JP4435406B2 - Wavelength separation filter and manufacturing method thereof - Google Patents

Wavelength separation filter and manufacturing method thereof Download PDF

Info

Publication number
JP4435406B2
JP4435406B2 JP2000395705A JP2000395705A JP4435406B2 JP 4435406 B2 JP4435406 B2 JP 4435406B2 JP 2000395705 A JP2000395705 A JP 2000395705A JP 2000395705 A JP2000395705 A JP 2000395705A JP 4435406 B2 JP4435406 B2 JP 4435406B2
Authority
JP
Japan
Prior art keywords
light
incident
wavelength
reflection
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000395705A
Other languages
Japanese (ja)
Other versions
JP2002022918A (en
Inventor
久雄 菊田
淳一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nalux Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nalux Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nalux Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000395705A priority Critical patent/JP4435406B2/en
Publication of JP2002022918A publication Critical patent/JP2002022918A/en
Application granted granted Critical
Publication of JP4435406B2 publication Critical patent/JP4435406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は光波長多重方式(WDM)等に用いる波長分離フィルタに関する。
【0002】
【従来の技術】
21世紀初頭に広帯域マルチメディアサービスが本格的に普及すると、幹線系の通信容量は現状よりもさらに2桁大きいテラビット(Tビット/秒)級のシステムが必要になると予想される。財団法人光産業技術振興協会の資料によれば、光通信の通信容量は2005年には100GB/秒、2010年には1TB/秒となり、2013年頃には全光ネットワークが完成するとある。その時、全家庭で100MB/秒、大口ユーザーで1GB/秒の通信容量が実現する。
【0003】
このような通信容量増大化の要求に対し、光波長多重方式(WDM)が次世代の通信技術として期待されている。
【0004】
この光波長多重方式(WDM)は、異なる複数の波長の光を波長軸上に多重化して一本の光ファイバで伝送することにより、大容量伝送を可能とするもので、信号の分岐・挿入を、光フィルタ等の光受動デバイスにより光−電気変換することなく光レベルで行い、ネット信号形態や伝送速度によらず種々の信号が同時に伝送可能になるという特徴を有する。
【0005】
このWDM方式の普及を図るに当って、波長の異なる信号を分岐させる波長分離フィルタは必要、不可欠な光学素子となる。従来は、この波長分離フィルタを、光学結晶体を研磨することで複屈折偏光子を作成し、誘電体の薄膜を何層にも積み重ねることで(70から80層を超えるものもある)狭帯域な波長フィルタを製作していた。例えば、4波長狭城バンドパスフィルタは30層を超える光学多層膜コーテイングが必要でガラス製である。
【0006】
【発明が解決しようとする課題】
上記従来のWDM用の波長分離フィルタは、光学多層膜によって作られガラス製である。従って、生産性が低くコストも高くなる。通信の主回線用としては、それでもよかったが、加入者レべルではとても購入できる値段ではなく、―般消費者、企業等の加入者に普及を図る上で大きな障害となる。
【0007】
なお、ガラスに代え成形容易なプラスチックで、この薄膜フィルタを製作することも考えられるが、多層の薄膜層に、線膨張係数の違いによるマイクロクラックが発生し、面荒れ或いは剥れの原因となるため、この採用は不適当である。
【0008】
これに対し、光の波長と同程度の格子を表面に作成することにより、前記薄膜フィルタと同様のフィルタを実現できることが報告されている。
【0009】
これは、一定の共振条件を満たすように格子ピッチを決めると共振現象が発生し、強い反射が起こることを利用したもので、これによって、共振モード格子フィルタと呼ばれる非常に帯域の狭い反射型の波長フィルタを作成することができる。
【0010】
この格子構造でWDM用の波長分離フィルタを作成しようとすると、分岐させる光を取り出すため、格子面に斜めから入射させる必要がある。この場合に偏光が生じ、要求性能を満たせないという問題が生じる。
【0011】
この偏光依存性の問題は、格子面内に2つの等価な共振光の波数べクトルを生じさせるように、二次元に配列された格子構造を有する格子層を備え、前記2つの共振光の波数べクトルを、射光の射面に対して対称とすることにより解決できる。この構造を、次に説明する。
【0012】
図6は、この共振モード格子フィルタの構成を示す斜視図であり、図7は、図6に示す共振モード格子フィルタと入射光との関係を説明するための説明図であり、図8は、図6に示す共振モード格子フィルタにより偏光依存性を解消する原理を説明するための説明図であり、図9は、図6に示す共振モード格子フィルタの反射光の波長と反射率との関係を示すグラフである。
【0013】
図6に示すように、共振モード格子フィルタは、格子層1、導波層2、及び基板3を備える。基板3の上には、導波層2が形成され、導波層2の上には、格子層1が形成される。格子層1には、格子状に所定ピッチで複数の矩形の凹部4が形成され、凹部4、例えば空気と、凹部4以外の部分の低屈折率の媒質とから格子層1が構成され、高屈折率の導波層2が導波路となる。なお、格子層1は、凹部4の代わりに複数の凸部からなる格子層を用いてもよく、凹部部分に屈折率の異なる他の媒質を充填してもよい。格子層1に形成される凹部又は山部の形状は、格子面内に2つの等価な共振波数べクトルを生じさせるために、鏡面対称且つ回転対称な形状を有し、正方形であることが好ましいが、円形、楕円形、瓢箪形等の他の形状であってもよい。なお、本明細書において、回転対称な形状とは、該形状を180度回転させたときに元の形状に重なる形状をいう。
