JP5443701B2 - Gas concentration measuring device - Google Patents

Gas concentration measuring device Download PDF

Info

Publication number
JP5443701B2
JP5443701B2 JP2008097566A JP2008097566A JP5443701B2 JP 5443701 B2 JP5443701 B2 JP 5443701B2 JP 2008097566 A JP2008097566 A JP 2008097566A JP 2008097566 A JP2008097566 A JP 2008097566A JP 5443701 B2 JP5443701 B2 JP 5443701B2
Authority
JP
Japan
Prior art keywords
wavelength
infrared light
infrared
filter
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008097566A
Other languages
Japanese (ja)
Other versions
JP2009250728A (en
Inventor
尚之 西川
祥文 渡部
仁路 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008097566A priority Critical patent/JP5443701B2/en
Publication of JP2009250728A publication Critical patent/JP2009250728A/en
Application granted granted Critical
Publication of JP5443701B2 publication Critical patent/JP5443701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、一酸化炭素や二酸化炭素のように赤外線を吸収する特性を持つガスの濃度を測定するガス濃度測定装置に関するものである。   The present invention relates to a gas concentration measuring apparatus that measures the concentration of a gas having a characteristic of absorbing infrared rays, such as carbon monoxide and carbon dioxide.

一酸化炭素や二酸化炭素などの気体(ガス)は、図10に示すように特定の波長(吸収波長)の光(主に赤外線)を吸収する性質を有しており、かかる性質を利用してガスの濃度を測定するガス濃度測定装置が提供されている(例えば、特許文献1参照)。従来のガス濃度測定装置としては、図9に示すようなものがある。   A gas (gas) such as carbon monoxide or carbon dioxide has a property of absorbing light (mainly infrared rays) having a specific wavelength (absorption wavelength) as shown in FIG. A gas concentration measuring device that measures the concentration of gas is provided (see, for example, Patent Document 1). A conventional gas concentration measuring apparatus is shown in FIG.

この従来装置は、測定ガスが導入される容器(ガスセル)20と、赤外線を放射する赤外線光源(例えば、半導体レーザ)21と、赤外線光源21から放射される赤外線を集光して容器20の一端側より入射させるレンズ22と、容器20を通過した赤外線から測定ガスの吸収波長に一致する波長の赤外線のみを選択的に通過させる光学フィルタ23と、光学フィルタ23を通過した吸収波長の赤外線を集光するレンズ24と、レンズ24で集光された吸収波長の赤外線の強度を検出する赤外線検出器(サーモパイルや焦電素子など)25とを備えている。例えば、測定ガスを一酸化炭素とする場合、一酸化炭素を含む気体が導入された容器20に赤外線を入射すると、一酸化炭素の吸収波長(=4.7μm)の赤外線が容器20内の測定ガス(一酸化炭素)によって吸収されるから、光学フィルタ23を通過した赤外線の強度を赤外線検出器25によって検出することで容器20内の測定ガス(一酸化炭素)の濃度を測定することができる。尚、光学フィルタ23は、図11に示すように測定ガスの吸収波長(図示例では一酸化炭素の吸収波長である4.7μm)のみを通過させるバンドパスフィルタからなる。   This conventional apparatus includes a container (gas cell) 20 into which a measurement gas is introduced, an infrared light source (for example, a semiconductor laser) 21 that emits infrared light, and one end of the container 20 that collects infrared light emitted from the infrared light source 21. A lens 22 that is incident from the side, an optical filter 23 that selectively passes only infrared light having a wavelength that matches the absorption wavelength of the measurement gas from infrared light that has passed through the container 20, and infrared light having an absorption wavelength that has passed through the optical filter 23. A lens 24 that emits light, and an infrared detector 25 (such as a thermopile or a pyroelectric element) that detects the intensity of infrared light having an absorption wavelength collected by the lens 24 are provided. For example, when the measurement gas is carbon monoxide, when infrared light is incident on the container 20 into which a gas containing carbon monoxide has been introduced, infrared light having an absorption wavelength (= 4.7 μm) of carbon monoxide is measured in the container 20. Since it is absorbed by the gas (carbon monoxide), the concentration of the measurement gas (carbon monoxide) in the container 20 can be measured by detecting the intensity of the infrared light that has passed through the optical filter 23 with the infrared detector 25. . As shown in FIG. 11, the optical filter 23 is a band-pass filter that passes only the absorption wavelength of the measurement gas (4.7 μm, which is the absorption wavelength of carbon monoxide in the illustrated example).

また、図9に示す従来装置では、赤外線光源21の発光強度が変化した場合や、測定ガスと吸収帯(吸収波長領域)が部分的に重なる雑ガスが容器20内に混入した場合に、測定ガスの濃度を正確に測定できなくなる虞がある。そこで、測定ガスの吸収波長と異なる波長の赤外線(参照光)を容器20に入射させ、容器20を通過した参照光の強度と、測定ガスの吸収波長の赤外線の強度との差分を求めることで赤外線光源21の発光強度の変化や雑ガスの影響による測定誤差を補正するものも提案されている。   Further, in the conventional apparatus shown in FIG. 9, measurement is performed when the emission intensity of the infrared light source 21 changes or when miscellaneous gas in which the measurement gas and the absorption band (absorption wavelength region) partially overlap is mixed in the container 20. There is a possibility that the gas concentration cannot be measured accurately. Therefore, infrared light (reference light) having a wavelength different from the absorption wavelength of the measurement gas is incident on the container 20, and the difference between the intensity of the reference light that has passed through the container 20 and the intensity of the infrared light at the absorption wavelength of the measurement gas is obtained. A device that corrects a measurement error due to a change in emission intensity of the infrared light source 21 or an influence of various gases has also been proposed.

例えば、図12に示す従来装置は、赤外線光源21、レンズ22,24、光学フィルタ23、赤外線検出器25をそれぞれ2つずつ備え、一方の光学フィルタ23Aを通過した測定ガスの吸収波長(例えば、4.7μm)の赤外線の強度を赤外線検出器25Aで検出し、他方の光学フィルタ23Bを通過した測定ガスと異なる吸収波長(例えば、4.0μm)の赤外線の強度を赤外線検出器25Bで検出し、2つの赤外線検出器25A,25Bで検出される赤外線強度の差分を求めて測定誤差を補正するものである。
特開平7−218432号公報
For example, the conventional apparatus shown in FIG. 12 includes two infrared light sources 21, lenses 22 and 24, optical filters 23, and infrared detectors 25, and the absorption wavelength of the measurement gas that has passed through one optical filter 23 </ b> A (for example, The infrared intensity of 4.7 μm) is detected by the infrared detector 25A, and the infrared intensity of an absorption wavelength different from the measurement gas that has passed through the other optical filter 23B (for example, 4.0 μm) is detected by the infrared detector 25B. The difference between the infrared intensities detected by the two infrared detectors 25A and 25B is obtained to correct the measurement error.
JP 7-218432 A

ところで、上述のような赤外線吸収方式のガス濃度測定装置では、測定ガスの吸収波長のみを選択的に通過させる光学フィルタ23のフィルタ特性が測定精度に大きく影響することになる。すなわち、光学フィルタ23の通過域(バンド幅)が狭いほど(狭帯域であるほど)、測定ガス以外の雑ガスの影響が少なくなるために高精度の測定が可能になる。しかしながら、この種の光学フィルタ23は、通常、母材の表面に蒸着やスパッタリングによって多数(50層〜200層程度)の薄膜をコーティングして形成されているため、薄膜の張力で母材が変形あるいは破壊されたり、薄膜の密着性を確保することが困難であったり、製造コストが高くなるといった問題があった。しかも、蒸着によるコーティングでは膜厚の管理が非常に難しいため、通過域の中心波長を所望の波長(測定ガスの吸収波長)に一致させることが困難であって光学フィルタの歩留まりが悪く、製造コストが高くなってしまう。また、薄膜材料には赤外線を透過する材料を用いなければならないが、コーティング可能な薄膜材料の種類が限られており(例えば、SiO2,ZnO,Geなど)、それらを使用することで製造コストが高くなってしまう。 By the way, in the infrared concentration gas concentration measuring apparatus as described above, the filter characteristics of the optical filter 23 that selectively allows only the absorption wavelength of the measurement gas to pass through greatly affect the measurement accuracy. That is, the narrower the pass band (bandwidth) of the optical filter 23 (the narrower the band), the less the influence of miscellaneous gases other than the measurement gas, and thus high-precision measurement becomes possible. However, since this type of optical filter 23 is usually formed by coating a large number (about 50 to 200 layers) of thin film on the surface of the base material by vapor deposition or sputtering, the base material is deformed by the tension of the thin film. Or there existed a problem that it was destroyed, it was difficult to ensure the adhesiveness of a thin film, or manufacturing cost became high. In addition, since it is very difficult to control the film thickness by coating by vapor deposition, it is difficult to match the center wavelength of the pass band to the desired wavelength (absorption wavelength of the measurement gas), the yield of the optical filter is poor, and the manufacturing cost Becomes higher. In addition, thin film materials must be made of materials that transmit infrared rays, but the types of thin film materials that can be coated are limited (for example, SiO 2 , ZnO, Ge, etc.), and the use of them makes the production cost low. Becomes higher.

本発明は上記事情に鑑みて為されたものであり、その目的は、製造コストを抑えつつ測定精度の向上が図れるガス濃度測定装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas concentration measuring apparatus capable of improving measurement accuracy while suppressing manufacturing cost.

請求項1の発明は、上記目的を達成するために、測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長以外の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長の赤外線のみを選択的に反射して容器に入射させる第1の波長フィルタと、容器を通過した第1の波長の赤外線の強度を検出する第1の赤外線検出器とを備え、第1の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とする。 In order to achieve the above object, the invention according to claim 1 is an infrared ray that emits infrared rays including a container into which a measurement gas is introduced, a first wavelength absorbed by the measurement gas, and a wavelength other than the first wavelength. A light source, a first wavelength filter that selectively reflects only infrared light having a first wavelength from infrared light emitted from the infrared light source and enters the container, and detects the intensity of infrared light having the first wavelength that has passed through the container. A first infrared filter, and the first wavelength filter includes a sub-wavelength optical element in which a portion having a different refractive index is formed in a lattice shape on the incident surface side of the substrate. The present invention is characterized in that a lattice-shaped portion formed of a silicon oxide film and a lattice-shaped portion formed of a silicon nitride film are alternately arranged at a constant pitch .

請求項1の発明によれば、第1の波長フィルタが、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなるので、薄膜を多層にコーティングしてなる波長フィルタと比較して、製造コストを抑えながらも狭帯域のフィルタ特性を実現することができる。その結果、製造コストを抑えつつ測定精度の向上が図れる。   According to the first aspect of the present invention, the first wavelength filter includes the sub-wavelength optical element in which the portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate. Compared to the wavelength filter, a narrow band filter characteristic can be realized while suppressing the manufacturing cost. As a result, the measurement accuracy can be improved while suppressing the manufacturing cost.

請求項2の発明は、上記目的を達成するために、測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長以外の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射し且つ容器を通過した赤外線から第1の波長の赤外線のみを選択的に反射する第1の波長フィルタと、第1の波長フィルタで反射された第1の波長の赤外線の強度を検出する第1の赤外線検出器とを備え、第1の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とする。 In order to achieve the above object, the invention according to claim 2 radiates infrared rays including a container into which a measurement gas is introduced, a first wavelength absorbed by the measurement gas, and a wavelength other than the first wavelength. A light source, a first wavelength filter that selectively reflects only infrared light of a first wavelength from infrared light emitted from an infrared light source and passed through a container; and infrared light of a first wavelength reflected by the first wavelength filter A first infrared ray detector for detecting the intensity of the first wavelength filter, the first wavelength filter comprising a sub-wavelength optical element in which portions having different refractive indexes are formed in a lattice shape on the incident surface side of the substrate, The shaped portion is characterized in that a lattice-like portion formed of a silicon oxide film and a lattice-like portion formed of a silicon nitride film are alternately arranged at a constant pitch .

請求項2の発明によれば、第1の波長フィルタが、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなるので、薄膜を多層にコーティングしてなる波長フィルタと比較して、製造コストを抑えながらも狭帯域のフィルタ特性を実現することができる。その結果、製造コストを抑えつつ測定精度の向上が図れる。   According to the invention of claim 2, since the first wavelength filter is composed of the sub-wavelength optical element in which the portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate, the thin film is coated in multiple layers. Compared to the wavelength filter, a narrow band filter characteristic can be realized while suppressing the manufacturing cost. As a result, the measurement accuracy can be improved while suppressing the manufacturing cost.

請求項3の発明は、請求項1の発明において、赤外線光源が放射する赤外線から第1の波長と異なり且つ測定ガスによって吸収されない第2の波長の赤外線のみを選択的に反射して容器に入射させる第2の波長フィルタと、容器を通過した第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第2の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, only infrared light having a second wavelength different from the first wavelength and not absorbed by the measurement gas is selectively reflected from the infrared light emitted from the infrared light source and incident on the container. And a second infrared detector that detects the intensity of the infrared light having the second wavelength that has passed through the container. The second wavelength filter has a different refractive index on the incident surface side of the substrate. It is characterized by comprising sub-wavelength optical elements whose parts are formed in a lattice shape.

請求項3の発明によれば、第1の赤外線検出器で検出する赤外線強度と第2の赤外線検出器で検出する赤外線強度との差分を取るなどして、赤外線光源から放射される赤外線の強度変動や測定ガス以外の雑ガスによる影響を抑えて測定精度の向上が図れる。   According to invention of Claim 3, the intensity | strength of the infrared rays radiated | emitted from an infrared light source by taking the difference of the infrared ray intensity detected with a 1st infrared detector, and the infrared ray intensity detected with a 2nd infrared detector, etc. The measurement accuracy can be improved by suppressing the influence of fluctuations and other gases other than the measurement gas.

請求項4の発明は、請求項2の発明において、赤外線光源が放射し且つ容器を通過した赤外線から第1の波長と異なり且つ測定ガスによって吸収されない第2の波長の赤外線のみを選択的に反射する第2の波長フィルタと、第2の波長フィルタで反射された第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第2の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなることを特徴とする。   According to a fourth aspect of the present invention, in the second aspect of the invention, only the second wavelength infrared light that is different from the first wavelength and is not absorbed by the measurement gas is selectively reflected from the infrared light emitted from the infrared light source and passed through the container. And a second infrared detector for detecting the intensity of the infrared of the second wavelength reflected by the second wavelength filter, wherein the second wavelength filter is on the incident surface side of the substrate And a sub-wavelength optical element in which portions having different refractive indexes are formed in a lattice shape.

請求項4の発明によれば、第1の赤外線検出器で検出する赤外線強度と第2の赤外線検出器で検出する赤外線強度との差分を取るなどして、赤外線光源から放射される赤外線の強度変動や測定ガス以外の雑ガスによる影響を抑えて測定精度の向上が図れる。   According to invention of Claim 4, the intensity | strength of the infrared rays radiated | emitted from an infrared light source by taking the difference of the infrared ray intensity detected with a 1st infrared detector, and the infrared ray intensity detected with a 2nd infrared detector, etc. The measurement accuracy can be improved by suppressing the influence of fluctuations and other gases other than the measurement gas.

請求項5の発明は、請求項1〜4の何れか1項の発明において、第1及び第2の波長フィルタは、屈折率の異なる格子状の部位が一次元周期のサブ波長格子を形成する共振モード格子フィルタからなることを特徴とする。   The invention of claim 5 is the invention of any one of claims 1 to 4, wherein the first and second wavelength filters form a sub-wavelength grating in which the grating-like portions having different refractive indexes have a one-dimensional period. It is characterized by comprising a resonant mode grating filter.

請求項6の発明は、請求項1〜4の何れか1項の発明において、第1及び第2の波長フィルタは、屈折率の異なる格子状の部位が二次元周期のサブ波長格子を形成する共振モード格子フィルタからなることを特徴とする。   The invention of claim 6 is the invention according to any one of claims 1 to 4, wherein the first and second wavelength filters form a sub-wavelength grating in which the grating-like portions having different refractive indexes have a two-dimensional period. It is characterized by comprising a resonant mode grating filter.

請求項7の発明は、上記目的を達成するために、測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長と異なり且つ測定ガスによって吸収されない第2の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長及び第2の波長の赤外線のみを互いの向きが直交する直線偏光に変換して選択的に反射する第3の波長フィルタと、第3の波長フィルタで反射された後に容器を通過した第1の波長の赤外線のみを通過させる第1の偏光フィルタと、第3の波長フィルタで反射された後に容器を通過した第2の波長の赤外線のみを通過させる第2の偏光フィルタと、第1の偏光フィルタを通過した第1の波長の赤外線の強度を検出する第1の赤外線検出器と、第2の偏光フィルタを通過した第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第3の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とする。 In order to achieve the above object, a seventh aspect of the present invention provides a container into which a measurement gas is introduced, a first wavelength that is absorbed by the measurement gas, and a second wavelength that is different from the first wavelength and is not absorbed by the measurement gas. An infrared light source that emits infrared light including a wavelength, and a first light that selectively emits infrared light having a first wavelength and a second wavelength from the infrared light emitted from the infrared light source to linearly polarized light whose directions are orthogonal to each other. 3 wavelength filter, a first polarizing filter that passes only the first wavelength infrared light reflected by the third wavelength filter and then passed through the container, and passes through the container after being reflected by the third wavelength filter A second polarizing filter that passes only the infrared light having the second wavelength, a first infrared detector that detects the intensity of the infrared light having the first wavelength that has passed through the first polarizing filter, and a second polarizing filter Through And a second wavelength detector that detects the intensity of the infrared light having the second wavelength, and the third wavelength filter has a sub-wavelength in which portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate The lattice portion is formed of an optical element, and the lattice portion formed of a silicon oxide film and the lattice portion formed of a silicon nitride film are alternately arranged at a constant pitch . It is characterized by that.

請求項7の発明によれば、第3の波長フィルタが、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなるので、薄膜を多層にコーティングしてなる波長フィルタと比較して、製造コストを抑えながらも狭帯域のフィルタ特性を実現することができ、その結果、製造コストを抑えつつ測定精度の向上が図れる。また、第1の赤外線検出器で検出する赤外線強度と第2の赤外線検出器で検出する赤外線強度との差分を取るなどして、赤外線光源から放射される赤外線の強度変動や測定ガス以外の雑ガスによる影響を抑えて測定精度の向上が図れ、しかも、請求項3の発明と比較して波長フィルタの数を減らすことができるから安価であり、さらに、第1及び第2の波長の赤外線が同一の光路を通ることから測定精度の向上が図れる。   According to the invention of claim 7, since the third wavelength filter is composed of the sub-wavelength optical element in which the portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate, the thin film is coated in multiple layers. Compared to the wavelength filter, a narrow band filter characteristic can be realized while suppressing the manufacturing cost. As a result, the measurement accuracy can be improved while suppressing the manufacturing cost. In addition, by taking the difference between the infrared intensity detected by the first infrared detector and the infrared intensity detected by the second infrared detector, the intensity fluctuation of infrared rays emitted from the infrared light source and other than the measurement gas are measured. The measurement accuracy can be improved by suppressing the influence of gas, and the number of wavelength filters can be reduced as compared with the invention of claim 3, and the infrared rays of the first and second wavelengths are further reduced. The measurement accuracy can be improved because it passes through the same optical path.

請求項8の発明は、上記目的を達成するために、測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長と異なり且つ測定ガスによって吸収されない第2の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長及び第2の波長の赤外線のみを互いの向きが直交する直線偏光に変換して選択的に反射する第3の波長フィルタと、第3の波長フィルタで反射された後に容器を通過した第1の波長の赤外線と第2の波長の赤外線とを分離する偏光ビームスプリッタと、偏光ビームスプリッタで分離された第1の波長の赤外線の強度を検出する第1の赤外線検出器と、偏光ビームスプリッタで分離された第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第3の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とする。 In order to achieve the above object, the invention according to claim 8 is a container into which the measurement gas is introduced, a first wavelength absorbed by the measurement gas, and a second wavelength different from the first wavelength and not absorbed by the measurement gas. An infrared light source that emits infrared light including a wavelength, and a first light that selectively emits infrared light having a first wavelength and a second wavelength from the infrared light emitted from the infrared light source to linearly polarized light whose directions are orthogonal to each other. 3 wavelength filter, a polarization beam splitter that separates the first wavelength infrared ray and the second wavelength infrared ray that have passed through the container after being reflected by the third wavelength filter, and the second wavelength filter separated by the polarization beam splitter A first infrared detector that detects the intensity of the infrared light having the first wavelength; and a second infrared detector that detects the intensity of the infrared light having the second wavelength separated by the polarization beam splitter; Filter consists subwavelength optical element different sites refractive index on the incident surface side of the substrate is formed in a lattice shape, the lattice sites, the lattice-shaped portion and the silicon nitride which is formed of a silicon oxide film It is characterized in that it is formed such that lattice-shaped portions formed of a film are alternately arranged at a constant pitch .

請求項8の発明によれば、第3の波長フィルタが、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなるので、薄膜を多層にコーティングしてなる波長フィルタと比較して、製造コストを抑えながらも狭帯域のフィルタ特性を実現することができ、その結果、製造コストを抑えつつ測定精度の向上が図れる。また、第1の赤外線検出器で検出する赤外線強度と第2の赤外線検出器で検出する赤外線強度との差分を取るなどして、赤外線光源から放射される赤外線の強度変動や測定ガス以外の雑ガスによる影響を抑えて測定精度の向上が図れ、しかも、請求項7の発明と比較して2つの偏光フィルタの代わりに1つの偏光ビームスプリッタを用いているから安価であり、さらに、第1及び第2の波長の赤外線が同一の光路を通ることから測定精度の向上が図れる。   According to the invention of claim 8, since the third wavelength filter is composed of the sub-wavelength optical element in which the portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate, the thin film is coated in multiple layers. Compared to the wavelength filter, a narrow band filter characteristic can be realized while suppressing the manufacturing cost. As a result, the measurement accuracy can be improved while suppressing the manufacturing cost. In addition, by taking the difference between the infrared intensity detected by the first infrared detector and the infrared intensity detected by the second infrared detector, the intensity fluctuation of infrared rays emitted from the infrared light source and other than the measurement gas are measured. The measurement accuracy can be improved by suppressing the influence of the gas. Furthermore, compared with the invention of claim 7, since one polarization beam splitter is used instead of the two polarization filters, the first and Measurement accuracy can be improved because infrared rays of the second wavelength pass through the same optical path.

本発明によれば、製造コストを抑えつつ測定精度の向上が図れる。   According to the present invention, it is possible to improve measurement accuracy while suppressing manufacturing costs.

以下、二酸化炭素を測定ガスとするガス濃度測定装置に本発明の技術思想を適用した実施形態について説明する。但し、測定ガスは二酸化炭素に限定されるものではなく、吸収帯が赤外線の波長領域に重なるガス、例えば、図10に示すように一酸化炭素や酸化窒素、硫化窒素などであっても構わない。   Hereinafter, an embodiment in which the technical idea of the present invention is applied to a gas concentration measurement apparatus using carbon dioxide as a measurement gas will be described. However, the measurement gas is not limited to carbon dioxide, and may be a gas whose absorption band overlaps with the infrared wavelength region, for example, carbon monoxide, nitrogen oxide, or nitrogen sulfide as shown in FIG. .

(実施形態1)
本実施形態は、図1に示すように測定ガス(二酸化炭素)が導入される容器(ガスセル)1と、測定ガスによって吸収される第1の波長λ1(=4.3〜4.4μm)と第1の波長λ1以外の波長とを含む赤外線を放射する赤外線光源2と、赤外線光源2が放射する赤外線を集光するレンズ3と、レンズ3で集光された赤外線から第1の波長λ1の赤外線のみを選択的に反射して容器1に入射させる第1の波長フィルタ4と、容器1を通過した第1の波長λ1の赤外線を集光するレンズ5と、レンズ5で集光された第1の波長λ1の赤外線の強度を検出する第1の赤外線検出器6と、第1の波長フィルタ4を透過した第1の波長以外の赤外線を吸収する赤外線吸収体7とを備えている。赤外線光源2は、フィラメントを有する電球や、いわゆるMEMS技術によって形成された微少な発熱体を有する光源、あるいは半導体レーザなどからなる。また第1の赤外線検出器6は、サーモパイルや焦電素子などの熱型の検出素子の他、InSbやPbSeなどの量子型の検出素子、あるいは熱音響型の検出素子などで構成される。赤外線吸収体7は、第1の波長フィルタ4で反射されなかった赤外線が迷光となってノイズの原因となることを防ぐためのものであって、筒型の光トラップや赤外線吸収膜などで構成される。
(Embodiment 1)
In the present embodiment, as shown in FIG. 1, a container (gas cell) 1 into which a measurement gas (carbon dioxide) is introduced, a first wavelength λ1 (= 4.3 to 4.4 μm) absorbed by the measurement gas, and An infrared light source 2 that emits infrared light including a wavelength other than the first wavelength λ 1, a lens 3 that collects infrared light emitted from the infrared light source 2, and a first wavelength λ 1 from the infrared light collected by the lens 3. A first wavelength filter 4 that selectively reflects only infrared rays to enter the container 1, a lens 5 that collects infrared rays having the first wavelength λ 1 that has passed through the container 1, and a first light that is collected by the lens 5. A first infrared detector 6 that detects the intensity of infrared light having a wavelength λ1 of 1 and an infrared absorber 7 that absorbs infrared light other than the first wavelength that has passed through the first wavelength filter 4 are provided. The infrared light source 2 includes a light bulb having a filament, a light source having a minute heating element formed by so-called MEMS technology, a semiconductor laser, or the like. The first infrared detector 6 includes a thermal detection element such as a thermopile or a pyroelectric element, a quantum detection element such as InSb or PbSe, or a thermoacoustic detection element. The infrared absorber 7 is for preventing infrared rays not reflected by the first wavelength filter 4 from becoming stray light and causing noise, and is constituted by a cylindrical light trap, an infrared absorption film, or the like. Is done.

第1の波長フィルタ4は、図2(a)に示すように図示しないシリコン基板上にSiO2の薄膜(膜厚:2〜3mm)4aが成膜され、当該SiO2膜4aの上に互いに屈折率が異なる2種類の格子4b,4cが一定のピッチで並ぶように形成されたサブ波長光学素子(回折格子)からなる。一方の格子4bは、CVD(化学気相成長法)によって成膜されたシリコン窒化膜をエッチングすることで形成され、他方の格子4cは、ゾルゲル法又はCVDによって格子4bの間にシリコン酸化膜を成膜することで形成される。但し、格子4b,4cの表面(入射面)は、エッチバック若しくは研磨によって所望の厚み(例えば、1.072μm)にされるとともに平滑化される。ここで、SiO2膜4aの屈折率が1.52、格子4bの屈折率が2.0、格子4cの屈折率が2.1であるから、格子4b,4cのピッチを2.512μmに設定すれば、図2(b)に示すように二酸化炭素の吸収波長である4.4μmの赤外線をS偏光に変換して反射するサブ波長光学素子を形成することができる。但し、このサブ波長光学素子では、図2(b)に示すように4.0μmの赤外線もP偏光に変換して反射しているので、偏光フィルタを用いてP偏光を遮蔽(吸収)させることが望ましい。 As shown in FIG. 2A, the first wavelength filter 4 has a SiO 2 thin film (film thickness: 2 to 3 mm) 4a formed on a silicon substrate (not shown), and the SiO 2 film 4a. The sub-wavelength optical element (diffraction grating) is formed so that two types of gratings 4b and 4c having different refractive indexes are arranged at a constant pitch. One lattice 4b is formed by etching a silicon nitride film formed by CVD (chemical vapor deposition), and the other lattice 4c is formed by a silicon oxide film between the lattices 4b by a sol-gel method or CVD. It is formed by forming a film. However, the surfaces (incident surfaces) of the gratings 4b and 4c are made to have a desired thickness (for example, 1.072 μm) and smoothed by etch back or polishing. Here, since the refractive index of the SiO 2 film 4a is 1.52, the refractive index of the grating 4b is 2.0, and the refractive index of the grating 4c is 2.1, the pitch of the gratings 4b and 4c is set to 2.512 μm. Then, as shown in FIG. 2B, it is possible to form a sub-wavelength optical element that converts infrared light having a wavelength of 4.4 μm, which is an absorption wavelength of carbon dioxide, into S-polarized light and reflects it. However, in this sub-wavelength optical element, as shown in FIG. 2 (b), 4.0 μm infrared light is also converted to P-polarized light and reflected, so that P-polarized light is shielded (absorbed) using a polarizing filter. Is desirable.

而して、赤外線光源2から放射される赤外線がレンズ2で集光されて第1の波長フィルタ4の入射面に入射すると、測定ガス(二酸化炭素)の吸収帯に含まれる第1の波長λ1の赤外線(S偏光)のみが反射されて容器1を通過し、容器1内で測定ガスに吸収されずに通過した第1の波長λ1の赤外線が第1の赤外線検出器6に入射するから、第1の赤外線検出器6の出力に基づいて容器1内の測定ガス(二酸化炭素)の濃度を測定することができる。   Thus, when the infrared light emitted from the infrared light source 2 is collected by the lens 2 and enters the incident surface of the first wavelength filter 4, the first wavelength λ1 included in the absorption band of the measurement gas (carbon dioxide). Of infrared light (S-polarized light) is reflected and passes through the container 1, and the infrared light having the first wavelength λ 1 that has passed through the container 1 without being absorbed by the measurement gas is incident on the first infrared detector 6. Based on the output of the first infrared detector 6, the concentration of the measurement gas (carbon dioxide) in the container 1 can be measured.

ここで、第1の波長フィルタ4をサブ波長光学素子で構成していることで、以下のような利点がある。つまり、従来例のように母材の表面に蒸着やスパッタリングによって多数(50層〜200層程度)の薄膜をコーティングして形成される光学フィルタ23に比較して反射域(バンド幅)を狭くすることが可能である。また、材料として赤外線を透過するシリコン基板が使用できるためにゲルマニウムなどに比べて材料費が安価である。さらに、通常の半導体プロセスを利用して格子4b,4cを高い精度で形成できるため、反射域の中心波長を所望の波長(測定ガスの吸収波長)に一致させることが容易となって歩留まりがよく、製造コストを下げることができる。   Here, since the first wavelength filter 4 is formed of a sub-wavelength optical element, there are the following advantages. That is, as compared with the optical filter 23 formed by coating a large number (about 50 to 200 layers) of thin film on the surface of the base material by vapor deposition or sputtering as in the conventional example, the reflection area (bandwidth) is narrowed. It is possible. Further, since a silicon substrate that transmits infrared rays can be used as a material, the material cost is lower than that of germanium or the like. Furthermore, since the gratings 4b and 4c can be formed with high accuracy by using a normal semiconductor process, it is easy to make the center wavelength of the reflection region coincide with the desired wavelength (absorption wavelength of the measurement gas), and the yield is good. Manufacturing costs can be reduced.

尚、第1の波長フィルタ4で反射された第1の波長λ1の赤外線を容器1に入射させる代わりに、図3に示すように容器1を通過した赤外線から第1の波長λ1の赤外線のみを第1の波長フィルタ4で反射させて第1の赤外線検出器6に入射させる構成としても構わない。図1の構成では、容器1の前段に第1の波長フィルタ4を配置することで容器1内に不要な赤外線が入射しないため、例えば、容器1内に混在している測定ガス以外のガスが第1の波長λ1以外の波長の赤外線を吸収して容器1内の温度が上昇することがない。また、サブ波長光学素子からなる第1の波長フィルタ4は入射面に対する赤外線の入射角度に対する波長依存性が大きいため、僅かな角度の違いで反射する波長が大きく変化してしまうが、図3の構成では、図1の構成と比較して第1の波長フィルタ4から第1の赤外線検出器6までの光路長が短いので、第1の波長フィルタ4の角度を変化させたときに第1の赤外線検出器6に入射する赤外線の移動量が少なくなり、その結果、角度調整が容易になるという利点がある。   Instead of causing the infrared ray having the first wavelength λ1 reflected by the first wavelength filter 4 to enter the container 1, as shown in FIG. 3, only the infrared ray having the first wavelength λ1 is transmitted from the infrared ray that has passed through the container 1. A configuration may be adopted in which the light is reflected by the first wavelength filter 4 and is incident on the first infrared detector 6. In the configuration of FIG. 1, unnecessary infrared rays do not enter the container 1 by arranging the first wavelength filter 4 in the previous stage of the container 1, so that, for example, a gas other than the measurement gas mixed in the container 1 The infrared rays of wavelengths other than the first wavelength λ1 are absorbed and the temperature in the container 1 does not rise. Further, since the first wavelength filter 4 composed of the sub-wavelength optical element has a large wavelength dependency with respect to the incident angle of the infrared rays with respect to the incident surface, the reflected wavelength greatly changes depending on a slight angle difference. In the configuration, since the optical path length from the first wavelength filter 4 to the first infrared detector 6 is shorter than that in the configuration of FIG. 1, the first wavelength filter 4 is changed when the angle of the first wavelength filter 4 is changed. There is an advantage that the amount of movement of infrared rays incident on the infrared detector 6 is reduced, and as a result, the angle adjustment is facilitated.

ところで、第1の波長フィルタ4を構成するサブ波長光学素子としては、図4(a)に示す1次元の共振モード格子30や、図4(b)に示す2次元の共振モード格子40であっても構わない。1次元の共振モード格子30は、基板(サブストレート)31上に導波層32が形成されるとともに、導波層32上にサブ波長の回折格子33が形成されている。回折格子33の周期は、屈折率の高い導波層32に対しては回折波が発生する程度に長く、基板31や入射空間には回折波が発生しない程度に短く設定される。回折格子33で回折された光(赤外線)が導波層32の伝搬条件を満たしている場合、光波は一旦導波層32内に入り、少しの距離を伝搬した後、回折格子33の影響によって再び外部に放射される。このとき、基板30側に放射される光は、直接透過する光波に対して位相が反転しており、互いに打ち消し合って透過光の強度はほぼゼロになる。一方、回折格子33上部の入射空間側に放射される光波は、直接反射された光波と同位相になるために強め合う(これを「共鳴反射」と呼ぶ。)。また、回折波が導波層32の伝搬条件を満たさない場合は、導波層32に光が入らないので薄膜の透過光と同じになる。共鳴反射が生じる条件は狭く、狭帯域の波長フィルタが容易に実現できる。   By the way, the sub-wavelength optical elements constituting the first wavelength filter 4 are the one-dimensional resonance mode grating 30 shown in FIG. 4A and the two-dimensional resonance mode grating 40 shown in FIG. It doesn't matter. In the one-dimensional resonance mode grating 30, a waveguide layer 32 is formed on a substrate (substrate) 31, and a sub-wavelength diffraction grating 33 is formed on the waveguide layer 32. The period of the diffraction grating 33 is set so long that a diffracted wave is generated in the waveguide layer 32 having a high refractive index, and short enough that no diffracted wave is generated in the substrate 31 or the incident space. When the light (infrared rays) diffracted by the diffraction grating 33 satisfies the propagation conditions of the waveguide layer 32, the light wave once enters the waveguide layer 32, propagates a short distance, and then is influenced by the diffraction grating 33. It is radiated to the outside again. At this time, the light emitted to the substrate 30 side is inverted in phase with respect to the directly transmitted light wave, cancels each other, and the intensity of the transmitted light becomes almost zero. On the other hand, the light waves radiated to the incident space side above the diffraction grating 33 are intensified because they have the same phase as the directly reflected light wave (this is referred to as “resonance reflection”). In addition, when the diffracted wave does not satisfy the propagation condition of the waveguide layer 32, light does not enter the waveguide layer 32, so that it is the same as the transmitted light of the thin film. The conditions under which resonant reflection occurs are narrow, and a narrow-band wavelength filter can be easily realized.

図4(b)に示す2次元の共振モード格子40は特開2000−275415号公報に記載されているものであって、基板41と、基板41上に形成された導波層42と、導波層42上に形成された格子層43とで構成される。格子層43には、矩形の凹部44が等ピッチで格子状に配設されており、凹部44、例えば空気と、凹部44以外の部分の低屈折率の媒質とから格子層43が構成され、高屈折率の導波層42が導波路となる。格子層43に入射する光は、格子層43によって共振を起こし、特定波長の反射光のみが反射される。さらに、この共振モード格子40においては、入射光が格子層43表面の法線方向に対して斜め方向から入射した場合の偏光依存性を無くすことができるので、図2に示したサブ波長光学素子のようにP偏光とS偏光の2種類の反射光が発生せず、不要な反射光を除去するために偏光フィルタを用いて不要な反射光(偏光)を除去する必要がない。   A two-dimensional resonance mode grating 40 shown in FIG. 4B is described in Japanese Patent Application Laid-Open No. 2000-275415, and includes a substrate 41, a waveguide layer 42 formed on the substrate 41, a conductive layer. And a lattice layer 43 formed on the wave layer 42. In the lattice layer 43, rectangular recesses 44 are arranged in a lattice pattern at an equal pitch, and the lattice layer 43 is configured by the recesses 44, for example, air, and a medium having a low refractive index other than the recesses 44, The high refractive index waveguide layer 42 becomes a waveguide. The light incident on the grating layer 43 resonates with the grating layer 43, and only the reflected light with a specific wavelength is reflected. Further, in this resonance mode grating 40, since the polarization dependency when incident light is incident obliquely with respect to the normal direction of the surface of the grating layer 43 can be eliminated, the sub-wavelength optical element shown in FIG. Thus, two types of reflected light of P-polarized light and S-polarized light are not generated, and it is not necessary to remove unnecessary reflected light (polarized light) using a polarizing filter in order to remove unnecessary reflected light.

(実施形態2)
本実施形態は、図5に示すように赤外線光源2が放射する赤外線から第1の波長λ1と異なり且つ測定ガスによって吸収されない第2の波長λ2の赤外線のみを選択的に反射して容器1に入射させる第2の波長フィルタ8と、容器1を通過した第2の波長λ2の赤外線を集光するレンズ9と、レンズ9で集光された第2の波長λ2の赤外線の強度を検出する第2の赤外線検出器10とを備えている点に特徴がある。但し、かかる特徴点を除く本実施形態の基本構成は実施形態1と共通であるから、共通の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
In the present embodiment, as shown in FIG. 5, only the infrared ray having the second wavelength λ2 which is different from the first wavelength λ1 and is not absorbed by the measurement gas from the infrared ray emitted from the infrared light source 2 is selectively reflected to the container 1. A second wavelength filter 8 to be incident, a lens 9 for condensing infrared light of the second wavelength λ 2 that has passed through the container 1, and a second detector for detecting the intensity of infrared light of the second wavelength λ 2 collected by the lens 9. There is a feature in that two infrared detectors 10 are provided. However, since the basic configuration of the present embodiment excluding such feature points is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

従来技術で説明したように、赤外線光源2の発光強度が変化した場合や、測定ガスと吸収帯(吸収波長領域)が部分的に重なる雑ガスが容器1内に混入した場合に、測定ガスの濃度を正確に測定できなくなる虞があることに鑑み、本実施形態では、測定ガスの吸収波長λ1と異なる波長λ2の赤外線(参照光)を容器1に入射させ、容器1を通過した参照光(第2の波長λ2の赤外線)の強度と、測定ガスの吸収波長(第1の波長λ1)の赤外線の強度との差分を求めることで赤外線光源2の発光強度の変化や雑ガスの影響による測定誤差を補正できるようにしている。   As described in the prior art, when the emission intensity of the infrared light source 2 changes, or when miscellaneous gas that partially overlaps the measurement gas and the absorption band (absorption wavelength region) is mixed in the container 1, In view of the possibility that the concentration cannot be accurately measured, in this embodiment, infrared light (reference light) having a wavelength λ2 different from the absorption wavelength λ1 of the measurement gas is incident on the container 1 and the reference light (passed through the container 1) ( Measurement based on the change in emission intensity of the infrared light source 2 and the influence of miscellaneous gas by obtaining the difference between the intensity of the infrared light of the second wavelength λ2 and the intensity of the absorption wavelength of the measurement gas (first wavelength λ1). The error can be corrected.

すなわち、第1の波長フィルタ4を透過した赤外線を第2の波長フィルタ8の反射面に入射すれば、第2の波長フィルタ8の反射面において第2の波長λ2(例えば、λ2=4.0μm)の赤外線(参照光)のみを選択的に反射させて容器1に入射させることができる。例えば、測定ガスが二酸化炭素であれば、第1の波長λ1=4.4μm、第2の波長λ2=4.0μmとし、測定ガスが一酸化炭素であれば、第1の波長λ1=4.7μm、第2の波長λ2=4.0μmとすればよい。尚、第2の波長フィルタ8には第1の波長フィルタ4と共通の構成を有するサブ波長光学素子を用いる。   That is, if the infrared light transmitted through the first wavelength filter 4 is incident on the reflection surface of the second wavelength filter 8, the second wavelength λ2 (for example, λ2 = 4.0 μm) is formed on the reflection surface of the second wavelength filter 8. ) Only the infrared rays (reference light) can be selectively reflected and incident on the container 1. For example, if the measurement gas is carbon dioxide, the first wavelength λ1 = 4.4 μm and the second wavelength λ2 = 4.0 μm. If the measurement gas is carbon monoxide, the first wavelength λ1 = 4. What is necessary is just to set it as 7 micrometers and 2nd wavelength (lambda) 2 = 4.0 micrometers. The second wavelength filter 8 is a sub-wavelength optical element having the same configuration as that of the first wavelength filter 4.

而して本実施形態によれば、測定ガスの吸収波長(第1の波長λ1)と異なる波長(第2の波長λ2)の赤外線(参照光)を容器1に入射させ、容器1を通過した参照光の強度と、測定ガスの吸収波長(第1の波長λ1)の赤外線の強度との差分を求めることで赤外線光源2の発光強度の変化や雑ガスの影響による測定誤差を補正することにより測定精度を向上することができる。しかも、第2の波長λ2のみを選択的に反射する第2の波長フィルタ8をサブ波長光学素子で構成しているので、従来例のように母材の表面に蒸着やスパッタリングによって多数(50層〜200層程度)の薄膜をコーティングして形成される光学フィルタ23に比較して反射域(バンド幅)を狭くすることが可能である。また、材料として赤外線を透過するシリコン基板が使用できるためにゲルマニウムなどに比べて材料費が安価であり、さらに、通常の半導体プロセスを利用して格子4b,4cを高い精度で形成できるため、反射域の中心波長を所望の波長(測定ガスの吸収波長)に一致させることが容易とな歩留まりがよく、製造コストを下げることができるという利点がある。   Thus, according to the present embodiment, infrared light (reference light) having a wavelength (second wavelength λ2) different from the absorption wavelength (first wavelength λ1) of the measurement gas is incident on the container 1 and passes through the container 1. By calculating the difference between the intensity of the reference light and the infrared intensity of the absorption wavelength (first wavelength λ1) of the measurement gas to correct the measurement error due to the change in emission intensity of the infrared light source 2 and the influence of various gases Measurement accuracy can be improved. In addition, since the second wavelength filter 8 that selectively reflects only the second wavelength λ2 is composed of the sub-wavelength optical element, a large number (50 layers) are formed on the surface of the base material by vapor deposition or sputtering as in the conventional example. Compared with the optical filter 23 formed by coating a thin film of about ~ 200 layers), it is possible to narrow the reflection area (bandwidth). Further, since a silicon substrate that transmits infrared rays can be used as a material, the material cost is lower than that of germanium and the like, and the lattices 4b and 4c can be formed with high accuracy by using a normal semiconductor process. It is easy to make the center wavelength of the region coincide with a desired wavelength (absorption wavelength of the measurement gas), and there is an advantage that the yield is good and the manufacturing cost can be reduced.

尚、第1及び第2の波長フィルタ4,8で反射された第1及び第2の波長λ1,λ2の赤外線を容器1に入射させる代わりに、図6に示すように容器1を通過した赤外線から第1の波長λ1の赤外線のみを第1の波長フィルタ4で反射させて第1の赤外線検出器6に入射させるとともに、第1の波長フィルタ4を透過した赤外線から第2の波長λ2の赤外線のみを第2の波長フィルタ8で反射させて第2の赤外線検出器10に入射させる構成としても構わない。図5の構成では、容器1の前段に第1及び第2の波長フィルタ4,8を配置することで容器1内に第1及び第2の波長λ1,λ2の赤外線以外の不要な赤外線が入射しないため、例えば、容器1内に混在している測定ガス以外のガスが第1及び第2の波長λ1,λ2以外の波長の赤外線を吸収して容器1内の温度が上昇することがない。また、サブ波長光学素子からなる第1及び第2の波長フィルタ4,8は入射面に対する赤外線の入射角度に対する波長依存性が大きいため、僅かな角度の違いで反射する波長が大きく変化してしまうが、図6の構成では、図5の構成と比較して第1及び第2の波長フィルタ4,8から第1及び第2の赤外線検出器6,10までの光路長がそれぞれ短いので、第1及び第2の波長フィルタ4,8の角度を変化させたときに第1及び第2の赤外線検出器6,10に入射する赤外線の移動量が少なくなり、その結果、角度調整が容易になるという利点がある。さらに、図5の構成では第1の波長λ1の赤外線と第2の波長λ2の赤外線を容器1に対して平行に入射及び通過させているのに対し、図6の構成では容器1に対して第1及び第2の波長λ1,λ2を含む赤外線を入射及び通過させているため、相対的に容器1の寸法を小さくできるという利点もある。   Instead of causing the infrared rays having the first and second wavelengths λ1 and λ2 reflected by the first and second wavelength filters 4 and 8 to enter the vessel 1, the infrared rays that have passed through the vessel 1 as shown in FIG. From the infrared rays having the first wavelength λ1 reflected by the first wavelength filter 4 to be incident on the first infrared detector 6, and the infrared rays having passed through the first wavelength filter 4 to the second wavelength λ2 Only the light reflected by the second wavelength filter 8 may be incident on the second infrared detector 10. In the configuration of FIG. 5, unnecessary infrared rays other than infrared rays having the first and second wavelengths λ <b> 1 and λ <b> 2 are incident on the container 1 by arranging the first and second wavelength filters 4 and 8 in the front stage of the container 1. Therefore, for example, a gas other than the measurement gas mixed in the container 1 does not increase the temperature in the container 1 by absorbing infrared light having a wavelength other than the first and second wavelengths λ1 and λ2. In addition, the first and second wavelength filters 4 and 8 made of sub-wavelength optical elements have a large wavelength dependency with respect to the incident angle of infrared rays with respect to the incident surface, so that the reflected wavelength greatly varies depending on a slight angle difference. However, in the configuration of FIG. 6, the optical path lengths from the first and second wavelength filters 4, 8 to the first and second infrared detectors 6, 10 are shorter than the configuration of FIG. When the angles of the first and second wavelength filters 4 and 8 are changed, the amount of infrared rays incident on the first and second infrared detectors 6 and 10 is reduced, and as a result, the angle adjustment is facilitated. There is an advantage. Further, in the configuration of FIG. 5, the infrared of the first wavelength λ1 and the infrared of the second wavelength λ2 are incident and passed in parallel to the container 1, whereas in the configuration of FIG. Since infrared rays including the first and second wavelengths λ1 and λ2 are incident and transmitted, there is an advantage that the size of the container 1 can be relatively reduced.

(実施形態3)
本実施形態の基本構成は実施形態2と共通であるから、共通の構成要素には同一の符号を付して説明を省略する。本実施形態は、図7に示すように赤外線光源2が放射する赤外線から第1の波長λ1及び第2の波長λ2の赤外線のみを互いの向きが直交する直線偏光に変換して選択的に反射する第3の波長フィルタ13と、第3の波長フィルタ13で反射された後に容器1を通過した第1の波長λ1の赤外線のみを通過させる第1の偏光フィルタ11と、第3の波長フィルタ13で反射された後に容器1を通過した第2の波長λ2の赤外線のみを通過させる第2の偏光フィルタ12とを備えた点に特徴がある。
(Embodiment 3)
Since the basic configuration of the present embodiment is the same as that of the second embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, as shown in FIG. 7, only infrared rays having the first wavelength λ1 and the second wavelength λ2 are converted from the infrared rays emitted from the infrared light source 2 into linearly polarized light whose directions are orthogonal to each other and selectively reflected. The first wavelength filter 13 that passes through the container 1 after being reflected by the third wavelength filter 13 and passes only the infrared light having the first wavelength λ 1, and the third wavelength filter 13. And a second polarizing filter 12 that passes only the infrared light having the second wavelength λ2 that has passed through the container 1 after being reflected by the light.

第3の波長フィルタ13は、実施形態1で説明したサブ波長光学素子(図2(a)参照)からなり、第1の波長λ1(=4.4μm)の赤外線をS偏光に変換して反射するとともに、第2の波長λ2(=4.0μm)の赤外線もP偏光に変換して反射している(図2(b)参照)。また、第1及び第2の偏光フィルタ11,12は、従来周知のワイヤグリッド偏光板やサブ波長光学素子(回折格子)などで構成される。   The third wavelength filter 13 includes the sub-wavelength optical element (see FIG. 2A) described in the first embodiment, and converts the infrared light having the first wavelength λ1 (= 4.4 μm) into S-polarized light and reflects it. At the same time, infrared light having the second wavelength λ2 (= 4.0 μm) is also converted to P-polarized light and reflected (see FIG. 2B). The first and second polarizing filters 11 and 12 are configured by a conventionally known wire grid polarizing plate, sub-wavelength optical element (diffraction grating), or the like.

すなわち、第3の波長フィルタ13で反射された第1及び第2の波長λ1,λ2の赤外線(S偏光及びP偏光)を容器1に入射し、容器1を通過した第1の波長λ1の赤外線(S偏光)と第2の波長λ2の赤外線(P偏光)を第1及び第2の偏光フィルタ11,12によって弁別するとともに、弁別した第1及び第2の波長λ1,λ2の赤外線の強度を第1の赤外線検出器6と第2の赤外線検出器10とで各別に検出することができる。   That is, infrared rays of the first and second wavelengths λ 1 and λ 2 reflected by the third wavelength filter 13 are incident on the container 1 and passed through the container 1. (S-polarized light) and infrared light of the second wavelength λ2 (P-polarized light) are discriminated by the first and second polarizing filters 11 and 12, and the intensity of the infrared rays of the discriminated first and second wavelengths λ1 and λ2 is determined. The first infrared detector 6 and the second infrared detector 10 can detect each separately.

而して本実施形態によれば、実施形態2と同様に、測定ガスの吸収波長(第1の波長λ1)と異なる波長(第2の波長λ2)の赤外線(参照光)を容器1に入射させ、容器1を通過した参照光の強度と、測定ガスの吸収波長(第1の波長λ1)の赤外線の強度との差分を求めることで赤外線光源2の発光強度の変化や雑ガスの影響による測定誤差を補正することにより測定精度を向上することができる。しかも、第1及び第2の波長λ1,λ2のみを選択的に反射する第3の波長フィルタ13をサブ波長光学素子で構成しているので、従来例のように母材の表面に蒸着やスパッタリングによって多数(50層〜200層程度)の薄膜をコーティングして形成される光学フィルタ23に比較して反射域(バンド幅)を狭くすることが可能である。また、材料として赤外線を透過するシリコン基板が使用できるためにゲルマニウムなどに比べて材料費が安価であり、さらに、通常の半導体プロセスを利用して格子41,42を高い精度で形成できるため、反射域の中心波長を所望の波長(測定ガスの吸収波長)に一致させることが容易となって歩留まりがよく、製造コストを下げることができるという利点がある。しかも、実施形態2では第1及び第2の波長フィルタ4,8を用いて第1及び第2の波長λ1,λ2の赤外線を選択的に反射しているのに対し、本実施形態では、第3の波長フィルタ13のみで第1及び第2の波長λ1,λ2の赤外線を反射しているから、構成を簡素化して安価にできるとともに、第1及び第2の波長λ1,λ2の赤外線が同一の光路を通ることになるから、赤外線強度の差分を利用した補正の精度、すなわち、測定精度が向上できるという利点もある。   Thus, according to the present embodiment, as in the second embodiment, an infrared ray (reference light) having a wavelength (second wavelength λ2) different from the absorption wavelength (first wavelength λ1) of the measurement gas is incident on the container 1. The difference between the intensity of the reference light that has passed through the container 1 and the intensity of the infrared light of the absorption wavelength of the measurement gas (first wavelength λ1) is obtained, thereby changing the emission intensity of the infrared light source 2 and the influence of various gases. The measurement accuracy can be improved by correcting the measurement error. In addition, since the third wavelength filter 13 that selectively reflects only the first and second wavelengths λ1 and λ2 is composed of the sub-wavelength optical element, vapor deposition or sputtering is performed on the surface of the base material as in the conventional example. Therefore, it is possible to narrow the reflection area (bandwidth) as compared with the optical filter 23 formed by coating a large number (about 50 to 200 layers) of thin films. Further, since a silicon substrate that transmits infrared rays can be used as a material, the material cost is lower than that of germanium and the like, and the gratings 41 and 42 can be formed with high accuracy by using a normal semiconductor process. It is easy to make the center wavelength of the region coincide with a desired wavelength (absorption wavelength of the measurement gas), and there is an advantage that the yield is good and the manufacturing cost can be reduced. Moreover, in the second embodiment, the first and second wavelength filters 4 and 8 are used to selectively reflect the infrared rays having the first and second wavelengths λ1 and λ2, whereas in the present embodiment, the first and second wavelengths are filtered. Since the infrared rays of the first and second wavelengths λ1 and λ2 are reflected only by the three wavelength filters 13, the configuration can be simplified and the cost can be reduced, and the infrared rays of the first and second wavelengths λ1 and λ2 are the same. Therefore, there is also an advantage that the accuracy of correction using the difference in infrared intensity, that is, the measurement accuracy can be improved.

(実施形態4)
本実施形態の基本構成は実施形態3と共通であるから、共通の構成要素には同一の符号を付して説明を省略する。本実施形態は、図8に示すように第1及び第2の偏光フィルタ11,12に代えて、第3の波長フィルタ13で反射された後に容器1を通過した第1の波長λ1の赤外線と第2の波長λ2の赤外線とを分離する偏光ビームスプリッタ14を備えた点に特徴がある。
(Embodiment 4)
Since the basic configuration of this embodiment is the same as that of the third embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. In this embodiment, instead of the first and second polarizing filters 11 and 12, as shown in FIG. 8, the infrared ray having the first wavelength λ1 that has passed through the container 1 after being reflected by the third wavelength filter 13 and It is characterized in that a polarizing beam splitter 14 that separates infrared rays of the second wavelength λ2 is provided.

偏光ビームスプリッタ14は、光透過性を有する基板14aの一方の面にS偏光の赤外線を直進させるとともにP偏光の赤外線を屈折(反射)させる偏光格子14bが形成されたサブ波長光学素子からなる(例えば、特開2002−90534号公報参照)。このような構成の偏光ビームスプリッタ14は、基板14aや偏光格子14bを金型による樹脂成形若しくは半導体プロセスによって製造することができる。   The polarization beam splitter 14 is composed of a sub-wavelength optical element in which a polarization grating 14b is formed on one surface of a light-transmitting substrate 14a so that S-polarized infrared light travels straight and P-polarized infrared light is refracted (reflected) ( For example, refer to JP 2002-90534 A). The polarization beam splitter 14 having such a configuration can be manufactured by resin molding using a mold or a semiconductor process for the substrate 14a and the polarization grating 14b.

而して本実施形態によれば、実施形態3と比較して、2つの偏光フィルタ11,12の代わりに1つの偏光ビームスプリッタ14で済むことから安価であり、さらに、偏光フィルタ11,12では通過しない光(赤外線)が失われてしまうのに対して、偏光ビームスプリッタ14ではS偏光とP偏光を完全に分離することができるので、光のロスがないという利点がある。   Thus, according to the present embodiment, as compared with the third embodiment, one polarizing beam splitter 14 is sufficient instead of the two polarizing filters 11 and 12, and further, the polarizing filters 11 and 12 are inexpensive. The light that does not pass through (infrared rays) is lost, whereas the polarization beam splitter 14 can completely separate S-polarized light and P-polarized light, so that there is an advantage that there is no loss of light.

本発明の実施形態1を示す概略構成図である。It is a schematic block diagram which shows Embodiment 1 of this invention. 同上における第1の波長フィルタを示し、(a)は斜視図、(b)はフィルタ特性図である。The 1st wavelength filter in the same as above is shown, (a) is a perspective view and (b) is a filter characteristic figure. 同上の他の構成を示す概略構成図である。It is a schematic block diagram which shows the other structure same as the above. (a),(b)は同上における第1の波長フィルタの他の構成を示す斜視図である。(A), (b) is a perspective view which shows the other structure of the 1st wavelength filter in the same as the above. 本発明の実施形態2を示す概略構成図である。It is a schematic block diagram which shows Embodiment 2 of this invention. 同上の他の構成を示す概略構成図である。It is a schematic block diagram which shows the other structure same as the above. 本発明の実施形態3を示す概略構成図である。It is a schematic block diagram which shows Embodiment 3 of this invention. 本発明の実施形態4を示す概略構成図である。It is a schematic block diagram which shows Embodiment 4 of this invention. 従来例を示す概略構成図である。It is a schematic block diagram which shows a prior art example. 種々のガスの吸収波長を説明するための説明図である。It is explanatory drawing for demonstrating the absorption wavelength of various gas. 光学フィルタの特性を示すフィルタ特性図である。It is a filter characteristic figure which shows the characteristic of an optical filter. 他の従来例を示す概略構成図である。It is a schematic block diagram which shows another prior art example.

符号の説明Explanation of symbols

1 容器
2 赤外線光源
4 第1の波長フィルタ
6 第1の赤外線検出器
DESCRIPTION OF SYMBOLS 1 Container 2 Infrared light source 4 1st wavelength filter 6 1st infrared detector

Claims (8)

測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長以外の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長の赤外線のみを選択的に反射して容器に入射させる第1の波長フィルタと、容器を通過した第1の波長の赤外線の強度を検出する第1の赤外線検出器とを備え、第1の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とするガス濃度測定装置。 A container into which the measurement gas is introduced; an infrared light source that emits infrared light including a first wavelength absorbed by the measurement gas and a wavelength other than the first wavelength; A first wavelength filter comprising: a first wavelength filter that selectively reflects only infrared light and enters the container; and a first infrared detector that detects the intensity of infrared light having the first wavelength that has passed through the container. Comprises a sub-wavelength optical element in which a portion having a different refractive index is formed in a lattice pattern on the incident surface side of the substrate, and the lattice-shaped portion includes a lattice-shaped portion formed of a silicon oxide film and a silicon nitride film The gas concentration measuring device is characterized in that it is formed so as to be alternately arranged at a constant pitch . 測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長以外の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射し且つ容器を通過した赤外線から第1の波長の赤外線のみを選択的に反射する第1の波長フィルタと、第1の波長フィルタで反射された第1の波長の赤外線の強度を検出する第1の赤外線検出器とを備え、第1の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とするガス濃度測定装置。 A container into which a measurement gas is introduced; an infrared light source that emits infrared light including a first wavelength and a wavelength other than the first wavelength absorbed by the measurement gas; and an infrared light that is emitted from the infrared light source and passes through the container A first wavelength filter that selectively reflects only infrared light of the first wavelength; and a first infrared detector that detects the intensity of infrared light of the first wavelength reflected by the first wavelength filter; The first wavelength filter includes a sub-wavelength optical element in which a portion having a different refractive index is formed in a lattice shape on the incident surface side of the substrate, and the lattice portion is a lattice-shaped portion formed of a silicon oxide film. A gas concentration measuring apparatus, wherein the portion and the lattice-like portion formed of the silicon nitride film are alternately arranged at a constant pitch . 赤外線光源が放射する赤外線から第1の波長と異なり且つ測定ガスによって吸収されない第2の波長の赤外線のみを選択的に反射して容器に入射させる第2の波長フィルタと、容器を通過した第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第2の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなることを特徴とする請求項1記載のガス濃度測定装置。   A second wavelength filter that selectively reflects only an infrared ray having a second wavelength that is different from the first wavelength and is not absorbed by the measurement gas from the infrared ray emitted from the infrared light source, and a second wavelength filter that passes through the vessel. A second infrared detector for detecting the intensity of infrared rays having a wavelength of a second wavelength filter, wherein the second wavelength filter is a sub-wavelength optical element in which portions having different refractive indexes are formed in a lattice pattern on the incident surface side of the substrate The gas concentration measuring apparatus according to claim 1, wherein 赤外線光源が放射し且つ容器を通過した赤外線から第1の波長と異なり且つ測定ガスによって吸収されない第2の波長の赤外線のみを選択的に反射する第2の波長フィルタと、第2の波長フィルタで反射された第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第2の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなることを特徴とする請求項2記載のガス濃度測定装置。   A second wavelength filter that selectively reflects only infrared light having a second wavelength that is different from the first wavelength and that is not absorbed by the measurement gas from infrared light emitted from the infrared light source and passed through the container; and a second wavelength filter. A second infrared detector that detects the intensity of the reflected infrared light having the second wavelength, and the second wavelength filter has a portion having a different refractive index formed in a lattice pattern on the incident surface side of the substrate. 3. The gas concentration measuring apparatus according to claim 2, comprising a sub-wavelength optical element. 第1及び第2の波長フィルタは、屈折率の異なる格子状の部位が一次元周期のサブ波長格子を形成する共振モード格子フィルタからなることを特徴とする請求項1〜4の何れか1項に記載のガス濃度測定装置。   5. The first and second wavelength filters each include a resonance mode grating filter in which lattice-like portions having different refractive indexes form a one-dimensional periodic sub-wavelength grating. The gas concentration measuring device according to 1. 第1及び第2の波長フィルタは、屈折率の異なる格子状の部位が二次元周期のサブ波長格子を形成する共振モード格子フィルタからなることを特徴とする請求項1〜4の何れか1項に記載のガス濃度測定装置。   5. The first and second wavelength filters each include a resonance mode grating filter in which grating-like portions having different refractive indexes form a sub-wavelength grating having a two-dimensional period. The gas concentration measuring device according to 1. 測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長と異なり且つ測定ガスによって吸収されない第2の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長及び第2の波長の赤外線のみを互いの向きが直交する直線偏光に変換して選択的に反射する第3の波長フィルタと、第3の波長フィルタで反射された後に容器を通過した第1の波長の赤外線のみを通過させる第1の偏光フィルタと、第3の波長フィルタで反射された後に容器を通過した第2の波長の赤外線のみを通過させる第2の偏光フィルタと、第1の偏光フィルタを通過した第1の波長の赤外線の強度を検出する第1の赤外線検出器と、第2の偏光フィルタを通過した第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第3の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とするガス濃度測定装置。 An infrared light source that emits infrared light including a container into which a measurement gas is introduced, a first wavelength that is absorbed by the measurement gas, and a second wavelength that is different from the first wavelength and that is not absorbed by the measurement gas; A third wavelength filter that selectively converts infrared rays of the first and second wavelengths from the emitted infrared rays into linearly polarized light whose directions are orthogonal to each other and reflected by the third wavelength filter. A first polarization filter that passes only infrared light of the first wavelength that has passed through the container later, and a second polarization that passes only infrared light of the second wavelength that has passed through the container after being reflected by the third wavelength filter. A filter, a first infrared detector that detects the intensity of infrared light having a first wavelength that has passed through the first polarizing filter, and a first detector that detects the intensity of infrared light having a second wavelength that has passed through the second polarizing filter. 2 An infrared detector, a third wavelength filter consists subwavelength optical element different sites refractive index on the incident surface side of the substrate is formed in a lattice shape, the lattice sites, the silicon oxide film A gas concentration measuring apparatus, wherein the lattice-shaped portions formed in step 1 and the lattice-shaped portions formed of a silicon nitride film are alternately arranged at a constant pitch . 測定ガスが導入される容器と、測定ガスによって吸収される第1の波長と第1の波長と異なり且つ測定ガスによって吸収されない第2の波長とを含む赤外線を放射する赤外線光源と、赤外線光源が放射する赤外線から第1の波長及び第2の波長の赤外線のみを互いの向きが直交する直線偏光に変換して選択的に反射する第3の波長フィルタと、第3の波長フィルタで反射された後に容器を通過した第1の波長の赤外線と第2の波長の赤外線とを分離する偏光ビームスプリッタと、偏光ビームスプリッタで分離された第1の波長の赤外線の強度を検出する第1の赤外線検出器と、偏光ビームスプリッタで分離された第2の波長の赤外線の強度を検出する第2の赤外線検出器とを備え、第3の波長フィルタは、基板の入射面側に屈折率の異なる部位が格子状に形成されているサブ波長光学素子からなり、前記格子状の部位は、シリコン酸化膜で形成された格子状の部位とシリコン窒化膜で形成された格子状の部位とが一定のピッチで交互に並ぶように形成されていることを特徴とするガス濃度測定装置。 An infrared light source that emits infrared light including a container into which a measurement gas is introduced, a first wavelength that is absorbed by the measurement gas, and a second wavelength that is different from the first wavelength and that is not absorbed by the measurement gas; A third wavelength filter that selectively converts infrared rays of the first and second wavelengths from the emitted infrared rays into linearly polarized light whose directions are orthogonal to each other and reflected by the third wavelength filter. A polarization beam splitter that separates infrared light of the first wavelength and infrared light of the second wavelength that has passed through the container later, and first infrared detection that detects the intensity of the infrared light of the first wavelength separated by the polarization beam splitter And a second infrared detector for detecting the intensity of the infrared light having the second wavelength separated by the polarization beam splitter, and the third wavelength filter has a portion having a different refractive index on the incident surface side of the substrate. There consists subwavelength optical elements formed in a grid pattern, the lattice sites, the lattice-shaped portion and a constant pitch formed by the lattice-shaped portion and a silicon nitride film formed by the silicon oxide film The gas concentration measuring device is formed so as to be alternately arranged .
JP2008097566A 2008-04-03 2008-04-03 Gas concentration measuring device Expired - Fee Related JP5443701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097566A JP5443701B2 (en) 2008-04-03 2008-04-03 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097566A JP5443701B2 (en) 2008-04-03 2008-04-03 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2009250728A JP2009250728A (en) 2009-10-29
JP5443701B2 true JP5443701B2 (en) 2014-03-19

Family

ID=41311608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097566A Expired - Fee Related JP5443701B2 (en) 2008-04-03 2008-04-03 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP5443701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128150B2 (en) * 2015-03-12 2017-05-17 横河電機株式会社 Laser gas analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903457B2 (en) * 1993-11-20 1999-06-07 株式会社堀場製作所 Gas analyzer and gas analyzer
JP3174710B2 (en) * 1994-05-10 2001-06-11 株式会社堀場製作所 Gas analyzer
JPH08122253A (en) * 1994-08-31 1996-05-17 Shimadzu Corp Sample analyzer
US5811812A (en) * 1996-11-01 1998-09-22 Andros, Incorporated Multiple-gas NDIR analyzer
JP3627093B2 (en) * 1999-03-24 2005-03-09 大阪府 Resonant mode grating filter
US6212312B1 (en) * 1999-09-17 2001-04-03 U.T. Battelle, Llc Optical multiplexer/demultiplexer using resonant grating filters
JP4435406B2 (en) * 2000-05-01 2010-03-17 ナルックス株式会社 Wavelength separation filter and manufacturing method thereof
JP3711446B2 (en) * 2001-03-05 2005-11-02 独立行政法人科学技術振興機構 Wavelength filter
JP4140965B2 (en) * 2003-11-14 2008-08-27 株式会社堀場製作所 Absorption analyzer
WO2007139022A1 (en) * 2006-05-26 2007-12-06 Nalux Co., Ltd. Infrared light source and its fabrication method

Also Published As

Publication number Publication date
JP2009250728A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
KR101519527B1 (en) Methods for determining wafer temperature
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
US9488577B2 (en) Miniature gas sensor
US9052454B2 (en) Spectral band-pass filter having high selectivity and controlled polarization
JP2001516017A (en) Near-normal incidence optical assay method and system having wavelength and angular sensitivity
JP2011237374A (en) Spectroscopic instrument, detector, and method for manufacturing spectroscopic instrument
JP2007538292A (en) Integrated optical waveguide sensor with reduced signal modulation
IL223568A (en) Infrared detector comprising a package integrating at least one diffraction grating
KR20130018553A (en) Film thickness measurement apparatus
US10119802B2 (en) Optical position-measuring device having grating fields with different step heights
WO2011027899A1 (en) Surface plasmon resonance element for hydrogen detection, surface plasmon resonance-type optical hydrogen detector, and method for optically detecting hydrogen by using surface plasmon resonance
US20070279634A1 (en) Label-free grating-based surface plasmon resonance sensor
JP2017072597A (en) Bolometer having high spectral sensitivity
JP5900970B2 (en) Surface plasmon sensor and method of measuring refractive index
JP5443701B2 (en) Gas concentration measuring device
US20190064061A1 (en) Gas sensor using vcsel
JP5884532B2 (en) Photodiode, wavelength sensor, wavelength measuring device
JP2006194855A (en) Displacement detection apparatus, displacement gauging apparatus, and fixed point detection apparatus
US6340448B1 (en) Surface plasmon sensor
JP5200848B2 (en) Spectrometer
JP5877602B2 (en) Infrared light source
JP5365594B2 (en) Refractive index measuring apparatus and refractive index measuring method using guided mode resonance grating
JP2010186147A (en) Infrared optical filter and method for producing the same
JP2006292744A (en) Biosensor system enabling spectrum multiplexing
JP2004245674A (en) Radiation temperature measuring apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees