JP2002258034A - Wavelength filter - Google Patents

Wavelength filter

Info

Publication number
JP2002258034A
JP2002258034A JP2001060810A JP2001060810A JP2002258034A JP 2002258034 A JP2002258034 A JP 2002258034A JP 2001060810 A JP2001060810 A JP 2001060810A JP 2001060810 A JP2001060810 A JP 2001060810A JP 2002258034 A JP2002258034 A JP 2002258034A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
wavelength
air
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001060810A
Other languages
Japanese (ja)
Other versions
JP3711446B2 (en
Inventor
Hisao Kikuta
久雄 菊田
Koichi Iwata
耕一 岩田
Akio Mizutani
彰夫 水谷
Hiroshi Toyoda
宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001060810A priority Critical patent/JP3711446B2/en
Publication of JP2002258034A publication Critical patent/JP2002258034A/en
Application granted granted Critical
Publication of JP3711446B2 publication Critical patent/JP3711446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a narrow range reflection type wavelength filter in which formation of a thin film is required to performed only once and high reflectance can be obtained. SOLUTION: The fine recess and projection pattern of a substrate coated with a dielectric layer is controlled in such a manner that when the ambient atmosphere, the dielectric layer and the substrate are regarded as a medium, the average refractive index depending on the height gently changes from the ambient atmosphere side to the substrate side and that the refractive indices nd , ns , nair in the dielectric layer, the substrate and the ambient atmosphere, respectively, satisfy the relation of nd >ns , nair . The fine recesses and projections and the dielectric layer form a waveguide layer for the light incident to the surface having the recesses and projections. The period Λ of the fine recesses and projections is specified to the range satisfying Λ<λ/(ns +nair sinθ) and Λ<λ/(nair +nair sinθ), wherein ns and nair are the refractive indices of the substrate and the ambient atmosphere, respectively, and λ and θ are the wavelength and the incident angle of the irradiating light, respectively. Or the period Λ of the fine recesses and projections is specified to satisfy the relation of Λ>λ/(ngmax +nair sinθ), wherein ngmax is the highest average refractive index in the waveguide layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長フィルタに関
し、特に、選択波長の狭い特性を持つ波長フィルタに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength filter, and more particularly, to a wavelength filter having a narrow characteristic of a selected wavelength.

【0002】[0002]

【従来の技術】スラブ型(層型)の光導波路に周期的な
屈折率変調を与えたり、導波路の上面または下面に周期
的な微細凹凸形状を形成することにより、板状の波長フ
ィルタを作成することができる。この波長フィルタは、
周期構造内での共鳴現象を利用しており、数ナノメート
ル以下の極めて狭い波長域の光だけを反射する狭帯域バ
ンドパス特性を持っている。1985年に、ブルガリアのMa
shevとPopovが波長633nmの可視光に対するフィルタを実
際に試作し、その共鳴現象を確認している(L. Mashev a
nd E. Popov, “Zeroorder anomaly of dielectric coa
ted gratings”, Optics Communications, Vol.55, No.
6 (1985) pp.377-380)。 ただし、彼らの提案するフィ
ルタ構造では、共鳴波長での反射率は高いものの、非共
鳴波長での反射率も数%存在し、波長選択の効率が悪か
った。非共鳴波長の反射率を低減させるために、米国の
R. MagnussonとS. Wangは、格子層(屈折率または形状
が周期的に変化する層)の上または下に屈折率の異なる
薄膜層を設けることを提案している(米国特許第5598300
号) (R. Magnusson and S. S. Wang, 著“Transmission
bandpass guided-mode resonance filters”, Applied
Optics, Vol.34, No.35 (1995年) 8106-8109頁)。一
方、上記の波長フィルタとは別に、光の波長より細かな
表面構造で光の反射を無くす方法も考えられている。こ
の原理は、微細構造により表面の平均的な屈折率を徐々
に変化させることで反射を低減させるものであり、蛾の
目の表面微細構造(Moth Eye構造)として古くから知ら
れている。この反射防止構造の特長は広い波長範囲につ
いて反射率が小さいことである。可視光や近赤外線に対
する反射防止構造の作成は、1987年頃より始まり(Y. On
o, Y. Kimura, Y. Ohta, and N.Nishida, 著“Antirefl
ection effect in ultrahigh spatial-frequency holog
raphic relief gratings, Applied Optics, Vol.26, N
o.6 (1997年) 1142-1146頁)、現在までに理論解析と制
作手法の両面から実用化に向けて研究開発が進められて
きた。近年では、金属の細線やドットパターンをマスク
に、高密度プラズマを用いてエッチングを行うことで、
高アスペクト比の三角または円錐の微細構造を作成する
ことも可能になってきた(特願2000-088524号, 高原、
豊田)。
2. Description of the Related Art A slab type (layer type) optical waveguide is provided with a periodic refractive index modulation, or a periodic fine unevenness is formed on the upper or lower surface of the waveguide to form a plate-like wavelength filter. Can be created. This wavelength filter is
Utilizing a resonance phenomenon in a periodic structure, it has a narrow band-pass characteristic that reflects only light in an extremely narrow wavelength range of several nanometers or less. In 1985, the Bulgarian Ma
Shev and Popov have prototyped a filter for visible light with a wavelength of 633 nm and confirmed the resonance phenomenon (L. Mashev a
nd E. Popov, “Zeroorder anomaly of dielectric coa
ted gratings ”, Optics Communications, Vol. 55, No.
6 (1985) pp.377-380). However, in the filter structure proposed by them, although the reflectance at the resonance wavelength was high, the reflectance at the non-resonance wavelength was several percent, and the efficiency of wavelength selection was poor. To reduce reflectance at non-resonant wavelengths, the US
R. Magnusson and S. Wang propose that a thin film layer of different refractive index be provided above or below a grating layer (a layer whose refractive index or shape changes periodically) (US Pat. No. 5,598,300).
No.) (R. Magnusson and SS Wang, “Transmission
bandpass guided-mode resonance filters ”, Applied
Optics, Vol. 34, No. 35 (1995) 8106-8109). On the other hand, apart from the above-mentioned wavelength filter, a method of eliminating light reflection with a surface structure finer than the wavelength of light has been considered. This principle is to reduce the reflection by gradually changing the average refractive index of the surface by a fine structure, and has long been known as a moth eye surface fine structure (Moth Eye structure). The feature of this antireflection structure is that the reflectance is low over a wide wavelength range. Creation of anti-reflection structures for visible light and near-infrared rays began around 1987 (Y. On
o, Y. Kimura, Y. Ohta, and N. Nishida, “Antirefl
ection effect in ultrahigh spatial-frequency holog
raphic relief gratings, Applied Optics, Vol. 26, N
o.6 (1997) pp. 1142-1146), research and development have been promoted for practical use from both theoretical analysis and production methods. In recent years, etching has been performed using high-density plasma using metal thin lines and dot patterns as masks,
It has also become possible to create triangular or conical microstructures with high aspect ratios (Japanese Patent Application No. 2000-088524, Takahara,
Toyota).

【0003】[0003]

【発明が解決しようとする課題】高効率な波長フィルタ
の性能は、中心波長での反射率が100%に近く、それ以外
の波長では反射率が0%(すべて透過)になるのが望まし
い。Magnussonらの方法で非共鳴波長の反射率を低減さ
せるためには、格子層を含めて複数層の薄膜を成膜する
必要がある。フィルタを量産する場合、屈折率の異なる
薄膜を多重に成膜することは、生産コストを高くすると
いう問題を生じる。
As for the performance of a highly efficient wavelength filter, it is desirable that the reflectance at the center wavelength is close to 100% and the reflectance at other wavelengths is 0% (all transmission). In order to reduce the reflectance at non-resonant wavelengths by the method of Magnusson et al., It is necessary to form a plurality of thin films including a lattice layer. When mass-producing a filter, forming multiple thin films having different refractive indices causes a problem of increasing the production cost.

【0004】本発明の目的は、製造が簡便であり生産コ
ストを低減させることができ、しかも高い波長選択性が
得られる狭帯域反射型波長フィルタを提供することにあ
る。
An object of the present invention is to provide a narrow-band reflection type wavelength filter which is simple to manufacture, can reduce the production cost, and can obtain high wavelength selectivity.

【0005】[0005]

【課題を解決するための手段】本発明の上記目的は、表
面に微細凹凸を有する基板と、該微細凹凸面を覆う誘電
体層とを備え、前記基板の微細凹凸は、基板表面での反
射防止作用が得られるように、周囲雰囲気と誘電体層と
基板とを媒質としたときの微細凹凸高さ方向における各
高さでの平均屈折率が周囲雰囲気側から基板側へと緩や
かに変化しており、誘電体層、基板、周囲雰囲気の屈折
率を各々nd,ns,nairとしたときに、 nd>ns,nair であり、前記微細凹凸及び誘電体層が該凹凸面に入射し
た光の導波層を形成しており、前記基板の微細凹凸の周
期は、該周期をΛ、基板及び周囲雰囲気の屈折率を各々
s、nair、照射光の波長及び入射角を各々λ、θとす
ると、 Λ<λ/(ns+nairsinθ) Λ<λ/(nair+nairsinθ) の双方を満足する範囲とされ、前記微細凹凸の周期Λ
は、前記導波層における最も高い平均屈折率をngmax
すると Λ>λ/(ngmax+nairsinθ) を満足する範囲とされることを特徴とする波長フィルタ
により達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a substrate having fine irregularities on the surface and a dielectric layer covering the fine irregularities, wherein the fine irregularities of the substrate are reflected on the surface of the substrate. The average refractive index at each height in the fine unevenness height direction when the surrounding atmosphere, the dielectric layer and the substrate are used as a medium changes gradually from the surrounding atmosphere side to the substrate side so that the prevention action can be obtained. When the refractive indices of the dielectric layer, the substrate, and the surrounding atmosphere are n d , n s , and n air , respectively, nd > ns , n air is satisfied. forms a waveguide layer of the light incident on the surface, the period of the fine uneven the substrate, the phase peripheral lambda, respectively n s, n air, the wavelength of the irradiated light and the incident the substrate and the refractive index of the ambient atmosphere each corner lambda, When θ, Λ <λ / (n s + n air sinθ) Λ <λ / (n air + n air sinθ) Is a range satisfying both the period of the fine irregularities Λ
It is achieved by the wavelength filter characterized in that it is a range satisfying the highest average refractive index of the waveguide layer and n gmax Λ> λ / (n gmax + n air sinθ).

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施形態に係る
狭帯域反射型波長フィルタについて図面を参照しながら
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A narrow band reflection type wavelength filter according to an embodiment of the present invention will be described below with reference to the drawings.

【0007】図1は、本発明の一実施形態に係る波長フ
ィルタの断面を概略的に示している。この波長フィルタ
は、表面に微細凹凸を有する基板1と、該微細凹凸面を
覆う誘電体層2とを備えている。基板1の微細凹凸は、
この例では、図示のように断面三角波状に形成されてい
る。この微細凹凸は、これに限らず、サインカーブ状
等、基板表面での反射防止作用が得られるように、周囲
雰囲気(通常は空気)Aと誘電体層2との平均屈折率が
周囲雰囲気側から基板側へと緩やかに変化した形状とす
ることができる。このため、微細凹凸の断面形状は、凸
部が先細となるように形成されているのが望ましい。
FIG. 1 schematically shows a cross section of a wavelength filter according to an embodiment of the present invention. This wavelength filter includes a substrate 1 having fine irregularities on the surface, and a dielectric layer 2 covering the fine irregularities. The fine irregularities on the substrate 1
In this example, the section is formed in a triangular wave shape as shown. The fine irregularities are not limited to this, and the average refractive index between the ambient atmosphere (usually air) A and the dielectric layer 2 is set to be lower than the ambient From the substrate side to the substrate side. For this reason, it is desirable that the cross-sectional shape of the fine unevenness is formed such that the convex portion is tapered.

【0008】誘電体層及び基板の材質は、誘電体層、基
板、周囲雰囲気の屈折率を各々nd,ns,nairとした
ときに、誘電体の屈折率ndがこれらの中で最も大きく
なるように、すなわち nd>ns,nair となるように選択される。
[0008] dielectric layer and the material of the substrate, a dielectric layer, the substrate, each n d the refractive index of the surrounding atmosphere, n s, when the n air, the refractive index n d of the dielectric Among these It is chosen to be the largest, ie, n d > n s , n air .

【0009】この構成により、微細凹凸及び誘電体層が
該凹凸面に入射した光の導波層が形成されている。
According to this configuration, a waveguide layer for light having the fine unevenness and the dielectric layer incident on the uneven surface is formed.

【0010】前記基板の微細凹凸の周期は、該周期を
Λ、基板及び周囲雰囲気の屈折率を各々ns、nair、照
射光の波長及び入射角を各々λ、θとすると、 Λ<λ/(ns+nairsinθ) Λ<λ/(nair+nairsinθ) の双方を満足する範囲とされる。微細凹凸の周期をこの
範囲とすることにより、雰囲気側及び基板側への回折光
の発生が抑止される。
The period of the fine irregularities on the substrate is as follows: 周期 <λ, where 屈折 is the period, n s and n air are the refractive indices of the substrate and the surrounding atmosphere, and λ and θ are the wavelength and incident angle of the irradiation light, respectively. / (N s + n air sin θ) Λ <λ / (n air + n air sin θ). By setting the period of the fine irregularities in this range, generation of diffracted light on the atmosphere side and the substrate side is suppressed.

【0011】さらに、微細凹凸の周期Λは、導波層の平
均屈折率をng における最も高い平均屈折率をngmax
とすると Λ>λ/(ngmax+nairsinθ) を満足する範囲とされる。微細凹凸の周期をこの範囲と
することにより、入射光を導波層内に伝搬させることが
できる。
Further, the period 微細 of the fine irregularities corresponds to the highest average refractive index of the waveguide layer at ng of ng max.
It is to the Λ> λ / (n gmax + n air sinθ) range satisfying the a. By setting the period of the fine unevenness in this range, the incident light can be propagated in the waveguide layer.

【0012】基板の材料としてはガラス、プラスチッ
ク、シリコン単結晶等を使用することができる。これら
の中でも、低屈折率であるガラスやプラスチックが特に
望ましい。
As a material of the substrate, glass, plastic, silicon single crystal, or the like can be used. Among these, glass or plastic having a low refractive index is particularly desirable.

【0013】また、誘電体層を形成する材料としては、
TiO2, MgF2, SiO2等、通常の光学薄膜形成用材料を使用
することができる。これらの中でも、高屈折率であるTi
O2,MgF2が特に望ましい。また、照射光が赤外線の場合
は、Si, Ge, ZnSe等を使用することができる。
Further, as a material for forming the dielectric layer,
Ordinary optical thin film forming materials such as TiO 2 , MgF 2 , and SiO 2 can be used. Among these, Ti, which has a high refractive index,
O 2 and MgF 2 are particularly desirable. When the irradiation light is infrared light, Si, Ge, ZnSe, or the like can be used.

【0014】微細凹凸の周期Λは、用いる材料の屈折
率、照射光の波長等の条件に応じて適宜決定される。照
射光がフィルタ面に垂直に入射する場合は、(基準波長
λ/基板屈折率ns)の0.9倍程度が望ましい。
The period の of the fine irregularities is appropriately determined according to conditions such as the refractive index of the material used and the wavelength of the irradiation light. When the irradiation light is perpendicularly incident on the filter surface, it is desirable to be about 0.9 times (reference wavelength λ / substrate refractive index n s ).

【0015】この微細凹凸は、例えば、干渉縞露光や電
子ビーム露光とエッチングとを組み合わせることにより
基材に微小な凹凸を形成し、その表面に真空蒸着、スパ
ッタ法等により高屈折率膜を形成するというようにして
形成することができる。また、基材の微小な凹凸は成形
型を用いて量産することができる。
The fine irregularities are formed by, for example, forming a fine irregularity on the substrate by combining interference fringe exposure or electron beam exposure with etching, and forming a high refractive index film on the surface by vacuum evaporation, sputtering, or the like. It can be formed as follows. Further, minute irregularities on the substrate can be mass-produced using a molding die.

【0016】本発明は、入射光の中の特定の波長の光を
選択的に反射する機能を有する。これには、入射光に対
する反射防止作用及び共振モード格子フィルタとしての
作用が寄与している。以下、これらの作用及びその原理
について説明する。
The present invention has a function of selectively reflecting light of a specific wavelength in incident light. This contributes to an antireflection effect on incident light and an operation as a resonance mode grating filter. Hereinafter, these actions and the principle thereof will be described.

【0017】a. 反射防止作用について 図2は、3角形を基本単位とする反射防止構造の1例を
示している。三角形の周期をΛ、周囲雰囲気(空気層)
の屈折率をnair、基板1aの屈折率をnsとする。真空
中での波長がλの大きさをもつ光が角度qをもって入射
する場合、回折波を発生しないための条件は、 Λ<λ/(ns+nairsinθ)(1) Λ<λ/(nair+nairsinθ) (1') の双方を満たすことである。高さ方向に対する平均屈折
率を図2の右側にグラフで模式的に示している。この構
造においては、上部の周囲雰囲気の屈折率から基板層の
屈折率へと変化している。光の反射は屈折率の急激な変
化で生じるので、図のように屈折率が徐々に変化する場
合、光はほとんど反射しない。また、基板の凹凸断面形
状は必ずしも三角形である必要はない。平均屈折率が高
さ方向に緩やかに変化する構造であれば、反射防止の効
果が現れる。最適な平均屈折率の変化は、空気の屈折率
から基板の屈折率に一定に変わるものである。反射率と
透過率は回折格子の厳密解析計算法(Rigorous Coupled-
wave Analysisなど)を用いて求めることができる。微細
凹凸は、凹凸の高さが高いほど(アスペクト比が高いほ
ど)長い波長も含めて反射防止の効果がある。望ましく
は、微細凹凸の高さ(深さ)は、照射光の波長と同一か
それ以上とされる。
A. Anti-Reflection Function FIG. 2 shows an example of an anti-reflection structure using a triangle as a basic unit. Triangular period is Λ, ambient atmosphere (air layer)
The refractive index of the to n air, the refractive index of the substrate 1a and the n s. If light having a wavelength size of lambda in vacuum is incident at an angle q, the condition for not generating a diffracted wave, Λ <λ / (n s + n air sinθ) (1) Λ <λ / ( n air + n air sin θ) (1 ′). The average refractive index in the height direction is schematically shown in the graph on the right side of FIG. In this structure, the refractive index of the upper ambient atmosphere changes to the refractive index of the substrate layer. Since the reflection of light is caused by a sharp change in the refractive index, when the refractive index changes gradually as shown in the figure, the light hardly reflects. Further, the uneven cross-sectional shape of the substrate is not necessarily required to be triangular. With a structure in which the average refractive index gradually changes in the height direction, an antireflection effect appears. The optimum change in the average refractive index is a constant change from the refractive index of air to the refractive index of the substrate. The reflectance and transmittance are calculated by the exact analysis method of the diffraction grating (Rigorous Coupled-
wave analysis). The fine unevenness has an antireflection effect including a longer wavelength as the height of the unevenness is higher (as the aspect ratio is higher). Desirably, the height (depth) of the fine irregularities is equal to or greater than the wavelength of the irradiation light.

【0018】b. 共振モード格子フィルタについて 図3は共鳴現象を利用した格子フィルタの基本構成であ
る。フィルタは、基板1b上に屈折率変調または矩形波
状等の周期的な形状変化をもつ導波層2bを有してい
る。入射光は、導波層の周期性により回折される。ただ
し、回折波は導波層と基板層および導波層と周囲雰囲気
の境界で全反射が起こる角度に回折するよう設定する。
このためには、導波層は基板層や周囲雰囲気より高い屈
折率 ng>nair,ns (ngは導波層の平均屈折率) (2) を持たねばならず、また、導波層の変調周期Λは、導波
層における最も高い平均屈折率をngmax として Λ>λ/(ngmax+nairsinθ) (3) の条件を満足しなければならない。
B. Resonant mode grating filter FIG. 3 shows a basic structure of a grating filter utilizing a resonance phenomenon. The filter has a waveguide layer 2b having a periodic shape change such as a refractive index modulation or a rectangular wave shape on a substrate 1b. The incident light is diffracted by the periodicity of the waveguide layer. However, the diffracted wave is set to diffract at an angle at which total reflection occurs at the boundary between the waveguide layer and the substrate layer and between the waveguide layer and the surrounding atmosphere.
For this purpose, waveguide layers higher refractive index than the substrate layer and the ambient atmosphere n g> n air, n s (n g is the average refractive index of the waveguiding layer) without must have a (2), also, guide the modulation period of the wave layer lambda, must satisfy the highest average refractive index as n gmax Λ> λ / (n gmax + n air sinθ) condition (3) in the waveguide layer.

【0019】入射波は導波層の格子構造のために、導波
層内に回折波を発生する。この回折波が、導波層内を伝
搬する条件を満たすとき、再び周期構造と結合を起こし
て、入射光に対して鏡面反射の方向に回折波(反射波)
を発生する。一方、導波条件を満足しない回折波は導波
層に進入することができず、入射光に対して透過波とな
る。前記導波条件を満足する場合は、反射効率がほぼ10
0%の高効率なフィルタになる。このフィルタはバンドパ
スの反射型フィルタであり、屈折率の変調量を調節する
ことで、フィルタの半値幅をコントロールできる。した
がって、屈折率の変調量を適当に設計することにより、
数オングストロームの半値幅のフィルタを作ることがで
きる。導波層の伝搬条件は電場の偏光方向によって異な
る。したがって、同じ構造であっても、共鳴波長は入射
光の偏光方向によって異なる。また、一般にTM波(磁場
が紙面に垂直な波動)の方がTE波(電場が紙面に垂直な
波動)に比べて半値幅が狭い。
The incident wave generates a diffracted wave in the waveguide layer due to the lattice structure of the waveguide layer. When this diffracted wave satisfies the condition for propagating in the waveguide layer, it again couples with the periodic structure, and the diffracted wave (reflected wave) in the direction of specular reflection with respect to the incident light
Occurs. On the other hand, a diffracted wave that does not satisfy the waveguide condition cannot enter the waveguide layer and becomes a transmitted wave with respect to incident light. When the above waveguide condition is satisfied, the reflection efficiency is approximately 10%.
It becomes a highly efficient filter of 0%. This filter is a band-pass reflection type filter, and the half width of the filter can be controlled by adjusting the modulation amount of the refractive index. Therefore, by appropriately designing the amount of modulation of the refractive index,
A filter with a half-width of several angstroms can be made. The propagation conditions of the waveguide layer differ depending on the polarization direction of the electric field. Therefore, even with the same structure, the resonance wavelength differs depending on the polarization direction of the incident light. In general, the half-width of a TM wave (a wave whose magnetic field is perpendicular to the paper) is narrower than that of a TE wave (a wave whose electric field is perpendicular to the paper).

【0020】図3の構造において、導波層の上面、下面
では屈折率差による反射光が生じるので、非共鳴波の反
射率が0にならず、数%の反射光が残る。図4は、Magn
ussonらが提案している非共鳴波の反射率低減のための
多層構造である。この例では変調導波層2cの上下に薄
膜層3c、4cを1層ずつ付加して基板1c上に設けて
いる。この多層構造では、入射光を上下の層で反射させ
打ち消し合うように干渉させることにより、反射率を低
減している。薄膜層の厚さはそのような干渉が生じるよ
うに、光学膜厚が波長の半分または1/4になるように設
定される。また、上下いずれか一方の層を変調導波層の
界面で代用することにより、他方の薄膜層を省略するこ
とも可能である。また、より反射率を低減させるために
は、薄膜層の層数を増やす必要がある。非共鳴波の反射
率低減の原理は、よく知られている誘電体多層膜による
反射率低減と同じである。
In the structure shown in FIG. 3, since the reflected light is generated on the upper and lower surfaces of the waveguide layer due to the difference in the refractive index, the reflectance of the non-resonant wave does not become zero, and several percent of the reflected light remains. Figure 4 shows Magn
This is a multilayer structure proposed by usson et al. for reducing the reflectance of non-resonant waves. In this example, the thin film layers 3c and 4c are added one by one on the upper and lower sides of the modulation waveguide layer 2c and provided on the substrate 1c. In this multilayer structure, the reflectivity is reduced by causing incident light to be reflected by upper and lower layers and interfere so as to cancel each other. The thickness of the thin film layer is set such that the optical film thickness is half or quarter of the wavelength so that such interference occurs. Further, by substituting one of the upper and lower layers at the interface of the modulation waveguide layer, the other thin film layer can be omitted. In order to further reduce the reflectance, it is necessary to increase the number of thin film layers. The principle of reducing the reflectance of non-resonant waves is the same as the well-known reduction of reflectance by a dielectric multilayer film.

【0021】c. 反射防止構造型の共振モード格子フィ
ルタ 本発明は、上記原理に基づくものである。以下、図1に
示す共振モード格子フィルタの断面図に基づいて本発明
を説明する。このフィルタは、図2の反射防止構造に、
真空蒸着などの方法で基板より屈折率の高い誘電体薄膜
を付着したものである。薄膜の表面形状は、基板の凹凸
形状を保存しているものが望ましい。高さ方向に対する
平均屈折率の分布を図の右側にグラフで示す。平均屈折
率は周囲雰囲気の値から徐々に大きくなり、その後小さ
くなって基板の屈折率と一致する。しがって、屈折率分
布型の光導波路と同じ機能を果たし、回折波がこの領域
に閉じこめられる。そして、3角形の格子周期で横方向
について屈折率が変調されていることになる。この回折
波が、式(2)及び式(3)で示した導波層内を伝搬する条件
を満たすとき、再び周期構造と結合を起こして、入射光
に対して鏡面反射の方向に回折波(反射波)を発生す
る。
C. Anti-reflection structure type resonance mode grating filter The present invention is based on the above principle. Hereinafter, the present invention will be described based on the cross-sectional view of the resonance mode grating filter shown in FIG. This filter has the anti-reflection structure of FIG.
A dielectric thin film having a higher refractive index than the substrate is attached by a method such as vacuum evaporation. The surface shape of the thin film desirably preserves the concavo-convex shape of the substrate. The distribution of the average refractive index in the height direction is graphically shown on the right side of the figure. The average refractive index gradually increases from the value of the surrounding atmosphere and then decreases to match the refractive index of the substrate. Therefore, it performs the same function as the refractive index distribution type optical waveguide, and the diffracted wave is confined in this region. Then, the refractive index is modulated in the horizontal direction by the triangular lattice period. When this diffracted wave satisfies the conditions for propagating in the waveguide layer shown in Equations (2) and (3), it again couples with the periodic structure, causing the diffracted wave to enter the direction of specular reflection with respect to the incident light. (Reflected waves).

【0022】このフィルタの反射特性は、凹凸形状のア
スペクト比(凹凸の高さと周期の比)、誘電体薄膜の膜
圧と屈折率、基板材料の屈折率に強く影響される。一般
に、半値幅(ピーク領域の波長幅)を狭くするには、ア
スペクト比を高くする(山を高くする)、薄膜の屈折率
を低めに設定する、薄膜の厚さを薄くする、ということ
で実現できる。非共鳴波長での反射率を低くするには、
アスペクト比を高くする必要がある。
The reflection characteristics of this filter are strongly influenced by the aspect ratio of the uneven shape (ratio of height and period of the unevenness), the film pressure and refractive index of the dielectric thin film, and the refractive index of the substrate material. Generally, in order to narrow the half width (wavelength width of the peak region), the aspect ratio is increased (the peak is increased), the refractive index of the thin film is set lower, and the thickness of the thin film is reduced. realizable. To lower the reflectance at non-resonant wavelengths,
It is necessary to increase the aspect ratio.

【0023】以下に数値計算の結果を使って具体例を紹
介する。形状から光の反射特性を求めるのに、RCWA (Ri
gorous Coupled Wave Analysis) とよばれる計算アルゴ
リズムを用いた。この計算アルゴリズムは、回折格子に
ついての電磁気的な厳密計算手法であり、共鳴領域の回
折効率を正確に求めるための方法として、世界各地で用
いられているものである。
Hereinafter, specific examples will be introduced using the results of numerical calculations. RCWA (Ri
gorous Coupled Wave Analysis). This calculation algorithm is an exact electromagnetic calculation method for the diffraction grating, and is used in various parts of the world as a method for accurately obtaining the diffraction efficiency in the resonance region.

【0024】図5(a)は、アスペクト比2.5の構造をもつ
石英基板に屈折率2.25(TiO2)の誘電体薄膜を基準波長
の0.4倍の厚さで形成した波長フィルタの縦断面とその
位置に対応する平均屈折率を示しており、図6(a)は、
この場合の分光反射率特性の計算値である。λを付した
数値は波長で規格化した値を示し、nmを付した数値は
波長を具体的に633nmとしたときの値を表している。入
射光にはTM波を想定し、基準波長で共鳴するように設計
を行った。格子周期は基準波長の0.64倍である。半値幅
が波長の3´10-4倍と極めて狭い。また、それ以外の波
長では反射率は非常に小さく、約0.3%の大きさであ
る。この結果から、反射防止構造に1層だけの薄膜を形
成した構造で、狭帯域の波長フィルタとして機能するこ
と、および、非共鳴光の反射率が低減できていることが
分かる。
FIG. 5A shows a longitudinal section of a wavelength filter in which a dielectric thin film having a refractive index of 2.25 (TiO 2 ) is formed on a quartz substrate having an aspect ratio of 2.5 at a thickness of 0.4 times the reference wavelength, and its vertical section. FIG. 6A shows the average refractive index corresponding to the position.
This is a calculated value of the spectral reflectance characteristic in this case. The numerical value with λ indicates a value normalized by wavelength, and the numerical value with nm indicates a value when the wavelength is specifically set to 633 nm. Assuming a TM wave as the incident light, the design was made so that it would resonate at the reference wavelength. The grating period is 0.64 times the reference wavelength. The half width is extremely narrow, 3'10 -4 times the wavelength. At other wavelengths, the reflectivity is very small, about 0.3%. From this result, it can be seen that the structure in which only one layer of the thin film is formed on the antireflection structure functions as a narrow-band wavelength filter and that the reflectance of non-resonant light can be reduced.

【0025】図5(b), 図5(c)はアスペクト比が1.5と
0.7の構造をもつ石英基板に屈折率2.25(TiO2)の誘電
体薄膜を基準波長の0.4倍の厚さで形成した波長フィル
タの縦断面とその位置に対応する平均屈折率を示してい
る。図6(b),図6(c)は、各場合の分光反射率特性の計
算値である。(b)においては、非共鳴光の反射防止の効
果がよく現れているが、(c)ではその効果が薄れ、長波
長側で反射率が大きくなっている。ただし、(b)の半値
幅は(a)の場合に比べてかなり広いものになっている。
FIGS. 5B and 5C show that the aspect ratio is 1.5.
The vertical cross section of a wavelength filter formed by forming a dielectric thin film having a refractive index of 2.25 (TiO 2 ) with a thickness of 0.4 times the reference wavelength on a quartz substrate having a structure of 0.7, and the average refractive index corresponding to the position are shown. FIGS. 6B and 6C show calculated values of the spectral reflectance characteristics in each case. In (b), the effect of preventing reflection of non-resonant light is well exhibited, but in (c), the effect is weakened, and the reflectance increases on the long wavelength side. However, the half width of (b) is much wider than that of (a).

【0026】薄膜の厚さより大きな凹凸のある構造で
は、アスペクト比が低いほど、導波路としての屈折率変
調が強くなる。そのため、アスペクト比が小さいほど半
値幅が大きくなる。
In a structure having irregularities larger than the thickness of the thin film, the lower the aspect ratio, the stronger the refractive index modulation as a waveguide. Therefore, as the aspect ratio decreases, the half width increases.

【0027】低いアスペクト比で狭い半値幅を実現する
には、薄膜の膜厚または屈折率を小さくする必要があ
る。ただし、このような構成では導波層の平均屈折率が
小さくなり(基板の屈折率との差が小さくなり)、透過
の1次回折波が発生する条件と共鳴条件が近くなって、
共鳴波長より短い波長領域では、回折波が発生する。図
5のフィルタにおける透過1次回折波の発生の様子を図
7に示す。図7の(a), (b), (c)は図5の(a), (b), (c)
の場合とアスペクト比が一致している。アスペクト比が
2.5の場合、1次回折波は共鳴波長から離れたところで
発生する。アスペクト比が0.7では、共鳴波長とほとん
ど同じ波長で回折光が発生する。フィルタを「特定の一
つの波長だけを取り出す素子」として利用する場合は、
共鳴波(反射波)を出力として扱えばよく、これは1次
回折波に影響を受けないので、このような特性に注意を
払う必要はない。しかし、透過光を利用する場合におい
ては、共鳴波長より短い波長領域で、回折のためにエネ
ルギーが失われることになり、利用効率の低いものにな
る。
In order to realize a narrow half width at a low aspect ratio, it is necessary to reduce the thickness or the refractive index of the thin film. However, in such a configuration, the average refractive index of the waveguide layer becomes small (the difference from the refractive index of the substrate becomes small), and the condition for generating the first-order diffracted wave of transmission becomes close to the resonance condition.
In a wavelength region shorter than the resonance wavelength, a diffracted wave is generated. FIG. 7 shows how the transmitted first-order diffracted wave is generated in the filter of FIG. (A), (b) and (c) in FIG. 7 are (a), (b) and (c) in FIG.
And the aspect ratio is the same. Aspect ratio is
In the case of 2.5, the first-order diffracted wave is generated at a distance from the resonance wavelength. At an aspect ratio of 0.7, diffracted light is generated at almost the same wavelength as the resonance wavelength. When using a filter as an “element that extracts only one specific wavelength”,
It is sufficient to treat the resonance wave (reflected wave) as an output, which is not affected by the first-order diffracted wave, so that it is not necessary to pay attention to such characteristics. However, in the case of using transmitted light, energy is lost due to diffraction in a wavelength region shorter than the resonance wavelength, resulting in low utilization efficiency.

【0028】以上の例は、格子構造に対して垂直に光が
入射するという条件を設定したものであった。しかしな
がら、光が各図の紙面内で斜めに入射する場合において
も、同様の働きをする。
In the above example, the condition is set that light is incident perpendicularly to the grating structure. However, the same operation is performed even when light is obliquely incident on the plane of each drawing.

【0029】[0029]

【発明の効果】本発明に係る波長フィルタは、表面に微
細凹凸を有する基板と、該微細凹凸面を覆う誘電体層と
を備え、前記基板の微細凹凸は、基板表面での反射防止
作用が得られるように、周囲雰囲気と誘電体層と基板と
を媒質としたときの微細凹凸高さ方向における各高さで
の平均屈折率が周囲雰囲気側から基板側へと緩やかに変
化している。これにより、入射光に対する反射防止効果
が得られる。また、誘電体層、基板、周囲雰囲気の屈折
率を各々nd,ns,nairとしたときに、 nd>ns,nair となるように各々の屈折率が決められ、微細凹凸及び誘
電体層が該凹凸面に入射した光の導波層を形成してい
る。
The wavelength filter according to the present invention includes a substrate having fine irregularities on the surface and a dielectric layer covering the fine irregularities, and the fine irregularities on the substrate have an antireflection effect on the substrate surface. As can be obtained, the average refractive index at each height in the fine unevenness height direction when the ambient atmosphere, the dielectric layer, and the substrate are used as a medium gradually changes from the ambient atmosphere side to the substrate side. Thereby, an anti-reflection effect on incident light can be obtained. Further, the dielectric layer, the substrate, each n d the refractive index of the surrounding atmosphere, n s, when the n air, n d> n s, each refractive index is determined such that n air, fine irregularities And the dielectric layer forms a waveguide layer for light incident on the uneven surface.

【0030】前記基板の微細凹凸の周期は、該周期を
Λ、基板及び周囲雰囲気の屈折率を各々ns、nair、照
射光の波長及び入射角を各々λ、θとすると、 Λ<λ/(ns+nairsinθ) Λ<λ/(nair+nairsinθ) の双方を満足する範囲とされ、これにより、雰囲気側及
び基板側への回折光の発生が抑止される。
The period of the fine irregularities on the substrate is as follows: 周期 <λ, where 周期 is the period, n s and n air are the refractive indices of the substrate and the surrounding atmosphere, and λ and θ are the irradiation light wavelength and incident angle, respectively. / (N s + n air sin θ) Λ <λ / (n air + n air sin θ), whereby the generation of diffracted light on the atmosphere side and the substrate side is suppressed.

【0031】さらに、微細凹凸の周期Λは、導波層の平
均屈折率をng における最も高い平均屈折率をngmax
とすると Λ>λ/(ngmax+nairsinθ) を満足する範囲とされ、これにより、入射光を導波層内
に伝搬させることができる。
Further, the period 微細 of the fine irregularities is determined by setting the highest average refractive index of the waveguide layer at ng to ngmax.
Then, the range is set so as to satisfy Λ> λ / ( ngmax + n air sin θ), whereby the incident light can be propagated in the waveguide layer.

【0032】このようにして、波長フィルタに入射した
光は、導波層内を伝搬し微細凹凸の周期構造と再度結合
して、入射光に対して鏡面反射の方向に出射する。これ
により、特定波長の光が反射光として得られ、他の波長
の光は基板を透過する。その結果、非共鳴波長の反射を
抑制して高い波長選択性が得られる。
In this manner, the light incident on the wavelength filter propagates through the waveguide layer, is recombined with the periodic structure of fine irregularities, and is emitted in the direction of specular reflection with respect to the incident light. Thereby, light of a specific wavelength is obtained as reflected light, and light of another wavelength passes through the substrate. As a result, high wavelength selectivity can be obtained by suppressing the reflection of non-resonant wavelengths.

【0033】本フィルタを製作するには、基板に微細凹
凸による反射防止構造をもたせ、これに一層の誘電体薄
膜を形成するだけでよい。したがって、広い波長範囲で
非共鳴波の反射率を低減するために複数層の光学薄膜を
設けていた従来のスラブ型格子フィルタと異なり、複数
層に亘る複雑な誘電体の蒸着プロセスが不要になり、製
造が簡便であり生産コストを低減させることができる。
In order to manufacture the present filter, it is only necessary to provide a substrate with an antireflection structure based on fine irregularities, and to form a dielectric thin film thereon. Therefore, unlike the conventional slab-type lattice filter in which a plurality of optical thin films are provided to reduce the reflectance of non-resonant waves in a wide wavelength range, a complicated dielectric deposition process over a plurality of layers is not required. The production is simple and the production cost can be reduced.

【0034】本フィルタの用途は、通常の共振モード格
子フィルタと同様に、レーザー発振用キャビティーミラ
ー、分光用波長選択素子、波長多重光通信用波長分割素
子、偏光分離素子などがある。
Applications of the present filter include a laser oscillation cavity mirror, a spectral wavelength selecting element, a wavelength division multiplexing optical communication wavelength division element, a polarization separation element, and the like, like the ordinary resonance mode grating filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る波長フィルタの作
動原理の説明図であり、フィルタの縦断面及びその位置
に対応した平均屈折率を示す。
FIG. 1 is an explanatory diagram of an operation principle of a wavelength filter according to an embodiment of the present invention, showing a longitudinal section of the filter and an average refractive index corresponding to a position thereof.

【図2】 本発明の基本となる原理の説明図であり、反
射防止構造の縦断面及びその位置に対応した平均屈折率
を示す。
FIG. 2 is an explanatory view of the principle underlying the present invention, showing a longitudinal section of the antireflection structure and an average refractive index corresponding to the position thereof.

【図3】 本発明の基本となる原理の説明図であり、共
振モード格子フィルタの縦断面を示す。
FIG. 3 is an explanatory view of the basic principle of the present invention, showing a longitudinal section of a resonance mode grating filter.

【図4】 本発明に関連する構造の説明図であり、多層
構造方フィルタの縦断面を示す。
FIG. 4 is an explanatory view of a structure related to the present invention, showing a longitudinal section of a multilayer structure type filter.

【図5】 3種類のアスペクト比の構造をもつ波長フィ
ルタの縦断面とその位置に対応する平均屈折率を示して
いる。
FIG. 5 shows a vertical section of a wavelength filter having three types of aspect ratio structures and an average refractive index corresponding to the position.

【図6】 図5に示した波長フィルタの各々の分光反射
率特性のグラフである。
FIG. 6 is a graph of spectral reflectance characteristics of each of the wavelength filters shown in FIG.

【図7】 図5に示したフィルタにおける透過1次回折
波の発生の様子を示すグラフである。
FIG. 7 is a graph showing a state of generation of a transmitted first-order diffracted wave in the filter shown in FIG.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c 基板 2,2b、2c 誘電体層 3c 薄膜層 4c 薄膜層 1, 1a, 1b, 1c Substrate 2, 2b, 2c Dielectric layer 3c Thin film layer 4c Thin film layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊田 宏 大阪府和泉市桑原町247番地の5ファロー 和泉102号 Fターム(参考) 2H047 LA01 TA43 2H048 FA05 FA12 FA15 FA21 GA04 GA09 GA13 GA24 2H049 AA03 AA51 AA59 AA64  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Toyoda 247 5-floor, Kuwabaracho, Izumi-shi, Osaka Izumi 102 F-term (reference) 2H047 LA01 TA43 2H048 FA05 FA12 FA15 FA21 GA04 GA09 GA13 GA24 2H049 AA03 AA51 AA59 AA64

Claims (1)

【特許請求の範囲】[The claims] 【請求項1】 表面に微細凹凸を有する基板と、該微細
凹凸面を覆う誘電体層とを備え、前記基板の微細凹凸
は、基板表面での反射防止作用が得られるように、周囲
雰囲気と誘電体層と基板とを媒質としたときの微細凹凸
高さ方向における各高さでの平均屈折率が周囲雰囲気側
から基板側へと緩やかに変化しており、誘電体層、基
板、周囲雰囲気の屈折率を各々nd,ns,nairとした
ときに、 nd>ns,nair であり、前記微細凹凸及び誘電体層が該凹凸面に入射し
た光の導波層を形成しており、 前記基板の微細凹凸の周期は、該周期をΛ、基板及び周
囲雰囲気の屈折率を各々ns、nair、照射光の波長及び
入射角を各々λ、θとすると、 Λ<λ/(ns+nairsinθ) Λ<λ/(nair+nairsinθ) の双方を満足する範囲とされ、 前記微細凹凸の周期Λは、前記導波層における最も高い
平均屈折率をngmaxとすると Λ>λ/(ngmax+nairsinθ) を満足する範囲とされることを特徴とする波長フィル
タ。
1. A substrate having fine irregularities on its surface, and a dielectric layer covering the fine irregularities, wherein the fine irregularities on the substrate are exposed to an ambient atmosphere so as to obtain an antireflection effect on the substrate surface. When the dielectric layer and the substrate are used as a medium, the average refractive index at each height in the height direction of the fine unevenness gradually changes from the ambient atmosphere side to the substrate side, and the dielectric layer, the substrate, the ambient atmosphere Where n d , n s , and n air , respectively, n d > n s and n air , and the fine unevenness and the dielectric layer form a waveguide layer for light incident on the uneven surface. and is the period of the fine unevenness of the substrate, the phase peripheral lambda, respectively n s of the substrate and the refractive index of the ambient atmosphere, n air, lambda, respectively the wavelength and incident angle of the illumination light, when theta, lambda < It is a range satisfying both λ / (n s + n air sinθ) Λ <λ / (n air + n air sinθ), the fine The period of the unevenness lambda, wavelength filter characterized in that it is a range satisfying the highest average refractive index of the waveguide layer and n gmax Λ> λ / (n gmax + n air sinθ).
JP2001060810A 2001-03-05 2001-03-05 Wavelength filter Expired - Fee Related JP3711446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060810A JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060810A JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Publications (2)

Publication Number Publication Date
JP2002258034A true JP2002258034A (en) 2002-09-11
JP3711446B2 JP3711446B2 (en) 2005-11-02

Family

ID=18920186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060810A Expired - Fee Related JP3711446B2 (en) 2001-03-05 2001-03-05 Wavelength filter

Country Status (1)

Country Link
JP (1) JP3711446B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074888A1 (en) * 2003-02-18 2004-09-02 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
JP2005049829A (en) * 2003-07-14 2005-02-24 Konica Minolta Holdings Inc Molding having minute shape, optical element, molding method and molding apparatus
WO2005036218A1 (en) * 2003-10-07 2005-04-21 Nalux Co., Ltd. Polarizing element and optical system including polarizing element
US7019904B2 (en) 2003-02-18 2006-03-28 Sumitomo Electric Industries, Ltd. Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
WO2006104045A1 (en) * 2005-03-25 2006-10-05 Nalux Co., Ltd. Wavelength filter
JP2006350126A (en) * 2005-06-17 2006-12-28 Sharp Corp Wavelength selection element
JP2007333893A (en) * 2006-06-13 2007-12-27 Ricoh Co Ltd Optical switching unit, optical switching unit array and image display device
JP2008076844A (en) * 2006-09-22 2008-04-03 Canon Electronics Inc Optical filter
JP2009250728A (en) * 2008-04-03 2009-10-29 Panasonic Electric Works Co Ltd Gas concentration measuring instrument
EP2149802A1 (en) * 2008-07-28 2010-02-03 Ricoh Company, Limited Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
JP2010093211A (en) * 2008-10-10 2010-04-22 Ricoh Co Ltd Wavelength conversion laser device
KR20130076636A (en) * 2011-12-28 2013-07-08 엘지이노텍 주식회사 Optical member and display device having the same
JP2013231779A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
JP2015092234A (en) * 2013-09-30 2015-05-14 株式会社豊田中央研究所 Lens and manufacturing method therefor
US9823398B2 (en) 2014-12-15 2017-11-21 Enplas Corporation Polarizer and optical element having polarizer
CN115248468A (en) * 2022-08-22 2022-10-28 之江实验室 Refraction and reflection mixed type grating with high dispersion and high diffraction efficiency

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600578B2 (en) * 2003-02-18 2010-12-15 住友電気工業株式会社 Diffraction grating element
JP2009187016A (en) * 2003-02-18 2009-08-20 Sumitomo Electric Ind Ltd Diffraction grating element
US7019904B2 (en) 2003-02-18 2006-03-28 Sumitomo Electric Industries, Ltd. Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
JP4600577B2 (en) * 2003-02-18 2010-12-15 住友電気工業株式会社 Diffraction grating element
JPWO2004074888A1 (en) * 2003-02-18 2006-06-01 住友電気工業株式会社 Diffraction grating element, diffraction grating element manufacturing method, and diffraction grating element design method
WO2004074888A1 (en) * 2003-02-18 2004-09-02 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
JP2009187018A (en) * 2003-02-18 2009-08-20 Sumitomo Electric Ind Ltd Diffraction grating element
US7184214B2 (en) 2003-02-18 2007-02-27 Sumitomo Electric Industries, Ltd. Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
CN100338486C (en) * 2003-02-18 2007-09-19 住友电气工业株式会社 Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
JP2009187017A (en) * 2003-02-18 2009-08-20 Sumitomo Electric Ind Ltd Diffraction grating element
JP4600579B2 (en) * 2003-02-18 2010-12-15 住友電気工業株式会社 Diffraction grating element
US7502167B2 (en) 2003-02-18 2009-03-10 Sumitomo Electric Industries, Ltd. Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
JP2005049829A (en) * 2003-07-14 2005-02-24 Konica Minolta Holdings Inc Molding having minute shape, optical element, molding method and molding apparatus
JP4569744B2 (en) * 2003-07-14 2010-10-27 コニカミノルタホールディングス株式会社 Optical element molding method
US7589895B2 (en) 2003-10-07 2009-09-15 Nalux Co., Ltd. Polarizing element and optical system including polarizing element
JP4843819B2 (en) * 2003-10-07 2011-12-21 ナルックス株式会社 Polarizing element and optical system including polarizing element
WO2005036218A1 (en) * 2003-10-07 2005-04-21 Nalux Co., Ltd. Polarizing element and optical system including polarizing element
US7729053B2 (en) 2005-03-25 2010-06-01 Nalux Co., Ltd. Wavelength filter with a broad bandwidth of reflection spectrum
WO2006104045A1 (en) * 2005-03-25 2006-10-05 Nalux Co., Ltd. Wavelength filter
JP2006350126A (en) * 2005-06-17 2006-12-28 Sharp Corp Wavelength selection element
JP2007333893A (en) * 2006-06-13 2007-12-27 Ricoh Co Ltd Optical switching unit, optical switching unit array and image display device
JP4633005B2 (en) * 2006-06-13 2011-02-16 株式会社リコー Optical switching unit, optical switching unit array and image display device
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
JP2008076844A (en) * 2006-09-22 2008-04-03 Canon Electronics Inc Optical filter
JP2009250728A (en) * 2008-04-03 2009-10-29 Panasonic Electric Works Co Ltd Gas concentration measuring instrument
JP2010032659A (en) * 2008-07-28 2010-02-12 Ricoh Co Ltd Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
EP2149802A1 (en) * 2008-07-28 2010-02-03 Ricoh Company, Limited Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
US8213083B2 (en) 2008-07-28 2012-07-03 Ricoh Company, Ltd. Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
JP2010093211A (en) * 2008-10-10 2010-04-22 Ricoh Co Ltd Wavelength conversion laser device
KR20130076636A (en) * 2011-12-28 2013-07-08 엘지이노텍 주식회사 Optical member and display device having the same
KR101870446B1 (en) * 2011-12-28 2018-07-20 엘지이노텍 주식회사 Optical member and display device having the same
JP2013231779A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
JP2015092234A (en) * 2013-09-30 2015-05-14 株式会社豊田中央研究所 Lens and manufacturing method therefor
US9823398B2 (en) 2014-12-15 2017-11-21 Enplas Corporation Polarizer and optical element having polarizer
CN115248468A (en) * 2022-08-22 2022-10-28 之江实验室 Refraction and reflection mixed type grating with high dispersion and high diffraction efficiency

Also Published As

Publication number Publication date
JP3711446B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP3711446B2 (en) Wavelength filter
US7386205B2 (en) Optical device and method for making same
US5436991A (en) Optical waveguide device
JP2002182003A (en) Antireflection functional element, optical element, optical system and optical appliance
US20040047039A1 (en) Wide angle optical device and method for making same
US20120194911A1 (en) Optical devices based on diffraction gratings
US20150362641A1 (en) High Index Contrast Grating Structure for Light Manipulation and Related Method
JP2009288718A (en) Resonance grating coupler
Chou et al. Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates
CN109491001B (en) Polarization-independent grating based on covering refractive index matching layer and preparation method thereof
EP2300858A1 (en) Diffractive polarizing mirror device
US7145722B2 (en) Optical filter and method of manufacturing thereof
JP2009103786A (en) Method for manufacturing diffraction grating using phase mask for manufacturing diffraction grating
WO2004031815A1 (en) Antireflection diffraction grating
CN111090176B (en) Metal grating polarization beam splitter with asymmetric reflection
US9588339B2 (en) Device for controlling the phase of an optical wavefront having juxtaposed metal-multidielectric-metal structures to induce a local shift
JP4078527B2 (en) Structure of antireflection film on one-dimensional photonic crystal and method for forming the same
Röhlig et al. Simultaneous occurrence and compensating effects of multi‐type disorder in two‐dimensional photonic structures
US20020047129A1 (en) Integrated transparent substrate and diffractive optical element
JP2005010377A (en) Optical retardation element
JP3627093B2 (en) Resonant mode grating filter
JP4178583B2 (en) Anti-reflection coating
JP4139420B2 (en) Wavelength filter
JP2003131028A (en) Optical circuit
JP3955703B2 (en) Fabrication method of fiber grating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees