JP3584257B2 - Polarizing beam splitter - Google Patents

Polarizing beam splitter Download PDF

Info

Publication number
JP3584257B2
JP3584257B2 JP07062394A JP7062394A JP3584257B2 JP 3584257 B2 JP3584257 B2 JP 3584257B2 JP 07062394 A JP07062394 A JP 07062394A JP 7062394 A JP7062394 A JP 7062394A JP 3584257 B2 JP3584257 B2 JP 3584257B2
Authority
JP
Japan
Prior art keywords
dielectric multilayer
refractive index
multilayer film
index material
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07062394A
Other languages
Japanese (ja)
Other versions
JPH07281024A (en
Inventor
幹夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07062394A priority Critical patent/JP3584257B2/en
Priority to DE19580247T priority patent/DE19580247T1/en
Priority to PCT/JP1995/000164 priority patent/WO1995021137A1/en
Publication of JPH07281024A publication Critical patent/JPH07281024A/en
Priority to US08/691,923 priority patent/US5969861A/en
Priority to US09/368,892 priority patent/US6432854B1/en
Priority to US10/016,667 priority patent/US7057815B2/en
Application granted granted Critical
Publication of JP3584257B2 publication Critical patent/JP3584257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、S及びP両偏光成分の分離合成に使用される偏光ビームスプリッタに関する。
【0002】
【比較の技術】
一般に偏光ビームスプリッタは、2個の45゜プリズムの間に高屈折率物質と低屈折率物質との誘電体薄膜を交互に積層した誘電体多層膜を介在させたものが使われている。誘電体多層膜の物質選択は、45゜プリズムの光軸上から入射する入射光のP偏光成分の反射率がもっとも小さく、かつS偏光成分の反射率が最も高くなるような波長範囲内に入るよう行われる。
【0003】
偏光ビームスプリッタは、入射光をPとSの両偏光成分を高効率に分離するために光ディスク装置や投射表示装置等に利用されている。比較から偏光ビームスプリッタの使用波長帯域幅を広げるために、誘電体多層膜構成について様々な提案がなされている。例えば、特開昭61−141402号公報では、高屈折率物質と低屈折率物質との2層を基本周期とした誘電体多層膜に中間層を設け、この層の膜厚を調整することにより帯域幅を広げている。また、特開平3−284705号公報で示されている従来の偏光ビームスプリッタの構成例では、設計基準波長が異なる2つの誘電体多層膜でそれぞれ高屈折率物質と低屈折率物質の組み合わせが同一な組み合わせである。この構成により、使用波長の帯域幅を広げ、かつ偏光分離比向上がなされている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の誘電体多層膜構成を有する偏光ビームスプリッタでは、設計入射角に対しては帯域幅は広がるものの、光束の入射角が少しでもずれるとP/S偏光分離比が悪くなり、帯域幅が非常に狭くなるという問題がある。
本発明の目的は、偏光分離多層膜面に入射する光束の入射角依存性が少なくかつ偏光分離比が高い、使用帯域幅が広い偏光ビームスプリッタを提供しようとするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明では、透光性基板上に形成された誘電体多層膜を有する偏光ビームスプリッタにおいて、前記誘電体多層膜は2つの異なる設計基準波長λ1を有する第1の誘電体多層膜と、設計基準波長λ2を有する第2の誘電体多層膜とからなり、前記第1および第2の誘電体多層膜は、それぞれ高屈折率物質と低屈折率物質との交互層を有し、前記第1の誘電体多層膜の交互層のブリュースター条件を満足する入射角と、前記第2の誘電体多層膜の交互層のブリュースター条件を満足する入射角とが異なるように、前記第1の誘電体多層膜の交互層と、前記第2の誘電体多層膜の交互層とで、交互層を形成する高屈折率物質と低屈折率物質との屈折率の値の組み合わせを異ならせたことを特徴とする。
【0006】
【作用】
本発明の偏光ビームスプリッタは、誘電体多層膜への光束の入射角が多少変化しても使用波長領域の帯域幅を狭めることのないような構成及び誘電体多層膜の交互層の高屈折率層、低屈折率層に用いる物質を選択するようにしたものである。 広帯域にわたって偏光分離するためには、偏光分離膜に入射する光束の波長に対して、P偏光成分とS偏光成分とを分離している波長帯域を大きくする必要がある。そのためには、スネルの法則に従い、P偏光成分とS偏光成分との偏光分離が最も大きい角度であるブリュースター角近傍を設計入射角として、偏光分離膜に入射させるようにする。
【0007】
本発明の誘電体多層膜構成では、設計基準波長が異なる第1及び第2の誘電体多層膜を有している。第1及び第2の誘電体多層膜のそれぞれに入射する光束の入射角が異なるように設定する。また第1及び第2の誘電体多層膜の高屈折率と低屈折率の物質は、下記ブリュースター条件(1)と(2)が異なるように選択した。例えば、一方の誘電体多層膜の交互層には高屈折率物質としてTiO、低屈折率物質SiOとした組み合わせとし、他方の誘電体多層膜の交互層には高屈折率物質としてTiO、低屈折率物質としてAlとした組み合わせを用いれば良い。
【0008】
各設計基準波長λ1、λ2(λ1≠λ2)、設計基準入射角θに対しそれぞれの入射角θ1、θ2とする。それぞれにおけるブリュースタ条件は、次式(1)(2)で表される。
λ1>λ2
λ1、θ1;nH1/COSθH1=nL1/COSθL1 (1)
λ2、θ2;nH2/COSθH2=nL2/COSθL2 (2)
θ1 ;透光性基体1から第1の誘電体多層膜と透光性基体1との境界面に入射する角度
θ2 ;透光性基体2から第2の誘電体多層膜と透光性基体2との境界面に入射する角度
nH1、nL1 ;設計基準波長λ1での第1の誘電体多層膜の交互層における高屈折率層及び低屈折率層の屈折率
nH2、nL2 ;設計基準波長λ2での第2の誘電体多層膜の交互層における高屈折率層及び低屈折率層の屈折率
θH1、θL1 ;設計基準波長λ1での第1の誘電体多層膜の交互層において、高屈折率層及び低屈折率層の各層から境界面に入射する角度
θH2、θL2 ;設計基準波長λ2での第2の誘電体多層膜の交互層において、高屈折率層及び低屈折率層の各層から境界面に入射する角度
図3は、上記誘電体多層膜に入射する光束が、高屈折率層及び低屈折率層から境界面に入射する状態説明図である。図中θi、θHi、θLiは、第1及び第2の誘電体多層膜i=1、2に対応している。
【0009】
本発明の誘電体多層膜の交互層に用いられる高屈折率層、低屈折率層及び調整層の膜厚は、それぞれλ/4、λ/4、λ/8である。ただし、実際に形成される膜厚は、実験的に試行錯誤して決められ設計値から多少ずれることもある。
また、本発明の調整層はP偏光成分の透過率に発生するリップルを低減するために設けられている。大きなリップルがあると、偏光ビームスプリッタとして使用できる波長範囲は制限されるので好ましくない。
【0010】
本発明の実施例と比較するために、偏光ビームスプリッタの構成は基本的に図1と同じで、第1及び第2の誘電体多層膜の交互層に用いる高屈折率層TiOと低屈折率層SiOとの物質の組み合わせを同一とした透過率特性をみる。図10は、その透過率特性の入射角依存性である。
設計基準入射角45゜で、P/S偏光分離比が高い帯域は160nmであるが、入射角が±2.5゜ずれると、その帯域幅は90nmとなる。1種類のみの組み合わせで構成された誘電体多層膜を用いた偏光ビームスプリッタは、S及びP偏光成分の分離可能な使用波長域を広く得ることができる。しかしながら、誘電体多層膜面への入射角がわずかにずれるだけで、所望の波長帯域幅が非常に狭くなってしまう。
【0011】
それに反し、本発明の実施例の使用帯域幅は、光束が誘電体多層膜面に入射する角度が多少ずれてもP偏光成分とS偏光成分との分離比を維持しつつ非常に広くなる。また、偏光ビームスプリッタを組み込まれた光学系の配置の自由度も高くなる。
次に、本発明の偏光ビームスプリッタの誘電体多層膜の構成法について説明する。
【0012】
図1は、本発明の第1及び第2の誘電体多層膜3、4のそれぞれが、各透光性基体であるプリズム1上に形成され、その各々を接着層5を介して接合されている構成である。
図8は、透光性基体1に第1の誘電体多層膜と第2の誘電体多層膜とを連続して形成する。さらに、その上に透光性基体12を接着する構成である。
【0013】
図9は、透光性基体が平板ガラス2の両面上に誘電体多層膜を施し、ガラスと同程度の屈折率を持つ液体媒質6中に浸した構成にしても同様な性能が得られる。
【0014】
【実施例】
本発明の偏光ビームスプリッタの第1の実施例について説明する。
図1は、調整層1Cと第1の誘電体多層膜3の交互層13とが積層されたプリズム1と調整層2Cと第2の誘電体多層膜4の交互層23とが積層されているプリズム2とが光学接着剤5で接合されている偏光ビームスプリッタの構成である。プリズム1及びプリズム2は、屈折率nSが1.84である。また、光学接着剤の屈折率nb=1.52である。図には、光束が45°で入射させた時の反射光Rと透過光Tとを記載してある。透過光Tには、S偏光成分TSとP偏光成分TPとがある。
【0015】
第1の誘電体多層膜の交互層13は、設計基準波長λ1=680nmで、高屈折率物質nH1=2.38のTiO11と低屈折率物質nL1=1.65のAl12とが光学的膜厚λ1/4で構成されている。
第2の誘電体多層膜の交互層23は、設計基準波長λ2=420nmで高屈折率物質nH2=2.38のTiO21と低屈折率物質nL2=1.47のSiO22とがそれぞれ光学的膜厚λ2/4で構成されている。
また第1及び第2の誘電体多層膜の各交互層とプリズム1及びプリズム2との間には、それぞれ膜厚λ1/8、λ2/8の調整層が設けられている。
【0016】
光束が設計基準入射角45゜から入射角が±2.5゜ずれた場合を考える。高角度側に対応する(使用波長域では短波長側に相当する)第1の誘電体多層膜の交互層13に用いている高屈折率物質11及び低屈折率物質12は、光束が透光性基体1から透光性基体1と第1の誘電体多層膜との境界面に入射する角度θ1=47.5゜でブリュースター条件(1)を満足するように選択する。本実施例では、第1の誘電体多層膜の交互層の物質組み合わせとして、高屈折率層11にTiO、低屈折率層12にAlを選択した。
【0017】
また低角度側に対応する(使用波長域で長波長側に相当する)第2の誘電体多層膜の交互層23に用いている高屈折率物質21及び低屈折率物質22は、光束が透光性基体2から透光性基体2と第2の誘電体多層膜との境界面に入射する角度θ2=42.5゜でブリュースター条件(2)を満足するように選択する。本実施例では、第2の誘電体多層膜の交互層の物質組み合わせとして、高屈折率層21にTiO、低屈折率層22にSiOを選択した。
【0018】
図4は、第1実施例の誘電体多層膜構成のP及びS偏光成分の透過率特性Tp、TS及び入射角42.5゜、45゜、47.5゜のそれぞれの透過率特性である。
本発明の第1実施例の誘電体多層膜構成を有する偏光ビームスプリッタのP及びS偏光成分の透過率の入射角依存性について図10の比較例と比較する。
【0019】
比較例の多層膜構成は、波長範囲が480nmから550nmにおいて、入射角を設計基準角度から数度ずれると帯域幅Xが70nmとなり、使用帯域は非常に狭くなってしまう。
それに対し、本発明の第1実施例は、波長範囲460nmから620nmにわたり、高い偏光分離(TS/TP)0.1%以下を示している。設計基準入射角から±2.5゜ずれても帯域幅Xは、160nmと広い帯域を維持している。
【0020】
図5は、本発明の実施例1の、長波長側λ=620nmにおけるP偏光成分の透過率の入射角依存性について示したものである。
本実施例は、第1の誘電体多層膜の交互層、第2の誘電体多層膜の交互層それぞれの組み合わせが同一な種類の物質TiOとSiOを用いた図10の比較例に比べ、入射角依存性を考慮に入れても、透過率特性の帯域幅を大幅に広げることができた。
【0021】
これは長波長側のP偏光透過率の落ち込みの原因となっている第1の誘電体多層膜の交互層が47.5゜でブリュースター条件(1)を満足し、短波長側の落ち込みの原因となっている第2の誘電体多層膜の交互層が42.5゜でブリュースター条件(2)を満足するようにそれぞれの誘電体多層膜の膜物質を選択しているからである。
【0022】
このように、本発明の構成の偏光ビームスプリッタを用いることにより、従来例より大幅に使用波長帯域が広げることができ、光の入射角に対し自由度の高い偏光ビームスプリッタが得ることができた。
次に本発明の第2の実施例について述べる。
第2の実施例の誘電体多層膜構成は、第1の実施例と基本的には同じであり、誘電体多層膜に用いる物質の組み合わせが異なる。その構成は、調整層1Cと第1の誘電体多層膜3の交互層13とが積層された透光性基体1と調整層2Cと第2の誘電体多層膜4の交互層23とが積層されている透光性基体2とが光学的接着剤5で接合されている偏光ビームスプリッタの構成である。透光性基体1及び透光性基体2は、屈折率nSが1.52である。
【0023】
第1の誘電体多層膜の交互層は、設計基準波長λ1=700nmで、高屈折率物質nH1=2.38のTiO と低屈折率物質n1=1.47のSiO とが光学的膜厚λ1/4で構成されている。
第2の誘電体多層膜の交互層は、設計基準波長λ2=430nmで高屈折率物質nH2=2.02のZrOと低屈折率物質nL2=1.37のMgFとがそれぞれ光学的膜厚λ2/4で構成されている。
また第1及び第2の誘電体多層膜の各交互層とプリズム1及び2との間には、それぞれ膜厚λ1/8、λ2/8の調整層が設けられている。
【0024】
光束が設計基準入射角52゜近傍で入射角±4゜ずれた場合、高角度側に対応する(使用波長域では短波長側に相当する)第1の誘電体多層膜の交互層に用いている高屈折率物質及び低屈折率物質は、光束の膜面法線に対する入射角56゜でブリュースター条件(1)を満足するように選択する。本実施例の第1の誘電体多層膜の物質組み合わせは、高屈折率層11にTiO、低屈折率層12にSiOを選択した。
【0025】
また低角度側に対応する(使用波長域で長波長側に相当する)第2の誘電体多層膜の交互層に用いている高屈折率物質及び低屈折率物質は、光束が入射角48゜でブリュースター条件(2)を満足するように選択する。本実施例の第2の誘電体多層膜の物質組み合わせは、高屈折率層21にZrO、低屈折率層22にMgFを選択した。
【0026】
図6は、誘電体多層膜構成の第2実施例のP及びS偏光成分の透過率特性及び入射角48゜、52゜、56゜のそれぞれの透過率特性である。
本発明の第2実施例の誘電体多層膜構成を有する偏光ビームスプリッタのP及びS偏光成分の透過率の入射角依存性について図10の比較例と比較する。
比較例の多層膜構成は、波長範囲が480nmから550nmにおいて、入射角を設計基準角度から数度ずれると帯域幅が70nmとなり、使用帯域は非常に狭くなってしまう。
【0027】
それに対し、本発明の第2実施例は、波長範囲460nmから620nmにわたり、S偏光成分とP偏光成分との高い偏光分離を示している。設計基準入射角から±4゜ずれても帯域幅Xは、170nmと広い帯域を維持している。
このように、本発明の実施例は、第1の誘電体多層膜の交互層と第2の誘電体多層膜の交互層とが同一な種類の物質組み合わせであるTiOとSiOとを用いた比較例に比べ、入射角依存性を考慮に入れても、透過率特性の帯域幅を大幅に広げることができた。
【0028】
これは長波長側のP偏光透過率の落ち込みの原因となっている第1の誘電体多層膜の交互層では56゜でブリュースター条件(1)を満足し、短波長側の落ち込みの原因となっている第2の誘電体多層膜の交互層では48゜でブリュースター条件(2)を満足するよう誘電体多層膜の膜物質を選択しているからである。
このように、第1の誘電体多層膜と第2の誘電体多層膜それぞれの設計基準波長や低屈折率物質と高屈折率物質との組み合わせを異ならせることにより、入射角に対し自由度が高く、かつ偏光分離比S/Pが高い、高帯域な偏光ビームスプリッタを得ることが可能である。
【0029】
図7及び図8は、第3の実施例である。
本実施例は、本発明の偏光ビームスプリッタの配置に関する変形例である。
透光性基体1上に第1の誘電体多層膜3と第2の誘電体多層膜4とが連続して積層し、透光性基体2を接着層5を介して構成されている。
この構成によれば、低屈折率層及び高屈折率層の成膜が、1バッチですむ利点がある。
【0030】
図9は、本発明の偏光ビームスプリッタの第4の実施例である。
本実施例の偏光ビームスプリッタは、透光性基体に透明平板基体2を用い、平板基体とほぼ同一な屈折率を有する液体媒質6で満たされた第1及び第2の誘電体多層膜とから構成されている。その第1の誘電体多層膜3と第2の誘電体多層膜4は、透明平板基体の両側に配置されている。液体媒質としては、例えばエチレングリコール(屈折率1.43)、ベンゼン(屈折率1.51)などがある。
【0031】
一般に、透光性基体にプリズムを用いた場合、プリズム内の材料不均一により複屈折を生ずる。基体中を光束が通過する際、偏光状態が変化し直線偏光特性が悪くなることが知られている。この様な場合、液体媒質を用いた構成により、透光性基体の複屈折の問題を避けることができる。
第3実施例のような構成配置を有する偏光ビームスプリッタにより、誘電体多層膜層の成膜が1バッチで済み、生産性の向上が期待できる。
【0032】
第4実施例の構成配置を有する偏光ビームスプリッタは、高価なプリズムを使用しなくて済むためコスト低減などが期待できる。
【0033】
【発明の効果】
以上のように本発明の偏光ビームスプリッタによれば、低屈折率物質と高屈折率物質との組み合わせや設計基準波長が異なる第1及び第2の誘電体多層膜とを設けた構成を用いることにより、入射角に対し自由度が高く、かつ、広い波長域でS偏光成分とP偏光成分との高い分離または合成が可能となる。
【図面の簡単な説明】
【図1】本発明の偏光ビームスプリッタの構成を示す概略断面図。
【図2】本発明の第1及び第2の誘電体多層膜の構成断面図。
【図3】本発明の誘電体多層膜構成に入射する光束の状態説明図。
【図4】本発明第1実施例の誘電体多層膜構成の透過率特性図。
【図5】本発明第1実施例の誘電体多層膜構成の透過率特性の入射角依存性。
【図6】本発明第2実施例の誘電体多層膜構成のP偏光成分の透過率特性図。
【図7】本発明第3実施例の偏光ビームスプリッタの構成断面図。
【図8】本発明第3実施例の第1及び第2の誘電体多層膜の構成断面図。
【図9】本発明第4実施例の偏光ビームスプリッタの構成断面図。
【図10】従来の偏光ビームスプリッタの構成に基づく透過率特性比較図。
【符号の説明】
1 第1の透光性基体(プリズム)
2 第2の透光性基体(プリズム)
3 第1の誘電体多層膜
4 第2の誘電体多層膜
5 接着層
6 液体媒質
11 光学的膜厚がλ1/4の高屈折率物質
12 光学的膜厚がλ1/4の低屈折率物質
13 光学的膜厚がそれぞれλ1/4の高屈折率物質と低屈折率物質とからなる交互層
1C 光学的膜厚がλ1/8の調整層
21 光学的膜厚がλ2/4の高屈折率物質
22 光学的膜厚がλ2/4の低屈折率物質
23 光学的膜厚がそれぞれλ2/4の高屈折率物質と低屈折率物質とからなる交互層
2C 光学的膜厚がλ2/8の調整層
[0001]
[Industrial applications]
The present invention relates to a polarizing beam splitter used for separating and combining both S and P polarization components.
[0002]
[Comparison technology]
Generally, a polarizing beam splitter is used in which a dielectric multilayer film in which dielectric thin films of a high refractive index material and a low refractive index material are alternately stacked is interposed between two 45 ° prisms. The material selection of the dielectric multilayer film is within a wavelength range where the reflectance of the P-polarized light component of the incident light incident from the optical axis of the 45 ° prism is the smallest and the reflectance of the S-polarized light component is the highest. It is done as follows.
[0003]
2. Description of the Related Art A polarizing beam splitter is used in an optical disk device, a projection display device, and the like in order to efficiently separate incident light into P and S polarization components. From the comparison, various proposals have been made on the configuration of the dielectric multilayer film in order to widen the usable wavelength bandwidth of the polarizing beam splitter. For example, in JP-A-61-141402, an intermediate layer is provided on a dielectric multilayer film having a basic period of two layers of a high refractive index material and a low refractive index material, and the thickness of this layer is adjusted. Broadening the bandwidth. Further, in the configuration example of the conventional polarizing beam splitter disclosed in Japanese Patent Application Laid-Open No. 3-284705, a combination of a high refractive index material and a low refractive index material is the same in two dielectric multilayer films having different design reference wavelengths. It is a combination. With this configuration, the bandwidth of the used wavelength is widened and the polarization separation ratio is improved.
[0004]
[Problems to be solved by the invention]
However, in the conventional polarization beam splitter having a dielectric multilayer structure, although the bandwidth is widened with respect to the design incident angle, even if the incident angle of the light beam is slightly deviated, the P / S polarization separation ratio is deteriorated, and the bandwidth is reduced. Is very narrow.
SUMMARY OF THE INVENTION An object of the present invention is to provide a polarization beam splitter which has a small incident angle dependence of a light beam incident on a polarization separation multilayer film surface, a high polarization separation ratio, and a wide use bandwidth.
[0005]
[Means for Solving the Problems]
According to the present invention, there is provided a polarizing beam splitter having a dielectric multilayer film formed on a light-transmitting substrate, wherein the dielectric multilayer film has a first dielectric layer having two different design reference wavelengths λ1. And a second dielectric multilayer film having a design reference wavelength λ2, wherein the first and second dielectric multilayer films each include alternating layers of a high refractive index material and a low refractive index material. And the incident angle satisfying the Brewster condition of the alternate layer of the first dielectric multilayer film and the incident angle satisfying the Brewster condition of the alternate layer of the second dielectric multilayer film are different. A combination of the refractive index values of the high-refractive index material and the low-refractive index material forming the alternating layers in the alternating layers of the first dielectric multilayer film and the alternating layers of the second dielectric multilayer film Are characterized in that they differ from each other.
[0006]
[Action]
The polarizing beam splitter according to the present invention has a configuration in which the bandwidth of the used wavelength region is not narrowed even if the angle of incidence of the light beam on the dielectric multilayer film slightly changes, and a high refractive index of the alternating layers of the dielectric multilayer film. The material used for the layer and the low refractive index layer is selected. In order to separate the polarized light over a wide band, it is necessary to increase the wavelength band separating the P-polarized component and the S-polarized component from the wavelength of the light beam incident on the polarization separating film. To this end, according to Snell's law, the vicinity of the Brewster angle, at which the polarization separation of the P-polarized light component and the S-polarized light component is the largest, is set as the design incident angle and the light is incident on the polarization splitting film.
[0007]
The dielectric multilayer structure of the present invention includes first and second dielectric multilayer films having different design reference wavelengths. The incident angles of the light beams incident on the first and second dielectric multilayer films are set to be different. The high refractive index and low refractive index substances of the first and second dielectric multilayer films were selected so that the following Brewster conditions (1) and (2) were different. For example, one of the alternate layers of the dielectric multilayer film is a combination of TiO 2 and a low-refractive-index material SiO 2 as a high-refractive-index material, and the other alternating layer of the dielectric multilayer film is a combination of TiO 2 and a high-refractive-index material. Alternatively, a combination in which Al 2 O 3 is used as the low refractive index substance may be used.
[0008]
The design reference wavelengths λ1 and λ2 (λ1 ≠ λ2) and the design reference incident angle θ are the incident angles θ1 and θ2, respectively. The Brewster conditions in each case are represented by the following equations (1) and (2).
λ1> λ2
λ1, θ1; nH1 / COSθH1 = nL1 / COSθL1 (1)
λ2, θ2; nH2 / COSθH2 = nL2 / COSθL2 (2)
θ1; the angle θ2 from the light-transmitting substrate 1 to the boundary surface between the first dielectric multilayer film and the light-transmitting substrate 1; Angles nH1 and nL1 incident on the boundary surface with the refractive index nH2 and nL2 of the high refractive index layer and the low refractive index layer in the alternating layers of the first dielectric multilayer film at the design reference wavelength λ1; High refractive index layers and low refractive index layers in the alternate layers of the second dielectric multilayer film θH1 and θL1; high refractive index layers in the first dielectric multilayer film at the design reference wavelength λ1 ΘH2, θL2 incident on the interface from each layer of the low-refractive-index layer and the interface between the high-refractive-index layer and the low-refractive-index layer at the design reference wavelength λ2. FIG. 3 shows that the luminous flux incident on the dielectric multilayer film has a high refractive index layer and It is a state diagram enters the boundary surface from the refractive index layer. In the figure, θi, θHi, and θLi correspond to the first and second dielectric multilayer films i = 1 and 2, respectively.
[0009]
The thicknesses of the high refractive index layer, the low refractive index layer, and the adjustment layer used for the alternating layers of the dielectric multilayer film of the present invention are λ / 4, λ / 4, and λ / 8, respectively. However, the actually formed film thickness is determined experimentally through trial and error, and may slightly deviate from the designed value.
Further, the adjustment layer of the present invention is provided to reduce a ripple generated in the transmittance of the P-polarized light component. If there is a large ripple, the wavelength range that can be used as the polarizing beam splitter is limited, which is not preferable.
[0010]
For comparison with the embodiment of the present invention, the configuration of the polarizing beam splitter is basically the same as that of FIG. 1, and the high refractive index layer TiO 2 and the low refractive index used for the alternating layers of the first and second dielectric multilayer films are used. The transmittance characteristics in which the combination of the substance with the rate layer SiO 2 is the same will be examined. FIG. 10 shows the incident angle dependence of the transmittance characteristics.
At a design reference angle of incidence of 45 °, the band having a high P / S polarization separation ratio is 160 nm, but if the angle of incidence is shifted by ± 2.5 °, the bandwidth becomes 90 nm. A polarization beam splitter using a dielectric multilayer film composed of only one type can obtain a wide usable wavelength range in which S and P polarization components can be separated. However, even if the angle of incidence on the surface of the dielectric multilayer film is slightly shifted, the desired wavelength bandwidth becomes very narrow.
[0011]
On the other hand, the working bandwidth of the embodiment of the present invention is very wide while maintaining the separation ratio between the P-polarized light component and the S-polarized light component even if the angle at which the light beam enters the dielectric multilayer film is slightly shifted. Further, the degree of freedom in the arrangement of the optical system incorporating the polarizing beam splitter is increased.
Next, a method of forming the dielectric multilayer film of the polarizing beam splitter of the present invention will be described.
[0012]
FIG. 1 shows that first and second dielectric multilayer films 3 and 4 of the present invention are formed on a prism 1 which is a translucent substrate, and each of them is bonded via an adhesive layer 5. Configuration.
FIG. 8 shows that a first dielectric multilayer film and a second dielectric multilayer film are continuously formed on a transparent substrate 1. Further, the translucent base 12 is bonded thereon.
[0013]
In FIG. 9, the same performance can be obtained even when the transparent substrate is formed by applying a dielectric multilayer film on both sides of the flat glass 2 and immersing it in a liquid medium 6 having a refractive index similar to that of the glass.
[0014]
【Example】
A first embodiment of the polarizing beam splitter according to the present invention will be described.
FIG. 1 shows a prism 1 in which an adjustment layer 1C and an alternating layer 13 of the first dielectric multilayer film 3 are stacked, and an adjustment layer 2C and an alternating layer 23 of the second dielectric multilayer film 4 stacked. This is a configuration of a polarizing beam splitter in which a prism 2 and an optical adhesive 5 are joined. The prism 1 and the prism 2 have a refractive index nS of 1.84. The refractive index nb of the optical adhesive is 1.52. The drawing shows the reflected light R and the transmitted light T when the light beam is incident at 45 °. The transmitted light T has an S-polarized component TS and a P-polarized component TP.
[0015]
The alternating layers 13 of the first dielectric multilayer film are composed of TiO 2 11 having a high refractive index material nH1 = 2.38 and Al 2 O 3 12 having a low refractive index material nL1 = 1.65 at a design reference wavelength λ1 = 680 nm. Are configured with an optical film thickness λ1 / 4.
The alternating layers 23 of the second dielectric multilayer film are composed of TiO 2 21 having a high refractive index material nH2 = 2.38 and SiO 2 22 having a low refractive index material nL2 = 1.47 at a design reference wavelength λ2 = 420 nm. It has an optical film thickness λ2 / 4.
Further, between each alternate layer of the first and second dielectric multilayer films and the prism 1 and the prism 2, adjustment layers having a film thickness of λ1 / 8 and λ2 / 8, respectively, are provided.
[0016]
Consider a case where the light beam has an incident angle shifted by ± 2.5 ° from the design reference incident angle of 45 °. The high-refractive-index material 11 and the low-refractive-index material 12 used for the alternating layers 13 of the first dielectric multilayer film corresponding to the high angle side (corresponding to the short wavelength side in the used wavelength region) transmit light. Is selected so as to satisfy the Brewster condition (1) at an angle θ1 = 47.5 ° from the transparent substrate 1 to the interface between the transparent substrate 1 and the first dielectric multilayer film. In this embodiment, TiO 2 was selected for the high refractive index layer 11 and Al 2 O 3 was selected for the low refractive index layer 12 as a material combination of the alternating layers of the first dielectric multilayer film.
[0017]
The high-refractive-index substance 21 and the low-refractive-index substance 22 used for the alternating layer 23 of the second dielectric multilayer film corresponding to the low angle side (corresponding to the long wavelength side in the used wavelength range) transmit light. It is selected so as to satisfy the Brewster condition (2) at an angle θ2 = 42.5 ° at which the light enters the interface between the light-transmitting substrate 2 and the second dielectric multilayer film from the light-transmitting substrate 2. In this embodiment, as the substance a combination of alternating layers of the second dielectric multilayer film, TiO 2 in the high refractive index layer 21, was chosen SiO 2 for the low refractive index layer 22.
[0018]
FIG. 4 shows the transmittance characteristics Tp and TS of the P and S polarization components and the respective transmittance characteristics of the incident angles 42.5 °, 45 °, and 47.5 ° of the dielectric multilayer structure of the first embodiment. .
The dependence of the transmittance of the P and S polarization components of the polarization beam splitter having the dielectric multilayer structure of the first embodiment of the present invention on the incident angle will be compared with the comparative example of FIG.
[0019]
In the multilayer film configuration of the comparative example, when the incident angle deviates from the design reference angle by several degrees in the wavelength range of 480 nm to 550 nm, the bandwidth X becomes 70 nm, and the used band becomes very narrow.
In contrast, the first embodiment of the present invention has a high polarization separation (TS / TP) of 0.1% or less over the wavelength range of 460 nm to 620 nm. Even if it deviates from the design standard incident angle by ± 2.5 °, the bandwidth X maintains a wide band of 160 nm.
[0020]
FIG. 5 shows the dependency of the transmittance of the P-polarized light component on the long wavelength side λ = 620 nm in the incident angle according to the first embodiment of the present invention.
This embodiment is different from the comparative example of FIG. 10 in which the combination of the alternating layers of the first dielectric multilayer film and the alternating layers of the second dielectric multilayer film uses the same type of substance TiO 2 and SiO 2 . The bandwidth of the transmittance characteristics could be greatly expanded even if the incident angle dependence was taken into consideration.
[0021]
This is because the alternating layer of the first dielectric multilayer film, which causes the drop of the P-polarized light transmittance on the long wavelength side, satisfies the Brewster condition (1) at 47.5 °, and the drop on the short wavelength side does not. This is because the film material of each dielectric multilayer film is selected so that the alternate layer of the second dielectric multilayer film which causes the problem satisfies the Brewster condition (2) at 42.5 °.
[0022]
As described above, by using the polarization beam splitter having the configuration of the present invention, the wavelength band to be used can be significantly widened as compared with the conventional example, and a polarization beam splitter having a high degree of freedom with respect to the incident angle of light can be obtained. .
Next, a second embodiment of the present invention will be described.
The structure of the dielectric multilayer film of the second embodiment is basically the same as that of the first embodiment, and the combination of substances used for the dielectric multilayer film is different. The structure is such that the light-transmitting substrate 1 in which the adjustment layer 1C and the alternating layer 13 of the first dielectric multilayer film 3 are stacked, the adjustment layer 2C and the alternating layer 23 of the second dielectric multilayer film 4 are stacked. This is a configuration of a polarization beam splitter in which a transparent substrate 2 is bonded with an optical adhesive 5. The translucent substrate 1 and the translucent substrate 2 have a refractive index nS of 1.52.
[0023]
Alternating layers of the first dielectric multilayer film is a design wavelength .lambda.1 = 700 nm, the high refractive index material nH1 = 2.38 TiO 2 and the low refractive index material n1 = 1.47 SiO 2 and an optical membrane of It has a thickness of λ1 / 4.
The alternate layers of the second dielectric multilayer film are optical films of ZrO 2 having a high refractive index material nH2 = 2.02 and MgF 2 having a low refractive index material nL2 = 1.37 at a design reference wavelength λ2 = 430 nm. It has a thickness of λ2 / 4.
Further, between the alternating layers of the first and second dielectric multilayer films and the prisms 1 and 2, adjustment layers having a film thickness of λ1 / 8 and λ2 / 8, respectively, are provided.
[0024]
When the luminous flux is deviated by ± 4 ° in the vicinity of the design reference incident angle of 52 °, the luminous flux is used as an alternate layer of the first dielectric multilayer film corresponding to the higher angle side (corresponding to the shorter wavelength side in the used wavelength range). The high-refractive-index substance and the low-refractive-index substance are selected so as to satisfy the Brewster condition (1) at an incident angle of 56 ° with respect to the normal to the film surface of the light beam. Substance combination of the first dielectric multilayer film of this example, TiO 2, the low refractive index layer 12 was selected SiO 2 in the high refractive index layer 11.
[0025]
The high-refractive index material and the low-refractive index material used for the alternating layers of the second dielectric multilayer film corresponding to the low angle side (corresponding to the long wavelength side in the used wavelength range) have a light flux of an incident angle of 48 °. Is selected so as to satisfy the Brewster condition (2). Substance combination of the second dielectric multilayer film of this example, ZrO 2 in the high refractive index layer 21, was chosen MgF 2 for the low refractive index layer 22.
[0026]
FIG. 6 shows the transmittance characteristics of the P and S polarization components and the transmittance characteristics at incident angles of 48 °, 52 ° and 56 ° in the second embodiment of the dielectric multilayer structure.
The incident angle dependence of the transmittance of the P and S polarization components of the polarizing beam splitter having the dielectric multilayer structure according to the second embodiment of the present invention will be compared with the comparative example of FIG.
In the multilayer structure of the comparative example, in the wavelength range of 480 nm to 550 nm, if the incident angle deviates from the design reference angle by several degrees, the bandwidth becomes 70 nm, and the used band becomes very narrow.
[0027]
On the other hand, the second embodiment of the present invention shows high polarization separation of the S-polarized component and the P-polarized component over the wavelength range of 460 nm to 620 nm. Even if it deviates from the design standard incident angle by ± 4 °, the bandwidth X maintains a wide band of 170 nm.
As described above, the embodiment of the present invention uses TiO 2 and SiO 2 in which the alternating layers of the first dielectric multilayer film and the alternating layers of the second dielectric multilayer film are the same kind of substance combination. Compared with the comparative example, the bandwidth of the transmittance characteristics could be greatly increased even when the incident angle dependency was taken into consideration.
[0028]
This is because the alternating layers of the first dielectric multilayer film, which cause the drop in the transmittance of P-polarized light on the long wavelength side, satisfy the Brewster condition (1) at 56 °, and cause the drop on the short wavelength side. This is because the material of the dielectric multilayer film is selected so as to satisfy the Brewster condition (2) at 48 ° in the alternate layer of the second dielectric multilayer film.
As described above, by changing the design reference wavelength of each of the first dielectric multilayer film and the second dielectric multilayer film and the combination of the low refractive index material and the high refractive index material, the degree of freedom with respect to the incident angle is increased. It is possible to obtain a high-bandwidth polarization beam splitter having a high polarization separation ratio S / P.
[0029]
7 and 8 show a third embodiment.
This embodiment is a modified example regarding the arrangement of the polarizing beam splitter of the present invention.
A first dielectric multilayer film 3 and a second dielectric multilayer film 4 are continuously laminated on a light-transmitting substrate 1, and the light-transmitting substrate 2 is formed via an adhesive layer 5.
According to this configuration, there is an advantage that the deposition of the low refractive index layer and the high refractive index layer can be performed in one batch.
[0030]
FIG. 9 shows a fourth embodiment of the polarizing beam splitter according to the present invention.
The polarizing beam splitter of this embodiment uses a transparent flat substrate 2 as a light-transmitting substrate, and includes a first and a second dielectric multilayer film filled with a liquid medium 6 having substantially the same refractive index as the flat substrate. It is configured. The first dielectric multilayer film 3 and the second dielectric multilayer film 4 are arranged on both sides of the transparent flat substrate. Examples of the liquid medium include ethylene glycol (refractive index: 1.43) and benzene (refractive index: 1.51).
[0031]
In general, when a prism is used for a light-transmitting substrate, birefringence occurs due to unevenness of the material in the prism. It is known that when a light beam passes through a substrate, the state of polarization changes and linear polarization characteristics deteriorate. In such a case, the problem of birefringence of the light-transmitting substrate can be avoided by the structure using the liquid medium.
With the polarization beam splitter having the configuration and arrangement as in the third embodiment, the formation of the dielectric multilayer film is completed in one batch, and an improvement in productivity can be expected.
[0032]
The polarization beam splitter having the configuration and arrangement of the fourth embodiment does not need to use an expensive prism, so that cost reduction can be expected.
[0033]
【The invention's effect】
As described above, according to the polarizing beam splitter of the present invention, a configuration in which a combination of a low-refractive index substance and a high-refractive index substance and first and second dielectric multilayer films having different design reference wavelengths are used. Accordingly, the degree of freedom with respect to the incident angle is high, and the S-polarized component and the P-polarized component can be separated or synthesized in a wide wavelength range.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a configuration of a polarizing beam splitter according to the present invention.
FIG. 2 is a configuration sectional view of first and second dielectric multilayer films of the present invention.
FIG. 3 is an explanatory diagram of a state of a light beam incident on a dielectric multilayer structure of the present invention.
FIG. 4 is a transmittance characteristic diagram of a dielectric multilayer structure according to the first embodiment of the present invention.
FIG. 5 is an incident angle dependence of transmittance characteristics of the dielectric multilayer structure of the first embodiment of the present invention.
FIG. 6 is a transmittance characteristic diagram of a P-polarized light component having a dielectric multilayer structure according to a second embodiment of the present invention.
FIG. 7 is a configuration sectional view of a polarization beam splitter according to a third embodiment of the present invention.
FIG. 8 is a configuration sectional view of first and second dielectric multilayer films according to a third embodiment of the present invention.
FIG. 9 is a configuration sectional view of a polarization beam splitter according to a fourth embodiment of the present invention.
FIG. 10 is a graph showing a comparison of transmittance characteristics based on the configuration of a conventional polarizing beam splitter.
[Explanation of symbols]
1 First translucent substrate (prism)
2 Second translucent substrate (prism)
3 First Dielectric Multilayer Film 4 Second Dielectric Multilayer Film 5 Adhesive Layer 6 Liquid Medium 11 High Refractive Index Material with Optical Thickness λ1 / 4 Low Refractive Index Material with Optical Thickness λ1 / 4 13 Alternating layer 1C made of a high-refractive-index substance and a low-refractive-index substance each having an optical thickness of λ1 / 4 Adjusting layer 21 having an optical thickness of λ1 / 8 High-refractive index having an optical thickness of λ2 / 4 Substance 22 Low-refractive-index substance having an optical film thickness of λ2 / 4 23 Alternating layer 2C composed of high-refractive-index substance and low-refractive-index substance having an optical film thickness of λ2 / 4, respectively. Adjustment layer

Claims (7)

透光性基板上に形成された誘電体多層膜を有する偏光ビームスプリッタにおいて、In a polarizing beam splitter having a dielectric multilayer film formed on a transparent substrate,
前記誘電体多層膜は2つの異なる設計基準波長λ  The dielectric multilayer has two different design reference wavelengths λ. 1One を有する第1の誘電体多層膜と、設計基準波長λA first dielectric multilayer film having 2Two を有する第2の誘電体多層膜とからなり、And a second dielectric multilayer film having
前記第1および第2の誘電体多層膜は、それぞれ高屈折率物質と低屈折率物質との交互層を有し、  The first and second dielectric multilayer films each include alternating layers of a high refractive index material and a low refractive index material,
前記第1の誘電体多層膜の交互層のブリュースター条件を満足する入射角と、前記第2の誘電体多層膜の交互層のブリュースター条件を満足する入射角とが異なるように、前記第1の誘電体多層膜の交互層と、前記第2の誘電体多層膜の交互層とで、交互層を形成する高屈折率物質と低屈折率物質との屈折率の値の組み合わせを異ならせたことを特徴とする偏光ビームスプリッタ。The second dielectric multilayer film is formed such that the incident angle satisfying the Brewster condition of the alternating layer and the incident angle satisfying the Brewster condition of the alternating layer of the second dielectric multilayer film are different from each other. The combination of the refractive indices of the high-refractive index material and the low-refractive index material forming the alternating layer is made different between the alternating layer of the first dielectric multilayer film and the alternating layer of the second dielectric multilayer film. A polarizing beam splitter.
請求項1に記載の偏光ビームスプリッタにおいて、前記第1の誘電体多層膜の前記高屈折率物質と前記第2の誘電体多層膜の前記高屈折率物質、および前記第1の誘電体多層膜の前記低屈折率物質と前記第2の誘電体多層膜の前記低屈折率物質との少なくともどちらか一組は互いに異なる屈折率を有することを特徴とする偏光ビームスプリッタ。2. The polarization beam splitter according to claim 1, wherein the high refractive index material of the first dielectric multilayer film, the high refractive index material of the second dielectric multilayer film, and the first dielectric multilayer film. A polarizing beam splitter, wherein at least one set of the low refractive index material and the low refractive index material of the second dielectric multilayer film has different refractive indexes. 請求項1に記載の偏光ビームスプリッタにおいて、前記第1の誘電体多層膜の前記高屈折率物質と前記第2の誘電体多層膜の前記高屈折率物質、および前記第1の誘電体多層膜の前記低屈折率物質と前記第2の誘電体多層膜の前記低屈折率物質との少なくともどちらか一組は互いに異なる物質であること特徴とする偏光ビームスプリッタ。2. The polarization beam splitter according to claim 1, wherein the high refractive index material of the first dielectric multilayer film, the high refractive index material of the second dielectric multilayer film, and the first dielectric multilayer film. A polarizing beam splitter, wherein at least one pair of the low refractive index material and the low refractive index material of the second dielectric multilayer film is different from each other. 前記第1の誘電体多層膜の交互層に高屈折率物質TiO2と低屈折率物質SiO2、前記第2の誘電体多層膜の交互層に高屈折率物質TiO2と低屈折率物質Al23とを用いた組み合わせとしたことを特徴とする請求項3記載の偏光ビームスプリッタ。The high refractive index material TiO 2 and the low refractive index material SiO 2 are provided in the alternating layers of the first dielectric multilayer film, and the high refractive index material TiO 2 and the low refractive index material Al are provided in the alternating layers of the second dielectric multilayer film. 4. The polarization beam splitter according to claim 3, wherein the polarization beam splitter is a combination using 2 O 3 . 前記第1の誘電体多層膜の交互層に高屈折率物質TiO2と低屈折率物質SiO2、前記第2の誘電体多層膜の交互層に高屈折率物質ZrO2と低屈折率物質MgF2とを用いた組み合わせとしたことを特徴とする請求項3記載の偏光ビームスプリッタ。A high refractive index material TiO 2 and a low refractive index material SiO 2 are provided in the alternate layers of the first dielectric multilayer film, and a high refractive index material ZrO 2 and a low refractive index material MgF are provided in the alternate layers of the second dielectric multilayer film. polarization beam splitter according to claim 3, characterized in that a combination with the 2. 前記第1及び第2の誘電体多層膜は、それぞれの基準波長λThe first and second dielectric multilayer films have respective reference wavelengths λ 1One 、λ, Λ 2Two において光学的膜厚λAt the optical film thickness λ 1One /4、λ/ 4, λ 2Two /4の高屈折率物質と低屈折率物質とで構成された2層を基本周期としてn周期(nは任意の整数)積層した交互層であることを特徴とする請求項4. An alternating layer in which two layers composed of a high-refractive-index substance and a low-refractive-index substance of / 4 are stacked with n periods (n is an arbitrary integer) as a basic period. 1One に記載の偏光ビームスプリッタ。The polarizing beam splitter according to 1. 請求項6に記載の偏光ビームスプリッタは、更に、前記交互層の両側に形成された光学的薄膜λThe polarizing beam splitter according to claim 6, further comprising an optical thin film λ formed on both sides of the alternating layer. 1One /8、λ/ 8, λ 2Two /8の前記高屈折率物質または低屈折率物質のいずれか一方からなる薄膜層を備えることを特徴とする偏光ビームスプリッタ。/ 8. A polarizing beam splitter comprising a thin film layer made of either the high refractive index material or the low refractive index material.
JP07062394A 1994-02-07 1994-04-08 Polarizing beam splitter Expired - Lifetime JP3584257B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07062394A JP3584257B2 (en) 1994-04-08 1994-04-08 Polarizing beam splitter
DE19580247T DE19580247T1 (en) 1994-02-07 1995-02-07 Optical glass for an optical polarization system, manufacturing process therefor and polarization beam splitter
PCT/JP1995/000164 WO1995021137A1 (en) 1994-02-07 1995-02-07 Optical glass for polarizing optical systems, method of manufacturing the same, and polarizing beam splitter
US08/691,923 US5969861A (en) 1994-02-07 1996-08-01 Polarizing optical system
US09/368,892 US6432854B1 (en) 1994-02-07 1999-08-05 Optical glass for polarizing optical system, production process therefor and polarizing beam splitter
US10/016,667 US7057815B2 (en) 1994-02-07 2001-10-26 Optical glass for polarizing optical system, production process therefor and polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07062394A JP3584257B2 (en) 1994-04-08 1994-04-08 Polarizing beam splitter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001105342A Division JP2001350024A (en) 2001-04-04 2001-04-04 Polarizing beam splitter

Publications (2)

Publication Number Publication Date
JPH07281024A JPH07281024A (en) 1995-10-27
JP3584257B2 true JP3584257B2 (en) 2004-11-04

Family

ID=13436938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07062394A Expired - Lifetime JP3584257B2 (en) 1994-02-07 1994-04-08 Polarizing beam splitter

Country Status (1)

Country Link
JP (1) JP3584257B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11306579A (en) * 1998-04-15 1999-11-05 Sony Corp Beam splitter and optical pickup device
US6756334B2 (en) 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass
JP2003014932A (en) 2001-06-29 2003-01-15 Canon Inc Polarized beam splitter and method for fabricating polarized beam splitter
JP3812527B2 (en) 2002-09-26 2006-08-23 コニカミノルタオプト株式会社 Polarizing beam splitter
US20040227994A1 (en) * 2003-05-16 2004-11-18 Jiaying Ma Polarizing beam splitter and projection systems using the polarizing beam splitter
JP2005049827A (en) * 2003-06-11 2005-02-24 Asml Holding Nv Ultraviolet polarizing beam splitter with minimum apodization
JP2011086867A (en) * 2009-10-19 2011-04-28 Seiko Epson Corp Light emitting element and projector
JP2011128176A (en) * 2009-12-15 2011-06-30 Nippon Electric Glass Co Ltd Optical component and method of manufacturing the same

Also Published As

Publication number Publication date
JPH07281024A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
US5061050A (en) Polarizer
JP4843617B2 (en) Multilayer wire grid polarizer
EP1510838B1 (en) Polarization beam splitter, optical system and image displaying apparatus using the same
US7012747B2 (en) Polarizing beam splitter and polarizer using the same
JP2007183525A (en) Dielectric multilayer film filter
EP1939655B1 (en) Polarization beam splitter and polarization conversion element
JP3812527B2 (en) Polarizing beam splitter
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JP3584257B2 (en) Polarizing beam splitter
JP5209932B2 (en) Polarization beam splitter and polarization conversion element
JPH11211916A (en) Polarized beam splitter
JP2001350024A (en) Polarizing beam splitter
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2006071754A (en) Polarized beam splitter and its manufacturing method
JP2007212694A (en) Beam splitter
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
JPH08110406A (en) Optical multilayered film
JP2000284121A (en) Polarized light separating film and polarized light separating prism
WO2020161950A1 (en) Polarization beam splitter and optical device
JPH10227912A (en) Polarization beam splitter
JPS62187802A (en) Beam splitter
JPH10154345A (en) Polarizing beam splitter
JP2003066231A (en) Polarization beam splitter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term