【0014】
図7に示すように、格子層1と直交する方向に対して角度θだけ傾けて射される入射光Iの射面は、以下に説明する2つの共振光の波数べクトルが入射光の射面に対して対称になるように、方位角45°(射面が格子の正方形の一辺となす角度)になるように設定される。このとき、射光Iは、格子層1により共振を起こし、特定波長の反射光Rが反射される。以下の説明では、射光がTEモード(層に対し電場が平行に振動しながら進むモード)で伝搬する場合にいて説明するが、TMモード(層に対し磁場が平行に振動しながら進むモード)で伝搬する場合にも同様に適用することができる。
【0015】
上記の場合、図8に示すように、p偏光射の光は、右上及び右下にそれぞれTEモードで伝播し、s偏光射の光も、同じ方向にTEモードで伝播する。本形態では、p偏光人射で伝播する伝播定数をp―βとし、s偏光射で伝播する伝播定数をs―βとし、射光の波数べクトルの接線成分をkとし、二つの共振光の波数べクトルである格子べクトルをKとすると、kとKのべクトルの和が、p―β及びs―βに等しくなるように格子ピッチA(=2π/K)が設定されている。従って、射光の射面に対して対称な2つの等価な共振波数べクトルを格子面内を生じさせることができ、p偏光射及びs偏光射の共振波長を致させるとともに、共振波長の半値幅を―致させることができる。この結果、入射光が格子面に対して斜めから射する場合に偏光依存性をなくすことができる。また、入射光の入射角度を調整することにより、所望の波長で共振を得ることができ、また、中心波長を移動させることもできる。
【0016】
しかし、この共振モード格子フィルタの製法として、従来知られている方法は、石英の基板の上に、導波層2としてSiO2膜を形成し、さらに、その上に電子線レジスト層を塗布形成し、電子ビーム描画装置によるパターンを約5時間かけて描画した後に現像を行い、格子パターンを作成するものである。なお、導波層2としてTiO2膜を形成する場合もある。
【0017】
このように、従来の共振モード格子フィルタの製法は、製造時間を考慮に入れない実験レベルに止まり、これを量産し素子を効率的に製造する方法については、ほとんど研究開発が進んでいない。このため実用化は困難であった。
【0018】
また、上記従来の共振モード格子フィルタは、導波層2に透過した光が利用できないため、1種類の波長の光しか分離できず、WDM用の素子として用いることはできない。
【0019】
そこで、本発明は共振モード格子フィルタを用いたプラスチック波長分離フィルタを、従来と比べ格段に低価格かつ量産容易な構造で提供することを目的とする。
【0020】
本発明の請求項1にかかる波長分離フィルタは、樹脂成形により形成され、入射面と、この入射面を透過した光を反射させる反射面と、この反射面で反射した光を出射させる出射面を持つ光透過性の基体を備え、この基体の入射面の上に基体の樹脂材よりも高屈折率の格子パターン層形成して共振モード格子フィルタである反射格子を形成することにより、入射面に斜交して入射した光の共振波長に対応する成分が反射により取り出され、他の成分が透過して反射面で反射し、出射面から射出されるようにした光分離器を、分離する光の波長の数だけ連続配置して、前段の光分離器の出射面から出た光が次段の入射面に入射するようにすると共に、各光分離器の各入射面の共振波長を分離する光の異なる波長に夫々一致させた波長分離フィルタにおいて、
各光分離器は、入射面を透過した光が反射面で全反射して出射面から入射方向と同方向に出射するように、入射面と出射面を反射面に斜交させたDOVEプリズム形状にすると共に、反射面側の部分で連結一体化して樹脂成形したことを特徴とする。
【0022】
本発明の請求項にかかる発明は、請求項に記載した波長分離フィルタにおいて、各光分離器の配置間隔を、入射面で反射した分離光が隣接した光分離器に当たらない長さとしたことを特徴とする。
【0023】
本発明の請求項にかかる発明は、請求項1に記載した波長分離フィルタにおいて、入射面の上に形成される反射格子の反射方向を、前記透過光の反射面と直交させたことを特徴とする。
【0024】
本発明の請求項4にかかる波長分離フィルタの製造方法は、樹脂成形により形成され、入射面と、この入射面を透過した光を反射させる反射面と、この反射面で反射した光を出射させる出射面を持つ光透過性の基体を備え、この基体の入射面の上に基体の樹脂材よりも高屈折率の格子パターン層を形成して共振モード格子フィルタである反射格子を形成することにより、入射面に斜交して入射した光の共振波長に対応する成分が反射により取り出され、他の成分が透過して反射面で反射し、出射面から射出されるようにした光分離器を、分離する光の波長の数だけ連続配置して、前段の光分離器の出射面から出た光が次段の入射面に入射するようにすると共に、各光分離器の各入射面の共振波長を分離する光の異なる波長に夫々一致させた波長分離フィルタの製造方法において、各光分離器は、反射面側の部分で連結一体化して樹脂成形すると共に、入射面を透過した光が反射面で全反射して出射面から入射方向と同方向に出射するように、入射面と出射面を反射面に斜交させたDOVEプリズム形状にすると共に、反射面側の部分で連結一体化して樹脂成形し、前記光分離器の反射格子は、光分離器の連結一体化と同時に光の波長と同等若しくはそれ以下のピッチで回折格子パターンが形成された金型で樹脂成形することにより、このパターンを入射面に転写する工程と、この転写パターンが形成された入射面に高屈折層を蒸着形成する工程とを経て、共振波長の光を反射し残りの光透過するように形成することを特徴とする。
【0026】
【実施形態】
図1に、本発明の一実施形態である4波長狭域バンドパスフィルタ7の縦断面図を示す。これは、4つの光分離器8を連結した形状で樹脂成形により一体成形したものである。このフィルタ7の紙面と垂直方向の幅は、分離されるビーム光が通過できる大きさである。光分離器8は、反射面10の両側に対向配置した入射面9と出射面11の間隔が反射面10から離れるに従って狭くなるように傾斜させたDOVEプリズム構造を持つ。図1のA部を拡大して示す図2に示すように、このDOVEプリズム構造は、反射面と平行(入射面に斜交)に入射した光を入射面9で屈折させて反射面10に当て、反射面で全反射させて出射面11で屈折させて入射方向と同一方向に出射させるものである。この入射面に共振モード格子フィルタ(色分解フィルタ)を形成すると、この回折格子で共振する波長の光は反射し、残りの光は透過し屈折する。
【0027】
この入射面に形成する回折格子は、樹脂成形金型に形成した微細形状を転写して作られる。樹脂成形に用いる材料は、例えばポリカーネート樹脂を使用し、各入射面の共振モード格子フィルタの反射波長λ1、λ2、λ3、λ4は、例えば1280,1300,1320,1340nmとする。
【0028】
この格子構造は、凹部又は山部を格子状に複数配列したもので、この凹部又は凸部は、格子面内に2つの等価な共振波数べクトルを生じさせるために、鏡面対称且つ回転対称な形状を有し、凹部又は山部の二等分線上に前記入射光の射面を位置させることが好ましい。凹部又は山部の形状は、正方形又はひし形であることが好ましいが、円形、楕円形、瓢箪形等の他の形状であってもよい。前記凹部又は凸部の配列は、例えば市松模様状とする。
【0029】
入射光λは、例えば、波長が1280,1300,1320,1340nmの光が合成されたもので、反射面10と平行に入射する。入射面9は、回折格子の反射を効率良く行える角度(例えば10°)があるため、この角度θだけ反射面10に対して傾斜させてある。
【0030】
入射光λの光軸と出射面11から出射する光の光軸を一致させるため、入射面9の傾きに応じて、反射面10の光軸方向の長さ(光分離器の一単位)と出射面11の傾き(入射面の傾きと大きさが同じで方向が異なる)が定まる。
【0031】
上記実施形態では、4つの光分離器8を直線状に連結しているので、入射面9で反射させ得た分離光が隣接する光分離器8で妨げられないようにする必要がある。そこで各光分離器8の配置間隔を、この目的に合わせて決定する。この構造によって、転写によって入射面の格子パターンを作りながら、複数の光分離器を同時に一体成形することが可能になり、光分離器を独立して樹脂成形し、これらが一定の配置関係になるように位置決め固定する作業を不要として、コストを削減することができる。
【0032】
上記実施形態における入射面9の反射角度θは、透過光の反射面10に対して傾斜する方向に分離光を反射させるものであった。この反射角度θは、反射格子の構造により、一定の範囲で任意に決めることができものであり、分離光の受光部(光電変換素子等のディテクタ)の配置の便を考慮して適宜定めることができる。
【0033】
図3及び図4は、入射面9に入射した光を透過光の反射面10と直交する方向に反射させるものである。これによって、分離光のディテクタを反射面10と平行に配置して組み立て構造を簡素化し、各光分離器8の配置間隔を最小にし、小型化を図ることができる。
【0034】
入射面9に共振モード格子フィルタを構成するための高屈折率層を形成する方法として、図5(a)に示すように、樹脂成形された入射面に蒸着によりTiO2膜やSiO2膜等を形成し、これに電子ビーム露光技術とエッチング加工技術により格子パターンを形成する方法と、図5(b)に示すように、金型に微細加工により形成した格子パターンを、樹脂成形時に入射面9に直接転写した後、その転写面の凹部と凸部にTiO2膜等を蒸着により一様に形成する方法がある。図5(b)に示す方法は、転写によって一時に成形を行うので、図5(a)に示す方法に比べて加工コストを低減することができる。この転写に用いる金型は、入射面9に対応する部分に、例えば、金型の金属面にサブミクロン単位で設計された格子パターンをレーザー描画することによって直接に成形したものを用いる。この金型のパターンは繰り返し転写が可能であり、低コストに波長分離フィルタを製作できる。
【0035】
なお、図1及び図3に示す実施形態は、4種の波長成分を分離するWDM用の波長分離フィルタとして構成したものを示したが、この直列数は分離を行う波長成分の数に合わせて、必要数だけ連結して製作できる。
【0036】
また、本発明は、ダイクロイックミラー等の他の波長分離フィルタに代えて使用することも可能である。例えば光をRGBの3原色に分離するダイクロイックミラーに代えて使用する場合は、前記光分離器を3つ直列に一体成形したものを用いることができる。
【0038】
【発明の効果】
本発明の請求項1にかかる波長分離フィルタは、樹脂成形により成形される基体の入射面に、共振モード格子フィルタである反射格子を形成するので、光学薄膜を使用した反射層を形成する場合に比べ製造コストを1/100以下に低減できる。また、光分離器を複数個用いて、複数の波長成分を同時に分離するフィルタを安価に提供でき、例えばWDM用の波長分離フィルタとして製作した場合は、一般消費者への高速、快適な通信環境の普及を容易に行うことができる。さらに、光分離器は、DOVEプリズム形状とすると共に、反射面側の部分で連結一体化して樹脂成形するため、複数波長の分離フィルタを一体成形でき、これにより、部品の組立てコストの低減を図ることができる。
【0040】
本発明の請求項にかかる発明は、部品の小型化を図ることができる。
【0041】
本発明の請求項にかかる発明は、複数波長の分離フィルタを一体成形する構造において、入射面9に入射した光を、透過光の反射面10と直交する方向に反射させることにより、組立て構造の簡素化及び小型化を図ることができる。
【0042】
本発明の請求項にかかる発明は、光分離器の連結一体化と同時に金型からの転写によって入射面に格子パターンを造り込み、全面に高屈折層の蒸着を行うだけで反射格子を入射面に形成するので、波長分離フィルタの製造コストを大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である光分離フィルタの構成を示す断面図である。
【図2】図1のA部を拡大して示す断面図である。
【図3】本発明の他の実施形態である光分離フィルタの構成を示す断面図である。
【図4】図3のB部を拡大して示す断面図である。
【図5】図1の波長分離フィルタの製造法を説明する断面図である。
【図6】本発明の前提となる共振モード格子フィルタの構成を示す斜視図である。
【図7】図6に示す共振モード格子フィルタと入射光との関係を説明するための説明図である。
【図8】図6に示す共振モード格子フィルタにより偏光依存性を解消する原理を説明するための説明図である。
【図9】図6に示す共振モード格子フィルタの反射光の波長と反射率との関係を示すグラフである。
【符号の説明】
7 波長分離フィルタ(4波長狭域バンドパスフィルタ)
8 光分離器
9 入射面
10 反射面
11 出射面
[0001]
[Industrial application fields]
The present invention relates to a wavelength separation filter used for an optical wavelength division multiplexing (WDM) or the like.
[0002]
[Prior art]
As broadband multimedia services become widespread at the beginning of the 21st century, it is expected that a terabit (T bit / second) class system having a trunk line communication capacity that is two orders of magnitude larger than the current level will be required. According to the materials of the Japan Optical Industry Technology Promotion Association, the communication capacity of optical communication will be 100 GB / second in 2005, 1 TB / second in 2010, and the all-optical network will be completed around 2013. At that time, a communication capacity of 100 MB / sec for all homes and 1 GB / sec for large users is realized.
[0003]
In response to such a demand for increasing communication capacity, optical wavelength division multiplexing (WDM) is expected as a next-generation communication technology.
[0004]
This optical wavelength division multiplexing (WDM) enables large-capacity transmission by multiplexing multiple wavelengths of light on the wavelength axis and transmitting them over a single optical fiber. Is performed at an optical level without optical-electrical conversion by an optical passive device such as an optical filter, and various signals can be transmitted simultaneously regardless of the net signal form and transmission speed.
[0005]
In order to spread the WDM system, a wavelength separation filter for branching signals having different wavelengths becomes a necessary and indispensable optical element. Conventionally, this wavelength separation filter is made by creating a birefringent polarizer by polishing an optical crystal, and by stacking multiple layers of dielectric thin films (some have more than 70 to 80 layers). A simple wavelength filter was manufactured. For example, a 4-wavelength Nagi bandpass filter requires an optical multilayer coating of more than 30 layers and is made of glass.
[0006]
[Problems to be solved by the invention]
The conventional wavelength separation filter for WDM is made of an optical multilayer film and made of glass. Therefore, productivity is low and cost is high. That's okay for the main line of communications, but it's not a very affordable price at the subscriber level-it's a major obstacle to disseminating to consumers, businesses and other subscribers.
[0007]
Although it is conceivable to make this thin film filter with plastic that can be easily molded instead of glass, micro cracks due to the difference in linear expansion coefficient occur in the multilayer thin film layer, which causes surface roughness or peeling. Therefore, this adoption is inappropriate.
[0008]
On the other hand, it has been reported that a filter similar to the thin film filter can be realized by forming a grating having the same size as the light wavelength on the surface.
[0009]
This is based on the fact that a resonance phenomenon occurs when the grating pitch is determined so as to satisfy a certain resonance condition, and that strong reflection occurs. Wavelength filters can be created.
[0010]
If an attempt is made to create a WDM wavelength separation filter with this grating structure, it is necessary to enter the grating surface obliquely in order to extract the light to be branched. In this case, polarized light is generated, causing a problem that the required performance cannot be satisfied.
[0011]
The problem of this polarization dependence is that a lattice layer having a lattice structure arranged two-dimensionally so as to generate two equivalent wave number vectors of resonant light in the lattice plane, the wave number of the two resonant lights is provided. the base vector, can be solved by symmetrical with respect to input reflecting surface of the incoming Shako. This structure will be described next.
[0012]
FIG. 6 is a perspective view showing the configuration of this resonance mode grating filter, FIG. 7 is an explanatory diagram for explaining the relationship between the resonance mode grating filter shown in FIG. 6 and incident light, and FIG. FIG. 9 is an explanatory diagram for explaining the principle of eliminating the polarization dependency by the resonance mode grating filter shown in FIG. 6, and FIG. 9 shows the relationship between the wavelength of reflected light and the reflectance of the resonance mode grating filter shown in FIG. It is a graph to show.
[0013]
As shown in FIG. 6, the resonance mode grating filter includes a grating layer 1, a waveguide layer 2, and a substrate 3. A waveguide layer 2 is formed on the substrate 3, and a lattice layer 1 is formed on the waveguide layer 2. A plurality of rectangular recesses 4 are formed in a lattice pattern at a predetermined pitch in the lattice layer 1, and the lattice layer 1 is configured by the recesses 4, for example, air and a medium having a low refractive index other than the recesses 4. The refractive index waveguide layer 2 becomes a waveguide. Note that the grating layer 1 may use a grating layer composed of a plurality of convex portions instead of the concave portions 4, and the concave portions may be filled with another medium having a different refractive index. The shape of the recesses or peaks formed in the lattice layer 1 is preferably a square shape having a mirror symmetry and a rotational symmetry in order to generate two equivalent resonance wave number vectors in the lattice plane. However, other shapes such as a circle, an ellipse, and a bowl may be used. In this specification, a rotationally symmetric shape refers to a shape that overlaps the original shape when the shape is rotated 180 degrees.
