JP2007136050A - X-ray detector array - Google Patents

X-ray detector array Download PDF

Info

Publication number
JP2007136050A
JP2007136050A JP2005336967A JP2005336967A JP2007136050A JP 2007136050 A JP2007136050 A JP 2007136050A JP 2005336967 A JP2005336967 A JP 2005336967A JP 2005336967 A JP2005336967 A JP 2005336967A JP 2007136050 A JP2007136050 A JP 2007136050A
Authority
JP
Japan
Prior art keywords
detection element
ray
semiconductor
array
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005336967A
Other languages
Japanese (ja)
Inventor
Toru Aoki
徹 青木
Yoshinori Hatanaka
義式 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2005336967A priority Critical patent/JP2007136050A/en
Publication of JP2007136050A publication Critical patent/JP2007136050A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that affection the gap influence in a semiconductor detection element is inevitable though a semiconductor detection element with high sensitivity as an X-ray detection element has been desired to be used in an X-ray CT apparatus. <P>SOLUTION: Semiconductor X-ray detection element arrays are arranged in front and back, and arranged deviated by 1/2 pitch of a space between detection elements so as to be arranged to complement the gap positions of each other. By equalizing the directions of pn connection, a difference of detection property is reduced. By this structure, data corresponding to a gap position can be complemented by data of another detection element array. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、感度と直線性の高い半導体検出器を用いるX線CT用半導体放射線検出器の配列構造と信号処理技術に関する。   The present invention relates to an array structure of X-ray CT semiconductor radiation detectors using a semiconductor detector with high sensitivity and linearity and a signal processing technique.

シンチレータを用いるX線CT装置においては、シンチレータ内で光が広がることにより、ボケが生じて検出器ギャップの影響が少なかった。
このため、この種の装置においてはギャップについて考慮する必要がなく、検出素子群をマトリクス状に配置しても問題はなかった(特許文献1参照)。
だが、最近X線CT用の検出器として、半導体検出器が用いられるようになってきた。
しかしながら半導体検出器ではボケがなく、ギャップの影響がはっきり生じる。
X線CT用半導体放射線検出器に用いられる半導体検出器には、以下のような長所と短所が存在している。
長所:
1)半導体検出器は感度と特性が従来のシンチレータに比べ格段に高い。
2)素子サイズに応じた高い解像度を得ることができる。
短所:
1)画素間に隙間(ギャップ)ができ、情報の欠落が生じる。
特開2005−189022号公報
In an X-ray CT apparatus using a scintillator, blurring occurs due to the spread of light in the scintillator, and the influence of the detector gap is small.
For this reason, in this type of apparatus, there is no need to consider the gap, and there is no problem even if the detection element groups are arranged in a matrix (see Patent Document 1).
However, a semiconductor detector has recently been used as a detector for X-ray CT.
However, there is no blur in the semiconductor detector, and the influence of the gap occurs clearly.
The semiconductor detector used for the X-ray CT semiconductor radiation detector has the following advantages and disadvantages.
Pros:
1) The semiconductor detector has much higher sensitivity and characteristics than conventional scintillators.
2) A high resolution according to the element size can be obtained.
Cons:
1) A gap (gap) is formed between pixels, and information is lost.
JP 2005-189022 A

図5にコンピュータ断層(CT)イメージング装置の全体像を示す。4は測定対象物,10は制御装置、11はガントリ,12はX線源,13はX線ビーム,14は回転中心,15は検出器アレイ,20は信号処理装置である。
図6は従来のX線CT用の検出素子(5)を1列に配列した検出素子アレイ(1)を示す。検出器アレイ(15)は、単数あるいは複数の検出素子アレイ(1)により構成されている。X線ビーム(3)の入射方向は紙面に垂直であり、検出素子アレイ(1)全体を照射する。検出素子(5)間には、構造上ギャップが存在している。測定対象物(4)はデータ取得ごとに下方向に適当なピッチ分送られる。
FIG. 5 shows an overall view of a computed tomography (CT) imaging apparatus. 4 is a measurement object, 10 is a control device, 11 is a gantry, 12 is an X-ray source, 13 is an X-ray beam, 14 is a rotation center, 15 is a detector array, and 20 is a signal processing device.
FIG. 6 shows a detection element array (1) in which detection elements (5) for conventional X-ray CT are arranged in one row. The detector array (15) is composed of one or a plurality of detector element arrays (1). The incident direction of the X-ray beam (3) is perpendicular to the paper surface and irradiates the entire detection element array (1). There is a structural gap between the detection elements (5). The measurement object (4) is fed downward by an appropriate pitch every time data is acquired.

図6に示す構造では、ギャップの存在によりX線CT撮像のために測定対象物を回転して投影像(透過像)を撮像する場合、測定対象物が小さい場合、ある角度ではギャップにのみ投影像が入る現象が生じる。また、図7に示すように得られるデータに欠落が生じ分解能が低下する。即ち、一回の照射(pass1)で得られるデータは、X線源から見た測定対象物の角度に対応した検出素子からのデータ(d11,d12,d13,…)であり、測定対象物を微小角度回転させた後の照射(pass2)におけるデータ(d21,d22,d23,…)で補完することは、再構成のための演算上において困難である。
CT処理の前提条件は、360度全周からの情報が得られることであり、ギャップによる情報の欠落は、線状のノイズとして再構成画像に発生し、顕著な問題が生じる。
In the structure shown in FIG. 6, when a measurement object is rotated for X-ray CT imaging to capture a projection image (transmission image) due to the presence of a gap, when the measurement object is small, projection is performed only on the gap at a certain angle. A phenomenon occurs in which an image enters. Further, as shown in FIG. 7, the data obtained is lost and the resolution is lowered. That is, the data obtained by one irradiation (pass1) is data (d11, d12, d13,...) From the detection element corresponding to the angle of the measurement object viewed from the X-ray source. Complementation with data (d21, d22, d23,...) In irradiation (pass2) after being rotated by a small angle is difficult in terms of computation for reconstruction.
The precondition for CT processing is that information from 360 degrees all around is obtained, and lack of information due to gaps occurs in the reconstructed image as linear noise, causing a significant problem.

この発明では、検出素子を放射線入射方向に対して前後に配列し、かつ、その画素をずらして配置する。このような構造により、一列目の検出素子におけるギャップを通過したX線を、二列目の検出素子により検出し電荷変換を行わせることでギャップの影響を防いだものである。
またマルチスライスCT用としては、検出素子を前後2列に配列したアレイを測定対象物の移動方向に複数列配置しマルチスライス撮像をする。マルチスライスを行わないときには1つのアレイのみであってもよい。
X線検出素子として、CdTeを含む光子−電荷直接変換型の半導体検出器を用いることが望ましい。
In the present invention, the detection elements are arranged back and forth with respect to the radiation incident direction, and the pixels are arranged so as to be shifted. With such a structure, the X-rays that have passed through the gap in the first row of detection elements are detected by the second row of detection elements and subjected to charge conversion, thereby preventing the influence of the gap.
For multi-slice CT, a multi-slice imaging is performed by arranging a plurality of arrays in which the detection elements are arranged in two front and rear rows in the moving direction of the measurement object. When multi-slicing is not performed, only one array may be used.
It is desirable to use a photon-charge direct conversion type semiconductor detector containing CdTe as the X-ray detection element.

図1に検出器アレイ(15)の配列例を示す。
検出器アレイ(15)は、2列の平行する検出素子アレイ(1,2)により構成される。検出素子(5,6)は2列にわたり前後に配置される。X線ビーム(3)の入射方向は紙面の上から下に向かってであり、検出素子アレイ(1,2)全体を照射する。前列の検出素子(5)と後列の検出素子(6)は、それぞれのギャップを補完するために、前列のギャップに後列の検出素子が設けられてなる構造とする。測定対象物は紙面に垂直な方向に移動する。
図2には、pn構造の向きを整えた構造を示す。このように整列すると、X線により発生した電子及び正孔の走行性の違いによる検出特性の差が小さくなる。図2においては、基盤を2つ用いているが、図1に示すように1つの基盤上に2層構造を作成する構造を採用してもよい。
検出素子は必ずしもpn接合のみではなく、ショットキー接合を有するものも多く存在する。この場合であっても、接合面の向きを統一することにより検出特性の差が小さくなる。一般的に言えば、異種の半導体及び所望により設けられた絶縁体からなる積層構造をもつ検出素子において、接合面の向きを統一すれば検出特性の差が小さくなることは明らかである。ここでいう接合とは、異種の半導体が明白な境界面を有する構造のみでなく、ドーピング濃度の傾斜などによる段階的移行構造をも含んでいるものである。
なおCT用デバイスとして各素子の特性をそろえるために、1列目と2列目は同じ大きさであることが望ましい。
FIG. 1 shows an arrangement example of the detector array (15).
The detector array (15) is composed of two rows of parallel detector element arrays (1, 2). The detection elements (5, 6) are arranged in front and back over two rows. The incident direction of the X-ray beam (3) is from the top to the bottom of the page, and irradiates the entire detection element array (1, 2). The detection element (5) in the front row and the detection element (6) in the rear row have a structure in which a detection element in the rear row is provided in the gap in the front row in order to complement each gap. The measurement object moves in a direction perpendicular to the paper surface.
FIG. 2 shows a structure in which the orientation of the pn structure is adjusted. When aligned in this manner, the difference in detection characteristics due to the difference in the traveling properties of electrons and holes generated by X-rays is reduced. Although two substrates are used in FIG. 2, a structure in which a two-layer structure is created on one substrate as shown in FIG. 1 may be adopted.
Many detection elements have not only pn junctions but also Schottky junctions. Even in this case, the difference in detection characteristics is reduced by unifying the orientations of the joint surfaces. Generally speaking, in a detection element having a laminated structure composed of different types of semiconductors and an insulator provided as desired, it is clear that the difference in detection characteristics is reduced if the orientations of the joint surfaces are unified. The term “junction” as used herein includes not only a structure in which different types of semiconductors have a clear boundary surface but also a stepwise transition structure due to a doping concentration gradient or the like.
In order to align the characteristics of each element as a CT device, it is desirable that the first and second rows have the same size.

検出素子を基盤上に二層に作成することは、製造上の困難性を伴う。その場合には図3に示すように基盤の両面に検出素子アレイを配置することにより、製造時の困難度が低下する。さらには基板上に一層のみを形成した検出アレイを背中合わせに貼り付けることにより二層の検出素子アレイ構造としてもよい。ここでいう背中合わせ構造とは、基盤面同士を貼り合わせる構造であっても、検出素子面同士を貼り合わせる構造であってもよいものであり、どちらかに限定するものではない。
この構造を採用する場合には、X線吸収が少ない基盤を用いることが肝要である。
Making the detection element in two layers on the substrate involves manufacturing difficulties. In this case, as shown in FIG. 3, by disposing the detection element arrays on both sides of the base, the difficulty during manufacture is reduced. Furthermore, a two-layer detection element array structure may be formed by attaching a detection array in which only one layer is formed on a substrate back to back. Here, the back-to-back structure may be a structure in which the base surfaces are bonded together or a structure in which the detection element surfaces are bonded together, and is not limited to either.
When adopting this structure, it is important to use a substrate with low X-ray absorption.

検出器アレイを素子間隔の1/2ピッチ左右に移動させれば、検出素子が実質上2倍存在するかのごとく見なすことができ、解像度の向上が図れる。さらには、素子間隔の1/3ピッチ及び2/3ピッチ移動させて、各位置でデータを採取すれば、実質的に3倍の解像度が得られる。一般化すれば素子間隔をn等分した位置で複数回検出すれば、n倍の解像度が得られるものである。
図4にその例を示す。
15は検出器アレイである。ここでは検出器アレイ(15)は2列の検出素子アレイ(1,2)により構成される。ここまでは先に示した技術と同じである。
検出器アレイ(15)は、横方向に1/2ピッチだけアクチュエータ(16)により可動可能なようになっている。17は固定端である。アクチュエータとしては圧電素子によるものが小型化可能である。その他に、ソレノイド、小型モータ、超音波モータやリニアモータなども利用可能である。
If the detector array is moved to the left and right by 1/2 pitch of the element spacing, it can be regarded as if the detection elements are substantially doubled, and the resolution can be improved. Furthermore, if the data is collected at each position by moving the element interval by 1/3 pitch and 2/3 pitch, the resolution can be substantially tripled. In general, if the element spacing is detected a plurality of times at n equal positions, n times the resolution can be obtained.
An example is shown in FIG.
Reference numeral 15 denotes a detector array. Here, the detector array (15) is composed of two rows of detector element arrays (1, 2). Up to this point, the technique is the same as that shown above.
The detector array (15) is movable by the actuator (16) by a 1/2 pitch in the lateral direction. Reference numeral 17 denotes a fixed end. As an actuator, a piezoelectric element can be miniaturized. In addition, a solenoid, a small motor, an ultrasonic motor, a linear motor, or the like can be used.

感度が高く特性が良好な半導体検出器をX線CT装置に用いる場合に生じるギャップの問題点が解決でき、高い解像度のCT画像を得ることができる   The problem of the gap that occurs when a semiconductor detector with high sensitivity and good characteristics is used in an X-ray CT apparatus can be solved, and a high-resolution CT image can be obtained.

X線検出器アレイ(15)の配列例を示す図The figure which shows the example of an arrangement | sequence of X-ray detector array (15) 、pn接合の向きをそろえるとともに、検出素子アレイ(1,2)を2列に配列した構造を示す図The figure which shows the structure which aligned the direction of a pn junction and arranged the detection element array (1, 2) in two rows 検出素子(5,6)を背中合わせに配列した構造を示す図The figure which shows the structure which arranged the detection element (5, 6) back to back アクチュエータによる検出器アレイの移動を示す図Diagram showing movement of detector array by actuator コンピュータ断層(CT)イメージング装置の全体像を示す図Diagram showing the overall image of a computed tomography (CT) imaging device 従来のX線CT用の1列配列によるX線検出器アレイを示す図The figure which shows the X-ray detector array by the conventional 1 line arrangement | sequence for X-ray CT 従来のギャップの存在による情報の欠落を示す概念図Conceptual diagram showing missing information due to existing gaps

符号の説明Explanation of symbols

1,2 検出素子アレイ
3,13 X線ビーム
4 測定対象物
5,6 検出素子
10 制御装置
11 ガントリ
12 X線源
14 回転中心
15 検出器アレイ
16 アクチュエータ
17 固定端
20 信号処理装置
DESCRIPTION OF SYMBOLS 1, 2 Detection element array 3, 13 X-ray beam 4 Measurement object 5, 6 Detection element 10 Control apparatus 11 Gantry 12 X-ray source 14 Rotation center 15 Detector array 16 Actuator 17 Fixed end 20 Signal processing apparatus

Claims (3)

第1の半導体X線検出素子(5)を1列に配列をなした第1の検出素子アレイ(1)と、同じく第2の半導体X線検出素子(6)を1列に配列をなした第2の検出素子アレイ(2)とからなり、前記第1の検出素子アレイ(1)を前方に配置し、その後方に前記第1の検出素子アレイ(1)におけるギャップを通過してなるX線を検出すべく、前記第1の検出素子アレイのギャップに対応して第2の検出素子アレイ(2)の検出素子(6)を配置してなるX線検出器アレイ。
Similarly to the first detection element array (1) in which the first semiconductor X-ray detection elements (5) are arranged in one column, the second semiconductor X-ray detection element (6) is also arranged in one column. X which consists of a 2nd detection element array (2), arrange | positions the said 1st detection element array (1) ahead, and passes the gap in the said 1st detection element array (1) behind it. An X-ray detector array in which the detection elements (6) of the second detection element array (2) are arranged corresponding to the gaps of the first detection element array in order to detect lines.
前記第1の半導体X線検出素子(5)と第2の半導体X線検出素子(6)とは、異種半導体接合を有するものであり、かつ受光面としての異種半導体接合の方向を統一してなる請求項1記載のX線検出器アレイ。 The first semiconductor X-ray detection element (5) and the second semiconductor X-ray detection element (6) have different types of semiconductor junctions, and the directions of the different types of semiconductor junctions as light receiving surfaces are unified. The X-ray detector array according to claim 1. 前記第1の検出素子アレイ(5)と前記第2の検出器アレイ(6)とを列方向に検出素子間隔のm/n(m,nは自然数であり、かつm<n)移動させるアクチュエータ(16)を備えてなる請求項1記載のX線検出器アレイ。 Actuator for moving the first detection element array (5) and the second detector array (6) in the column direction by m / n (m, n are natural numbers and m <n) between detection elements. The X-ray detector array according to claim 1, further comprising (16).
JP2005336967A 2005-11-22 2005-11-22 X-ray detector array Pending JP2007136050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336967A JP2007136050A (en) 2005-11-22 2005-11-22 X-ray detector array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336967A JP2007136050A (en) 2005-11-22 2005-11-22 X-ray detector array

Publications (1)

Publication Number Publication Date
JP2007136050A true JP2007136050A (en) 2007-06-07

Family

ID=38199595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336967A Pending JP2007136050A (en) 2005-11-22 2005-11-22 X-ray detector array

Country Status (1)

Country Link
JP (1) JP2007136050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255698A (en) * 2011-06-08 2012-12-27 Dainippon Printing Co Ltd Radiation detector using gas amplification and method for detecting radiation using gas amplification
JP2013002819A (en) * 2011-06-10 2013-01-07 Horiba Ltd Flatness measuring device
JP2015501662A (en) * 2011-11-03 2015-01-19 メドトロニック・ナビゲーション,インコーポレーテッド Dynamically scanned x-ray detector panel

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122428A (en) * 1986-11-12 1988-05-26 株式会社東芝 Detector for x-ray ct
JPS6468976A (en) * 1987-09-09 1989-03-15 Matsushita Electric Ind Co Ltd Manufacture of semiconductor radiation detector
JP2515973B2 (en) * 1984-11-21 1996-07-10 ピカー インターナショナル インコーポレイテッド Projection radiographic system and radiation detector
JPH0915339A (en) * 1995-06-29 1997-01-17 Toshiba Corp Radiation detector
JPH11109040A (en) * 1997-09-30 1999-04-23 Toshiba Corp Radiation information collection device
JP2001008099A (en) * 1999-06-18 2001-01-12 Fuji Photo Film Co Ltd Secular subtraction method, device and recording medium
JP2001215281A (en) * 2000-02-02 2001-08-10 Toshiba Corp Two-dimensional detector for x-ray ct
JP3197512B2 (en) * 1997-07-25 2001-08-13 アロカ株式会社 Semiconductor radiation detector
JP2003000587A (en) * 2001-06-25 2003-01-07 Univ Nihon X-ray sensor unit and x-ray radiographing device using the same
JP2003156565A (en) * 2001-11-20 2003-05-30 Canon Inc Imaging device using photoelectric converter
JP2005129558A (en) * 2003-10-21 2005-05-19 National Univ Corp Shizuoka Univ Layout structure of super-resolution pixel electrode and method for processing signal
JP2005183454A (en) * 2003-12-16 2005-07-07 National Univ Corp Shizuoka Univ Wide-band energy range radiation detector and manufacturing method thereof
JP2005189022A (en) * 2003-12-25 2005-07-14 Hitachi Medical Corp X-ray detector for multi-slice and its manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515973B2 (en) * 1984-11-21 1996-07-10 ピカー インターナショナル インコーポレイテッド Projection radiographic system and radiation detector
JPS63122428A (en) * 1986-11-12 1988-05-26 株式会社東芝 Detector for x-ray ct
JPS6468976A (en) * 1987-09-09 1989-03-15 Matsushita Electric Ind Co Ltd Manufacture of semiconductor radiation detector
JPH0915339A (en) * 1995-06-29 1997-01-17 Toshiba Corp Radiation detector
JP3197512B2 (en) * 1997-07-25 2001-08-13 アロカ株式会社 Semiconductor radiation detector
JPH11109040A (en) * 1997-09-30 1999-04-23 Toshiba Corp Radiation information collection device
JP2001008099A (en) * 1999-06-18 2001-01-12 Fuji Photo Film Co Ltd Secular subtraction method, device and recording medium
JP2001215281A (en) * 2000-02-02 2001-08-10 Toshiba Corp Two-dimensional detector for x-ray ct
JP2003000587A (en) * 2001-06-25 2003-01-07 Univ Nihon X-ray sensor unit and x-ray radiographing device using the same
JP2003156565A (en) * 2001-11-20 2003-05-30 Canon Inc Imaging device using photoelectric converter
JP2005129558A (en) * 2003-10-21 2005-05-19 National Univ Corp Shizuoka Univ Layout structure of super-resolution pixel electrode and method for processing signal
JP2005183454A (en) * 2003-12-16 2005-07-07 National Univ Corp Shizuoka Univ Wide-band energy range radiation detector and manufacturing method thereof
JP2005189022A (en) * 2003-12-25 2005-07-14 Hitachi Medical Corp X-ray detector for multi-slice and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255698A (en) * 2011-06-08 2012-12-27 Dainippon Printing Co Ltd Radiation detector using gas amplification and method for detecting radiation using gas amplification
JP2013002819A (en) * 2011-06-10 2013-01-07 Horiba Ltd Flatness measuring device
JP2015501662A (en) * 2011-11-03 2015-01-19 メドトロニック・ナビゲーション,インコーポレーテッド Dynamically scanned x-ray detector panel
US9883840B2 (en) 2011-11-03 2018-02-06 Medtronic Navigation, Inc. Dynamically scanned x-ray detector panel

Similar Documents

Publication Publication Date Title
US7450683B2 (en) Tileable multi-layer detector
US8405038B2 (en) Systems and methods for providing a shared charge in pixelated image detectors
KR101104173B1 (en) Radiation detector and radiation inspecting apparatus
US10393890B2 (en) X-ray imaging device
US8487265B2 (en) Imaging detector and method of manufacturing
JP6384588B2 (en) X-ray detector
US9076563B2 (en) Anti-scatter collimators for detector systems of multi-slice X-ray computed tomography systems
US20070075252A1 (en) Resolution-variable X-ray imaging device and X-ray CT apparatus
WO2013012809A1 (en) Radiation detector modules based on multi-layer cross strip semiconductor detectors
CN104285162A (en) Multi-layer horizontal computed tomography (CT) detector array with at least one thin photosensor array layer disposed between at least two scintillator array layers
JP2007013142A (en) Detector comprising electrically isolated pixel
JP2010513908A (en) Energy decomposition detection system and imaging system
US7193217B2 (en) X-ray detector
US10295679B2 (en) Semiconductor detector
JP2007125086A (en) X-ray detector and x-ray ct apparatus
JP2009118943A (en) Radiation detector and x-ray ct apparatus
US20140348290A1 (en) Apparatus and Method for Low Capacitance Packaging for Direct Conversion X-Ray or Gamma Ray Detector
CN104838286A (en) Imaging detector
US6839401B2 (en) X-ray computed tomography apparatus
JP2007136050A (en) X-ray detector array
US9841514B2 (en) X-ray detector arrangement
US20230162880A1 (en) Multi-layer x-ray detector
JP2007105068A (en) X-ray ct apparatus
KR20170016948A (en) Modular imaging detector asic
JP2010216893A (en) X-ray detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615