JP5067133B2 - Absorption type ND filter - Google Patents

Absorption type ND filter Download PDF

Info

Publication number
JP5067133B2
JP5067133B2 JP2007293956A JP2007293956A JP5067133B2 JP 5067133 B2 JP5067133 B2 JP 5067133B2 JP 2007293956 A JP2007293956 A JP 2007293956A JP 2007293956 A JP2007293956 A JP 2007293956A JP 5067133 B2 JP5067133 B2 JP 5067133B2
Authority
JP
Japan
Prior art keywords
absorption
filter
film
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007293956A
Other languages
Japanese (ja)
Other versions
JP2009122216A (en
Inventor
秀晴 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007293956A priority Critical patent/JP5067133B2/en
Publication of JP2009122216A publication Critical patent/JP2009122216A/en
Application granted granted Critical
Publication of JP5067133B2 publication Critical patent/JP5067133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は可視波長域の透過光を減衰させる吸収型NDフィルターに係り、特に、分光反射特性の入射角依存性が小さい吸収型NDフィルターの改良に関するものである。   The present invention relates to an absorptive ND filter that attenuates transmitted light in the visible wavelength range, and more particularly to an improvement of an absorptive ND filter having a small incident angle dependency of spectral reflection characteristics.

可視波長域の透過光を減衰させるNDフィルター(Neutral Density Filter)が、最近、多用されるようになってきており、この種のNDフィルターには、入射光を反射して減衰させる反射型NDフィルターと、入射光を吸収して減衰させる吸収型NDフィルターが知られている。そして、反射光が問題となるレンズ光学系にNDフィルターを組み込む場合には一般に吸収型NDフィルターが用いられ、この吸収型NDフィルターには、基板自体に吸収物質を混ぜ(色ガラスNDフィルター)あるいは吸収物質を塗布するタイプと、基板自体に吸収はなくその表面に形成された薄膜に吸収があるタイプとが存在する。また、後者の場合、薄膜表面の反射を防ぐため上記薄膜を多層膜で構成し、透過光を減衰させる機能と共に反射防止の効果を持たせた吸収型多層膜NDフィルターも知られている。入射光を減衰させる目的のNDフィルターにおいても、その表面に反射があると、反射光がフレアーや画像のボケを引き起こす原因となり好ましくないからである。   An ND filter (Neutral Density Filter) that attenuates transmitted light in the visible wavelength range has recently been widely used. This type of ND filter includes a reflective ND filter that reflects and attenuates incident light. An absorption ND filter that absorbs and attenuates incident light is known. When an ND filter is incorporated in a lens optical system in which reflected light is a problem, an absorption ND filter is generally used. In this absorption ND filter, an absorbing substance is mixed in the substrate itself (colored glass ND filter) or There are a type in which an absorbing material is applied and a type in which the thin film formed on the surface of the substrate has no absorption and has absorption. In the latter case, an absorption-type multilayer ND filter is also known in which the thin film is formed of a multilayer film to prevent reflection on the surface of the thin film, and has an antireflection effect as well as a function of attenuating transmitted light. This is because, even in an ND filter for attenuating incident light, if there is a reflection on the surface, the reflected light causes undesirably causing flare or image blur.

ところで、小型でかつ薄型のデジタルカメラに用いられる吸収型多層膜NDフィルターは、組込みスペースが狭いため基板自体を薄くする必要があり、樹脂フィルムが最適な基板とされている。そして、上記薄膜が多層膜で構成される吸収型多層膜NDフィルターとして、特許文献1には、樹脂フィルム等の基板に、SiO等の酸化物誘電体膜層とNi等の金属吸収膜層から成る吸収型多層膜が設けられた構造体が示されている。 By the way, the absorption multilayer ND filter used for a small and thin digital camera has a small installation space, so that it is necessary to make the substrate itself thin, and a resin film is an optimal substrate. As an absorption multilayer ND filter in which the thin film is a multilayer film, Patent Document 1 discloses that a substrate such as a resin film, an oxide dielectric film layer such as SiO 2 and a metal absorption film layer such as Ni. A structure provided with an absorptive multilayer film is shown.

また、最近、透明光学部品からの光反射を防止する方法として、マトリックス状に配置して成る錐状突起群(図1A参照)により構成された反射防止構造体を光学部品表面に設ける方法も提案されている(特許文献2参照)。そして、可視波長域用の反射防止構造体であれば、上記錐状突起群がサブミクロンのピッチでマトリックス状に配置されており、入射光の波長よりピッチの小さいこのような反射防止構造体においては、図1(B)に示すように屈折率が媒質(空気)から基板まで連続的に変化している物質として考えることができ、反射防止の機能を有している。   Recently, as a method for preventing light reflection from the transparent optical component, a method of providing an antireflection structure composed of conical projections (see FIG. 1A) arranged in a matrix on the surface of the optical component has also been proposed. (See Patent Document 2). In the case of an antireflection structure for the visible wavelength region, the cone-shaped projection groups are arranged in a matrix at a submicron pitch, and in such an antireflection structure having a pitch smaller than the wavelength of incident light. 1B can be considered as a substance whose refractive index continuously changes from the medium (air) to the substrate as shown in FIG. 1B, and has a function of preventing reflection.

更に、特許文献2には、原盤材料表面に触媒機能を持った核形成を行う工程と、形成された核の上に結晶を成長させて針状結晶を形成する工程と、針状結晶が形成された原盤材料を用いて電鋳型を形成する工程と、得られた電鋳型を用いて成形用素材に錐状突起群を形成する工程の各工程を有する反射防止構造体の形成方法も開示されている。   Further, Patent Document 2 discloses a step of forming a nucleus having a catalytic function on the surface of a master material, a step of growing a crystal on the formed nucleus to form an acicular crystal, and an acicular crystal formed. Also disclosed is a method for forming an antireflection structure, which includes the steps of forming an electroforming mold using the master material that has been formed, and forming a conical protrusion group on a molding material using the obtained electroforming mold. ing.

そして、特許文献2においては、大面積かつ曲面形状を有する成形用素材であってもその表面に高精度の反射防止構造体を形成することができるとしている。
特開2006−178395号公報 特開2006−130841号公報
And in patent document 2, even if it is the molding material which has a large area and a curved surface shape, it is supposed that a highly accurate antireflection structure can be formed in the surface.
JP 2006-178395 A JP 2006-130841 A

ところで、透過光を減衰させる機能と反射防止機能を具備する上述の吸収型多層膜NDフィルターにおいては、その反射率について角度依存性を有するため、入射光の入射角度が設計入射角からずれた場合、反射率が変化する。   By the way, in the above-mentioned absorption-type multilayer ND filter having a function of attenuating transmitted light and an antireflection function, since the reflectance has an angle dependency, the incident angle of incident light deviates from the designed incident angle. , The reflectivity changes.

このため、垂直入射用に膜設計した吸収型多層膜NDフィルターを40度入射の条件で使用すると、その分光反射特性が異なってしまう。すなわち、垂直入射用に膜設計した吸収型多層膜NDフィルターを集光光学系に組み込んだ場合、光軸上の光線と周辺部の光線は入射角度が相違するため、その分光反射特性が異なってしまい、一般的に反射率が高くなる。   For this reason, when an absorption type multilayer ND filter designed for vertical incidence is used under the condition of incidence of 40 degrees, the spectral reflection characteristics are different. That is, when an absorption-type multilayer ND filter designed for vertical incidence is incorporated in a condensing optical system, the incident angle is different between the light beam on the optical axis and the light beam in the peripheral portion, so that the spectral reflection characteristics are different. As a result, the reflectance generally increases.

一例として、垂直入射用に膜設計した吸収型多層膜NDフィルターの分光反射率における入射角依存性を図2に示す。この図2のグラフ図から、入射光の入射角度によって分光反射特性が異なることを確認できる。   As an example, FIG. 2 shows the incident angle dependence of the spectral reflectance of an absorption multilayer ND filter designed for normal incidence. From the graph of FIG. 2, it can be confirmed that the spectral reflection characteristics differ depending on the incident angle of the incident light.

そして、入射角度によって分光反射特性が異なってしまうと、画像の色合いに支障を来たしてしまうことがある。特に、デジタルカメラやカメラ付携帯電話等は、近年、薄型になっており、薄型に対応して鏡筒長も短くなり、その分、NDフィルターへの光束入射角が大きくなる傾向にあるため、上記問題はより顕著になってきている。   If the spectral reflection characteristics differ depending on the incident angle, the hue of the image may be hindered. In particular, digital cameras, camera-equipped mobile phones, and the like have become thinner in recent years, and the length of the lens barrel has been shortened corresponding to the thinness, and accordingly, the incident angle of the light beam to the ND filter tends to increase. The above problem is becoming more prominent.

他方、錐状突起群により構成された上記反射防止構造体においては、入射光の入射角度が大きくなっても、反射防止効果はそれ程小さくならないという特徴を有している。   On the other hand, the antireflection structure constituted by the conical protrusions has a feature that the antireflection effect is not so small even when the incident angle of incident light is increased.

このような技術的背景の下、本発明者は、レンズ素子、プリズム素子、ミラー素子、レンズ鏡筒等に用いられている特許文献2の反射防止構造体に関し、特許文献2に記載されていない吸収型NDフィルターへの適用を試みたところ、入射角度に起因した分光反射特性の上記問題が回避できることを見出すに至った。更に、樹脂フィルムから成る基板の両面に特許文献2の反射防止構造体を形成し、少なくとも一方の反射防止構造体上に光吸収膜を形成して吸収型NDフィルターを構成したところ、反射光に起因したフレアーや画像のボケが解消されることも見出すに至った。   Under such a technical background, the present inventor has not described the antireflection structure of Patent Document 2 used in a lens element, a prism element, a mirror element, a lens barrel and the like, and is not described in Patent Document 2. When an application to an absorption ND filter was attempted, it was found that the above-described problem of spectral reflection characteristics due to the incident angle can be avoided. Furthermore, when the antireflection structure of Patent Document 2 is formed on both surfaces of a substrate made of a resin film, and an absorption type ND filter is formed by forming a light absorption film on at least one of the antireflection structures, It has also been found that the flare and image blur caused by it are eliminated.

そこで、本発明の課題とするところは、本発明者によって見出された分光反射特性の入射角依存性が小さい吸収型NDフィルターを提供することにある。   Then, the place made into the subject of this invention is providing the absorption type ND filter with small incident angle dependence of the spectral reflection characteristic discovered by this inventor.

すなわち、請求項1に係る発明は、
樹脂フィルムから成る基板を備え、可視波長域の透過光を減衰させる吸収型NDフィルターにおいて、
複数の錐状突起をサブミクロンピッチでマトリックス状に配置した錐状突起群により構成される反射防止構造体部が上記基板の片面に設けられ、かつ、Tiを含むNi系合金により構成された単層の光吸収膜が上記基板の反対側面に設けられていると共に、法線と入射光線とのなす角度と定義される入射角が0°〜40°の範囲においてその分光反射率が0.5%以下であることを特徴とする。
That is, the invention according to claim 1
In an absorption ND filter that includes a substrate made of a resin film and attenuates transmitted light in the visible wavelength range,
An anti-reflection structure part composed of a group of cone-shaped projections in which a plurality of cone-shaped projections are arranged in a matrix at a submicron pitch is provided on one side of the substrate, and a single unit made of a Ni-based alloy containing Ti. The light absorption film of the layer is provided on the opposite side surface of the substrate, and the spectral reflectance is 0.5 in the range of the incident angle defined as the angle formed between the normal line and the incident light ray in the range of 0 ° to 40 °. % Or less .

また、請求項2に係る発明は、
請求項1に記載の発明に係る吸収型NDフィルターにおいて、
単層の上記光吸収膜が、スパッタリング法により成膜された7.5重量%のTiを含むNi系合金により構成されていることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係る吸収型NDフィルターにおいて
上記錐状突起群の反転形状を有する電鋳型を製造し、この電鋳型を用い基板用樹脂フィルム素材をナノインプリント法若しくはキャスティング法により成型加工して、上記錐状突起群により構成される反射防止構造体部が形成されていることを特徴とするものである。
The invention according to claim 2
In the absorption ND filter according to the invention of claim 1,
The single-layer light-absorbing film is made of a Ni-based alloy containing 7.5% by weight of Ti formed by a sputtering method,
The invention according to claim 3
In the absorption ND filter according to claim 1 or 2 ,
An anti-reflection structure composed of the above-mentioned cone-shaped projection group by manufacturing an electroforming mold having an inverted shape of the above-mentioned cone-shaped projection group, and molding the resin film material for a substrate by using this electro-mold by the nanoimprint method or the casting method A body part is formed.

本発明に係る吸収型NDフィルターによれば、複数の錐状突起をサブミクロンピッチでマトリックス状に配置した錐状突起群により構成される反射防止構造体部が、樹脂フィルムから成る基板の片面に設けられており、上記反射防止構造体部は、入射光の入射角度が大きくなってもその反射防止効果が小さくならないため、分光反射特性の入射角依存性が小さい吸収型NDフィルターを提供することが可能となる。 According to the absorptive ND filter according to the present invention, the antireflection structure portion formed by the conical projection group in which a plurality of conical projections are arranged in a matrix at a submicron pitch is provided on one side of the substrate made of a resin film. Provided is an absorption type ND filter in which the reflection preventing effect is not reduced even if the incident angle of incident light is increased, and the spectral reflection characteristic is less dependent on the incident angle. Is possible.

以下、本発明の実施の形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明に係る吸収型NDフィルターは、複数の錐状突起をサブミクロンピッチでマトリックス状に配置した錐状突起群により構成される反射防止構造体部が、樹脂フィルムから成る基板の片面に設けられていることを特徴としている。 First, in the absorption ND filter according to the present invention, an antireflection structure portion composed of a plurality of conical protrusions in which a plurality of conical protrusions are arranged in a matrix at a submicron pitch is provided on one side of a substrate made of a resin film. It is characterized by being provided.

(1)錐状突起群により構成される反射防止構造体部
錐状突起群により構成される本発明に係る反射防止構造体部は、上述したように特許文献2に記載された方法により形成することができる。
(1) Antireflection structure part constituted by conical protrusion groups The antireflection structure part according to the present invention constituted by conical protrusion groups is formed by the method described in Patent Document 2 as described above. be able to.

すなわち、原盤材料表面に触媒機能を持った核形成を行う工程と、形成された核の上に結晶を成長させて針状結晶を形成する工程と、針状結晶が形成された原盤材料を用いて電鋳型を形成する工程と、得られた電鋳型を用いて成形用素材に錐状突起群を形成する工程の各工程を有する方法により本発明に係る反射防止構造体部を形成することができる。   That is, a step of performing nucleation with a catalytic function on the surface of the master material, a step of growing crystals on the formed nuclei to form needle crystals, and a master material on which needle crystals are formed are used. The antireflection structure part according to the present invention can be formed by a method including the steps of forming an electroforming mold and forming the conical protrusions on the molding material using the obtained electroforming mold. it can.

触媒機能を持った核形成を行う上記工程としては、原盤材料である単結晶シリコンウェハ基板の表面に触媒機能を持った核としてCrの島状結晶を形成する工程、あるいは、原盤材料である石英ガラス基板の表面に触媒機能を持った核としてPdの島状結晶を形成する工程等が例示される。   As the above-mentioned process for forming a nucleus having a catalytic function, a process for forming an island crystal of Cr as a nucleus having a catalytic function on the surface of a single crystal silicon wafer substrate which is a master disk material, or a quartz which is a master disk material Examples include a step of forming island-like crystals of Pd as nuclei having a catalytic function on the surface of a glass substrate.

また、形成された核の上に結晶を成長させて針状結晶を形成する上記工程としては、化学蒸着法、気相エピタキシー法、分子線エピタキシー法、無電解メッキ法の内から選択されるいずれかの方法により、上記核の上に、炭素、珪素、窒化珪素、二酸化珪素、窒化硼素、金属の中から選択される少なくとも一種類を含む結晶を成長させて針状結晶を形成する工程が例示される。   In addition, as the above-mentioned step of growing a crystal on the formed nucleus to form a needle-like crystal, any one selected from chemical vapor deposition, vapor phase epitaxy, molecular beam epitaxy, and electroless plating can be used. Exemplified is a step of growing a crystal containing at least one selected from the group consisting of carbon, silicon, silicon nitride, silicon dioxide, boron nitride, and metal on the nucleus to form a needle crystal. Is done.

次に、針状結晶が形成された原盤材料を用いて電鋳型を形成する上記工程としては、珪素の針状結晶が形成された単結晶シリコンウェハ基板の表面をPdにより活性化処理し、無電解Ni−Pメッキ溶液に浸漬して針状結晶表面にNi−Pメッキ層を形成した後、スルファミン酸Niメッキ液中で電気メッキを行うことにより電鋳型を得、得られた電鋳型と単結晶シリコンウェハ基板とを離型することにより上記針状結晶の反転形状を有する電鋳型を得る工程が例示される。   Next, as the above-described step of forming the electroforming mold using the master material on which the needle crystal is formed, the surface of the single crystal silicon wafer substrate on which the silicon needle crystal is formed is activated with Pd, and no process is performed. After immersing in an electrolytic Ni—P plating solution to form a Ni—P plating layer on the surface of the needle-like crystal, electroplating is performed in a sulfamic acid Ni plating solution to obtain an electroforming mold. A step of obtaining an electroforming mold having an inverted shape of the needle-like crystal by releasing the crystalline silicon wafer substrate is exemplified.

そして、得られた電鋳型を用いて成形用素材に錐状突起群を形成する上記工程としては、射出成形法、プレス成形法、および、熱ナノインプリント法により基板用樹脂フィルム素材の少なくとも一方の面に錐状突起群を形成する工程が例示される。尚、熱ナノインプリント法以外にも、UVナノインプリント法あるいはキャスティング法により形成することも可能であり、また、熱ナノインプリント法の一部として考えられるロールトゥロールプロセスで処理するロールエンボス加工も可能である。   And as said process of forming a cone-shaped projection group in a forming material using the obtained electromold, at least one surface of a resin film material for a substrate by an injection molding method, a press molding method, and a thermal nanoimprint method The step of forming the conical projection group is exemplified. In addition to the thermal nanoimprint method, it can also be formed by a UV nanoimprint method or a casting method, and roll embossing that is processed by a roll-to-roll process that can be considered as a part of the thermal nanoimprint method is also possible.

(2)樹脂フィルム
本発明に係る吸収型NDフィルターに用いられる樹脂フィルム基板の材質としては、特に限定されることはなく、その具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)およびノルボルネンの樹脂材料から選択された樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして、日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。
(2) Resin film The material of the resin film substrate used in the absorption ND filter according to the present invention is not particularly limited, and specific examples thereof include polyethylene terephthalate (PET), polyethersulfone (PES), A single resin film selected from the resin materials of polyarylate (PAR), polycarbonate (PC), polyolefin (PO), triacetyl cellulose (TAC) and norbornene, or a resin film selected from the above resin materials and A composite with an acrylic organic film covering one side or both sides of a single body can be mentioned. In particular, as for norbornene resin materials, representative examples include ZEONOR (trade name) manufactured by ZEON Corporation, Arton (trade name) manufactured by JSR Corporation, and the like.

但し、上述した熱ナノインプリントを行う場合、樹脂フィルムの粘度、ガラス転移温度等の諸特性から、最適なモールド圧力、モールド温度等を決定する必要がある。   However, when performing the thermal nanoimprint described above, it is necessary to determine the optimum mold pressure, mold temperature, and the like from various properties such as the viscosity of the resin film and the glass transition temperature.

(3)可視波長域の光を吸収する光吸収膜
上記樹脂フィルム基板の反射防止構造体部が形成された面とは反対側面に形成される光吸収膜としては、可視波長域の光を吸収する作用を有する膜材料を適用することができ、通常、金属膜が用いられる。具体的には、Tiが添加されたNi系合金を用いる。尚、上記金属膜にその飽和酸化物を混在させることにより、光学特性および物理特性を改善することも可能である。また、上記金属膜の酸化を低減させるため、例えばNi系合金膜の表面に、SiOx、SiN等のオーバーコートを施すことも好ましい。
(3) Light absorption film that absorbs light in the visible wavelength range The light absorption film formed on the side surface opposite to the surface on which the antireflection structure portion of the resin film substrate is formed absorbs light in the visible wavelength range. A film material having an effect of the above can be applied, and a metal film is usually used. Specifically, a Ni-based alloy to which Ti is added is used . The optical characteristics and physical characteristics can be improved by mixing the metal oxide with the saturated oxide. In order to reduce the oxidation of the metal film, for example, it is also preferable to apply an overcoat such as SiOx or SiN on the surface of the Ni-based alloy film.

そして、上記光吸収膜は、真空蒸着法、イオンビームスパッタリング法、マグネトロンスパッタリング法、イオンプレーティング法等の成膜法により形成することができる。   The light absorbing film can be formed by a film forming method such as a vacuum deposition method, an ion beam sputtering method, a magnetron sputtering method, or an ion plating method.

また、金属膜により構成される光吸収膜は、膜材料の添加物や不純物、成膜時の残留ガス、樹脂フィルム基板からの放出ガスや成膜速度によって、屈折率や吸収係数等の特性が大きく異なることがある。従って、これ等の条件を適宜選択して、吸収型NDフィルターが所望の特性となるように設定することを要する。   In addition, a light absorption film composed of a metal film has characteristics such as a refractive index and an absorption coefficient depending on the additive and impurities of the film material, the residual gas during film formation, the gas released from the resin film substrate, and the film formation speed. It can be very different. Therefore, it is necessary to appropriately select these conditions and set the absorption ND filter to have desired characteristics.

また、樹脂フィルム基板の片面に上記光吸収層を設ける場合、光吸収層を形成する前にプラズマ処理あるいはイオンビーム処理を施し、樹脂フィルムの波長400nmにおける透過率が処理前と較べ1.0%以上減衰するように事前調整することにより分光透過特性の平坦性を改善することができる。更に、上記プラズマ処理あるいはイオンビーム処理によって光吸収膜と樹脂フィルム基板との密着性を向上できるため、高温高湿環境下における光吸収膜のヒビ割れ等も防止することが可能となる。 In addition, when the light absorption layer is provided on one surface of the resin film substrate, plasma treatment or ion beam treatment is performed before forming the light absorption layer, and the transmittance of the resin film at a wavelength of 400 nm is 1.0% compared with that before the treatment. The flatness of the spectral transmission characteristics can be improved by performing the pre-adjustment so as to attenuate. Furthermore, since the adhesion between the light absorption film and the resin film substrate can be improved by the plasma treatment or the ion beam treatment, it is possible to prevent cracking of the light absorption film in a high temperature and high humidity environment.

(4)吸収型NDフィルター
(4−1)可視波長域の光を吸収する物質が樹脂フィルム基板中に含まれている吸収型NDフィルター
参考例に係る吸収型NDフィルターの一形態として、可視波長域の光を吸収する物質が樹脂フィルムから成る基板中に含まれる吸収型NDフィルターが挙げられる。
(4) Absorption-type ND filter (4-1) Absorption-type ND filter in which a resin film substrate contains a substance that absorbs light in the visible wavelength range.
As one form of the absorption ND filter according to the reference example, there is an absorption ND filter in which a substance that absorbs light in a visible wavelength region is included in a substrate made of a resin film.

そして、樹脂フィルム基板の少なくとも片面に設けられた上記反射防止構造体部が、複数の錐状突起をサブミクロンピッチでマトリックス状に配置した図1(A)の錐状突起群により構成されている場合、図1(B)に示したように屈折率が媒質(空気)から基板まで連続的に変化している物質として考えることができるため反射防止の機能を有している。   And the said antireflection structure part provided in the at least single side | surface of the resin film board | substrate is comprised by the cone-shaped protrusion group of FIG. 1 (A) which has arrange | positioned the several cone-shaped protrusion in the matrix form with the submicron pitch. In this case, as shown in FIG. 1B, since the refractive index can be considered as a substance that continuously changes from the medium (air) to the substrate, it has an antireflection function.

このため、可視波長域の光を吸収する物質が樹脂フィルム基板中に含まれている場合、反射防止の機能を有すると共に、分光反射率における入射角依存性の小さい吸収型NDフィルターが得られることとなる。   For this reason, when a substance that absorbs light in the visible wavelength region is included in the resin film substrate, an absorption type ND filter having an antireflection function and having a small incident angle dependency in spectral reflectance can be obtained. It becomes.

ここで、可視波長域の光を吸収する物質としては、特に限定されるものではないが、特定波長の光を吸収する金属微粒子や顔料が好ましく、例えば、銅マンガン酸化物が挙げられる。また、金属微粒子や顔料以外に、特定波長域の光だけを吸収する特性を持たない物質、例えばカーボンブラック等を用いることも可能である。   Here, the substance that absorbs light in the visible wavelength region is not particularly limited, but metal fine particles and pigments that absorb light of a specific wavelength are preferable, and examples thereof include copper manganese oxide. In addition to metal fine particles and pigments, it is also possible to use a substance that does not have the property of absorbing only light in a specific wavelength range, such as carbon black.

そして、可視波長域の光を吸収する物質が含まれる樹脂フィルム基板を調製する方法としては、任意の方法が採用される。例えば、樹脂組成物の製造法としては、樹脂成分と可視波長域の吸収物質成分並びに任意に配合する他の成分を予備混合し、その後、溶融混練してペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および、押出混合機等を挙げることができる。予備混合では、必要に応じて押出造粒器やブリケッティングマシーン等により造粒を行うことも可能である。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練し、ペレタイザーの如き機器によりペレット化することも好ましい。上記溶融混練機としては、他にバンバリーミキサー、混練ロール、および、恒熱撹拌容器等を用いることができるが、ベント式二軸押出機に代表される多軸押出機が好ましい。このような多軸押出機を用いることにより、強力なせん断力で吸収物質成分が樹脂中に微分散される。   And any method is employ | adopted as a method of preparing the resin film board | substrate containing the substance which absorbs the light of a visible wavelength range. For example, as a method for producing a resin composition, a method in which a resin component, an absorbing material component in the visible wavelength region, and other components optionally blended are premixed, and then melt-kneaded to form a pellet. Examples of the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer. In the preliminary mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like as necessary. After the preliminary mixing, it is also preferable to melt and knead with a melt kneader typified by a vent type twin screw extruder and pelletize with a device such as a pelletizer. As the melt kneader, a Banbury mixer, a kneading roll, and a constant-temperature stirring vessel can be used, but a multi-screw extruder represented by a vent type twin screw extruder is preferable. By using such a multi-screw extruder, the absorbent material component is finely dispersed in the resin with a strong shearing force.

このようにして製造された樹脂組成物のペレットと樹脂とを混練し、かつフィルム状に加熱成形して可視波長域の光を吸収する物質が含まれる樹脂フィルム基板が得られる。   A resin film substrate containing a substance that absorbs light in the visible wavelength region is obtained by kneading the resin composition pellets and the resin thus produced, and thermoforming them into a film.

尚、適用される吸収物質の種類や樹脂材料の種類によって、加工温度、フィルム化条件等は多少異なるが、通常、以下の(A)〜(C)工程により樹脂フィルム基板を製造することができる。すなわち、(A)可視波長域の光を吸収する物質(吸収物質)を粉体状若しくはペレット状の樹脂材料に添加し、150〜350℃に加熱、溶解させた後、成形して樹脂板を作製する工程、(B)得られた樹脂板を押し出し機によりフィルム化する工程、(C)得られた延伸前のフィルムを、30〜120℃で2〜5倍に1軸方向乃至は2軸方向に延伸して厚さ10〜200μmの樹脂フィルム基板を製造する工程、の上記(A)〜(C)工程により樹脂フィルム基板を製造することができる。
(4−2)可視波長域の光を吸収する光吸収膜が樹脂フィルム基板の反射防止構造体部上または基板の反対側面の少なくとも一方に形成され、可視波長域の光を吸収する物質が基板中に含まれていない吸収型NDフィルター
参考例に係る吸収型NDフィルターの他の形態として、樹脂フィルム基板の反射防止構造体部上に可視波長域の光を吸収する単層若しくは多層膜の光吸収膜が形成された吸収型NDフィルターが挙げられる。
The processing temperature, filming conditions, and the like vary somewhat depending on the type of absorbent material and resin material to be applied, but a resin film substrate can usually be produced by the following steps (A) to (C). . That is, (A) a substance (absorbing substance) that absorbs light in the visible wavelength region is added to a powder or pellet-shaped resin material, heated and dissolved at 150 to 350 ° C., and then molded to form a resin plate. (B) a step of forming the obtained resin plate into a film by an extruder, and (C) the obtained unstretched film at 30 to 120 ° C. in a uniaxial direction or biaxial at 2 to 5 times. The resin film substrate can be produced by the steps (A) to (C) of the step of producing a resin film substrate having a thickness of 10 to 200 μm by stretching in the direction.
(4-2) A light absorbing film that absorbs light in the visible wavelength region is formed on at least one of the antireflection structure portion of the resin film substrate or the opposite side surface of the substrate, and the substance that absorbs light in the visible wavelength region is the substrate. Absorptive ND filter not included
As another form of the absorption ND filter according to the reference example , an absorption ND filter in which a light absorption film of a single layer or a multilayer film that absorbs light in the visible wavelength region is formed on the antireflection structure part of the resin film substrate. Is mentioned.

そして、複数の錐状突起をサブミクロンピッチでマトリックス状に配置した図1(A)の錐状突起群により上記反射防止構造体部が構成されている場合、図1(B)に示したように屈折率が媒質(空気)から基板まで連続的に変化している物質として考えることができるため反射防止の機能を有している。   When the antireflection structure portion is constituted by the conical protrusion group of FIG. 1A in which a plurality of conical protrusions are arranged in a matrix at a submicron pitch, as shown in FIG. Further, since it can be considered as a substance whose refractive index continuously changes from the medium (air) to the substrate, it has an antireflection function.

このため、錐状突起群により構成された上記反射防止構造体部上に可視波長域の光を吸収する単層若しくは多層膜の光吸収膜が図3に示すように形成された場合、反射防止の機能を有すると共に、分光反射率における入射角依存性の小さい吸収型NDフィルターが得られることとなる。尚、上記単層若しくは多層膜の光吸収膜は、その性能を2分割して樹脂フィルム基板の両面に分けて形成されていてもよい。   For this reason, when a single-layer or multilayer light-absorbing film that absorbs light in the visible wavelength region is formed on the anti-reflection structure formed by the cone-shaped projection group as shown in FIG. Thus, an absorption ND filter having a function of the above and having a small dependence on the incident angle in the spectral reflectance can be obtained. In addition, the light absorption film of the said single layer or a multilayer film may divide the performance into 2 and may be formed separately on both surfaces of the resin film board | substrate.

また、本発明に係る吸収型NDフィルターの形態として、上記反射防止構造体部が形成された側とは反対側の樹脂フィルム基板面に、可視波長域の光を吸収する単層の光吸収膜が形成された吸収型NDフィルターが挙げられる。 Moreover, as a form of the absorption ND filter according to the present invention, a single-layer light absorption film that absorbs light in the visible wavelength region on the surface of the resin film substrate opposite to the side on which the antireflection structure portion is formed. An absorptive ND filter in which is formed.

そして、この場合においても、反射防止の機能を有すると共に、分光反射率における入射角依存性の小さい吸収型NDフィルターが得られる。   Also in this case, an absorption type ND filter having an antireflection function and having a small incident angle dependency in the spectral reflectance can be obtained.

また、参考例に係る吸収型NDフィルターの更に別の形態として、樹脂フィルム基板の両面に上記錐状突起群により構成された反射防止構造体部がそれぞれ形成され、かつ、少なくとも一方の反射防止構造体部上に可視波長域の光を吸収する単層若しくは多層膜の光吸収膜が形成された吸収型NDフィルターが挙げられる。 Further, as still another form of the absorption ND filter according to the reference example , each of the antireflection structure parts constituted by the conical protrusions is formed on both surfaces of the resin film substrate, and at least one of the antireflection structures is formed. Examples thereof include an absorption ND filter in which a light absorption film of a single layer or a multilayer film that absorbs light in a visible wavelength region is formed on a body part.

そして、この場合においても、反射防止の機能を有すると共に分光反射率における入射角依存性の小さい吸収型NDフィルターが得られ、更に、樹脂フィルム基板の表面だけでなく裏面反射も防止できる吸収型NDフィルターが得られる。   Even in this case, an absorption type ND filter having an antireflection function and having a small incident angle dependency in spectral reflectance can be obtained, and further, an absorption type ND that can prevent not only the front surface but also the back surface reflection of the resin film substrate. A filter is obtained.

このように本発明に係る吸収型NDフィルターは、反射防止の機能を有すると共に分光反射率における入射角依存性が小さい特性を具備し、例えば、法線と入射光線とのなす角度と定義される入射角が0°〜40°の範囲において、その分光反射率が0.5%以下である吸収型NDフィルターが得られる。尚、吸収型NDフィルターの光入射側とは反対側に位置する受光素子の配置から、入射角0°の反射は、本来測定することはできないが、限りなく0°付近までと言う意味である。   As described above, the absorptive ND filter according to the present invention has a function of preventing reflection and has a small incident angle dependency in spectral reflectance, and is defined as, for example, an angle formed between a normal line and an incident ray. When the incident angle is in the range of 0 ° to 40 °, an absorption ND filter having a spectral reflectance of 0.5% or less is obtained. Incidentally, from the arrangement of the light receiving element located on the side opposite to the light incident side of the absorption ND filter, reflection at an incident angle of 0 ° cannot be measured originally, but it means that the reflection is limited to around 0 °. .

次に、本発明の一具体例として、可視波長域で透明な厚さ100μmのPETフィルム表面に、熱ナノインプリント法(ダイレクトナノインプロント法とも称する)により、高さ600nm、ピッチ200nmの錐状突起群により構成された反射防止構造体部を形成し、かつ、反射防止構造体部の形成面とは反対側のPETフィルム面上にスパッタリング法により7.5重量%のTiを含むNi系合金を約50nm成膜して本発明に係る吸収型NDフィルターを製造した。また、得られた吸収型NDフィルターの入射角10°、入射角20°、入射角30°および入射角40°における分光透過率と分光反射率をそれぞれ測定し、かつ、分光透過率を図4に、分光反射率を図5に示す。   Next, as a specific example of the present invention, a conical projection having a height of 600 nm and a pitch of 200 nm is formed on the surface of a PET film having a thickness of 100 μm that is transparent in the visible wavelength range by a thermal nanoimprint method (also referred to as a direct nanoimprint method). Forming a Ni-based alloy containing 7.5 wt% Ti by sputtering on the PET film surface opposite to the surface on which the antireflection structure portion is formed. An absorption ND filter according to the present invention was manufactured by forming a film of about 50 nm. Further, the spectral transmittance and the spectral reflectance at the incident angle of 10 °, the incident angle of 20 °, the incident angle of 30 °, and the incident angle of 40 ° of the obtained absorption ND filter were measured, and the spectral transmittance was shown in FIG. Fig. 5 shows the spectral reflectance.

分光反射率を示す図5のグラフ図から、本発明に係る吸収型NDフィルターにおいては、入射角10°、入射角20°、入射角30°および入射角40°のいずれの角度においても反射率は0.5%以下と低く、また、入射角度依存性も極めて小さいことが確認され、しかも、この吸収型NDフィルターには複雑な多層膜を成膜する必要がないため、生産性にも優れていることが確認された。   From the graph of FIG. 5 showing the spectral reflectance, in the absorptive ND filter according to the present invention, the reflectance is measured at any of an incident angle of 10 °, an incident angle of 20 °, an incident angle of 30 °, and an incident angle of 40 °. Is as low as 0.5% or less, and it is confirmed that the incident angle dependency is extremely small. Moreover, since it is not necessary to form a complicated multilayer film on this absorption ND filter, it is excellent in productivity. It was confirmed that

次に、本発明に係る吸収型NDフィルターの性能を比較するため、実施例1(錐状突起群により構成される反射防止構造体部を樹脂フィルム基板の片面に形成しかつ基板の反対側面に光吸収膜を設けた吸収型NDフィルター)、比較例1(錐状突起群により構成される反射防止構造体部を形成することなく樹脂フィルム基板の片面に光吸収膜を設けた吸収型NDフィルター)および比較例2(従来の吸収型多層膜NDフィルター)に係る3種類の平均透過率6.3%のNDフィルターを製作し、かつ、これ等平均透過率6.3%のNDフィルターの反射率の角度依存性を比較した。   Next, in order to compare the performance of the absorptive ND filter according to the present invention, Example 1 (an antireflection structure portion constituted by a conical projection group is formed on one side of a resin film substrate and on the opposite side of the substrate) Absorptive ND filter provided with a light absorbing film), Comparative Example 1 (absorptive ND filter provided with a light absorbing film on one surface of a resin film substrate without forming an antireflection structure part composed of conical projections) ) And Comparative Example 2 (conventional absorptive multilayer ND filter), three types of ND filters with an average transmittance of 6.3% were manufactured, and the reflection of these ND filters with an average transmittance of 6.3%. The angular dependence of rate was compared.

以下、具体的に説明する。   This will be specifically described below.

錐状突起群により構成される反射防止構造体部が樹脂フィルム基板の片面に形成されかつ基板の反対側面に光吸収膜が設けられた吸収型NDフィルターを製造した。   An absorption type ND filter was manufactured in which an antireflection structure part composed of conical projections was formed on one side of a resin film substrate and a light absorption film was provided on the opposite side of the substrate.

すなわち、可視波長域で透明な厚さ100μmのPETフィルムの片面に、熱ナノインプリント法(ダイレクトナノインプロント法とも称する)により、高さ600nm、ピッチ200nmの錐状突起群により構成された反射防止構造体部を形成した。モールドの圧力は10MPa、モールドの温度は130℃で行った。   That is, an antireflection structure constituted by a group of conical projections having a height of 600 nm and a pitch of 200 nm on one side of a PET film having a thickness of 100 μm that is transparent in the visible wavelength range, by a thermal nanoimprint method (also referred to as a direct nanoimprint method). A body part was formed. The mold pressure was 10 MPa and the mold temperature was 130 ° C.

次に、上記反射防止構造体部が形成されたPETフィルム(樹脂フィルム基板)の反射防止構造体部形成面とは反対側の面に、スパッタリング法により7.5重量%のTiを含むNi系合金を約50nm成膜して実施例1に係る吸収型NDフィルターを製造した。   Next, a Ni-based film containing 7.5 wt% Ti by sputtering on the surface opposite to the antireflection structure portion forming surface of the PET film (resin film substrate) on which the antireflection structure portion is formed. An absorption ND filter according to Example 1 was manufactured by forming an alloy film of about 50 nm.

得られた実施例1に係る吸収型NDフィルターの、入射角10°、20°、30°と40°における分光透過率を図4に、分光反射率を図5にそれぞれ示す。   FIG. 4 shows the spectral transmittance and FIG. 5 shows the spectral reflectance at the incident angles of 10 °, 20 °, 30 ° and 40 ° of the obtained absorption ND filter according to Example 1.

ここで、分光反射率の測定は、日本分光社製の自記分光光度計を用いて行った。但し、照射光と反射光が重なってしまう機器配置になるため、入射角0°(垂直入射)は測定することができなかった。また、反射率測定時には、裏面反射の影響を受けないようにするため、裏面を紙ヤスリあるいは研磨剤で擦り、裏面からの反射を拡散させる処理を施した。   Here, the spectral reflectance was measured using a self-recording spectrophotometer manufactured by JASCO Corporation. However, an incident angle of 0 ° (perpendicular incidence) could not be measured because the device arrangement was such that the irradiated light and reflected light overlapped. Further, at the time of measuring the reflectance, in order not to be affected by the back surface reflection, the back surface was rubbed with a paper file or an abrasive to perform a process of diffusing the reflection from the back surface.

図4における分光透過率のグラフ図、図5における分光反射率のグラフ図から、入射角10°、入射角20°、入射角30°および入射角40°のいずれの角度においても反射率は0.5%以下と低く、入射角度依存性も極めて小さいことが確認された。   From the graph of the spectral transmittance in FIG. 4 and the graph of the spectral reflectance in FIG. 5, the reflectance is 0 at any angle of the incident angle of 10 °, the incident angle of 20 °, the incident angle of 30 °, and the incident angle of 40 °. It was confirmed that the incident angle dependency was extremely small with a low value of .5% or less.

[比較例1]
錐状突起群により構成される反射防止構造体部を形成することなく樹脂フィルム基板の片面に光吸収膜が設けられた吸収型NDフィルター吸収型NDフィルターを製造した。
[Comparative Example 1]
An absorption type ND filter absorption type ND filter in which a light absorption film was provided on one side of a resin film substrate was formed without forming an antireflection structure part composed of conical projections.

すなわち、実施例1における反射防止構造体部が形成されていないPETフィルムの片面に、スパッタリング法により7.5重量%のTiを含むNi系合金を約50nm成膜して比較例1に係る吸収型NDフィルターを製造した。   That is, an absorption according to Comparative Example 1 was formed by forming a Ni-based alloy containing 7.5 wt% Ti by sputtering on one side of a PET film in which the antireflection structure portion in Example 1 was not formed. A type ND filter was produced.

得られた比較例1に係る吸収型NDフィルターの、入射角10°、20°、30°と40°における分光透過率を図6に、分光反射率を図7にそれぞれ示す。   FIG. 6 shows the spectral transmittance and FIG. 7 shows the spectral reflectance at the incident angles of 10 °, 20 °, 30 °, and 40 ° of the obtained absorption ND filter according to Comparative Example 1, respectively.

そして、図7における分光反射率のグラフ図から、Ni合金膜の表面反射に起因する40〜50%もの高い反射率が確認された。   Then, from the graph of the spectral reflectance in FIG. 7, a reflectance as high as 40 to 50% due to the surface reflection of the Ni alloy film was confirmed.

[比較例2]
従来例に係る吸収型多層膜NDフィルターを製造した。
[Comparative Example 2]
An absorption-type multilayer ND filter according to a conventional example was manufactured.

すなわち、可視波長域で透明な厚さ100μmのPETフィルムの両面に、表1に示す膜構造の5層吸収型多層膜を形成した。   That is, a five-layer absorption multilayer film having a film structure shown in Table 1 was formed on both surfaces of a PET film having a thickness of 100 μm that was transparent in the visible wavelength range.

成膜にはマグネトロンスパッタ法を用い、SiOのターゲットにはSi単結晶、Ni系合金のターゲットには7.5重量%のTiを含むNi系合金を用いると共に、SiO成膜時にのみ酸素導入を行った。 A magnetron sputtering method is used for film formation, a Si single crystal is used for the SiO 2 target, a Ni-based alloy containing 7.5 wt% Ti is used for the Ni-based alloy target, and oxygen is used only during the SiO 2 film formation. Introduced.

得られた比較例2に係る吸収型NDフィルターの、入射角10°、20°、30°と40°における分光透過率を図8に、分光反射率を図9にそれぞれ示す。   FIG. 8 shows the spectral transmittance and FIG. 9 shows the spectral reflectance at the incident angles of 10 °, 20 °, 30 °, and 40 ° of the obtained absorption ND filter according to Comparative Example 2, respectively.

そして、図9における分光反射率のグラフ図から、入射角が大きくなるにつれて可視波長域の反射率が増加する傾向が確認され、特に、長波長側の反射率増加が顕著であった。   Then, from the graph of the spectral reflectance in FIG. 9, it was confirmed that the reflectance in the visible wavelength range increased as the incident angle increased, and in particular, the reflectance increase on the long wavelength side was remarkable.

Figure 0005067133
「評 価」
比較例1と比較例2と較べ、実施例1に係る吸収型NDフィルターは反射率が低いだけでなく入射角度依存性が極めて小さいことが確認され、しかも、比較例2のような複雑な多層膜を成膜する必要がなく、その生産性にも優れていることが確認された。
Figure 0005067133
"Evaluation"
Compared with Comparative Example 1 and Comparative Example 2, it is confirmed that the absorption ND filter according to Example 1 has not only low reflectance but also extremely small incident angle dependency. It was not necessary to form a film, and it was confirmed that the productivity was excellent.

本発明に係る吸収型NDフィルターは分光反射特性の入射角依存性が小さいため、デジタルカメラやデジタルビデオカメラ等に搭載されるNDフィルターに利用される産業上の可能性を有している。   Since the absorption type ND filter according to the present invention has a small incident angle dependency of spectral reflection characteristics, it has industrial potential for use in ND filters mounted on digital cameras and digital video cameras.

図1(A)はマトリックス状に配置された錐状突起群の概略斜視図、図1(B)は基板片面に設けられた上記錐状突起群から成る反射防止構造体の断面図並びに反射防止構造体の断面構造と屈折率との関係を示すグラフ図。FIG. 1A is a schematic perspective view of a group of conical protrusions arranged in a matrix, and FIG. 1B is a cross-sectional view of the antireflection structure including the conical protrusion group provided on one side of the substrate and antireflection. The graph which shows the relationship between the cross-sectional structure of a structure, and a refractive index. 従来例に係る吸収型多層膜NDフィルターの分光反射特性を示すグラフ図。The graph which shows the spectral reflection characteristic of the absorption type multilayer ND filter which concerns on a prior art example. 樹脂フィルム基板に設けられた錐状突起群から成る反射防止構造体層上に光吸収膜が成膜された参考例に係る吸収型NDフィルターの断面図並びにこの吸収型NDフィルターの断面構造と屈折率との関係を示すグラフ図。Sectional view of an absorption ND filter according to a reference example in which a light absorption film is formed on an antireflection structure layer composed of conical projections provided on a resin film substrate, and the sectional structure and refraction of the absorption ND filter The graph which shows the relationship with a rate. 実施例1に係る吸収型NDフィルターの分光透過特性を示すグラフ図。3 is a graph showing the spectral transmission characteristics of the absorption ND filter according to Example 1. FIG. 実施例1に係る吸収型NDフィルターの分光反射特性を示すグラフ図。FIG. 3 is a graph showing the spectral reflection characteristics of the absorption ND filter according to Example 1. 比較例1に係る吸収型NDフィルターの分光透過特性を示すグラフ図。The graph which shows the spectral transmission characteristic of the absorption type ND filter which concerns on the comparative example 1. FIG. 比較例1に係る吸収型NDフィルターの分光反射特性を示すグラフ図。The graph which shows the spectral reflection characteristic of the absorption ND filter which concerns on the comparative example 1. FIG. 比較例2に係る吸収型NDフィルターの分光透過特性を示すグラフ図。The graph which shows the spectral transmission characteristic of the absorption ND filter which concerns on the comparative example 2. FIG. 比較例2に係る吸収型NDフィルターの分光反射特性を示すグラフ図。The graph which shows the spectral reflection characteristic of the absorption ND filter which concerns on the comparative example 2. FIG.

Claims (3)

樹脂フィルムから成る基板を備え、可視波長域の透過光を減衰させる吸収型NDフィルターにおいて、
複数の錐状突起をサブミクロンピッチでマトリックス状に配置した錐状突起群により構成される反射防止構造体部が上記基板の片面に設けられ、かつ、Tiを含むNi系合金により構成された単層の光吸収膜が上記基板の反対側面に設けられていると共に、法線と入射光線とのなす角度と定義される入射角が0°〜40°の範囲においてその分光反射率が0.5%以下であることを特徴とする吸収型NDフィルター。
In an absorption ND filter that includes a substrate made of a resin film and attenuates transmitted light in the visible wavelength range,
An anti-reflection structure part composed of a group of cone-shaped projections in which a plurality of cone-shaped projections are arranged in a matrix at a submicron pitch is provided on one side of the substrate, and a single unit made of a Ni-based alloy containing Ti. The light absorption film of the layer is provided on the opposite side surface of the substrate, and the spectral reflectance is 0.5 in the range of the incident angle defined as the angle formed between the normal line and the incident light ray in the range of 0 ° to 40 °. % Absorption type ND filter characterized by being less than or equal to% .
単層の上記光吸収膜が、スパッタリング法により成膜された7.5重量%のTiを含むNi系合金により構成されていることを特徴とする請求項1に記載の吸収型NDフィルター。2. The absorption ND filter according to claim 1, wherein the single-layer light absorption film is made of a Ni-based alloy containing 7.5 wt% Ti formed by a sputtering method. 上記錐状突起群の反転形状を有する電鋳型を製造し、この電鋳型を用い基板用樹脂フィルム素材をナノインプリント法若しくはキャスティング法により成型加工して、上記錐状突起群により構成される反射防止構造体部が形成されていることを特徴とする請求項1または2に記載の吸収型NDフィルター。 An anti-reflection structure composed of the above-mentioned cone-shaped projection group by manufacturing an electroforming mold having an inverted shape of the above-mentioned cone-shaped projection group, and molding the resin film material for a substrate by using this electro-mold by the nanoimprint method or the casting method The absorptive ND filter according to claim 1 or 2, wherein a body part is formed.
JP2007293956A 2007-11-13 2007-11-13 Absorption type ND filter Expired - Fee Related JP5067133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293956A JP5067133B2 (en) 2007-11-13 2007-11-13 Absorption type ND filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293956A JP5067133B2 (en) 2007-11-13 2007-11-13 Absorption type ND filter

Publications (2)

Publication Number Publication Date
JP2009122216A JP2009122216A (en) 2009-06-04
JP5067133B2 true JP5067133B2 (en) 2012-11-07

Family

ID=40814482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293956A Expired - Fee Related JP5067133B2 (en) 2007-11-13 2007-11-13 Absorption type ND filter

Country Status (1)

Country Link
JP (1) JP5067133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029781A1 (en) 2015-08-19 2017-02-23 Canon Kabushiki Kaisha Optical filter and optical system, image pickup apparatus, and lens apparatus which include the same
US10502877B2 (en) 2015-08-19 2019-12-10 Canon Kabushiki Kaisha Optical filter and optical system, image pickup apparatus, and lens apparatus which include the same
US11513440B2 (en) 2018-11-13 2022-11-29 Canon Kabushiki Kaisha Optical element, optical system, and optical apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600396B2 (en) * 2009-04-23 2014-10-01 キヤノン電子株式会社 Optical filter
JP2011053495A (en) * 2009-09-02 2011-03-17 Sony Corp Optical element and method for producing the same
EP2711742A4 (en) * 2011-05-17 2014-10-29 Canon Denshi Kk Optical filter, optical device, electronic device, and antireflection complex
EP2711744A4 (en) 2011-05-17 2014-10-29 Canon Denshi Kk Optical filter and optical device
JP6224314B2 (en) * 2012-11-16 2017-11-01 キヤノン電子株式会社 Optical filter and optical apparatus
US9513417B2 (en) 2012-11-16 2016-12-06 Canon Denshi Kabushiki Kaisha Optical filter and optical apparatus
TWI487932B (en) * 2013-11-21 2015-06-11 Global Wafers Co Ltd Optical device and manufacture thereof
JP6229601B2 (en) * 2014-06-24 2017-11-15 住友金属鉱山株式会社 Electrode substrate film and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267815A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Reflection preventive molded part and method for manufacturing the same
JP4637383B2 (en) * 2001-03-15 2011-02-23 キヤノン電子株式会社 ND filter, ND filter manufacturing method, light amount adjusting device, and photographing device
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
JP2003222701A (en) * 2002-01-29 2003-08-08 Seiko Epson Corp Optical parts and its manufacturing method
JP4739729B2 (en) * 2004-11-08 2011-08-03 パナソニック株式会社 Method for manufacturing member having antireflection structure
JP4613706B2 (en) * 2004-11-24 2011-01-19 住友金属鉱山株式会社 Absorption-type multilayer ND filter
JP2007065109A (en) * 2005-08-30 2007-03-15 Canon Electronics Inc Nd filter, light quantity reducing device and camera
US7569466B2 (en) * 2005-12-16 2009-08-04 International Business Machines Corporation Dual metal gate self-aligned integration
JP4963028B2 (en) * 2006-02-17 2012-06-27 キヤノン電子株式会社 ND filter and light quantity reduction device using the ND filter
JP4988282B2 (en) * 2006-09-22 2012-08-01 キヤノン電子株式会社 Optical filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029781A1 (en) 2015-08-19 2017-02-23 Canon Kabushiki Kaisha Optical filter and optical system, image pickup apparatus, and lens apparatus which include the same
US10502877B2 (en) 2015-08-19 2019-12-10 Canon Kabushiki Kaisha Optical filter and optical system, image pickup apparatus, and lens apparatus which include the same
US11513440B2 (en) 2018-11-13 2022-11-29 Canon Kabushiki Kaisha Optical element, optical system, and optical apparatus

Also Published As

Publication number Publication date
JP2009122216A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5067133B2 (en) Absorption type ND filter
US10228500B2 (en) Optical filter and imaging device
JP4077508B2 (en) Lens manufacturing method
JP6197647B2 (en) Optical filter, method for manufacturing the same, and imaging apparatus
US8154803B2 (en) Diffractive optical element with improved light transmittance
WO2012157719A1 (en) Optical filter and optical device
JP2015099345A (en) Optical lens, lens unit, imaging module, and electronic apparatus
TWI753299B (en) Optical filters and their uses
CN1673831A (en) IPS mode liquid crystal display
JP2008276059A (en) Optical element and optical system having the same
CN110873914A (en) Optical filter, method for manufacturing the same, solid-state imaging device, and camera module
CN102356335A (en) Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device
JP5996163B2 (en) Optical film manufacturing method, polarizing plate and image display device
KR20090004772A (en) Optical compensation sheet, polarizing plate and tn-mode liquid crystal display device
JP2017072748A (en) Optical filter and imaging device using optical filter
JP5066644B2 (en) Multilayer ND filter
KR20210095643A (en) Anti-glare film, manufacturing method of anti-glare film, optical member and image display device
KR20170057739A (en) Film type infrared cut off filter and the manufacturing method thereby
KR20170115005A (en) Film type infrared cut off filter and the manufacturing method thereby
WO2020138013A1 (en) Optical lens and method for manufacturing same
KR101836451B1 (en) Film type infrared cut off filter and the manufacturing method thereby
KR20210149719A (en) Anti-glare film, manufacturing method of anti-glare film, optical member and image display device
JP2010266661A (en) Optical filter, and image capturing apparatus using the same
CN220584520U (en) Optical filter, imaging device, camera module, and optical sensor
CN210109536U (en) Optical lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees