WO2007139022A1 - Infrared light source and its fabrication method - Google Patents

Infrared light source and its fabrication method Download PDF

Info

Publication number
WO2007139022A1
WO2007139022A1 PCT/JP2007/060711 JP2007060711W WO2007139022A1 WO 2007139022 A1 WO2007139022 A1 WO 2007139022A1 JP 2007060711 W JP2007060711 W JP 2007060711W WO 2007139022 A1 WO2007139022 A1 WO 2007139022A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
light source
infrared
wavelength
specific wavelength
Prior art date
Application number
PCT/JP2007/060711
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuaki Inoue
Katsumoto Ikeda
Hideki Miyazaki
Original Assignee
Nalux Co., Ltd.
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2006/310575 external-priority patent/WO2007141826A1/en
Application filed by Nalux Co., Ltd., National Institute For Materials Science filed Critical Nalux Co., Ltd.
Priority to JP2008517912A priority Critical patent/JP4214178B2/en
Priority to US12/084,571 priority patent/US8017923B2/en
Publication of WO2007139022A1 publication Critical patent/WO2007139022A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/14Incandescent bodies characterised by the shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof

Definitions

  • the present invention relates to an infrared light source that emits infrared light having a specific wavelength and a method for manufacturing the same.
  • the present invention also relates to an analysis system and a monitoring system using an infrared light source.
  • non-dispersive infrared absorption method as an analysis method for gases and liquids using infrared absorption of substances.
  • the non-dispersive infrared absorption method is a method of measuring the concentration of a corresponding substance and the component ratio of a plurality of substances using infrared absorption lines specific to the substance.
  • analysis systems using the non-dispersive infrared absorption method such as a stationary type incorporated in factory facilities and equipment and a portable type driven by a battery.
  • FIG. 61 is a diagram showing a basic configuration of an analysis system using a non-dispersive infrared absorption method.
  • the analysis system includes an infrared light source 301, a measurement cell 207, a means 211 for periodically changing the intensity, a wavelength selection element 303, an infrared sensor 203, and a demodulation means 205.
  • the infrared light source 301 a white infrared light source (lamp) using black body radiation is exclusively used.
  • the means 211 for periodically changing the intensity a chiba that periodically blocks infrared rays by rotating a radial slit or a shutter covering the light source is used.
  • the selection element 303 a narrow band filter that transmits only a specific wavelength, such as a dielectric multilayer film, is used.
  • the infrared sensor 203 various detectors such as a pyroelectric element, a porometer, a thermopile, and a heat flow sensor are used. Infrared rays from the infrared light source 301 pass through the measurement cell 207 including the measurement object, and enter the means 211 for changing the intensity periodically, the wavelength selection element 303, and the infrared sensor 203 in this order.
  • FIG. 62 is a diagram showing the relationship between the absorbance of a measurement object (gas as an example), the intensity of a light source, and the transmittance of a wavelength selection element.
  • FIG. 62 (a) shows the absorbance of the measurement target gas A with respect to the wavelength. The gas A to be measured exhibits a large absorption at the wavelength.
  • Fig. 62 (a) shows the absorbance of the measurement target gas A with respect to the wavelength. The gas A to be measured exhibits a large absorption at the wavelength.
  • FIG. 62 (c) is a diagram showing the transmittance of the wavelength selection element 303 with respect to the wavelength.
  • the wavelength selection element 303 transmits only light in a narrow wavelength range around ⁇ .
  • the amount of transmission of infrared light having a wavelength ⁇ varies depending on the concentration of the gas to be measured in the measurement cell.
  • the output of the infrared sensor 203 also changes.
  • the gas concentration is obtained by calculating based on Lambert's law from the ratio between the detected signal amount and the previously obtained reference signal amount. Note that ⁇ is not necessarily the wavelength at which absorption is maximum, and absorption and overlap of other gases that are mixed.
  • this method often uses some reference signal because it is difficult to obtain a reliable result due to the influence of changes in the elements and the optical system over time.
  • FIG. 63 is a diagram showing an analysis system that uses a reference sample.
  • Gas ⁇ having a known composition is sealed in reference cell 207 ⁇ , and wavelength selection element 3031A and infrared sensor 203 ⁇ are installed for measuring the concentration of gas ⁇ .
  • Gas ⁇ ⁇ to be measured is sealed in measurement cell 207 ⁇ , and wavelength selection element 3031B and infrared sensor 203B are installed for gas A concentration measurement.
  • the concentration of gas A is obtained from the degree.
  • the reference cell 207A contains the same type of gas as the measurement target gas.
  • FIG. 64 is a diagram showing a two-wavelength analysis system. Large absorbance of target gas Install a wavelength selection element 3033 and infrared sensor 203A for infrared of the desired wavelength, and absorb the absorbance.
  • the transmittance of the wavelength selection element 3033 with respect to the wavelength is shown in FIG. 62 (c).
  • the characteristics of the selection element 303 are the same.
  • the transmittance of wavelength selection element 3035 with respect to wavelength ⁇ is
  • the analysis system uses infrared light having a specific wavelength determined by the measurement target substance.
  • the infrared light source of the conventional analysis system emits infrared light in a wide wavelength range. Therefore, in the conventional analysis system, only infrared rays having wavelengths selected by a wavelength selection element such as a filter among infrared rays emitted from the infrared light source are used, and infrared rays having other wavelengths are discarded. Therefore, in the conventional analysis system, it is difficult to reduce the output of the infrared light source because much energy is wasted, and it is difficult to reduce the size of the infrared light source. As a result, conventional analytical systems are relatively large with low energy efficiency.
  • a monitoring system for example, JP-A-2005-106523 that emits light of a specific wavelength by a light source and receives the light by a sensor is used. It is.
  • a silicon sensor is often used as a light receiving element.
  • Silicon sensors are highly sensitive in the 400 nanometer to 1000 nanometer range, so light in this range is often used in the system.
  • the wavelength component in this range becomes a large noise component, which causes malfunction of the system.
  • an infrared light source that emits light in the infrared wavelength region is required.
  • infrared light sources that can provide strong intensity at specific wavelengths in the infrared wavelength region.
  • an infrared light source that emits infrared light of a specific wavelength, which has a simple structure and can be applied to a wide range of fields.
  • An infrared light source includes a heating element, and a lattice in which a portion functioning as a positive dielectric and a portion functioning as a negative dielectric are alternately formed in a constant direction at a constant cycle, It is characterized in that the radiation energy of the body is concentrated and radiated to infrared rays having a specific wavelength determined by the shape of the grating, which has a polarization plane orthogonal to the arrangement direction of the grating.
  • an infrared light source having a simple structure and having a predetermined polarization plane and emitting infrared light of a specific wavelength can be obtained.
  • FIG. 1 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an infrared intensity distribution with respect to wavelength.
  • FIG. 3 is a flowchart showing a method for obtaining the grating depth D when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source.
  • FIG. 4 is a diagram showing a change in the intensity distribution of infrared rays emitted from an infrared light source when the grating depth D of the infrared light source is changed.
  • FIG. 5 is a flowchart showing a method for obtaining the grating depth D and the width T of a portion (such as a dielectric) functioning as a positive dielectric when the grating period P is determined in an infrared light source.
  • FIG. 6 is a diagram showing a change in infrared intensity ratio at a specific wavelength when the width T of a portion (dielectric material, etc.) functioning as a positive dielectric of an infrared light source is changed.
  • FIG. 8 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention.
  • FIG. 9 A diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • FIG. 12 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • FIG. 14 A diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • FIG. 17A A diagram showing the configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • Fig. 17B is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • FIG. 18 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • FIG. 19 A diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • FIG. 20] is a diagram conceptually showing the intensity distribution of infrared rays emitted by the embodiment of FIG.
  • FIG. 21 is a diagram for explaining the first embodiment.
  • FIG. 22 is a diagram for explaining the second embodiment.
  • FIG. 23 is a diagram for explaining the third embodiment.
  • FIG. 24 is a diagram for explaining the fourth embodiment.
  • FIG. 25 is a diagram for explaining the fifth embodiment.
  • FIG. 26 is a diagram for explaining the sixth embodiment.
  • FIG. 27 is a diagram for explaining the embodiment 7.
  • FIG. 28 is a diagram for explaining the eighth embodiment.
  • FIG. 29 is a diagram for explaining the ninth embodiment.
  • FIG. 30 is a diagram for explaining the tenth embodiment.
  • FIG. 31 is a diagram for explaining the embodiment 11.
  • FIG. 32 is a diagram for explaining the embodiment 12. 37] It is a diagram for explaining the embodiment 13.
  • FIG. 35 is a diagram for explaining the embodiment 15.
  • FIG. 40 is a diagram illustrating a cross section of a lattice in which a boundary surface between a portion functioning as a negative dielectric and a portion functioning as a positive dielectric forms a predetermined angle with the lattice surface in the twentieth embodiment.
  • FIG. 42 In the infrared light source of Embodiment 20, the relationship between a predetermined angle and an infrared intensity ratio is shown.
  • FIG. 43 shows a lattice in which a portion functioning as a positive dielectric is formed of a positive dielectric material and air (hollow), and a portion functioning as a negative dielectric is formed of a metal force in Embodiment 21 FIG.
  • FIG. 45 is a diagram showing the relationship between the wavelength and the absorptance when the ratio of D1 and D2 of the grating of Embodiment 21 is changed.
  • FIG. 46 is a diagram showing a configuration example of an infrared heater using the infrared light source of the present invention and the prior art.
  • Fig. 47 A diagram showing the relationship between the wave number of surface waves and the angular frequency in the unit structure of the lattice.
  • FIG. 49 is a diagram showing the relationship between the wavelength of an infrared light source and the infrared intensity according to an embodiment of the present invention. It is.
  • FIG. 50 is a diagram showing the radiation directivity of an infrared light source according to an embodiment of the present invention.
  • FIG. 51 is a diagram showing the relationship between the heating element surface temperature and the intensity of infrared rays emitted from the heating element.
  • FIG.52 Shows the infrared intensity ratio of the infrared light source obtained according to the method shown in Fig. 3 and Fig. 5 when the specific wavelength is 2.5 micrometers.
  • FIG. 53 shows the infrared intensity ratio of the infrared light source obtained according to the method shown in FIGS. 3 and 5 when the specific wavelength is 4.0 micrometers.
  • FIG. 54 shows the infrared intensity ratio of the infrared light source obtained by the method shown in FIGS. 3 and 5 when the specific wavelength is 6 micrometers.
  • FIG. 55 is a diagram showing a configuration of an analysis system according to an embodiment of the present invention.
  • FIG. 56 is a diagram showing the infrared absorption of a gas to be measured and the radiation intensity of the infrared light source.
  • FIG. 56 is a diagram showing the configuration of a reference sample type analysis system according to an embodiment of the present invention.
  • Sono 58 is a diagram showing a configuration of a two-wavelength analysis system according to an embodiment of the present invention.
  • FIG. 59 is a diagram showing a configuration of a six-wavelength five-component analysis system according to an embodiment of the present invention.
  • FIG. 60 is a diagram showing an output pulse waveform of a power source that periodically changes power, output waveforms of infrared rays emitted from three infrared light sources, and output waveforms of two infrared sensors.
  • FIG. 61 is a diagram showing a basic configuration of an analysis system using a non-dispersive infrared absorption method.
  • FIG. 62 is a diagram showing the relationship between the absorbance of a measurement object (for example, gas), the intensity of a light source, and the transmittance of a wavelength selection element.
  • a measurement object for example, gas
  • [36] is a diagram showing an analysis system using a reference sample.
  • FIG. 64 is a diagram showing a configuration of a two-wavelength analysis system.
  • FIG. 65 is a diagram showing a system configuration of a sugar content meter.
  • FIG. 66 is a diagram showing a system configuration of a moisture meter.
  • FIG. 67 is a diagram showing a configuration of a monitoring system according to an embodiment of the present invention.
  • FIG. 68 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • FIG. 69 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • FIG. 70 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • FIG. 71 is a diagram showing a relative sensitivity with respect to wavelength of a PbSe photoconductive element.
  • FIG. 72 is a diagram showing spectral components on the surface of sunlight.
  • FIG. 73 is a diagram showing the reflection characteristics and radiation characteristics of the ground surface.
  • FIG. 1 is a diagram showing a configuration of an infrared light source 100 according to an embodiment of the present invention.
  • the infrared light source 100 includes a grating 101 and a heating element 107.
  • the lattice 101 is provided on the surface of the heating element 107.
  • the heating element 107 is, for example, a ceramic heater.
  • a SiC heater or the like may be used.
  • the lattice 101 is composed of a portion (such as a metal) 103 that functions as a negative dielectric and a portion (such as a dielectric) 105 that functions as a positive dielectric.
  • the portion (metal or the like) 103 that functions as a negative dielectric may be a metal such as aluminum, gold, or silver.
  • the portion 103 functioning as a negative dielectric may be formed by forming a metal film on the surface of an arbitrary material.
  • the portion that functions as a positive dielectric (such as a dielectric) 105 may be, for example, a hollow or a semiconductor such as silicon.
  • the period of the lattice 101 is represented by P
  • the depth of the lattice 101 is represented by D
  • the width of a portion 105 (such as a dielectric) that functions as a positive dielectric is represented by T.
  • An arrow A in FIG. 1 indicates the direction of the plane of polarization of the light emitted from the infrared light source 100, which is perpendicular to the arrangement direction of the grating. This polarization plane will be described later.
  • FIG. 2 is a diagram showing the intensity distribution of infrared rays with respect to the wavelength.
  • the horizontal axis represents wavelength and the vertical axis represents radiant energy density.
  • the radiant energy density is called intensity.
  • the alternate long and short dash line represents the intensity distribution of infrared rays emitted by the heating element 107 without the grid 101! Infrared rays are gently distributed over a wide wavelength. The infrared rays emitted by the heating element 107 have all polarization planes.
  • the solid line represents the intensity distribution of infrared rays emitted from the infrared light source 100. Represented by a solid line
  • the infrared light intensity distribution emitted by the infrared light source 100 has a plurality of peaks, and the intensity at wavelengths other than the peaks is almost zero. Multiple peaks are identified numerically from the longest wavelength, such as the first peak and the second peak.
  • the second peak wavelength is about 1/3 of the first peak wavelength in the structure shown in FIG. Also
  • the area of the part surrounded by the horizontal axis and the one-dot chain line is equal to the area of the part surrounded by the horizontal axis and the solid line when comparing light sources that emit the same power. in this way
  • the infrared light source 100 has a function of concentrating the radiant energy of the heating element on infrared rays having a specific wavelength.
  • an infrared ray having a specific wavelength has a polarization plane orthogonal to the arrangement direction of the grating 101 (see FIG. 1).
  • the ratio of the infrared ray intensity (B) emitted by the infrared light source 100 to the infrared ray intensity (A) emitted by the heating element at the first peak wavelength is shown as the infrared ray. It is called intensity ratio.
  • an infrared light source having the specific wavelength can be obtained.
  • the following describes how to fabricate an infrared light source that matches a specific wavelength with the first peak wavelength.
  • FIG. 3 is a flowchart showing a method for obtaining the grating depth D when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source. is there.
  • step S3010 the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined.
  • a specific wavelength is ⁇
  • the grating period P is
  • the intensity of infrared light emitted from the infrared light source 100 may be obtained by calculation such as the FDTD method.
  • the FDTD method simulates an electromagnetic field by differentiating Maxwell's equations.
  • step S3020 the grating depth D is changed to determine the intensity distribution of infrared rays emitted from the infrared light source 100.
  • FIG. 4 is a diagram showing a change in the intensity distribution of infrared rays emitted from the infrared light source when the grating depth D of the infrared light source is changed.
  • the lattice depth in ( ⁇ ) is larger than the lattice depth in ( ⁇ )
  • the lattice depth in (C) is larger than the lattice depth in ( ⁇ ).
  • increasing the grating depth D increases the first peak wavelength. Therefore, by adjusting the grating depth D, the force S can be made to match the first peak wavelength ⁇ to a specific wavelength ⁇ .
  • the first peak wavelength matches the specific wavelength.
  • step S3030 it is determined whether or not the first peak wavelength ⁇ matches the specific wavelength ⁇ . If not, the process returns to step S3020 and further changes the lattice depth D. If they match, the grating depth D at that time is terminated as the grating depth of the infrared light source 100.
  • Fig. 5 is a flowchart showing a method for obtaining the grating depth D and the width ⁇ of a portion (such as a dielectric) functioning as a positive dielectric when the grating period ⁇ is determined in an infrared light source. is there.
  • step S5010 when a specific wavelength is used
  • step S5020 the width ⁇ of the portion functioning as a positive dielectric (such as a dielectric) is changed, and the grating depth D and the grating depth at which the first peak wavelength matches the specific wavelength are changed.
  • the infrared intensity ratio for the case. Specifically, after setting the width ⁇ of the portion functioning as a positive dielectric (such as a dielectric) to a certain value, the first peak wavelength matches the specific wavelength according to the flowchart of FIG. Find the infrared intensity ratio for depth D and its grating depth.
  • the width ⁇ of the portion that functions as a positive dielectric such as a dielectric
  • FIG. 6 is a diagram showing a change in the infrared intensity ratio at a specific wavelength when the width of a portion (dielectric, etc.) functioning as a positive dielectric of the infrared light source is changed.
  • a portion (such as a metal) 103 that functions as a negative dielectric of the lattice 101 is gold, and a portion (such as a dielectric) 105 that functions as a positive dielectric is air.
  • the horizontal axis in Fig. 6 is the ratio of the width ⁇ of a portion that functions as a positive dielectric (such as a dielectric) for a given grating period ⁇ , and the vertical axis is at a specific wavelength that coincides with the first peak. Infrared intensity ratio.
  • the infrared intensity ratio at a specific wavelength shows a peak with respect to a specific value of the width ⁇ of a portion functioning as a positive dielectric (such as a dielectric).
  • the specific wavelength is 9.6 micrometer
  • the predetermined grating period ⁇ is 3 micrometer
  • the infrared intensity ratio shows a peak when the width ⁇ of the portion functioning as a positive dielectric (dielectric, etc.) is 0.06 micrometer (60 nanometers). [0045] Further, from FIG. 6, the infrared intensity ratio at a specific wavelength is sufficiently large.
  • the range is T ⁇ 0.5 P.
  • step S 5030 in FIG. 5 it is determined whether or not the width T of the portion functioning as a positive dielectric (such as a dielectric) is a value corresponding to the peak of the infrared intensity ratio curve in FIG. If it does not correspond to the peak, the process returns to step S5020, and the width T of the part functioning as a positive dielectric (dielectric etc.) is further changed. If it corresponds to the peak, the width T of the portion that functions as a positive dielectric (such as a dielectric) at that time is the width of the portion that functions as the positive dielectric of the infrared light source 100 (such as a dielectric). finish.
  • the width T of the portion functioning as a positive dielectric such as a dielectric
  • Figure 7 shows the change in the infrared intensity ratio at a specific wavelength when the grating period P of the infrared light source is changed with the width T of the portion functioning as a positive dielectric (dielectric, etc.) constant.
  • FIG. A portion (such as a metal) 103 that functions as a negative dielectric of the lattice 101 is gold, and a portion that functions as a positive dielectric (such as a dielectric) 105 is air.
  • the horizontal axis in FIG. 7 is the predetermined grating period P, and the vertical axis is the infrared ray intensity ratio at a specific wavelength that coincides with the first peak. As shown in Fig.
  • the infrared intensity ratio at a specific wavelength shows a peak for a specific value of the grating period P.
  • the specific wavelength is 9.6 micrometer
  • the width T of the part that functions as a positive dielectric (such as dielectric) is 400 nanometers.
  • the infrared intensity ratio shows a peak when the grating period P is near a specific wavelength.
  • the infrared intensity ratio at a specific wavelength is sufficiently large as follows.
  • the grating period P is determined, and the grating depth D and the width T of a portion (such as a dielectric) functioning as a positive dielectric so that the infrared intensity ratio is maximized at a desired specific wavelength.
  • the grating depth D is determined, the grating period P and the width T of the part (such as dielectric) functioning as a positive dielectric so that the infrared intensity ratio is maximized at the desired specific wavelength. May be determined.
  • the width T of the dielectric material portion may be determined, and the grating period P and the grating depth D may be determined so that the infrared intensity ratio is maximized at a desired specific wavelength.
  • the grating period P and the width T of the portion (such as a dielectric) functioning as a positive dielectric are determined so as to satisfy the following relationship.
  • FIGS. 52 to 54 show the method shown in FIGS. 3 and 5 when the specific wavelength is 2.5 micrometer, 4.0 micrometer, and 6 micrometer, respectively. Therefore, the obtained infrared intensity ratio of the infrared light source is shown.
  • Tables 1 to 3 show the methods shown in FIGS. 3 and 5 when the specific wavelengths are 2.5 micrometer, 4.0 micrometer, and 6.0 micrometer, respectively.
  • the specifications of the infrared light source obtained according to are shown below.
  • this grid is made up of a core made of a positive dielectric material. It can be regarded as a periodic arrangement of slab waveguides sandwiched by clad made of and having a finite length D.
  • the physical phenomenon that is the basis of the infrared light source of the present invention is a resonance phenomenon that occurs when the surface wave mode of the slab waveguide is reflected from both end faces of a finite length.
  • the positive dielectric is a substance having a positive real part of the dielectric constant
  • the negative dielectric is a substance having a negative real part of the dielectric constant.
  • the positive dielectric corresponds to a general non-metallic material, and specifically, glass, metal oxide, metal fluoride, ceramics, semiconductor, polymer, liquid, and the like. Air, other gases, and vacuum spaces are also included in the positive dielectric.
  • the negative dielectric is a metal material in a frequency lower than the plasma frequency, that is, in the visible light or infrared light region, or a material in which a metal is combined with a positive dielectric material.
  • negative dielectrics include materials that exhibit large lattice vibration resonance, such as silicon carbide and various ion crystals in the far-infrared light region, and semiconductor materials such as silicon in which carriers are excited.
  • An interface between a negative dielectric and a positive dielectric generally has an electric field perpendicular to the interface, and the electromagnetic field takes a maximum value at the interface, and decays exponentially as the distance from the interface increases.
  • a surface wave when a negative dielectric is a metal material is called surface plasmon.
  • the optical characteristic of the entire grating is one unit structure constituting the grating, that is, a slab waveguide having a finite length. Usually determined by optical properties.
  • Figure 47 shows the wave number of surface waves.
  • core thickness T Decreases as the core thickness T decreases. That is, core thickness T, angular frequency ⁇ , and surface wave wavelength ⁇
  • FIG. 48 is a diagram showing the relationship between the unit structure of the lattice and the surface wave.
  • the part that functions as a negative dielectric and the part that functions as a positive dielectric are indicated by ⁇ and B, respectively, and the negative dielectric material is indicated by diagonal lines.
  • the portion A that functions as a negative dielectric is formed of a negative dielectric material (for example, metal).
  • the portion A that functions as a negative dielectric is formed by coating a positive dielectric material (for example, plastic) with a negative dielectric material (for example, metal).
  • the length D of the waveguide is
  • the first resonance mode (first peak wavelength) and the second resonance mode (second peak wavelength) are specified by numbers. From the above, in a slab waveguide having a finite length, in each resonance mode, if one of the angular frequency ⁇ , the core thickness ⁇ , and the waveguide length D is determined, the remaining one is determined. Is determined.
  • the period ⁇ does not affect the resonance, but in reality, the conditions under which the resonance mode occurs are also affected by the period ⁇ .
  • the period ⁇ is a value close to the wavelength ⁇ in the air corresponding to the angular frequency ⁇ , the influence of the period ⁇ ⁇ ⁇ ⁇ on the conditions in which the resonance mode occurs is particularly large. Therefore, slab waveguides with a finite length are periodically arranged. In each grating mode, if one of the angular frequency ⁇ , core thickness T, waveguide length D, and period ⁇ is determined, the remaining one is determined.
  • the resonance mode in this lattice has an electric field component perpendicular to the interface between the positive dielectric and the negative dielectric
  • the plane wave having a plane of polarization perpendicular to the arrangement direction of the lattice and the electromagnetic field are symmetrical. Match. Therefore, when resonance mode is excited in the lattice.
  • this resonance mode cannot emit a plane wave having a polarization plane parallel to the arrangement direction of the grating.
  • FIG. 49 is a diagram showing the relationship between the wavelength of the infrared light source and the infrared intensity according to an embodiment of the present invention. Calculation results (left scale) and experimental results (right scale) are shown.
  • the temperature of the heating element is 250 ° C, and the radiation intensity per unit area is about 0.01 to O.lW / cm 2 /; ⁇ !!
  • the grating area of the infrared light source is about several mm square and the surface temperature is 250 °. In the case of C, at least a few meters is a detectable distance.
  • the grating area of the infrared light source was 8mm square and the surface temperature was 250 ° C, it could be detected using a general triglycine sulfate detector or even several meters away from the infrared light source.
  • the triglycine sulfate detector is an infrared detector that uses the pyroelectric effect, which is an effect of changing the charge due to heat generated by light irradiation.
  • the detectable wavelength range is particularly wide. Although it is a feature, it is less sensitive than other detectors. Infrared intensity that can be detected at a distance of several meters even with this low sensitivity detector is obtained.
  • FIG. 50 is a diagram showing the radiation directivity of the infrared light source according to one embodiment of the present invention.
  • infrared light is emitted only from the grating, and is emitted only in the half space so that it is maximized in the normal direction.
  • the radiation pattern is the same as that of a general planar light source.
  • FIG. 8 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention.
  • a lattice 101 composed of a portion (metal or the like) 103 that functions as a negative dielectric is provided on the heating element 107.
  • a portion (such as a dielectric) 105 that functions as a positive dielectric is hollow.
  • a portion (metal or the like) 103 that functions as a negative dielectric of the lattice and a heating element 107 are housed in a metal case 109.
  • the metal case 109 suppresses infrared radiation from other than the lattice 101.
  • the metal of the case 109 may be the same kind of metal as the part 103 (metal etc.) functioning as a negative dielectric of the lattice or a different kind of metal.
  • the infrared light source according to the present embodiment can be manufactured by the following procedure.
  • a metal film is formed on the heating element 107, a resist is applied, and a lattice pattern is formed by electron beam drawing or mask exposure, followed by etching.
  • a metal film is formed on the heating element 107 and imprinted by a grid-shaped mold heated to a high temperature to form a lattice pattern on the metal.
  • vacuum deposition or sputtering is used to form a metal film.
  • FIG. 9 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • a metal lattice convex portion (a portion (metal or the like) functioning as a negative dielectric of the lattice) 103 is provided on the heating element 107.
  • the portion (dielectric etc.) 10 5 that functions as a positive dielectric is hollow.
  • the metal lattice projection 103 and the heating element 107 are housed in a metal case 109.
  • the metal case 109 suppresses infrared radiation from other than the lattice 101.
  • the metal in case 109 may be the same type of metal as the negative dielectric of the lattice (metal, etc.) 103 or a different metal! /.
  • the infrared light source according to the present embodiment can be manufactured by the following procedure.
  • a metal film is formed on the heating element 107, a resist is applied, and the grid pattern is formed by electron beam drawing or mask exposure. A turn is formed, and then etching is performed.
  • a metal film for example, vacuum deposition or sputtering is used.
  • FIG. 10 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed.
  • the material 103A is a bonding material such as a ceramic adhesive or an epoxy adhesive, or a metal.
  • the positive dielectric material (dielectric etc.) 105 may be a semiconductor such as silicon.
  • An antireflection coating 121 is provided on the infrared radiation surface of the infrared light source. Anti-reflection 121 coat improves the radiation efficiency of infrared light source. Heating element 107, metal film 11
  • metal case 109 suppresses infrared radiation from other than the grating 101.
  • the metal of the case 109 may be the same kind of metal as the metal film 111 or a different kind of metal.
  • FIG. 11 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • the material 103A also serves as a heating element.
  • a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed.
  • the positive dielectric material (such as a dielectric) 105 may be a semiconductor such as silicon.
  • An antireflection coating 121 is provided on the infrared radiation surface of the infrared light source. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
  • Metal film 1 is provided on the infrared radiation surface of the infrared light source. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
  • metal case 109 suppresses infrared radiation from other than the lattice 101.
  • the metal in case 109 may be the same type of metal as metal film 111 or a different type of metal.
  • FIG. 12 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • a positive dielectric material (such as a dielectric) 105 such as a semiconductor also serves as a heating element.
  • a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed.
  • An anti-reflection coating 121 is provided on the infrared radiation surface of the infrared light source. With anti-reflection coating 121, The radiation efficiency of the infrared light source is improved.
  • the metal film 111, the material 103A, the positive dielectric material (such as a dielectric) 105, and the antireflection coating 121 are housed in a metal case 109.
  • the metal case 109 suppresses infrared radiation from other than the lattice 101.
  • the metal of case 109 can be the same or different metal as metal film 111.
  • the infrared light source according to the embodiment shown in FIGS. 10 to 12 can be manufactured by the following procedure.
  • a metal is deposited on a positive dielectric material (such as a dielectric) 105, a resist is applied, a lattice pattern is formed by electron beam drawing or mask exposure, and a metal film 111 and a material 103A are deposited. Thereafter, the film formation surface may be polished.
  • the heating element 107 is used, the material 103A is connected to the heating element 107 with an adhesive or the like. Thereafter, a metal film is formed around the periphery to form the case portion 109.
  • vacuum deposition or sputtering is used for forming a metal film.
  • the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric can be reduced to 30 nanometers.
  • the grating depth D can be increased up to about 50 times the width T of the dielectric material part (dielectric, etc.).
  • FIG. 13 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • the lens 131 has one surface that is flat and the other surface is convex, and the infrared light source 100 is provided on the convex surface so as to emit infrared rays toward the lens 131. Infrared rays emitted from the infrared light source 100 are collected by the lens 131.
  • an antireflection coating 121 is provided on the plane of the lens 131. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
  • FIG. 14 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • the infrared light source 100 emits infrared rays toward the lens 131 on the flat surface of the lens 131 having one surface that is flat and the other surface convex. Infrared rays emitted from the infrared light source 100 are emitted by the lens 131.
  • An antireflection coating 121 is provided on the convex surface of the lens 131. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
  • FIG. 15 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • a lens 101 is provided on the convex surface of the lens 131 having one surface which is flat and the other surface is convex.
  • the heat generating body 107 is disposed at a position facing the convex surface of the lens 131.
  • Infrared light emitted from the infrared light source 100 is converted into a specific wavelength by the grating 101 and condensed by the lens 131. Is done.
  • An antireflection coat 121 is provided on the plane of the lens 131. The anti-reflection coating 121 improves the radiation efficiency of the infrared light source.
  • FIG. 16 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
  • a grating 101 is provided on the plane of the lens 131 having one surface that is a flat surface and the other surface that is a convex surface. Infrared light emitted from the infrared light source 100 is converted into a specific wavelength by the grating 101 and emitted by the lens 131.
  • An antireflection coating 121 is provided on the convex surface of the lens 131. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
  • the lens of the embodiment shown in FIGS. 13 to 16 has a plano-convex shape.
  • the grating 101 may be provided on either surface of the plano-concave and concave-convex lenses.
  • FIG. 17A is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • a plurality of gratings having different specific wavelengths are provided on a single chip heating element.
  • the lattice depth D is constant, the lattice period P, and the width T of a portion that functions as a positive dielectric (such as a dielectric) is changed in each region. It is possible to change the peak wavelength of the region and increase the electric field strength.
  • the lattice period P may be constant in each region. According to this embodiment, an infrared light source having a plurality of specific wavelengths can be obtained with one chip.
  • FIG. 17B is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • a plurality of gratings having different specific wavelengths are provided on a single chip heating element.
  • the width T of the portion functioning as a positive dielectric (dielectric, etc.) is constant, and the lattice period P and the lattice depth D are changed in each region. It is possible to change the peak wavelength of the region and increase the electric field strength.
  • the lattice period P may be constant in each region.
  • an infrared light source having a plurality of specific wavelengths can be obtained with one chip.
  • FIG. 18 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • the depth D is varied while the grating period P and the width T of the portion functioning as a positive dielectric (dielectric, etc.) are constant!
  • FIG. 20 is a diagram conceptually showing the intensity distribution of infrared rays emitted by the embodiment of FIG. According to this embodiment, an infrared light source that emits infrared light in a predetermined wavelength band is provided. can get.
  • FIG. 19 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
  • a plurality of grids having different directions are provided on a one-chip heating element.
  • infrared light sources having a plurality of specific wavelengths with different directions of polarization can be obtained.
  • an infrared light source having a specific wavelength which has a simple structure and can be applied to a wide range of fields, can be obtained.
  • FIGS. 21 to 45 a portion functioning as a negative dielectric and a portion functioning as a positive dielectric are denoted by A and B, respectively. Negative dielectric materials are indicated by diagonal lines.
  • the lattice portion is formed directly on the flat surface formed on the substrate.
  • Gold or the like (lb) is formed on the surface of a substrate (la) such as glass, a resist is applied thereon, and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure or the like.
  • a lattice is produced on the surface by dry etching or the like.
  • a master lattice is directly imprinted to create a lattice on the surface.
  • a structure in which a resin (plastic) or glass is sandwiched between the substrate and gold may be used.
  • the heating element (lc) is bonded to the substrate (la).
  • An epoxy or ceramic adhesive (le) may be disposed between the heating element and the substrate. Covering the part of the substrate and the heating element other than the part corresponding to the grating with a metal (Id) having a high reflectance of infrared light suppresses unnecessary infrared light emission and improves energy efficiency.
  • FIG. 51 is a diagram showing the relationship between the surface temperature of the heating element and the intensity of infrared rays emitted from the heating element.
  • A2 in Fig. 51 shows the case where the surface of the heating element is covered with gold, and A1 shows the case where it is not covered. From FIG. 51, it can be confirmed that the intensity of infrared rays emitted from the heating element is suppressed by depositing gold on the heating element surface.
