JP2002022918A - Wavelength division filter and method for manufacturing the same - Google Patents
Wavelength division filter and method for manufacturing the sameInfo
- Publication number
- JP2002022918A JP2002022918A JP2000395705A JP2000395705A JP2002022918A JP 2002022918 A JP2002022918 A JP 2002022918A JP 2000395705 A JP2000395705 A JP 2000395705A JP 2000395705 A JP2000395705 A JP 2000395705A JP 2002022918 A JP2002022918 A JP 2002022918A
- Authority
- JP
- Japan
- Prior art keywords
- light
- incident
- wavelength
- reflection
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光波長多重方式(WD
M)等に用いる波長分離フィルタに関する。BACKGROUND OF THE INVENTION The present invention relates to an optical wavelength division multiplexing (WD) system.
M) and the like.
【0002】[0002]
【従来の技術】21世紀初頭に広帯域マルチメディアサ
ービスが本格的に普及すると、幹線系の通信容量は現状
よりもさらに2桁大きいテラビット(Tビット/秒)級
のシステムが必要になると予想される。財団法人光産業
技術振興協会の資料によれば、光通信の通信容量は20
05年には100GB/秒、2010年には1TB/秒
となり、2013年頃には全光ネットワークが完成する
とある。その時、全家庭で100MB/秒、大口ユーザ
ーで1GB/秒の通信容量が実現する。2. Description of the Related Art When wideband multimedia services become widely used at the beginning of the 21st century, it is expected that a terabit (T bit / sec) class system whose trunk communication capacity will be two orders of magnitude larger than the current situation will be required. . According to the data of the Optical Industry and Technology Promotion Association, the communication capacity of optical communication is 20
According to the report, 100 GB / sec in 2005, 1 TB / sec in 2010, and an all-optical network will be completed around 2013. At that time, a communication capacity of 100 MB / sec for all homes and 1 GB / sec for large users is realized.
【0003】このような通信容量増大化の要求に対し、
光波長多重方式(WDM)が次世代の通信技術として期
待されている。[0003] In response to such a demand for increased communication capacity,
Optical wavelength multiplexing (WDM) is expected as a next-generation communication technology.
【0004】この光波長多重方式(WDM)は、異なる
複数の波長の光を波長軸上に多重化して一本の光ファイ
バで伝送することにより、大容量伝送を可能とするもの
で、信号の分岐・挿入を、光フィルタ等の光受動デバイ
スにより光−電気変換することなく光レベルで行い、ネ
ット信号形態や伝送速度によらず種々の信号が同時に伝
送可能になるという特徴を有する。The optical wavelength division multiplexing (WDM) enables large-capacity transmission by multiplexing light of a plurality of different wavelengths on a wavelength axis and transmitting the multiplexed light through a single optical fiber. It is characterized in that branching / insertion is performed at an optical level without performing optical-electrical conversion by an optical passive device such as an optical filter, so that various signals can be transmitted simultaneously regardless of the net signal form and transmission speed.
【0005】このWDM方式の普及を図るに当って、波
長の異なる信号を分岐させる波長分離フィルタは必要、
不可欠な光学素子となる。従来は、この波長分離フィル
タを、光学結晶体を研磨することで複屈折偏光子を作成
し、誘電体の薄膜を何層にも積み重ねることで(70か
ら80層を超えるものもある)狭帯域な波長フィルタを
製作していた。例えば、4波長狭城バンドパスフィルタ
は30層を超える光学多層膜コーテイングが必要でガラ
ス製である。In order to spread the WDM system, a wavelength separation filter for splitting signals having different wavelengths is required.
It becomes an indispensable optical element. Conventionally, this wavelength separation filter has a narrow band by polishing an optical crystal to form a birefringent polarizer and stacking a number of dielectric thin films (some of which exceed 70 to 80 layers). We have been producing a perfect wavelength filter. For example, a four-wavelength narrow-band bandpass filter requires more than 30 optical multilayer coatings and is made of glass.
【0006】[0006]
【発明が解決しようとする課題】上記従来のWDM用の
波長分離フィルタは、光学多層膜によって作られガラス
製である。従って、生産性が低くコストも高くなる。通
信の主回線用としては、それでもよかったが、加入者レ
べルではとても購入できる値段ではなく、―般消費者、
企業等の加入者に普及を図る上で大きな障害となる。The above-mentioned conventional wavelength separation filter for WDM is made of an optical multilayer film and made of glass. Therefore, the productivity is low and the cost is high. For the main line of communication, it was still good, but at the subscriber level it was not a very affordable price-general consumers,
This will be a major obstacle in promoting its use to subscribers such as companies.
【0007】なお、ガラスに代え成形容易なプラスチッ
クで、この薄膜フィルタを製作することも考えられる
が、多層の薄膜層に、線膨張係数の違いによるマイクロ
クラックが発生し、面荒れ或いは剥れの原因となるた
め、この採用は不適当である。It is conceivable to manufacture this thin-film filter using plastics that can be easily molded instead of glass. However, micro-cracks due to differences in linear expansion coefficients occur in multiple thin-film layers, resulting in surface roughness or peeling. This adoption is inappropriate because it causes it.
【0008】これに対し、光の波長と同程度の格子を表
面に作成することにより、前記薄膜フィルタと同様のフ
ィルタを実現できることが報告されている。On the other hand, it has been reported that a filter similar to the above-mentioned thin-film filter can be realized by forming a grating on the surface at the same level as the wavelength of light.
【0009】これは、一定の共振条件を満たすように格
子ピッチを決めると共振現象が発生し、強い反射が起こ
ることを利用したもので、これによって、共振モード格
子フィルタと呼ばれる非常に帯域の狭い反射型の波長フ
ィルタを作成することができる。This is based on the fact that when a grating pitch is determined so as to satisfy a certain resonance condition, a resonance phenomenon occurs and a strong reflection occurs. This makes it possible to use a very narrow band called a resonance mode grating filter. A reflection type wavelength filter can be created.
【0010】この格子構造でWDM用の波長分離フィル
タを作成しようとすると、分岐させる光を取り出すた
め、格子面に斜めから入射させる必要がある。この場合
に偏光が生じ、要求性能を満たせないという問題が生じ
る。When a wavelength separation filter for a WDM is to be manufactured with this grating structure, it is necessary to make the light to be branched to be obliquely incident on the grating surface in order to extract the light to be branched. In this case, polarized light is generated, and there arises a problem that required performance cannot be satisfied.
【0011】この偏光依存性の問題は、格子面内に2つ
の等価な共振光の波数べクトルを生じさせるように、二
次元に配列された格子構造を有する格子層を備え、前記
2つの共振光の波数べクトルを、人射光の人射面に対し
て対称とすることにより解決できる。この構造を、次に
説明する。The problem of the polarization dependency is that a two-dimensionally arranged grating layer is provided so as to generate two equivalent wavenumber vectors of resonant light in the grating plane. The problem can be solved by making the wave number vector of light symmetrical with respect to the human projection surface of human radiation. This structure will be described next.
【0012】図6は、この共振モード格子フィルタの構
成を示す斜視図であり、図7は、図6に示す共振モード
格子フィルタと入射光との関係を説明するための説明図
であり、図8は、図6に示す共振モード格子フィルタに
より偏光依存性を解消する原理を説明するための説明図
であり、図9は、図6に示す共振モード格子フィルタの
反射光の波長と反射率との関係を示すグラフである。FIG. 6 is a perspective view showing the structure of the resonance mode grating filter, and FIG. 7 is an explanatory diagram for explaining the relationship between the resonance mode grating filter shown in FIG. 6 and incident light. FIG. 8 is an explanatory view for explaining the principle of eliminating the polarization dependence by the resonance mode grating filter shown in FIG. 6, and FIG. 9 is a diagram showing the wavelength and reflectance of the reflected light of the resonance mode grating filter shown in FIG. 6 is a graph showing the relationship of.
【0013】図6に示すように、共振モード格子フィル
タは、格子層1、導波層2、及び基板3を備える。基板
3の上には、導波層2が形成され、導波層2の上には、
格子層1が形成される。格子層1には、格子状に所定ピ
ッチで複数の矩形の凹部4が形成され、凹部4、例えば
空気と、凹部4以外の部分の低屈折率の媒質とから格子
層1が構成され、高屈折率の導波層2が導波路となる。
なお、格子層1は、凹部4の代わりに複数の凸部からな
る格子層を用いてもよく、凹部部分に屈折率の異なる他
の媒質を充填してもよい。格子層1に形成される凹部又
は山部の形状は、格子面内に2つの等価な共振波数べク
トルを生じさせるために、鏡面対称且つ回転対称な形状
を有し、正方形であることが好ましいが、円形、楕円
形、瓢箪形等の他の形状であってもよい。なお、本明細
書において、回転対称な形状とは、該形状を180度回
転させたときに元の形状に重なる形状をいう。As shown in FIG. 6, the resonance mode grating filter includes a grating layer 1, a waveguide layer 2, and a substrate 3. The waveguide layer 2 is formed on the substrate 3, and on the waveguide layer 2,
A lattice layer 1 is formed. A plurality of rectangular concave portions 4 are formed in the lattice layer 1 at a predetermined pitch in a lattice shape, and the lattice layer 1 is composed of the concave portions 4, for example, air and a medium having a low refractive index other than the concave portions 4. The waveguide layer 2 having a refractive index becomes a waveguide.
The lattice layer 1 may use a lattice layer composed of a plurality of convex portions instead of the concave portions 4, and the concave portions may be filled with another medium having a different refractive index. The shape of the concave portion or the peak portion formed in the lattice layer 1 has a mirror-symmetric and rotationally symmetric shape, and is preferably a square, in order to generate two equivalent resonance wave number vectors in the lattice plane. However, other shapes such as a circle, an ellipse, and a gourd may be used. In this specification, a rotationally symmetric shape refers to a shape that overlaps the original shape when the shape is rotated by 180 degrees.
【0014】図7に示すように、格子層1と直交する方
向に対して角度θだけ傾けて人射される入射光Iの人射
面pは、以下に説明する2つの共振光の波数べクトルが
入射光の人射面に対して対称になるように、方位角45
°(人射面が格子の正方形の一辺となす角度)になるよ
うに設定される。このとき、人射光Iは、格子層1によ
り共振を起こし、特定波長の反射光Rが反射される。以
下の説明では、人射光がTEモード(層に対し電場が平
行に振動しながら進むモード)で伝搬する場合にっいて
説明するが、TMモード(層に対し磁場が平行に振動し
ながら進むモード)で伝搬する場合にも同様に適用する
ことができる。As shown in FIG. 7, the incident surface I of the incident light I which is incident at an angle θ with respect to the direction orthogonal to the lattice layer 1 has a wave number of two resonance lights described below. Azimuth angle 45 so that the vector is symmetrical with respect to the incident surface of the incident light.
° (the angle between the human projection surface and one side of the square of the grid). At this time, the human light I resonates due to the lattice layer 1, and reflected light R of a specific wavelength is reflected. In the following description, a case will be described in which human radiation propagates in a TE mode (a mode in which an electric field travels while oscillating in parallel to a layer), but a TM mode (a mode in which a magnetic field travels while oscillating in a direction parallel to a layer). ) Can be similarly applied.
【0015】上記の場合、図8に示すように、p偏光人
射の光は、右上及び右下にそれぞれTEモードで伝播
し、s偏光人射の光も、同じ方向にTEモードで伝播す
る。本形態では、p偏光人射で伝播する伝播定数をp―
βとし、s偏光人射で伝播する伝播定数をs―βとし、
人射光の波数べクトルの接線成分をkとし、二つの共振
光の波数べクトルである格子べクトルをKとすると、k
とKのべクトルの和が、p―β及びs―βに等しくなる
ように格子ピッチA(=2π/K)が設定されている。
従って、人射光の人射面に対して対称な2つの等価な共
振波数べクトルを格子面内を生じさせることができ、p
偏光人射及びs偏光人射の共振波長を―致させるととも
に、共振波長の半値幅を―致させることができる。この
結果、人射光が格子面に対して斜めから人射する場合に
偏光依存性をなくすことができる。また、人射光の人射
角度を調整することにより、所望の波長で共振を得るこ
とができ、また、中心波長を移動させることもできる。In the above case, as shown in FIG. 8, the light of the p-polarized light propagates in the TE mode to the upper right and lower right, respectively, and the light of the s-polarized light also propagates in the TE direction in the same direction. . In this embodiment, the propagation constant propagating by p-polarized human radiation is p-
β, the propagation constant propagating by s-polarized human radiation is s-β,
Assuming that the tangential component of the wave number vector of human radiation is k and the lattice vector, which is the wave number vector of the two resonance lights, is K, k
And K are set so that the sum of the vectors of K and K is equal to p-β and s-β.
Therefore, two equivalent resonance wave number vectors symmetrical with respect to the human projection surface of the human sunlight can be generated in the lattice plane, and p
The resonance wavelengths of the polarized human radiation and the s-polarized human radiation can be matched, and the half width of the resonance wavelength can be matched. As a result, the polarization dependency can be eliminated when the human rays illuminate the lattice plane obliquely. In addition, by adjusting the angle of human radiation, resonance can be obtained at a desired wavelength, and the center wavelength can be moved.
【0016】しかし、この共振モード格子フィルタの製
法として、従来知られている方法は、石英の基板の上
に、導波層2としてSiO2膜を形成し、さらに、その
上に電子線レジスト層を塗布形成し、電子ビーム描画装
置によるパターンを約5時間かけて描画した後に現像を
行い、格子パターンを作成するものである。なお、導波
層2としてTiO2膜を形成する場合もある。However, as a method of manufacturing this resonance mode grating filter, a conventionally known method is to form an SiO 2 film as a waveguide layer 2 on a quartz substrate and further form an electron beam resist layer thereon. Is applied, and after a pattern is drawn by an electron beam drawing apparatus for about 5 hours, development is performed to form a grid pattern. Note that a TiO 2 film may be formed as the waveguide layer 2 in some cases.
【0017】このように、従来の共振モード格子フィル
タの製法は、製造時間を考慮に入れない実験レベルに止
まり、これを量産し素子を効率的に製造する方法につい
ては、ほとんど研究開発が進んでいない。このため実用
化は困難であった。As described above, the conventional method of manufacturing a resonance mode grating filter is limited to an experimental level that does not take the manufacturing time into consideration, and research and development of a method of mass-producing the filter and efficiently manufacturing an element have progressed. Not in. For this reason, practical application was difficult.
【0018】また、上記従来の共振モード格子フィルタ
は、導波層2に透過した光が利用できないため、1種類
の波長の光しか分離できず、WDM用の素子として用い
ることはできない。Further, in the above-described conventional resonance mode grating filter, since light transmitted through the waveguide layer 2 cannot be used, only light of one type of wavelength can be separated and cannot be used as a WDM element.
【0019】そこで、本発明は共振モード格子フィルタ
を用いたプラスチック波長分離フィルタを、従来と比べ
格段に低価格かつ量産容易な構造で提供することを目的
とする。Accordingly, it is an object of the present invention to provide a plastic wavelength separation filter using a resonance mode grating filter with a structure that is much lower in cost and easier to mass-produce than conventional ones.
【0020】[0020]
【課題を解決するための手段】本発明の請求項1にかか
る波長分離フィルタは、樹脂成形により、入射面と、こ
の入射面を透過した光を出射させる出射面を持つ光透過
性の基体が作成され、入射面の上に、基体の樹脂材より
も高屈折率の格子パターン層が形成されることにより共
振モード格子フィルタである反射格子が形成され、入射
面に斜交して入射した光の共振波長に対応する成分が反
射により取り出され、他の成分が透過して出射面から射
出されるようにしたことを特徴とする。According to a first aspect of the present invention, there is provided a wavelength separation filter comprising a resin-molded light-transmitting substrate having an incident surface and an exit surface for emitting light transmitted through the incident surface. A reflection grating, which is a resonance mode grating filter, is formed by forming a grating pattern layer having a higher refractive index than the resin material of the base on the incidence surface, and light incident obliquely on the incidence surface. The component corresponding to the resonance wavelength is extracted by reflection, and the other component is transmitted and emitted from the emission surface.
【0021】本発明の請求項2にかかる発明は、請求項
1に記載した波長分離フィルタを、一単位の光分離器と
して、分離する光の波長の数だけ用い、前段の光分離器
の出射面から出た光が、次段の入射面に入射するように
連続配置して構成され、各光分離器の各入射面の共振波
長を分離する光の異なる波長に夫々一致させたことを特
徴とする。According to a second aspect of the present invention, the wavelength separation filter according to the first aspect is used as one unit of light separator by the number of wavelengths of the light to be separated, and the output of the preceding stage light separator is used. The light emitted from the surface is continuously arranged so as to be incident on the next incident surface, and the resonance wavelength of each incident surface of each optical separator is matched to a different wavelength of the separating light. And
【0022】本発明の請求項3にかかる発明は、請求項
2に記載した波長分離フィルタにおいて、各光分離器の
形状を、入射面を透過した光が反射面で全反射して出射
面から入射方向と同方向に出射するように、入射面と出
射面を反射面に斜交させたDOVEプリズム形状とし、
各光分離器の配置間隔を、入射面で反射した分離光が隣
接した光分離器が当らない長さとして、反射面側の部分
で連結一体化して樹脂成形したことを特徴とする。According to a third aspect of the present invention, in the wavelength separation filter according to the second aspect, the shape of each of the light separators is such that light transmitted through the incident surface is totally reflected by the reflection surface and is reflected from the emission surface. In order to emit light in the same direction as the incident direction, a DOVE prism shape in which the entrance surface and the exit surface are oblique to the reflection surface,
The distance between the light separators is such that the separated light reflected on the incident surface does not hit the adjacent light separator, and the light separator is connected and integrated at the reflection surface side and resin-molded.
【0023】本発明の請求項4にかかる発明は、各光分
離器の形状を、入射面を透過した光が反射面で全反射し
て出射面から入射方向と同方向に出射するように、入射
面と出射面を反射面に斜交させたDOVEプリズム形状
とし、各光分離器を反射面側の部分で連結一体化して樹
脂成形すると共に、入射面の上に形成される反射格子の
反射方向を、前記透過光の反射面と直交させたことを特
徴とする。The invention according to claim 4 of the present invention is arranged such that the shape of each light separator is such that light transmitted through the incident surface is totally reflected by the reflecting surface and emitted from the emitting surface in the same direction as the incident direction. The entrance surface and the exit surface are oblique to the reflection surface in the form of a DOVE prism, and the respective light separators are connected and integrated at the portion on the reflection surface side to form a resin, and the reflection of the reflection grating formed on the entrance surface The direction is orthogonal to the reflection surface of the transmitted light.
【0024】本発明の請求項5にかかる波長分離フィル
タの製造方法は、光の波長と同等若しくはそれ以下のピ
ッチで回折格子パターンが形成された金型で樹脂成形す
ることにより、このパターンを成形対象物に転写し、こ
の転写パターンが形成された面に高屈折層を蒸着形成す
ることにより、共振波長の光を反射し残りの光を透過さ
せる共振モード格子フィルタである反射格子を形成する
ことを特徴とする。According to a fifth aspect of the present invention, there is provided a method of manufacturing a wavelength separation filter, wherein the pattern is formed by resin molding using a mold having a diffraction grating pattern formed at a pitch equal to or less than the wavelength of light. Forming a reflection grating, which is a resonance mode grating filter that reflects light having a resonance wavelength and transmits the remaining light by depositing a high-refractive layer on the surface on which the transfer pattern is formed by transferring the light to an object; It is characterized by.
【0025】本発明の請求項6にかかる発明は、請求項
1〜4のいずれか1項に記載した波長分離フィルタにお
いて、基体の樹脂材よりも高屈折率の格子パターン層
が、樹脂成形金型に形成した微細加工面の転写と、高屈
折層の蒸着により形成されていることを特徴とする。According to a sixth aspect of the present invention, in the wavelength separation filter according to any one of the first to fourth aspects, the lattice pattern layer having a higher refractive index than the resin material of the base is formed of a resin molding metal. It is characterized in that it is formed by transferring a micro-machined surface formed in a mold and depositing a high refractive layer.
【0026】[0026]
【実施形態】図1に、本発明の一実施形態である4波長
狭域バンドパスフィルタ7の縦断面図を示す。これは、
4つの光分離器8を連結した形状で樹脂成形により一体
成形したものである。このフィルタ7の紙面と垂直方向
の幅は、分離されるビーム光が通過できる大きさであ
る。光分離器8は、反射面10の両側に対向配置した入
射面9と出射面11の間隔が反射面10から離れるに従
って狭くなるように傾斜させたDOVEプリズム構造を
持つ。図1のA部を拡大して示す図2に示すように、こ
のDOVEプリズム構造は、反射面と平行(入射面に斜
交)に入射した光を入射面9で屈折させて反射面10に
当て、反射面で全反射させて出射面11で屈折させて入
射方向と同一方向に出射させるものである。この入射面
に共振モード格子フィルタ(色分解フィルタ)を形成す
ると、この回折格子で共振する波長の光は反射し、残り
の光は透過し屈折する。FIG. 1 is a longitudinal sectional view of a four-wavelength narrow bandpass filter 7 according to an embodiment of the present invention. this is,
The four light separators 8 are integrally formed by resin molding in a connected shape. The width of the filter 7 in the direction perpendicular to the paper surface is large enough to allow the separated light beam to pass through. The light separator 8 has a DOVE prism structure that is inclined so that the distance between the incident surface 9 and the exit surface 11 disposed on both sides of the reflection surface 10 decreases as the distance from the reflection surface 10 increases. As shown in FIG. 2 which is an enlarged view of a portion A in FIG. 1, this DOVE prism structure refracts light incident parallel to the reflecting surface (obliquely to the incident surface) at the incident surface 9 and forms the light on the reflecting surface 10. The light is totally reflected by the reflection surface, refracted by the emission surface 11, and emitted in the same direction as the incident direction. When a resonance mode grating filter (color separation filter) is formed on the incident surface, light having a wavelength that resonates at the diffraction grating is reflected, and the remaining light is transmitted and refracted.
【0027】この入射面に形成する回折格子は、樹脂成
形金型に形成した微細形状を転写して作られる。樹脂成
形に用いる材料は、例えばポリカーネート樹脂を使用
し、各入射面の共振モード格子フィルタの反射波長λ
1、λ2、λ3、λ4は、例えば1280,1300,132
0,1340nmとする。The diffraction grating formed on the incident surface is formed by transferring a fine shape formed on a resin molding die. As a material used for resin molding, for example, a polycarbonate resin is used, and the reflection wavelength λ of the resonance mode
1, λ2, λ3, λ4 are, for example, 1280, 1300, 132
It is set to 0.1340 nm.
【0028】この格子構造は、凹部又は山部を格子状に
複数配列したもので、この凹部又は凸部は、格子面内に
2つの等価な共振波数べクトルを生じさせるために、鏡
面対称且つ回転対称な形状を有し、凹部又は山部の二等
分線上に前記入射光の人射面を位置させることが好まし
い。凹部又は山部の形状は、正方形又はひし形であるこ
とが好ましいが、円形、楕円形、瓢箪形等の他の形状で
あってもよい。前記凹部又は凸部の配列は、例えば市松
模様状とする。This lattice structure is formed by arranging a plurality of concave portions or mountain portions in a lattice shape. The concave portions or convex portions are mirror-symmetrical in order to generate two equivalent resonance wavenumber vectors in the lattice plane. It is preferable that the projection surface has a rotationally symmetric shape and the incident surface of the incident light is positioned on a bisector of a concave portion or a mountain portion. The shape of the concave portion or the mountain portion is preferably a square or a rhombus, but may be another shape such as a circle, an ellipse, or a gourd. The arrangement of the concave portions or the convex portions is, for example, a checkered pattern.
【0029】入射光λは、例えば、波長が1280,1
300,1320,1340nmの光が合成されたもの
で、反射面10と平行に入射する。入射面9は、回折格
子の反射を効率良く行える角度(例えば10°)がある
ため、この角度θだけ反射面10に対して傾斜させてあ
る。The incident light λ has, for example, a wavelength of 1280,1.
Light of 300, 1320, and 1340 nm is synthesized, and is incident parallel to the reflecting surface 10. Since the incident surface 9 has an angle (for example, 10 °) at which the reflection of the diffraction grating can be performed efficiently, the incident surface 9 is inclined with respect to the reflecting surface 10 by this angle θ.
【0030】入射光λの光軸と出射面11から出射する
光の光軸を一致させるため、入射面9の傾きに応じて、
反射面10の光軸方向の長さ(光分離器の一単位)と出
射面11の傾き(入射面の傾きと大きさが同じで方向が
異なる)が定まる。In order to make the optical axis of the incident light λ coincide with the optical axis of the light emitted from the emission surface 11,
The length of the reflecting surface 10 in the direction of the optical axis (one unit of the light separator) and the inclination of the exit surface 11 (the same direction and the same direction as the incident surface but different directions) are determined.
【0031】上記実施形態では、4つの光分離器8を直
線状に連結しているので、入射面9で反射させた得た分
離光が隣接する光分離器8で妨げられないようにする必
要がある。そこで各光分離器8の配置間隔を、この目的
に合わせて決定する。この構造によって、転写によって
入射面の格子パターンを作りながら、複数の光分離器を
同時に一体成形することが可能になり、光分離器を独立
して樹脂成形し、これらが一定の配置関係になるように
位置決め固定する作業を不要として、コストを削減する
ことができる。In the above embodiment, since the four light splitters 8 are connected linearly, it is necessary that the separated light reflected on the incident surface 9 is not obstructed by the adjacent light splitters 8. There is. Therefore, the arrangement interval of each light splitter 8 is determined according to this purpose. With this structure, it is possible to simultaneously mold a plurality of light separators simultaneously while forming a grating pattern on the incident surface by transfer, and independently mold the light separators to form a fixed arrangement relationship. This eliminates the need for the work of positioning and fixing, thereby reducing costs.
【0032】上記実施形態における入射面9の反射角度
θは、透過光の反射面10に対して傾斜する方向に分離
光を反射させるものであった。この反射角度θは、反射
格子の構造により、一定の範囲で任意に決めることがで
きものであり、分離光の受光部(光電変換素子等のディ
テクタ)の配置の便を考慮して適宜定めることができ
る。In the above embodiment, the reflection angle θ of the incident surface 9 reflects the separated light in a direction inclined with respect to the reflection surface 10 of the transmitted light. The reflection angle θ can be arbitrarily determined within a certain range depending on the structure of the reflection grating, and is appropriately determined in consideration of the convenience of disposing the light receiving portion (detector such as a photoelectric conversion element) of the separated light. Can be.
【0033】図3及び図4は、入射面9に入射した光を
透過光の反射面10と直交する方向に反射させるもので
ある。これによって、分離光のディテクタを反射面10
と平行に配置して組み立て構造を簡素化し、各光分離器
8の配置間隔を最小にし、小型化を図ることができる。FIGS. 3 and 4 show the case where the light incident on the incident surface 9 is reflected in a direction perpendicular to the reflection surface 10 of the transmitted light. Thereby, the detector of the separated light is reflected by the reflecting surface 10.
, The assembling structure can be simplified, the arrangement interval between the light separators 8 can be minimized, and the size can be reduced.
【0034】入射面9に共振モード格子フィルタを構成
するための高屈折率層を形成する方法として、図5
(a)に示すように、樹脂成形された入射面に蒸着によ
りTiO 2膜やSiO2膜等を形成し、これに電子ビーム
露光技術とエッチング加工技術により格子パターンを形
成する方法と、図5(b)に示すように、金型に微細加
工により形成した格子パターンを、樹脂成形時に成形対
象物に直接転写した後、その転写面の凹部と凸部にTi
O2膜等を蒸着により一様に形成する方法がある。図5
(b)に示す方法は、転写によって一時に成形を行うの
で、図5(a)に示す方法に比べて加工コストを低減す
ることができる。この転写に用いる金型は、入射面9に
対応する部分に、例えば、金型の金属面にサブミクロン
単位で設計された格子パターンをレーザー描画すること
によって直接に成形したものを用いる。この金型のパタ
ーンは繰り返し転写が可能であり、低コストに波長分離
フィルタを製作できる。A resonant mode grating filter is formed on the incident surface 9
As a method of forming a high refractive index layer for
(A) As shown in FIG.
TiO TwoFilm and SiOTwoA film is formed and an electron beam
Grating pattern is formed by exposure technology and etching technology
And a fine addition to the mold as shown in FIG.
The grid pattern formed by the
After transferring directly to the elephant, the concave and convex portions of the
OTwoThere is a method of uniformly forming a film or the like by vapor deposition. FIG.
In the method shown in (b), molding is performed at a time by transfer.
Therefore, the processing cost is reduced as compared with the method shown in FIG.
Can be The mold used for this transfer is
For the corresponding part, for example, submicron on the metal surface of the mold
Laser drawing a lattice pattern designed in units
Used directly. The pattern of this mold
Can be repeatedly transferred and wavelength separated at low cost
A filter can be manufactured.
【0035】なお、図1及び図3に示す実施形態は、4
種の波長成分を分離するWDM用の波長分離フィルタと
して構成したものを示したが、この直列数は分離を行う
波長成分の数に合わせて、必要数だけ連結して製作でき
る。The embodiment shown in FIG. 1 and FIG.
Although shown as a wavelength separation filter for WDM that separates various wavelength components, this series number can be manufactured by connecting as many as necessary according to the number of wavelength components to be separated.
【0036】また、本発明は、ダイクロイックミラー等
の他の波長分離フィルタに代えて使用することも可能で
ある。例えば光をRGBの3原色に分離するダイクロイ
ックミラーに代えて使用する場合は、前記光分離器を3
つ直列に一体成形したものを用いることができる。Further, the present invention can be used in place of another wavelength separation filter such as a dichroic mirror. For example, when using instead of a dichroic mirror that separates light into three primary colors of RGB,
One that is integrally molded in series can be used.
【0037】また、上記実施例の光分離器は、光分離器
における入射と出射の光軸を一致させるためDOVEプ
リズム形状のものを示したが、DOVEプリズム形状以
外の構造、すなわち光軸を一致させない構造や反射面を
用いない構造も可能である。Although the light separator of the above embodiment has a DOVE prism shape in order to make the incident and exit optical axes coincide with each other in the light separator, a structure other than the DOVE prism shape, that is, the light axis is identical. It is also possible to use a structure that does not allow the light to be reflected or a structure that does not use a reflection surface.
【0038】[0038]
【発明の効果】本発明の請求項1にかかる波長分離フィ
ルタは、樹脂成形により成形される基体の入射面に、共
振モード格子フィルタである反射格子を形成するので、
光学薄膜を使用した反射層を形成する場合に比べ製造コ
ストを1/100以下に低減できる。According to the wavelength separation filter of the first aspect of the present invention, a reflection grating, which is a resonance mode grating filter, is formed on an incident surface of a substrate formed by resin molding.
The manufacturing cost can be reduced to 1/100 or less as compared with the case where a reflective layer using an optical thin film is formed.
【0039】本発明の請求項2にかかる発明は、請求項
1に記載した波長分離フィルタを、複数個用いて、複数
の波長成分を同時に分離するフィルタを安価に提供で
き、例えばWDM用の波長分離フィルタとして製作した
場合は、一般消費者への高速、快適な通信環境の普及を
容易に行うことができる。According to a second aspect of the present invention, a filter for simultaneously separating a plurality of wavelength components by using a plurality of wavelength separation filters according to the first aspect can be provided at low cost. When manufactured as a separation filter, it is possible to easily spread a high-speed and comfortable communication environment to general consumers.
【0040】本発明の請求項3にかかる発明は、請求項
2に記載した複数波長の分離フィルタを一体成形できる
構造を提供し、部品の小型化及び組立てコストの低減を
図ることができる。According to a third aspect of the present invention, there is provided a structure capable of integrally molding the separation filter of a plurality of wavelengths according to the second aspect, and it is possible to reduce the size of parts and the cost of assembly.
【0041】本発明の請求項4にかかる発明は、複数波
長の分離フィルタを一体成形する構造において、入射面
9に入射した光を、透過光の反射面10と直交する方向
に反射させることにより、組立て構造の簡素化及び小型
化を図ることができる。According to a fourth aspect of the present invention, in a structure in which a separation filter of a plurality of wavelengths is integrally formed, light incident on the incident surface 9 is reflected in a direction orthogonal to the reflection surface 10 of transmitted light. In addition, the assembly structure can be simplified and downsized.
【0042】本発明の請求項5にかかる発明は、金型か
らの転写によって樹脂成形品に格子パターンを造り込
み、全面に蒸着を行うだけで反射格子を入射面に形成す
るので、製造コストを大幅に低減することができる。In the invention according to claim 5 of the present invention, a grating pattern is formed on a resin molded product by transfer from a mold, and a reflection grating is formed on the incident surface by simply performing vapor deposition on the entire surface. It can be greatly reduced.
【0043】本発明の請求項6にかかる発明は、格子パ
ターンを転写する請求項4の方法で、請求項1〜4に記
載した波長分離フィルタを作り、製造コストを大幅に低
減することができる。According to a sixth aspect of the present invention, there is provided a method for transferring a grating pattern according to the fourth aspect, wherein the wavelength separation filter according to any one of the first to fourth aspects is manufactured, and the manufacturing cost can be greatly reduced. .
【図1】本発明の一実施形態である光分離フィルタの構
成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a light separation filter according to an embodiment of the present invention.
【図2】図1のA部を拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing a portion A in FIG. 1;
【図3】本発明の他の実施形態である光分離フィルタの
構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a light separation filter according to another embodiment of the present invention.
【図4】図3のB部を拡大して示す断面図である。FIG. 4 is an enlarged sectional view showing a portion B in FIG. 3;
【図5】図1の波長分離フィルタの製造法を説明する断
面図である。FIG. 5 is a cross-sectional view illustrating a method of manufacturing the wavelength separation filter of FIG.
【図6】本発明の前提となる共振モード格子フィルタの
構成を示す斜視図である。FIG. 6 is a perspective view showing a configuration of a resonance mode grating filter which is a premise of the present invention.
【図7】図6に示す共振モード格子フィルタと入射光と
の関係を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining a relationship between the resonance mode grating filter shown in FIG. 6 and incident light.
【図8】図6に示す共振モード格子フィルタにより偏光
依存性を解消する原理を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the principle of eliminating polarization dependence by the resonance mode grating filter shown in FIG. 6;
【図9】図6に示す共振モード格子フィルタの反射光の
波長と反射率との関係を示すグラフである。9 is a graph showing the relationship between the wavelength of reflected light and the reflectance of the resonance mode grating filter shown in FIG.
7 波長分離フィルタ(4波長狭域バンドパスフィル
タ) 8 光分離器 9 入射面 10 反射面 11 出射面7 wavelength separation filter (4 wavelength narrow bandpass filter) 8 light separator 9 entrance surface 10 reflection surface 11 emission surface
フロントページの続き Fターム(参考) 2H042 CA01 CA06 CA17 2H048 FA01 FA05 FA09 FA12 FA22 2H049 AA07 AA13 AA33 AA37 AA40 AA44 AA59 AA64 AA65 Continued on front page F-term (reference) 2H042 CA01 CA06 CA17 2H048 FA01 FA05 FA09 FA12 FA22 2H049 AA07 AA13 AA33 AA37 AA40 AA44 AA59 AA64 AA65
Claims (6)
面を透過した光を出射させる出射面を持つ光透過性の基
体が作成され、入射面の上に、基体の樹脂材よりも高屈
折率の格子パターン層が形成されることにより共振モー
ド格子フィルタである反射格子が形成され、入射面に斜
交して入射した光の共振波長に対応する成分が反射によ
り取り出され、他の成分が透過して出射面から射出され
るようにしたことを特徴とする波長分離フィルタ。1. A light-transmissive substrate having an incident surface and an exit surface for emitting light transmitted through the incident surface is formed by resin molding, and has a higher refractive index on the incident surface than the resin material of the substrate. The reflection grating, which is a resonance mode grating filter, is formed by forming a grating pattern layer having a ratio of the refractive index, and a component corresponding to a resonance wavelength of light obliquely incident on the incident surface is extracted by reflection, and other components are extracted. A wavelength separation filter, which is transmitted and emitted from an emission surface.
を、一単位の光分離器として分離する光の波長の数だけ
用い、前段の光分離器の出射面から出た光が、次段の入
射面に入射するように連続配置して構成され、各光分離
器の各入射面の共振波長を分離する光の異なる波長に夫
々一致させたことを特徴とする波長分離フィルタ。2. The wavelength separation filter according to claim 1 is used as many as the number of wavelengths of light to be separated as one unit of a light separator, and light emitted from an output surface of a former-stage light separator is transmitted to a next-stage light separator. What is claimed is: 1. A wavelength separation filter which is continuously arranged so as to be incident on an incident surface, wherein a resonance wavelength of each incident surface of each optical separator is made to coincide with a different wavelength of light to be separated.
光が反射面で全反射して出射面から入射方向と同方向に
出射するように、入射面と出射面を反射面に斜交させた
DOVEプリズム形状とし、各光分離器の配置間隔を入
射面で反射した分離光が隣接した光分離器が当らない長
さとして、反射面側の部分で連結一体化して樹脂成形し
たことを特徴とする請求項2に記載した波長分離フィル
タ。3. The shape of each of the light separators is such that the incident surface and the outgoing surface are formed on the reflecting surface such that the light transmitted through the incident surface is totally reflected by the reflecting surface and is emitted from the outgoing surface in the same direction as the incident direction. Obliquely crossed DOVE prism shape, the separation interval of each light separator was set to a length that the separated light reflected on the incident surface did not hit the adjacent light separator, and the resin was molded by connecting and integrating at the reflection surface side. The wavelength separation filter according to claim 2, wherein:
光が反射面で全反射して出射面から入射方向と同方向に
出射するように、入射面と出射面を反射面に斜交させた
DOVEプリズム形状とし、各光分離器を反射面側の部
分で連結一体化して樹脂成形すると共に、入射面の上に
形成される反射格子の反射方向を、前記透過光の反射面
と直交させたことを特徴とする請求項2に記載した波長
分離フィルタ。4. The shape of each of the light separators is such that the incident surface and the outgoing surface are formed on the reflecting surface such that the light transmitted through the incident surface is totally reflected by the reflecting surface and emitted from the outgoing surface in the same direction as the incident direction. Each of the light separators is connected and integrated at a portion on the reflection surface side to form a resin, and the reflection direction of the reflection grating formed on the incident surface is changed to the reflection surface of the transmitted light. 3. The wavelength separation filter according to claim 2, wherein the wavelength separation filter is orthogonal to the wavelength separation filter.
チで回折格子パターンが形成された金型で樹脂成形する
ことにより、このパターンを成形対象物に転写し、この
転写パターンが形成された面に高屈折層を蒸着形成する
ことにより、共振波長の光を反射し残りの光を透過させ
る共振モード格子フィルタである反射格子を形成するこ
とを特徴とする波長分離フィルタの製造方法。5. A resin mold using a mold having a diffraction grating pattern formed at a pitch equal to or less than the wavelength of light, the pattern is transferred to a molding target, and the surface on which the transfer pattern is formed is formed. Forming a reflection grating, which is a resonance mode grating filter that reflects light having a resonance wavelength and transmits the remaining light by vapor deposition of a high refractive layer.
モード格子フィルタである反射面が形成されていること
を特徴とする請求項1〜4のいずれか1項に記載した波
長分離フィルタ。6. The wavelength separation filter according to claim 1, wherein a reflection surface which is a resonance mode grating filter is formed on the incident surface by the method according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000395705A JP4435406B2 (en) | 2000-05-01 | 2000-12-26 | Wavelength separation filter and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000132497 | 2000-05-01 | ||
JP2000-132497 | 2000-05-01 | ||
JP2000395705A JP4435406B2 (en) | 2000-05-01 | 2000-12-26 | Wavelength separation filter and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002022918A true JP2002022918A (en) | 2002-01-23 |
JP4435406B2 JP4435406B2 (en) | 2010-03-17 |
Family
ID=26591356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000395705A Expired - Lifetime JP4435406B2 (en) | 2000-05-01 | 2000-12-26 | Wavelength separation filter and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4435406B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009063754A (en) * | 2007-09-05 | 2009-03-26 | Institute Of Physical & Chemical Research | Groove-shaped light guide grating structure and method for manufacturing the same |
JP2009250728A (en) * | 2008-04-03 | 2009-10-29 | Panasonic Electric Works Co Ltd | Gas concentration measuring instrument |
US7657061B2 (en) | 2004-02-17 | 2010-02-02 | Fuji Xerox Co., Ltd. | Communication apparatus and system handling viewer image |
JP2010093211A (en) * | 2008-10-10 | 2010-04-22 | Ricoh Co Ltd | Wavelength conversion laser device |
JP2010139621A (en) * | 2008-12-10 | 2010-06-24 | Soken Chem & Eng Co Ltd | Wavelength demultiplexing optical element and coupler |
-
2000
- 2000-12-26 JP JP2000395705A patent/JP4435406B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7657061B2 (en) | 2004-02-17 | 2010-02-02 | Fuji Xerox Co., Ltd. | Communication apparatus and system handling viewer image |
JP2009063754A (en) * | 2007-09-05 | 2009-03-26 | Institute Of Physical & Chemical Research | Groove-shaped light guide grating structure and method for manufacturing the same |
JP2009250728A (en) * | 2008-04-03 | 2009-10-29 | Panasonic Electric Works Co Ltd | Gas concentration measuring instrument |
JP2010093211A (en) * | 2008-10-10 | 2010-04-22 | Ricoh Co Ltd | Wavelength conversion laser device |
JP2010139621A (en) * | 2008-12-10 | 2010-06-24 | Soken Chem & Eng Co Ltd | Wavelength demultiplexing optical element and coupler |
Also Published As
Publication number | Publication date |
---|---|
JP4435406B2 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080055719A1 (en) | Inorganic, Dielectric Grid Polarizer | |
CN109917516B (en) | Compact wavelength division multiplexer | |
US6591035B2 (en) | Method for dispersing light using multilayered structures | |
US20080055722A1 (en) | Optical Polarization Beam Combiner/Splitter with an Inorganic, Dielectric Grid Polarizer | |
US20080055549A1 (en) | Projection Display with an Inorganic, Dielectric Grid Polarizer | |
US20040047039A1 (en) | Wide angle optical device and method for making same | |
US20080055721A1 (en) | Light Recycling System with an Inorganic, Dielectric Grid Polarizer | |
US20080055720A1 (en) | Optical Data Storage System with an Inorganic, Dielectric Grid Polarizer | |
CN101377555B (en) | Sub-wave length embedded type grating structure polarizing sheet and manufacturing method thereof | |
JPH11504444A (en) | Multiple reflection type multiplexer device and demultiplexer device | |
CN110673265B (en) | Design method of polarization-wavelength hybrid multiplexer | |
TW531671B (en) | Tunable filter applied in optical networks | |
US20020044721A1 (en) | Mems device having multiple DWDM filters | |
JPH02167502A (en) | Optical product and production thereof | |
JP2002022918A (en) | Wavelength division filter and method for manufacturing the same | |
JP3979146B2 (en) | Optical element using one-dimensional photonic crystal and optical apparatus using the same | |
US20060279841A1 (en) | Polarizing element and optical system including polarizing element | |
Tyan et al. | Polarizing beam splitters constructed of form-birefringent multilayer gratings | |
JPS5868713A (en) | Optical demultiplexing circuit | |
CN110703386B (en) | Bragg concave diffraction grating type polarization-wavelength hybrid multiplexer | |
JP2000292631A (en) | Optical waveguide part and optical multiplexer/ demultiplexer | |
JPH0527136A (en) | Optical multiplexer/demultiplexer | |
JPH05203830A (en) | Optical multiplexer demultiplexer | |
JP2007058102A (en) | Optical multiplexer/demultiplexer and optical multiplexing unit | |
JP2004085915A (en) | Wavelength dispersion generator, and polygon mirror used in the wavelength dispersion generator and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091006 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4435406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |