JP3711446B2 - Wavelength filter - Google Patents

Wavelength filter Download PDF

Info

Publication number
JP3711446B2
JP3711446B2 JP2001060810A JP2001060810A JP3711446B2 JP 3711446 B2 JP3711446 B2 JP 3711446B2 JP 2001060810 A JP2001060810 A JP 2001060810A JP 2001060810 A JP2001060810 A JP 2001060810A JP 3711446 B2 JP3711446 B2 JP 3711446B2
Authority
JP
Japan
Prior art keywords
substrate
refractive index
wavelength
air
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060810A
Other languages
Japanese (ja)
Other versions
JP2002258034A (en
Inventor
久雄 菊田
耕一 岩田
彰夫 水谷
宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001060810A priority Critical patent/JP3711446B2/en
Publication of JP2002258034A publication Critical patent/JP2002258034A/en
Application granted granted Critical
Publication of JP3711446B2 publication Critical patent/JP3711446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、波長フィルタに関し、特に、選択波長の狭い特性を持つ波長フィルタに関する。
【0002】
【従来の技術】
スラブ型(層型)の光導波路に周期的な屈折率変調を与えたり、導波路の上面または下面に周期的な微細凹凸形状を形成することにより、板状の波長フィルタを作成することができる。この波長フィルタは、周期構造内での共鳴現象を利用しており、数ナノメートル以下の極めて狭い波長域の光だけを反射する狭帯域バンドパス特性を持っている。
1985年に、ブルガリアのMashevとPopovが波長633nmの可視光に対するフィルタを実際に試作し、その共鳴現象を確認している(L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings”, Optics Communications, Vol.55, No.6 (1985) pp.377-380)。 ただし、彼らの提案するフィルタ構造では、共鳴波長での反射率は高いものの、非共鳴波長での反射率も数%存在し、波長選択の効率が悪かった。非共鳴波長の反射率を低減させるために、米国のR. MagnussonとS. Wangは、格子層(屈折率または形状が周期的に変化する層)の上または下に屈折率の異なる薄膜層を設けることを提案している(米国特許第5598300号) (R. Magnusson and S. S. Wang, 著“Transmission bandpass guided-mode resonance filters”, Applied Optics, Vol.34, No.35 (1995年) 8106-8109頁)。一方、上記の波長フィルタとは別に、光の波長より細かな表面構造で光の反射を無くす方法も考えられている。この原理は、微細構造により表面の平均的な屈折率を徐々に変化させることで反射を低減させるものであり、蛾の目の表面微細構造(Moth Eye構造)として古くから知られている。この反射防止構造の特長は広い波長範囲について反射率が小さいことである。可視光や近赤外線に対する反射防止構造の作成は、1987年頃より始まり(Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, 著“Antireflection effect in ultrahigh spatial-frequency holographic relief gratings, Applied Optics, Vol.26, No.6 (1997年) 1142-1146頁)、現在までに理論解析と制作手法の両面から実用化に向けて研究開発が進められてきた。近年では、金属の細線やドットパターンをマスクに、高密度プラズマを用いてエッチングを行うことで、高アスペクト比の三角または円錐の微細構造を作成することも可能になってきた(特願2000-088524号, 高原、豊田)。
【0003】
【発明が解決しようとする課題】
高効率な波長フィルタの性能は、中心波長での反射率が100%に近く、それ以外の波長では反射率が0%(すべて透過)になるのが望ましい。Magnussonらの方法で非共鳴波長の反射率を低減させるためには、格子層を含めて複数層の薄膜を成膜する必要がある。フィルタを量産する場合、屈折率の異なる薄膜を多重に成膜することは、生産コストを高くするという問題を生じる。
【0004】
本発明の目的は、製造が簡便であり生産コストを低減させることができ、しかも高い波長選択性が得られる狭帯域反射型波長フィルタを提供することにある。
【0005】
【課題を解決するための手段】
本発明の上記目的は、表面に微細凹凸を有する基板と、該微細凹凸面を覆う誘電体層とを備え、前記基板の微細凹凸は、基板表面での反射防止作用が得られるように、周囲雰囲気と誘電体層と基板とを媒質としたときの微細凹凸高さ方向における各高さでの平均屈折率が周囲雰囲気側から基板側へと緩やかに変化しており、誘電体層、基板、周囲雰囲気の屈折率を各々n,n,nairとしたときに、
>n,nair
であり、前記微細凹凸及び誘電体層が該凹凸面に入射した光の導波層を形成しており、
前記基板の微細凹凸の周期は、該周期をΛ、基板及び周囲雰囲気の屈折率を各々n、nair、照射光の波長及び入射角を各々λ、θとすると、
Λ<λ/(n+nairsinθ)
Λ<λ/(nair+nairsinθ)
の双方を満足する範囲とされ、
前記微細凹凸の周期Λは、前記導波層における最も高い平均屈折率をngmax とすると
Λ>λ/(ngmax+nairsinθ)
を満足する範囲とされ、
前記微細凹凸形状のアスペクト比が1.5以上であることを特徴とする波長フィルタにより達成される。
【0006】
【発明の実施の形態】
以下、本発明の一実施形態に係る狭帯域反射型波長フィルタについて図面を参照しながら説明する。
【0007】
図1は、本発明の一実施形態に係る波長フィルタの断面を概略的に示している。この波長フィルタは、表面に微細凹凸を有する基板1と、該微細凹凸面を覆う誘電体層2とを備えている。基板1の微細凹凸は、この例では、図示のように断面三角波状に形成されている。この微細凹凸は、これに限らず、サインカーブ状等、基板表面での反射防止作用が得られるように、周囲雰囲気(通常は空気)Aと誘電体層2との平均屈折率が周囲雰囲気側から基板側へと緩やかに変化した形状とすることができる。このため、微細凹凸の断面形状は、凸部が先細となるように形成されているのが望ましい。
【0008】
誘電体層及び基板の材質は、誘電体層、基板、周囲雰囲気の屈折率を各々nd,ns,nairとしたときに、誘電体の屈折率ndがこれらの中で最も大きくなるように、すなわち
d>ns,nair
となるように選択される。
【0009】
この構成により、微細凹凸及び誘電体層が該凹凸面に入射した光の導波層が形成されている。
【0010】
前記基板の微細凹凸の周期は、該周期をΛ、基板及び周囲雰囲気の屈折率を各々ns、nair、照射光の波長及び入射角を各々λ、θとすると、
