JP2009162852A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2009162852A
JP2009162852A JP2007339814A JP2007339814A JP2009162852A JP 2009162852 A JP2009162852 A JP 2009162852A JP 2007339814 A JP2007339814 A JP 2007339814A JP 2007339814 A JP2007339814 A JP 2007339814A JP 2009162852 A JP2009162852 A JP 2009162852A
Authority
JP
Japan
Prior art keywords
film
region
filter
mgf
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007339814A
Other languages
Japanese (ja)
Other versions
JP5058783B2 (en
Inventor
Kazuo Suzuki
一雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2007339814A priority Critical patent/JP5058783B2/en
Publication of JP2009162852A publication Critical patent/JP2009162852A/en
Application granted granted Critical
Publication of JP5058783B2 publication Critical patent/JP5058783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element that implements improved antireflection performance while suppressing cracks and the like at film forming. <P>SOLUTION: A surface antireflection film 43 has a region C mainly comprising an SiO<SB>2</SB>film 43a on the side of a substrate 41, and a region D mainly comprising an MgF<SB>2</SB>film 43b on an outermost surface side. A region E that is a mixed region of SiO<SB>2</SB>and MgF<SB>2</SB>is formed between the regions C and D. The region C has a decreasing SiO<SB>2</SB>component density ratio and an increasing MgF<SB>2</SB>component density ratio gradually from the region mainly of SiO<SB>2</SB>to the region mainly of MgF<SB>2</SB>, and the region D is opposite to the region C, so that there is no clear interface between the regions C and D. The structure provides a similar trend of the refractive index, which continuously varies from the region C to the region D without a junction interface, to eliminate light reflection generated at an interface of different refractive indices. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カメラやビデオカメラ等の撮影装置や光学機器等に使用される光学素子に関するものである。   The present invention relates to an optical element used in a photographing apparatus such as a camera or a video camera, an optical apparatus, or the like.

デジタルカメラやビデオカメラ等の光学機器において、被写体が高輝度の場合の撮影時に、絞りが小絞りになり回折で画像が劣化することがある。これを防止するために、従来から撮影光学系上にND(Neutral Density)フィルタ等の光を減衰させる光学素子を挿入することが行われている。   In an optical device such as a digital camera or a video camera, when photographing when the subject has high brightness, the aperture may be small and the image may deteriorate due to diffraction. In order to prevent this, conventionally, an optical element for attenuating light such as an ND (Neutral Density) filter has been inserted on the photographing optical system.

近年では、デジタルカメラやビデオカメラの高画質化に伴い、より適切な調整ができるように、1枚のNDフィルタに異なる濃度の濃度領域を複数設けた多濃度NDフィルタや連続的な濃度勾配を設けたグラデーションNDフィルタが使用されている。   In recent years, with the improvement in image quality of digital cameras and video cameras, a multi-density ND filter having a plurality of density regions with different densities on a single ND filter and a continuous density gradient are provided so that more appropriate adjustment can be performed. The provided gradation ND filter is used.

また、開口内でNDフィルタの有無による画質の差が生ずることを避けるために、NDフィルタの一部に透明領域を形成し、NDフィルタによる減光を行わない場合においても、透明領域を開口内に挿入するNDフィルタも使用されている。   In addition, in order to avoid the difference in image quality due to the presence or absence of the ND filter in the opening, a transparent region is formed in a part of the ND filter, and the transparent region is placed in the opening even when the ND filter is not dimmed An ND filter is also used.

例えば特許文献1においては、透明樹脂フィルム上に真空蒸着法によりTiO膜、Al23膜、SiO2膜を成膜した透明領域付きグラデーションNDフィルタが開示されている。また、特許文献2においてはグラデーションNDフィルタの作製方法が開示されている。 For example, Patent Document 1 discloses a gradation ND filter with a transparent region in which a TiO film, an Al 2 O 3 film, and a SiO 2 film are formed on a transparent resin film by vacuum deposition. Patent Document 2 discloses a method for producing a gradation ND filter.

NDフィルタの基本構成は、透明基板の片面に金属膜、金属酸化膜、誘電体膜等の積層膜から成るND膜を形成したものであるが、透明基板の片面にND膜を形成し、裏面には多層反射防止膜を形成したり、或いは透明基板の両面にND膜を形成してもよい。   The basic configuration of the ND filter is that an ND film made of a laminated film such as a metal film, a metal oxide film, and a dielectric film is formed on one side of a transparent substrate. A multilayer antireflection film may be formed, or an ND film may be formed on both surfaces of the transparent substrate.

図13はNDフィルタ1の膜構成図を示している。樹脂製の透明基板2の上に反射率を低下させるための反射防止層であるAl23膜3aと、透過率を低下させるための光吸収層としてTiOx膜3bを交互に成膜することにより、8層から成るND膜3が形成されている。NDフィルタ1の透過率は光吸収層である第2、4、6、8層のTiOx膜3bの総膜厚によって変化し、総膜厚が厚くなるほど透過率は低下する。 FIG. 13 shows a film configuration diagram of the ND filter 1. Al 2 O 3 film 3a which is an antireflection layer for reducing the reflectance and TiOx film 3b as a light absorption layer for reducing the transmittance are alternately formed on the resin transparent substrate 2. Thus, the ND film 3 composed of eight layers is formed. The transmittance of the ND filter 1 varies depending on the total film thickness of the second, fourth, sixth, and eighth TiOx films 3b that are light absorption layers, and the transmittance decreases as the total film thickness increases.

反射率は蒸着時にモニタリングすることにより、反射防止層であるAl23膜3aの膜厚を制御することにより、反射率を小さくすることが可能である。更に、最上層の第8層のTiOx膜3b上には、低屈折材料としてMgF2膜4を光学膜厚n×d(n:屈折率、d:物理膜厚)でλ/4(λ;設計波長)蒸着した表層反射防止膜を形成することにより、反射防止効果を高めている。また、MgF2膜4の代りに、SiO2膜を用いることもできる。 The reflectance can be reduced by monitoring the reflectance at the time of vapor deposition and by controlling the film thickness of the Al 2 O 3 film 3a which is an antireflection layer. Further, an MgF 2 film 4 as a low refractive material is provided on the uppermost eighth TiOx film 3b with an optical film thickness n × d (n: refractive index, d: physical film thickness) of λ / 4 (λ; Design wavelength) The antireflection effect is enhanced by forming a deposited antireflection film on the surface layer. Further, an SiO 2 film can be used in place of the MgF 2 film 4.

そして、透明基板2上にND膜3及びMgF2膜4を成膜した後に、所定の形状にプレス加工等により切断することにより、NDフィルタ1を得ることができる。 Then, after forming the ND film 3 and MgF 2 film 4 on the transparent substrate 2, by cutting by press working or the like into a predetermined shape, it is possible to obtain the ND filter 1.

CCD等の撮像素子は構造上、その表面において光を反射し易いため、CCD表面で反射した光がNDフィルタ1の表面で再度反射し、CCDの別の画素に入射してしまい、ゴースト等の原因となることがある。従って、NDフィルタ1の表面反射を抑制することは、良好な画質の写真や画像を撮影するために極めて重要である。   Since an image pickup device such as a CCD easily reflects light on the surface thereof, the light reflected on the CCD surface is reflected again on the surface of the ND filter 1 and enters another pixel of the CCD, resulting in a ghost or the like. It can be a cause. Therefore, it is extremely important to suppress the surface reflection of the ND filter 1 in order to take a good quality picture or image.

図14は従来の透明領域付きのグラデーションNDフィルタ11の断面模式図を示しており、透明基板2上のND領域Aに濃度勾配を有するND膜12を形成し、ND領域A及び透明領域Bに単層の表層反射防止膜13を一様に成膜している。単層の表層反射防止膜13の場合には、その屈折率が小さく空気の屈折率(n=1)に近い方が反射防止効果が高いため、通常ではSiO2膜(n=1.46)やMgF2膜(n=1.36)が使用される。 FIG. 14 is a schematic cross-sectional view of a conventional gradation ND filter 11 with a transparent region. An ND film 12 having a concentration gradient is formed in the ND region A on the transparent substrate 2, and the ND region A and the transparent region B are formed. A single-layer surface antireflection film 13 is uniformly formed. In the case of the single-layer surface antireflection film 13, since the antireflection effect is higher when the refractive index is smaller and closer to the refractive index of air (n = 1), the SiO 2 film (n = 1.46) is usually used. MgF 2 film (n = 1.36) is used.

また、図15に示すグラデーションNDフィルタ21においては、ND領域AのND膜12上には単層の表層反射防止膜13を成膜し、特に反射率の高い透明領域Bにおいては、多層の表層反射防止膜22が成膜されている。   Further, in the gradation ND filter 21 shown in FIG. 15, a single-layer surface antireflection film 13 is formed on the ND film 12 in the ND region A, and a multilayer surface layer is formed particularly in the transparent region B having a high reflectance. An antireflection film 22 is formed.

このように、透明基板2上に表層反射防止膜13、22を物理蒸着膜として成膜する場合には、透明基板2との密着性を向上させるために透明基板2を加熱して蒸着する。しかし、透明基板2が樹脂製の場合には耐熱性の問題があり、基板温度の上限は100〜150°C程度である。   Thus, when forming the surface antireflection films 13 and 22 on the transparent substrate 2 as physical vapor deposition films, the transparent substrate 2 is heated and vapor-deposited in order to improve adhesion to the transparent substrate 2. However, when the transparent substrate 2 is made of resin, there is a problem of heat resistance, and the upper limit of the substrate temperature is about 100 to 150 ° C.

固体撮像素子の高感度化や高解像度化に対応し、NDフィルタの更なる低反射率化の要求に対応するためには、表層反射防止膜の反射率をできる限り小さくする必要がある。しかし、樹脂製の基板に表層反射防止膜を成膜する場合には、その成膜温度の低さにより膜の材料によっては蒸着膜の強度が弱く、光学素子として加工する際に、クラックが発生し易いという問題がある。例えば、表層反射防止膜として単層のMgF2膜を成膜した場合には上述の問題が発生する。 In order to respond to the demand for higher sensitivity and higher resolution of the solid-state imaging device and to meet the demand for further lowering the reflectance of the ND filter, it is necessary to make the reflectance of the surface antireflection film as small as possible. However, when a surface antireflection film is formed on a resin substrate, the strength of the deposited film is weak depending on the material of the film due to the low film formation temperature, and cracks occur when processing as an optical element. There is a problem that it is easy to do. For example, when a single layer MgF 2 film is formed as the surface antireflection film, the above-described problem occurs.

一方、従来から表層反射防止膜として使用されてきたSiO2膜は、上述の基板温度で成膜してもクラックの発生は生ずることはないが、SiO2膜はMgF2膜と比較すると、屈折率が大きいため反射率が高くなってしまう。 On the other hand, the SiO 2 film that has been conventionally used as a surface antireflection film does not generate cracks even when formed at the above substrate temperature, but the SiO 2 film is refracted compared to the MgF 2 film. Since the rate is large, the reflectance becomes high.

また、上述の成膜時のクラックの発生と膜表面における反射率の低減の課題を解消する方法として、本出願人はSiO2膜上にMgF2膜を積層する方法を提案している。この方法は、基板上にSiO2膜が形成されるためクラックの発生を抑制でき、最表層にMgF2膜が形成されているため、NDフィルタ表面での反射をMgF2膜により抑制することができる。 In addition, as a method for solving the above-described problems of generation of cracks during film formation and reduction of reflectance on the film surface, the present applicant has proposed a method of laminating a MgF 2 film on a SiO 2 film. This method can suppress the generation of cracks because the SiO 2 film is formed on the substrate, and the MgF 2 film is formed on the outermost layer, so that reflection on the surface of the ND filter can be suppressed by the MgF 2 film. it can.

特開2004−205951号公報JP 2004-205951 A 特許3701931号公報Japanese Patent No. 3701931

上述のように表層反射防止膜としてSiO2膜上にMgF2膜を成膜する方法は、比較的容易にクラックの発生と表面反射を抑制することができるが、SiO2膜とMgF2膜の界面において反射が生ずるため、単層のMgF2膜よりは反射率は高くなる。 Method of forming an MgF 2 film on the SiO 2 film as a surface layer antireflection film as described above, can be relatively easily suppress the surface reflection of cracks, the SiO 2 film and the MgF 2 film Since reflection occurs at the interface, the reflectance is higher than that of a single-layer MgF 2 film.

また、図15に示すように、特に反射率の高い透明領域Bのみを多層の表層反射防止膜22を成膜すると、この部分のみ別途の成膜工程が必要となる。従って、製造コストが上昇すると共に、多層の表層反射防止膜22の膜厚が通常300〜400nm程度と厚くなり過ぎてクラックが発生し易くなる。   As shown in FIG. 15, when a multilayer surface antireflection film 22 is formed only in the transparent region B having a particularly high reflectance, a separate film forming process is required only for this portion. Accordingly, the manufacturing cost increases, and the thickness of the multilayer antireflection film 22 becomes too thick, usually about 300 to 400 nm, and cracks are likely to occur.

本発明の目的は、上述の課題を解消し、樹脂基板への成膜時のクラック等の発生を抑制しながら、複数の反射防止層の最表面及び膜間の界面での反射防止性能を向上させた光学素子を提供することである。   The object of the present invention is to solve the above-mentioned problems and improve the antireflection performance at the outermost surface of the plurality of antireflection layers and the interface between the films while suppressing the occurrence of cracks and the like during film formation on the resin substrate. An optical element is provided.

上記目的を達成するための本発明に係る光学素子は、樹脂基板の上に形成された誘電体層から成る表層反射防止膜を有し、前記誘電体層は複数の誘電体材料の成分濃度比率が連続的に変化する領域を有することを特徴とする。   In order to achieve the above object, an optical element according to the present invention has a surface antireflection film composed of a dielectric layer formed on a resin substrate, and the dielectric layer is a component concentration ratio of a plurality of dielectric materials. It has the area | region which changes continuously.

本発明に係る光学素子によれば、樹脂基板上に複数の反射防止層を成膜する際に、反射防止層のクラックの発生を抑制すると共に、表面の反射率を低減させるだけでなく、複数の反射防止層間の界面での反射率を低減させることができる。   According to the optical element of the present invention, when forming a plurality of antireflection layers on a resin substrate, not only the generation of cracks in the antireflection layer is suppressed, but also the reflectance of the surface is reduced. The reflectance at the interface between the antireflection layers can be reduced.

また、このような光学素子を光量絞り装置に使用すると、ゴースト等の少ない良好な画像の撮影が可能となる。   Further, when such an optical element is used in a light quantity diaphragm device, it is possible to take a good image with little ghost or the like.

本発明を図1〜図12に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は撮影光学系の構成図を示し、レンズ31、光量調節部材32、レンズ33〜35、ローパスフィルタ36、CCD等から成る固体撮像素子37が順次に配列されている。光量調節部材32においては、絞り羽根支持板38に一対の絞り羽根39a、39bが可動に取り付けられている。絞り羽根39aには、絞り羽根39a、39bの駆動量に応じて略菱形形状が変化する開口部を通過する光束の透過量を減光するためのNDフィルタ40が接着されている。なお、このNDフィルタ40は絞り羽根39aに取り付けずに、独立して駆動するようにしてもよい。   FIG. 1 is a block diagram of a photographic optical system, in which a solid-state imaging device 37 including a lens 31, a light amount adjusting member 32, lenses 33 to 35, a low-pass filter 36, a CCD, and the like are sequentially arranged. In the light quantity adjusting member 32, a pair of aperture blades 39a and 39b are movably attached to an aperture blade support plate 38. An ND filter 40 is bonded to the diaphragm blade 39a for dimming the amount of transmitted light passing through an opening whose shape changes substantially in accordance with the driving amount of the diaphragm blades 39a and 39b. The ND filter 40 may be driven independently without being attached to the aperture blade 39a.

図2は本実施例において製造したNDフィルタ40の断面模式図であり、図3は図2のND領域Aにおける膜構成図を示している。   FIG. 2 is a schematic cross-sectional view of the ND filter 40 manufactured in the present embodiment, and FIG. 3 shows a film configuration diagram in the ND region A of FIG.

NDフィルタ40に用いられる樹脂基板41としては、透明性及び機械的強度を有するものが好ましい。例えば、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、ポリカーボネート、ポリイミド系樹脂、ノルボルネン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、アクリル系樹脂等のフィルム状の基板を使用することが可能である。   As the resin substrate 41 used for the ND filter 40, one having transparency and mechanical strength is preferable. For example, films of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polycarbonate, polyimide resin, norbornene resin, polystyrene, polyvinyl chloride, polyarylate, polysulfone, polyethersulfone, polyetherimide, acrylic resin, etc. A shaped substrate can be used.

また、基板41の板厚としては、NDフィルタ40としての剛性を保持しながら、可能な限り薄くすることが好ましい。具体的には、その厚さとして300μm以下が好ましく、より好ましくは50〜100μmである。なお、本実施例の樹脂基板41としては、耐熱性、強度、透明性に優れた厚さ100μmのPETを用いている。   Further, the thickness of the substrate 41 is preferably as thin as possible while maintaining the rigidity of the ND filter 40. Specifically, the thickness is preferably 300 μm or less, more preferably 50 to 100 μm. In addition, as the resin substrate 41 of a present Example, 100-micrometer-thick PET excellent in heat resistance, intensity | strength, and transparency is used.

図3に示すように、ND領域Aにおいては基板41上に反射防止層であるAl23膜42aと、光吸収層であるTiOx膜42bとによる8層の交互層から成る光減衰膜であるND膜42が形成されている。 As shown in FIG. 3, in the ND region A, a light attenuating film composed of eight alternating layers of an Al 2 O 3 film 42a as an antireflection layer and a TiOx film 42b as a light absorption layer on a substrate 41. A certain ND film 42 is formed.

また、ND膜42の反射防止層としては、光吸収の少ない誘電体層であればよく、Al23膜42aの他に、SiO2、SiO、MgF2、ZrO2、TiO2等の膜が使用できる。TiOx膜42bのxの値を制御することにより、分光透過率の平坦性を調整できるが、多層膜の総数や使用材料によっても特性は変化する。また、ND膜42の光吸収層としては、可視領域の光を吸収する特性を有する材料であればよく、TiOx膜42bの他に、Ti、Ni、Cr、NiCr、NiFe、Nb等の金属、合金、酸化物の膜を使用することができる。 The antireflection layer of the ND film 42 may be a dielectric layer with little light absorption. In addition to the Al 2 O 3 film 42a, films such as SiO 2 , SiO, MgF 2 , ZrO 2 , and TiO 2 are used. Can be used. By controlling the value of x of the TiOx film 42b, the flatness of the spectral transmittance can be adjusted, but the characteristics also change depending on the total number of multilayer films and the materials used. The light absorption layer of the ND film 42 may be any material that has a property of absorbing light in the visible region. In addition to the TiOx film 42b, a metal such as Ti, Ni, Cr, NiCr, NiFe, Nb, Alloy and oxide films can be used.

そして、第8層のTiOx膜42bの上層には、後述するように誘電体材料のSiO2膜43aとMgF2膜43bとの成分濃度比率が、この順に連続的に変化するように積層した表層反射防止膜43が形成されている。 Then, on the upper layer of the TiOx film 42b of the eighth layer, as described later, a surface layer laminated so that the component concentration ratio of the SiO 2 film 43a and the MgF 2 film 43b of the dielectric material continuously changes in this order. An antireflection film 43 is formed.

図4は透明領域Bにおける表層反射防止膜43の濃度分布の説明図を示し、基板41側においてSiO2膜43aを主とする領域C、最表層側においてMgF2膜43bを主とする領域Dが形成されている。 FIG. 4 is an explanatory view of the concentration distribution of the surface antireflection film 43 in the transparent region B. The region C mainly includes the SiO 2 film 43a on the substrate 41 side, and the region D mainly includes the MgF 2 film 43b on the outermost layer side. Is formed.

領域C、D間にはSiO2とMgF2との混合領域である領域Eが形成されている。領域CはSiO2を主とする領域からMgF2を主とする領域にかけて、徐々にSiO2の成分濃度比率が小さく、同時にMgF2の成分濃度比率が大きくなり、領域Dでは領域Cの逆の関係となる。即ち、これらの領域C〜D間には明確な界面は存在しない。 A region E, which is a mixed region of SiO 2 and MgF 2 , is formed between the regions C and D. In the region C, the component concentration ratio of SiO 2 gradually decreases from the region mainly composed of SiO 2 to the region mainly composed of MgF 2 , and at the same time, the component concentration ratio of MgF 2 increases. It becomes a relationship. That is, there is no clear interface between these regions C to D.

表層反射防止膜43をこのような構成とすることにより、屈折率にも同様の傾向が現れる。つまり、屈折率が領域Cから領域Dにかけて連続的に変化し、その接合部に界面が存在しないため、屈折率の異なる界面で発生する光の反射が生じない。   When the surface antireflection film 43 has such a configuration, a similar tendency appears in the refractive index. That is, since the refractive index continuously changes from the region C to the region D and there is no interface at the junction, there is no reflection of light generated at the interface having a different refractive index.

領域C、Dはそれぞれ基板41側及び最表層側においては、SiO2及びMgF2膜のみから成る均一の成分濃度分布を有するが、均一の成分濃度分布を設けずに、基板41側から最表層側へ連続的に成分濃度分布を有するようにしてもよい。 The regions C and D have a uniform component concentration distribution composed only of SiO 2 and MgF 2 films on the substrate 41 side and the outermost layer side, respectively, but without providing the uniform component concentration distribution, You may make it have a component concentration distribution to the side continuously.

なお、この表層反射防止膜43はND領域Aから透明領域Bまで同一工程で略同一膜厚に成膜されている。   The surface antireflection film 43 is formed from the ND region A to the transparent region B with substantially the same film thickness in the same process.

また、誘電体層を形成する誘電体材料は、表層反射率等の特性に悪影響を及ぼさなければSiO2、MgF2の2種類の他に、他の材料を含んでいてもよい。 In addition, the dielectric material forming the dielectric layer may contain other materials in addition to the two types of SiO 2 and MgF 2 as long as the properties such as the surface layer reflectivity are not adversely affected.

図5はNDフィルタ40のND膜42を成膜するための真空蒸着機のチャンバの構成図を示している。チャンバ51内には、蒸着源52と、この蒸着源52を加熱する蒸着材料加熱装置が設けられている。この蒸着源52の上方には、駆動手段により回転可能な蒸着傘53が設けられ、この蒸着傘53には図6に示すような基板治具54が設けられている。またチャンバ51の上部には、反射防止層であるAl23膜42の膜厚を測定するための光学モニタ55が配置されている。 FIG. 5 shows a configuration diagram of a chamber of a vacuum evaporation machine for forming the ND film 42 of the ND filter 40. In the chamber 51, a vapor deposition source 52 and a vapor deposition material heating device for heating the vapor deposition source 52 are provided. A vapor deposition umbrella 53 that can be rotated by a driving means is provided above the vapor deposition source 52, and a substrate jig 54 as shown in FIG. An optical monitor 55 for measuring the thickness of the Al 2 O 3 film 42 that is an antireflection layer is disposed on the chamber 51.

図6は基板治具54の拡大断面図を示し、基板治具54には図示しない基準ピンが設けられ、基板41は基板41に穿けられた基準孔を介して固定され、基板41の下方には間隔を隔てて蒸着パターン形成用マスク61が取り付けられている。   FIG. 6 shows an enlarged cross-sectional view of the substrate jig 54. The substrate jig 54 is provided with a reference pin (not shown), and the substrate 41 is fixed through a reference hole formed in the substrate 41. A vapor deposition pattern forming mask 61 is attached at intervals.

そして、チャンバ51内を図示しない真空ポンプを介して真空引きした後に、蒸着傘53を駆動手段により回転させながら蒸着源52から必要な蒸着材料を蒸発させる。なお、本実施例においては、蒸着材料はAl23とTiOxであり、これらを順次に切換えることにより、図3に示すようなAl23膜42aとTiOx膜42bを交互に積層した8層のND膜42を形成する。 Then, after the inside of the chamber 51 is evacuated through a vacuum pump (not shown), a necessary vapor deposition material is evaporated from the vapor deposition source 52 while the vapor deposition umbrella 53 is rotated by a driving unit. In this embodiment, the vapor deposition materials are Al 2 O 3 and TiOx, and the Al 2 O 3 film 42a and the TiOx film 42b as shown in FIG. A layer of the ND film 42 is formed.

蒸着源52は回転式のハースに複数の材料がセットできるもので、成膜する膜毎に必要に応じて真空状態のままで材料を交換することができる。また、このときND膜42に必要な透過率はTiOx膜42bの総膜厚により調整する。   The evaporation source 52 can set a plurality of materials on a rotary hearth, and the materials can be exchanged in a vacuum state as necessary for each film to be formed. At this time, the transmittance required for the ND film 42 is adjusted by the total film thickness of the TiOx film 42b.

基板41と所定の間隔を隔てて蒸着パターン形成用マスク61を設けることにより、マスク61の開口部61aに対向する位置の基板41上に形成されるND膜42は、最も膜厚が厚く高濃度になる。また、マスク61が遮蔽する部分は膜厚が徐々に薄く低濃度になるため、図2に示すような濃度勾配を得ることができる。   By providing the deposition pattern forming mask 61 with a predetermined distance from the substrate 41, the ND film 42 formed on the substrate 41 at a position facing the opening 61a of the mask 61 is the thickest and has a high concentration. become. Further, since the thickness of the portion shielded by the mask 61 is gradually reduced and the concentration becomes low, a concentration gradient as shown in FIG. 2 can be obtained.

続いて、図7に示すように基板治具54から蒸着パターン形成用マスク61を取り外し、図8に示すような真空蒸着機のチャンバ71を用いて、基板41の全面に連続的に図4に示すような表層反射防止膜43を成膜する。   Subsequently, the vapor deposition pattern forming mask 61 is removed from the substrate jig 54 as shown in FIG. 7, and the chamber 71 of the vacuum vapor deposition machine as shown in FIG. A surface antireflection film 43 as shown is formed.

チャンバ71内には、2組の蒸着源72、73と、これらの蒸着源72、73を加熱する2組の蒸着材料加熱装置が設けられている。この蒸着源72、73の上方には開閉可能なシャッタ74、75が配置され、駆動手段により回転可能な蒸着傘76が設けられ、この蒸着傘76には図7に示すような濃度勾配を有するND膜42が成膜された基板41を有する基板治具54が取り付けられている。   In the chamber 71, two sets of vapor deposition sources 72 and 73 and two sets of vapor deposition material heating devices for heating the vapor deposition sources 72 and 73 are provided. Openable and closable shutters 74 and 75 are disposed above the vapor deposition sources 72 and 73, and a vapor deposition umbrella 76 that can be rotated by a driving means is provided. The vapor deposition umbrella 76 has a concentration gradient as shown in FIG. A substrate jig 54 having a substrate 41 on which an ND film 42 is formed is attached.

またチャンバ71内には、蒸着源72、73による蒸着レートを検知するための膜厚センサ77、78が設けられている。チャンバ71の上部には表層反射防止膜43の膜厚を測定するための光学モニタ79が設けられている。なお本実施例においては、蒸着源72にSiO2、蒸着源73にMgF2を用いている。 In the chamber 71, film thickness sensors 77 and 78 are provided for detecting the deposition rate by the deposition sources 72 and 73. An optical monitor 79 for measuring the film thickness of the surface antireflection film 43 is provided on the upper portion of the chamber 71. In this embodiment, SiO 2 is used for the vapor deposition source 72 and MgF 2 is used for the vapor deposition source 73.

このような真空蒸着装置を用い、チャンバ71内を真空ポンプにより真空引きをし、所定の真空度に達するとシャッタ74、75を閉じたまま、蒸着源72、73をそれぞれの蒸着材料加熱装置を用いて加熱する。本実施例においては、蒸着材料加熱装置として真空蒸着に一般的に用いられている電子ビームを用いている。   Using such a vacuum evaporation apparatus, the inside of the chamber 71 is evacuated by a vacuum pump, and when a predetermined degree of vacuum is reached, the evaporation sources 72 and 73 are connected to the respective evaporation material heating apparatuses while the shutters 74 and 75 are closed. Use and heat. In this embodiment, an electron beam generally used for vacuum vapor deposition is used as a vapor deposition material heating device.

それぞれの材料が所定の蒸着レートで安定すると、先ずシャッタ74を開けて、蒸着源72からSiO2を飛翔させる。このとき蒸着源73のMgF2の蒸着レートは非常に小さく抑えられており、また、シャッタ75は閉じているので、MgF2は基板41に到達することはない。 When each material is stabilized at a predetermined vapor deposition rate, the shutter 74 is first opened, and SiO 2 is allowed to fly from the vapor deposition source 72. At this time, the deposition rate of MgF 2 of the deposition source 73 is kept very small, and the shutter 75 is closed, so that the MgF 2 does not reach the substrate 41.

SiO2膜43aが所定の膜厚に成膜されると、シャッタ75を開け蒸着源73からMgF2を飛翔させる。このとき、蒸着源72からはSiO2が飛翔しているため、基板41上にはSiO2とMgF2の領域Eが成膜される。 When the SiO 2 film 43a is formed to a predetermined thickness, the shutter 75 is opened and MgF 2 is allowed to fly from the vapor deposition source 73. At this time, since SiO 2 is flying from the vapor deposition source 72, a region E of SiO 2 and MgF 2 is formed on the substrate 41.

また、最初にMgF2の蒸着レートは非常に小さく抑えられているため、SiO2の濃度の高い混合領域から基板41上に成膜されていく。そして、膜厚センサ77、78でそれぞれの蒸着レートをモニタしながらMgF2の蒸着レートを徐々に大きく、SiO2の蒸着レートを徐々に小さくしてゆく。それぞれの蒸着レートの変化量は領域Eが所定の膜厚になるときに、SiO2の蒸着レートが0になるように予め算出しておく。領域Eが所定の膜厚に達すると、更に所定の厚さのMgF2膜43bを成膜する。 First, since the deposition rate of MgF 2 is kept very small, the film is formed on the substrate 41 from a mixed region having a high SiO 2 concentration. Then, while monitoring the respective vapor deposition rates by the film thickness sensors 77 and 78, the MgF 2 vapor deposition rate is gradually increased and the SiO 2 vapor deposition rate is gradually decreased. The amount of change in each deposition rate is calculated in advance so that the deposition rate of SiO 2 becomes 0 when the region E has a predetermined film thickness. When the region E reaches a predetermined film thickness, an MgF 2 film 43b having a predetermined thickness is further formed.

なお本実施例においては、表層反射防止膜43の総膜厚は光学モニタ79を用いて測定し、λ/4(設計波長550nm)になるように成膜した。ND膜42の形成は単一材料を積層するため、1つの蒸着源52から所定の材料を蒸発させて成膜したが、SiO2とMgF2の成分比率が徐々に変化する表層反射防止膜43の成膜には、蒸着源72、73から同時にSiO2、MgF2を蒸発させる必要がある。 In this example, the total thickness of the surface antireflection film 43 was measured using the optical monitor 79, and was formed to be λ / 4 (design wavelength 550 nm). Since the ND film 42 is formed by laminating a single material, the film is formed by evaporating a predetermined material from one evaporation source 52, but the surface antireflection film 43 in which the component ratio of SiO 2 and MgF 2 gradually changes. For film formation, it is necessary to evaporate SiO 2 and MgF 2 simultaneously from the vapor deposition sources 72 and 73.

また、領域Eの混合比率は上述した蒸着レートの比率により制御し、両材料の間で片方の蒸着レートを相対的に高くすると、その材料の混合比率は高くなる。   In addition, the mixing ratio of the region E is controlled by the above-described ratio of the deposition rate, and when the deposition rate of one of the two materials is relatively high, the mixing ratio of the material becomes high.

本実施例においては、このような構成のND膜42及び表層反射防止膜43を真空蒸着法により成膜したが、スパッタ法、イオンプレーティング法等の成膜法により形成してもよい。   In this embodiment, the ND film 42 and the surface antireflection film 43 having such a structure are formed by a vacuum deposition method, but may be formed by a film formation method such as a sputtering method or an ion plating method.

本実施例におけるND膜42は、図5に示すチャンバ51を用いて成膜したが、図8に示すチャンバ71を用いて成膜することも可能である。なお、この際に蒸着源72にAl23、蒸着源73にTiOxを用いることもできる。 In this embodiment, the ND film 42 is formed using the chamber 51 shown in FIG. 5, but can also be formed using the chamber 71 shown in FIG. At this time, Al 2 O 3 can be used for the vapor deposition source 72 and TiOx can be used for the vapor deposition source 73.

このような手段により、表層反射防止膜43を形成し、基板41をチャンバ71から取り出した後に、最終工程で図9に示すように、複数のNDフィルタパターンを個々のNDフィルタ形状に切断する。この際に、透明領域まで含んで切断することにより、透明領域付きグラデーションNDフィルタ40が得られる。なお本実施例において、成膜した表層反射防止膜43を触針式膜厚測定器により膜厚を測定したところ96nmであった。   By such means, the surface antireflection film 43 is formed and the substrate 41 is taken out from the chamber 71. Then, as shown in FIG. 9, in the final step, a plurality of ND filter patterns are cut into individual ND filter shapes. At this time, the gradation ND filter 40 with a transparent region is obtained by cutting the transparent region. In this example, when the film thickness of the formed antireflection film 43 was measured with a stylus type film thickness meter, it was 96 nm.

図10は本実施例による表層反射防止膜43と従来の単層反射防止層の反射率を比較したグラフ図である。上述したように、膜強度の強いSiO2単層膜の反射率は比較的高く、膜強度の弱いMgF2単層膜は極めて低い反射率を示している。MgF2膜上にSiO2膜を成膜したものは、それぞれの膜厚により反射率は変化するが、おおよそSiO2単層膜とMgF2単層膜の反射率の間に入る。 FIG. 10 is a graph comparing the reflectivity of the surface antireflection film 43 according to this embodiment and the conventional single-layer antireflection layer. As described above, the reflectivity of the SiO 2 single layer film having a high film strength is relatively high, and the MgF 2 single layer film having a low film strength shows an extremely low reflectivity. Which was deposited SiO 2 film on the MgF 2 film may vary the reflectance by the respective film thicknesses, roughly fall between the reflectance of the SiO 2 single layer and MgF 2 monolayer film.

これらに対して、本実施例による表層反射防止膜43は、MgF2単層膜とほぼ同等の反射率に抑えられており、極めて良好な反射率特性を有している。 On the other hand, the surface antireflection film 43 according to the present embodiment is suppressed to a reflectance substantially equal to that of the MgF 2 single layer film, and has extremely good reflectance characteristics.

また本実施例においては、光学フィルタ領域をグラデーションNDフィルタとしたが、図11に示すように基板41上に単一の透過率領域から成る単濃度のND膜81を成膜した後に、表層反射防止膜43を成膜した単濃度NDフィルタ82にすることもできる。更に、図12に示すような複数の透過率領域から成る多濃度のND膜83を有する多濃度NDフィルタ84についても適用可能である。   In this embodiment, the optical filter region is a gradation ND filter. However, after forming a single-concentration ND film 81 consisting of a single transmittance region on the substrate 41 as shown in FIG. A single-concentration ND filter 82 on which the prevention film 43 is formed may be used. Furthermore, the present invention can also be applied to a multi-concentration ND filter 84 having a multi-concentration ND film 83 composed of a plurality of transmittance regions as shown in FIG.

このようにして製作されたNDフィルタ40を、図1に示す光量調節部材32に使用した場合に、ゴースト等による画像劣化の少ない良好な光量絞り装置を実現することができる。   When the ND filter 40 manufactured in this way is used for the light amount adjusting member 32 shown in FIG. 1, it is possible to realize a good light amount reduction device with little image deterioration due to ghost or the like.

なお本実施例では、2枚の絞り羽根39a、39bを使用して、一方の絞り羽根39aにNDフィルタ40を固定したものを示したが、絞り羽根39の枚数は特に制限はない。また、NDフィルタ40は絞り羽根39とは別個に駆動されて撮影光学系に挿入されるようにしてもよい。   In this embodiment, two diaphragm blades 39a and 39b are used and the ND filter 40 is fixed to one diaphragm blade 39a. However, the number of diaphragm blades 39 is not particularly limited. The ND filter 40 may be driven separately from the aperture blade 39 and inserted into the photographing optical system.

更に、このようなNDフィルタ40を利用する光量絞り装置は、ビデオカメラ等に使用される所謂アイリスユニットや、デジタルカメラ等に使用されるシャッタユニット等として利用される。   Further, such a light amount reduction device using the ND filter 40 is used as a so-called iris unit used for a video camera or the like, a shutter unit used for a digital camera or the like.

なお、材質や層構成、層数、成膜方法等は本実施例に限定されるものではない。   Note that the material, the layer configuration, the number of layers, the film forming method, and the like are not limited to the present embodiment.

撮影光学系の概略図である。1 is a schematic diagram of a photographing optical system. NDフィルタの断面図である。It is sectional drawing of an ND filter. NDフィルタの膜構成図である。It is a film | membrane block diagram of a ND filter. NDフィルタの表層反射防止膜の濃度分布の説明図である。It is explanatory drawing of the density distribution of the surface layer antireflection film of ND filter. ND膜を成膜する蒸着装置の概略図である。It is the schematic of the vapor deposition apparatus which forms ND film | membrane. 基板治具の拡大断面図である。It is an expanded sectional view of a substrate jig. 表層反射防止膜を成膜するための説明図である。It is explanatory drawing for forming a surface layer antireflection film. 表層反射防止膜を成膜する蒸着装置の概略図である。It is the schematic of the vapor deposition apparatus which forms a surface layer antireflection film. 基板からNDフィルタを切断する説明図である。It is explanatory drawing which cut | disconnects an ND filter from a board | substrate. NDフィルタの反射率のグラフである。It is a graph of the reflectance of ND filter. 単濃度NDフィルタの断面図である。It is sectional drawing of a single concentration ND filter. 多濃度NDフィルタの断面図である。It is sectional drawing of a multi-density ND filter. 従来のNDフィルタの膜構成図である。It is a film | membrane structural view of the conventional ND filter. 従来のNDフィルタの断面図である。It is sectional drawing of the conventional ND filter. 従来のNDフィルタの断面図である。It is sectional drawing of the conventional ND filter.

符号の説明Explanation of symbols

40 NDフィルタ
41 樹脂基板
42 ND膜
42a Al23
42b TiOx膜
43 表層反射防止膜
43a SiO2
43b MgF2
51、71 チャンバ
52、72、73 蒸着源
53、76 蒸着傘
54 基板治具
55、79 光学モニタ
61 蒸着パターン形成用マスク
74、75 シャッタ
77、78 膜厚センサ
40 ND filter 41 Resin substrate 42 ND film 42a Al 2 O 3 film 42b TiOx film 43 Surface antireflection film 43a SiO 2 film 43b MgF 2 film 51, 71 Chambers 52, 72, 73 Deposition source 53, 76 Deposition umbrella 54 Substrate healing Tool 55, 79 Optical monitor 61 Deposition pattern forming mask 74, 75 Shutter 77, 78 Film thickness sensor

Claims (7)

樹脂基板の上に形成された誘電体層から成る表層反射防止膜を有し、前記誘電体層は複数の誘電体材料の成分濃度比率が連続的に変化する領域を有することを特徴とする光学素子。   An optical system comprising a surface antireflection film composed of a dielectric layer formed on a resin substrate, wherein the dielectric layer has a region in which component concentration ratios of a plurality of dielectric materials continuously change. element. 前記表層反射防止膜は少なくともSiO2とMgF2の2種類の誘電体材料から成り、前記樹脂基板の側において前記SiO2の成分濃度比率が最も大きく、前記表層反射防止膜の側にかけて連続的に小さくなる領域を有し、前記表層反射防止膜の最表層側において前記MgF2の成分濃度比率が最も大きく、前記樹脂基板側にかけて連続的に小さくなる領域を有することを特徴とする請求項1に記載の光学素子。 The surface antireflection film is composed of at least two kinds of dielectric materials, SiO 2 and MgF 2 , and the component concentration ratio of the SiO 2 is the largest on the resin substrate side, and continuously toward the surface antireflection film side. 2. The method according to claim 1, further comprising: a region that decreases, and a region in which the MgF 2 component concentration ratio is the largest on the outermost layer side of the surface antireflection film and continuously decreases toward the resin substrate side. The optical element described. 前記樹脂基板の上の少なくとも一部に光減衰膜を有する光学フィルタ領域を設けたことを特徴とする請求項1又は2に記載の光学素子。   The optical element according to claim 1, wherein an optical filter region having a light attenuating film is provided on at least a part of the resin substrate. 前記樹脂基板の上に、前記光減衰膜を有する光学フィルタ領域と、前記光減衰膜を有しない領域とを有し、前記光減衰膜を有する光学フィルタ領域及び前記光減衰膜を有しない領域の表層に前記表層反射防止膜を連続的に形成したことを特徴とする請求項3に記載の光学素子。   An optical filter region having the light attenuating film and a region not having the light attenuating film on the resin substrate, and an optical filter region having the light attenuating film and a region not having the light attenuating film. The optical element according to claim 3, wherein the surface antireflection film is continuously formed on a surface layer. 前記光学フィルタ領域はNDフィルタであることを特徴とする請求項3又は4に記載の光学素子。   The optical element according to claim 3 or 4, wherein the optical filter region is an ND filter. 前記光学フィルタ領域は単一の透過率領域から成る単濃度NDフィルタ、複数の透過率領域から成る多濃度NDフィルタ又は透過率が連続的に変化するグラデーションNDフィルタの何れかであることを特徴とする請求項3〜5の何れか1つの請求項に記載の光学素子。   The optical filter region is either a single-density ND filter composed of a single transmittance region, a multi-density ND filter composed of a plurality of transmittance regions, or a gradation ND filter whose transmittance varies continuously. The optical element according to any one of claims 3 to 5. 撮影光学系の開口を調節する光量調節部材と、該光量調節部材を駆動する駆動手段とを有し、前記光量調節部材の駆動量に応じて前記開口を透過する光量を調節する請求項5又は6に記載のNDフィルタを有することを特徴とする光量絞り装置。   6. A light amount adjusting member that adjusts an aperture of a photographing optical system and a drive unit that drives the light amount adjusting member, and the amount of light transmitted through the opening is adjusted according to a driving amount of the light amount adjusting member. A light quantity diaphragming device comprising the ND filter according to claim 6.
JP2007339814A 2007-12-28 2007-12-28 Optical element and method of manufacturing the optical element Active JP5058783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339814A JP5058783B2 (en) 2007-12-28 2007-12-28 Optical element and method of manufacturing the optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339814A JP5058783B2 (en) 2007-12-28 2007-12-28 Optical element and method of manufacturing the optical element

Publications (2)

Publication Number Publication Date
JP2009162852A true JP2009162852A (en) 2009-07-23
JP5058783B2 JP5058783B2 (en) 2012-10-24

Family

ID=40965584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339814A Active JP5058783B2 (en) 2007-12-28 2007-12-28 Optical element and method of manufacturing the optical element

Country Status (1)

Country Link
JP (1) JP5058783B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053262A (en) * 2010-09-01 2012-03-15 Canon Electronics Inc Optical filter
WO2015159839A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Anti-reflection laminate and method for producing same
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera
WO2017145910A1 (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
WO2019058825A1 (en) * 2017-09-21 2019-03-28 富士フイルム株式会社 Antireflection film, optical element, and optical system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957135B2 (en) * 2016-03-31 2021-11-02 キヤノン株式会社 Optical elements, optical systems, imaging devices and lens devices
DE102022207068A1 (en) * 2022-07-11 2024-01-11 Carl Zeiss Smt Gmbh Lens for a microlithographic projection exposure system designed for operation in a DUV, as well as a method and arrangement for forming an anti-reflective layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245702A (en) * 1989-03-20 1990-10-01 Hitachi Ltd Antireflection file and production thereof
JP2004205951A (en) * 2002-12-26 2004-07-22 Canon Inc Light quantity adjusting device and optical equipment using the same
JP2007199447A (en) * 2006-01-27 2007-08-09 Canon Electronics Inc Nd filter, its manufacturing method, and light quantity reducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245702A (en) * 1989-03-20 1990-10-01 Hitachi Ltd Antireflection file and production thereof
JP2004205951A (en) * 2002-12-26 2004-07-22 Canon Inc Light quantity adjusting device and optical equipment using the same
JP2007199447A (en) * 2006-01-27 2007-08-09 Canon Electronics Inc Nd filter, its manufacturing method, and light quantity reducing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053262A (en) * 2010-09-01 2012-03-15 Canon Electronics Inc Optical filter
WO2015159839A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Anti-reflection laminate and method for producing same
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera
WO2017145910A1 (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
JP2017151430A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Plastic-based nd filter and plastic-based ophthalmic nd filter
EP3407100A4 (en) * 2016-02-23 2019-10-02 Tokai Optical Co., Ltd. Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
US10663634B2 (en) 2016-02-23 2020-05-26 Tokai Optical Co., Ltd. ND filter with plastic base material, and ND filter with plastic base material for eyeglasses
WO2019058825A1 (en) * 2017-09-21 2019-03-28 富士フイルム株式会社 Antireflection film, optical element, and optical system
US11422290B2 (en) 2017-09-21 2022-08-23 Fujifilm Corporation Antireflection film, optical element, and optical system

Also Published As

Publication number Publication date
JP5058783B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP2008276112A (en) Nd filter
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP4481720B2 (en) ND filter and light quantity reduction device
JP4988282B2 (en) Optical filter
JP4801442B2 (en) ND filter for diaphragm
JP2006227432A (en) Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same
JP6867148B2 (en) Optical filter and imaging optical system
US7295391B1 (en) ND filter for aperture device and aperture device comprising ND filter
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP4345962B2 (en) Light amount diaphragm device and camera with ND filter
JP4240458B2 (en) ND filter for light quantity diaphragm, light quantity diaphragm device, camera having the light quantity diaphragm device, and filter manufacturing method
JP2007199447A (en) Nd filter, its manufacturing method, and light quantity reducing device
JP5942472B2 (en) Light intensity adjustment device
JP2010206626A (en) Optical filter, and imaging system
JP2008112033A (en) Optical filter
JP5554012B2 (en) Optical filter and imaging apparatus using the optical filter
JP5478203B2 (en) Imaging device
JP4976698B2 (en) ND filter
JP3816048B2 (en) Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters
JP2007316238A (en) Nd filter
JP2004295015A (en) Nd filter and its manufacturing method
JP4297370B2 (en) ND filter, and light quantity stop device and camera having these ND filters
JP5711921B2 (en) Optical filter and gradation ND filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250