[0014]
As shown in FIG. 7, the input reflecting surface P of the incident light I, Isa input inclined by an angle θ with respect to a direction perpendicular to the grating layer 1, two wavenumber base vector of the resonant optical described below incident to be symmetrical with respect to light incident reflecting surface, azimuth 45 ° (incident morphism plane angle between one side of the square grid) is set to be. At this time, input Shako I is resonated by lattice layer 1, the reflected light R at a specific wavelength is reflected. In the following description, incoming Shako but is describes the case of propagating in the TE mode (electric field to the layer progresses while oscillating in parallel), TM mode (field to the layer progresses while oscillating in parallel The same can be applied to the case of propagating in).
[0015]
In the above case, as shown in FIG. 8, the light of p-polarized light incident morphism propagates in the TE mode, respectively in the upper right and lower right, s-polarized light incident morphism light also propagates in the TE mode in the same direction. In this embodiment, the propagation constants of propagating morphism p-polarized human and p-beta, the propagation constants of propagating morphism s-polarized light incident as the s-beta, and the tangential component of the wave base vector of the incoming Shako and k, two resonance Assuming that the lattice vector which is the wave number vector of light is K, the lattice pitch A (= 2π / K) is set so that the sum of the vectors of k and K is equal to p-β and s-β. Yes. Thus, a symmetrical two equivalent resonant wavenumber base vector can be generated in the lattice plane, causes one Itasa the resonance wavelength of the p-polarized light incident elevation and s-polarized light incident elevation relative to input reflecting surface of the incoming Shako, The half width of the resonance wavelength can be matched. As a result, it is possible to eliminate the polarization dependence when the incident light is morphism input from obliquely with respect to the grating surface. Further, by adjusting the incident angle of incident light, resonance can be obtained at a desired wavelength, and the center wavelength can be moved.
[0016]
However, as a manufacturing method of this resonance mode lattice filter, a conventionally known method is to form a SiO 2 film as a waveguide layer 2 on a quartz substrate and further apply an electron beam resist layer thereon. Then, after a pattern is drawn by an electron beam drawing apparatus over about 5 hours, development is performed to create a lattice pattern. A TiO 2 film may be formed as the waveguide layer 2 in some cases.
[0017]
As described above, the conventional method for manufacturing a resonant mode grating filter is limited to an experimental level that does not take the manufacturing time into consideration, and little research and development has been made on a method for mass-producing this to efficiently manufacture an element. For this reason, practical use was difficult.
[0018]
In addition, since the light transmitted through the waveguide layer 2 cannot be used in the above conventional resonance mode grating filter, only light of one type of wavelength can be separated and cannot be used as an element for WDM.
[0019]
Accordingly, an object of the present invention is to provide a plastic wavelength separation filter using a resonance mode grating filter with a structure that is much cheaper and easier to mass-produce than conventional ones.
[0020]
The wavelength separation filter according to claim 1 of the present invention is formed by resin molding, and includes an incident surface, a reflective surface that reflects light transmitted through the incident surface, and an output surface that emits light reflected by the reflective surface. having provided a light transparent substrate, by forming a reflection grating is a resonant mode lattice filter form a lattice pattern layer with a high refractive index than the resin material of the substrate on the incident surface of the substrate, incident surface The component corresponding to the resonance wavelength of the light incident obliquely to the light is extracted by reflection, and the other components are transmitted and reflected by the reflection surface, and separated from the light exit surface. As many as the number of wavelengths of light are continuously arranged so that the light emitted from the exit surface of the preceding optical separator enters the incident surface of the next stage, and the resonance wavelength of each incident surface of each optical separator is separated. Wavelength separation filter matched to different wavelengths of the light In other,
Each light separator has a DOVE prism shape in which the entrance surface and the exit surface are obliquely intersected with the reflection surface so that the light transmitted through the entrance surface is totally reflected by the reflection surface and is emitted from the exit surface in the same direction as the incidence direction. In addition, it is characterized in that it is resin-molded by connecting and integrating at the reflecting surface side portion .
[0022]
The invention according to claim 2 of the present invention, in the wavelength separation filter according to claim 1, the arrangement interval of each light separator separating light reflected at the incident surface is Satoshi length does not strike the optical separator adjacent It is characterized by that.
[0023]
The invention according to claim 3 of the present invention is the wavelength separation filter according to claim 1 , wherein the reflection direction of the reflection grating formed on the incident surface is orthogonal to the reflection surface of the transmitted light. And
[0024]
The manufacturing method of the wavelength separation filter according to claim 4 of the present invention is formed by resin molding, and emits light incident on the incident surface, a reflecting surface that reflects light transmitted through the incident surface, and light reflected on the reflecting surface. By providing a light-transmitting substrate having an exit surface and forming a grating pattern layer having a higher refractive index than the resin material of the substrate on the incident surface of the substrate to form a reflection grating that is a resonance mode lattice filter A light separator that is configured such that a component corresponding to the resonance wavelength of light incident obliquely on the incident surface is extracted by reflection, and other components are transmitted and reflected by the reflective surface and emitted from the output surface. The number of wavelengths of light to be separated is continuously arranged so that the light emitted from the exit surface of the preceding optical separator enters the incident surface of the next stage, and the resonance of each incident surface of each optical separator Waves matched to different wavelengths of the light that separates the wavelengths In the manufacturing method of the separation filter, each light separator is connected and integrated at the portion on the reflecting surface side and molded with resin, and light transmitted through the incident surface is totally reflected by the reflecting surface and is in the same direction as the incident direction from the emitting surface. The DOVE prism shape in which the entrance surface and the exit surface are obliquely intersected with the reflection surface is formed by connecting and integrating the resin on the reflection surface side, and the reflection grating of the light separator The step of transferring the pattern to the incident surface by resin molding with a mold in which a diffraction grating pattern is formed at a pitch equal to or less than the wavelength of light at the same time as connecting and integrating the separator, and the transfer pattern a high refractive layer and a process of vapor deposited on the formed incident surface, the remaining light reflects light resonance wavelength and forming to transmit.
[0026]
Embodiment
FIG. 1 shows a longitudinal sectional view of a four-wavelength narrow bandpass filter 7 which is an embodiment of the present invention. This is formed integrally by resin molding in a shape in which four light separators 8 are connected. The width of the filter 7 in the direction perpendicular to the paper surface is such that the separated light beam can pass through. The light separator 8 has a DOVE prism structure that is inclined so that the distance between the entrance surface 9 and the exit surface 11 disposed opposite to each other on both sides of the reflection surface 10 becomes narrower as the distance from the reflection surface 10 increases. As shown in FIG. 2 which shows an enlarged view of part A in FIG. 1, this DOVE prism structure refracts light incident parallel to the reflecting surface (obliquely intersecting with the incident surface) at the incident surface 9 to form the reflecting surface 10. The light is totally reflected by the reflecting surface, refracted by the emitting surface 11 and emitted in the same direction as the incident direction. When a resonance mode grating filter (color separation filter) is formed on the incident surface, light having a wavelength resonating with the diffraction grating is reflected, and the remaining light is transmitted and refracted.
[0027]
The diffraction grating formed on the incident surface is made by transferring a fine shape formed on a resin molding die. The material used for resin molding is, for example, a polycarbonate resin, and the reflection wavelengths λ1, λ2, λ3, λ4 of the resonance mode grating filters on the respective incident surfaces are set to, for example, 1280, 1300, 1320, 1340 nm.
[0028]
In this lattice structure, a plurality of concave portions or mountain portions are arranged in a lattice shape, and the concave portions or convex portions are mirror-symmetric and rotationally symmetric in order to generate two equivalent resonance wave number vectors in the lattice plane. shaped, it is preferred to position the input reflecting surface of the light incident on the bisector of the recess or crests. The shape of the recess or peak is preferably a square or rhombus, but may be other shapes such as a circle, an ellipse, and a bowl. The arrangement of the recesses or projections is, for example, a checkered pattern.
[0029]
The incident light λ is, for example, a combination of light having wavelengths of 1280, 1300, 1320, and 1340 nm, and is incident parallel to the reflecting surface 10. Since the incident surface 9 has an angle (for example, 10 °) at which the diffraction grating can be efficiently reflected, the incident surface 9 is inclined with respect to the reflective surface 10 by this angle θ.
[0030]
In order to make the optical axis of the incident light λ coincide with the optical axis of the light emitted from the emission surface 11, the length of the reflection surface 10 in the optical axis direction (one unit of the optical separator) according to the inclination of the incidence surface 9. The inclination of the exit surface 11 (the direction and the direction of the incident surface are the same and the direction is different) is determined.
[0031]
In the above embodiment, since the connecting straight four light separator 8, it is necessary to separate light obtained by reflecting the incident surface 9 is not impeded by the optical separator 8 adjacent. Therefore, the arrangement interval of each light separator 8 is determined in accordance with this purpose. With this structure, it becomes possible to simultaneously mold a plurality of light separators while creating a grating pattern on the entrance surface by transfer, and the light separators are independently molded with resin, and these are in a fixed arrangement relationship. Thus, the work for positioning and fixing is unnecessary, and the cost can be reduced.
[0032]
The reflection angle θ of the incident surface 9 in the above embodiment reflects the separated light in a direction inclined with respect to the reflection surface 10 of the transmitted light. The reflection angle θ can be arbitrarily determined within a certain range depending on the structure of the reflection grating, and is appropriately determined in consideration of the arrangement of the separated light receiving unit (detector such as a photoelectric conversion element). Can do.
[0033]
3 and 4 reflect light incident on the incident surface 9 in a direction orthogonal to the reflecting surface 10 of the transmitted light. Thereby, the detector of the separated light is arranged in parallel with the reflecting surface 10 to simplify the assembly structure, the arrangement interval of each light separator 8 can be minimized, and the size can be reduced.
[0034]
As a method for forming a high refractive index layer for constituting a resonant mode grating filter on the incident surface 9, as shown in FIG. 5A, a TiO 2 film or SiO 2 film is deposited on the resin-formed incident surface 9 by vapor deposition. Etc., and a lattice pattern formed by fine processing on a mold as shown in FIG. 5 (b) is incident upon resin molding. There is a method in which, after transferring directly to the surface 9 , a TiO 2 film or the like is uniformly formed on the concave and convex portions of the transfer surface by vapor deposition. Since the method shown in FIG. 5B performs molding at a time by transfer, the processing cost can be reduced as compared with the method shown in FIG. As the mold used for this transfer, for example, a part directly formed by laser drawing a lattice pattern designed in submicron units on the metal surface of the mold is used at a portion corresponding to the incident surface 9. This mold pattern can be repeatedly transferred, and a wavelength separation filter can be manufactured at low cost.
[0035]
The embodiment shown in FIG. 1 and FIG. 3 shows what is configured as a wavelength separation filter for WDM that separates four types of wavelength components, but this number in series is matched to the number of wavelength components to be separated. It can be produced by connecting as many as necessary.
[0036]
The present invention can also be used in place of other wavelength separation filters such as a dichroic mirror. For example, when the light is used in place of a dichroic mirror that separates the three primary colors of RGB, it is possible to use three light separators integrally formed in series.
[0038]
【The invention's effect】
The wavelength separation filter according to claim 1 of the present invention forms a reflection grating, which is a resonance mode grating filter, on the incident surface of a substrate molded by resin molding. Therefore, when a reflection layer using an optical thin film is formed. In comparison, the manufacturing cost can be reduced to 1/100 or less. Also, a filter that simultaneously separates a plurality of wavelength components by using a plurality of optical separators can be provided at a low cost. For example, when manufactured as a wavelength separation filter for WDM, a high-speed and comfortable communication environment for general consumers. Can be easily spread. Furthermore, since the optical separator has a DOVE prism shape and is integrally formed with a resin on the reflection surface side, a plurality of wavelength separation filters can be integrally formed, thereby reducing the assembly cost of components. be able to.
[0040]
The invention according to claim 2 of the present invention can reduce the size of parts.
[0041]
The invention according to claim 3 of the present invention is an assembly structure in which the light incident on the incident surface 9 is reflected in a direction orthogonal to the reflecting surface 10 of the transmitted light in a structure in which a separation filter having a plurality of wavelengths is integrally formed. Can be simplified and downsized.
[0042]
In the invention according to claim 4 of the present invention, a grating pattern is formed on the incident surface by transferring from the mold at the same time as connecting and integrating the optical separator, and the reflective grating is incident only by depositing a high refractive layer on the entire surface. Since it is formed on the surface, the manufacturing cost of the wavelength separation filter can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a light separation filter according to an embodiment of the present invention.
2 is an enlarged cross-sectional view of a portion A in FIG.
FIG. 3 is a cross-sectional view showing a configuration of a light separation filter according to another embodiment of the present invention.
4 is an enlarged cross-sectional view of a portion B in FIG.
5 is a cross-sectional view illustrating a method for manufacturing the wavelength separation filter of FIG. 1. FIG.
FIG. 6 is a perspective view showing a configuration of a resonance mode grating filter which is a premise of the present invention.
7 is an explanatory diagram for explaining the relationship between the resonance mode grating filter shown in FIG. 6 and incident light;
8 is an explanatory diagram for explaining the principle of eliminating polarization dependence by the resonant mode grating filter shown in FIG. 6;
9 is a graph showing the relationship between the wavelength of reflected light and the reflectance of the resonant mode grating filter shown in FIG. 6;
[Explanation of symbols]
7 Wavelength separation filter (4-wavelength narrow bandpass filter)
8 Light separator 9 Entrance surface 10 Reflection surface 11 Output surface

Claims (4)

樹脂成形により形成され、入射面と、この入射面を透過した光を反射させる反射面と、この反射面で反射した光を出射させる出射面を持つ光透過性の基体を備え、この基体の入射面の上に基体の樹脂材よりも高屈折率の格子パターン層形成して共振モード格子フィルタである反射格子を形成することにより、入射面に斜交して入射した光の共振波長に対応する成分が反射により取り出され、他の成分が透過して反射面で反射し、出射面から射出されるようにした光分離器を、分離する光の波長の数だけ連続配置して、前段の光分離器の出射面から出た光が次段の入射面に入射するようにすると共に、各光分離器の各入射面の共振波長を分離する光の異なる波長に夫々一致させた波長分離フィルタにおいて、
各光分離器は、入射面を透過した光が反射面で全反射して出射面から入射方向と同方向に出射するように、入射面と出射面を反射面に斜交させたDOVEプリズム形状にすると共に、反射面側の部分で連結一体化して樹脂成形したことを特徴とする波長分離フィルタ。
It is formed by resin molding , and includes a light transmissive substrate having an incident surface, a reflective surface that reflects light transmitted through the incident surface, and an output surface that emits light reflected by the reflective surface. Corresponding to the resonant wavelength of light incident obliquely to the incident surface by forming a reflective grating that is a resonant mode grating filter by forming a grating pattern layer with a higher refractive index than the resin material of the base on the surface The optical separator is extracted by reflection, the other components are transmitted and reflected by the reflection surface, and emitted from the output surface . A wavelength separation filter that allows light emitted from the exit surface of the light separator to enter the incident surface of the next stage and matches the resonance wavelength of each incident surface of each light separator to a different wavelength of the light to be separated. In
Each light separator has a DOVE prism shape in which the entrance surface and the exit surface are obliquely intersected with the reflection surface so that the light transmitted through the entrance surface is totally reflected by the reflection surface and is emitted from the exit surface in the same direction as the incidence direction. In addition, the wavelength separation filter is characterized in that it is connected and integrated at the portion on the reflective surface side and resin-molded .
各光分離器の配置間隔を入射面で反射した分離光が隣接した光分離器らない長さとした請求項に記載波長分離フィルタ。Wavelength separation filter according to claim 1, separating light reflected at the incident surface of the arrangement interval of each light separator was et no length was equivalent to the optical separator adjacent. 入射面の上に形成される反射格子の反射方向を、前記透過光の反射面と直交させた請求項に記載波長分離フィルタ。The reflection direction of the reflection grating formed on the incident surface, the wavelength separation filter according to claim 1 which has been perpendicular to the reflecting surface of the transmitted light. 樹脂成形により形成され、入射面と、この入射面を透過した光を反射させる反射面と、この反射面で反射した光を出射させる出射面を持つ光透過性の基体を備え、この基体の入射面の上に基体の樹脂材よりも高屈折率の格子パターン層を形成して共振モード格子フィルタである反射格子を形成することにより、入射面に斜交して入射した光の共振波長に対応する成分が反射により取り出され、他の成分が透過して反射面で反射し、出射面から射出されるようにした光分離器を、分離する光の波長の数だけ連続配置して、前段の光分離器の出射面から出た光が次段の入射面に入射するようにすると共に、各光分離器の各入射面の共振波長を分離する光の異なる波長に夫々一致させた波長分離フィルタの製造方法において、
各光分離器は、入射面を透過した光が反射面で全反射して出射面から入射方向と同方向に出射するように、入射面と出射面を反射面に斜交させたDOVEプリズム形状にすると共に、反射面側の部分で連結一体化して樹脂成形し、
前記光分離器の反射格子は、光分離器の連結一体化と同時に光の波長と同等若しくはそれ以下のピッチで回折格子パターンが形成された金型で樹脂成形することにより、このパターンを入射面に転写する工程と、この転写パターンが形成された入射面に高屈折層を蒸着形成する工程とを経て、共振波長の光を反射し残りの光透過するように形成することを特徴とする波長分離フィルタの製造方法。
It is formed by resin molding, and includes a light transmissive substrate having an incident surface, a reflective surface that reflects light transmitted through the incident surface, and an output surface that emits light reflected by the reflective surface. Corresponding to the resonant wavelength of light incident obliquely on the incident surface by forming a reflective grating that is a resonant mode lattice filter by forming a grating pattern layer with a higher refractive index than the resin material of the base on the surface The optical separator is extracted by reflection, the other components are transmitted and reflected by the reflection surface, and emitted from the output surface. A wavelength separation filter that allows light emitted from the exit surface of the light separator to enter the incident surface of the next stage and matches the resonance wavelength of each incident surface of each light separator to a different wavelength of the light to be separated. In the manufacturing method of
Each light separator has a DOVE prism shape in which the entrance surface and the exit surface are obliquely intersected with the reflection surface so that the light transmitted through the entrance surface is totally reflected by the reflection surface and is emitted from the exit surface in the same direction as the incidence direction. In addition, it is connected and integrated at the part on the reflective surface side and resin molded,
Reflecting grating of the light separator, by resin molding in a mold in which the diffraction grating pattern is formed at a wavelength equal to or less than the pitch of integrally connected at the same time light of the light separator incident surface this pattern and transferring to, and a process of depositing form a high refractive layer on the incident surface of the transfer pattern is formed, the remaining light reflects light resonance wavelength and forming to transmit A method for manufacturing a wavelength separation filter.
JP2000395705A 2000-05-01 2000-12-26 Wavelength separation filter and manufacturing method thereof Expired - Lifetime JP4435406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395705A JP4435406B2 (en) 2000-05-01 2000-12-26 Wavelength separation filter and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000132497 2000-05-01
JP2000-132497 2000-05-01
JP2000395705A JP4435406B2 (en) 2000-05-01 2000-12-26 Wavelength separation filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002022918A JP2002022918A (en) 2002-01-23
JP4435406B2 true JP4435406B2 (en) 2010-03-17

Family

ID=26591356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395705A Expired - Lifetime JP4435406B2 (en) 2000-05-01 2000-12-26 Wavelength separation filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4435406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543694B2 (en) 2004-02-17 2010-09-15 富士ゼロックス株式会社 COMMUNICATION SYSTEM, COMMUNICATION SYSTEM SERVER, AND SERVER PROCESSING METHOD
JP5468195B2 (en) * 2007-09-05 2014-04-09 独立行政法人理化学研究所 Diffraction grating
JP5443701B2 (en) * 2008-04-03 2014-03-19 パナソニック株式会社 Gas concentration measuring device
JP2010093211A (en) * 2008-10-10 2010-04-22 Ricoh Co Ltd Wavelength conversion laser device
JP5145516B2 (en) * 2008-12-10 2013-02-20 綜研化学株式会社 Wavelength demultiplexing optical element and coupler

Also Published As

Publication number Publication date
JP2002022918A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
US8989537B2 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
US7386205B2 (en) Optical device and method for making same
US6661952B2 (en) Sub-wavelength efficient polarization filter (SWEP filter)
US7227684B2 (en) Method and system for providing beam polarization
US7718949B2 (en) Solid-state imaging element and solid-state imaging device
US20040047039A1 (en) Wide angle optical device and method for making same
US6591035B2 (en) Method for dispersing light using multilayered structures
US7190524B2 (en) Process for fabrication of high reflectors by reversal of layer sequence and application thereof
US7088884B2 (en) Apparatus and method employing multilayer thin-film stacks for spatially shifting light
JP2008233528A (en) Reflection type diffraction grating and spectral device
CN110673265B (en) Design method of polarization-wavelength hybrid multiplexer
JP4435406B2 (en) Wavelength separation filter and manufacturing method thereof
US20020044721A1 (en) Mems device having multiple DWDM filters
JP3979146B2 (en) Optical element using one-dimensional photonic crystal and optical apparatus using the same
JP3584257B2 (en) Polarizing beam splitter
JP3627093B2 (en) Resonant mode grating filter
JP4042426B2 (en) Optical element and spectroscopic device using the same
CN110703386B (en) Bragg concave diffraction grating type polarization-wavelength hybrid multiplexer
JP2004085915A (en) Wavelength dispersion generator, and polygon mirror used in the wavelength dispersion generator and its manufacturing method
CN113376748B (en) Composite wave-splitting device of integrated silicon-based Bragg reflector and preparation method thereof
JPS60257411A (en) Optical multiplexer/demultiplexer
JP2002267845A (en) Optical element and spectroscope unit and polarized light separating device using the same
JP2002236206A (en) Optical device and spectroscopic apparatus using the same
JPH10335693A (en) Wavelength selection photodetector

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4435406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term