Λ<λ/(ns+nairsinθ)
Λ<λ/(nair+nairsinθ)
の双方を満足する範囲とされる。微細凹凸の周期をこの範囲とすることにより、雰囲気側及び基板側への回折光の発生が抑止される。
【0011】
さらに、微細凹凸の周期Λは、導波層の平均屈折率をng における最も高い平均屈折率をngmax とすると
Λ>λ/(ngmax+nairsinθ)
を満足する範囲とされる。微細凹凸の周期をこの範囲とすることにより、入射光を導波層内に伝搬させることができる。
【0012】
基板の材料としてはガラス、プラスチック、シリコン単結晶等を使用することができる。これらの中でも、低屈折率であるガラスやプラスチックが特に望ましい。
【0013】
また、誘電体層を形成する材料としては、TiO2, MgF2, SiO2等、通常の光学薄膜形成用材料を使用することができる。これらの中でも、高屈折率であるTiO2, MgF2が特に望ましい。また、照射光が赤外線の場合は、Si, Ge, ZnSe等を使用することができる。
【0014】
微細凹凸の周期Λは、用いる材料の屈折率、照射光の波長等の条件に応じて適宜決定される。照射光がフィルタ面に垂直に入射する場合は、(基準波長λ/基板屈折率ns)の0.9倍程度が望ましい。
【0015】
この微細凹凸は、例えば、干渉縞露光や電子ビーム露光とエッチングとを組み合わせることにより基材に微小な凹凸を形成し、その表面に真空蒸着、スパッタ法等により高屈折率膜を形成するというようにして形成することができる。また、基材の微小な凹凸は成形型を用いて量産することができる。
【0016】
本発明は、入射光の中の特定の波長の光を選択的に反射する機能を有する。これには、入射光に対する反射防止作用及び共振モード格子フィルタとしての作用が寄与している。以下、これらの作用及びその原理について説明する。
【0017】
a. 反射防止作用について
図2は、3角形を基本単位とする反射防止構造の1例を示している。三角形の周期をΛ、周囲雰囲気(空気層)の屈折率をnair、基板1aの屈折率をnsとする。真空中での波長がλの大きさをもつ光が角度qをもって入射する場合、回折波を発生しないための条件は、
Λ<λ/(ns+nairsinθ) (1)
Λ<λ/(nair+nairsinθ) (1')
の双方を満たすことである。高さ方向に対する平均屈折率を図2の右側にグラフで模式的に示している。この構造においては、上部の周囲雰囲気の屈折率から基板層の屈折率へと変化している。光の反射は屈折率の急激な変化で生じるので、図のように屈折率が徐々に変化する場合、光はほとんど反射しない。また、基板の凹凸断面形状は必ずしも三角形である必要はない。平均屈折率が高さ方向に緩やかに変化する構造であれば、反射防止の効果が現れる。最適な平均屈折率の変化は、空気の屈折率から基板の屈折率に一定に変わるものである。
反射率と透過率は回折格子の厳密解析計算法(Rigorous Coupled-wave Analysisなど)を用いて求めることができる。微細凹凸は、凹凸の高さが高いほど(アスペクト比が高いほど)長い波長も含めて反射防止の効果がある。望ましくは、微細凹凸の高さ(深さ)は、照射光の波長と同一かそれ以上とされる。
【0018】
b. 共振モード格子フィルタについて
図3は共鳴現象を利用した格子フィルタの基本構成である。フィルタは、基板1b上に屈折率変調または矩形波状等の周期的な形状変化をもつ導波層2bを有している。入射光は、導波層の周期性により回折される。ただし、回折波は導波層と基板層および導波層と周囲雰囲気の境界で全反射が起こる角度に回折するよう設定する。このためには、導波層は基板層や周囲雰囲気より高い屈折率
g>nair,ns (ngは導波層の平均屈折率) (2)を持たねばならず、また、導波層の変調周期Λは、導波層における最も高い平均屈折率をngmax として
Λ>λ/(ngmax+nairsinθ) (3)
の条件を満足しなければならない。
【0019】
入射波は導波層の格子構造のために、導波層内に回折波を発生する。この回折波が、導波層内を伝搬する条件を満たすとき、再び周期構造と結合を起こして、入射光に対して鏡面反射の方向に回折波(反射波)を発生する。一方、導波条件を満足しない回折波は導波層に進入することができず、入射光に対して透過波となる。前記導波条件を満足する場合は、反射効率がほぼ100%の高効率なフィルタになる。このフィルタはバンドパスの反射型フィルタであり、屈折率の変調量を調節することで、フィルタの半値幅をコントロールできる。したがって、屈折率の変調量を適当に設計することにより、数オングストロームの半値幅のフィルタを作ることができる。導波層の伝搬条件は電場の偏光方向によって異なる。したがって、同じ構造であっても、共鳴波長は入射光の偏光方向によって異なる。また、一般にTM波(磁場が紙面に垂直な波動)の方がTE波(電場が紙面に垂直な波動)に比べて半値幅が狭い。
【0020】
図3の構造において、導波層の上面、下面では屈折率差による反射光が生じるので、非共鳴波の反射率が0にならず、数%の反射光が残る。図4は、Magnussonらが提案している非共鳴波の反射率低減のための多層構造である。この例では変調導波層2cの上下に薄膜層3c、4cを1層ずつ付加して基板1c上に設けている。この多層構造では、入射光を上下の層で反射させ打ち消し合うように干渉させることにより、反射率を低減している。薄膜層の厚さはそのような干渉が生じるように、光学膜厚が波長の半分または1/4になるように設定される。また、上下いずれか一方の層を変調導波層の界面で代用することにより、他方の薄膜層を省略することも可能である。また、より反射率を低減させるためには、薄膜層の層数を増やす必要がある。非共鳴波の反射率低減の原理は、よく知られている誘電体多層膜による反射率低減と同じである。
【0021】
c. 反射防止構造型の共振モード格子フィルタ
本発明は、上記原理に基づくものである。以下、図1に示す共振モード格子フィルタの断面図に基づいて本発明を説明する。このフィルタは、図2の反射防止構造に、真空蒸着などの方法で基板より屈折率の高い誘電体薄膜を付着したものである。薄膜の表面形状は、基板の凹凸形状を保存しているものが望ましい。高さ方向に対する平均屈折率の分布を図の右側にグラフで示す。平均屈折率は周囲雰囲気の値から徐々に大きくなり、その後小さくなって基板の屈折率と一致する。しがって、屈折率分布型の光導波路と同じ機能を果たし、回折波がこの領域に閉じこめられる。そして、3角形の格子周期で横方向について屈折率が変調されていることになる。この回折波が、式(2)及び式(3)で示した導波層内を伝搬する条件を満たすとき、再び周期構造と結合を起こして、入射光に対して鏡面反射の方向に回折波(反射波)を発生する。
【0022】
このフィルタの反射特性は、凹凸形状のアスペクト比(凹凸の高さと周期の比)、誘電体薄膜の膜圧と屈折率、基板材料の屈折率に強く影響される。一般に、半値幅(ピーク領域の波長幅)を狭くするには、アスペクト比を高くする(山を高くする)、薄膜の屈折率を低めに設定する、薄膜の厚さを薄くする、ということで実現できる。非共鳴波長での反射率を低くするには、アスペクト比を高くする必要がある。
【0023】
以下に数値計算の結果を使って具体例を紹介する。形状から光の反射特性を求めるのに、RCWA (Rigorous Coupled Wave Analysis) とよばれる計算アルゴリズムを用いた。この計算アルゴリズムは、回折格子についての電磁気的な厳密計算手法であり、共鳴領域の回折効率を正確に求めるための方法として、世界各地で用いられているものである。
【0024】
図5(a)は、アスペクト比2.5の構造をもつ石英基板に屈折率2.25(TiO)の誘電体薄膜を基準波長の0.4倍の厚さで形成した波長フィルタの縦断面とその位置に対応する平均屈折率を示しており、図6(a)は、この場合の分光反射率特性の計算値である。λを付した数値は波長で規格化した値を示し、nmを付した数値は波長を具体的に633nmとしたときの値を表している。入射光にはTM波を想定し、基準波長で共鳴するように設計を行った。格子周期は基準波長の0.64倍である。半値幅が波長の3×10−4倍と極めて狭い。また、それ以外の波長では反射率は非常に小さく、約0.3%の大きさである。この結果から、反射防止構造に1層だけの薄膜を形成した構造で、狭帯域の波長フィルタとして機能すること、および、非共鳴光の反射率が低減できていることが分かる。
【0025】
図5(b), 図5(c)はアスペクト比が1.5と0.7の構造をもつ石英基板に屈折率2.25(TiO2)の誘電体薄膜を基準波長の0.4倍の厚さで形成した波長フィルタの縦断面とその位置に対応する平均屈折率を示している。図6(b),図6(c)は、各場合の分光反射率特性の計算値である。(b)においては、非共鳴光の反射防止の効果がよく現れているが、(c)ではその効果が薄れ、長波長側で反射率が大きくなっている。ただし、(b)の半値幅は(a)の場合に比べてかなり広いものになっている。
【0026】
薄膜の厚さより大きな凹凸のある構造では、アスペクト比が低いほど、導波路としての屈折率変調が強くなる。そのため、アスペクト比が小さいほど半値幅が大きくなる。
【0027】
低いアスペクト比で狭い半値幅を実現するには、薄膜の膜厚または屈折率を小さくする必要がある。ただし、このような構成では導波層の平均屈折率が小さくなり(基板の屈折率との差が小さくなり)、透過の1次回折波が発生する条件と共鳴条件が近くなって、共鳴波長より短い波長領域では、回折波が発生する。図5のフィルタにおける透過1次回折波の発生の様子を図7に示す。図7の(a), (b), (c)は図5の(a), (b), (c)の場合とアスペクト比が一致している。アスペクト比が2.5の場合、1次回折波は共鳴波長から離れたところで発生する。アスペクト比が0.7では、共鳴波長とほとんど同じ波長で回折光が発生する。フィルタを「特定の一つの波長だけを取り出す素子」として利用する場合は、共鳴波(反射波)を出力として扱えばよく、これは1次回折波に影響を受けないので、このような特性に注意を払う必要はない。しかし、透過光を利用する場合においては、共鳴波長より短い波長領域で、回折のためにエネルギーが失われることになり、利用効率の低いものになる。
【0028】
以上の例は、格子構造に対して垂直に光が入射するという条件を設定したものであった。しかしながら、光が各図の紙面内で斜めに入射する場合においても、同様の働きをする。
【0029】
【発明の効果】
本発明に係る波長フィルタは、表面に微細凹凸を有する基板と、該微細凹凸面を覆う誘電体層とを備え、前記基板の微細凹凸は、基板表面での反射防止作用が得られるように、周囲雰囲気と誘電体層と基板とを媒質としたときの微細凹凸高さ方向における各高さでの平均屈折率が周囲雰囲気側から基板側へと緩やかに変化している。これにより、入射光に対する反射防止効果が得られる。また、誘電体層、基板、周囲雰囲気の屈折率を各々nd,ns,nairとしたときに、
d>ns,nair
となるように各々の屈折率が決められ、微細凹凸及び誘電体層が該凹凸面に入射した光の導波層を形成している。
【0030】
前記基板の微細凹凸の周期は、該周期をΛ、基板及び周囲雰囲気の屈折率を各々ns、nair、照射光の波長及び入射角を各々λ、θとすると、
Λ<λ/(ns+nairsinθ)
Λ<λ/(nair+nairsinθ)
の双方を満足する範囲とされ、これにより、雰囲気側及び基板側への回折光の発生が抑止される。
【0031】
さらに、微細凹凸の周期Λは、導波層の平均屈折率をn 、導波層における最も高い平均屈折率をngmaxとすると
Λ>λ/(ngmax+nairsinθ)
を満足する範囲とされ、これにより、入射光を導波層内に伝搬させることができる。
【0032】
このようにして、波長フィルタに入射した光は、導波層内を伝搬し微細凹凸の周期構造と再度結合して、入射光に対して鏡面反射の方向に出射する。これにより、特定波長の光が反射光として得られ、他の波長の光は基板を透過する。その結果、非共鳴波長の反射を抑制して高い波長選択性が得られる。
【0033】
本フィルタを製作するには、基板に微細凹凸による反射防止構造をもたせ、これに一層の誘電体薄膜を形成するだけでよい。したがって、広い波長範囲で非共鳴波の反射率を低減するために複数層の光学薄膜を設けていた従来のスラブ型格子フィルタと異なり、複数層に亘る複雑な誘電体の蒸着プロセスが不要になり、製造が簡便であり生産コストを低減させることができる。
【0034】
本フィルタの用途は、通常の共振モード格子フィルタと同様に、レーザー発振用キャビティーミラー、分光用波長選択素子、波長多重光通信用波長分割素子、偏光分離素子などがある。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る波長フィルタの作動原理の説明図であり、フィルタの縦断面及びその位置に対応した平均屈折率を示す。
【図2】 本発明の基本となる原理の説明図であり、反射防止構造の縦断面及びその位置に対応した平均屈折率を示す。
【図3】 本発明の基本となる原理の説明図であり、共振モード格子フィルタの縦断面を示す。
【図4】 本発明に関連する構造の説明図であり、多層構造方フィルタの縦断面を示す。
【図5】 3種類のアスペクト比の構造をもつ波長フィルタの縦断面とその位置に対応する平均屈折率を示している。
【図6】 図5に示した波長フィルタの各々の分光反射率特性のグラフである。
【図7】 図5に示したフィルタにおける透過1次回折波の発生の様子を示すグラフである。
【符号の説明】
1,1a,1b,1c 基板
2,2b、2c 誘電体層
3c 薄膜層
4c 薄膜層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength filter, and more particularly to a wavelength filter having a narrow selection wavelength characteristic.
[0002]
[Prior art]
A plate-like wavelength filter can be created by applying periodic refractive index modulation to a slab type (layer type) optical waveguide or by forming periodic fine irregularities on the upper or lower surface of the waveguide. . This wavelength filter uses a resonance phenomenon in a periodic structure, and has a narrow band pass characteristic that reflects only light in an extremely narrow wavelength range of several nanometers or less.
In 1985, Bulgarian Mashev and Popov prototyped a filter for visible light with a wavelength of 633 nm and confirmed its resonance phenomenon (L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings”, Optics Communications, Vol.55, No.6 (1985) pp.377-380). However, in the filter structure proposed by them, the reflectance at the resonance wavelength is high, but the reflectance at the non-resonance wavelength is also several percent, and the wavelength selection efficiency is poor. In order to reduce the reflectivity of non-resonant wavelengths, US R. Magnusson and S. Wang have thin film layers with different refractive indexes above or below a grating layer (a layer whose refractive index or shape changes periodically). (US Pat. No. 5,598,300) (R. Magnusson and SS Wang, “Transmission bandpass guided-mode resonance filters”, Applied Optics, Vol. 34, No. 35 (1995) 8106-8109 page). On the other hand, apart from the above wavelength filter, a method of eliminating reflection of light with a surface structure finer than the wavelength of light is also considered. This principle reduces reflection by gradually changing the average refractive index of the surface with a fine structure, and has long been known as the surface fine structure of the eyelid (Moth Eye structure). The feature of this antireflection structure is that the reflectance is small over a wide wavelength range. The construction of antireflection structures for visible light and near infrared rays began around 1987 (Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings, Applied Optics. , Vol.26, No.6 (1997) 1142-1146), research and development have been promoted so far in terms of both theoretical analysis and production methods. High-aspect-ratio triangular or conical microstructures can be created by etching using high-density plasma with a pattern as a mask (Japanese Patent Application No. 2000-088524, Takahara, Toyota).
[0003]
[Problems to be solved by the invention]
As for the performance of a highly efficient wavelength filter, it is desirable that the reflectance at the center wavelength is close to 100%, and the reflectance is 0% (all transmission) at other wavelengths. In order to reduce the reflectance of non-resonant wavelengths by the method of Magnusson et al., It is necessary to form a plurality of thin films including a lattice layer. In the case of mass production of filters, the formation of multiple thin films having different refractive indexes raises the problem of increasing production costs.
[0004]
An object of the present invention is to provide a narrow-band reflection type wavelength filter that is easy to manufacture, can reduce production costs, and can obtain high wavelength selectivity.
[0005]
[Means for Solving the Problems]
The object of the present invention is to provide a substrate having fine unevenness on the surface and a dielectric layer covering the fine uneven surface, and the fine unevenness of the substrate is provided with an antireflection effect on the substrate surface. When the atmosphere, dielectric layer, and substrate are used as the medium, the average refractive index at each height in the height direction of the fine irregularities is gradually changing from the ambient atmosphere side to the substrate side, and the dielectric layer, substrate, When the refractive index of the ambient atmosphere is n d , n s , and n air , respectively,
n d > n s , n air
The fine irregularities and the dielectric layer form a waveguide layer of light incident on the irregular surface,
The period of the fine unevenness of the substrate is Λ, the refractive index of the substrate and the surrounding atmosphere is n s , n air , and the wavelength and incident angle of the irradiation light are λ and θ, respectively.
Λ <λ / (n s + n air sinθ)
Λ <λ / (n air + n air sin θ)
Is a range that satisfies both,
The period Λ of the fine irregularities is Λ> λ / (n gmax + n air sin θ) where ng max is the highest average refractive index in the waveguide layer.
Is a range that satisfies
This is achieved by a wavelength filter characterized in that the fine concavo-convex shape has an aspect ratio of 1.5 or more .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a narrowband reflection type wavelength filter according to an embodiment of the present invention will be described with reference to the drawings.
[0007]
FIG. 1 schematically shows a cross section of a wavelength filter according to an embodiment of the present invention. This wavelength filter includes a substrate 1 having fine unevenness on the surface and a dielectric layer 2 covering the fine uneven surface. In this example, the fine unevenness of the substrate 1 is formed in a triangular wave shape as shown in the figure. This fine unevenness is not limited to this, but the average refractive index of the ambient atmosphere (usually air) A and the dielectric layer 2 is such that the average refractive index of the dielectric layer 2 is such that a sine curve shape or the like can be obtained at the substrate surface The shape can be changed gently from the substrate side to the substrate side. For this reason, it is desirable that the cross-sectional shape of the fine unevenness is formed so that the convex portion is tapered.
[0008]
As for the material of the dielectric layer and the substrate, when the refractive indexes of the dielectric layer, the substrate, and the surrounding atmosphere are n d , n s , and n air , respectively, the refractive index n d of the dielectric is the largest among them. That is, n d > n s , n air
Is selected.
[0009]
With this configuration, a light guide layer is formed in which fine unevenness and a dielectric layer are incident on the uneven surface.
[0010]
The period of the fine irregularities of the substrate is Λ, the refractive index of the substrate and the surrounding atmosphere is n s , n air , and the wavelength and incident angle of the irradiation light are λ and θ, respectively.
Λ <λ / (n s + n air sinθ)
Λ <λ / (n air + n air sinθ)
It is made the range which satisfies both of these. By setting the period of the fine unevenness within this range, generation of diffracted light on the atmosphere side and the substrate side is suppressed.
[0011]
Further, the period Λ of the fine irregularities is Λ> λ / ( ng max + n air sin θ) where ng max is the highest average refractive index at ng as the average refractive index of the waveguide layer.
It is made the range which satisfies. Incident light can be propagated into the waveguiding layer by setting the period of the fine irregularities within this range.
[0012]
As the substrate material, glass, plastic, silicon single crystal, or the like can be used. Among these, glass and plastic having a low refractive index are particularly desirable.
[0013]
Further, as a material for forming the dielectric layer, a normal optical thin film forming material such as TiO 2 , MgF 2 , and SiO 2 can be used. Among these, TiO 2 and MgF 2 having a high refractive index are particularly desirable. Moreover, when irradiation light is infrared rays, Si, Ge, ZnSe, etc. can be used.
[0014]
The period Λ of the fine unevenness is appropriately determined according to conditions such as the refractive index of the material used and the wavelength of the irradiation light. When the irradiation light is incident on the filter surface perpendicularly, it is preferably about 0.9 times (reference wavelength λ / substrate refractive index n s ).
[0015]
For example, the fine irregularities are formed by combining interference fringe exposure, electron beam exposure and etching to form minute irregularities on the substrate, and forming a high refractive index film on the surface by vacuum deposition, sputtering, or the like. Can be formed. Moreover, the minute unevenness of the substrate can be mass-produced using a mold.
[0016]
The present invention has a function of selectively reflecting light of a specific wavelength in incident light. This contributes to an antireflection effect on incident light and an action as a resonance mode grating filter. Hereinafter, these actions and their principles will be described.
[0017]
a. Antireflection Action FIG. 2 shows an example of an antireflection structure having a triangle as a basic unit. Let Λ be the period of the triangle, n air be the refractive index of the surrounding atmosphere (air layer), and n s be the refractive index of the substrate 1a. When light having a wavelength of λ in vacuum is incident at an angle q, the condition for not generating a diffracted wave is:
Λ <λ / (n s + n air sinθ) (1)
Λ <λ / (n air + n air sinθ) (1 ')
It is to satisfy both. The average refractive index in the height direction is schematically shown by a graph on the right side of FIG. In this structure, the refractive index of the upper ambient atmosphere changes from the refractive index of the substrate layer. Since reflection of light occurs due to a sudden change in refractive index, light hardly reflects when the refractive index gradually changes as shown in the figure. Further, the concave-convex cross-sectional shape of the substrate is not necessarily a triangular shape. If the average refractive index is a structure that gradually changes in the height direction, an antireflection effect appears. The optimum change in average refractive index is a constant change from the refractive index of air to the refractive index of the substrate.
The reflectance and transmittance can be obtained using a rigorous analysis calculation method (such as Rigorous Coupled-wave Analysis) of the diffraction grating. The fine unevenness has an antireflection effect including a longer wavelength as the height of the unevenness is higher (as the aspect ratio is higher). Desirably, the height (depth) of the fine irregularities is equal to or greater than the wavelength of the irradiation light.
[0018]
b. Resonant Mode Lattice Filter FIG. 3 shows the basic configuration of a lattice filter using a resonance phenomenon. The filter has a waveguide layer 2b having a periodic shape change such as refractive index modulation or rectangular wave on the substrate 1b. Incident light is diffracted by the periodicity of the waveguiding layer. However, the diffracted wave is set so as to be diffracted to an angle at which total reflection occurs at the boundary between the waveguide layer and the substrate layer and between the waveguide layer and the ambient atmosphere. For this purpose, waveguide layers higher refractive index than the substrate layer and the ambient atmosphere n g> n air, n s (n g is the average refractive index of the waveguiding layer) without must have a (2), also, guide the modulation period of the wave layer lambda, the highest average refractive index as n gmax Λ> λ / (n gmax + n air sinθ) in the waveguiding layer (3)
Must meet the requirements of
[0019]
The incident wave generates a diffracted wave in the waveguide layer because of the lattice structure of the waveguide layer. When this diffracted wave satisfies the condition for propagating in the waveguide layer, the diffracted wave is coupled with the periodic structure again to generate a diffracted wave (reflected wave) in the direction of specular reflection with respect to the incident light. On the other hand, a diffracted wave that does not satisfy the waveguide condition cannot enter the waveguide layer and becomes a transmitted wave with respect to incident light. When the waveguide condition is satisfied, a highly efficient filter having a reflection efficiency of almost 100% is obtained. This filter is a band-pass reflection type filter, and the half-value width of the filter can be controlled by adjusting the modulation amount of the refractive index. Therefore, a filter with a half width of several angstroms can be made by appropriately designing the amount of modulation of the refractive index. The propagation condition of the waveguiding layer varies depending on the polarization direction of the electric field. Therefore, even with the same structure, the resonance wavelength varies depending on the polarization direction of incident light. In general, TM waves (waves whose magnetic field is perpendicular to the paper surface) have a narrower half-value width than TE waves (waves whose electric field is perpendicular to the paper surface).
[0020]
In the structure of FIG. 3, reflected light due to the difference in refractive index is generated on the upper and lower surfaces of the waveguiding layer, so the reflectance of the non-resonant wave does not become zero, and a few percent of reflected light remains. FIG. 4 shows a multilayer structure for reducing the reflectance of non-resonant waves proposed by Magnusson et al. In this example, thin film layers 3c and 4c are added to the top and bottom of the modulation waveguide layer 2c one by one and provided on the substrate 1c. In this multilayer structure, the reflectance is reduced by causing incident light to be reflected by the upper and lower layers and causing interference so as to cancel each other. The thickness of the thin film layer is set so that the optical film thickness is half or 1/4 of the wavelength so that such interference occurs. In addition, by replacing one of the upper and lower layers with the interface of the modulation waveguide layer, the other thin film layer can be omitted. Further, in order to further reduce the reflectance, it is necessary to increase the number of thin film layers. The principle of reducing the reflectance of the non-resonant wave is the same as that of the well-known dielectric multilayer film.
[0021]
c. Resonance mode grating filter of antireflection structure The present invention is based on the above principle. Hereinafter, the present invention will be described based on a cross-sectional view of the resonance mode grating filter shown in FIG. This filter is obtained by attaching a dielectric thin film having a higher refractive index than that of the substrate to the antireflection structure of FIG. 2 by a method such as vacuum deposition. The surface shape of the thin film desirably preserves the uneven shape of the substrate. The distribution of the average refractive index with respect to the height direction is shown by a graph on the right side of the figure. The average refractive index gradually increases from the value of the ambient atmosphere, and then decreases to coincide with the refractive index of the substrate. Therefore, it performs the same function as the gradient index optical waveguide, and the diffracted wave is confined in this region. The refractive index is modulated in the lateral direction with a triangular lattice period. When this diffracted wave satisfies the conditions for propagating in the waveguiding layer shown in Equations (2) and (3), it couples with the periodic structure again, and the diffracted wave in the direction of specular reflection with respect to the incident light. (Reflected wave) is generated.
[0022]
The reflection characteristics of this filter are strongly influenced by the aspect ratio of the concavo-convex shape (ratio of concavo-convex height and period), the film pressure and refractive index of the dielectric thin film, and the refractive index of the substrate material. In general, to reduce the half-value width (wavelength width of the peak region), increase the aspect ratio (increase the peak), set the refractive index of the thin film low, or decrease the thickness of the thin film. realizable. In order to reduce the reflectance at non-resonant wavelengths, it is necessary to increase the aspect ratio.
[0023]
Specific examples are introduced below using the results of numerical calculations. A calculation algorithm called RCWA (Rigorous Coupled Wave Analysis) was used to obtain the light reflection characteristics from the shape. This calculation algorithm is a strict electromagnetic calculation method for a diffraction grating, and is used throughout the world as a method for accurately obtaining the diffraction efficiency of the resonance region.
[0024]
Fig. 5 (a) shows the longitudinal section and position of a wavelength filter in which a dielectric thin film with a refractive index of 2.25 (TiO 2 ) is formed on a quartz substrate having a structure with an aspect ratio of 2.5 with a thickness 0.4 times the reference wavelength. FIG. 6A shows the calculated value of the spectral reflectance characteristic in this case. A numerical value with λ indicates a value normalized by the wavelength, and a numerical value with nm indicates a value when the wavelength is specifically 633 nm. The incident light was designed to resonate at the reference wavelength, assuming a TM wave. The grating period is 0.64 times the reference wavelength. The full width at half maximum is very narrow, 3 × 10 −4 times the wavelength. At other wavelengths, the reflectivity is very small, about 0.3%. From this result, it can be seen that the structure in which only one thin film is formed in the antireflection structure functions as a narrow-band wavelength filter, and the reflectance of non-resonant light can be reduced.
[0025]
5 (b) and 5 (c) show a wavelength filter in which a dielectric thin film having a refractive index of 2.25 (TiO 2 ) is formed on a quartz substrate having an aspect ratio of 1.5 and 0.7 with a thickness 0.4 times the reference wavelength. The average refractive index corresponding to the longitudinal section and its position is shown. FIG. 6B and FIG. 6C are calculated values of spectral reflectance characteristics in each case. In (b), the effect of preventing reflection of non-resonant light appears well, but in (c), the effect is reduced and the reflectance is increased on the long wavelength side. However, the half width of (b) is considerably wider than that of (a).
[0026]
In a structure with irregularities larger than the thickness of the thin film, the refractive index modulation as a waveguide becomes stronger as the aspect ratio is lower. For this reason, the half width increases as the aspect ratio decreases.
[0027]
In order to realize a narrow half width at a low aspect ratio, it is necessary to reduce the film thickness or refractive index of the thin film. However, in such a configuration, the average refractive index of the waveguide layer is small (the difference from the refractive index of the substrate is small), the conditions for generating the first-order diffracted wave of transmission are close to the resonance conditions, and the resonance wavelength In a shorter wavelength region, a diffracted wave is generated. FIG. 7 shows how the transmitted first-order diffracted wave is generated in the filter of FIG. 7 (a), (b), and (c) have the same aspect ratio as that of FIG. 5 (a), (b), and (c). When the aspect ratio is 2.5, the first-order diffracted wave is generated away from the resonance wavelength. When the aspect ratio is 0.7, diffracted light is generated at almost the same wavelength as the resonance wavelength. When the filter is used as an “element that extracts only one specific wavelength”, it is sufficient to treat the resonance wave (reflected wave) as an output, which is not affected by the first-order diffracted wave. There is no need to pay attention. However, in the case of using transmitted light, energy is lost due to diffraction in a wavelength region shorter than the resonance wavelength, resulting in low utilization efficiency.
[0028]
In the above example, the condition that light enters perpendicularly to the grating structure is set. However, the same operation is performed even when light is incident obliquely within the drawing sheet.
[0029]
【The invention's effect】
The wavelength filter according to the present invention comprises a substrate having fine unevenness on the surface and a dielectric layer covering the fine uneven surface, so that the fine unevenness of the substrate has an antireflection effect on the substrate surface, When the ambient atmosphere, the dielectric layer, and the substrate are used as the medium, the average refractive index at each height in the height direction of the fine unevenness gradually changes from the ambient atmosphere side to the substrate side. Thereby, the antireflection effect with respect to incident light is acquired. Further, when the refractive index of the dielectric layer, the substrate, and the surrounding atmosphere is n d , n s , and n air , respectively,
n d > n s , n air
Each refractive index is determined such that the fine unevenness and the dielectric layer form a waveguide layer of light incident on the uneven surface.
[0030]
The period of the fine irregularities of the substrate is Λ, the refractive index of the substrate and the surrounding atmosphere is n s , n air , and the wavelength and incident angle of the irradiation light are λ and θ, respectively.
Λ <λ / (n s + n air sinθ)
Λ <λ / (n air + n air sinθ)
Thus, the generation of diffracted light on the atmosphere side and the substrate side is suppressed.
[0031]
Further, the period Λ of the fine irregularities is Λ> λ / ( ng max + n air sinθ) where ng is the average refractive index of the waveguide layer and ng max is the highest average refractive index in the waveguide layer .
Thus, incident light can be propagated into the waveguide layer.
[0032]
In this way, the light incident on the wavelength filter propagates in the waveguide layer, recombines with the fine uneven periodic structure, and exits in the direction of specular reflection with respect to the incident light. Thereby, light of a specific wavelength is obtained as reflected light, and light of other wavelengths passes through the substrate. As a result, reflection at non-resonant wavelengths is suppressed and high wavelength selectivity is obtained.
[0033]
In order to manufacture this filter, it is only necessary to provide the substrate with an antireflection structure by fine irregularities and to form a single layer of dielectric thin film thereon. Therefore, unlike conventional slab-type grating filters that have multiple layers of optical thin films to reduce the reflectivity of non-resonant waves over a wide wavelength range, a complex dielectric deposition process over multiple layers is not required. The production is simple and the production cost can be reduced.
[0034]
Applications of this filter include a cavity mirror for laser oscillation, a wavelength selection element for spectroscopy, a wavelength division element for wavelength multiplexing optical communication, a polarization separation element, and the like, as in a normal resonance mode grating filter.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the operating principle of a wavelength filter according to an embodiment of the present invention, showing a longitudinal section of the filter and an average refractive index corresponding to its position.
FIG. 2 is an explanatory diagram of the principle underlying the present invention, showing a longitudinal section of an antireflection structure and an average refractive index corresponding to its position.
FIG. 3 is an explanatory diagram of the principle underlying the present invention, and shows a longitudinal section of a resonant mode grating filter.
FIG. 4 is an explanatory diagram of a structure related to the present invention, and shows a longitudinal section of a multilayer structure type filter.
FIG. 5 shows a longitudinal section of a wavelength filter having a structure with three types of aspect ratios and an average refractive index corresponding to the position.
6 is a graph of spectral reflectance characteristics of each of the wavelength filters shown in FIG.
7 is a graph showing how a transmission first-order diffracted wave is generated in the filter shown in FIG.
[Explanation of symbols]
1, 1a, 1b, 1c Substrate 2, 2b, 2c Dielectric layer 3c Thin film layer 4c Thin film layer

Claims (1)

表面に微細凹凸を有する基板と、該微細凹凸面を覆う誘電体層とを備え、前記基板の微細凹凸は、基板表面での反射防止作用が得られるように、周囲雰囲気と誘電体層と基板とを媒質としたときの微細凹凸高さ方向における各高さでの平均屈折率が周囲雰囲気側から基板側へと緩やかに変化しており、誘電体層、基板、周囲雰囲気の屈折率を各々n,n,nairとしたときに、
>n,nair
であり、前記微細凹凸及び誘電体層が該凹凸面に入射した光の導波層を形成しており、
前記基板の微細凹凸の周期は、該周期をΛ、基板及び周囲雰囲気の屈折率を各々n、nair、照射光の波長及び入射角を各々λ、θとすると、
Λ<λ/(n+nairsinθ)
Λ<λ/(nair+nairsinθ)
の双方を満足する範囲とされ、
前記微細凹凸の周期Λは、前記導波層における最も高い平均屈折率をngmax とすると
Λ>λ/(ngmax+nairsinθ)
を満足する範囲とされ
前記微細凹凸形状のアスペクト比が1.5以上であることを特徴とする波長フィルタ。
A substrate having fine unevenness on the surface and a dielectric layer covering the fine uneven surface, and the fine unevenness of the substrate has an ambient atmosphere, a dielectric layer, and a substrate so as to obtain an antireflection effect on the substrate surface. The average refractive index at each height in the height direction of the fine irregularities when using the medium as the medium gradually changes from the ambient atmosphere side to the substrate side, and the refractive index of the dielectric layer, the substrate, and the ambient atmosphere is changed. When n d , n s , and n air are set,
n d > n s , n air
The fine irregularities and the dielectric layer form a waveguide layer of light incident on the irregular surface,
The period of the fine unevenness of the substrate is Λ, the refractive index of the substrate and the surrounding atmosphere is n s , n air , and the wavelength and incident angle of the irradiation light are λ and θ, respectively.
Λ <λ / (n s + n air sinθ)
Λ <λ / (n air + n air sin θ)
Is a range that satisfies both,
The period Λ of the fine irregularities is Λ> λ / (n gmax + n air sin θ) where ng max is the highest average refractive index in the waveguide layer.
Is the range that satisfies,
The wavelength filter, wherein the fine concavo-convex shape has an aspect ratio of 1.5 or more .
JP2001060810A 2001-03-05 2001-03-05 Wavelength filter Expired - Fee Related JP3711446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060810A JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060810A JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Publications (2)

Publication Number Publication Date
JP2002258034A JP2002258034A (en) 2002-09-11
JP3711446B2 true JP3711446B2 (en) 2005-11-02

Family

ID=18920186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060810A Expired - Fee Related JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Country Status (1)

Country Link
JP (1) JP3711446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149802A1 (en) 2008-07-28 2010-02-03 Ricoh Company, Limited Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019904B2 (en) 2003-02-18 2006-03-28 Sumitomo Electric Industries, Ltd. Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
CN100526918C (en) * 2003-02-18 2009-08-12 住友电气工业株式会社 Diffraction grating element and manufacturing method and design method
JP4569744B2 (en) * 2003-07-14 2010-10-27 コニカミノルタホールディングス株式会社 Optical element molding method
EP1672395B1 (en) * 2003-10-07 2010-12-15 Nalux Co. Ltd. Polarizing element and optical system including polarizing element
US7729053B2 (en) 2005-03-25 2010-06-01 Nalux Co., Ltd. Wavelength filter with a broad bandwidth of reflection spectrum
JP2006350126A (en) * 2005-06-17 2006-12-28 Sharp Corp Wavelength selection element
JP4633005B2 (en) * 2006-06-13 2011-02-16 株式会社リコー Optical switching unit, optical switching unit array and image display device
JP4988282B2 (en) * 2006-09-22 2012-08-01 キヤノン電子株式会社 Optical filter
CN102692662B (en) 2006-08-30 2015-06-24 佳能电子株式会社 Optical filter and image pickup apparatus
JP5443701B2 (en) * 2008-04-03 2014-03-19 パナソニック株式会社 Gas concentration measuring device
JP2010093211A (en) * 2008-10-10 2010-04-22 Ricoh Co Ltd Wavelength conversion laser device
KR101870446B1 (en) * 2011-12-28 2018-07-20 엘지이노텍 주식회사 Optical member and display device having the same
JP2013231779A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
JP6356557B2 (en) * 2013-09-30 2018-07-11 株式会社豊田中央研究所 Lens and manufacturing method thereof
JP2016114777A (en) 2014-12-15 2016-06-23 株式会社エンプラス Polarizer and optical element having polarizer
CN115248468B (en) * 2022-08-22 2023-02-07 之江实验室 Refraction and reflection mixed type grating with high dispersion and high diffraction efficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149802A1 (en) 2008-07-28 2010-02-03 Ricoh Company, Limited Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
US8213083B2 (en) 2008-07-28 2012-07-03 Ricoh Company, Ltd. Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor

Also Published As

Publication number Publication date
JP2002258034A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3711446B2 (en) Wavelength filter
US7386205B2 (en) Optical device and method for making same
US20040047039A1 (en) Wide angle optical device and method for making same
US20110085232A1 (en) Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices
JP2009288718A (en) Resonance grating coupler
JP2002182003A (en) Antireflection functional element, optical element, optical system and optical appliance
Chou et al. Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates
WO2010000542A1 (en) Diffractive polarizing mirror device
US7145722B2 (en) Optical filter and method of manufacturing thereof
Roszkiewicz et al. Unidirectional SPP excitation at asymmetrical two-layered metal gratings
CN108614325B (en) Hybrid plasmon waveguide Bragg grating with double forbidden bands
KR20150122626A (en) Device for controlling the phase of an optical wavefront
US6810176B2 (en) Integrated transparent substrate and diffractive optical element
JP4078527B2 (en) Structure of antireflection film on one-dimensional photonic crystal and method for forming the same
JP3766844B2 (en) Lattice modulation photonic crystal
US7515804B2 (en) Optical waveguide device
JP2007333826A (en) Reflection-type diffraction element
JP3627093B2 (en) Resonant mode grating filter
JP2005010377A (en) Optical retardation element
Maas et al. Generalized antireflection coatings for complex bulk metamaterials
Röhlig et al. Simultaneous occurrence and compensating effects of multi‐type disorder in two‐dimensional photonic structures
JP4139420B2 (en) Wavelength filter
JP2003131028A (en) Optical circuit
JP3955703B2 (en) Fabrication method of fiber grating
JP2007304629A (en) Structure of anti-reflection film on two or three dimensional photonic crystal and method of forming same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees