The aperture member 4 has a thin sheet shape, and is attached to the incident surface 3a of the lens array 3 here. The aperture member 4 is provided with apertures 4a, which are circular light transmission windows centered on the optical axis of the lens 31, corresponding to each lens 31. The aperture 4a here is a through-hole, and transmits 100% of light. The diameter is set smaller than the lens diameter.

なお、アパーチャ4aの形状は円形以外の矩形状や多角形状等でもかまわない。また、アパーチャ部材4を入射面3aから離間させても良い。
また、この実施形態では、レンズアレイ3の入射面3aが平面であるため、このアパーチャー部材4を、専用の支持部材を設けることなく配設できるが、レンズアレイの出射面が平面である場合などでは、出射面にアパーチャー部材4を貼り付けてもよい。ただし、収差等の影響を受けやすい点や、先に光が屈折してしまってアパーチャに入らない場合がある点等を考えれば、レンズアレイの入射面側にアパーチャ部材が配設されていることが好ましい。
The shape of the aperture 4a may be a rectangle other than a circle, a polygon, or the like. Further, the aperture member 4 may be separated from the incident surface 3a.
In this embodiment, since the entrance surface 3a of the lens array 3 is a flat surface, the aperture member 4 can be disposed without providing a dedicated support member. However, when the exit surface of the lens array is a flat surface, etc. Then, the aperture member 4 may be attached to the emission surface. However, considering the points that are easily affected by aberrations, etc., and the fact that light may be refracted first and not enter the aperture, an aperture member must be provided on the incident surface side of the lens array. Is preferred.

光検出手段5は、図6〜図8に示すように、CCDやCMOS等の受光素子51を縦横平面状に敷き詰めたエリアイメージセンサであり、ここでは、前記各レンズ31を通過して分離した分離光Dが集光する位置(焦点位置)に、該エリアイメージセンサ5の受光面5aが位置するように設定してある。すなわち、この光検出手段5は、各レンズ31を通過した分離光Dが受光面5aで受光されると、その光照射位置にある受光素子51が、受光した光強度に応じた電気信号(光強度信号)を発生することから、各受光素子51の光強度信号をモニターすることで、受光面5aのどの位置に分離光Dが照射されているかを検出することができるように構成したものである。   As shown in FIGS. 6 to 8, the light detection means 5 is an area image sensor in which light receiving elements 51 such as a CCD and a CMOS are laid in a vertical and horizontal plane. Here, the light detection means 5 is separated through the lenses 31. It is set so that the light receiving surface 5a of the area image sensor 5 is located at a position (focus position) where the separated light D is condensed. That is, when the separated light D that has passed through each lens 31 is received by the light receiving surface 5a, the light detecting means 5 receives an electrical signal (light) corresponding to the light intensity received by the light receiving element 51 at the light irradiation position. Intensity light) is generated, and by monitoring the light intensity signal of each light receiving element 51, it is possible to detect which position of the light receiving surface 5a is irradiated with the separated light D. is there.

平面度算出部6は、図1に示すように、エリアイメージセンサ5に接続されたものであり、物理的には、例えばCPU、メモリ、ADコンバータなどから構成された電気回路である。また、この平面度算出部6は、機能的に言えば、メモリに記憶されたプログラムにしたがって前記CPUやその周辺機器が共働することにより、各レンズ31を通過した分離光Dの受光面5aでの光軸位置を算出する光軸位置算出部と、その算出された光軸位置の基準位置からの偏差Δe(図7参照)に基づいて、測定対象領域ARにおける当該分離光Dが由来する単位領域U(図9参照)の平面度の1つである例えば傾きを算出する傾き算出部とを具備したものである。   As shown in FIG. 1, the flatness calculator 6 is connected to the area image sensor 5 and is physically an electric circuit composed of, for example, a CPU, a memory, an AD converter, and the like. In terms of function, the flatness calculating unit 6 is functionally arranged in accordance with a program stored in the memory, and the CPU and its peripheral devices cooperate to receive the light receiving surface 5a of the separated light D that has passed through each lens 31. The separation light D in the measurement target area AR is derived based on the optical axis position calculation unit for calculating the optical axis position at and the deviation Δe (see FIG. 7) of the calculated optical axis position from the reference position. For example, the unit area U (see FIG. 9) is provided with an inclination calculation unit that calculates one of the flatnesses.

このような構成の平面度測定装置100について、その動作を以下に説明する。
レーザ1から射出された一次光束B1は、第1レンズ部材21で拡開する一次光束B1となり、ビームスプリッタ23で反射して測定対象領域ARに向かう。その途中で第2レンズ部材22により平行光束にされ、測定対象領域ARで垂直に反射し、反射前と同一軌跡をたどってビームスプリッタ23に至る。そして、このビームスプリッタ23を透過した一次光束B1は、第3レンズ部材24によって平行化され、アパーチャ部材4を通ってレンズアレイ3に導かれ、各レンズ31に対応した分離光Dに分離される。
The operation of the flatness measuring apparatus 100 having such a configuration will be described below.
The primary light beam B1 emitted from the laser 1 becomes a primary light beam B1 that is expanded by the first lens member 21, is reflected by the beam splitter 23, and travels toward the measurement target area AR. On the way, it is made a parallel light beam by the second lens member 22, is reflected vertically by the measurement target area AR, and follows the same locus as before the reflection to the beam splitter 23. Then, the primary light beam B1 transmitted through the beam splitter 23 is collimated by the third lens member 24, guided to the lens array 3 through the aperture member 4, and separated into the separated light D corresponding to each lens 31. .

各分離光Dは、光検出手段5の受光面5aに集光され、各受光素子51からの光強度信号によって、分離光Dが照射されている受光面5a上の位置が検出される。   Each separated light D is condensed on the light receiving surface 5a of the light detecting means 5, and a position on the light receiving surface 5a irradiated with the separated light D is detected by a light intensity signal from each light receiving element 51.

そして、光検出手段5から出力された光強度信号を前記光軸位置算出部が解析して、各分離光Dの受光面5aにおける光軸位置を算出する。例えば、各受光素子51からの光強度信号の値の重心位置を求めることによって光軸位置を算出する。最後に、傾き算出部がその算出された(測定された)光軸位置の基準位置からの偏差Δeに基づいて、測定対象領域ARにおける当該分離光Dが由来する単位領域Uの全体的な傾き角度を算出する。   Then, the optical axis position calculation unit analyzes the light intensity signal output from the light detection means 5, and calculates the optical axis position of each separated light D on the light receiving surface 5a. For example, the optical axis position is calculated by obtaining the barycentric position of the value of the light intensity signal from each light receiving element 51. Finally, based on the deviation Δe of the calculated (measured) optical axis position from the reference position, the overall inclination of the unit area U from which the separated light D is derived in the measurement target area AR. Calculate the angle.

なお、光軸位置の算出には他の方法もある。例えば、各受光素子51の光強度から、そのピーク位置を最小二乗法などによるフィッティングによって求め、該ピーク位置を光軸位置とするような態様が考えられる。
また、算出される平面度としては、前述した単位領域Uの傾き角度の他に、曲率半径や平面粗さなどでもよい。
さらに、このように算出した平面度が、ある一定の閾値を超えた場合に、その旨を報知する報知部を設けてもよい。
There are other methods for calculating the optical axis position. For example, a mode is conceivable in which the peak position is obtained from the light intensity of each light receiving element 51 by fitting by the least square method or the like, and the peak position is set as the optical axis position.
Further, as the calculated flatness, in addition to the inclination angle of the unit region U described above, a radius of curvature, a planar roughness, or the like may be used.
Furthermore, when the flatness calculated in this way exceeds a certain threshold value, an informing unit for informing that effect may be provided.

しかして、このようなものであれば、アパーチャ部材4が、各レンズ31の周縁部に入る光を遮断し、中央部分にのみ光を導くので、各レンズ31の周縁部分で生じる収差が低減し、光検出手段5の受光面5aにおける分離光Dの光強度分布がレンズに収差が無い場合の理想的な曲線に近くなる。その結果、分離光Dの位置測定精度及び傾き測定精度が向上し、ひいては平面度をより精度良く測定できることとなる。   In such a case, the aperture member 4 blocks the light entering the peripheral portion of each lens 31 and guides the light only to the central portion, so that the aberration generated in the peripheral portion of each lens 31 is reduced. The light intensity distribution of the separated light D on the light receiving surface 5a of the light detecting means 5 becomes close to an ideal curve when there is no aberration in the lens. As a result, the position measurement accuracy and tilt measurement accuracy of the separated light D are improved, and as a result, the flatness can be measured with higher accuracy.

また、アパーチャ部材4によって分離光Dの周縁部分がカットされるということは、図9に示すように、そのカットされた分離光Dが由来する、測定対象領域ARにおける単位領域Uが互いに離れることになる。そうすると、その単位領域Uの離間距離、すなわちアパーチャ部材4によるカット領域を適正に設定することによって、検査物が移動していたとしても、その検査物の移動によって測定中に隣の分離光Dの影響を受けてしまうといった不具合を排除できる。   Further, the fact that the peripheral portion of the separated light D is cut by the aperture member 4 means that the unit areas U in the measurement target area AR from which the cut separated light D originates are separated from each other as shown in FIG. become. Then, even if the inspection object is moved by appropriately setting the separation distance of the unit area U, that is, the cut area by the aperture member 4, the movement of the inspection object causes the adjacent separated light D to be measured. The problem of being affected can be eliminated.

図9を用いてより具体的に説明すると、例えば、平面度を知りたい単位となる領域(以下、単位測定面とも言う)Pが、レンズアレイ3の並びに対応した数に設定されていて、かつそれら単位測定面Pが矩形状に隣接して設定されていたとして、この平面度検出装置による単位領域Uは、アパーチャ部材4によって単位測定面Pからの反射光の周縁部が削られるので、前記単位測定面Pよりも小さな面積となる。この状態で検査物が移動しても、1回の測定にかかる時間内に前記単位領域Uが、単位測定面Pを出ない範囲に設定しておけば、移動による若干の平均化はあるものの、単位測定面Pの代表的な平面度を、隣の単位測定面Pの影響を全く受けることなく、確実に測定することができる。   More specifically, referring to FIG. 9, for example, a region P (hereinafter also referred to as a unit measurement surface) P for which the flatness is to be known is set to a number corresponding to the arrangement of the lens array 3, and Assuming that the unit measurement surfaces P are set adjacent to each other in a rectangular shape, the unit region U by the flatness detecting device has a peripheral edge portion of the reflected light from the unit measurement surface P cut by the aperture member 4. The area is smaller than the unit measurement surface P. Even if the inspection object moves in this state, if the unit area U is set within a range that does not exit the unit measurement surface P within the time required for one measurement, there is some averaging due to movement. The representative flatness of the unit measurement surface P can be reliably measured without being affected by the adjacent unit measurement surface P at all.

さらに、アパーチャ部材4によって分離光Dの周縁部分がカットされることによって、そのカットされた分離光Dが由来する単位領域Uも小さくなる。したがって、従来より小さな面積での平面度測定が可能となり、領域分解能を向上させることができるようになる。
その他、測定対象領域ARに垂直に平行一次光束B1を照射しているので、測定対象領域ARが一次光束B1の光軸方向にずれても、測定精度を担保できるといった効果もある。
Furthermore, when the peripheral part of the separated light D is cut by the aperture member 4, the unit region U from which the cut separated light D is derived also becomes smaller. Therefore, it is possible to measure the flatness with a smaller area than before, and to improve the region resolution.
In addition, since the parallel primary light beam B1 is irradiated perpendicularly to the measurement target area AR, there is an effect that measurement accuracy can be ensured even if the measurement target area AR is shifted in the optical axis direction of the primary light beam B1.

なお、本発明は前記実施形態に限定されるものではない。以下に、他の変形実施形態を説明する。また、第1実施形態に対応する部材には同一の符号を付すこととする。   In addition, this invention is not limited to the said embodiment. Other modified embodiments will be described below. In addition, the same reference numerals are assigned to members corresponding to the first embodiment.

<第2実施形態>
例えば、図10に示すように、標準平面を有したリファレンス部材Rを設け、前記一次光束B1を、検査物W又はリファレンス部材Rのいずれかに選択的に照射できるようにするとともに、前記標準平面で反射した光束を測定対象領域ARからの光束と同じように、標準二次光束として、前記アパーチャ部材4及び光検出手段5に導けるように構成してもかまわない。
Second Embodiment
For example, as shown in FIG. 10, a reference member R having a standard plane is provided so that either the inspection object W or the reference member R can be selectively irradiated with the primary light beam B1 and the standard plane is provided. The light beam reflected in step 1 may be guided to the aperture member 4 and the light detection means 5 as a standard secondary light beam in the same manner as the light beam from the measurement target area AR.

より具体的に説明すると、ここでは、第1レンズ部材21とビームスプリッタ23を挟んで対向する位置に第4レンズ部材9を設け、第1レンズ部材21から出てビームスプリッタ23を通過した一次光束B1がこの第4レンズ部材9で平行化、すなわち平面上の波頭を有する光束となるようにしてある。
そして、この第4レンズ部材9を通過した光束の光軸上に、標準平面が直交するように前記リファレンス部材Rを配置している。
More specifically, here, the fourth lens member 9 is provided at a position opposed to the first lens member 21 and the beam splitter 23, and the primary light beam that has exited the first lens member 21 and passed through the beam splitter 23 is provided. B1 is collimated by the fourth lens member 9, that is, a light beam having a wavefront on a plane.
The reference member R is arranged on the optical axis of the light beam that has passed through the fourth lens member 9 so that the standard plane is orthogonal.

また、検査物W又はリファレンス部材Rのいずれかに前記一次光束B1を選択的に照射するために、ビームスプリッタ23で分離した各一次光束B1、つまりビームスプリッタ23で反射して検査物Wに向かう一次光束と、ビームスプリッタ23を透過してリファレンス部材Rに向かう一次光束との光路に、例えば機械式や液晶式のシャッタ81、82をそれぞれ設けて、いずれか一方のシャッタ81(82)を開けたときには、他方のシャッタ82(81)が閉じるように構成してある。   Further, in order to selectively irradiate either the inspection object W or the reference member R with the primary light beam B1, the primary light beams B1 separated by the beam splitter 23, that is, the light beams reflected by the beam splitter 23 and directed toward the inspection object W. For example, mechanical or liquid crystal type shutters 81 and 82 are provided in the optical path of the primary light beam and the primary light beam that passes through the beam splitter 23 and travels toward the reference member R, and either one of the shutters 81 (82) is opened. The other shutter 82 (81) is configured to be closed.

そして、リファレンス部材Rを用いたときの各分離光Dの光軸位置を基準位置として、実際の測定時の光軸位置である測定位置からの偏差を求め、平面度を算出するようにしている。
このような構成であれば、校正や調整が容易にできるので、経年変化にも耐えうる、より精度の高い平面度測定が可能になる。
特に、CVD(MOCVD)装置などのように、検査物がチャンバ内に入っているとともに平面度測定装置がチャンバ外に設けられており、チャンバの透明窓を介してチャンバ外から光束を検査物に照射するような構成であると、前記透明窓が経年変化で徐々に曇ったりして、光束がその透明窓を通過するときに、微妙に曲がったり若干散乱したりする。しかしながら、このリファレンス部材Rを設けておけば、リファレンス部材Rでの測定結果と検査物Wの測定結果との差分をとることにより、透明窓の曇りといった周囲環境の変化をキャンセルできるので、極めて精度の良い測定が可能となる。
Then, using the optical axis position of each separated light D when the reference member R is used as a reference position, the deviation from the measurement position that is the optical axis position at the time of actual measurement is obtained, and the flatness is calculated. .
With such a configuration, calibration and adjustment can be easily performed, so that it is possible to measure flatness with higher accuracy that can withstand aging.
In particular, as in a CVD (MOCVD) apparatus, an inspection object is contained in the chamber and a flatness measuring device is provided outside the chamber, and a light flux is applied to the inspection object from outside the chamber through a transparent window of the chamber. With the configuration to irradiate, the transparent window is gradually clouded due to aging, and the light beam is slightly bent or slightly scattered when passing through the transparent window. However, if this reference member R is provided, the difference between the measurement result of the reference member R and the measurement result of the inspection object W can be taken to cancel changes in the surrounding environment such as clouding of the transparent window. It is possible to measure well.

<第3実施形態>
例えば、図11に示すように、その受光面5aが前記分離光Dの収束位置から光軸方向にずれた位置、すなわち、収束位置よりも受光面を遠ざけた位置(近づけた位置でも構わない)に設定してもよい。このようにすれば、前記第1実施形態における受光面での光スポット(図12参照)に比べ、光スポット径は広がる(図13参照)が、その分、図12、図13から明らかなように、光が多くの受光素子51に分散されるので、各受光素子51のサチュレーションを回避でき、測定レンジを広く取れる。また、分離光の光軸位置は、複数の受光素子51からの光強度信号値に基づいて算出するが、その受光素子51の数が増えるので、光軸位置の算出精度を向上させることができる。
<Third Embodiment>
For example, as shown in FIG. 11, the position where the light receiving surface 5a is shifted from the convergence position of the separated light D in the optical axis direction, that is, the position where the light receiving surface is further away from the convergence position (the position may be closer). May be set. By doing so, the diameter of the light spot becomes wider (see FIG. 13) than the light spot on the light receiving surface in the first embodiment (see FIG. 12), but as is apparent from FIGS. In addition, since the light is dispersed in many light receiving elements 51, saturation of each light receiving element 51 can be avoided and a wide measurement range can be taken. The optical axis position of the separated light is calculated based on the light intensity signal values from the plurality of light receiving elements 51. However, since the number of the light receiving elements 51 is increased, the calculation accuracy of the optical axis position can be improved. .

<第4実施形態>
例えば、図14に示すように、アパーチャ部材4がフィルム状をなし、光透過窓において、レンズ光軸と交わる位置である中央部分が最も光透過度を大きく設定してあり、周縁部に向かうに連れ、光透過度が小さくなるように構成してあるものであれば、回折による影響を排除できる。ここでは、光透過窓4aの中央部分を光透過率100%とし、そして周縁部に向かうに連れ、徐々に光透過度が小さくなるようにフィルムの塗装を変化させている。
<Fourth embodiment>
For example, as shown in FIG. 14, the aperture member 4 has a film shape, and in the light transmission window, the central portion that is a position intersecting with the lens optical axis has the largest light transmittance and is directed toward the peripheral portion. Accordingly, if the light transmittance is configured to be small, the influence of diffraction can be eliminated. Here, the central portion of the light transmission window 4a is set to 100% light transmittance, and the coating of the film is changed so that the light transmittance gradually decreases toward the peripheral edge.

すなわち、前記第1実施形態のように光透過窓4aが単なる貫通孔であると、回折の影響で、図15に示すように、光透過窓4aより外側に光のピークが現れて測定に悪影響を及ぼすことがあるが、上述した構成によって、前記ピークを確実に排除することができる。
なお、光透過度は、図14に示すように段階的に変化させてもよいし、連続的に変化させてもよい。また、光透過度は、周縁部に向かって小さくなるだけではなく、例えば、図16に示すように、途中で大きくなる部分があってもよい。要は、受光面で得られる光強度分布が単一のピークを有する形となるように、光透過窓における光透過度が中心から外側に向かって変化するように構成しておけばよい。
That is, if the light transmission window 4a is a simple through hole as in the first embodiment, a light peak appears outside the light transmission window 4a as shown in FIG. However, the above-described configuration can reliably eliminate the peak.
The light transmittance may be changed stepwise as shown in FIG. 14 or may be changed continuously. Further, the light transmittance is not only reduced toward the peripheral portion, but there may be a portion that increases in the middle as shown in FIG. 16, for example. The point is that the light transmittance in the light transmission window may be changed from the center toward the outside so that the light intensity distribution obtained on the light receiving surface has a single peak.

<第5実施形態>
測定対象領域ARには、前述した実施形態では、各レンズ部材に部分球面を有した凸レンズを用いていたが、図17に示すように、例えばシリンドリカルレンズ21‘、22’(フレネル型でも良い)を用いて、リボン状の一次光束B1、つまり断面が線状の光束B1を測定対象領域ARに照射しても良い。この場合、反射した二次光B2を受光する側でもシリンドリカルレンズ23‘、24’(フレネル型でも良い)を用い、レンズアレイ3は光束B2の線方向に沿って一次元配列されたものでよい。この図16では、検査物Wが所定方向に移動する場合を示している。線状光束は、移動方向と直交(斜めでも良い)するように照射する。そして、一定時間、あるいは一定距離だけ移動する毎に平面度を測定すれば、走査することになるので、2次元配列された前記実施形態と同じく、面状に平面度を測定することが可能になる。
<Fifth Embodiment>
In the above-described embodiment, a convex lens having a partial spherical surface is used for each lens member in the measurement target area AR. However, as shown in FIG. 17, for example, cylindrical lenses 21 ′ and 22 ′ (Fresnel type may be used). May be used to irradiate the measurement target area AR with a ribbon-shaped primary light beam B1, that is, a light beam B1 having a linear cross section. In this case, cylindrical lenses 23 'and 24' (may be Fresnel type) may be used on the side where the reflected secondary light B2 is received, and the lens array 3 may be one-dimensionally arranged along the linear direction of the light beam B2. . FIG. 16 shows a case where the inspection object W moves in a predetermined direction. The linear light beam is irradiated so as to be orthogonal to the moving direction (may be oblique). If the flatness is measured every time or a certain distance is moved, scanning is performed, so that the flatness can be measured in a planar shape as in the case of the two-dimensional arrangement. Become.

この走査の考え方を前記第1実施形態に適用しても良い。図9に示すように、単位領域U間には隙間があるので、平面度測定装置100又は検査物を少しずつ動かすことによって、隙間部分の平面度を測定して、測定対象領域ARの平面度に関するきめ細やかなプロファイルを作成することができる。   This scanning concept may be applied to the first embodiment. As shown in FIG. 9, since there is a gap between the unit areas U, the flatness of the measurement target area AR is measured by measuring the flatness of the gap portion by moving the flatness measuring apparatus 100 or the inspection object little by little. You can create a detailed profile about.

<第6実施形態>
前記光源1から射出される一次光束B1は、平行光束、すなわち波頭が平面状の光束に限られず、平行化できる光束、すなわち部分球面状又は部分円筒状の波頭を有した光束であればよい。例えば、図18では、波頭が部分球面状の光束、すなわち拡開する光束を測定対象領域ARに照射し、その反射光束をレンズ部材で平行化して光検出手段5に導くようにしている。
<Sixth Embodiment>
The primary light beam B1 emitted from the light source 1 is not limited to a parallel light beam, that is, a light beam having a wavefront that is collimated, that is, a light beam having a partially spherical or partial cylindrical wavefront. For example, in FIG. 18, the measurement target area AR is irradiated with a light beam having a partially spherical wave front, that is, a light beam that expands, and the reflected light beam is collimated by a lens member and guided to the light detection means 5.

<その他>
ビームスプリッタを用いない図17、図19のような構成も可能であるし、測定対象領域に照射される平行光束の断面積よりも光検出手段に照射される平行光束の断面積を、前記実施形態のように小さくしなくとも、必ずしもよい。例えば、図20のように同一面積にすれば、理論的には、途中のレンズ部材を排除できるという効果を奏し得る。すなわち、この図20では、照射対象領域で反射した二次光束B2がそのままアパーチャ部材4乃至レンズアレイ3に導かれ、その間に、レンズや反射板のような光学部材が不要となり、導光手段2は、一次光束B1側にのみ配置されることとなる。
<Others>
17 and 19 that do not use a beam splitter are possible, and the cross-sectional area of the parallel light beam applied to the light detection means is more than the cross-sectional area of the parallel light beam applied to the measurement target region. It is not always necessary to make it as small as the form. For example, if the same area is used as shown in FIG. 20, it is theoretically possible to eliminate an intermediate lens member. That is, in FIG. 20, the secondary light beam B2 reflected from the irradiation target region is directly guided to the aperture member 4 to the lens array 3, and an optical member such as a lens or a reflector is not required between them. Are arranged only on the primary light beam B1 side.

また、図21に示すように、測定対象領域ARで反射した光束B2を、別のビームスプリッタでさらに分離して、光干渉作用を利用した膜厚計11に導入してもよい。ここでは、同図に示すように膜厚計11を単位領域U毎に対応させて設けている。また、この種の膜厚計11では、別にリファレンス光が必要となるが、光源1からの光束B1を図示しないビームスプリッタ等で分離し、図示しない光学系を介して各膜厚計11に導くようにしている。   Further, as shown in FIG. 21, the light beam B2 reflected by the measurement target area AR may be further separated by another beam splitter and introduced into the film thickness meter 11 using the optical interference action. Here, a film thickness meter 11 is provided for each unit region U as shown in FIG. In addition, this type of film thickness meter 11 requires reference light separately. However, the light beam B1 from the light source 1 is separated by a beam splitter (not shown) and guided to each film thickness meter 11 via an optical system (not shown). I am doing so.

同様に、測定対象領域ARからは温度に応じた波長の赤外光が放射されるので、その赤外光を単位領域U毎に分離して放射温度計12に導いて検出し、単位領域U毎の温度を計測しても良い。この図19では、放射温度計12の手前に、単位領域Uに対応する第2レンズアレイを設け、各単位領域U内の適宜定めた代表的ポイントからの放射赤外光を各放射温度計12に導いてその温度を測定できるようにしている。
なお、分離光Dをそれぞれビームスプリッタで分離して膜厚計11や放射温度計12に導いても良い。
Similarly, since infrared light having a wavelength corresponding to the temperature is emitted from the measurement target area AR, the infrared light is separated for each unit area U, guided to the radiation thermometer 12, and detected. You may measure the temperature for every. In FIG. 19, a second lens array corresponding to the unit region U is provided in front of the radiation thermometer 12, and radiant infrared light from an appropriate representative point in each unit region U is received from each radiation thermometer 12. So that the temperature can be measured.
The separated light D may be separated by a beam splitter and guided to the film thickness meter 11 or the radiation thermometer 12.

このようにすれば、単位領域U毎の平面度と、温度あるいは膜厚との相関が判断でき、より有効なCVD製造条件等を見出すことが可能となる。
なお、膜厚計や放射温度計を単位領域毎に設けず、双方1つにしても構わないし、一方を1つにして他方を単位領域にあわせた数にしてもよい。
また、検査物が移動している場合は、検査物の位置、姿勢などを検出する位置検出手段からの出力を、この平面度測定装置が取得するように構成し、前記測定対象領域ARや単位領域Uの検査物における絶対的な位置を特定できるようにすることが望ましい。例えば、MOCVD装置中に検査物であるウェーハが入っていて、ウェーハが自転や公転している場合、ウェーハの回転角度と中心位置を、前記自転角度及び好転角度を検出している位置検出手段たるエンコーダから逐次取得し、その値によってウェーハのどの領域を測定しているのかを特定できるようにしておけばよい。
In this way, the correlation between the flatness of each unit region U and the temperature or film thickness can be determined, and more effective CVD manufacturing conditions can be found.
In addition, a film thickness meter and a radiation thermometer may not be provided for each unit region, but both may be one, or one may be one and the other may be a number corresponding to the unit region.
Further, when the inspection object is moving, the flatness measuring device acquires an output from the position detecting means for detecting the position, posture, etc. of the inspection object, and the measurement target area AR and unit It is desirable to be able to identify the absolute position of the region U in the inspection object. For example, when a wafer which is an inspection object is contained in the MOCVD apparatus and the wafer rotates or revolves, the rotation angle and the center position of the wafer are position detecting means for detecting the rotation angle and the rotation angle. What is necessary is just to be able to identify which area | region of the wafer is measured with the value acquired sequentially from an encoder.

その他、本発明は前記各実施形態に限られないし、その各部分構成を組み合わせても良く、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, the present invention is not limited to the above-described embodiments, and the respective partial configurations may be combined, and it goes without saying that various modifications can be made without departing from the spirit of the invention.

100・・・平面度測定装置
1・・・光源(レーザ)
2・・・導光手段
3・・・レンズアレイ
31・・・レンズ
4・・・アパーチャ部材
4a・・・光透過窓
5・・・光検出手段
51・・・受光素子
6・・・平面度算出部
AR・・・測定対象領域
B1・・・一次光束
B2・・・二次光束
D・・・分離光
U・・・単位領域U
DESCRIPTION OF SYMBOLS 100 ... Flatness measuring apparatus 1 ... Light source (laser)
2 ... light guide 3 ... lens array 31 ... lens 4 ... aperture member 4a ... light transmission window 5 ... light detection means 51 ... light receiving element 6 ... flatness Calculation unit AR ... Measurement target area B1 ... Primary light beam B2 ... Secondary light beam D ... Separated light U ... Unit area U

Claims (10)

工業製品等の検査物における測定対象領域の平面度を測定するものであって、
平行化可能な光束である一次光束を射出する光源と、
前記光源から射出された一次光束を前記測定対象領域に導いて反射させ、その反射した光束である二次光束を、略平行な光束として出力可能な導光手段と、
前記導光手段から出力された二次光束と直交するように設けられたレンズアレイと、
前記レンズアレイを構成する各レンズの入射側又は出射側に設けられて、各レンズに入射する又は各レンズから出射される光径をレンズの径よりもそれぞれ小さくするアパーチャ部材と、
前記レンズアレイを通ってレンズ毎に分離された光である分離光を検出する光検出手段と、
前記光検出手段で得られた各分離光の傾き又は位置に基づいて、前記測定対象領域の平面度に係る値を算出する平面度算出部とを具備することを特徴とする平面度測定装置。
It measures the flatness of the area to be measured in inspection products such as industrial products,
A light source that emits a primary light beam that can be collimated;
A light guide means capable of guiding and reflecting the primary light beam emitted from the light source to the measurement target region, and outputting the reflected secondary light beam as a substantially parallel light beam;
A lens array provided to be orthogonal to the secondary light beam output from the light guide means;
An aperture member that is provided on the incident side or the emission side of each lens constituting the lens array, and that makes the light diameter incident on each lens or emitted from each lens smaller than the diameter of each lens;
Light detecting means for detecting separated light that is light separated for each lens through the lens array;
A flatness measuring apparatus comprising: a flatness calculating unit that calculates a value related to the flatness of the measurement target region based on an inclination or position of each separated light obtained by the light detection means.
アパーチャ部材が、各レンズの光軸に対応した位置に、レンズ径よりも小さな径の光透過窓を設けた薄板状をなすものである請求項1記載の平面度測定装置。   2. The flatness measuring apparatus according to claim 1, wherein the aperture member has a thin plate shape in which a light transmission window having a diameter smaller than the lens diameter is provided at a position corresponding to the optical axis of each lens. 前記光透過窓において、レンズ光軸と交わる位置である中央部分が最も光透過度を大きく設定してあり、周縁部に向かうに連れ、光透過度が変化するように構成してある請求項2記載の平面度測定装置。   3. The light transmission window is configured such that a central portion which is a position intersecting with a lens optical axis has the largest light transmittance, and the light transmittance is changed toward a peripheral portion. The flatness measuring apparatus as described. 前記光検出手段が受光素子を平面状に敷き詰めたエリアイメージセンサであり、その受光面が前記分離光の収束位置から光軸方向にずれた位置に設定されている請求項1乃至3いずれか記載の平面度測定装置。   The light detection means is an area image sensor in which light receiving elements are spread in a plane, and the light receiving surface is set at a position shifted in the optical axis direction from the convergence position of the separated light. Flatness measuring device. 前記平面度算出部が、前記測定対象領域が規定以内の平面度である標準検査物に前記一次光を照射したときに得られる各分離光の、光検出手段での位置である基準位置と、測定すべき検査物に前記一次光を照射したときに得られる各分離光の光検出手段での位置である測定位置との偏差に基づいて、前記測定対象領域の平面度に係る値を算出するものである請求項1乃至4いずれか記載の平面度測定装置。   The flatness calculation unit has a reference position that is a position in a light detection means of each separated light obtained when the primary light is irradiated to a standard inspection object whose measurement target area has a flatness within a specified range, A value related to the flatness of the measurement target region is calculated based on the deviation of each separated light obtained when the inspection object to be measured is irradiated with the primary light from the measurement position which is the position of the light detection means. The flatness measuring device according to any one of claims 1 to 4, wherein the flatness measuring device is one. 前記光源が、コヒーレントな平行光を射出するレーザである請求項1乃至5いずれか記載の平面度測定装置。   6. The flatness measuring apparatus according to claim 1, wherein the light source is a laser that emits coherent parallel light. 前記検査物が移動するものであり、該検査物に付帯してその位置及び/又は姿勢を検出する位置検出手段が設けられている場合において、前記位置検出手段からの出力である検査物位置情報を取得するとともに、該検査物位置情報に基づいて、前記測定対象領域の検査物における絶対的な位置を特定する測定領域特定部をさらに備えている請求項1乃至6いずれか記載の平面度測定装置。   In the case where the inspection object is moved and provided with position detection means attached to the inspection object and detecting its position and / or posture, inspection object position information which is an output from the position detection means The flatness measurement according to any one of claims 1 to 6, further comprising: a measurement region specifying unit that specifies an absolute position of the measurement target region in the inspection object based on the inspection object position information. apparatus. 請求項1乃至7いずれか記載の平面度測定装置を用いて平面度を測定する平面度測定方法であって、測定対象領域と平面度測定装置とを相対的に移動させ、測定対象領域を走査することを特徴とする平面度測定方法。   A flatness measuring method for measuring flatness using the flatness measuring device according to any one of claims 1 to 7, wherein the measuring target region and the flatness measuring device are relatively moved to scan the measuring target region. A flatness measuring method characterized by: 次の測定までの相対移動距離が、測定対象領域において1つの分離光が由来する部分領域である単位領域と、隣の単位領域との離間距離よりも小さく設定してある請求項8記載の平面度測定方法。   The plane according to claim 8, wherein a relative movement distance until the next measurement is set to be smaller than a separation distance between a unit region that is a partial region from which one separated light is derived in the measurement target region and an adjacent unit region. Degree measurement method. 前記検査物の位置及び/又は姿勢を検出し、該位置及び/又は姿勢に係る情報である検査物位置情報に基づいて、前記測定対象領域の検査物における絶対的な位置を特定する請求項8又は9記載の平面度測定装置。   9. The position and / or orientation of the inspection object is detected, and an absolute position of the measurement target region in the inspection object is specified based on inspection object position information that is information relating to the position and / or orientation. Or the flatness measuring apparatus according to 9.
JP2011130723A 2011-06-10 2011-06-10 Flatness measuring device Pending JP2013002819A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011130723A JP2013002819A (en) 2011-06-10 2011-06-10 Flatness measuring device
KR1020120061354A KR20120137274A (en) 2011-06-10 2012-06-08 Apparatus and method for measuring flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130723A JP2013002819A (en) 2011-06-10 2011-06-10 Flatness measuring device

Publications (1)

Publication Number Publication Date
JP2013002819A true JP2013002819A (en) 2013-01-07

Family

ID=47671563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130723A Pending JP2013002819A (en) 2011-06-10 2011-06-10 Flatness measuring device

Country Status (2)

Country Link
JP (1) JP2013002819A (en)
KR (1) KR20120137274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163895A (en) * 2013-02-27 2014-09-08 Canon Inc Shape measurement instrument and shape measurement method using shack-hartmann sensor
JP2014167462A (en) * 2013-02-04 2014-09-11 Kobe Steel Ltd Shape measurement device
JP2017044832A (en) * 2015-08-26 2017-03-02 キヤノン株式会社 Lens array, wavefront sensor, wavefront measurement device, shape measurement device, aberration measurement device, optical element manufacturing method and optical instrument manufacturing method
JP2019500628A (en) * 2015-12-12 2019-01-10 ザ セクレタリー,デパートメント オブ エレクトロニクス アンド インフォメーション テクノロジー(ディーイーアイティーワイ) System, apparatus and method for monitoring surface profile and / or thickness measurements in thin films
WO2023103197A1 (en) * 2021-12-06 2023-06-15 深圳大学 Ar geometric array optical waveguide measurement method and device
CN117781962A (en) * 2023-12-29 2024-03-29 苏州奈膜凯新材料有限公司 Electronic product peep-proof film flatness inspection system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068002B1 (en) * 2018-05-24 2020-01-20 주식회사 탑 엔지니어링 Seal dispenser having laser displacement sensor and operating method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167738A (en) * 1992-12-01 1994-06-14 Chinon Ind Inc Diaphragm device
US5563709A (en) * 1994-09-13 1996-10-08 Integrated Process Equipment Corp. Apparatus for measuring, thinning and flattening silicon structures
JPH10267638A (en) * 1997-03-26 1998-10-09 Horiba Ltd Method and apparatus for measurement of flatness on surface of object
JPH11194022A (en) * 1997-12-27 1999-07-21 Horiba Ltd Device for measuring flatness of semiconductor wafer
WO1999060361A1 (en) * 1998-05-19 1999-11-25 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
JP2001056250A (en) * 1999-08-20 2001-02-27 Ricoh Co Ltd Optical characteristic measuring device for scanning optical system
JP2001304831A (en) * 2000-04-21 2001-10-31 Keyence Corp Optical angle measuring apparatus
JP2003503726A (en) * 1999-07-01 2003-01-28 ウェーブフロント・サイエンシーズ・インコーポレイテッド Apparatus and method for evaluating targets larger than a sensor measurement aperture
JP2004327713A (en) * 2003-04-24 2004-11-18 Sharp Corp Image read device and manufacturing method therefor
JP2004336228A (en) * 2003-05-02 2004-11-25 Alps Electric Co Ltd Lens array system
JP2006266943A (en) * 2005-03-24 2006-10-05 Sony Corp Apparatus and method for inspecting defect
JP2007094385A (en) * 2005-08-30 2007-04-12 Canon Electronics Inc Nd filter, diaphragm device having nd filter, and optical apparatus
JP2007136050A (en) * 2005-11-22 2007-06-07 National Univ Corp Shizuoka Univ X-ray detector array

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167738A (en) * 1992-12-01 1994-06-14 Chinon Ind Inc Diaphragm device
US5563709A (en) * 1994-09-13 1996-10-08 Integrated Process Equipment Corp. Apparatus for measuring, thinning and flattening silicon structures
JPH10267638A (en) * 1997-03-26 1998-10-09 Horiba Ltd Method and apparatus for measurement of flatness on surface of object
JPH11194022A (en) * 1997-12-27 1999-07-21 Horiba Ltd Device for measuring flatness of semiconductor wafer
WO1999060361A1 (en) * 1998-05-19 1999-11-25 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
JP2003503726A (en) * 1999-07-01 2003-01-28 ウェーブフロント・サイエンシーズ・インコーポレイテッド Apparatus and method for evaluating targets larger than a sensor measurement aperture
JP2001056250A (en) * 1999-08-20 2001-02-27 Ricoh Co Ltd Optical characteristic measuring device for scanning optical system
JP2001304831A (en) * 2000-04-21 2001-10-31 Keyence Corp Optical angle measuring apparatus
JP2004327713A (en) * 2003-04-24 2004-11-18 Sharp Corp Image read device and manufacturing method therefor
JP2004336228A (en) * 2003-05-02 2004-11-25 Alps Electric Co Ltd Lens array system
JP2006266943A (en) * 2005-03-24 2006-10-05 Sony Corp Apparatus and method for inspecting defect
JP2007094385A (en) * 2005-08-30 2007-04-12 Canon Electronics Inc Nd filter, diaphragm device having nd filter, and optical apparatus
JP2007136050A (en) * 2005-11-22 2007-06-07 National Univ Corp Shizuoka Univ X-ray detector array

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167462A (en) * 2013-02-04 2014-09-11 Kobe Steel Ltd Shape measurement device
JP2014163895A (en) * 2013-02-27 2014-09-08 Canon Inc Shape measurement instrument and shape measurement method using shack-hartmann sensor
JP2017044832A (en) * 2015-08-26 2017-03-02 キヤノン株式会社 Lens array, wavefront sensor, wavefront measurement device, shape measurement device, aberration measurement device, optical element manufacturing method and optical instrument manufacturing method
US9784641B2 (en) 2015-08-26 2017-10-10 Canon Kabushiki Kaisha Lens array, wavefront sensor, wavefront measurement apparatus, shape measurement apparatus, aberration measurement apparatus, manufacturing method of optical element, and manufacturing method of optical device
JP2019500628A (en) * 2015-12-12 2019-01-10 ザ セクレタリー,デパートメント オブ エレクトロニクス アンド インフォメーション テクノロジー(ディーイーアイティーワイ) System, apparatus and method for monitoring surface profile and / or thickness measurements in thin films
WO2023103197A1 (en) * 2021-12-06 2023-06-15 深圳大学 Ar geometric array optical waveguide measurement method and device
CN117781962A (en) * 2023-12-29 2024-03-29 苏州奈膜凯新材料有限公司 Electronic product peep-proof film flatness inspection system and method

Also Published As

Publication number Publication date
KR20120137274A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP2013002819A (en) Flatness measuring device
TWI464362B (en) Apparatus for measuring a height and obtaining a focused image of and object and method thereof
TWI484139B (en) Chromatic confocal scanning apparatus
US7505150B2 (en) Device and method for the measurement of the curvature of a surface
JP6656905B2 (en) Measuring method of inner diameter of transparent tube
US9329025B2 (en) Measuring device
JP2018200927A (en) Electromagnetic wave detection device and information acquisition system
TWI551952B (en) Euv lithography system
JP6186913B2 (en) Measuring device
JP6087792B2 (en) Shape measuring device
EP2918968A2 (en) Optical shape measuring apparatus with diffraction grating and method of manufacturing article
JP2015072175A (en) Inspection equipment
JP2017110970A (en) Optical external dimension measurement method and measuring device
FI127908B (en) Method and apparatus for measuring the height of a surface
JP2009008643A (en) Optical scanning type plane inspecting apparatus
JP2016035466A (en) Defect inspection method, weak light detection method, and weak light detector
JP2017037041A (en) Measuring device
JP2007093293A (en) Optical system for objective lens inclination adjustment
TW201942543A (en) Distance measurement unit and light irradiation device
JP7076042B2 (en) Laser triangulation equipment and calibration method
JP7263723B2 (en) distance measuring device
JP2016114602A (en) Surface shape measurement device, and defect determination device
CN114651194A (en) Projector for solid-state LIDAR system
JP2007271549A (en) Optical distance measuring apparatus and method
TWI617384B (en) Focusing point detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303