JP2000284121A - Polarized light separating film and polarized light separating prism - Google Patents

Polarized light separating film and polarized light separating prism

Info

Publication number
JP2000284121A
JP2000284121A JP11091378A JP9137899A JP2000284121A JP 2000284121 A JP2000284121 A JP 2000284121A JP 11091378 A JP11091378 A JP 11091378A JP 9137899 A JP9137899 A JP 9137899A JP 2000284121 A JP2000284121 A JP 2000284121A
Authority
JP
Japan
Prior art keywords
refractive index
polarized light
prism
light separating
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11091378A
Other languages
Japanese (ja)
Inventor
Kenichiro Yamada
憲一郎 山田
Hiroshi Kawamura
博 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Koki KK
Original Assignee
Nitto Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Koki KK filed Critical Nitto Koki KK
Priority to JP11091378A priority Critical patent/JP2000284121A/en
Publication of JP2000284121A publication Critical patent/JP2000284121A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain a high extinction ratio with a small number of layers and to adopt wavelength in a wide band by using gallium oxide as the material of low refractive index layers used as layers of a polarized light separating film. SOLUTION: A polarized light separating film is formed on the junction face of a junction type prism to obtain the objective polarized light separating prism. An ordinary glass material having a refractive index of 1.52 is used as the prism material on the incident side. The polarized light separating film is obtained by depositing many combinations of a high refractive index layer and a low refractive index layer and further forming a high refractive index layer. Gallium oxide (GaO2) having a refractive index of about 1.2-1.3 is used as the material of the low refractive index layers. Tantalum oxide (Ta2O5) having a refractive index of 2.1 is used as the material of the high refractive index layers combined with the low refractive index layers in accordance with the McNeil conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入射光をs偏光と
p偏光に分離する偏光分離膜とこの偏光分離膜を用いた
偏光分離プリズムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization separation film for separating incident light into s-polarized light and p-polarized light, and a polarization separation prism using the polarization separation film.

【0002】光学用に用いられている偏光分離膜は、光
ディスクの検出光学系やプロジェクタの照明光学系とし
て広く使用されている。特にプロジェクタ用途として
は、一つの偏光分離膜で分離し得る波長帯の広帯域化へ
の要求が年々高まっている。
A polarization splitting film used for optics is widely used as a detection optical system for an optical disk and an illumination optical system for a projector. Particularly for projector applications, there is a growing demand for a wider wavelength band that can be separated by one polarization separation film.

【0003】このように、偏光分離膜は、より少ない層
数で、より高い消光比(p偏光の透過率とs偏光の透過
率の比)を実現し、さらに波長の広帯域化を図れること
が必要とされている。
As described above, the polarization splitting film can realize a higher extinction ratio (ratio of p-polarized light transmittance and s-polarized light transmittance) with a smaller number of layers, and can further broaden the wavelength band. is needed.

【0004】[0004]

【従来の技術】入射光をs偏光とp偏光に分離する偏光
ビームスプリッタとして、ガラス等を材料とした接合型
プリズムの接合面に、屈性率の異なる二つの層(高屈折
率層と低屈折率層)を交互に多層堆積させて偏光分離膜
を形成する形態の偏光分離プリズムが知られている。こ
の偏光分離膜の層に用いる屈折率の組み合わせとして
は、マクネイル(MacMeille)型偏光分離膜が知られてい
る。このマクネイル型偏光分離膜では、p偏光の透過率
は広い波長範囲において高い値をもつが、s偏光は使用
する膜物質の屈折率の組み合わせによってその反射率と
使用可能な波長範囲が制限される。
2. Description of the Related Art As a polarizing beam splitter for separating incident light into s-polarized light and p-polarized light, two layers having different refractive indices (a high refractive index layer and a low refractive index layer) are formed on a bonding surface of a bonding prism made of glass or the like. There is known a polarization splitting prism in which a polarization splitting film is formed by alternately depositing a plurality of refractive index layers. As a combination of the refractive indices used for the layers of the polarization separation film, a MacMeille type polarization separation film is known. In this McNail-type polarization separation film, the transmittance of p-polarized light has a high value in a wide wavelength range, but the reflectance of s-polarized light and the usable wavelength range are limited by the combination of the refractive indices of the film materials used. .

【0005】図3は、光学薄膜の界面でのp偏光の反射
率について説明するもので、ブリュースター角(偏光
角)を説明している。この図3は、高屈折率nH の物質
層と低屈折率nL の物質層を接合した界面に、高屈折率
H 層側から入射角θH で光が入射し、その界面で主と
してs偏光成分が反射、主としてp偏光成分が透過し、
透過光は屈折角θL で屈折して低屈折率nL 層中に射出
する状態が示されている。この場合のp偏光成分の振幅
反射係数rp は以下の式で表される。
FIG. 3 explains the reflectance of p-polarized light at the interface of the optical thin film, and explains the Brewster angle (polarization angle). FIG. 3 shows that light is incident from the high refractive index n H layer side at an incident angle θ H to the interface where the material layer having the high refractive index n H and the material layer having the low refractive index n L are joined. The s-polarized component is reflected, the p-polarized component is transmitted,
The state where the transmitted light is refracted at the refraction angle θ L and exits into the low refractive index n L layer is shown. The reflection coefficient r p for p-polarization component in this case is expressed by the following equation.

【0006】rp =(nH / cosθH −nL / cos
θL ) /(nH / cosθH +nL / cosθL ) ここで、p偏光が全て透過されるという条件、すなわち
p =0という条件から、 nH / cosθH =nL / cosθL θH = tan-1(nH /nL ) がブリュースター角(偏光角)として導かれる。この条
件を満たす高屈折率nHと低屈折率nL 、入射角θH
屈折角θL の組合せはマクネイル(MacMeille)条件とし
て知られている。つまり、このマクネイル条件を満たす
場合には、p偏光成分は界面で反射せずに透過すること
になる。
R p = (n H / cos θ H −n L / cos
θ L ) / (n H / cos θ H + n L / cos θ L ) Here, from the condition that all p-polarized light is transmitted, that is, the condition that r p = 0, n H / cos θ H = n L / cos θ L θ H = tan −1 (n H / n L ) is derived as the Brewster angle (polarization angle). The high refractive index n H and the low refractive index n L satisfying this condition, the incident angle θ H ,
The combination of the refraction angles θ L is known as a MacMeille condition. That is, when the McNail condition is satisfied, the p-polarized light component is transmitted without being reflected at the interface.

【0007】一方、s偏光成分については、偏光分離膜
に用いる高屈折率層の屈折率nH と低屈折率層の屈折率
L とに基づいて、その反射率と使用可能な波長範囲が
決まることになる。
On the other hand, the s-polarized light component has a reflectance and a usable wavelength range based on the refractive index n H of the high refractive index layer and the refractive index n L of the low refractive index layer used for the polarization separation film. Will be decided.

【0008】上記のマクネイル条件を図4に例示するよ
うな接合型の偏光分離プリズムの偏光分離膜に適用する
場合について考える。いま入射側プリズムの材料(ここ
では通常のガラス)の屈折率n0 を1.52、プリズム
の頂角θ0 を45度とした場合、マクネイル条件を満た
す層物質の屈折率の組合せの例を計算してみると、例え
ば低屈折率層の屈折率が1.38であるときには高屈折
率層の屈折率は1.71となる。
A case where the above-described McNail condition is applied to a polarization splitting film of a junction type polarization splitting prism as illustrated in FIG. 4 will be considered. Now, assuming that the refractive index n 0 of the material of the incident side prism (here, ordinary glass) is 1.52 and the apex angle θ 0 of the prism is 45 degrees, an example of the combination of the refractive indices of the layer materials satisfying the McNail condition is as follows. By calculation, for example, when the refractive index of the low refractive index layer is 1.38, the refractive index of the high refractive index layer is 1.71.

【0009】偏光分離膜の各層として使用できる物質
は、現在よく用いられるところでは、低屈折率物質とし
てはMgF2 ,SiO2 など、高屈折率物資としてはA
2 3 ,Y2 3 ,SiO,TiO2 ,Ta2 5
どである。偏光分離膜に使用できる屈折率の組合せは、
現実には、実用にかなう低屈折率物質があるか否かによ
り決まる。具体例としては、現在よく使われる低屈折率
物質としては屈折率(すなわちnL )が1.38のMg
2 (フッ化マグネシュウム)があり、これと組み合わ
す高屈折物質としては屈折率(すなわちnH )が1.7
0のY2 3 (酸化イットリウム)などである。
Substances that can be used as each layer of the polarization separation film
Is commonly used as a low refractive index material
And MgFTwo, SiOTwoA for high refractive index materials
lTwoO Three, YTwoOThree, SiO, TiOTwo, TaTwoOFiveWhat
What is it? The combination of refractive indexes that can be used for the polarization separation film is
In reality, it depends on whether there is a practical low refractive index material.
Is determined. An example is the low refractive index commonly used today.
The material has a refractive index (ie, nL) Is 1.38 Mg
FTwo(Magnesium fluoride), combined with this
The refractive index (ie, nH) Is 1.7
Y of 0TwoOThree(Yttrium oxide).

【0010】図5には、偏光分離膜の実用的な設計例と
して、低屈折率層の物質としMgF 2 (nL =1.3
8)を使用し、高屈折率層の物質としてY2 3 (nH
=1.70)を使用して偏光分離膜を形成した場合の透
過率・相対波数特性が示される。図中、横軸は相対波数
(Relative Wave Number)、縦軸は透過率(Transmittanc
e) を表す。ここで、相対波数は所定の中心波長(例え
ば550nmなど)に対する倍率で波長を表すものであ
り、相対波数1が中心波長に相当する。また、図中の
(HL)n H〔但し、図5の例ではn=5〕の表示は、
偏光分離膜を、高屈折率層と低屈折率層の組合せをn層
堆積して更に高屈折率層を単独で1層加えて形成したこ
とを表す。よって、この例の場合、堆積層の数は11層
となる。図5中、(1)はp偏光成分の特性、(2)は
s偏光成分の特性である。この図5から分かるように、
p偏光は透過率ほぼ100%である。一方、s偏光は相
対波数0.85〜1.15位の範囲の波長が反射してい
るが、透過する成分もあり、消光比としては十分なもの
が得られていない。
FIG. 5 shows a practical design example of the polarization splitting film.
And the material of the low refractive index layer is MgF Two(NL= 1.3
8) using Y as a material for the high refractive index layerTwoOThree(NH
= 1.70) to form a polarization separation film.
Excess rate / relative wave number characteristics are shown. In the figure, the horizontal axis is the relative wave number
(Relative Wave Number), the vertical axis is transmittance (Transmittanc
e). Here, the relative wave number is a predetermined center wavelength (for example,
For example, the wavelength is represented by a magnification with respect to 550 nm).
Thus, the relative wave number 1 corresponds to the center wavelength. Also, in the figure
(HL)nH [however, n = 5 in the example of FIG. 5]
The polarization separation film is composed of n layers of a combination of a high refractive index layer and a low refractive index layer.
The high refractive index layer was formed by adding one layer by itself.
And Therefore, in the case of this example, the number of deposited layers is 11
Becomes In FIG. 5, (1) is the characteristic of the p-polarized light component, and (2) is
This is the characteristic of the s-polarized light component. As can be seen from FIG.
The p-polarized light has a transmittance of almost 100%. On the other hand, s-polarized light
Wavelengths in the range of 0.85 to 1.15 are reflected.
However, there are components that pass through, which is sufficient for the extinction ratio
Is not obtained.

【0011】図6は反射光(s偏光成分)の波長の広帯
域化を図った従来の偏光分離膜の設計例を示すものであ
る。この設計例では、高屈折率層と低屈折率層の組合せ
を15層設けてそれに更に高屈折率層を単独で1層加え
て形成し、各層の膜厚を少しずつ変えることで、波長の
広帯域化を図ったものである。図示するように、この設
計例によれば、反射光(s偏光成分)の波長は相対波数
0.7〜1.3位の範囲に広げられているが、以前とし
て、消光比としては十分なものが得られていない。
FIG. 6 shows a design example of a conventional polarization splitting film for broadening the wavelength of reflected light (s-polarized light component). In this design example, fifteen high-refractive-index layers and low-refractive-index layers are provided, and a single high-refractive-index layer is further added thereto, and the thickness of each layer is changed little by little. This is for widening the bandwidth. As shown in the figure, according to this design example, the wavelength of the reflected light (s-polarized light component) is widened to the range of the relative wave number of 0.7 to 1.3, but the extinction ratio is still sufficient. Things have not been obtained.

【0012】このs偏光成分の反射率をさらに大きくす
る手法としては、使用するプリズムの材料物質(ガラ
ス)として、さらに屈折率の高いもの、例えば屈折率
1.7〜1.8程度の高屈折率ガラスを用いる方法があ
る。高屈折率ガラスを使用した場合、前述のマクネイル
条件を満たす高屈折率と低屈折率の組合せの差が大きく
なり、s偏光成分の反射率が大きくなる。
As a method of further increasing the reflectance of the s-polarized light component, a prism material to be used (glass) having a higher refractive index, for example, a high refractive index having a refractive index of about 1.7 to 1.8 is used. There is a method using a rate glass. When a high refractive index glass is used, the difference between the combination of the high refractive index and the low refractive index that satisfies the above-mentioned McNail condition becomes large, and the reflectance of the s-polarized light component becomes large.

【0013】[0013]

【発明が解決しようとする課題】従来、実用化し得てい
る偏光分離膜では、まだ十分な消光比を実現できておら
ず、また波長の広帯域化も不十分である。広帯域化を図
るために図6に示すような設計手法も可能であるが、こ
の場合、堆積する層数が多くなり、製造手間がかかるこ
とになる。また、プリズムの材料として高屈折率ガラス
を使用する方法もあるが、かかる高屈折率ガラスは高価
なものであり、加工も難しくなるという問題がある。
Conventionally, a polarizing beam splitting film which can be practically used has not yet realized a sufficient extinction ratio, and also has an insufficient wavelength broadening band. Although a design method as shown in FIG. 6 is also possible to achieve a wide band, in this case, the number of layers to be deposited increases, and the manufacturing time is increased. There is also a method of using a high-refractive-index glass as a material for the prism. However, such a high-refractive-index glass is expensive and has a problem that processing is difficult.

【0014】本発明は、かかる問題点に鑑みてなされた
ものであり、より少ない層数で、より高い消光比を実現
し、さらに波長の広帯域化も図ることを目的とする。
The present invention has been made in view of the above problems, and has as its object to realize a higher extinction ratio with a smaller number of layers and to further widen the wavelength band.

【0015】[0015]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明にかかる偏光分離膜は、透明物体の面に高
屈折率層と低屈折率層を交互に多層堆積させ、上記低屈
折率層の物質として酸化ガリウム(GaO2 )を用いる
ようにしたものである。また、本発明にかかる偏光分離
プリズムは、上記の偏光分離膜を接合型プリズムの接合
面に形成したものである。
In order to solve the above-mentioned problems, a polarized light separating film according to the present invention comprises a high-refractive-index layer and a low-refractive-index layer alternately deposited on the surface of a transparent object in a multilayer manner. Gallium oxide (GaO 2 ) is used as the material of the refractive index layer. Further, a polarization splitting prism according to the present invention is obtained by forming the above-mentioned polarization splitting film on the junction surface of the junction type prism.

【0016】[0016]

【作用】図2は、図4に示す偏光分離プリズムの偏光分
離膜について、上記したマクネイル条件に従う偏光分離
膜の層物質の高屈折率と低屈折率の組合せを種々計算し
て示したものである。ここで、入射側プリズムの材料と
しては屈折率n0 が1.52の低屈折率ガラス(例えば
BK7など)を用い、プリズムの頂角θ0 は45度とし
てある。この図2の計算結果によれば、低屈折率nL
値が小さくなるほど、それと組み合わされる高屈折率n
H との値の差が大きくなることが分かる。そこで、この
知見に基づき、本発明では、この低屈折率層の物質とし
て、1.2〜1.3程度の屈折率を持つ物質である酸化
ガリウム(GaO2 )を使用するものである。これによ
り、層物質の組合せの低屈折率と高屈折率との差を大き
くとれ、それによりs偏光についても高い反射率と広い
使用波長範囲を実現できる。
FIG. 2 is a graph showing various calculations of combinations of the high refractive index and the low refractive index of the layer material of the polarization separation film according to the above-mentioned McNail condition, for the polarization separation film of the polarization separation prism shown in FIG. is there. Here, a low refractive index glass (for example, BK7) having a refractive index n 0 of 1.52 is used as a material of the incident side prism, and the apex angle θ 0 of the prism is 45 degrees. According to the calculation result of FIG. 2, as the value of the low refractive index n L decreases, the high refractive index n L associated therewith decreases.
It can be seen that the difference between H and the value increases. Therefore, based on this finding, in the present invention, gallium oxide (GaO 2 ), which is a substance having a refractive index of about 1.2 to 1.3, is used as the material of the low refractive index layer. As a result, the difference between the low refractive index and the high refractive index of the combination of the layer materials can be made large, thereby realizing a high reflectance and a wide operating wavelength range for s-polarized light.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明の一実施形態として
の偏光分離プリズムの透過率・相対波数特性を示す図で
ある。この偏光分離プリズムは、入射側のプリズム材料
としては屈折率が1.52の通常のガラス材料(具体的
にはBK7)を用いている。プリズム接合面に形成する
偏光分離膜は、その層構造が(HL)5 H、すなわち、
高屈折率層と低屈折率層の組合せを5層堆積してそれに
更に高屈折率層を単独で1層加えた構造からなる。この
層構造の各層の厚さは通常の偏光分離膜の設計例に従
う。ここで、低屈折率層としては、屈折率(nL )が
1.25の酸化ガリウム(GaO2 )を用いており、マ
クネイル条件に従ってこれに組み合わせる高屈折率層の
物質としては、屈折率(nH )が2.1の酸化タンタル
(Ta2 5 )を用いている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing transmittance / relative wave number characteristics of a polarization splitting prism as one embodiment of the present invention. This polarization splitting prism uses a normal glass material (specifically, BK7) having a refractive index of 1.52 as a prism material on the incident side. The polarization separation film formed on the prism bonding surface has a layer structure of (HL) 5 H, that is,
It has a structure in which five combinations of a high refractive index layer and a low refractive index layer are deposited, and a single high refractive index layer is further added thereto. The thickness of each layer of this layer structure follows the design example of a normal polarization separation film. Here, as the low refractive index layer, gallium oxide (GaO 2 ) having a refractive index (n L ) of 1.25 is used. n H) is tantalum oxide of 2.1 (Ta 2 O 5).

【0018】ここで用いている酸化ガリウム(Ga
2 )は、例えば米国特許USPNo.5,474,851号に反射
防止膜としての利用が開示されている物質であり、その
製法も同特許に開示されている公知のものである。この
酸化ガリウムは、屈折率として1.2〜1.3の値をも
つ。
The gallium oxide (Ga) used here
O 2 ) is a substance disclosed in U.S. Pat. No. 5,474,851 for use as an antireflection film, for example, and its production method is also a known one disclosed in the same patent. This gallium oxide has a refractive index of 1.2 to 1.3.

【0019】図1は上記構成の偏光分離プリズムの透過
率・相対波数特性を示す図である。図中、横軸は相対波
数、縦軸は透過率を表し、(1)はp偏光成分の特性、
(2)はs偏光成分の特性である。この図1から分かる
ように、p偏光成分は透過率ほぼ100%であり、s偏
光成分は相対波数0.7〜1.3位の範囲でほぼ全てが
反射(透過率が0)している。この図1の特性を図5に
示す従来の設計例の特性と比較すると分かるように、本
発明によれば、偏光分離膜として少ない層数で、非常に
広い波長域において高い消光比が得られるものである。
例えば、図6に示す従来の広帯域化を図る設計例(低屈
折率層にMgF2 を使用)と比較すると、従来の設計例
では偏光分離膜に31層の堆積を要しているが、この実
施形態では11層でより高い消光比を得ることができ
る。また、プリズムの材料物質としても、高屈折率の物
質を使用することを要せず、通常のガラス(例えば屈折
率1.52のBK7など)で足り、安価であるとともに
製造が容易である。
FIG. 1 is a diagram showing the transmittance / relative wave number characteristics of the polarization splitting prism having the above-described configuration. In the figure, the horizontal axis represents the relative wave number, the vertical axis represents the transmittance, (1) is the characteristic of the p-polarized component,
(2) is the characteristic of the s-polarized light component. As can be seen from FIG. 1, the transmittance of the p-polarized light component is almost 100%, and almost all of the s-polarized light component is reflected (transmittance is 0) in the range of the relative wave number of 0.7 to 1.3. . As can be seen by comparing the characteristic of FIG. 1 with the characteristic of the conventional design example shown in FIG. 5, according to the present invention, a high extinction ratio can be obtained in a very wide wavelength range with a small number of layers as a polarization separation film. Things.
For example, as compared with the conventional design example for widening the band shown in FIG. 6 (using MgF 2 for the low refractive index layer), the conventional design example requires the deposition of 31 layers on the polarization separation film. In the embodiment, a higher extinction ratio can be obtained with 11 layers. Also, as the material of the prism, it is not necessary to use a material having a high refractive index, and ordinary glass (for example, BK7 having a refractive index of 1.52) is sufficient, and it is inexpensive and easy to manufacture.

【0020】また、本発明においてさらに波長の広帯域
化を図りたいときには、堆積する層数を増やし、それら
の層の厚さを少しずつ変化させる図6に示した従来の設
計手法を用いることができる。
In the present invention, when it is desired to further increase the wavelength band, the conventional design method shown in FIG. 6 in which the number of layers to be deposited is increased and the thicknesses of the layers are gradually changed can be used. .

【0021】以上の説明では、本発明の偏光分離膜を、
マクネイル条件に従ってその多層膜を構成する各層の屈
折率を設定している設計を例にして説明したが、本発明
はこれに限られるものではなく、他の方法で屈性率を決
めている一般的な偏光分離膜に対しても、もちろん本発
明を適用できるものである。
In the above description, the polarized light separating film of the present invention is
Although the design in which the refractive index of each layer constituting the multilayer film is set according to the McNail condition has been described as an example, the present invention is not limited to this, and the refractive index is determined by another method. Of course, the present invention can be applied to a typical polarization separation film.

【0022】[0022]

【発明の効果】以上に説明したように、本発明によれ
ば、偏光分離膜を少ない層数で形成しながら、従来に比
べて顕著に高い消光比を得ることができ、しかも十分な
消光比を広い波長範囲において得ることができる。ま
た、高い消光比を得るために、プリズム材料として通常
のガラス材料で足りるので、高屈折率のものを用いる必
要がなく、偏光分離プリズムを容易にかつ低コストで製
造することができる。
As described above, according to the present invention, it is possible to obtain a remarkably high extinction ratio as compared with the related art while forming the polarization splitting film with a small number of layers, and to obtain a sufficient extinction ratio. Can be obtained in a wide wavelength range. Further, since a normal glass material is sufficient as the prism material in order to obtain a high extinction ratio, it is not necessary to use a material having a high refractive index, and the polarization splitting prism can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態としての偏光分離プリズム
の透過率・相対波数特性を示す図である。
FIG. 1 is a diagram illustrating transmittance / relative wave number characteristics of a polarization splitting prism as one embodiment of the present invention.

【図2】マクネイル条件を説明するための図である。FIG. 2 is a diagram for explaining McNail conditions.

【図3】ブリュースター角(偏光角)を説明するための
図である。
FIG. 3 is a diagram illustrating a Brewster angle (polarization angle).

【図4】偏光分離プリズムの機能を説明するための図で
ある。
FIG. 4 is a diagram for explaining a function of a polarization splitting prism.

【図5】従来の典型的な設計例(MgF2 を使用)によ
る偏光分離ブリズムの透過率・相対波数特性を示す図で
ある。
FIG. 5 is a diagram showing transmittance / relative wave number characteristics of polarization separation bristles according to a conventional typical design example (using MgF 2 ).

【図6】波長の広帯域化を図った従来の設計例(MgF
2 を使用)による偏光分離ブリズムの透過率・相対波数
特性を示す図である。
FIG. 6 shows a conventional design example (MgF
2 is a diagram showing the transmittance / relative wave number characteristics of the polarization separation brhythm by using ( 2 ).

【符号の説明】[Explanation of symbols]

H 高屈折率 nL 低屈折率 n0 入射光側プリズム材料の屈折率 θH 入射角 θL 屈折角θ θ0 プリズムの頂角n H high refractive index n L low refractive index n 0 refractive index of incident light side prism material θ H incident angle θ L refractive angle θ θ 0 prism apex angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明物体の面に高屈折率層と低屈折率層を
交互に多層堆積させ、上記低屈折率層の物質として酸化
ガリウムを用いた偏光分離膜。
1. A polarized light separating film comprising high refractive index layers and low refractive index layers alternately deposited on the surface of a transparent object, and using gallium oxide as a material for the low refractive index layer.
【請求項2】請求項1記載の偏光分離膜を接合型プリズ
ムの接合面に形成した偏光分離プリズム。
2. A polarized light separating prism wherein the polarized light separating film according to claim 1 is formed on a bonding surface of a bonded type prism.
JP11091378A 1999-03-31 1999-03-31 Polarized light separating film and polarized light separating prism Pending JP2000284121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11091378A JP2000284121A (en) 1999-03-31 1999-03-31 Polarized light separating film and polarized light separating prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11091378A JP2000284121A (en) 1999-03-31 1999-03-31 Polarized light separating film and polarized light separating prism

Publications (1)

Publication Number Publication Date
JP2000284121A true JP2000284121A (en) 2000-10-13

Family

ID=14024719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11091378A Pending JP2000284121A (en) 1999-03-31 1999-03-31 Polarized light separating film and polarized light separating prism

Country Status (1)

Country Link
JP (1) JP2000284121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021807A (en) * 2001-07-09 2003-01-24 Ricoh Co Ltd Polarizing optical path separating element, color separating and synthesizing element, color separation method, color synthesizing method, method and device for synthesizing color image light, and projector
JP2012203329A (en) * 2011-03-28 2012-10-22 Canon Inc Polarized light separation element and image projection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021807A (en) * 2001-07-09 2003-01-24 Ricoh Co Ltd Polarizing optical path separating element, color separating and synthesizing element, color separation method, color synthesizing method, method and device for synthesizing color image light, and projector
JP4731744B2 (en) * 2001-07-09 2011-07-27 株式会社リコー Polarization-type optical path separation element, color separation / synthesis element, color separation method, color synthesis method, color video light synthesis apparatus, color video light synthesis method, and projection apparatus
JP2012203329A (en) * 2011-03-28 2012-10-22 Canon Inc Polarized light separation element and image projection apparatus

Similar Documents

Publication Publication Date Title
US8817371B1 (en) Polarizing beam splitters
US7012747B2 (en) Polarizing beam splitter and polarizer using the same
US5625491A (en) Broad band polarizing beam splitter
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JP3584257B2 (en) Polarizing beam splitter
JPH11202127A (en) Dichroic mirror
JPH11211916A (en) Polarized beam splitter
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JPH11101913A (en) Optical element
WO2020015102A1 (en) Polarization-independent beam splitter
JP2000284121A (en) Polarized light separating film and polarized light separating prism
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP2004177658A (en) Dielectric multilayer band-pass filter
JP4394460B2 (en) Thin film polarizing splitter, manufacture of the thin film polarizing splitter, and ophthalmic lens including a projection insert having the thin film polarizing splitter
JP2001350024A (en) Polarizing beam splitter
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2008058561A (en) Optical filter and color separation prism
JP2007212694A (en) Beam splitter
JPH08146218A (en) Polarizing beam splitter
JPH10227912A (en) Polarization beam splitter
JP2001013308A (en) Prism type beam splitter
JPS6315562B2 (en)
JP3113371B2 (en) Multi-layer anti-reflective coating
JP2741731B2 (en) Polarizer
WO2022019010A1 (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414