JP4988282B2 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP4988282B2
JP4988282B2 JP2006257198A JP2006257198A JP4988282B2 JP 4988282 B2 JP4988282 B2 JP 4988282B2 JP 2006257198 A JP2006257198 A JP 2006257198A JP 2006257198 A JP2006257198 A JP 2006257198A JP 4988282 B2 JP4988282 B2 JP 4988282B2
Authority
JP
Japan
Prior art keywords
film
periodic structure
transparent substrate
light
fine uneven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006257198A
Other languages
Japanese (ja)
Other versions
JP2008076844A (en
Inventor
一雄 鈴木
孝幸 若林
宗利 吉川
真志 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006257198A priority Critical patent/JP4988282B2/en
Priority to CN201210195796.1A priority patent/CN102692662B/en
Priority to CN2007101471238A priority patent/CN101135743B/en
Priority to US11/847,576 priority patent/US8665520B2/en
Publication of JP2008076844A publication Critical patent/JP2008076844A/en
Application granted granted Critical
Publication of JP4988282B2 publication Critical patent/JP4988282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カメラ等の撮影装置や光学機器等に使用される光学フィルタに関するものである。   The present invention relates to an optical filter used in a photographing apparatus such as a camera or an optical apparatus.

従来から、デジタルカメラやビデオカメラ等の光学機器には、その光量調節のために絞り装置が組み込まれている。この絞り装置は、CCD等の固体撮像素子に入射する光量を絞り羽根の開閉により調節するものであり、被写界が明るい場合には、より小さく絞り込まれるようになっている。従って、快晴時や高輝度の被写体を撮影する際には光量を減衰させるために絞りは小絞りとなるが、そのままでは光は絞りで回折し、撮影した画像の劣化を引き起こしてしまうことがある。また、CCD等の固体撮像素子が高感度化することにより、更に光量を減衰させる必要があり、この画像劣化の傾向は顕著になっている。   2. Description of the Related Art Conventionally, an aperture device is incorporated in an optical apparatus such as a digital camera or a video camera in order to adjust the amount of light. This diaphragm device adjusts the amount of light incident on a solid-state imaging device such as a CCD by opening and closing diaphragm blades, and is narrowed down more when the object field is bright. Therefore, when shooting a clear or high-luminance subject, the aperture becomes a small aperture to attenuate the amount of light, but if it is left as it is, the light may be diffracted by the aperture and cause deterioration of the captured image . In addition, as the sensitivity of a solid-state imaging device such as a CCD becomes higher, it is necessary to further attenuate the amount of light, and this tendency of image degradation is remarkable.

そこで、この問題の対策として、絞り羽根に光量調整部材としてフィルム状のND(Neutral Density)フィルタを取り付けて、絞り開口が大きいまま光量を減衰することが行われている。具体的には、絞り羽根の一部に絞り羽根とは異なる別部材から成るNDフィルタを接着剤で貼り付け、被写体が高輝度の際には、NDフィルタを光軸上に位置させ、通過光量を制限する。このため、絞り開口が小さくなり過ぎるまで絞り込むことを回避し、絞り開口を一定の大きさに維持することができる。   Therefore, as a countermeasure against this problem, a film-like ND (Neutral Density) filter is attached to the diaphragm blade as a light quantity adjusting member, and the quantity of light is attenuated while the diaphragm aperture is large. Specifically, an ND filter made of another member different from the diaphragm blade is attached to a part of the diaphragm blade with an adhesive, and when the subject has high brightness, the ND filter is positioned on the optical axis, Limit. For this reason, it is possible to avoid narrowing down until the aperture opening becomes too small, and to maintain the aperture opening at a constant size.

更に、光量調節機能として濃度勾配を有するNDフィルタを使用し、このNDフィルタを光軸上に移動させることにより、更なる光量調節を行うこともある。また、絞り羽根にNDフィルタを接着せずに、NDフィルタを独立して光学的作用を持たせた種々の絞り装置も提案されている。   Further, an ND filter having a density gradient is used as a light amount adjustment function, and the light amount may be further adjusted by moving the ND filter on the optical axis. In addition, various diaphragm devices have been proposed in which the ND filter is independently provided with an optical action without bonding the ND filter to the diaphragm blades.

上述したような絞り装置におけるNDフィルタは、一般に真空蒸着等により透明基板上に多層膜を形成したものが用いられている。例えば、特許文献1に示すように、真空蒸着法によりPET等の透明樹脂フィルム上に、金属膜、金属酸化物、誘電体膜から成る多層膜を成膜したものが用いられている。また、特許文献2においては、光吸収性を有する1種類の金属酸化物による光吸収膜と、透明な誘電体膜の交互に層を設けることにより、平坦な透過率特性と表面反射防止特性と裏面反射防止特性を満たすNDフィルタが開示されている。   As the ND filter in the diaphragm device as described above, a filter in which a multilayer film is formed on a transparent substrate by vacuum deposition or the like is generally used. For example, as shown in Patent Document 1, a multilayer film made of a metal film, a metal oxide, and a dielectric film is formed on a transparent resin film such as PET by a vacuum deposition method. Further, in Patent Document 2, a flat transmittance characteristic and a surface antireflection characteristic are obtained by alternately providing a light absorbing film made of one kind of metal oxide having a light absorbing property and a transparent dielectric film. An ND filter that satisfies the back-surface antireflection characteristic is disclosed.

特開平10−133253号公報JP-A-10-133253 特開2003−344612号公報JP 2003-344612 A

しかし近年では、デジタルカメラやビデオカメラ等の撮像機器の小型化が進み、光量調整部材として用いられるNDフィルタの表面での反射光が、ゴーストの原因となる場合がある。通常は図15(a)に示すように、PET樹脂等から成る透明基板1の片面にND膜2を成膜し、他面に反射防止膜としてARコート3を成膜したり、或いは図15(b)に示すように透明基板1の両面にND膜2を成膜している。   However, in recent years, downsizing of imaging devices such as digital cameras and video cameras has progressed, and reflected light on the surface of an ND filter used as a light amount adjusting member may cause ghost. Normally, as shown in FIG. 15A, an ND film 2 is formed on one side of a transparent substrate 1 made of PET resin or the like, and an AR coating 3 is formed on the other side as an antireflection film, or FIG. As shown in FIG. 2B, ND films 2 are formed on both surfaces of the transparent substrate 1.

図16はND膜2の膜構成図を示しており、透明基板1上にAl23膜11と、TiOx膜12を交互に積層し、最表層の第7層にMgF2膜13を蒸着し、7層構成のND膜2を成膜している。 FIG. 16 shows a film configuration diagram of the ND film 2. Al 2 O 3 films 11 and TiOx films 12 are alternately stacked on the transparent substrate 1, and an MgF 2 film 13 is deposited on the seventh outermost layer. The ND film 2 having a seven-layer structure is formed.

図17はNDフィルタの界面における反射の説明図であり、図15(a)のように片面にND膜2、他面にARコート3が成膜されている。反射は屈折率の異なる物質の界面で起こるため、空気とARコート3の界面a、ARコート3と透明基板1の界面b、透明基板1とND膜2の界面c、ND膜2と空気の界面dの4つの面において光の反射が生ずる。また、ND膜2やARコート3が多層膜であれば、その中の各層の界面でも反射がある。   FIG. 17 is an explanatory diagram of reflection at the interface of the ND filter. As shown in FIG. 15A, the ND film 2 is formed on one surface and the AR coating 3 is formed on the other surface. Since reflection occurs at the interface between substances having different refractive indexes, the interface a between the air and the AR coat 3, the interface b between the AR coat 3 and the transparent substrate 1, the interface c between the transparent substrate 1 and the ND film 2, and the ND film 2 and the air. Light reflection occurs on the four surfaces of the interface d. If the ND film 2 or the AR coat 3 is a multilayer film, there is reflection at the interface of each layer in the film.

本発明の目的は、上述の問題点を解消し、従来方法では反射を低減することの困難な透明基板と蒸着層の界面における反射防止効果を向上させた光学フィルタを提供することにある。   An object of the present invention is to provide an optical filter that solves the above-mentioned problems and improves the antireflection effect at the interface between the transparent substrate and the vapor deposition layer, which is difficult to reduce reflection by the conventional method.

上述の目的を達成するための本発明に係る光学フィルタの技術的特徴は、透明基板の表面に可視光波長以下のピッチと高さを有し反射防止機能を有する微細凹凸周期構造を形成し、該微細凹凸周期構造の上に金属又は金属酸化物から成る光吸収層と誘電体層とを交互に積層したND膜を成膜し、該ND膜の最表層に反射防止膜を成膜したことにある。 Technical characteristics of the optical filter according to the present invention for achieving the above object is to have the following pitch and height visible light wavelength to form a fine uneven periodic structure having a reflection preventing function on a surface of the transparent substrate, An ND film in which a light absorption layer and a dielectric layer made of metal or metal oxide are alternately laminated is formed on the fine uneven periodic structure , and an antireflection film is formed on the outermost layer of the ND film. It is in.

また、本発明に係る光学フィルタの技術的特徴は、透明基板の両面に可視光波長以下のピッチと高さを有し反射防止機能を有する微細凹凸周期構造を形成し、少なくとも前記透明基板の片面の前記微細凹凸周期構造上に金属又は金属酸化物から成る光吸収層と、誘電体層とを交互に積層したND膜を成膜し、該ND膜の最表層に反射防止膜を成膜したことにある。 Also, the technical characteristics of the optical filter according to the present invention, have a duplex in the visible light wavelength or less of the pitch and height of the transparent substrate to form a fine uneven periodic structure having a reflection preventing function, at least one surface of said transparent substrate An ND film in which a light absorption layer made of metal or metal oxide and a dielectric layer are alternately laminated is formed on the fine concavo-convex periodic structure , and an antireflection film is formed on the outermost layer of the ND film . There is.

本発明に係る光学フィルタによれば、光学フィルタの基板上に可視光波長以下のピッチと高さを有する凹凸部から成る微細凹凸周期構造を形成することで、基板とその上に形成される無機硬質膜との界面で発生する反射光を低減することができる。   According to the optical filter of the present invention, the substrate and the inorganic formed on the substrate by forming a fine concavo-convex periodic structure composed of concavo-convex portions having a pitch and height below the visible light wavelength on the substrate of the optical filter. Reflected light generated at the interface with the hard film can be reduced.

本発明を図1〜図14に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は撮影光学系の構成図を示し、レンズ21、光量絞り装置22、レンズ23〜25、ローパスフィルタ26、CCD等から成る固体撮像素子27が順次に配列されている。光量絞り装置22においては、絞り羽根支持板28に一対の絞り羽根29a、29bが可動に取り付けられている。絞り羽根29aには、絞り羽根29a、29bにより形成される略菱形形状の開口部を通過する光量を減光するためのNDフィルタ30が接着されている。   FIG. 1 is a configuration diagram of a photographing optical system, in which a solid-state image pickup device 27 including a lens 21, a light amount diaphragm device 22, lenses 23 to 25, a low-pass filter 26, a CCD, and the like are sequentially arranged. In the light quantity diaphragm device 22, a pair of diaphragm blades 29 a and 29 b are movably attached to the diaphragm blade support plate 28. An ND filter 30 for dimming the amount of light passing through the substantially rhombic opening formed by the diaphragm blades 29a and 29b is bonded to the diaphragm blade 29a.

図2は本実施例で使用する蛾目(Moth eye)構造から成る微細凹凸周期構造の模式図を示している。図1のNDフィルタ30の表面には、図2に示すように厚さ約100μmのPET(ポリエチレンテレフタレート)から成る透明基板31上に円錐形状の突起部32が等間隔で無数に配置された微細凹凸周期構造33が設けられている。   FIG. 2 is a schematic diagram of a fine uneven periodic structure having a Moth eye structure used in this embodiment. On the surface of the ND filter 30 in FIG. 1, as shown in FIG. 2, an infinite number of conical protrusions 32 are arranged at equal intervals on a transparent substrate 31 made of PET (polyethylene terephthalate) having a thickness of about 100 μm. An uneven periodic structure 33 is provided.

本実施例における透明基板31として、PET(ポリエチレンテレフタレート)樹脂フィルムを使用している。しかしPET以外にも、透明性及び機械的強度を有するフィルム状の合成樹脂基板を使用することも可能である。例を挙げれば、PEN(ポリエチレンナフタレート)、アクリル系樹脂、ポリカーボネート、ポリイミド系樹脂、ノルボルネン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド等である。また、透明基板31の厚さとしては、NDフィルタ30としての剛性を保持しながら、可能な限り薄いことが好ましい。具体的には、その厚さとして300μm以下とすることが好ましく、より好ましくは50〜100μmとすることが好ましい。   A PET (polyethylene terephthalate) resin film is used as the transparent substrate 31 in the present embodiment. However, in addition to PET, it is also possible to use a film-like synthetic resin substrate having transparency and mechanical strength. Examples include PEN (polyethylene naphthalate), acrylic resin, polycarbonate, polyimide resin, norbornene resin, polystyrene, polyvinyl chloride, polyarylate, polysulfone, polyethersulfone, polyetherimide, and the like. The thickness of the transparent substrate 31 is preferably as thin as possible while maintaining the rigidity of the ND filter 30. Specifically, the thickness is preferably 300 μm or less, more preferably 50 to 100 μm.

各突起部32の高さ方向に対し、突起部32の最頂部から最底部に向かうにつれて突起部32の体積は徐々に増加し、それに対応した有効屈折率も突起部32の最頂部から最底部に向かい連続的に分布する。そのため、空気層から透明基板31に向かって滑らかな有効屈折率分布を有し、この微細凹凸周期構造33に光が入射した場合には、急激な屈折率差がないため、光は殆ど反射されずに透明基板31内に到達する。   With respect to the height direction of each projection 32, the volume of the projection 32 gradually increases from the top to the bottom of the projection 32, and the corresponding effective refractive index also increases from the top to the bottom of the projection 32. It is distributed continuously toward. Therefore, it has a smooth effective refractive index distribution from the air layer toward the transparent substrate 31, and when light is incident on the fine concavo-convex periodic structure 33, there is no abrupt refractive index difference, so that the light is almost reflected. Without reaching the transparent substrate 31.

なお、良好な反射防止効果を得るために、突起部32は図2に示すように円錐形状にすることが好ましいが、円錐形状の代りに、図3に示す四角錐形状の突起部34、或いは他の多角錐形状、更には図4に示す逆円錐形状の凹部35とした微細凹凸周期構造33を用いてもよい。   In order to obtain a good antireflection effect, it is preferable that the protrusion 32 has a conical shape as shown in FIG. 2, but instead of the conical shape, the quadrangular pyramid-shaped protrusion 34 shown in FIG. The fine uneven periodic structure 33 may be used as another polygonal pyramid shape, or the inverted conical recess portion 35 shown in FIG.

また、微細凹凸周期構造33の凹凸パターンのピッチPは可視光領域の波長(λ=400〜700nm)よりも小さいことが好ましく、本実施例では300nmとしている。ピッチPが大きくなり、可視光領域の波長、例えば550nmとなると、光の回折現象が発生し画像劣化の原因となる。ピッチPが小さくなるほど反射防止効果が得られる波長も低波長側に拡大されてくるが、ピッチPを小さくするほど微細凹凸周期構造33の形成が困難になるため、ピッチPは100〜300nmが好ましい。   The pitch P of the concave / convex pattern of the fine concave / convex periodic structure 33 is preferably smaller than the wavelength (λ = 400 to 700 nm) in the visible light region, and is set to 300 nm in this embodiment. When the pitch P is increased and becomes a wavelength in the visible light region, for example, 550 nm, a light diffraction phenomenon occurs and causes image degradation. As the pitch P becomes smaller, the wavelength at which the antireflection effect can be obtained is also expanded to the lower wavelength side. However, as the pitch P is made smaller, the formation of the fine uneven periodic structure 33 becomes more difficult, so the pitch P is preferably 100 to 300 nm. .

また、微細凹凸周期構造33の凸部或いは凹部の高さDと、微細凹凸周期構造33のピッチPとの比(アスペクト比)D/Pが大きい方が反射防止効果が大きくなり、D/Pが0.2以上であることが好ましく、より好ましくは1以上である。しかし、この高さDも可視光領域の波長よりも小さくすることが好ましい。   Further, the larger the ratio (aspect ratio) D / P between the height D of the convex portion or the concave portion of the fine uneven periodic structure 33 and the pitch P of the fine uneven periodic structure 33, the greater the antireflection effect becomes. Is preferably 0.2 or more, more preferably 1 or more. However, this height D is also preferably smaller than the wavelength in the visible light region.

微細凹凸周期構造33を構成する突起部32を形成するには、例えば形成すべき微細凹凸周期構造33と逆の形状を有する型を用いて、熱や圧力を加えて基板31の表面に微細凹凸周期構造33を転写する。或いは、半導体製造技術を用いて基板31の表面に直接、微細凹凸周期構造33を形成することができる。また、基板31の表面に固化可能材料で膜を形成し、形成すべき微細凹凸周期構造33と逆の形状を有する型を密着させて、固化可能材料を固化させる方法もある。   In order to form the protrusions 32 constituting the fine uneven periodic structure 33, for example, using a mold having a shape opposite to the fine uneven periodic structure 33 to be formed, heat and pressure are applied to the surface of the substrate 31 to form fine unevenness. The periodic structure 33 is transferred. Alternatively, the fine uneven periodic structure 33 can be formed directly on the surface of the substrate 31 using a semiconductor manufacturing technique. Further, there is a method in which a film is formed of a solidifiable material on the surface of the substrate 31 and a mold having a shape opposite to that of the fine uneven periodic structure 33 to be formed is adhered to solidify the solidifiable material.

