JP2001350024A - Polarizing beam splitter - Google Patents

Polarizing beam splitter

Info

Publication number
JP2001350024A
JP2001350024A JP2001105342A JP2001105342A JP2001350024A JP 2001350024 A JP2001350024 A JP 2001350024A JP 2001105342 A JP2001105342 A JP 2001105342A JP 2001105342 A JP2001105342 A JP 2001105342A JP 2001350024 A JP2001350024 A JP 2001350024A
Authority
JP
Japan
Prior art keywords
dielectric multilayer
multilayer film
refractive index
beam splitter
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001105342A
Other languages
Japanese (ja)
Inventor
Mikio Okamoto
幹夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001105342A priority Critical patent/JP2001350024A/en
Publication of JP2001350024A publication Critical patent/JP2001350024A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polarizing beam splitter, having little dependence on the angle of incidence of an incident luminous flux on a surface of a polarization separating multilayered film and further having a high polarization separation ratio and a wide working band width. SOLUTION: The polarizing beam splitter is provided with a dielectric multilayered film, formed on a translucent substrate 1. The dielectric multilayer film consists of a first dielectric multilayer film 3 and a second dielectric multilayered film 4, with respectively different two designed reference wavelengths λ1, λ2. The first and the second dielectric multilayered films are provided with alternating layers 13, 23 laminated in n periods (n is an arbitrary integer) or two layers comprising high refractive index materials 11, 21 and low refractive index materials 12, 22 with optical film thickness λ1/4, λ2/4 at respective reference wavelengths λ1, λ2 as fundamental periods. The alternating layer 13 of the first dielectric multilayered film and the alternating layer 23 of the second dielectric multilayer film, respectively comprising combinations of substances of mutually different kinds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、S及びP両偏光成分の
分離合成に使用される偏光ビームスプリッタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing beam splitter used for separating and combining both S and P polarization components.

【0002】[0002]

【比較の技術】一般に偏光ビームスプリッタは、2個の
45゜プリズムの間に高屈折率物質と低屈折率物質との
誘電体薄膜を交互に積層した誘電体多層膜を介在させた
ものが使われている。誘電体多層膜の物質選択は、45
゜プリズムの光軸上から入射する入射光のP偏光成分の
反射率がもっとも小さく、かつS偏光成分の反射率が最
も高くなるような波長範囲内に入るよう行われる。
[Comparison technology] Generally, a polarizing beam splitter is used in which a dielectric multilayer film in which dielectric thin films of a high refractive index material and a low refractive index material are alternately stacked is interposed between two 45 ° prisms. Have been done. The material selection of the dielectric multilayer film is 45
(4) The process is performed so that the reflectance of the P-polarized light component of the incident light entering from the optical axis of the prism is the smallest and the reflectance of the S-polarized light component is the highest.

【0003】偏光ビームスプリッタは、入射光をPとS
の両偏光成分を高効率に分離するために光ディスク装置
や投射表示装置等に利用されている。比較から偏光ビー
ムスプリッタの使用波長帯域幅を広げるために、誘電体
多層膜構成について様々な提案がなされている。例え
ば、特開昭61−141402号公報では、高屈折率物
質と低屈折率物質との2層を基本周期とした誘電体多層
膜に中間層を設け、この層の膜厚を調整することにより
帯域幅を広げている。また、特開平3−284705号
公報で示されている従来の偏光ビームスプリッタの構成
例では、設計基準波長が異なる2つの誘電体多層膜でそ
れぞれ高屈折率物質と低屈折率物質の組み合わせが同一
な組み合わせである。この構成により、使用波長の帯域
幅を広げ、かつ偏光分離比向上がなされている。
A polarizing beam splitter converts incident light into P and S
It is used in optical disk devices, projection display devices, and the like to separate the two polarization components with high efficiency. From the comparison, various proposals have been made for a dielectric multilayer structure in order to widen the wavelength band used by the polarizing beam splitter. For example, in Japanese Patent Application Laid-Open No. 61-141402, an intermediate layer is provided in a dielectric multilayer film having a basic period of two layers of a high refractive index material and a low refractive index material, and the thickness of this layer is adjusted. Broadening the bandwidth. Further, in the configuration example of the conventional polarizing beam splitter disclosed in JP-A-3-284705, the combination of a high-refractive-index material and a low-refractive-index material is the same in two dielectric multilayer films having different design reference wavelengths. It is a combination. With this configuration, the bandwidth of the used wavelength is widened and the polarization separation ratio is improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
誘電体多層膜構成を有する偏光ビームスプリッタでは、
設計入射角に対しては帯域幅は広がるものの、光束の入
射角が少しでもずれるとP/S偏光分離比が悪くなり、
帯域幅が非常に狭くなるという問題がある。
However, in a conventional polarizing beam splitter having a dielectric multilayer structure,
Although the bandwidth widens with respect to the designed incident angle, if the incident angle of the light beam shifts even a little, the P / S polarization separation ratio becomes worse,
The problem is that the bandwidth is very narrow.

【0005】本発明の目的は、偏光分離多層膜面に入射
する光束の入射角依存性が少なくかつ偏光分離比が高
い、使用帯域幅が広い偏光ビームスプリッタを提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polarization beam splitter which has a small incident angle dependence of a light beam incident on a polarization separation multilayer film surface, a high polarization separation ratio, and a wide use bandwidth.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に本発明では、透光性基体上に積層された誘電体多層膜
を有する偏光ビームスプリッタにおいて、前記誘電体多
層膜は2つの異なる設計基準波長λ1、λ2を有する第1
の誘電体多層膜と第2の誘電体多層膜とからなり、第1
及び第2の誘電体多層膜は、それぞれの基準波長λ1、
λ2において光学的膜厚λ1/4、λ2/4の高屈折率物
質と低屈折率物質とで構成された2層を基本周期として
n周期(nは任意の整数)積層した交互層と、前記交互
層の両側に光学的膜厚λ1/8、λ2/8の前記高屈折率
物質または低屈折率物質のいずれか一方からなる薄膜調
整層とを備え、前記第1の誘電体多層膜の交互層と第2
の誘電体多層膜の交互層が、互いに異なる種類の物質の
組み合わせにより構成されていることを特徴とする。
According to the present invention, there is provided a polarizing beam splitter having a dielectric multilayer film laminated on a light-transmitting substrate, wherein the dielectric multilayer film has two different designs. First having reference wavelengths λ1, λ2
And a second dielectric multilayer film and a first dielectric multilayer film.
And the second dielectric multilayer film has respective reference wavelengths λ1,
an alternating layer in which two layers composed of a high-refractive-index substance and a low-refractive-index substance having an optical thickness of λ1 / 4 and λ2 / 4 at λ2 are stacked for n periods (n is an arbitrary integer) as a basic period; A thin film adjusting layer made of one of the high-refractive-index substance and the low-refractive-index substance having an optical film thickness of λ1 / 8 or λ2 / 8 on both sides of the alternating layer; Layer and second
Characterized in that the alternate layers of the dielectric multilayer film are formed of a combination of different kinds of substances.

【0007】[0007]

【作用】本発明の偏光ビームスプリッタは、誘電体多層
膜への光束の入射角が多少変化しても使用波長領域の帯
域幅を狭めることのないような構成及び誘電体多層膜の
交互層の高屈折率層、低屈折率層に用いる物質を選択す
るようにしたものである。 広帯域にわたって偏光分離
するためには、偏光分離膜に入射する光束の波長に対し
て、P偏光成分とS偏光成分とを分離している波長帯域
を大きくする必要がある。そのためには、スネルの法則
に従い、P偏光成分とS偏光成分との偏光分離が最も大
きい角度であるブリュースター角近傍を設計入射角とし
て、偏光分離膜に入射させるようにする。
The polarizing beam splitter according to the present invention has a structure and a structure in which the bandwidth of the used wavelength region is not narrowed even if the incident angle of the light beam on the dielectric multilayer film is slightly changed. The substance used for the high refractive index layer and the low refractive index layer is selected. In order to perform polarization separation over a wide band, it is necessary to increase the wavelength band separating the P-polarized component and the S-polarized component from the wavelength of the light beam incident on the polarization separation film. For this purpose, according to Snell's law, the vicinity of the Brewster angle at which the polarization separation between the P-polarized light component and the S-polarized light component is the largest is set as the design incident angle so that the light enters the polarization separation film.

【0008】本発明の誘電体多層膜構成では、設計基準
波長が異なる第1及び第2の誘電体多層膜を有してい
る。第1及び第2の誘電体多層膜のそれぞれに入射する
光束の入射角が異なるように設定する。また第1及び第
2の誘電体多層膜の高屈折率と低屈折率の物質は、下記
ブリュースター条件(1)と(2)が異なるように選択
した。例えば、一方の誘電体多層膜の交互層には高屈折
率物質としてTiO2、低屈折率物質SiO2とした組み
合わせとし、他方の誘電体多層膜の交互層には高屈折率
物質としてTiO2、低屈折率物質としてAl23とし
た組み合わせを用いれば良い。
The structure of the dielectric multilayer film of the present invention has first and second dielectric multilayer films having different design reference wavelengths. The angle of incidence of the light beam incident on each of the first and second dielectric multilayer films is set to be different. The high refractive index and low refractive index substances of the first and second dielectric multilayer films were selected so that the following Brewster conditions (1) and (2) were different. For example, a combination of TiO 2 and SiO 2 as a high-refractive-index material is used for the alternate layers of one dielectric multilayer film, and TiO 2 is used as a high-refractive-index material for the alternate layers of the other dielectric multilayer film. Alternatively, a combination in which Al 2 O 3 is used as the low refractive index substance may be used.

【0009】各設計基準波長λ1、λ2(λ1≠λ2)、設
計基準入射角θに対しそれぞれの入射角θ1、θ2とす
る。それぞれにおけるブリュースタ条件は、次式(1)
(2)で表される。 λ1>λ2 λ1、θ1;nH1COSθH1=nL1COSθL1 (1) λ2、θ2;nH2COSθH2=nL2COSθL2 (2) θ1 ;透光性基体1から第1の誘電体多層膜と透光性基
体1との境界面に入射する角度 θ2 ;透光性基体2から第2の誘電体多層膜と透光性基
体2との境界面に入射する角度 nH1、nL1 ;設計基準波長λ1での第1の誘電体多層
膜の交互層における高屈折率層及び低屈折率層の屈折率 nH2、nL2 ;設計基準波長λ2での第2の誘電体多層
膜の交互層における高屈折率層及び低屈折率層の屈折率 θH1、θL1 ;設計基準波長λ1での第1の誘電体多層
膜の交互層において、高屈折率層及び低屈折率層の各層
から境界面に入射する角度 θH2、θL2 ;設計基準波長λ2での第2の誘電体多層
膜の交互層において、高屈折率層及び低屈折率層の各層
から境界面に入射する角度 図3は、上記誘電体多層膜に入射する光束が、高屈折率
層及び低屈折率層から境界面に入射する状態説明図であ
る。図中θi、θHi、θLiは、第1及び第2の誘電体多
層膜i=1、2に対応している。
The design reference wavelengths λ 1 and λ 2 (λ 1 ≠ λ 2) and the design reference incident angle θ are defined as incident angles θ 1 and θ 2 respectively. The Brewster condition in each case is given by the following equation (1).
It is represented by (2). λ1> λ2 λ1, θ1; nH1COSθH1 = nL1COSθL1 (1) λ2, θ2; nH2COSθH2 = nL2COSθL2 (2) θ1; Angles θ2; angles nH1, nL1 incident on the boundary surface between the second dielectric multilayer film and the light-transmitting substrate 2 from the light-transmitting substrate 2; alternation of the first dielectric multilayer film at the design reference wavelength λ1 NH2, nL2; refractive indices of high refractive index layer and low refractive index layer in alternate layers of second dielectric multilayer film at design reference wavelength λ2, θH1, θL1 The angles θH2, θL2 incident on the interface from each of the high refractive index layer and the low refractive index layer in the alternating layers of the first dielectric multilayer film at the design reference wavelength λ1; In the alternating layers of the dielectric multilayer film, light is incident on the interface from each of the high refractive index layer and the low refractive index layer. FIG. 3 is a diagram illustrating a state in which a light beam incident on the dielectric multilayer film is incident on a boundary surface from a high refractive index layer and a low refractive index layer. In the figure, θi, θHi, and θLi correspond to the first and second dielectric multilayer films i = 1 and 2, respectively.

【0010】本発明の誘電体多層膜の交互層に用いられ
る高屈折率層、低屈折率層及び調整層の膜厚は、それぞ
れλ/4、λ/4、λ/8である。ただし、実際に形成
される膜厚は、実験的に試行錯誤して決められ設計値か
ら多少ずれることもある。また、本発明の調整層はP偏
光成分の透過率に発生するリップルを低減するために設
けられている。大きなリップルがあると、偏光ビームス
プリッタとして使用できる波長範囲は制限されるので好
ましくない。
The thicknesses of the high refractive index layer, low refractive index layer, and adjustment layer used in the alternating layers of the dielectric multilayer film of the present invention are λ / 4, λ / 4, and λ / 8, respectively. However, the actually formed film thickness is determined experimentally through trial and error, and may slightly deviate from the designed value. Further, the adjustment layer of the present invention is provided to reduce a ripple generated in the transmittance of the P-polarized light component. If there is a large ripple, the wavelength range that can be used as the polarizing beam splitter is limited, which is not preferable.

【0011】本発明の実施例と比較するために、偏光ビ
ームスプリッタの構成は基本的に図1と同じで、第1及
び第2の誘電体多層膜の交互層に用いる高屈折率層Ti
2と低屈折率層SiO2との物質の組み合わせを同一と
した透過率特性をみる。図10は、その透過率特性の入
射角依存性である。
For comparison with the embodiment of the present invention, the configuration of the polarizing beam splitter is basically the same as that of FIG. 1, and the high refractive index layer Ti used for the alternating layers of the first and second dielectric multilayer films is used.
The transmittance characteristics in which the combination of the substance of O 2 and the low refractive index layer SiO 2 is the same are examined. FIG. 10 shows the incident angle dependence of the transmittance characteristics.

【0012】設計基準入射角45゜で、P/S偏光分離
比が高い帯域は160nmであるが、入射角が±2.5
゜ずれると、その帯域幅は90nmとなる。1種類のみ
の組み合わせで構成された誘電体多層膜を用いた偏光ビ
ームスプリッタは、S及びP偏光成分の分離可能な使用
波長域を広く得ることができる。しかしながら、誘電体
多層膜面への入射角がわずかにずれるだけで、所望の波
長帯域幅が非常に狭くなってしまう。
At a design standard incident angle of 45 °, a band having a high P / S polarization separation ratio is 160 nm, but the incident angle is ± 2.5.
If shifted, the bandwidth becomes 90 nm. A polarizing beam splitter using a dielectric multilayer film composed of only one type can obtain a wide usable wavelength range in which the S and P polarization components can be separated. However, even if the angle of incidence on the surface of the dielectric multilayer film is slightly shifted, the desired wavelength bandwidth becomes very narrow.

【0013】それに反し、本発明の実施例の使用帯域幅
は、光束が誘電体多層膜面に入射する角度が多少ずれて
もP偏光成分とS偏光成分との分離比を維持しつつ非常
に広くなる。また、偏光ビームスプリッタを組み込まれ
た光学系の配置の自由度も高くなる。
On the other hand, the working bandwidth of the embodiment of the present invention is very high while maintaining the separation ratio between the P-polarized component and the S-polarized component even if the angle of incidence of the light beam on the dielectric multilayer film surface is slightly shifted. Become wider. Further, the degree of freedom in the arrangement of the optical system incorporating the polarizing beam splitter is increased.

【0014】次に、本発明の偏光ビームスプリッタの誘
電体多層膜の構成法について説明する。図1は、本発明
の第1及び第2の誘電体多層膜3、4のそれぞれが、各
透光性基体であるプリズム1上に形成され、その各々を
接着層5を介して接合されている構成である。
Next, a method of forming a dielectric multilayer film of the polarizing beam splitter of the present invention will be described. FIG. 1 shows that first and second dielectric multilayer films 3 and 4 of the present invention are formed on a prism 1 which is a translucent substrate, and each of them is bonded via an adhesive layer 5. Configuration.

【0015】図8は、透光性基体1に第1の誘電体多層
膜と第2の誘電体多層膜とを連続して形成する。さら
に、その上に透光性基体12を接着する構成である。図
9は、透光性基体が平板ガラス1の両面上に誘電体多層
膜を施し、ガラスと同程度の屈折率を持つ液体媒質6中
に浸した構成にしても同様な性能が得られる。
FIG. 8 shows that a first dielectric multilayer film and a second dielectric multilayer film are continuously formed on a transparent substrate 1. Further, the light-transmissive substrate 12 is bonded thereon. In FIG. 9, the same performance can be obtained even when the transparent substrate is formed by applying a dielectric multilayer film on both surfaces of the flat glass 1 and immersing it in a liquid medium 6 having a refractive index similar to that of glass.

【0016】[0016]

【実施例】本発明の偏光ビームスプリッタの第1の実施
例について説明する。図1は、調整層1Cと第1の誘電
体多層膜3の交互層13とが積層されたプリズム1と調
整層2Cと第2の誘電体多層膜4の交互層23とが積層
されているプリズム2とが光学接着剤5で接合されてい
る偏光ビームスプリッタの構成である。プリズム1及び
プリズム2は、屈折率nSが1.84である。また、光
学接着剤の屈折率nb=1.52である。図には、光束
が45°で入射させた時の反射光Rと透過光Tとを記載
してある。透過光Tには、S偏光成分TSとP偏光成分
TPとがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the polarizing beam splitter according to the present invention will be described. FIG. 1 shows a prism 1 in which an adjustment layer 1C and an alternating layer 13 of a first dielectric multilayer film 3 are stacked, and an adjustment layer 2C and an alternating layer 23 of a second dielectric multilayer film 4 stacked. This is a configuration of a polarization beam splitter in which a prism 2 and an optical adhesive 5 are joined. The prisms 1 and 2 have a refractive index nS of 1.84. The refractive index nb of the optical adhesive is 1.52. The drawing shows the reflected light R and the transmitted light T when the light beam is incident at 45 °. The transmitted light T has an S-polarized component TS and a P-polarized component TP.

【0017】第1の誘電体多層膜の交互層13は、設計
基準波長λ1=680nmで、高屈折率物質nH1=2.3
8のTiO211と低屈折率物質nL1=1.65のAl2
312とが光学的膜厚λ1/4で構成されている。第2
の誘電体多層膜の交互層23は、設計基準波長λ2=4
20nmで高屈折率物質nH2=2.38のTiO221
と低屈折率物質nL2=1.47のSiO222とがそれ
ぞれ光学的膜厚λ2/4で構成されている。また第1及
び第2の誘電体多層膜の各交互層とプリズム1及びプリ
ズム2との間には、それぞれ膜厚λ1/8、λ2/8の調
整層が設けられている。
The alternating layer 13 of the first dielectric multilayer film has a design reference wavelength λ1 = 680 nm and a high refractive index substance nH1 = 2.3.
8 of TiO 2 11 and low refractive index substance nL1 = 1.65 of Al 2
O 3 12 has an optical thickness of λ1 / 4. Second
The alternate layer 23 of the dielectric multilayer film of the design reference wavelength λ2 = 4
TiO 2 21 with high refractive index material nH 2 = 2.38 at 20 nm
And the SiO 2 22 having a low refractive index material nL2 = 1.47 is constituted by an optical film thickness .lambda.2 / 4, respectively. Adjustment layers having a film thickness of λ1 / 8 and λ2 / 8 are provided between the alternating layers of the first and second dielectric multilayer films and the prisms 1 and 2, respectively.

【0018】光束が設計基準入射角45゜から入射角が
±2.5゜ずれた場合を考える。高角度側に対応する
(使用波長域では短波長側に相当する)第1の誘電体多
層膜の交互層13に用いている高屈折率物質11及び低
屈折率物質12は、光束が透光性基体1から透光性基体
1と第1の誘電体多層膜との境界面に入射する角度θ1=
47.5゜でブリュースター条件(1)を満足するよう
に選択する。本実施例では、第1の誘電体多層膜の交互
層の物質組み合わせとして、高屈折率層11にTi
2、低屈折率層12にAl23を選択した。
Consider a case where the light beam has an incident angle deviated by ± 2.5 ° from a design reference incident angle of 45 °. The high-refractive-index material 11 and the low-refractive-index material 12 used in the alternating layers 13 of the first dielectric multilayer film corresponding to the high angle side (corresponding to the short wavelength side in the used wavelength range) transmit light. Θ1 from the transparent substrate 1 to the interface between the light-transmitting substrate 1 and the first dielectric multilayer film
47.5 ° so as to satisfy the Brewster condition (1). In this embodiment, as the material combination of the alternating layers of the first dielectric multilayer film, Ti
O 2 and Al 2 O 3 were selected for the low refractive index layer 12.

【0019】また低角度側に対応する(使用波長域で長
波長側に相当する)第2の誘電体多層膜の交互層23に
用いている高屈折率物質21及び低屈折率物質22は、
光束が透光性基体2から透光性基体2と第2の誘電体多
層膜との境界面に入射する角度θ2=42.5゜でブリュ
ースター条件(2)を満足するように選択する。本実施
例では、第2の誘電体多層膜の交互層の物質組み合わせ
として、高屈折率層21にTiO2、低屈折率層22に
SiO2を選択した。
The high refractive index substance 21 and the low refractive index substance 22 used for the alternating layers 23 of the second dielectric multilayer film corresponding to the low angle side (corresponding to the long wavelength side in the used wavelength region)
The angle is selected so that the Brewster condition (2) is satisfied at an angle θ2 = 42.5 ° at which a light beam enters the interface between the light-transmitting substrate 2 and the second dielectric multilayer film from the light-transmitting substrate 2. In this embodiment, as the substance a combination of alternating layers of the second dielectric multilayer film, TiO 2 in the high refractive index layer 21, was chosen SiO 2 for the low refractive index layer 22.

【0020】図4は、第1実施例の誘電体多層膜構成の
P及びS偏光成分の透過率特性Tp、TS及び入射角4
2.5゜、45゜、47.5゜のそれぞれの透過率特性
である。本発明の第1実施例の誘電体多層膜構成を有す
る偏光ビームスプリッタのP及びS偏光成分の透過率の
入射角依存性について図10の比較例と比較する。
FIG. 4 shows the transmittance characteristics Tp and TS of the P and S polarization components of the dielectric multilayer structure of the first embodiment and the incident angle 4.
These are transmittance characteristics of 2.5 °, 45 °, and 47.5 °. The dependence of the transmittance of the P and S polarization components of the polarizing beam splitter having the dielectric multilayer structure of the first embodiment of the present invention on the incident angle will be compared with the comparative example of FIG.

【0021】比較例の多層膜構成は、波長範囲が480
nmから550nmにおいて、入射角を設計基準角度か
ら数度ずれると帯域幅Xが70nmとなり、使用帯域は
非常に狭くなってしまう。それに対し、本発明の第1実
施例は、波長範囲460nmから620nmにわたり、
高い偏光分離(TS/TP)0.1%以下を示している。
設計基準入射角から±2.5゜ずれても帯域幅Xは、1
60nmと広い帯域を維持している。
The multilayer structure of the comparative example has a wavelength range of 480.
When the incident angle deviates from the design reference angle by several degrees from 550 nm to 550 nm, the bandwidth X becomes 70 nm, and the used band becomes very narrow. In contrast, the first embodiment of the present invention covers a wavelength range of 460 nm to 620 nm,
It shows a high polarization separation (TS / TP) of 0.1% or less.
The bandwidth X is 1 even if it deviates from the design standard incidence angle by ± 2.5 °.
A wide band of 60 nm is maintained.

【0022】図5は、本発明の実施例1の、長波長側λ
=620nmにおけるP偏光成分の透過率の入射角依存
性について示したものである。本実施例は、第1の誘電
体多層膜の交互層、第2の誘電体多層膜の交互層それぞ
れの組み合わせが同一な種類の物質TiO2とSiO2
用いた図10の比較例に比べ、入射角依存性を考慮に入
れても、透過率特性の帯域幅を大幅に広げることができ
た。
FIG. 5 is a diagram showing the wavelength λ on the long wavelength side according to the first embodiment of the present invention.
4 shows the incident angle dependence of the transmittance of the P-polarized light component at 620 nm. The present embodiment is different from the comparative example of FIG. 10 in which the combination of each of the alternating layers of the first dielectric multilayer film and the alternating layers of the second dielectric multilayer film uses the same kind of substances TiO 2 and SiO 2 . The bandwidth of the transmittance characteristics could be greatly expanded even if the incident angle dependence was taken into consideration.

【0023】これは長波長側のP偏光透過率の落ち込み
の原因となっている第1の誘電体多層膜の交互層が4
7.5゜でブリュースター条件(1)を満足し、短波長
側の落ち込みの原因となっている第2の誘電体多層膜の
交互層が42.5゜でブリュースター条件(2)を満足
するようにそれぞれの誘電体多層膜の膜物質を選択して
いるからである。
This is because the alternating layers of the first dielectric multilayer film, which cause the drop in the P-polarized light transmittance on the long wavelength side,
The Brewster condition (1) is satisfied at 7.5 °, and the Brewster condition (2) is satisfied at 42.5 ° for the alternate layer of the second dielectric multilayer film which causes a decrease in the short wavelength side. This is because the film material of each dielectric multilayer film is selected so that

【0024】このように、本発明の構成の偏光ビームス
プリッタを用いることにより、従来例より大幅に使用波
長帯域が広げることができ、光の入射角に対し自由度の
高い偏光ビームスプリッタが得ることができた。次に本
発明の第2の実施例について述べる。
As described above, by using the polarizing beam splitter having the configuration of the present invention, it is possible to greatly widen the wavelength band to be used as compared with the conventional example, and to obtain a polarizing beam splitter having a high degree of freedom with respect to the incident angle of light. Was completed. Next, a second embodiment of the present invention will be described.

【0025】第2の実施例の誘電体多層膜構成は、第1
の実施例と基本的には同じであり、誘電体多層膜に用い
る物質の組み合わせが異なる。その構成は、調整層1C
と第1の誘電体多層膜3の交互層13とが積層された透
光性基体1と調整層2Cと第2の誘電体多層膜4の交互
層23とが積層されている透光性基体2とが光学的接着
剤5で接合されている偏光ビームスプリッタの構成であ
る。透光性基体1及び透光性基体2は、屈折率nSが
1.52である。
The structure of the dielectric multilayer film of the second embodiment is the same as that of the first embodiment.
This embodiment is basically the same as the above-described embodiment, except that the combination of substances used for the dielectric multilayer film is different. The configuration is the adjustment layer 1C
And a translucent substrate in which the alternating layer 13 of the first dielectric multilayer film 3 is laminated, and a translucent substrate in which the adjusting layer 2C and the alternating layer 23 of the second dielectric multilayer film 4 are laminated. 2 is a configuration of the polarization beam splitter joined by the optical adhesive 5. The translucent substrate 1 and the translucent substrate 2 have a refractive index nS of 1.52.

【0026】第1の誘電体多層膜の交互層は、設計基準
波長λ1=700nmで、高屈折率物質nH1=2.38の
TiO2 と低屈折率物質n1=1.47のSiO2 とが光
学的膜厚λ1/4で構成されている。第2の誘電体多層
膜の交互層は、設計基準波長λ2=430nmで高屈折
率物質nH2=2.02のZrO2と低屈折率物質nL2=
1.37のMgF2とがそれぞれ光学的膜厚λ2/4で構
成されている。また第1及び第2の誘電体多層膜の各交
互層とプリズム1及び2との間には、それぞれ膜厚λ1
/8、λ2/8の調整層が設けられている。
The alternating layers of the first dielectric multilayer film is a design wavelength .lambda.1 = 700 nm, is a TiO 2 of high refractive index material NH1 = 2.38 and SiO 2 with a low refractive index material n1 = 1.47 It has an optical thickness of λ1 / 4. The alternate layers of the second dielectric multilayer film are composed of ZrO 2 having a high refractive index material nH2 = 2.02 and a low refractive index material nL2 = at a design reference wavelength λ2 = 430 nm.
1.37 MgF 2 are each formed with an optical film thickness of λ2 / 4. Further, between each of the alternating layers of the first and second dielectric multilayer films and the prisms 1 and 2, a film thickness λ1 is provided.
/ 8 and λ2 / 8 adjustment layers are provided.

【0027】光束が設計基準入射角52゜近傍で入射角
±4゜ずれた場合、高角度側に対応する(使用波長域で
は短波長側に相当する)第1の誘電体多層膜の交互層に
用いている高屈折率物質及び低屈折率物質は、光束の膜
面法線に対する入射角56゜でブリュースター条件
(1)を満足するように選択する。本実施例の第1の誘
電体多層膜の物質組み合わせは、高屈折率層11にTi
2、低屈折率層12にSiO2を選択した。
When the light flux is shifted by ± 4 ° in the vicinity of the design reference incident angle of 52 °, the alternating layers of the first dielectric multilayer film corresponding to the higher angle side (corresponding to the shorter wavelength side in the used wavelength range). Are selected so as to satisfy the Brewster condition (1) at an incident angle of 56 ° with respect to the normal to the film surface of the light beam. The material combination of the first dielectric multilayer film of the present embodiment is such that the high refractive index layer 11 is made of Ti.
O 2 and SiO 2 were selected for the low refractive index layer 12.

【0028】また低角度側に対応する(使用波長域で長
波長側に相当する)第2の誘電体多層膜の交互層に用い
ている高屈折率物質及び低屈折率物質は、光束が入射角
48゜でブリュースター条件(2)を満足するように選
択する。本実施例の第2の誘電体多層膜の物質組み合わ
せは、高屈折率層21にZrO2、低屈折率層22にM
gF2を選択した。
The high-refractive index material and the low-refractive index material used for the alternating layers of the second dielectric multilayer film corresponding to the low angle side (corresponding to the long wavelength side in the used wavelength region) receive a light beam. An angle of 48 ° is selected so as to satisfy the Brewster condition (2). The material combination of the second dielectric multilayer film of the present embodiment is such that ZrO 2 is used for the high refractive index layer 21 and M
the gF 2 was selected.

【0029】図6は、誘電体多層膜構成の第1実施例の
P及びS偏光成分の透過率特性及び入射角48゜、52
゜、56゜のそれぞれの透過率特性である。本発明の第
2実施例の誘電体多層膜構成を有する偏光ビームスプリ
ッタのP及びS偏光成分の透過率の入射角依存性につい
て図10の比較例と比較する。
FIG. 6 shows the transmittance characteristics of P and S polarized light components and the incident angles 48 ° and 52 ° of the first embodiment of the dielectric multilayer structure.
{, 56} are transmittance characteristics. The incident angle dependence of the transmittance of the P and S polarization components of the polarization beam splitter having the dielectric multilayer structure of the second embodiment of the present invention will be compared with the comparative example of FIG.

【0030】比較例の多層膜構成は、波長範囲が480
nmから550nmにおいて、入射角を設計基準角度か
ら数度ずれると帯域幅が70nmとなり、使用帯域は非
常に狭くなってしまう。それに対し、本発明の第2実施
例は、波長範囲460nmから620nmにわたり、S
偏光成分とP偏光成分との高い偏光分離を示している。
設計基準入射角から±4゜ずれても帯域幅Xは、170
nmと広い帯域を維持している。
The multilayer structure of the comparative example has a wavelength range of 480.
When the incident angle deviates from the design reference angle by several degrees from 550 nm to 550 nm, the bandwidth becomes 70 nm, and the used band becomes very narrow. In contrast, the second embodiment of the present invention covers a wavelength range of 460 nm to 620 nm,
This shows high polarization separation between the polarization component and the P polarization component.
Even if it deviates from the design standard incident angle by ± 4 °, the bandwidth X is 170
It maintains a wide band of nm.

【0031】このように、本発明の実施例は、第1の誘
電体多層膜の交互層と第2の誘電体多層膜の交互層とが
同一な種類の物質組み合わせであるTiO2とSiO2
を用いた比較例に比べ、入射角依存性を考慮に入れて
も、透過率特性の帯域幅を大幅に広げることができた。
As described above, according to the embodiment of the present invention, the alternating layers of the first dielectric multilayer film and the alternating layers of the second dielectric multilayer film are of the same type of material combination, ie, TiO 2 and SiO 2. As compared with the comparative example using (1) and (2), the bandwidth of the transmittance characteristics could be greatly expanded even when the incident angle dependency was taken into consideration.

【0032】これは長波長側のP偏光透過率の落ち込み
の原因となっている第1の誘電体多層膜の交互層では5
6゜でブリュースター条件(1)を満足し、短波長側の
落ち込みの原因となっている第2の誘電体多層膜の交互
層では48゜でブリュースター条件(2)を満足するよ
う誘電体多層膜の膜物質を選択しているからである。
This is due to the fact that the P-polarized light transmittance on the long wavelength side is reduced by 5% in the alternate layers of the first dielectric multilayer film.
6 ° satisfies the Brewster condition (1), and the alternate dielectric layer of the second dielectric multilayer film which causes the short-wavelength drop has a dielectric material which satisfies the Brewster condition (2) at 48 °. This is because the film material of the multilayer film is selected.

【0033】このように、第1の誘電体多層膜と第2の
誘電体多層膜それぞれの設計基準波長や低屈折率物質と
高屈折率物質との組み合わせを異ならせることにより、
入射角に対し自由度が高く、かつ偏光分離比S/Pが高
い、高帯域な偏光ビームスプリッタを得ることが可能で
ある。
As described above, by making the design reference wavelength of each of the first dielectric multilayer film and the second dielectric multilayer film different and the combination of the low refractive index material and the high refractive index material,
It is possible to obtain a high-bandwidth polarization beam splitter having a high degree of freedom with respect to the incident angle and a high polarization separation ratio S / P.

【0034】図7及び図8は、第3の実施例である。本
実施例は、本発明の偏光ビームスプリッタの配置に関す
る変形例である。透光性基体1上に第1の誘電体多層膜
3と第2の誘電体多層膜4とが連続して積層し、透光性
基体2を接着層5を介して構成されている。
FIGS. 7 and 8 show a third embodiment. The present embodiment is a modified example regarding the arrangement of the polarization beam splitter of the present invention. A first dielectric multilayer film 3 and a second dielectric multilayer film 4 are continuously laminated on a light-transmitting substrate 1, and the light-transmitting substrate 2 is formed via an adhesive layer 5.

【0035】この構成によれば、低屈折率層及び高屈折
率層の成膜が、1バッチですむ利点がある。図9は、本
発明の偏光ビームスプリッタの第4の実施例である。本
実施例の偏光ビームスプリッタは、透光性基体に透明平
板基体1を用い、平板基体とほぼ同一な屈折率を有する
液体媒質6で満たされた第1及び第2の誘電体多層膜と
から構成されている。その第1の誘電体多層膜3と第2
の誘電体多層膜4は、透明平板基体の両側に配置されて
いる。液体媒質としては、例えばエチレングリコール
(屈折率1.43)、ベンゼン(屈折率1.51)など
がある。
According to this configuration, there is an advantage that the formation of the low refractive index layer and the high refractive index layer can be performed in one batch. FIG. 9 shows a fourth embodiment of the polarization beam splitter according to the present invention. The polarizing beam splitter of this embodiment uses a transparent flat substrate 1 as a light-transmitting substrate, and includes a first and a second dielectric multilayer film filled with a liquid medium 6 having substantially the same refractive index as the flat substrate. It is configured. The first dielectric multilayer film 3 and the second
Are disposed on both sides of the transparent flat substrate. Examples of the liquid medium include ethylene glycol (refractive index: 1.43) and benzene (refractive index: 1.51).

【0036】一般に、透光性基体にプリズムを用いた場
合、プリズム内の材料不均一により複屈折を生ずる。基
体中を光束が通過する際、偏光状態が変化し直線偏光特
性が悪くなることが知られている。この様な場合、液体
媒質を用いた構成により、透光性基体の複屈折の問題を
避けることができる。
In general, when a prism is used as a light-transmitting substrate, birefringence occurs due to non-uniformity of the material in the prism. It is known that when a light beam passes through a substrate, the state of polarization changes and linear polarization characteristics deteriorate. In such a case, the problem of birefringence of the light-transmitting substrate can be avoided by the structure using the liquid medium.

【0037】第3実施例のような構成配置を有する偏光
ビームスプリッタにより、誘電体多層膜層の成膜が1バ
ッチで済み、生産性の向上が期待できる。第4実施例の
構成配置を有する偏光ビームスプリッタは、高価なプリ
ズムを使用しなくて済むためコスト低減などが期待でき
る。
With the polarization beam splitter having the configuration and arrangement as in the third embodiment, the formation of the dielectric multilayer film is completed in one batch, and an improvement in productivity can be expected. In the polarization beam splitter having the configuration and arrangement of the fourth embodiment, cost reduction can be expected because an expensive prism is not required.

【0038】[0038]

【発明の効果】以上のように本発明の偏光ビームスプリ
ッタによれば、低屈折率物質と高屈折率物質との組み合
わせや設計基準波長が異なる第1及び第2の誘電体多層
膜とを設けた構成を用いることにより、入射角に対し自
由度が高く、かつ、広い波長域でS偏光成分とP偏光成
分との高い分離または合成が可能となる。
As described above, according to the polarizing beam splitter of the present invention, the combination of the low refractive index material and the high refractive index material and the first and second dielectric multilayer films having different design reference wavelengths are provided. By using the above configuration, the degree of freedom with respect to the incident angle is high, and the S-polarized component and the P-polarized component can be separated or synthesized in a wide wavelength range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の偏光ビームスプリッタの構成を示す
概略断面図。
FIG. 1 is a schematic sectional view showing a configuration of a polarization beam splitter of the present invention.

【図2】 本発明の第1及び第2の誘電体多層膜の構成
断面図。
FIG. 2 is a configuration sectional view of first and second dielectric multilayer films of the present invention.

【図3】 本発明の誘電体多層膜構成に入射する光束の
状態説明図。
FIG. 3 is an explanatory diagram of a state of a light beam incident on a dielectric multilayer structure of the present invention.

【図4】 本発明第1実施例の誘電体多層膜構成の透過
率特性図。
FIG. 4 is a transmittance characteristic diagram of a dielectric multilayer structure according to the first embodiment of the present invention.

【図5】 本発明第1実施例の誘電体多層膜構成の透過
率特性の入射角依存性。
FIG. 5 is a graph showing the incident angle dependence of the transmittance characteristic of the dielectric multilayer structure according to the first embodiment of the present invention.

【図6】 本発明第2実施例の誘電体多層膜構成のP偏
光成分の透過率特性図。
FIG. 6 is a transmittance characteristic diagram of a P-polarized light component of a dielectric multilayer structure according to a second embodiment of the present invention.

【図7】 本発明第3実施例の偏光ビームスプリッタの
構成断面図。
FIG. 7 is a configuration sectional view of a polarization beam splitter according to a third embodiment of the present invention.

【図8】 本発明第3実施例の第1及び第2の誘電体多
層膜の構成断面図。
FIG. 8 is a sectional view showing the configuration of first and second dielectric multilayer films according to a third embodiment of the present invention.

【図9】 本発明第4実施例の偏光ビームスプリッタの
構成断面図。
FIG. 9 is a configuration sectional view of a polarization beam splitter according to a fourth embodiment of the present invention.

【図10】 従来の偏光ビームスプリッタの構成に基づ
く透過率特性比較図。
FIG. 10 is a diagram illustrating a comparison of transmittance characteristics based on the configuration of a conventional polarization beam splitter.

【符号の説明】[Explanation of symbols]

1 第1の透光性基体(プリズム) 2 第2の透光性基体(プリズム) 3 第1の誘電体多層膜 4 第2の誘電体多層膜 5 接着層 6 液体媒質 11 光学的膜厚がλ1/4の高屈折率物質 12 光学的膜厚がλ1/4の低屈折率物質 13 光学的膜厚がそれぞれλ1/4の高屈折率物質と
低屈折率物質とからなる交互層 1C 光学的膜厚がλ1/8の調整層 21 光学的膜厚がλ2/4の高屈折率物質 22 光学的膜厚がλ2/4の低屈折率物質 23 光学的膜厚がそれぞれλ2/4の高屈折率物質と
低屈折率物質とからなる交互層 2C 光学的膜厚がλ2/8の調整層
REFERENCE SIGNS LIST 1 first light-transmitting substrate (prism) 2 second light-transmitting substrate (prism) 3 first dielectric multilayer film 4 second dielectric multilayer film 5 adhesive layer 6 liquid medium 11 optical film thickness High refractive index substance of λ1 / 4 12 Low refractive index substance of λ1 / 4 optical thickness 13 Alternate layer 1C composed of high refractive index substance and low refractive index substance of optical thickness λ1 / 4 respectively Adjusting layer having a thickness of λ1 / 8 21 High refractive index substance having an optical thickness of λ2 / 4 22 Low refractive index substance having an optical thickness of λ2 / 4 23 High refraction having an optical thickness of λ2 / 4 Layer composed of a high-refractive-index substance and a low-refractive-index substance 2C An adjustment layer having an optical film thickness of λ2 / 8

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月17日(2001.4.1
7)
[Submission date] April 17, 2001 (2001.4.1
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明では、透光性基体上1、2に形
成された誘電体多層膜3、4を有する偏光ビームスプリ
ッタにおいて、誘電体多層膜3、4は、λ1を設計基準
波長とする第1の高屈折率物質と第1の低屈折率物質との
交互層により構成される第1の誘電体多層膜3と、λ1
と異なる波長のλ2を基準波長とする第2の高屈折率物
質と第2の低屈折率物質との交互層により構成される第
2の誘電体多層膜4とを含み、第1の誘電体多層膜3の
交互層と第2の誘電体多層膜4の交互層とが、互いに異
なる種類の物質の組み合わせにより構成されていること
とした。請求項2記載の発明では、請求項1記載の偏光
ビームスプリッタにおいて、第1の誘電体多層膜3の交
互層は、光学的膜厚がλ1/4となる第1の高屈折率物
質と光学的膜厚がλ1/4となる第1の低屈折率物質と
で構成された2層を基本周期としてn周期(nは任意の
整数)積層されており、第2の誘電体多層膜の交互層
は、光学的膜厚がλ2/4となる第2の高屈折率物質と
光学的膜厚がλ2/4となる第2の低屈折率物質とで構
成された2層を基本周期としてn周期(nは任意の整
数)積層されていることとした。請求項3記載の発明で
は、請求項1記載の偏光ビームスプリッタにおいて、第
1の高屈折率物質、第1の低屈折率物質、第2の高屈折
率物質、および第2の低屈折率物質は、少なくとも3種
類以上の物質の組み合わせにより構成されていることと
した。請求項4記載の発明では、請求項3記載の偏光ビ
ームスプリッタにおいて、第1の高屈折率物質と第1の
低屈折率物質との一方は第1の物質で構成され、他方は
第2の物質で構成され、第2の高屈折率物質と第2の低
屈折率物質との一方は第1の物質で構成され、他方は第
3の物質で構成され、第1の物質、第2の物質、および
第3の物質は互いに異なる種類の物質であることを特徴
とする偏光ビームスプリッタ。請求項5記載の発明で
は、請求項3記載の偏光ビームスプリッタにおいて、第
1の高屈折率物質と第1の低屈折率物質との一方は第1
の物質で構成され、他方は第2の物質で構成され、第2
の高屈折率物質と第2の低屈折率物質との一方は第3の
物質で構成され、他方は第4の物質で構成され、第1の
物質、第2の物質、第3の物質、および第4の物質は互
いに異なる種類の物質であることを特徴とする偏光ビー
ムスプリッタ。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, there is provided a polarizing beam splitter having dielectric multilayer films 3 and 4 formed on light-transmitting substrates 1 and 2, respectively. A first dielectric multilayer film 3 composed of alternating layers of a first high refractive index material and a first low refractive index material having λ1 as a design reference wavelength; λ1
A second dielectric multilayer film 4 composed of alternating layers of a second high-refractive-index substance and a second low-refractive-index substance having a reference wavelength of λ2 different from the first dielectric substance. The alternate layers of the multilayer film 3 and the alternate layers of the second dielectric multilayer film 4 are made of a combination of different kinds of substances. According to a second aspect of the present invention, in the polarization beam splitter according to the first aspect, the alternating layers of the first dielectric multilayer film 3 are formed of a first high refractive index material having an optical film thickness of λ1 / 4 and an optical layer. N layers (n is an arbitrary integer) with two layers composed of a first low-refractive-index substance having a target film thickness of λ1 / 4 as a basic period, and the second dielectric multilayer film is alternately formed. The layer has a basic period of two layers composed of a second high refractive index material having an optical thickness of λ2 / 4 and a second low refractive index material having an optical thickness of λ2 / 4. Period (n is an arbitrary integer) is assumed to be laminated. According to a third aspect of the present invention, in the polarization beam splitter of the first aspect, the first high refractive index material, the first low refractive index material, the second high refractive index material, and the second low refractive index material. Is composed of a combination of at least three or more types of substances. According to a fourth aspect of the present invention, in the polarization beam splitter according to the third aspect, one of the first high refractive index material and the first low refractive index material is formed of the first material, and the other is formed of the second material. One of the second high-refractive-index substance and the second low-refractive-index substance is composed of the first substance, and the other is composed of the third substance, and is composed of the first substance and the second substance. The polarizing beam splitter, wherein the substance and the third substance are different kinds of substances. According to a fifth aspect of the present invention, in the polarization beam splitter according to the third aspect, one of the first high refractive index material and the first low refractive index material is the first high refractive index material.
And the other is composed of a second substance, the second
One of the high-refractive-index substance and the second low-refractive-index substance is composed of a third substance, and the other is composed of a fourth substance. The first substance, the second substance, the third substance, And the fourth substance is a different kind of substance.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】各設計基準波長λ1、λ2(λ1≠λ2)、設
計基準入射角θに対しそれぞれの入射角θ1、θ2とす
る。それぞれにおけるブリュースタ条件は、次式(1)
(2)で表される。 λ1>λ2 λ1、θ1:nH1/COSθH1=nL1/COSθL1 (1) λ2、θ2:nH2/COSθH2=nL2/COSθL2 (2) θ1 :透光性基体1から第1の誘電体多層膜と透光性基
体1との境界面に入射する角度 θ2 :透光性基体2から第2の誘電体多層膜と透光性基
体2との境界面に入射する角度 nH1、nL1 :設計基準波長λ1での第1の誘電体多層
膜の交互層における高屈折率層及び低屈折率層の屈折率 nH2、nL2 :設計基準波長λ2での第2の誘電体多層
膜の交互層における高屈折率層及び低屈折率層の屈折率 θH1、θL1 :設計基準波長λ1での第1の誘電体多層
膜の交互層において、高屈折率層及び低屈折率層の各層
から境界面に入射する角度 θH2、θL2 :設計基準波長λ2での第2の誘電体多層
膜の交互層において、高屈折率層及び低屈折率層の各層
から境界面に入射する角度 図3は、上記誘電体多層膜に入射する光束が、高屈折率
層及び低屈折率層から境界面に入射する状態説明図であ
る。図中θi、θHi、θLiは、第1及び第2の誘電体多
層膜i=1、2に対応している。
The design reference wavelengths λ 1 and λ 2 (λ 1 ≠ λ 2) and the design reference incident angle θ are defined as incident angles θ 1 and θ 2 respectively. The Brewster condition in each case is given by the following equation (1).
It is represented by (2). λ1> λ2 λ1, θ1: nH1 / COSθH1 = nL1 / COSθL1 (1) λ2, θ2: nH2 / COSθH2 = nL2 / COSθL2 (2) θ1: From the light-transmitting substrate 1 to the first dielectric multilayer film and light-transmitting Angle θ2 incident on the boundary surface with the base 1 θ2: Angle incident on the boundary surface between the second dielectric multilayer film and the light-transmitting substrate 2 from the light-transmitting substrate 2 nH1, nL1: The angle at the design reference wavelength λ1 The refractive indices nH2 and nL2 of the high refractive index layer and the low refractive index layer in the alternating layers of the first dielectric multilayer film nH2, nL2: the high refractive index layers and the low refractive index in the alternating layers of the second dielectric multilayer film at the design reference wavelength λ2 Refractive indices θH1 and θL1: Angles of incidence of the high refractive index layer and low refractive index layer on each of the alternating layers of the first dielectric multilayer film at the design reference wavelength λ1 from the respective layers θH2 and θL2: design In the alternate layers of the second dielectric multilayer film at the reference wavelength λ2, the interface between the high refractive index layer and the low refractive index layer FIG. 3 is a diagram illustrating a state in which a light beam incident on the dielectric multilayer film is incident on a boundary surface from a high refractive index layer and a low refractive index layer. In the figure, θi, θHi, and θLi correspond to the first and second dielectric multilayer films i = 1 and 2, respectively.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】本発明の誘電体多層膜の交互層に用いられ
る高屈折率層、低屈折率層及び調整層の膜厚は、それぞ
れλ/4、λ/4、λ/8が好ましい。ただし、実際に
形成される膜厚は、実験的に試行錯誤して決められ設計
値から多少ずれることもある。また、調整層はP偏光成
分の透過率に発生するリップルを低減するために設けら
れている。大きなリップルがあると、偏光ビームスプリ
ッタとして使用できる波長範囲は制限されるので好まし
くない。
The thicknesses of the high refractive index layer, low refractive index layer, and adjustment layer used in the alternating layers of the dielectric multilayer film of the present invention are preferably λ / 4, λ / 4, and λ / 8, respectively. However, the actually formed film thickness is determined experimentally through trial and error, and may slightly deviate from the designed value. The adjustment layer is provided to reduce a ripple generated in the transmittance of the P-polarized light component. If there is a large ripple, the wavelength range that can be used as the polarizing beam splitter is limited, which is not preferable.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】図8は、透光性基体1に第1の誘電体多層
膜と第2の誘電体多層膜とを連続して形成する。さら
に、その上に透光性基体12を接着する構成である。図
9は、透光性基体が平板ガラス2の両面上に誘電体多層
膜を施し、ガラスと同程度の屈折率を持つ液体媒質6中
に浸した構成にしても同様な性能が得られる。
FIG. 8 shows that a first dielectric multilayer film and a second dielectric multilayer film are continuously formed on a transparent substrate 1. Further, the light-transmissive substrate 12 is bonded thereon. In FIG. 9, the same performance can be obtained even when the transparent substrate is formed by applying a dielectric multilayer film on both surfaces of the flat glass 2 and immersing it in a liquid medium 6 having a refractive index similar to that of the glass.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】図6は、誘電体多層膜構成の第2実施例の
P及びS偏光成分の透過率特性及び入射角48゜、52
゜、56゜のそれぞれの透過率特性である。本発明の第
2実施例の誘電体多層膜構成を有する偏光ビームスプリ
ッタのP及びS偏光成分の透過率の入射角依存性につい
て図10の比較例と比較する。
FIG. 6 shows transmittance characteristics of P and S polarization components and incident angles of 48 ° and 52 ° in the second embodiment of the dielectric multilayer structure.
{, 56} are transmittance characteristics. The incident angle dependence of the transmittance of the P and S polarization components of the polarization beam splitter having the dielectric multilayer structure of the second embodiment of the present invention will be compared with the comparative example of FIG.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】この構成によれば、低屈折率層及び高屈折
率層の成膜が、1バッチですむ利点がある。図9は、本
発明の偏光ビームスプリッタの第4の実施例である。本
実施例の偏光ビームスプリッタは、透光性基体に透明平
板基体2を用い、平板基体とほぼ同一な屈折率を有する
液体媒質6で満たされた第1及び第2の誘電体多層膜と
から構成されている。その第1の誘電体多層膜3と第2
の誘電体多層膜4は、透明平板基体の両側に配置されて
いる。液体媒質としては、例えばエチレングリコール
(屈折率1.43)、ベンゼン(屈折率1.51)など
がある。
According to this configuration, there is an advantage that the formation of the low refractive index layer and the high refractive index layer can be performed in one batch. FIG. 9 shows a fourth embodiment of the polarization beam splitter according to the present invention. The polarizing beam splitter of this embodiment uses a transparent flat base 2 as a light-transmitting base, and includes a first and a second dielectric multilayer film filled with a liquid medium 6 having substantially the same refractive index as the flat base. It is configured. The first dielectric multilayer film 3 and the second
Are disposed on both sides of the transparent flat substrate. Examples of the liquid medium include ethylene glycol (refractive index: 1.43) and benzene (refractive index: 1.51).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性基体上に形成された誘電体多層膜
を有する偏光ビームスプリッタにおいて、 前記誘電体多層膜は2つの異なる設計基準波長λ1、λ2
を有する第1の誘電体多層膜と第2の誘電体多層膜とか
らなり、 第1及び第2の誘電体多層膜は、それぞれの基準波長λ
1、λ2において光学的膜厚λ1/4、λ2/4の高屈折率
物質と低屈折率物質とで構成された2層を基本周期とし
てn周期(nは任意の整数)積層した交互層と、前記交
互層の両側に形成された光学的膜厚λ1/8、λ2/8の
前記高屈折率物質または低屈折率物質のいずれか一方か
らなる薄膜調整層とを備え、 前記第1の誘電体多層膜の交互層と第2の誘電体多層膜
の交互層が、互いに異なる種類の物質の組み合わせによ
り構成されていることを特徴とする偏光ビームスプリッ
タ。
1. A polarizing beam splitter having a dielectric multilayer film formed on a transparent substrate, wherein the dielectric multilayer film has two different design reference wavelengths λ1, λ2.
A first dielectric multilayer film and a second dielectric multilayer film having the following formulae, wherein the first and second dielectric multilayer films have respective reference wavelengths λ
An alternating layer in which two layers composed of a high-refractive-index substance and a low-refractive-index substance having an optical thickness of λ1 / 4 and λ2 / 4 at 1 and λ2 are stacked for n periods (n is an arbitrary integer) as a basic period; A thin film adjusting layer formed of one of the high-refractive-index material and the low-refractive-index material having an optical thickness of λ1 / 8 or λ2 / 8 formed on both sides of the alternating layer; A polarizing beam splitter, wherein the alternating layers of the body multilayer film and the alternating layers of the second dielectric multilayer film are formed of a combination of different kinds of substances.
【請求項2】 前記第1の誘電体多層膜の交互層に高屈
折率物質TiO2と低屈折率物質SiO2、前記第2の誘
電体多層膜の交互層に高屈折率物質TiO2と低屈折率
物質Al23とを用いた組み合わせとしたことを特徴と
する請求項1記載の偏光ビームスプリッタ。
2. A high-refractive-index material TiO 2 and a low-refractive-index material SiO 2 in alternating layers of the first dielectric multilayer film, and a high-refractive-index material TiO 2 in alternating layers of the second dielectric multilayer film. 2. The polarization beam splitter according to claim 1, wherein the polarization beam splitter is a combination using a low refractive index material Al 2 O 3 .
【請求項3】 前記第1の誘電体多層膜の交互層に高屈
折率物質TiO2と低屈折率物質SiO2、前記第2の誘
電体多層膜の交互層に高屈折率物質ZrO2と低屈折率
物質MgF2とを用いた組み合わせとしたことを特徴と
する請求項1記載の偏光ビームスプリッタ。
3. A high-refractive-index material TiO 2 and a low-refractive-index material SiO 2 in alternating layers of the first dielectric multilayer film, and a high-refractive-index material ZrO 2 in alternating layers of the second dielectric multilayer film. 2. The polarization beam splitter according to claim 1, wherein the polarization beam splitter is a combination using a low refractive index material MgF2.
【請求項4】 前記第1及び第2の誘電体多層膜は、透
光性基体とほぼ同一な屈折率を有する液体媒質に満たさ
れていることを特徴とする請求項1記載の偏光ビームス
プリッタ。
4. The polarization beam splitter according to claim 1, wherein said first and second dielectric multilayer films are filled with a liquid medium having a refractive index substantially the same as that of the light-transmitting substrate. .
JP2001105342A 2001-04-04 2001-04-04 Polarizing beam splitter Pending JP2001350024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105342A JP2001350024A (en) 2001-04-04 2001-04-04 Polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105342A JP2001350024A (en) 2001-04-04 2001-04-04 Polarizing beam splitter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07062394A Division JP3584257B2 (en) 1994-02-07 1994-04-08 Polarizing beam splitter

Publications (1)

Publication Number Publication Date
JP2001350024A true JP2001350024A (en) 2001-12-21

Family

ID=18958049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105342A Pending JP2001350024A (en) 2001-04-04 2001-04-04 Polarizing beam splitter

Country Status (1)

Country Link
JP (1) JP2001350024A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791750B2 (en) 2002-09-26 2004-09-14 Minolta Co., Ltd. Polarization beam splitter
JP2006349972A (en) * 2005-06-16 2006-12-28 Asahi Kasei Corp Polarized light separating sheet and light emitting unit using the same
US7237899B2 (en) 2003-05-16 2007-07-03 3M Innovative Properties Company Highly efficient single panel and two panel projection engines
US7416307B2 (en) 2004-09-06 2008-08-26 Sony Corporation Optical apparatus and projection apparatus
JP2008293029A (en) * 2003-06-11 2008-12-04 Asml Holding Nv Ultraviolet polarization beam splitter with minimum apodization
JP2013526730A (en) * 2010-05-21 2013-06-24 スリーエム イノベイティブ プロパティズ カンパニー Color-reducing partially reflective multilayer optical film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791750B2 (en) 2002-09-26 2004-09-14 Minolta Co., Ltd. Polarization beam splitter
US7237899B2 (en) 2003-05-16 2007-07-03 3M Innovative Properties Company Highly efficient single panel and two panel projection engines
JP2008293029A (en) * 2003-06-11 2008-12-04 Asml Holding Nv Ultraviolet polarization beam splitter with minimum apodization
US7416307B2 (en) 2004-09-06 2008-08-26 Sony Corporation Optical apparatus and projection apparatus
JP2006349972A (en) * 2005-06-16 2006-12-28 Asahi Kasei Corp Polarized light separating sheet and light emitting unit using the same
JP2013526730A (en) * 2010-05-21 2013-06-24 スリーエム イノベイティブ プロパティズ カンパニー Color-reducing partially reflective multilayer optical film

Similar Documents

Publication Publication Date Title
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US20050249447A1 (en) Polarization element and optical device using polarization element
US7012747B2 (en) Polarizing beam splitter and polarizer using the same
US7961392B2 (en) Polarization beam splitter and polarization conversion element
JP4125114B2 (en) Optical element, optical modulation element, and image display device
JP3812527B2 (en) Polarizing beam splitter
JP3584257B2 (en) Polarizing beam splitter
JP2007206225A (en) Polarization conversion element
JP5209932B2 (en) Polarization beam splitter and polarization conversion element
JP2001350024A (en) Polarizing beam splitter
KR100687562B1 (en) Polarizing filter and polarized light irradiation apparatus using the same
JPH11211916A (en) Polarized beam splitter
JPH11101913A (en) Optical element
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2007212694A (en) Beam splitter
JP2006071754A (en) Polarized beam splitter and its manufacturing method
WO2007129375A1 (en) Optical device component
WO2011048875A1 (en) Plate-type broadband depolarizing beam splitter
JPH08110406A (en) Optical multilayered film
WO2020161950A1 (en) Polarization beam splitter and optical device
JP2001013308A (en) Prism type beam splitter
JP2001004840A (en) Polarizing beam splitter
JPH11142623A (en) Prism type beam splitter
JP2004045853A (en) Optical multi-layered film and optical element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622