JP2017037041A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2017037041A
JP2017037041A JP2015159803A JP2015159803A JP2017037041A JP 2017037041 A JP2017037041 A JP 2017037041A JP 2015159803 A JP2015159803 A JP 2015159803A JP 2015159803 A JP2015159803 A JP 2015159803A JP 2017037041 A JP2017037041 A JP 2017037041A
Authority
JP
Japan
Prior art keywords
light
lens
reflected
light receiving
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015159803A
Other languages
Japanese (ja)
Other versions
JP6547514B2 (en
Inventor
堀田 宏之
Hiroyuki Hotta
宏之 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2015159803A priority Critical patent/JP6547514B2/en
Publication of JP2017037041A publication Critical patent/JP2017037041A/en
Application granted granted Critical
Publication of JP6547514B2 publication Critical patent/JP6547514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device, which is a system for irradiating an object with irradiation light through a telecentric optical system having two lenses and a diaphragm arranged between the lenses and receiving reflected light from the object, that suppresses missing of receiving light output distribution while achieving miniaturization, compared to the case without considering a position of a semi-transmissive mirror.SOLUTION: A measuring device includes: a light-emitting section which emits irradiation light; a first lens which changes a degree of divergence of the irradiation light; a diaphragm section which narrows the irradiation light; a second lens which condenses the irradiation light having passed through the diaphragm section and irradiates an object with the condensed light from a direction parallel to an optical axis; a first light-receiving section which receives a part of reflected light after the irradiation light has irradiated the object, reflected, and passed through the second lens; a semi-transmissive mirror which makes the irradiation light emitted from the first lens pass toward the diaphragm section and reflects the reflected light having passed through the diaphragm section; a second light-receiving section which receives the reflected light reflected by the semi-transmissive mirror; and a measuring section which measures the object using a light-receiving result of the first light-receiving section and a light-receiving result of the second light-receiving section.SELECTED DRAWING: Figure 1

Description

本発明は、計測装置に関する。   The present invention relates to a measuring device.

特許文献1には、光源と、該光源から出射される光束を、その光軸に直交する断面において輪帯状パターンの周方向の一部に輪帯欠損部が形成された断面形状を有する測定光束に整形可能な光束整形部と、輪帯欠損部の形成位置を変更する遮光位置変更部と、測定光束を被測定試料の被測定面上に集光する第1の集光光学系と、測定光束のうち、前記被測定試料によって反射された反射光束を集光する第2の集光光学系と、該第2の集光光学系を挟んで、被測定面と光学的に共役な位置関係に配置された開口絞りと、該開口絞りを通過した光束を測光する測光部と、第2の集光光学系によって、被測定面と光学的に共役とされた像面における第2の集光光学系による投影像が観察可能な観察部と、を備える、測光装置が開示されている。特許文献1に開示された測光装置では、計測する光線の欠損部の対策において、この欠損部の形成位置を変更するために遮光部材を移動させている。   In Patent Document 1, a light source and a light beam emitted from the light source are measured light beams having a cross-sectional shape in which a ring-shaped defect portion is formed in a part of the ring-shaped pattern in the circumferential direction in a cross section perpendicular to the optical axis. A light beam shaping unit that can be shaped into a shape, a light blocking position changing unit that changes the formation position of the annular zone defect part, a first condensing optical system that condenses the measurement light beam on the measurement surface of the sample to be measured, and measurement A second condensing optical system for condensing a reflected light beam reflected by the sample to be measured among the light beams, and a positional relationship optically conjugate with the surface to be measured across the second condensing optical system The second condensing on the image plane optically conjugate with the surface to be measured by the aperture stop disposed at the aperture stop, the photometry unit for measuring the light beam that has passed through the aperture stop, and the second condensing optical system. A photometric device is disclosed that includes an observation unit capable of observing a projection image by an optical system. In the photometric device disclosed in Patent Literature 1, the light shielding member is moved in order to change the formation position of the defect portion in the measure against the defect portion of the light beam to be measured.

特許文献2には、少なくとも一つの共役面にて対象面を像形成するための受理系と、受理系の開口絞りの面又はこれに共役な面である受理系の少なくとも一つの瞳孔面とを備えた器具において、要素的に互いに無関係にコントロールされる少なくとも一つのビーム操作ユニットEMSが、対象面に対し共役な面にて、そして少なくとも一つのEMSが瞳孔面にて配置され、その際、EMSがそれぞれインターフェイスを介して、プログラミングを通じて異なるビーム路を生じ得るように放射線の特性を操作するために、EMSの要素をコントロールする情報技術システムITSと結合されていることを特徴とする器具が開示されている。特許文献2に開示された器具では、計測する光線の欠損部の対策において、照射するビームを移動させて調整している。   Patent Document 2 discloses a receiving system for forming an image of a target surface with at least one conjugate plane, and an aperture stop surface of the receiving system or at least one pupil plane of the receiving system that is a conjugate plane with the receiving system. In the instrument provided, at least one beam manipulation unit EMS, which is controlled in an elementally independent manner, is arranged in a plane conjugate to the object plane and at least one EMS in the pupil plane, in which case EMS Disclosed is an instrument characterized in that each is coupled with an information technology system ITS that controls the elements of the EMS to manipulate the properties of the radiation so that different beam paths can be produced through programming, each via an interface ing. In the instrument disclosed in Patent Document 2, adjustment is made by moving the irradiated beam as a countermeasure for the missing portion of the light beam to be measured.

特開2014−092366号公報JP 2014-092366 A 特表2004−522488号公報JP-T-2004-522488

本発明の課題は、2枚のレンズ及びレンズ間に配置された絞りを有するテレセントリック光学系を介して対象物に照射光を照射し、対象物からの反射光を受光する方式の計測装置において、半透過鏡の位置に配慮しない場合と比較して、小型化を達成しつつ受光出力分布の欠落を抑制することである。   An object of the present invention is to provide a measurement apparatus that irradiates an object with irradiation light through a telecentric optical system having a diaphragm disposed between two lenses and the lens, and receives reflected light from the object. Compared to the case where the position of the semi-transparent mirror is not taken into consideration, the omission of the received light output distribution is suppressed while achieving miniaturization.

上記目的を達成するために、請求項1に記載の計測装置は、対象物へ照射する照射光を発光する発光部と、前記発光部から発光された前記照射光の発散度合いを変える第1のレンズと、前記第1のレンズから出射された前記照射光を絞る開口部を有する絞り部と、前記開口部を通過した前記照射光を集光するとともに予め定められた方向から前記対象物に照射する第2のレンズと、前記絞り部と前記第2のレンズとの間に配置され、前記照射光が前記対象物に照射されて反射し前記第2のレンズを透過した反射光の少なくとも一部を受光する第1の受光部と、前記第1のレンズと前記絞り部との間に配置され、かつ前記第1のレンズから出射された前記照射光を前記絞り部に向けて透過させると共に前記開口部を通過した前記反射光を反射させる半透過鏡と、前記半透過鏡で反射された前記反射光を受光する第2の受光部と、前記第1の受光部の受光結果及び前記第2の受光部の受光結果を用いて前記対象物を計測する計測部と、を含むものである。   In order to achieve the above object, a measuring device according to claim 1 is a first light emitting unit that emits irradiation light to be irradiated on an object, and a first degree of divergence of the irradiation light emitted from the light emitting unit. A lens, a diaphragm having an aperture for converging the irradiation light emitted from the first lens, and condensing the irradiation light passing through the opening and irradiating the object from a predetermined direction And at least a part of the reflected light that is disposed between the second lens, the diaphragm unit, and the second lens, and the irradiation light is reflected by being irradiated on the object and is transmitted through the second lens. A first light receiving portion that receives light, and is disposed between the first lens and the aperture portion, and transmits the irradiation light emitted from the first lens toward the aperture portion, and The reflected light that has passed through the opening is reflected. A semi-transparent mirror, a second light-receiving unit that receives the reflected light reflected by the semi-transparent mirror, and a light-receiving result of the first light-receiving unit and a light-receiving result of the second light-receiving unit. And a measuring unit that measures the object.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記発光部は、前記予め定められた方向と交差する方向に配列された複数の発光素子を含み、前記第1の受光部は、前記予め定められた方向と交差する面内に配置された複数の第1の受光素子を含み、前記第2の受光部は、少なくとも1つの第2の受光素子を含み、前記複数の発光素子の発光タイミングと、前記複数の第1の受光素子及び前記第2の受光素子の受光タイミングとを制御する制御部をさらに含むものである。   According to a second aspect of the present invention, in the first aspect of the invention, the light emitting unit includes a plurality of light emitting elements arranged in a direction crossing the predetermined direction, The light receiving unit includes a plurality of first light receiving elements disposed in a plane intersecting the predetermined direction, and the second light receiving unit includes at least one second light receiving element, And a control unit for controlling the light emission timings of the light emitting elements and the light reception timings of the plurality of first light receiving elements and the second light receiving elements.

また、請求項3に記載の発明は、請求項2に記載の発明において、前記制御部は、前記複数の発光素子を順次発光させ、前記複数の発光素子の各々の発光ごとに前記複数の第1の受光素子及び前記第2の受光素子が受光するように制御するものである。   According to a third aspect of the present invention, in the second aspect of the present invention, the control unit sequentially causes the plurality of light emitting elements to emit light, and each of the plurality of light emitting elements emits the plurality of second light emitting elements. One light receiving element and the second light receiving element are controlled to receive light.

また、請求項4に記載の発明は、請求項2又は請求項3に記載の発明において、前記半透過鏡は、前記照射光の照射方向に対し、前記複数の発光素子の配列方向に平行な軸を中心として傾けて配置されたものである。   The invention according to claim 4 is the invention according to claim 2 or claim 3, wherein the semi-transmission mirror is parallel to an arrangement direction of the plurality of light emitting elements with respect to an irradiation direction of the irradiation light. It is arranged tilted around the axis.

また、請求項5に記載の発明は、請求項2〜請求項4のいずれか1項に記載の発明において、前記複数の第1の受光素子の受光面と前記第2のレンズとの距離は前記第2のレンズの焦点距離と等しくされたものである。   According to a fifth aspect of the present invention, in the invention according to any one of the second to fourth aspects, the distance between the light receiving surfaces of the plurality of first light receiving elements and the second lens is This is equal to the focal length of the second lens.

また、請求項6に記載の発明は、請求項1〜請求項5のいずれか1項に記載の発明において、前記半透過鏡と前記第2の受光部との間に、前記半透過鏡で反射された前記反射光を前記第2の受光部に向けて集光する第3のレンズをさらに含むものである。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the semi-transmission mirror is provided between the semi-transmission mirror and the second light receiving unit. It further includes a third lens that condenses the reflected light reflected toward the second light receiving unit.

また、請求項7に記載の発明は、請求項1〜請求項6のいずれか1項に記載の発明において、前記計測部は、前記第1の受光部の受光結果と予め定められた係数が乗じられた前記第2の受光部の受光結果とを含めた出力分布を生成し、前記出力分布を用いて前記対象物を計測するものである。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the measurement unit has a light reception result of the first light receiving unit and a predetermined coefficient. An output distribution including the multiplied light reception result of the second light receiving unit is generated, and the object is measured using the output distribution.

また、請求項8に記載の発明は、請求項1〜請求項7のいずれか1項に記載の発明において、前記開口部と前記第1のレンズとの距離は前記第1のレンズの焦点距離と等しくされ、かつ前記開口部と前記第2のレンズとの距離は前記第2のレンズの焦点距離と等しくされたものである。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein a distance between the opening and the first lens is a focal length of the first lens. And the distance between the opening and the second lens is equal to the focal length of the second lens.

また、請求項9に記載の発明は、請求項1〜請求項8のいずれか1項に記載の発明において、前記発光部と前記第2の受光部との間に配置され、前記第2の受光部に入射されないように前記照射光を遮光する遮光部材と、前記絞り部の前記発光部側の面上に配置され、前記照射光の反射を防止する反射防止部材と、をさらに含むものである。   An invention according to a ninth aspect is the invention according to any one of the first to eighth aspects, wherein the second light receiving part is disposed between the light emitting part and the second light receiving part. It further includes a light shielding member that shields the irradiation light so as not to enter the light receiving portion, and an antireflection member that is disposed on the light emitting portion side surface of the diaphragm portion and prevents the reflection of the irradiation light.

請求項1に記載の発明によれば、半透過鏡の位置に配慮しない場合と比較して、小型化を達成しつつ受光出力分布の欠落が抑制される、という効果が得られる。   According to the first aspect of the present invention, it is possible to obtain an effect that the omission of the received light output distribution is suppressed while achieving downsizing as compared with the case where the position of the semi-transmissive mirror is not considered.

請求項2に記載の発明によれば、制御部によって制御しないで発光素子を常時発光させ、受光素子で常時受光される場合と比較して、照射光と反射光とが容易に分離される、という効果が得られる。   According to the second aspect of the present invention, the light emitting element is always allowed to emit light without being controlled by the control unit, and the irradiation light and the reflected light are easily separated as compared with the case where the light receiving element always receives light. The effect is obtained.

請求項3に記載の発明によれば、発光素子を一括して発光させる場合と比較して、発光素子ごとに受光部からの出力分布が取得される、という効果が得られる。   According to the third aspect of the present invention, the output distribution from the light receiving unit can be obtained for each light emitting element as compared with the case where the light emitting elements emit light collectively.

請求項4に記載の発明によれば、半透過鏡が、照射光の照射方向に対し、複数の発光素子の配列方向に垂直な軸を中心として傾けて配置される場合と比較して、半透過鏡を透過させる発光部からの照射光の範囲、あるいは半透過鏡で反射させる反射光の範囲が拡大される、という効果が得られる。   According to the fourth aspect of the present invention, the semi-transparent mirror is semi-symmetrical with respect to the irradiation direction of the irradiation light as compared with the case where the semi-transmission mirror is inclined with respect to an axis perpendicular to the arrangement direction of the plurality of light emitting elements. The effect that the range of the irradiation light from the light emitting part that transmits the transmission mirror or the range of the reflected light that is reflected by the semi-transmission mirror is enlarged is obtained.

請求項5に記載の発明によれば、第1の受光素子の受光面と第2のレンズとの距離を第2のレンズの焦点距離と異なる長さとした場合と比較して、対象物の位置が上下左右に変動しても、異なる照射光が対象物の同じ位置に照射されて、同じ出力分布が得られる、という効果が得られる。   According to the fifth aspect of the present invention, the position of the object is compared with the case where the distance between the light receiving surface of the first light receiving element and the second lens is different from the focal length of the second lens. Even if the angle fluctuates up and down, left and right, the same output distribution can be obtained by irradiating different irradiation light on the same position of the object.

請求項6に記載の発明によれば、第3のレンズなしで第2の受光部で直接反射光を受光する場合と比較して、第2の受光部が小型化される、という効果が得られる。   According to the sixth aspect of the present invention, there is an effect that the second light receiving unit is downsized as compared with the case where the second light receiving unit directly receives the reflected light without the third lens. It is done.

請求項7に記載の発明によれば、係数を乗ずることなく第2の受光部の受光結果と第1の受光部の受光結果とを含めた出力分布を生成する場合と比較して、正確な出力分布が取得される、という効果が得られる。   According to the seventh aspect of the invention, it is more accurate than the case of generating an output distribution including the light reception result of the second light receiving unit and the light reception result of the first light receiving unit without multiplying by a coefficient. The effect that the output distribution is acquired is obtained.

請求項8に記載の発明によれば、開口部と第1のレンズとの距離を第1のレンズの焦点距離と異なる長さとした場合、又は前記開口部と第2のレンズとの距離を第2のレンズの焦点距離と異なる長さとした場合と比較して、テレセントリックレンズが構成される、という効果が得られる。   According to the eighth aspect of the present invention, when the distance between the opening and the first lens is different from the focal length of the first lens, or the distance between the opening and the second lens is the first distance. As compared with the case where the length is different from the focal length of the second lens, an effect that a telecentric lens is configured is obtained.

請求項9に記載の発明によれば、照射光を遮光する遮光部材、あるいは照射光の反射を防止する反射防止部材を有さない場合と比較して、より精度の高い受光出力分布が取得される、という効果が得られる。   According to the ninth aspect of the present invention, a light receiving output distribution with higher accuracy can be obtained as compared with the case where there is no light blocking member that blocks the irradiation light or an antireflection member that prevents the reflection of the irradiation light. The effect that

第1の実施の形態に係る計測装置の構成の一例を示す正面図である。It is a front view which shows an example of a structure of the measuring device which concerns on 1st Embodiment. 第1の実施の形態に係る計測装置の構成の一例を示す側面図である。It is a side view which shows an example of a structure of the measuring device which concerns on 1st Embodiment. 実施の形態に係る受光器の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the light receiver which concerns on embodiment. 実施の形態に係る制御部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control part which concerns on embodiment. 実施の形態に係る発光器及び受光器の制御を説明するためのタイムチャートである。It is a time chart for demonstrating control of the light emitter and light receiver which concern on embodiment. 第1の実施の形態に係る計測装置の受光出力分布の計測方法、及び受光出力分布における欠損を説明するための図である。It is a figure for demonstrating the measuring method of the light reception output distribution of the measuring device which concerns on 1st Embodiment, and the defect | deletion in light reception output distribution. 比較例に係る計測装置の構成を示す図である。It is a figure which shows the structure of the measuring device which concerns on a comparative example. 第1の実施の形態に係る計測装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the measuring device which concerns on 1st Embodiment. 第2の実施の形態に係る計測装置の構成の一例を示す正面図である。It is a front view which shows an example of a structure of the measuring device which concerns on 2nd Embodiment.

[第1の実施の形態]
図1ないし図8を参照して、本実施の形態について詳細に説明する。まず、図1及び図2を参照して、本実施の形態に係る計測装置10の構成の一例について説明する。
[First Embodiment]
The present embodiment will be described in detail with reference to FIGS. First, with reference to FIG.1 and FIG.2, an example of a structure of the measuring device 10 which concerns on this Embodiment is demonstrated.

図1に示すように、計測装置10は、発光器14、光学系30、受光器18、集光光学系70、及び制御部20を含んで構成されている。計測装置10は、−X方向に移動する対象物OBの微細領域に、Z軸方向から順次光を照射し、各々の反射光の反射角度分布(光量分布の反射角度依存性)を取得する。取得した反射角度分布を用い、対象物OBの形状の変化や表面状態(シボ、エンボス、表面粗さ、表面欠陥、異物付着等)について、対象物OBとの距離や対象物OBの角度の変動に影響されずに計測がなされる。   As shown in FIG. 1, the measuring apparatus 10 includes a light emitter 14, an optical system 30, a light receiver 18, a condensing optical system 70, and a control unit 20. The measurement apparatus 10 sequentially irradiates light on the fine region of the object OB moving in the −X direction from the Z-axis direction, and acquires the reflection angle distribution of each reflected light (the reflection angle dependency of the light amount distribution). Using the acquired reflection angle distribution, the distance from the object OB and the change in the angle of the object OB with respect to the shape change and surface state of the object OB (such as wrinkles, embossing, surface roughness, surface defects, foreign matter adhesion, etc.) Measurements are made without being affected by

より詳細には、図1に示すように、発光器14は、−X方向に移動する対象物OBが通過する計測領域Tに対して、装置上下方向(Z軸方向)の上方に配置されている。また、発光器14は、基板14A上Y軸方向に並べて実装され、−Z方向を発光方向とする複数の発光素子12を備えている。換言すれば、複数の発光素子12は、対象物OBの移動方向(−X方向)に対して直交(交差)する方向に並べられている。なお、図1では、基板14AのY軸方向の一端部(図中右端)に配置された発光素子12を発光素子12Aと表記し、基板14AのY軸方向他端部(図中左端)に配置された発光素子12を発光素子12Bと表記し、基板14Aの中央に配置された発光素子12を発光素子12Cと表記している。   More specifically, as shown in FIG. 1, the light emitter 14 is arranged above the apparatus vertical direction (Z-axis direction) with respect to the measurement region T through which the object OB moving in the −X direction passes. Yes. The light emitter 14 includes a plurality of light emitting elements 12 mounted side by side in the Y-axis direction on the substrate 14A and having the −Z direction as the light emission direction. In other words, the plurality of light emitting elements 12 are arranged in a direction orthogonal (crossing) to the moving direction (−X direction) of the object OB. In FIG. 1, the light emitting element 12 disposed at one end (right end in the drawing) of the substrate 14A is referred to as a light emitting element 12A, and the other end (left end in the drawing) of the substrate 14A in the Y axis direction. The arranged light emitting element 12 is denoted as a light emitting element 12B, and the light emitting element 12 disposed in the center of the substrate 14A is denoted as a light emitting element 12C.

本実施の形態に係る複数の発光素子12は、発光素子12Aから発光素子12Bまで、時間差を設けて順次発光されるように構成され、各発光素子12からの光が対象物OBの異なる位置に順次照射される。そして、対象物OBが計測領域Tにおいて−X方向に移動する間に、発光素子12Aから発光素子12Bまでの1周期の発光が複数回繰り返されるように構成されている。図2には、発光素子12Cから出射される照射光IFの光束が、図1には、照射光IFが対象物OBの表面200で反射された反射光RFが示されている。   The plurality of light emitting elements 12 according to the present embodiment are configured to emit light sequentially from the light emitting element 12A to the light emitting element 12B with a time difference, and the light from each light emitting element 12 is at a different position on the object OB. Irradiated sequentially. Then, while the object OB moves in the −X direction in the measurement region T, one cycle of light emission from the light emitting element 12A to the light emitting element 12B is repeated a plurality of times. 2 shows the light beam of the irradiation light IF emitted from the light emitting element 12C, and FIG. 1 shows the reflected light RF in which the irradiation light IF is reflected by the surface 200 of the object OB.

発光素子12としては特に限定されないが、一例として、面発光レーザ(Vertical Cavity Surface Emitting Laser:VCSEL)、発光ダイオード(Light Emitting Diode:LED)等が用いられる。   Although it does not specifically limit as the light emitting element 12, As an example, a surface emitting laser (Vertical Cavity Surface Emitting Laser: VCSEL), a light emitting diode (Light Emitting Diode: LED), etc. are used.

光学系30は、レンズ32、レンズ34、及びレンズ32とレンズ34との間に配置された絞り40を含み、いわゆる両側テレセントリックレンズとして構成されている。光学系30は、発光器14と対象物OBとの間に配置され、発光素子12から発光された照射光を対象物OBに導くと共に、対象物OBで反射された反射光を受光器18に導く。本実施の形態では、レンズ32の光軸とレンズ34の光軸とが共通の光軸Mとされ、この光軸Mが、発光器14の発光素子12Cの中心、及び後述する開口部42の中心を通っている。   The optical system 30 includes a lens 32, a lens 34, and a diaphragm 40 disposed between the lens 32 and the lens 34, and is configured as a so-called double-sided telecentric lens. The optical system 30 is disposed between the light emitter 14 and the object OB, guides the irradiation light emitted from the light emitting element 12 to the object OB, and reflects the reflected light reflected by the object OB to the light receiver 18. Lead. In the present embodiment, the optical axis of the lens 32 and the optical axis of the lens 34 are a common optical axis M, and this optical axis M is the center of the light emitting element 12C of the light emitter 14 and an opening 42 described later. It passes through the center.

レンズ32は、一例として、平面視で円形状の凸レンズとされ、レンズ32の直径J(図2参照)は、発光素子12Aから発光素子12BまでのY軸方向の寸法D(図1参照)より長くされている。そのため、各発光素子12から発光された光のほぼすべてはレンズ32を透過し、レンズ32を透過した光は発散度合を変えられ、平行光とされてレンズ34に向かう。   The lens 32 is, for example, a circular convex lens in plan view, and the diameter J (see FIG. 2) of the lens 32 is based on the dimension D (see FIG. 1) in the Y-axis direction from the light emitting element 12A to the light emitting element 12B. Have been long. Therefore, almost all of the light emitted from each light-emitting element 12 is transmitted through the lens 32, and the light transmitted through the lens 32 is changed in the degree of divergence and becomes parallel light and travels toward the lens 34.

レンズ34は、一例として、平面視で円形状の凸レンズとされ、本実施の形態では、レンズ34の直径Gは、レンズ32の直径Jより長くされている。そして、レンズ34は、レンズ32から出射されてレンズ34を透過する光束を対象物OBの表面200に向けて集光する。なお、レンズ34の集光点の位置(焦点)を、必ずしも対象物OBの表面200の位置とする必要はない。集光点の位置を表面200の位置からずらし(デフォーカスし)、表面200上における照射光IFの照射径、つまり、対象物OBの照射領域の大きさを調整するようにしてもよい。なお、本実施の形態に係る照射径は、一例として数10μmである。   The lens 34 is, for example, a circular convex lens in plan view. In the present embodiment, the diameter G of the lens 34 is longer than the diameter J of the lens 32. The lens 34 condenses the light beam emitted from the lens 32 and transmitted through the lens 34 toward the surface 200 of the object OB. Note that the position (focal point) of the condensing point of the lens 34 is not necessarily the position of the surface 200 of the object OB. The position of the condensing point may be shifted (defocused) from the position of the surface 200, and the irradiation diameter of the irradiation light IF on the surface 200, that is, the size of the irradiation region of the object OB may be adjusted. In addition, the irradiation diameter which concerns on this Embodiment is several tens of micrometers as an example.

絞り40には、略円形状の開口部42が形成されており、この開口部42によって、発光素子12から発光されレンズ32を透過してレンズ34に入射する光束を絞る。より具体的には、絞り40は、板面をX−Y平面に平行とされた板状とされ、絞り40には、光軸Mの周囲でレンズ34側に屈曲して先細りとされた先端部が形成されている。この先端部が、開口部42を構成する開口縁42Aとされており、開口部42によって形成される円形状は、光軸Mを中心軸としている。なお、本実施の形態に係る開口部42の直径は、一例として約1mmである。   A substantially circular opening 42 is formed in the stop 40, and the light beam emitted from the light emitting element 12, passing through the lens 32 and entering the lens 34 is stopped by the opening 42. More specifically, the diaphragm 40 has a plate shape whose plate surface is parallel to the XY plane, and the diaphragm 40 has a tip that is bent and tapered toward the lens 34 around the optical axis M. The part is formed. This tip portion is an opening edge 42A constituting the opening 42, and the circular shape formed by the opening 42 has the optical axis M as the central axis. In addition, the diameter of the opening part 42 which concerns on this Embodiment is about 1 mm as an example.

そして、Z軸方向において、この開口縁42Aとレンズ32との距離F1は、レンズ32の焦点距離f1と略等しくされ、開口縁42Aとレンズ34との距離F2は、レンズ34の焦点距離f2と略等しくされている。   In the Z-axis direction, the distance F1 between the opening edge 42A and the lens 32 is substantially equal to the focal length f1 of the lens 32, and the distance F2 between the opening edge 42A and the lens 34 is equal to the focal distance f2 of the lens 34. It is almost equal.

以上のように構成された本実施の形態に係る光学系30は、順次発光された各発光素子12からの光束を、発光素子12の位置によらずに、細く絞られかつ光軸Mに平行な照射光IF(図6参照)として対象物OBに照射する。換言すれば、各発光素子12を発光させて走査することにより、細く絞られ互いに平行な略円形断面の光束が対象物OBに順次照射される。さらに、本実施の形態に係る計測装置10では、照射光IFの光束のレンズ34による集光点付近に対象物OBを配置することにより、対象物OBにおける各照射光IFの照射領域がほぼ同径の微細な領域とされている。このことにより、計測装置10では、対象物OBの位置がZ軸方向で上下変動しても、ほぼ同じ照射径で各照射光が照射されるため、対象物OBの像のボケが極めて小さくされる。   The optical system 30 according to the present embodiment configured as described above narrows the light flux from each light emitting element 12 that is sequentially emitted regardless of the position of the light emitting element 12 and is parallel to the optical axis M. The object OB is irradiated as an appropriate irradiation light IF (see FIG. 6). In other words, by scanning each light emitting element 12 to emit light, light beams having substantially circular cross sections that are narrowed and parallel to each other are sequentially irradiated onto the object OB. Furthermore, in the measuring apparatus 10 according to the present embodiment, the irradiation area of the irradiation light IF on the target object OB is substantially the same by arranging the target object OB in the vicinity of the condensing point of the light beam of the irradiation light IF by the lens 34. It is a fine area. As a result, in the measuring apparatus 10, even if the position of the object OB fluctuates up and down in the Z-axis direction, each irradiation light is irradiated with substantially the same irradiation diameter, so that the blur of the image of the object OB is extremely reduced. The

受光器18は、複数の受光素子16を含んで構成され、対象物OBで反射され光学系30のレンズ34を透過した反射光RFを受光する。図1、図2に示すように、本実施の形態に係る受光器18は、レンズ32とレンズ34との間に配置された絞り40の、Z軸方向下側に配置されている。受光素子16としては、特に制限はないが、例えば、フォトダイオード(Photodiode:PD)、電荷結合素子(Charge−Coupled Device:CCD)等が用いられる。   The light receiver 18 includes a plurality of light receiving elements 16 and receives the reflected light RF reflected by the object OB and transmitted through the lens 34 of the optical system 30. As shown in FIGS. 1 and 2, the light receiver 18 according to the present embodiment is disposed on the lower side in the Z-axis direction of the diaphragm 40 disposed between the lens 32 and the lens 34. Although there is no restriction | limiting in particular as the light receiving element 16, For example, a photodiode (Photodiode: PD), a charge-coupled device (Charge-Coupled Device: CCD) etc. are used.

受光器18がレンズ32とレンズ34との間に配置されるため、受光素子16も同様に、レンズ32とレンズ34との間に配置される。ここで、受光素子16がレンズ32とレンズ34との間に配置されるとは、図2に示されるように、レンズ34の外径端(表面R(radius)と裏面Rの仮想接点)を通ってZ軸方向に延びる線Pで構成される円筒面に対し内側に受光素子16が配置されることをいう。   Since the light receiver 18 is disposed between the lens 32 and the lens 34, the light receiving element 16 is similarly disposed between the lens 32 and the lens 34. Here, the fact that the light receiving element 16 is disposed between the lens 32 and the lens 34 means that the outer diameter end of the lens 34 (virtual contact point between the front surface R (radius) and the rear surface R), as shown in FIG. It means that the light receiving element 16 is disposed on the inner side with respect to the cylindrical surface formed by the line P extending in the Z-axis direction.

図3(a)に、受光器18の構成の一例を示す。図3(a)は、受光器18を、Z軸方向から見た平面図である。図1に示す受光器18は、図3(a)のX−X’で切断した断面図を表している。図3(a)に示すように、受光器18は、一例として、中央に略円形の開口部18Bを有する略円形の基板18Aの上に、複数の受光素子16(図3(a)では、60個の例が示されている)が面状(アレイ状)に配置されて構成されている。計測装置10では、この複数の受光素子16の全体を受光領域RAとして反射光RFを受光する。なお、図3(a)では、基板18A上の全面に複数の受光素子16を配置した形態の受光器18を例示しているが、これに限られず、反射光RFの受光範囲等に応じて受光素子16を基板18Aの一部に配置した形態の受光器18としてもよい。   FIG. 3A shows an example of the configuration of the light receiver 18. FIG. 3A is a plan view of the light receiver 18 as viewed from the Z-axis direction. The photoreceiver 18 shown in FIG. 1 is a cross-sectional view cut along X-X ′ in FIG. As shown in FIG. 3A, for example, the light receiver 18 has a plurality of light receiving elements 16 (in FIG. 3A) on a substantially circular substrate 18A having a substantially circular opening 18B in the center. 60 examples are shown) arranged in a planar shape (array shape). In the measuring apparatus 10, the reflected light RF is received by using the entirety of the plurality of light receiving elements 16 as the light receiving region RA. FIG. 3A illustrates the light receiver 18 having a configuration in which a plurality of light receiving elements 16 are arranged on the entire surface of the substrate 18A. However, the present invention is not limited to this, and depending on the light receiving range of the reflected light RF and the like. It is good also as the light receiver 18 of the form which has arrange | positioned the light receiving element 16 in a part of board | substrate 18A.

受光領域RAで受光される反射光RFの範囲は、一例として、光軸Mに平行な軸を中心とした角度0°〜40°の範囲の反射光RFである。この反射光RFが受光領域RAで受光されると、各受光素子16の受光光量により立体的な分布が形成される。完全拡散面において反射された場合のように、反射光RFが等方的な場合には、この立体的な分布の、Z軸を含む平面で切断した断面の形状は、図3(b)に示すように略ガウス曲線となる。
なお、図3(b)の横軸の受光素子番号1〜6は、図3(a)に示した受光素子16の番号1〜6である。また、受光領域RAにおける受光素子16と受光素子16との間では反射光RFが受光されないので、実際の出力分布は離散的となるが、図3(b)ではこれを省略して図示している。
The range of the reflected light RF received by the light receiving region RA is, for example, the reflected light RF having an angle of 0 ° to 40 ° with an axis parallel to the optical axis M as the center. When the reflected light RF is received by the light receiving area RA, a three-dimensional distribution is formed by the amount of light received by each light receiving element 16. When the reflected light RF is isotropic as in the case where it is reflected on the completely diffusing surface, the shape of the cross section of this three-dimensional distribution cut along the plane including the Z axis is shown in FIG. As shown, it is a substantially Gaussian curve.
In addition, the light receiving element numbers 1 to 6 on the horizontal axis in FIG. 3B are the numbers 1 to 6 of the light receiving elements 16 illustrated in FIG. Further, since the reflected light RF is not received between the light receiving element 16 and the light receiving element 16 in the light receiving region RA, the actual output distribution is discrete, but this is omitted in FIG. Yes.

さらに、計測装置10では、受光素子16の受光面と開口縁42AとがZ軸方向上同じ位置とされているので、受光素子16の受光面とレンズ34との距離F2は、レンズ34の焦点距離f2と同じ長さとされている。このため、対象物OBの位置がZ軸方向において上下に変動して、あるいは、Y軸方向において左右に変動して、異なる発光素子からの照射光IFが照射されても、対象物OBへの照射位置が同じである限り、受光領域RAにおける出力分布は常に一定となる。   Furthermore, in the measuring apparatus 10, the light receiving surface of the light receiving element 16 and the opening edge 42 </ b> A are at the same position in the Z-axis direction, so the distance F <b> 2 between the light receiving surface of the light receiving element 16 and the lens 34 is the focal point of the lens 34. The length is the same as the distance f2. For this reason, even if the position of the object OB fluctuates up and down in the Z-axis direction or fluctuates left and right in the Y-axis direction, and irradiation light IF from different light emitting elements is irradiated, As long as the irradiation position is the same, the output distribution in the light receiving region RA is always constant.

換言すれば、対象物OBとして照射径程度の大きさの微小な領域を仮定すると、この対象物OBがZ軸方向において上下に、あるいは、Y軸方向において左右に移動した場合、異なる発光素子12による異なる照射光IFで照射され、異なる反射光RFを反射することになるが、本実施の形態に係る計測装置10では、受光領域RAに含まれる受光素子16全体による出力分布は、反射光RFの発生位置によらず常に同じ出力分布となる。   In other words, assuming that the target object OB is a very small region having an irradiation diameter, when the target object OB moves up and down in the Z-axis direction or left and right in the Y-axis direction, different light emitting elements 12 are used. In the measurement apparatus 10 according to the present embodiment, the output distribution of the entire light receiving element 16 included in the light receiving region RA is reflected light RF. The output distribution is always the same regardless of the occurrence position.

制御部20は、図4に示すように、CPU(Central Processing Unit)100、ROM(Read Only Memory)102、及びRAM(Random Access Memory)104を含んで構成されている。CPU100は、計測装置10の全体を統括、制御し、ROM102は、計測装置10の制御プログラム等を予め記憶する記憶手段であり、RAM104は、制御プログラム等のプログラムの実行時のワークエリア等として用いられる記憶手段である。CPU100、ROM102、及びRAM104は、バスBUSによって相互に接続されている。   As shown in FIG. 4, the control unit 20 includes a CPU (Central Processing Unit) 100, a ROM (Read Only Memory) 102, and a RAM (Random Access Memory) 104. The CPU 100 controls and controls the entire measurement apparatus 10. The ROM 102 is a storage unit that stores in advance a control program of the measurement apparatus 10. The RAM 104 is used as a work area at the time of execution of a program such as the control program. Storage means. The CPU 100, the ROM 102, and the RAM 104 are connected to each other by a bus BUS.

バスBUSには、発光器14、受光器18、及び後述する受光素子54が接続されており、発光器14、受光器18、及び受光素子54の各々は、バスBUSを介してCPU100の制御を受ける。   The bus BUS is connected to a light emitter 14, a light receiver 18, and a light receiving element 54 described later, and each of the light emitter 14, the light receiver 18, and the light receiving element 54 controls the CPU 100 via the bus BUS. receive.

図5を参照して、制御部20による発光器14、受光器18、及び受光素子54の制御について説明する。図5(a)は、上述したように発光器14の発光素子12を順次発光させる場合において、ある発光素子12を発光させるための発光パルス信号P1を、図5(b)は、次の発光素子12を発光させるための発光パルス信号P2を各々示している。
図5(a)、(b)に示すように、本実施の形態に係る発光器14の制御では、発光パルス信号P1と発光パルス信号P2との間に、予め定められた期間の無信号(0レベル)時間が設けられている(図5の時刻t2、t4に対応する部分)。図5(c)は、発光パルス信号P1、P2によって発光素子12から発生した照射光IFによる反射光RFを、受光器18及び受光素子54(以下、受光器18に含まれる受光素子16の全てと受光素子54とを総称して「全受光素子」という)で受光する際の読取パルスを示している。この読取パルスにより、全受光素子の受光光量が読み取られ、出力分布を示す信号とされる。
With reference to FIG. 5, the control of the light emitter 14, the light receiver 18, and the light receiving element 54 by the control unit 20 will be described. FIG. 5A shows a light emission pulse signal P1 for causing a certain light emitting element 12 to emit light when the light emitting element 12 of the light emitter 14 is caused to emit light sequentially as described above, and FIG. 5B shows the next light emission. A light emission pulse signal P2 for causing the element 12 to emit light is shown.
As shown in FIGS. 5A and 5B, in the control of the light emitter 14 according to the present embodiment, no signal (for a predetermined period) between the light emission pulse signal P <b> 1 and the light emission pulse signal P <b> 2 ( 0 level) time is provided (portions corresponding to times t2 and t4 in FIG. 5). FIG. 5C shows the reflected light RF generated by the irradiation light IF generated from the light emitting element 12 by the light emission pulse signals P1 and P2, and the light receiver 18 and the light receiving element 54 (hereinafter, all of the light receiving elements 16 included in the light receiver 18). And the light receiving element 54 are collectively referred to as “all light receiving elements”). With this reading pulse, the amount of light received by all the light receiving elements is read and used as a signal indicating the output distribution.

まず、発光パルス信号P1によって発生した照射光IFの反射光RFを、時刻t1において全受光素子で読み取る。いま、全受光素子の個数をk個とすると、各受光素子からk個の受光信号Sr(1)、Sr(2)、・・・、Sr(k)が得られる。次に、時刻t2において、発光パルス信号P1と発光パルス信号P2との間の0レベルの受光光量を全受光素子によって読み取る。全受光素子で読み取られたk個の受光信号をSr0(1)、Sr0(2)、・・・、Sr0(k)とする。次に、全受光素子の反射光RFの受光信号と0レベルの受光信号との差分、すなわち、Sr(1)−Sr0(1)、Sr(2)−Sr0(2)、・・・、Sr(k)−Sr0(k)を算出し、このk個の差分値を受光光量の出力分布とする。発光パルス信号P2以降も同様にして出力分布を算出する。なお、本実施の形態では、受光素子54の受光信号に補正係数を乗じ、受光素子16の受光信号と合成するが、この補正の詳細については後述する。   First, the reflected light RF of the irradiation light IF generated by the light emission pulse signal P1 is read by all the light receiving elements at time t1. Now, assuming that the number of all light receiving elements is k, k light receiving signals Sr (1), Sr (2),..., Sr (k) are obtained from each light receiving element. Next, at time t2, the received light amount of 0 level between the light emission pulse signal P1 and the light emission pulse signal P2 is read by all the light receiving elements. Let k received light signals read by all the light receiving elements be Sr0 (1), Sr0 (2),..., Sr0 (k). Next, the difference between the light reception signal of the reflected light RF of all the light receiving elements and the light reception signal of 0 level, that is, Sr (1) −Sr0 (1), Sr (2) −Sr0 (2),. (K) −Sr0 (k) is calculated, and the k difference values are used as the output distribution of the amount of received light. The output distribution is calculated in the same manner for the light emission pulse signal P2 and thereafter. In the present embodiment, the light reception signal of the light receiving element 54 is multiplied by a correction coefficient and combined with the light reception signal of the light receiving element 16, and details of this correction will be described later.

なお、上記のように、反射光RFの受光信号から無信号時の受光信号を減算して反射光RFによる出力分布を示す信号を生成するのは外乱光による影響を除くためであり、外乱光の影響が無視できる場合には、反射光RFの受光信号をそのまま出力分布を示す信号としてもよい。また、この場合には、連続する発光パルス信号の間を空ける必要もなく、さらには、受光するタイミングは読取パルスで決まるので、一部が重なっていてもよい。   As described above, the signal indicating the output distribution by the reflected light RF is generated by subtracting the non-signal received signal from the received signal of the reflected light RF in order to eliminate the influence of the ambient light. When the influence of the above can be ignored, the light reception signal of the reflected light RF may be used as a signal indicating the output distribution as it is. Further, in this case, there is no need to make a gap between successive light emission pulse signals, and furthermore, since the timing of light reception is determined by the read pulse, some of them may overlap.

一方、集光光学系70は、ハーフミラー50、レンズ52、及び受光素子54を含んで構成され、絞り40の開口部42を透過した反射光RFを集光させる機能を有している。
図6を参照して、対象物OBの反射特性(例えば、表面の凹凸度合)を計測する場合の計測装置10の動作及び集光光学系70の機能について、より詳細に説明する。図6(a)ないし(c)は、集光光学系70が無い状態において、発光器14の発光素子12A、12C、12Bが順次発光した場合の、照射光IF光束、及び、照射光IFが対象物OBの表面200で反射し、受光器18に導かれる反射光RFの光束を各々示している。
On the other hand, the condensing optical system 70 includes a half mirror 50, a lens 52, and a light receiving element 54, and has a function of condensing the reflected light RF transmitted through the opening 42 of the diaphragm 40.
With reference to FIG. 6, the operation of the measurement apparatus 10 and the function of the condensing optical system 70 when measuring the reflection characteristic (for example, the degree of unevenness of the surface) of the object OB will be described in more detail. 6A to 6C show the irradiation light IF light flux and the irradiation light IF when the light emitting elements 12A, 12C, and 12B of the light emitter 14 sequentially emit light without the condensing optical system 70. FIG. The light beams of the reflected light RF reflected by the surface 200 of the object OB and guided to the light receiver 18 are shown.

まず、対象物OBが−X方向に移動して、対象物OBの先端が計測領域Tに進入すると、時間差を設けて各発光素子12が順次発光し、対象物OBに向けて照射光IFが順次照射される。そして、対象物OBの後端が計測領域Tを通り抜けるまで、発光素子12Aから発光素子12Bまでの1周期の発光が繰り返される。先述したように、この発光素子12の発光制御は、制御部20によって実行される。   First, when the object OB moves in the −X direction and the tip of the object OB enters the measurement region T, each light emitting element 12 sequentially emits light with a time difference, and the irradiation light IF is directed toward the object OB. Irradiated sequentially. Then, light emission of one cycle from the light emitting element 12A to the light emitting element 12B is repeated until the rear end of the object OB passes through the measurement region T. As described above, the light emission control of the light emitting element 12 is executed by the control unit 20.

各発光素子12で発光された照射光IFの光束は、レンズ32によって、レンズ34の方向に向くようにその発散度合が変えられる。レンズ32によって発散度合が変えられた光束は、絞り40によって絞られる(制限される)。絞り40によって絞られた光束はレンズ34によって集光され、Z軸方向から対象物OBに照射される。換言すれば、対象物OBは、照射光IFのレンズ34による集光点付近に配置される。本実施の形態に係る照射光は、先述したように、対象物OBの表面200において、一例として数10μmφ程度まで集光される。   The degree of divergence of the light beam of the irradiation light IF emitted from each light emitting element 12 is changed by the lens 32 so as to face the direction of the lens 34. The luminous flux whose divergence degree has been changed by the lens 32 is narrowed (limited) by the diaphragm 40. The light beam focused by the diaphragm 40 is collected by the lens 34 and irradiated onto the object OB from the Z-axis direction. In other words, the object OB is disposed in the vicinity of the condensing point of the irradiation light IF by the lens 34. As described above, the irradiation light according to the present embodiment is collected on the surface 200 of the object OB to about several tens of μmφ as an example.

対象物OBに照射された照射光IFは、対象物OBの表面200で反射し、反射光RF(図6では、矢印付点線で示されている)を生成する。反射光RFの光束は、レンズ34によって、各受光素子16の方向に向かうように方向が変えられる。レンズ34を透過した反射光RFは、各受光素子16によって受光される。   The irradiation light IF irradiated to the object OB is reflected by the surface 200 of the object OB, and generates reflected light RF (indicated by a dotted line with an arrow in FIG. 6). The direction of the light beam of the reflected light RF is changed by the lens 34 so as to be directed toward each light receiving element 16. The reflected light RF transmitted through the lens 34 is received by each light receiving element 16.

対象物OBの表面200の状態に応じ、照射光IFは様々な方向に反射されるが、本実施の形態では、先述したように、照射光のIFの表面200への入射点を通る、光軸Mに平行な軸を中心として0°〜40°の角度の範囲の反射光RFを受光する。従って、1個の発光素子12から発光される照射光IFに対応する受光器18の受光領域RAは、略円形となる。図3(a)の受光領域RAは、その一例を示したものである。   Depending on the state of the surface 200 of the object OB, the irradiation light IF is reflected in various directions. In the present embodiment, as described above, the light passing through the incident point of the IF on the surface 200 of the irradiation light. The reflected light RF in an angle range of 0 ° to 40 ° is received around an axis parallel to the axis M. Therefore, the light receiving area RA of the light receiver 18 corresponding to the irradiation light IF emitted from one light emitting element 12 is substantially circular. An example of the light receiving region RA in FIG. 3A is shown.

各受光素子16で受光された受光信号は、先述したように、制御部20の制御によって、予め定められたタイミングで読み取られる。読み取られた受光信号はRAM等の記憶手段に一時的に記憶されてもよい。制御部20は、各発光素子12に対応する受光信号(輝度信号)を用いて受光領域RAごとの出力分布(受光プロファイル)を生成する。この出力分布には反射光RFの角度情報が含まれるので、例えば対象物OBの凹凸度合が計測される。   The light reception signal received by each light receiving element 16 is read at a predetermined timing under the control of the control unit 20 as described above. The read light reception signal may be temporarily stored in a storage unit such as a RAM. The control unit 20 generates an output distribution (light reception profile) for each light receiving region RA using a light reception signal (luminance signal) corresponding to each light emitting element 12. Since the output distribution includes angle information of the reflected light RF, for example, the degree of unevenness of the object OB is measured.

ここで、先述したように、本実施の形態に係る受光器18は、基板18Aの中央に、絞り40の開口部42に対応する開口部18Bを有するため、図6の各図のいずれの状態においても、反射光RFの一部である反射光RFd、すなわち、光軸Mに平行な照射光IFに対する反射光及びその周囲の一定範囲の反射光からなる反射光RFdが、この開口部18B及び開口部42を通過してしまう。従って、受光器18の出力分布にはこの反射光RFdに起因する欠損(欠落)が発生し、さらにこの欠損は、多くの場合出力分布(例えば、ガウス分布)の頂点付近に発生する。従って、この反射光RFdを受光する何らかの対策を施すことが望ましい。   Here, as described above, the light receiver 18 according to the present embodiment has the opening 18B corresponding to the opening 42 of the diaphragm 40 at the center of the substrate 18A. The reflected light RFd, which is a part of the reflected light RF, that is, the reflected light RFd composed of the reflected light with respect to the irradiation light IF parallel to the optical axis M and the reflected light in a certain range around the reflected light RFd, It will pass through the opening 42. Accordingly, the output distribution of the light receiver 18 is deficient due to the reflected light RFd, and this deficiency often occurs near the top of the output distribution (for example, Gaussian distribution). Therefore, it is desirable to take some measures for receiving the reflected light RFd.

上記の、反射光RFdに起因する出力分布欠損を発生させないように構成された比較例に係る計測装置として、図7に示す計測装置90がある。図7を参照し、計測装置90について説明する。なお、図7には、発光素子12Cから発光された照射光IF、及び照射光IFが対象物OBの表面200で反射された反射光RFが示されている。   A measurement apparatus 90 shown in FIG. 7 is a measurement apparatus according to a comparative example that is configured not to generate the output distribution defect due to the reflected light RFd. The measuring device 90 will be described with reference to FIG. FIG. 7 shows the irradiation light IF emitted from the light emitting element 12C and the reflected light RF in which the irradiation light IF is reflected by the surface 200 of the object OB.

図7に示すように、計測装置90は、発光器14と、レンズ32、レンズ34、及び絞り92を備えた光学系60と、ハーフミラー94と、受光器98と、を含んで構成されている。計測装置90は、計測装置10の集光光学系70の代わりに、ハーフミラー94を備え、受光器18が受光器98に変更されている。   As shown in FIG. 7, the measuring device 90 includes the light emitter 14, an optical system 60 including a lens 32, a lens 34, and a diaphragm 92, a half mirror 94, and a light receiver 98. Yes. The measuring device 90 includes a half mirror 94 instead of the condensing optical system 70 of the measuring device 10, and the light receiver 18 is changed to a light receiver 98.

計測装置10と同様に、発光器14で順次発光された照射光IFは対象物OBの表面200で反射され、反射光RFを生成する。この際、照射光IFは、レンズ32、ハーフミラー94、及びレンズ34を透過して、対象物OBの表面200に到達する。   Similar to the measuring apparatus 10, the irradiation light IF sequentially emitted by the light emitter 14 is reflected by the surface 200 of the object OB, and generates reflected light RF. At this time, the irradiation light IF passes through the lens 32, the half mirror 94, and the lens 34 and reaches the surface 200 of the object OB.

一方、反射光RFは、図7に示すようにハーフミラー94で反射され、Z−X平面に平行な面内に配列された複数の受光素子96を備えた受光器98に導かれる。各受光素子96の受光面とレンズ34との距離(光路長)は、レンズ34の焦点距離と等しくされている。受光器98は、この複数の受光素子96で受光された反射光RFの受光信号を、出力分布を示す信号として出力する。計測装置90によれば、反射光RFは開口部42に到達する前に光路を変更され、各受光素子96に導かれるので、出力分布における欠損の発生が抑制される。   On the other hand, the reflected light RF is reflected by the half mirror 94 as shown in FIG. 7, and is guided to a light receiver 98 having a plurality of light receiving elements 96 arranged in a plane parallel to the ZX plane. The distance (optical path length) between the light receiving surface of each light receiving element 96 and the lens 34 is equal to the focal length of the lens 34. The light receiver 98 outputs a light reception signal of the reflected light RF received by the plurality of light receiving elements 96 as a signal indicating an output distribution. According to the measuring device 90, the reflected light RF has its optical path changed before reaching the opening 42 and is guided to each light receiving element 96, so that the occurrence of defects in the output distribution is suppressed.

しかしながら、計測装置90のハーフミラー94は、全ての受光素子96に向かう反射光RFのほぼ全体を反射させるので、形状を大きくする必要がある。ハーフミラー94の形状が大きくなると、絞り92とレンズ34との距離も長くなり、レンズ34の焦点距離も長くなって、計測装置全体の大きさが大きくなってしまう。また、受光器98で受光する光量も、発光素子12から出射した光がハーフミラー94を透過する際に1/2となり、反射光RFがハーフミラー94で反射される際に1/2となるので、結果的に1/4に減衰する。そのため、出力分布における欠損対策を施さない場合と比較して、受光器98の受光感度が劣化してしまう。   However, since the half mirror 94 of the measuring device 90 reflects almost the entire reflected light RF directed toward all the light receiving elements 96, the shape needs to be increased. When the shape of the half mirror 94 is increased, the distance between the diaphragm 92 and the lens 34 is increased, the focal length of the lens 34 is also increased, and the size of the entire measuring apparatus is increased. The amount of light received by the light receiver 98 is also halved when the light emitted from the light emitting element 12 is transmitted through the half mirror 94, and is halved when the reflected light RF is reflected by the half mirror 94. Therefore, it attenuates to 1/4 as a result. For this reason, the light receiving sensitivity of the light receiver 98 is deteriorated as compared with the case where countermeasures against defects in the output distribution are not taken.

そこで、本発明では、集光光学系70を採用して、出力分布における欠損の発生を抑制することとしている。   Therefore, in the present invention, the condensing optical system 70 is employed to suppress the occurrence of defects in the output distribution.

再び図1及び図2を参照して、本実施の形態に係る集光光学系70について説明する。
図1及び図2に示すように、集光光学系70は、ハーフミラー50、レンズ52、及び受光素子54を備えている。図2に示すように、各発光素子12から発光された照射光IFは、ハーフミラー50を透過して、対象物OBの表面200に到達する。反射光RFは表面200で反射され、図1に示すように大部分が受光素子16で受光され、反射光RFの一部は、反射光RFdとして開口部42を通過する。開口部42を通過した反射光RFdは、図2に示すようにハーフミラー50で反射され、レンズ52を透過した後、受光素子54で受光される。
With reference to FIG.1 and FIG.2 again, the condensing optical system 70 which concerns on this Embodiment is demonstrated.
As shown in FIGS. 1 and 2, the condensing optical system 70 includes a half mirror 50, a lens 52, and a light receiving element 54. As shown in FIG. 2, the irradiation light IF emitted from each light emitting element 12 passes through the half mirror 50 and reaches the surface 200 of the object OB. The reflected light RF is reflected by the surface 200, most of the light is received by the light receiving element 16 as shown in FIG. 1, and a part of the reflected light RF passes through the opening 42 as reflected light RFd. As shown in FIG. 2, the reflected light RFd that has passed through the opening 42 is reflected by the half mirror 50, passes through the lens 52, and then is received by the light receiving element 54.

ここで、受光素子54は、受光素子16と同じものであってもよいし、例えば、受光感度等が異なる他の種類の受光素子であってもよい。例えば、受光素子54として、受光感度が受光素子16の2倍であるものを用いれば、後述するハーフミラー50の透過率、反射率に起因する受光素子16と受光素子54の光量出力における補正を行わなくてすむ。   Here, the light receiving element 54 may be the same as the light receiving element 16 or may be another type of light receiving element having different light receiving sensitivity or the like. For example, if a light receiving element 54 having a light receiving sensitivity twice that of the light receiving element 16 is used, correction in the light output of the light receiving element 16 and the light receiving element 54 due to the transmittance and reflectance of the half mirror 50 described later is performed. You don't have to do it.

図8を参照し、集光光学系70の動作についてより詳細に説明する。図8(b)は、図1に示す正面図の必要部分を抜き出して表した図、図8(a)は、図8(b)のD方向から見た平面図である。   The operation of the condensing optical system 70 will be described in more detail with reference to FIG. FIG. 8B is a diagram showing a necessary part of the front view shown in FIG. 1, and FIG. 8A is a plan view seen from the direction D of FIG. 8B.

図8(b)に示すように、発光器14において発光素子12A(図1参照)から発光素子12Bまで照射光IFが順次発光されると、各照射光IFに対する反射光が、反射光RFa(光軸Mに平行な反射光のみ示している)から反射光RFbまで、図中の白抜き矢印Sで示す方向に順次発生する。この反射光RFaからRFbまでの反射光(すなわち、反射光RFのうちの一部)が反射光RFdとして開口部42を通過し、ハーフミラー50で反射される。本実施の形態に係る反射光RFdは、一例として、光軸Mに平行な軸を中心として0°〜5°の範囲(光束のX−Y平面に平行な面における断面積)の光である。本実施の形態に係る反射光RFは、先述したように、光軸Mに平行な軸を中心として0°〜40°の範囲の光であるので、反射光RFdの範囲は、反射光RFの範囲のおよそ1/100(≒(tan(5°)/tan(40°)))である。 As shown in FIG. 8B, when the irradiation light IF is sequentially emitted from the light emitting element 12A (see FIG. 1) to the light emitting element 12B in the light emitter 14, the reflected light with respect to each irradiation light IF is reflected light RFa ( From reflected light RFb (only the reflected light parallel to the optical axis M is shown) to the reflected light RFb are sequentially generated in the direction indicated by the white arrow S in the figure. The reflected light from the reflected light RFa to RFb (that is, a part of the reflected light RF) passes through the opening 42 as reflected light RFd and is reflected by the half mirror 50. The reflected light RFd according to the present embodiment is, for example, light in a range of 0 ° to 5 ° (cross-sectional area in a plane parallel to the XY plane of the light beam) about an axis parallel to the optical axis M. . As described above, the reflected light RF according to the present embodiment is light in the range of 0 ° to 40 ° centering on an axis parallel to the optical axis M, and therefore the range of the reflected light RFd is the range of the reflected light RF. It is approximately 1/100 of the range (≈ (tan (5 °) / tan (40 °)) 2 ).

ハーフミラー50で反射された反射光RFdは、図8(a)に示すように、レンズ52で集光され、白抜き矢印S方向に反射光RFaからRFbと順次受光素子54で受光される。つまり、発光素子12Aから12Bまで順次発光されると、受光器18の受光素子16で反射光RFの一部が受光され、集光光学系70の受光素子54で、受光素子16で受光された反射光RFを補完する他の一部が受光される。受光素子16で受光された受光信号、及び受光素子54で受光された受光信号は、各々RAM104等の記憶手段に一時的に記憶させてもよい。   As shown in FIG. 8A, the reflected light RFd reflected by the half mirror 50 is condensed by the lens 52 and received by the light receiving element 54 sequentially from the reflected light RFa to RFb in the direction of the white arrow S. That is, when light is emitted sequentially from the light emitting elements 12A to 12B, a part of the reflected light RF is received by the light receiving element 16 of the light receiver 18, and is received by the light receiving element 16 by the light receiving element 54 of the condensing optical system 70. Another part that complements the reflected light RF is received. The light reception signal received by the light receiving element 16 and the light reception signal received by the light receiving element 54 may each be temporarily stored in a storage unit such as the RAM 104.

制御部20のCPU100は、これらの受光信号を合成することにより、図3(b)に示すような欠損のない出力分布を生成する(ただし、先述したように、受光領域RAにおける受光素子16と受光素子16との間では反射光RFが受光されないので、実際の出力分布は離散的となる)。なお、後述するように、受光素子54で受光する反射光の光量は、受光素子16で受光する反射光の光量の1/2となっているので、合成の際には、受光素子54での受光信号の値を2倍にして合成する必要がある。ただし、この2倍という係数は、ハーフミラー50の透過率、反射率に応じて、必要な場合にはさらに補正される。   The CPU 100 of the control unit 20 synthesizes these light reception signals to generate an output distribution having no defect as shown in FIG. 3B (however, as described above, the light receiving element 16 and the light receiving element 16 in the light receiving region RA). The reflected light RF is not received between the light receiving element 16 and the actual output distribution is discrete). Note that, as will be described later, the amount of reflected light received by the light receiving element 54 is ½ of the amount of reflected light received by the light receiving element 16. It is necessary to synthesize the received light signal value by doubling it. However, this factor of 2 is further corrected if necessary according to the transmittance and reflectance of the half mirror 50.

このように、本実施の形態に係る計測装置10によれば、ハーフミラー50は、一方向に並んだ発光素子12からの照射光IFを透過し、反射光RFの一部を反射させるだけの大きさですむので、外形が小さくてすむ。その結果、計測装置10が小型化される。   As described above, according to the measuring apparatus 10 according to the present embodiment, the half mirror 50 transmits the irradiation light IF from the light emitting elements 12 arranged in one direction and only reflects a part of the reflected light RF. Since the size is sufficient, the outer shape can be small. As a result, the measuring device 10 is reduced in size.

また、受光素子54が受光する反射光RFdは、上記比較例に係る計測装置90と同様に、発光素子12からの光がハーフミラー50を透過し、さらにハーフミラー50で反射されて光量が1/4となっている。しかしながら、反射光RFの大部分は受光素子16で受光され、この受光素子16で受光される反射光RFは、発光素子12からの光がハーフミラー50を透過して光量が1/2となった光である。従って、上記比較例に係る計測装置90と比較して、受光器18における受光感度の劣化も抑制される。なお、上記では、ハーフミラー50の透過率及び反射率を各々50%と仮定しているが、この透過率、反射率が50%でない場合には、各々の値に応じて、受光素子16及び受光素子54で受光される光量は上記とは異なってくる。この場合には、実際の透過率、反射率の値に応じて受光素子54の受光光量に対する補正値を2倍から変更すればよい。   In addition, the reflected light RFd received by the light receiving element 54 has a light quantity of 1 as the light from the light emitting element 12 passes through the half mirror 50 and is reflected by the half mirror 50, as in the measurement device 90 according to the comparative example. / 4. However, most of the reflected light RF is received by the light receiving element 16, and the reflected light RF received by the light receiving element 16 is halved by the light from the light emitting element 12 passing through the half mirror 50. Light. Therefore, compared with the measuring device 90 according to the comparative example, the deterioration of the light receiving sensitivity in the light receiver 18 is also suppressed. In the above description, it is assumed that the transmittance and the reflectance of the half mirror 50 are 50%, respectively. However, when the transmittance and the reflectance are not 50%, the light receiving element 16 and The amount of light received by the light receiving element 54 is different from the above. In this case, the correction value for the amount of light received by the light receiving element 54 may be changed from twice according to the actual transmittance and reflectance values.

ここで、上記実施の形態では、レンズ52を略円形の凸レンズとした形態を例示して説明したが、これに限られない。レンズ52は、図8(a)に示すように、S方向(−Y方向)に走査される反射光RFaからRFbを集光すればよいので、このY軸方向の幅を確保すれば、Z軸方向の幅の狭いレンズとしてもよい。さらには、Z軸方向に集光機能がない、かまぼこ型のシリンドリカルレンズとしてもよい。また、受光素子54の受光領域が、反射光RFaから反射光RFbの範囲の光束を受光できれば、レンズ52は設けなくともよい。   Here, in the above embodiment, the lens 52 is described as an example of a substantially circular convex lens. However, the present invention is not limited to this. As shown in FIG. 8A, the lens 52 only has to collect the RFb from the reflected light RFa scanned in the S direction (−Y direction). A lens having a narrow axial width may be used. Furthermore, it may be a kamaboko type cylindrical lens which does not have a light collecting function in the Z-axis direction. If the light receiving region of the light receiving element 54 can receive a light beam in the range from the reflected light RFa to the reflected light RFb, the lens 52 may not be provided.

また、上記実施の形態では、図1に示すように、ハーフミラー50の幅を受光器18の直径とほぼ等しくした形態を例示しているが、これに限られない。ハーフミラー50の幅を、発光素子12から順次照射される照射光IFを透過させられるだけの幅、及び反射光RFdを反射させられるだけの幅のいずれか大きい方の幅に設定することにより、集光光学系70がさらに小型化される。   Moreover, in the said embodiment, as shown in FIG. 1, although the form which made the width | variety of the half mirror 50 substantially equal to the diameter of the light receiver 18 was illustrated, it is not restricted to this. By setting the width of the half mirror 50 to a larger one of the width that allows the irradiation light IF sequentially irradiated from the light emitting element 12 to be transmitted and the width that allows the reflected light RFd to be reflected, The condensing optical system 70 is further reduced in size.

[第2の実施の形態]
図9を参照して、本実施の形態に係る計測装置10Aについて説明する。
[Second Embodiment]
With reference to FIG. 9, a measurement apparatus 10A according to the present embodiment will be described.

図9に示すように、計測装置10Aは、集光光学系70の周囲に遮光部材80、反射防止部材82A、82B(総称する場合は、「反射防止部材82」)が配置されている点のみが、上述した計測装置10と異なる。図9を参照して明らかなように、遮光部材80がないと、発光素子12から照射された照射光IFが迷光となり、開口部42を通過してくる反射光RFdと干渉したり、あるいは受光素子54に直接入射したりする可能性がある。また、反射防止部材82がないと、絞り40等で反射した反射光が迷光となり、反射光RFdと干渉したり、あるいは受光素子54に直接入射したりする可能性がある。このような光のクロストークが発生すると、照射光IFがノイズとなり、反射光RFdの受光素子54による受光光量が変動して、正しい出力分布が得られなくなる。   As shown in FIG. 9, the measuring apparatus 10 </ b> A is only provided with a light shielding member 80 and antireflection members 82 </ b> A and 82 </ b> B (collectively, “antireflection member 82”) around the condensing optical system 70. However, it is different from the measurement apparatus 10 described above. As is apparent with reference to FIG. 9, if the light shielding member 80 is not provided, the irradiation light IF irradiated from the light emitting element 12 becomes stray light and interferes with the reflected light RFd passing through the opening 42 or receives light. There is a possibility of direct incidence on the element 54. Without the antireflection member 82, the reflected light reflected by the diaphragm 40 or the like becomes stray light, which may interfere with the reflected light RFd or may directly enter the light receiving element 54. When such light crosstalk occurs, the irradiation light IF becomes noise, the amount of light received by the light receiving element 54 of the reflected light RFd fluctuates, and a correct output distribution cannot be obtained.

そこで、本実施の形態では、集光光学系70の上部に、照射光IFを遮光する遮光部材80を設け、絞り40の発光器14側の面に、照射光IFの反射を防止する反射防止部材82Aを設け、同様に絞り40の周囲に、反射防止部材82Bを設けている。遮光部材80、及び反射防止部材82は、例えば、各々遮光処理、反射防止処理が施されたテープを貼り付けて設けてもよい。このことにより、受光素子54の受光における外乱光の影響が抑制されるので、より精度の向上した出力分布が得られる。   Therefore, in the present embodiment, a light blocking member 80 that blocks the irradiation light IF is provided above the condensing optical system 70, and the reflection prevention of the reflection of the irradiation light IF is prevented on the surface of the diaphragm 40 on the light emitter 14 side. A member 82A is provided, and similarly, an antireflection member 82B is provided around the aperture 40. For example, the light shielding member 80 and the antireflection member 82 may be provided by attaching a tape subjected to a light shielding treatment and an antireflection treatment, respectively. As a result, the influence of disturbance light in the light reception of the light receiving element 54 is suppressed, so that an output distribution with improved accuracy can be obtained.

なお、上記各実施の形態では、集光光学系70の光軸(ハーフミラー50から受光素子54に向かう光束の光軸)を、発光器14の発光素子12の配列方向と直交する方向(交差する方向)とする形態を例示して説明したが、これに限られず、発光素子12の配列方向と同じ方向とする形態、すなわち、図1、図2に示す集光光学系70をZ軸を中心として90°回転させた形態としてもよい。   In each of the above embodiments, the optical axis of the condensing optical system 70 (the optical axis of the light beam from the half mirror 50 toward the light receiving element 54) is orthogonal to the direction in which the light emitting elements 12 of the light emitter 14 are arranged (crossing). However, the present invention is not limited to this, and the embodiment is not limited to this. For example, the condensing optical system 70 shown in FIG. 1 and FIG. It is good also as a form rotated 90 degrees as the center.

また、上記各実施の形態では、集光光学系70の受光素子54を1個配置する形態を例示して説明したが、これに限られず、受光する光束の大きさ等に応じて複数個配置する形態としてもよい。   In each of the above-described embodiments, an example in which one light receiving element 54 of the condensing optical system 70 is disposed has been described. However, the present invention is not limited to this, and a plurality of light receiving elements 54 are disposed according to the size of the received light beam. It is good also as a form to do.

また、上記各実施の形態では、発光器14として、一方向に一列だけ発光素子12を配列させた形態を例示して説明したが、これに限られず、複数列配列させた形態としてもよい。また、その際列ごとに発光素子12の発光波長を異ならせてもよい。列ごとに発光素子12の発光波長を異ならせて発光させることにより、例えば、対象物OBの表面200における反射光の波長依存性が計測される。   In each of the above-described embodiments, the light emitters 14 have been described by exemplifying the form in which the light emitting elements 12 are arranged in one row in one direction. However, the present invention is not limited thereto, and a plurality of rows may be arranged. At that time, the emission wavelength of the light emitting element 12 may be varied for each column. For example, the wavelength dependency of the reflected light on the surface 200 of the object OB is measured by causing the light emitting elements 12 to emit light with different emission wavelengths for each column.

また、上記各実施の形態では、レンズ32、レンズ34、及びレンズ52を略円形の凸レンズとした形態を例示して説明したが、これに限られず、他の形態のレンズ、例えば非球面レンズ等を用いてもよい。さらに、各レンズにおいて、光束が透過されない不要部分を削除してもよい。これにより、計測装置10がさらに小型化される。   In each of the above-described embodiments, the lens 32, the lens 34, and the lens 52 have been illustrated and described as substantially circular convex lenses. However, the present invention is not limited to this, and other forms of lenses, such as aspherical lenses, etc. May be used. Further, in each lens, an unnecessary portion where the light beam is not transmitted may be deleted. Thereby, the measuring apparatus 10 is further reduced in size.

10、10A 計測装置
12、12A、12B、12C 発光素子
14 発光器
14A 基板
16 受光素子
18 受光器
18A 基板
18B 開口部
20 制御部
30 光学系
32 レンズ
34 レンズ
40 絞り
42 開口部
42A 開口縁
50 ハーフミラー
52 レンズ
54 受光素子
60 光学系
70 集光光学系
80 遮光部材
82、82A、82B 反射防止部材
90 計測装置
92 絞り
94 ハーフミラー
96 受光素子
98 受光器
100 CPU
102 ROM
104 RAM
200 表面
BUS バス
IF 照射光
M 光軸
OB 対象物
P1〜P4 発光パルス信号
RA 受光領域
RF、RFa、RFb、RFd 反射光
T 計測領域
10, 10A Measuring device 12, 12A, 12B, 12C Light emitting element 14 Light emitter 14A Substrate 16 Light receiving element 18 Light receiver 18A Substrate 18B Aperture 20 Control unit 30 Optical system 32 Lens 34 Lens 40 Aperture 42 Aperture 42A Aperture edge 50 Half Mirror 52 Lens 54 Light receiving element 60 Optical system 70 Condensing optical system 80 Light blocking member 82, 82A, 82B Antireflection member 90 Measuring device 92 Aperture 94 Half mirror 96 Light receiving element 98 Light receiver 100 CPU
102 ROM
104 RAM
200 Surface BUS Bus IF Irradiation light M Optical axis OB Object P1 to P4 Light emission pulse signal RA Light reception area RF, RFa, RFb, RFd Reflected light T Measurement area

Claims (9)

対象物へ照射する照射光を発光する発光部と、
前記発光部から発光された前記照射光の発散度合いを変える第1のレンズと、
前記第1のレンズから出射された前記照射光を絞る開口部を有する絞り部と、
前記開口部を通過した前記照射光を集光するとともに予め定められた方向から前記対象物に照射する第2のレンズと、
前記絞り部と前記第2のレンズとの間に配置され、前記照射光が前記対象物に照射されて反射し前記第2のレンズを透過した反射光の少なくとも一部を受光する第1の受光部と、
前記第1のレンズと前記絞り部との間に配置され、かつ前記第1のレンズから出射された前記照射光を前記絞り部に向けて透過させると共に前記開口部を通過した前記反射光を反射させる半透過鏡と、
前記半透過鏡で反射された前記反射光を受光する第2の受光部と、
前記第1の受光部の受光結果及び前記第2の受光部の受光結果を用いて前記対象物を計測する計測部と、
を含む計測装置。
A light emitting unit that emits irradiation light to irradiate the object;
A first lens that changes a divergence degree of the irradiation light emitted from the light emitting unit;
A diaphragm having an opening for narrowing the irradiation light emitted from the first lens;
A second lens that collects the irradiation light that has passed through the opening and irradiates the object from a predetermined direction;
A first light receiving element that is disposed between the aperture section and the second lens and receives at least a part of the reflected light that is reflected when the irradiation light is irradiated onto the object and is transmitted through the second lens. And
It is disposed between the first lens and the diaphragm, and transmits the irradiation light emitted from the first lens toward the diaphragm and reflects the reflected light that has passed through the opening. A semi-transparent mirror,
A second light receiving unit that receives the reflected light reflected by the semi-transmissive mirror;
A measurement unit that measures the object using a light reception result of the first light receiving unit and a light reception result of the second light receiving unit;
Measuring device including
前記発光部は、前記予め定められた方向と交差する方向に配列された複数の発光素子を含み、
前記第1の受光部は、前記予め定められた方向と交差する面内に配置された複数の第1の受光素子を含み、
前記第2の受光部は、少なくとも1つの第2の受光素子を含み、
前記複数の発光素子の発光タイミングと、前記複数の第1の受光素子及び前記第2の受光素子の受光タイミングとを制御する制御部をさらに含む
請求項1に記載の計測装置。
The light emitting unit includes a plurality of light emitting elements arranged in a direction intersecting with the predetermined direction,
The first light receiving unit includes a plurality of first light receiving elements arranged in a plane intersecting the predetermined direction,
The second light receiving unit includes at least one second light receiving element,
The measuring apparatus according to claim 1, further comprising a control unit that controls light emission timings of the plurality of light emitting elements and light reception timings of the plurality of first light receiving elements and the second light receiving elements.
前記制御部は、前記複数の発光素子を順次発光させ、前記複数の発光素子の各々の発光ごとに前記複数の第1の受光素子及び前記第2の受光素子が受光するように制御する
請求項2に記載の計測装置。
The control unit causes the plurality of light emitting elements to sequentially emit light, and controls the plurality of first light receiving elements and the second light receiving elements to receive light for each light emission of the plurality of light emitting elements. 2. The measuring device according to 2.
前記半透過鏡は、前記照射光の照射方向に対し、前記複数の発光素子の配列方向に平行な軸を中心として傾けて配置された
請求項2又は請求項3に記載の計測装置。
The measuring apparatus according to claim 2, wherein the semi-transmissive mirror is disposed to be inclined with respect to an irradiation direction of the irradiation light with an axis parallel to an arrangement direction of the plurality of light emitting elements as a center.
前記複数の第1の受光素子の受光面と前記第2のレンズとの距離は前記第2のレンズの焦点距離と等しくされた
請求項2〜請求項4のいずれか1項に記載の計測装置。
The measuring apparatus according to claim 2, wherein a distance between the light receiving surfaces of the plurality of first light receiving elements and the second lens is equal to a focal length of the second lens. .
前記半透過鏡と前記第2の受光部との間に、前記半透過鏡で反射された前記反射光を前記第2の受光部に向けて集光する第3のレンズをさらに含む
請求項1〜請求項5いずれか1項に記載の計測装置。
2. A third lens for condensing the reflected light reflected by the semi-transmissive mirror toward the second light-receiving unit between the semi-transmissive mirror and the second light-receiving unit. The measuring device according to claim 5.
前記計測部は、前記第1の受光部の受光結果と予め定められた係数が乗じられた前記第2の受光部の受光結果とを含めた出力分布を生成し、前記出力分布を用いて前記対象物を計測する
請求項1〜請求項6のいずれか1項に記載の計測装置。
The measurement unit generates an output distribution including a light reception result of the first light receiving unit and a light reception result of the second light receiving unit multiplied by a predetermined coefficient, and uses the output distribution to generate the output distribution. The measuring device according to any one of claims 1 to 6, which measures an object.
前記開口部と前記第1のレンズとの距離は前記第1のレンズの焦点距離と等しくされ、かつ前記開口部と前記第2のレンズとの距離は前記第2のレンズの焦点距離と等しくされた
請求項1〜請求項7のいずれか1項に記載の計測装置。
The distance between the opening and the first lens is made equal to the focal length of the first lens, and the distance between the opening and the second lens is made equal to the focal length of the second lens. The measuring device according to any one of claims 1 to 7.
前記発光部と前記第2の受光部との間に配置され、前記第2の受光部に入射されないように前記照射光を遮光する遮光部材と、
前記絞り部の前記発光部側の面上に配置され、前記照射光の反射を防止する反射防止部材と、をさらに含む
請求項1〜請求項8のいずれか1項に記載の計測装置。
A light-shielding member that is disposed between the light-emitting unit and the second light-receiving unit and shields the irradiation light so as not to enter the second light-receiving unit;
The measurement apparatus according to claim 1, further comprising: an antireflection member that is disposed on a surface of the diaphragm unit on the light emitting unit side and prevents reflection of the irradiation light.
JP2015159803A 2015-08-13 2015-08-13 Measuring device Active JP6547514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159803A JP6547514B2 (en) 2015-08-13 2015-08-13 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159803A JP6547514B2 (en) 2015-08-13 2015-08-13 Measuring device

Publications (2)

Publication Number Publication Date
JP2017037041A true JP2017037041A (en) 2017-02-16
JP6547514B2 JP6547514B2 (en) 2019-07-24

Family

ID=58048559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159803A Active JP6547514B2 (en) 2015-08-13 2015-08-13 Measuring device

Country Status (1)

Country Link
JP (1) JP6547514B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226941A (en) * 2017-12-14 2018-06-29 中国科学院西安光学精密机械研究所 A kind of visualization light modulating device and method
CN110018127A (en) * 2017-11-29 2019-07-16 精工爱普生株式会社 Dichroic reflection analyzer
WO2022168374A1 (en) * 2021-02-02 2022-08-11 浜松ホトニクス株式会社 Emission optical system, emission device, and optical measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152308A (en) * 1994-09-30 1996-06-11 Komatsu Ltd Confocal optical apparatus
JPH09257440A (en) * 1996-03-26 1997-10-03 Takaoka Electric Mfg Co Ltd Two-dimensional-array-type confocal optic device
JP2005241935A (en) * 2004-02-26 2005-09-08 Opcell Co Ltd Measuring device
US20080158571A1 (en) * 2006-12-28 2008-07-03 Sanyo Electric Co., Ltd. Photodetector and Optical Pickup Apparatus
JP2015072175A (en) * 2013-10-02 2015-04-16 富士ゼロックス株式会社 Inspection equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152308A (en) * 1994-09-30 1996-06-11 Komatsu Ltd Confocal optical apparatus
JPH09257440A (en) * 1996-03-26 1997-10-03 Takaoka Electric Mfg Co Ltd Two-dimensional-array-type confocal optic device
JP2005241935A (en) * 2004-02-26 2005-09-08 Opcell Co Ltd Measuring device
US20080158571A1 (en) * 2006-12-28 2008-07-03 Sanyo Electric Co., Ltd. Photodetector and Optical Pickup Apparatus
JP2015072175A (en) * 2013-10-02 2015-04-16 富士ゼロックス株式会社 Inspection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018127A (en) * 2017-11-29 2019-07-16 精工爱普生株式会社 Dichroic reflection analyzer
CN108226941A (en) * 2017-12-14 2018-06-29 中国科学院西安光学精密机械研究所 A kind of visualization light modulating device and method
CN108226941B (en) * 2017-12-14 2020-07-31 中国科学院西安光学精密机械研究所 Visual dimming device and method
WO2022168374A1 (en) * 2021-02-02 2022-08-11 浜松ホトニクス株式会社 Emission optical system, emission device, and optical measurement device

Also Published As

Publication number Publication date
JP6547514B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CN211783339U (en) Optical measuring device
JP6186913B2 (en) Measuring device
JP2007225613A (en) Photoelectron device, and method for operating device
KR20210099138A (en) Method and apparatus for controlled machining of workpieces
JP6214042B2 (en) EUV lithography system
JP2015072175A (en) Inspection equipment
JP6892734B2 (en) Light wave distance measuring device
JP2014232005A (en) Measurement device
KR102125483B1 (en) Confocal measuring apparatus
JP6547514B2 (en) Measuring device
JP2013002819A (en) Flatness measuring device
JP6750350B2 (en) Measuring device
JP2009092479A (en) Three-dimensional shape measuring instrument
FI127908B (en) Method and apparatus for measuring the height of a surface
US11175129B2 (en) Sample shape measuring method and sample shape measuring apparatus
JP2022527609A (en) Optical sheet microscope and methods for identifying the index of refraction of objects in sample space
TW201901112A (en) Optical inspection equipment
JP2016166870A (en) Chromatic confocal sensor and measurement method
JPH10239029A (en) Three-dimensional shape measuring device
JP2023509081A (en) Method and apparatus for controlled machining of workpieces by confocal distance measurement
KR20230021745A (en) Foreign material/defect inspection apparatus, image generating apparatus in foreign material/defect inspection, and foreign material/defect inspection method
JP6788396B2 (en) Laser rangefinder
JP2006285154A (en) Focus detector
JP2010164354A (en) Autocollimator
JP6928688B2 (en) Confocal displacement meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350