本実施例においては、図5に示すように微細凹凸周期構造33と逆形状である微細凹凸周期溝41が形成された上型42と、平坦な面を有する下型43を用いて、ホットプレスにより透明基板31上に微細凹凸周期溝41を転写する。この上型42の微細凹凸周期溝41は、例えば型基材に電子線描画でレジストパターンを形成し、これを反応性イオンエッチングで基材をエッチングして形成することができる。   In this embodiment, as shown in FIG. 5, hot pressing is performed using an upper mold 42 in which a fine uneven periodic groove 41 having a shape opposite to the fine uneven periodic structure 33 is formed, and a lower mold 43 having a flat surface. Thus, the fine irregular periodic groove 41 is transferred onto the transparent substrate 31. The fine uneven periodic groove 41 of the upper mold 42 can be formed by forming a resist pattern on a mold base material by electron beam drawing and etching the base material by reactive ion etching, for example.

本実施例におけるホットプレスにおいては、図示しないヒータによりPETのガラス転移点よりも稍々高い約110℃に保たれている。そして、透明基板31を上型42と下型43の間に挟み、図中矢印の方向に圧力をかけることで、熱により軟化した透明基板31に圧力によって上型42の内面に形成された微細凹凸周期溝41が転写される。   In the hot press in the present embodiment, the temperature is maintained at about 110 ° C., which is often higher than the glass transition point of PET by a heater (not shown). Then, the transparent substrate 31 is sandwiched between the upper die 42 and the lower die 43, and pressure is applied in the direction of the arrow in the figure, so that the transparent substrate 31 softened by heat is formed on the inner surface of the upper die 42 by pressure. The uneven periodic groove 41 is transferred.

このようにして形成した微細凹凸周期構造33の表面形状をAFMで測定したところ、高さ350nm、ピッチ300nmの凹凸パターンが形成された。   When the surface shape of the fine concavo-convex periodic structure 33 thus formed was measured by AFM, a concavo-convex pattern having a height of 350 nm and a pitch of 300 nm was formed.

また、上型42の微細凹凸周期溝41は他の方法で作製したものが使用できる。例えば、半導体製造に用いられる電子線描画やレーザー干渉法によるフォトリソグラフィ技術を用いたり、ガラス材に所定の微細凹凸周期構造33を形成させた後に、Niメッキを施し、このメッキ層を剥離して型とする電鋳法等を用いることもできる。   Moreover, the fine uneven | corrugated periodic groove | channel 41 of the upper mold | type 42 can use what was produced by the other method. For example, using electron beam drawing or laser interferometry used in semiconductor manufacturing, or forming a predetermined fine concavo-convex periodic structure 33 on a glass material, Ni plating is performed, and this plating layer is peeled off. An electroforming method for forming a mold can also be used.

図6は蒸着治具51の断面図を示し、この蒸着治具51にはピン等を介して透明基板31と蒸着パターン形成マスク52が固定されている。   FIG. 6 shows a cross-sectional view of the vapor deposition jig 51, and the transparent substrate 31 and the vapor deposition pattern forming mask 52 are fixed to the vapor deposition jig 51 through pins or the like.

図7は図2において形成した微細凹凸周期構造33上に、金属膜、金属酸化物、誘電体膜等の積層膜から成る無機質膜であるND膜を形成するための真空蒸着機のチャンバの構成図を示している。チャンバ61内には、蒸着源62、回転可能な蒸着傘63が設けられ、この蒸着傘63には成膜部位に開口部を設けた蒸着パターン形成マスク52と透明基板31をセットした図6に示す蒸着治具51が配置されている。蒸着治具51に固定された透明基板31は、この蒸着傘63と共にZ軸を中心に回転し成膜が行われる。   FIG. 7 shows the configuration of a vacuum deposition chamber for forming an ND film, which is an inorganic film made of a laminated film such as a metal film, a metal oxide, or a dielectric film, on the fine uneven periodic structure 33 formed in FIG. The figure is shown. In the chamber 61, a vapor deposition source 62 and a rotatable vapor deposition umbrella 63 are provided. In this vapor deposition umbrella 63, a vapor deposition pattern forming mask 52 having an opening at a film formation site and a transparent substrate 31 are set in FIG. A vapor deposition jig 51 shown is arranged. The transparent substrate 31 fixed to the vapor deposition jig 51 rotates around the Z axis together with the vapor deposition umbrella 63 to form a film.

図8は上述の方法により微細凹凸周期構造33上に成膜した濃度1.0(透過率10%)の無機硬質膜であるND膜71の膜構成図を示している。透明基板31上の微細凹凸周期構造33上には、第1、3、5層に反射率を低減させるための反射防止膜であるAl23膜72と、第2、4、6層に透過率を低減させるための光吸収層であるTiOx膜73とを交互に積層している。更に、反射防止効果を高めるために最表層の第7層に低屈折材料であるSiO2膜74を光学膜厚n×d(n:屈折率、d:物理膜厚)でλ/4(λ=500〜600nm)蒸着し、7層構成のND膜71とされている。なお、SiO2膜74の代りにはMgF2膜を用いてもよい。 FIG. 8 shows a film configuration diagram of an ND film 71 which is an inorganic hard film having a concentration of 1.0 (transmittance of 10%) formed on the fine uneven periodic structure 33 by the above-described method. On the fine uneven periodic structure 33 on the transparent substrate 31, an Al 2 O 3 film 72, which is an antireflection film for reducing the reflectivity, is formed on the first, third , and fifth layers, and the second, fourth, and sixth layers are formed. TiOx films 73, which are light absorption layers for reducing the transmittance, are alternately stacked. Further, in order to enhance the antireflection effect, a SiO 2 film 74, which is a low refractive material, is applied to the seventh outermost layer as an optical film thickness n × d (n: refractive index, d: physical film thickness) at λ / 4 (λ = 500 to 600 nm) is vapor-deposited to form an ND film 71 having a seven-layer structure. Instead of the SiO 2 film 74, an MgF 2 film may be used.

反射防止膜としては透明誘電体が使用することができ、Al23膜72の他にSiO2、SiO、MgF2、ZrO2、TiO2等が使用することができる。また、光吸収層としては可視領域の波長を吸収する特性を有する材料を使用することができ、TiOx膜73の他にTi、Ni、Cr、NiCr、NiFe、Nb等の金属、合金、酸化物が使用することができる。 As the antireflection film, a transparent dielectric can be used, and in addition to the Al 2 O 3 film 72, SiO 2 , SiO, MgF 2 , ZrO 2 , TiO 2 or the like can be used. The light absorbing layer can be made of a material having a characteristic of absorbing a wavelength in the visible region. In addition to the TiOx film 73, metals such as Ti, Ni, Cr, NiCr, NiFe, and Nb, alloys, and oxides can be used. Can be used.

そして、蒸着時に反射率をモニタリングすることにより、Al23膜72の膜厚を制御することにより反射率を小さくすることが可能である。光透過率はTiOx膜73の総膜厚によって変化し、このTiOx膜73の総膜厚が厚くなるほど光透過率は低下する。また、λ=400〜700nmの波長範囲内での光透過率の平坦性は、上述のTiOx膜組成のxによって変化し、適切に選択することにより光透過率分布は平坦となる。なお、積層する層数や使用材料は、目的の特性により変わってくる。 Then, by monitoring the reflectance during vapor deposition, the reflectance can be reduced by controlling the film thickness of the Al 2 O 3 film 72. The light transmittance varies depending on the total film thickness of the TiOx film 73, and the light transmittance decreases as the total film thickness of the TiOx film 73 increases. In addition, the flatness of the light transmittance within the wavelength range of λ = 400 to 700 nm varies depending on x of the above-described TiOx film composition, and the light transmittance distribution becomes flat when appropriately selected. Note that the number of layers to be stacked and the materials used vary depending on the target characteristics.

このようなND膜71は真空蒸着法、スパッタ法、イオンプレーティング法等の成膜法により成膜することができるが、本実施例においては上述のように真空蒸着法により成膜した。そして、最表層のSiO2膜74を成膜した後に、透明基板31を真空蒸着機から取り出し、必要に応じ、ND膜71が成膜された透明基板31を裏面として、再び蒸着治具51にセットし、真空蒸着機において蒸着する。 Such an ND film 71 can be formed by a film forming method such as a vacuum evaporation method, a sputtering method, or an ion plating method. In this embodiment, the ND film 71 is formed by a vacuum evaporation method as described above. Then, after the outermost SiO 2 film 74 is formed, the transparent substrate 31 is taken out from the vacuum vapor deposition machine, and if necessary, the transparent substrate 31 on which the ND film 71 is formed is used as the back surface and is again placed on the vapor deposition jig 51. Set and deposit in a vacuum deposition machine.

このND膜71における蒸着膜には2〜3層目程度まで微細凹凸周期構造33の凹凸が転写されるが、その後においては徐々に平滑されてくる。従って、微細凹凸周期構造33に近い何層かは境界面で、微細凹凸周期構造33と同様の反射防止効果が期待できる。また、これによってND膜71としての特性には特別の影響は与えない。   The unevenness of the fine uneven periodic structure 33 is transferred to the deposited film in the ND film 71 up to about the second to third layers, but after that, the unevenness is gradually smoothed. Therefore, several layers close to the fine uneven periodic structure 33 are at the boundary surface, and the same antireflection effect as that of the fine uneven periodic structure 33 can be expected. Further, this does not have a special influence on the characteristics as the ND film 71.

更に、図9(a)に示すように、裏面に反射防止膜75としてSiO2の単層膜をλ/4(λ=540nm)成膜したり、図9(b)に示すように、裏面にもND膜71を蒸着する。そして、裏面に成膜が完了した後に、透明基板31を真空蒸着機から取り出し、透明基板31上に形成された複数のNDフィルタ30を個々の形状にプレス抜きを行う。 Further, as shown in FIG. 9A, a single layer film of SiO 2 is formed on the back surface as an antireflection film 75 by λ / 4 (λ = 540 nm), or as shown in FIG. Also, the ND film 71 is deposited. Then, after the film formation on the back surface is completed, the transparent substrate 31 is taken out from the vacuum evaporation machine, and the plurality of ND filters 30 formed on the transparent substrate 31 are punched into individual shapes.

このようにして製作したNDフィルタ30を光量絞り装置の絞り羽根に取り付け撮像画像を評価した。表1に示すように、透明基板31上に微細凹凸周期構造33を形成したNDフィルタ30については、反射率も小さくなり、ゴーストは見られなかったが、微細凹凸周期構造33を形成していないNDフィルタについてはゴーストが認められた。   The manufactured ND filter 30 was attached to the diaphragm blades of the light quantity diaphragm device, and the captured image was evaluated. As shown in Table 1, the ND filter 30 in which the fine uneven periodic structure 33 is formed on the transparent substrate 31 has a low reflectance and no ghost is seen, but the fine uneven periodic structure 33 is not formed. A ghost was observed for the ND filter.

表1
微細凹凸周期構造 ゴースト 最大反射率(λ=400〜700nm)
あり なし 2%
なし あり 6%
Table 1
Fine irregular periodic structure Ghost Maximum reflectance (λ = 400-700nm)
Yes No 2%
No Yes 6%

実施例2においては、図10に示す透明基板31の両面に設けた微細凹凸周期構造33上に、ND膜71を成膜したNDフィルタ30を製作する。透明基板31には実施例1と同様に、厚さ100μmのPET樹脂フィルムを用い、図11に示すような微細凹凸周期溝41が共に形成された上型42、下型43’を用いる。実施例1と同様の温度、圧力の条件のホットプレスにより、上型42、下型43’の微細凹凸周期溝41を透明基板31の両面に転写する。このようにして、微細凹凸周期構造33が転写された透明基板31の表面形状をAFMで測定したところ、高さ350nm、ピッチ300nmの凹凸が形成されたことが確認できた。   In Example 2, the ND filter 30 in which the ND film 71 is formed on the fine uneven periodic structure 33 provided on both surfaces of the transparent substrate 31 shown in FIG. Similar to the first embodiment, the transparent substrate 31 is made of a PET resin film having a thickness of 100 μm, and an upper mold 42 and a lower mold 43 ′ in which fine uneven periodic grooves 41 as shown in FIG. 11 are formed. The fine uneven periodic grooves 41 of the upper mold 42 and the lower mold 43 ′ are transferred to both surfaces of the transparent substrate 31 by hot pressing under the same temperature and pressure conditions as in the first embodiment. Thus, when the surface shape of the transparent substrate 31 to which the fine uneven periodic structure 33 was transferred was measured by AFM, it was confirmed that unevenness having a height of 350 nm and a pitch of 300 nm was formed.

上述の方法により、両面に微細凹凸周期構造33を形成した透明基板31を用いて、微細凹凸周期構造33上に濃度0.3のND膜71を両面にそれぞれ成膜することにより、濃度0.6(透過率25%)のNDフィルタ30を形成した。なお、本実施例2におけるND膜71の成膜方法は実施例1と同じである。   By using the transparent substrate 31 having the fine uneven periodic structure 33 formed on both sides by the above-described method, the ND film 71 having a concentration of 0.3 is formed on both surfaces of the fine uneven periodic structure 33, respectively. 6 (transmittance 25%) of the ND filter 30 was formed. The method for forming the ND film 71 in the second embodiment is the same as that in the first embodiment.

このようにして作製したNDフィルタ30を光量絞り装置の絞り羽根に取り付け撮像画像を評価した。表2に示すように、透明基板31に微細凹凸周期構造33を形成したNDフィルタ30については、反射率も小さくなり、ゴーストは見られなかったが、微細凹凸周期構造33を形成していないNDフィルタについては軽微なゴーストが見られた。   The ND filter 30 produced in this way was attached to the diaphragm blade of the light quantity diaphragm device, and the captured image was evaluated. As shown in Table 2, with respect to the ND filter 30 in which the fine uneven periodic structure 33 is formed on the transparent substrate 31, the reflectance is small and no ghost is seen, but the ND filter 30 in which the fine uneven periodic structure 33 is not formed. A slight ghost was seen for the filter.

表2
微細凹凸周期構造 ゴースト 最大反射率(λ=400〜700nm)
あり なし 1%
なし あり(軽微) 4%
Table 2
Fine irregular periodic structure Ghost Maximum reflectance (λ = 400-700nm)
Yes No 1%
No Yes (minor) 4%

実施例3においては、透明基板31に実施例1と同様の手順で微細凹凸周期構造33を形成した後に、この微細凹凸周期構造33上に図12に示すように、濃度1.0(透過率10%)の均一濃度部81と、グラデーション濃度部82とを有する無機硬質膜であるND膜83を成膜する。   In Example 3, after forming the fine uneven periodic structure 33 on the transparent substrate 31 in the same procedure as in Example 1, the density 1.0 (transmittance) is formed on the fine uneven periodic structure 33 as shown in FIG. An ND film 83 which is an inorganic hard film having a uniform density portion 81 and a gradation density portion 82 of 10%) is formed.

図13に示すように、蒸着治具51に透明基板31と所定の間隔をあけて蒸着パターン形成マスク52をセットして、真空蒸着機において蒸着すると、蒸着治具51は図7に示すチャンバ61内で、矢印のようにZ軸を中心に回転しながら成膜され、図14に示すようにグラデーション濃度分布を持つND膜83を成膜することができる。 As shown in FIG. 13, when a vapor deposition pattern forming mask 52 is set on the vapor deposition jig 51 at a predetermined interval from the transparent substrate 31, and vapor deposition is performed in a vacuum vapor deposition machine, the vapor deposition jig 51 is placed in the chamber 61 shown in FIG. The ND film 83 having a gradation density distribution as shown in FIG. 14 can be formed while rotating around the Z axis as indicated by the arrow.

このND膜83は膜厚が徐々に薄くなるグラデーション濃度部82を有し、このグラデーション濃度部82では各層の膜厚が位置により異なっている。通常では、このようなグラデーション濃度部82を有するNDフィルタ30は、均一濃度部81で反射を抑えた膜構成になっていても、グラデーション濃度部82では膜厚が変化しまうために、反射が大きくなってしまう位置が発生する。これは各層の反射光の干渉を利用して、総合的に反射を抑えているからであり、本実施例3においては、透明基板31の表面に形成した微細凹凸周期構造33により各層の界面の屈折率に傾斜性を持たせて反射を抑えるので、位置による反射率の増加を抑えることができる。   The ND film 83 has a gradation density portion 82 in which the film thickness gradually decreases. In the gradation density portion 82, the film thickness of each layer differs depending on the position. Normally, even if the ND filter 30 having such a gradation density part 82 has a film configuration in which reflection is suppressed by the uniform density part 81, the film thickness is changed in the gradation density part 82, so that reflection is large. The position which becomes will occur. This is because the reflection is totally suppressed by utilizing the interference of the reflected light of each layer. In the third embodiment, the fine uneven periodic structure 33 formed on the surface of the transparent substrate 31 causes the interface of each layer. Since reflection is suppressed by giving a gradient to the refractive index, an increase in reflectance due to position can be suppressed.

また、ND膜83が積層された透明基板31の裏面には、反射防止膜75としてSiO2の単層膜をλ/4(λ=540nm)を蒸着し成膜する。裏面の反射防止膜75を成膜した後に、真空蒸着機から透明基板31を取り出し、透明基板31上に形成された複数のNDフィルタ30を個々の形状に外形プレス抜きを行う。 On the back surface of the transparent substrate 31 on which the ND film 83 is laminated, a single layer film of SiO 2 is deposited as an antireflection film 75 by depositing λ / 4 (λ = 540 nm). After the antireflection film 75 on the back surface is formed, the transparent substrate 31 is taken out from the vacuum deposition machine, and the plurality of ND filters 30 formed on the transparent substrate 31 are punched out into individual shapes.

このようにして作製したNDフィルタ30を、光量絞り装置の絞り羽根に取り付け撮像画像を評価した。表3はその評価を示し、透明基板31に微細凹凸周期構造33を形成したNDフィルタ30については、反射率も小さくなり、ゴーストは見られなかったが、微細凹凸周期構造33を形成していないNDフィルタについてはゴーストが見られた。   The ND filter 30 produced in this way was attached to the diaphragm blades of the light quantity diaphragm device, and the captured image was evaluated. Table 3 shows the evaluation. For the ND filter 30 in which the fine uneven periodic structure 33 is formed on the transparent substrate 31, the reflectance is reduced and no ghost is seen, but the fine uneven periodic structure 33 is not formed. A ghost was seen for the ND filter.

表3
微細凹凸周期構造 ゴースト 最大反射率(λ=400〜700nm)
あり なし 4%
なし あり 15%
Table 3
Fine irregular periodic structure Ghost Maximum reflectance (λ = 400-700nm)
Yes No 4%
No Yes 15%

実施例1の撮影光学系の構成図である。1 is a configuration diagram of a photographic optical system of Example 1. FIG. 微細凹凸周期構造の模式図である。It is a schematic diagram of a fine uneven | corrugated periodic structure. 変形例の微細凹凸周期構造の模式図である。It is a schematic diagram of the fine uneven | corrugated periodic structure of a modification. 他の変形例の微細凹凸周期構造の模式図である。It is a schematic diagram of the fine uneven | corrugated periodic structure of another modification. ホットプレスにより微細凹凸周期構造を形成する説明図である。It is explanatory drawing which forms a fine uneven | corrugated periodic structure by hot press. 蒸着治具の断面図である。It is sectional drawing of a vapor deposition jig. チャンバの構成図である。It is a block diagram of a chamber. ND膜の膜構成図である。It is a film | membrane structure figure of ND film | membrane. NDフィルタの断面模式図である。It is a cross-sectional schematic diagram of an ND filter. 実施例2のNDフィルタの断面模式図である。6 is a schematic cross-sectional view of an ND filter of Example 2. FIG. ホットプレスにより微細凹凸周期構造を形成する説明図である。It is explanatory drawing which forms a fine uneven | corrugated periodic structure by hot press. 実施例3のNDフィルタの断面模式図である。6 is a schematic cross-sectional view of an ND filter of Example 3. FIG. 蒸着治具の断面図である。It is sectional drawing of a vapor deposition jig. ND膜を成膜した透明基板の平面図である。It is a top view of the transparent substrate which formed the ND film | membrane. 従来例のNDフィルタの断面模式図である。It is a cross-sectional schematic diagram of the ND filter of a prior art example. ND膜の膜構成図である。It is a film | membrane structure figure of ND film | membrane. NDフィルタの界面における光反射の説明図である。It is explanatory drawing of the light reflection in the interface of ND filter.

符号の説明Explanation of symbols

21 レンズ
22 光量絞り装置
27 固体撮像素子
28 絞り羽根支持板
29a、29b 絞り羽根
30 NDフィルタ
31 透明基板
32、34 突起部
33 微細凹凸周期構造
35 凹部
41 微細凹凸周期溝
42 上型
43、43’ 下型
51 蒸着治具
52 蒸着パターン形成マスク
61 チャンバ
62 蒸着源
63 蒸着傘
71、83 ND膜
72 Al23
73 TiOx膜
74 SiO2
75 反射防止膜
81 均一濃度部
82 グラデーション濃度部
DESCRIPTION OF SYMBOLS 21 Lens 22 Light quantity stop apparatus 27 Solid-state image sensor 28 Aperture blade support plate 29a, 29b Aperture blade 30 ND filter 31 Transparent substrate 32, 34 Protrusion part 33 Fine uneven | corrugated periodic structure 35 Concave part 41 Fine uneven | corrugated periodic groove 42 Upper mold | type 43, 43 ' Lower mold 51 Deposition jig 52 Deposition pattern forming mask 61 Chamber 62 Deposition source 63 Deposition umbrella 71, 83 ND film 72 Al 2 O 3 film 73 TiOx film 74 SiO 2 film 75 Antireflection film 81 Uniform density part 82 Gradation density part

Claims (6)

透明基板の表面に可視光波長以下のピッチと高さを有し反射防止機能を有する微細凹凸周期構造を形成し、該微細凹凸周期構造の上に金属又は金属酸化物から成る光吸収層と誘電体層とを交互に積層したND膜を成膜し、該ND膜の最表層に反射防止膜を成膜したことを特徴とする光学フィルタ。 It has a visible light wavelength or less of the pitch and height to form a fine uneven periodic structure having a reflection preventing function on a surface of the transparent substrate, the light absorbing layer and a dielectric made of a metal or metal oxide onto the fine irregularities periodic structure An optical filter comprising: an ND film in which body layers are alternately stacked; and an antireflection film is formed on the outermost layer of the ND film . 透明基板の両面に可視光波長以下のピッチと高さを有し反射防止機能を有する微細凹凸周期構造を形成し、少なくとも前記透明基板の片面の前記微細凹凸周期構造上に金属又は金属酸化物から成る光吸収層と、誘電体層とを交互に積層したND膜を成膜し、該ND膜の最表層に反射防止膜を成膜したことを特徴とする光学フィルタ。 Have a visible light wavelength or less of the pitch and height to form a fine uneven periodic structure having a reflection preventing function on both surfaces of the transparent substrate, a metal or metal oxide on at least the transparent substrate of one surface of the fine concavo-convex periodic structure on An optical filter comprising: an ND film in which a light absorption layer and a dielectric layer are alternately laminated; and an antireflection film is formed on the outermost layer of the ND film . 前記透明基板は合成樹脂から成ることを特徴とする請求項1又は2に記載の光学フィルタ。   The optical filter according to claim 1, wherein the transparent substrate is made of a synthetic resin. 前記ND膜の可視光透過濃度は連続的に濃度が変化する領域を有することを特徴とする請求項1〜3の何れか1つの請求項に記載の光学フィルタ。 The optical filter according to claim 1 , wherein the visible light transmission density of the ND film has a region where the density continuously changes. 開口を形成するための絞り羽根と、前記開口を通過する光の光量を調節するための請求項1〜4の何れか1つの請求項に記載の光学フィルタを備えたことを特徴とする光量絞り装置。 A light amount diaphragm comprising: aperture blades for forming an opening; and the optical filter according to any one of claims 1 to 4 for adjusting a light amount of light passing through the opening. apparatus. 光学系と、該光学系を通過する光量を制限する請求項に記載の光量絞り装置と、前記光学系によって形成される像を受像する固体撮像素子とを有することを特徴とする撮像機器。 6. An imaging apparatus comprising: an optical system; a light quantity stop device according to claim 5 that limits an amount of light that passes through the optical system; and a solid-state imaging device that receives an image formed by the optical system.
JP2006257198A 2006-08-30 2006-09-22 Optical filter Active JP4988282B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006257198A JP4988282B2 (en) 2006-09-22 2006-09-22 Optical filter
CN201210195796.1A CN102692662B (en) 2006-08-30 2007-08-30 Optical filter and image pickup apparatus
CN2007101471238A CN101135743B (en) 2006-08-30 2007-08-30 Optical filter and camera device
US11/847,576 US8665520B2 (en) 2006-08-30 2007-08-30 Neutral density optical filter and image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257198A JP4988282B2 (en) 2006-09-22 2006-09-22 Optical filter

Publications (2)

Publication Number Publication Date
JP2008076844A JP2008076844A (en) 2008-04-03
JP4988282B2 true JP4988282B2 (en) 2012-08-01

Family

ID=39348954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257198A Active JP4988282B2 (en) 2006-08-30 2006-09-22 Optical filter

Country Status (1)

Country Link
JP (1) JP4988282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015999A (en) * 2015-07-02 2017-01-19 キヤノン電子株式会社 Optical filter, and optical device equipped with optical filter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067133B2 (en) * 2007-11-13 2012-11-07 住友金属鉱山株式会社 Absorption type ND filter
JP2010061008A (en) * 2008-09-05 2010-03-18 Canon Electronics Inc Optical filter
JP5600396B2 (en) * 2009-04-23 2014-10-01 キヤノン電子株式会社 Optical filter
JP2011013546A (en) * 2009-07-03 2011-01-20 Geomatec Co Ltd Protective panel of electronic display device, and method of manufacturing the same
KR101727668B1 (en) * 2010-10-28 2017-04-18 삼성디스플레이 주식회사 Organic light emitting diode display
JP6336806B2 (en) * 2014-04-09 2018-06-06 キヤノン電子株式会社 ND filter, light quantity diaphragm device, and imaging device
JP6386785B2 (en) * 2014-05-16 2018-09-05 キヤノン電子株式会社 MICROSTRUCTURE, OPTICAL FILTER AND OPTICAL DEVICE
JP6852281B2 (en) * 2016-05-13 2021-03-31 凸版印刷株式会社 Reflective photomask
CN108796448B (en) * 2018-06-19 2021-03-30 东莞市钜欣电子有限公司 Preparation process of flash lampshade capable of enhancing lighting effect

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093427B2 (en) * 1992-03-30 2000-10-03 日本写真印刷株式会社 Low reflection sheet
JP2847003B2 (en) * 1992-10-20 1999-01-13 三菱電機株式会社 CRT with functional film
JP2002082205A (en) * 2000-09-06 2002-03-22 Toppan Printing Co Ltd Antireflection film, optical functional film using the same and display unit
JP3711446B2 (en) * 2001-03-05 2005-11-02 独立行政法人科学技術振興機構 Wavelength filter
JP4637383B2 (en) * 2001-03-15 2011-02-23 キヤノン電子株式会社 ND filter, ND filter manufacturing method, light amount adjusting device, and photographing device
JP2005215225A (en) * 2004-01-29 2005-08-11 Canon Inc Optical filter, method for manufacturing optical filter, and vapor deposition mask
JP2005256119A (en) * 2004-03-12 2005-09-22 Ricoh Opt Ind Co Ltd Deposition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015999A (en) * 2015-07-02 2017-01-19 キヤノン電子株式会社 Optical filter, and optical device equipped with optical filter

Also Published As

Publication number Publication date
JP2008076844A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4988282B2 (en) Optical filter
CN101135743B (en) Optical filter and camera device
JP2008276112A (en) Nd filter
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP5511258B2 (en) Optical element and optical system
JP2013041027A (en) Optical filter
CN102692662B (en) Optical filter and image pickup apparatus
JP2010078803A (en) Optical element and optical system having it
US10551534B2 (en) Optical element, optical system, image pickup apparatus, and lens apparatus
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP2017040909A (en) Optical filter and optical system having the same, imaging apparatus, and lens unit
KR101058992B1 (en) Optical elements and optical instruments
US7295391B1 (en) ND filter for aperture device and aperture device comprising ND filter
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP4945275B2 (en) Manufacturing method of optical filter
JP6336806B2 (en) ND filter, light quantity diaphragm device, and imaging device
JP5554012B2 (en) Optical filter and imaging apparatus using the optical filter
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2015219338A (en) Optical filter
JP2008065227A (en) Nd filter
JP5543515B2 (en) camera
JP5711921B2 (en) Optical filter and gradation ND filter
JP2017167361A (en) Optical element, optical system including the optical element, imaging device including the optical system, and lens device
JP5777682B2 (en) OPTICAL ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL SYSTEM, OPTICAL DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250