  • the heating element temperature is 250 ° C and the grid area is several square mm, it is about 0.01 to 0.1 W m2 / um.
  • a resist (2b) is applied to a substrate (2a) (resin, metal, semiconductor, etc., Si substrate in this embodiment) for forming a lattice portion (FIG. 22 (a)).
  • a lattice pattern is formed by electron beam drawing, interference exposure, or mask exposure (Fig. 22 (b)), and an array of protrusions is produced by dry etching or the like (Fig. 22 (c)).
  • Nano-imprinting technology may be used in the process of manufacturing the above protrusion array.
  • the film thickness at this time is preferably several times the skin depth (20 to 30 nm for Au) on all surfaces.
  • the atomic layer deposition (ALD) method with a highly uniform film thickness is effective.
  • Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating.
  • an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after the Au film formation.
  • a heating element (2d) (such as a heating element on which a resistance line pattern of the heater is formed) is bonded to the lattice produced as described above (Fig. 22 (e)).
  • a heat-resistant epoxy or ceramic adhesive (2e) for bonding. If the adhesive is viscous, the grid will not be sufficiently filled with the adhesive. Therefore, it is preferable to use an adhesive that has a good fillability in the grid. In addition, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible. Further, in this embodiment, the adhesive also serves to maintain electrical insulation between the heater pattern of the heating element and Au.
  • the structure of the portion to be filled with the adhesive is fine, so it is preferable to perform a vacuum defoaming treatment before bonding so that bubbles do not enter the adhesive.
  • the Si substrate (2a) is removed from the Au surface by mechanical peeling or etching (FIG. 22 (f)).
  • a mixed solution of HF: HN03: CH3COOH (or H20) or a KOH aqueous solution is preferably used.
  • the etching rate can be greatly changed by the concentration of CH3COOH (or H20).
  • the etching rate is anisotropic in the crystal plane orientation, and in the case of silicon, it is possible to obtain an etching rate of several m / min on the 100 and 110 planes.
  • the Si substrate When the Si substrate is mechanically peeled in FIG. 22 (f), the Si substrate can be used a plurality of times by returning to FIG. 22 (d).
  • the correctly transferred Au surface can change its shape due to the diffusion of Au atoms during long-term use, or foreign matter can be deposited in the cavity, which can change the radiation characteristics of the light source. There is sex. Therefore, it is effective to fill the cavity with a positive dielectric material (2f) such as Si02 or resin to improve stability (Fig. 22 (g)).
  • Dielectric filling methods include CVD, ALD, Si02, Si3N4, A1203, Parylene, etc., vapor deposition, vacuum deposition, sputtering, etc., spin-on-glass (SOG), polyimide, etc. There are coats' heat curing and so on.
  • the infrared light source is completed, and when current is passed through the heating element, infrared light is emitted from the Au surface in the direction of the arrow in the figure.
  • the power of installing a heating element on the opposite surface where infrared rays radiate is used.
  • the heating element is installed on the surface where infrared rays are emitted by using another manufacturing flow, or the grid itself ( A structure using 2c) as a heating element may be used.
  • An important advantage of the method of removing the protrusion array after depositing Au on the protrusion array is that the surface of the Au that finally comes to the surface was in close contact with the smooth Si protrusion array. Therefore, a smooth Au surface can be obtained no matter what method is used to deposit the Au film.
  • the outer shape of the Au surface is an exact transfer of the outer shape of the projection array. Therefore, it is possible to realize the infrared radiation characteristics exactly as designed.
  • the surface of Au that appears on the surface during film formation is generally severely uneven due to the growth of crystal grains. .
  • the thickness of the Au film generally differs between the top, side and bottom surfaces of the protrusions, it is not easy to make the Au film profile as designed. This surface will eventually become a bonding surface with the heating element and will not appear on the surface.
  • thermoplastic resin or rubber substrate (3a) for the mold, a resist is applied to the Si substrate and the like, and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc., and the resist is directly applied to the mold surface, and electron beam drawing, interference exposure, mask exposure is performed. It can be produced by a method of forming a lattice pattern by light or the like, a method of forming a fine pattern by dry etching, or a method of forming by mechanical processing.
  • thermoplastic resin a resin having heat resistance can be used.
  • injection molding, nanoimprinting molding, or the like can be used.
  • Au or the like (3c) is formed on the surface of the thermoplastic resin or the like (FIG. 23 (b)).
  • the film thickness of Au to be deposited must be several times the skin depth (20 to 30 nm for Au) on all surfaces.
  • the atomic layer deposition (ALD) method having a highly uniform film thickness is effective as the film forming method.
  • Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating.
  • an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after Au deposition.
  • the lattice plane side of the resin substrate and the fixed substrate (3e) are bonded (FIG. 23 (c)).
  • a heat resistant epoxy resin or ceramic adhesive (3d) for bonding.
  • the adhesive is viscous, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion.
  • the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
  • the material of the fixed substrate to be bonded may be any metal, semiconductor, ceramic, glass, or the like as long as the lattice shape can be finally maintained.
  • a metal having a higher reflectivity of infrared light it is not so important to cover the periphery.
  • the substrate is coated with a metal having a higher reflectivity of infrared light, a higher suppression function of unnecessary infrared light can be expected.
  • the infrared light source can be obtained by removing the thermoplastic resin substrate (3a) by dissolution with an organic solvent such as toluene, melting by high-temperature heating, ashing with oxygen plasma, mechanical peeling, or the like. ( Figure 23 (d)). Finally, by forming an electrical wiring directly on the Au film (3c) on the lattice surface and passing an electric current, infrared rays are emitted in the direction of the arrow in the figure. Alternatively, a heating element may be bonded to the fixed substrate (3e).
  • the Au layer (3c) itself formed on the lattice portion acts as a heating element.
  • a resin or rubber protrusion array may be used instead of the Si protrusion array.
  • Such a projection array can also be produced by transfer from another master mold.
  • the power that can be used to mechanically peel off either resin can be dissolved in an appropriate organic solvent such as toluene, xinone, or butanone.
  • a mold When a mold is used as a master mold, a resist is applied to the mold surface, a lattice pattern is formed by a method such as electron beam drawing, interference exposure, or mask exposure, and a fine pattern is formed by dry etching or the like. To do.
  • a master mold can be made using a Si substrate, etc., and the mold can be taken using a nickel electroplater.
  • An important feature of this embodiment is that if only one master mold is produced, a rectangular shape with accurate dimensions and shape that is inexpensive and reproducible using the established plastic molding technology. This means that the lattice can be mass-produced.
  • the stability of the Au surface shape can be improved by filling the cavity with a positive dielectric material as shown in FIG. 22 (g).
  • an SOI substrate is used in which a Si02 layer (4b) is formed on a Si substrate (4a) and an S leakage (4g) is formed thereon.
  • the surface orientation of the outermost Si layer (4g in Fig. 24) is set to the 110 direction, and the thickness is set to the depth of the lattice to be produced.
  • Apply resist (4c) to the SOI substrate Fig. 24 (a)
  • a lattice pattern is formed by drawing a child line, interference exposure, mask exposure, etc. (Fig. 24 (b)).
  • the Si layer progresses perpendicularly to the surface due to the difference in the etching rate depending on the crystal plane, and when it reaches the Si02 layer, the etching is finished, and a Si rectangular lattice can be produced (Fig. 24 ( c)).
  • Au (4d) is deposited on the Si lattice (Fig. 24 (d)).
  • the film thickness at this time should be several times the skin depth (20-30 nm for Au) on all surfaces.
  • the atomic layer deposition (ALD) method with a highly uniform film thickness is particularly effective.
  • a film can be easily obtained, a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintering, and an electrochemical method such as electrolytic plating and electroless plating are used.
  • the lattice portion is filled with an adhesive (4e) such as an epoxy resin, and the heating element (4f) (in this example, a ceramic heater) is bonded (FIG. 24 (e)).
  • an adhesive (4e) such as an epoxy resin
  • the heating element (4f) in this example, a ceramic heater
  • the ceramic heater shown as an example in Fig. 24 has a metal resistance wire pattern formed on a ceramic substrate by screen printing or the like.
  • the adhesive used here is viscous or the like, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion. Also, when the adhesive becomes thicker, problems such as peeling may occur due to differences in the linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
  • the Si02 layer (4b) is etched with an aqueous HF solution, some! /, Or a buffered HF solution, to expose the Au in contact with SiO 2 (FIG. 24 (f)).
  • the power of installing a heating element on the opposite surface from which infrared radiation is emitted is emitted.
  • the heating element is installed on the surface from which infrared radiation is emitted, or part c is conductive.
  • the structure with a lattice material itself as a heat generating element is also acceptable.
  • an SOI substrate in which a Si02 layer (5b) is formed on a Si substrate (5a) and a Si layer (5e) is formed thereon is used.
  • the surface orientation of the outermost Si layer (5e) is the 110 direction, and the thickness is set to the depth of the lattice to be fabricated.
  • the plane orientation of the Si substrate (5a) is 100 directions.
  • a resist (5c) is applied to the SOI substrate (Fig. 25 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (Fig. 25 (b)).
  • a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc.
  • the resist (5c) is similarly applied to the back surface of the Si substrate to form an opening pattern.
  • a film of Au or the like is formed on the surface of the Si layer so as to be deposited also on the side surface and bottom surface of the groove (FIG. 25 (d)).
  • the film thickness at this time must be several times the skin depth (20-30 nm for Au) on all surfaces!
  • the atomic layer deposition (ALD) method with a highly uniform film thickness is particularly effective.
  • Methods for easily obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
  • the Au layer (5d) itself acts as a heating element.
  • This embodiment is different from the second embodiment shown in FIG. 22 and the fourth embodiment shown in FIG. There are few steps and the structure is simple.
  • the stability of the Au surface shape can be improved by filling a cavity with a positive dielectric material as shown in Fig. 22 (g).
  • a Si substrate having a thermal oxide film (Si02 film) (6b) thicker than the lattice depth on the surface is provided.
  • the plane orientation of the Si substrate is 100 directions.
  • a resist (6c) is applied to the substrate (Fig. 26 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (Fig. 26 (b)).
  • An array of protrusions is fabricated on the Si02 surface by dry etching (Fig. 26 (c)).
  • a resist (6c) is applied to the back surface of the Si substrate to form an opening pattern (FIG. 26 (d)).
  • film deposition is particularly effective with high uniformity of film thickness and atomic layer deposition (ALD). Relatively thick / and easy to obtain a film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
  • the Au surface also forms a rectangular lattice on the opposite surface, so that infrared light of another wavelength may also be emitted there.
  • a filler epoxy adhesive, ceramic adhesive, metal, etc.
  • (6e) is filled so as to cover the recess from the top of the Au film, and the upper force also forms Au (6f). Film and suppress unwanted infrared radiation (Fig. 26 (g))
  • the Au layer (6d) itself formed on the lattice portion acts as a heating element.
  • the feature of the present embodiment is that the bonding surface of Si02 and Au is used as a radiation surface, so that it is smooth and It is that an accurate surface of a single shape can be used as a radiation surface. Furthermore, since Si02 remains embedded in the cavity, the infrared radiation characteristics exactly as designed are maintained stably for a long period of time despite the fact that electret migration is likely to occur.
  • Embodiment 7 (Fig. 27)
  • a Si substrate (7a) having a thermal oxide film (Si02) (7b) equivalent to the lattice depth on the surface is used.
  • the plane orientation of the Si substrate is 100 directions.
  • a resist (7c) is applied to the substrate (FIG. 7 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 27 (b)).
  • Angled grid patterns can be controlled by controlling the drawing speed and temperature treatment before and after processing.
  • a grating with a taper is created by controlling the etching angle during etching (Fig. 27 (c)).
  • a film such as Au (7d) is deposited in this lattice groove by a film deposition method (Fig. 27 (e)).
  • a film deposition method in addition to the vacuum deposition method and the sputtering method, an atomic layer deposition (ALD) method with particularly high film thickness is effective.
  • ALD atomic layer deposition
  • Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating.
  • an adhesion layer such as Cr may be formed in order to ensure adhesion with the adhesive applied after Au is embedded.
  • an infrared light source is completed by removing the Si substrate (7a) from the surface of the lattice composed of Au and Si02 by mechanical peeling, etching, laser lift-off, etc., and forming electrical wiring ( Fig. 2 7 (g)) 0
  • the power to install a heating element on the opposite surface from which infrared radiation is emitted By using another manufacturing flow, a heating element is installed on the surface from which infrared radiation is emitted, or a grid (7 d) A structure using itself as a heating element may be used.
  • Embodiment 8 (Fig. 28)
  • a Si substrate (8a) having a surface Au (8b) equivalent to the lattice depth is used.
  • the plane orientation of the Si substrate is 100 directions.
  • a resist (8c) is applied to the substrate (FIG. 28 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 28 (b)).
  • a lattice with a tapered surface is fabricated by dry etching (Fig. 28 (c)).
  • an oxide film (Si02) or the like is formed in this lattice groove by a film formation method, and is flattened until the Au surface appears by fluid polishing or MCP (Mechanochemical polishing), and then an Au film ( 8b) is formed (FIG. 28 (e)).
  • the film formation method is particularly effective with a highly uniform film thickness / atomic layer deposition (ALD) method.
  • An adhesion layer such as Cr may be formed to ensure adhesion with the adhesive applied to Au.
  • a heating element (8g) in which gold or the like (8f) is formed on a surface other than the bonding surface is bonded with an adhesive (8e) (FIG. 28 (f)).
  • a heat-resistant epoxy or ceramic adhesive is used for bonding.
  • the adhesive is viscous, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion. Further, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
  • an infrared light source is completed by removing the Si substrate (8a) from the surface of the lattice composed of Au and Si02 by mechanical peeling, etching, laser lift-off, etc., and forming electrical wiring ( Figure 28 (g)).
  • the force of installing a heating element on the opposite surface from which infrared rays are radiated is installed on the opposite surface from which infrared rays are radiated.
  • the heating element is installed on the surface that radiates infrared rays, or a scale (8b )
  • a structure using itself as a heating element may be used.
  • a Si substrate (9a) having a surface equivalent to the lattice depth, a thin layer, and a thermal oxide film (Si02) (9b) is used.
  • the plane orientation of the Si substrate is 100 directions.
  • a resist (9c) is applied to the substrate (FIG. 29 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 29 (b)).
  • Si02 is processed by dry etching to produce an array of protrusions on the surface (Fig. 29 (c)).
  • Au (9d) is deposited on the lattice surface (Fig. 29 (d)).
  • the film thickness of Au is all The thickness of all surfaces should be several times the skin depth (20 to 30 mm for Au).
  • the atomic layer deposition (ALD) method with a highly uniform film thickness is effective as the film forming method.
  • Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating.
  • an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after the Au film formation.
  • a heating element (9f) is bonded to the surface on which Au or the like is formed (FIG. 29 (e)).
  • a heat-resistant epoxy or ceramic adhesive (9e) for bonding.
  • the adhesive has viscosity or the like, filling of the adhesive into the lattice portion becomes insufficient, so it is preferable to use an adhesive that has good filling properties into the lattice portion.
  • the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
  • this adhesive application process is preferably vacuum defoamed before bonding! /.
  • the feature of the present embodiment is that an infrared light source filled with Si02 to the desired depth in the lattice groove is realized by adjusting the thickness of the initial thermal oxide film and the processing depth such as dry etching. It is to do.
  • the structure in which Si02 is just filled to the surface is a special example.
  • the plasma emission spectrum and mass spectrometer can be used in the reaction vessel. It is better to stop the etching (endpoint method) by detecting the moment when the etching reaches the Si layer from the Si02 layer by gas analysis.
  • a special substrate such as an SOI substrate is required without relying on dry etching conditions. Therefore, it is possible to accurately produce a lattice with good reproducibility.
  • a pair of rollers (10a, 10b) with an array of grooves on one surface is used and heated and pressed to emboss an array of protrusions on one side of a plastic sheet (Fig. 30 (a )).
  • the technology to transfer a fine structure such as a hologram to polyester, polychlorinated butyl, polypropylene, etc. with a thickness of about 10-100 m is well established.
  • A1 or Ag (10d) is deposited on this lattice by vacuum evaporation or sputtering.
  • a protective layer (10e) such as polyester or polypropylene is formed on the film formation surface (FIG. 30 (c)).
  • This layer may be used as an adhesive layer and attached to the surface of another object like a seal.
  • An infrared light source can be realized by bonding this sheet to an arbitrary heating element (10f) to form electrical wiring (Fig. 30 (d)).
  • the flexible sheet itself can be used as an infrared light source.
  • a flexible infrared light source can also be realized by adhering to this sheet with a rubber heater in which a resistance wire pattern is embedded in the silicone rubber sheet.
  • FIG. 31 shows a specific embodiment of a thermally insulated infrared light source.
  • the infrared light source is produced by the method shown in FIG.
  • Resist (1 lc) is applied to both sides of the SOI substrate (l la, l ib, 1 le) (Fig. 31 (a)), and an opening pattern is formed by electron beam drawing, mask exposure, etc. (Fig. 31). (b))). Next, it is processed to a depth that reaches the Si substrate (11a) by dry etching or the like to form an opening that separates the lattice portion and the outer peripheral portion (FIG. 31 (c)).
  • a resist is applied again, a lattice pattern is formed in the central portion by electron beam drawing, interference exposure, mask exposure, and the like, and a lattice is produced in the infrared radiation portion by processing by wet etching or the like (Fig. 31 (d)).
  • a resist is applied again, and a pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. Then, deposit Au, etc. (l id), which will be the main body of the electrode and infrared light source (Fig. 31 (e)). There are two electrode pads on the outer circumference, which are connected to the grid through two beams.
  • the film thickness of the Au film must be several times the skin depth (20 to 30 nm for Au) on all surfaces.
  • the atomic layer deposition (ALD) method with a highly uniform film thickness is effective as the film forming method.
  • Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
  • the Au layer (l id) itself formed on the lattice portion acts as a heating element.
  • the Balta structure like 24 It is overwhelmingly smaller than the Balta structure like 24. If the heat capacity is reduced, the current required to reach the same temperature can be reduced, and the temperature when the current is changed at high speed, that is, the followability of the infrared light intensity is improved. In other words, an infrared light source capable of high-speed operation can be realized.
  • the grid is further limited to the central region of the membrane, and that region is removed leaving a minimum number of beams to support from the surroundings, the grid is thermally insulated from the surroundings. .
  • Such a structure is generally used in the field of micromachines.
  • the lattice portion can be set to a high temperature while keeping the surrounding substrate close to room temperature. This can greatly improve the mountability of the infrared light source.
  • the infrared light source chip can be easily used by die bonding to a metal package, connecting the electrode terminal of the package and the electrode pad of the chip by wire bonding, and vacuum-sealing.
  • Figure 31 (h) shows the state before the cap is put on.
  • thermally insulated infrared light sources as shown in Fig. 31 are arranged on the same chip, they operate independently without being influenced by each other. Therefore, light sources that emit infrared light with different wavelengths or different polarizations can be integrated on a single chip.
  • the wavelength variable infrared light source can be scanned electrically without moving parts. Is realized.
  • Such a light source is a portable and small-sized device with low power consumption, and is useful for measuring the infrared spectrum of any substance and identifying the substance. See embodiments 16 and 17.
  • peripheral circuits such as a modulation circuit, a power distribution circuit, and a temperature feedback circuit required for driving the same are also provided. Can be installed. See embodiment 18.
  • infrared detectors such as porometers and thermopiles can be mounted on a Si chip, so an infrared light source, infrared detector, and further on a single Si chip. Even necessary signal processing circuits can be integrated. See embodiment 19.
  • FIG. 32 is a diagram showing a grid arrangement of an infrared light source in which a plurality of types of grids are provided on one heating element.
  • One type of grating is a grating that emits one specific wavelength of infrared light polarized in one direction.
  • Multiple types of gratings are gratings that emit infrared light with different polarization directions or specific wavelengths.
  • Fig. 32 (a) is a diagram showing an arrangement of a grid in which a plurality of types of grids are provided on one heating element, and one type of grid occupies one region on the heating element.
  • Fig. 32 (b) shows that a plurality of types of grids are provided on one heating element, and one type of grid is divided into a plurality of fine! It is a diagram showing the arrangement of! A plurality of types of lattices are periodically arranged on the checkerboard pattern so as to have the same area.
  • Fig. 32 (c) is a diagram showing a grid arrangement in which the ratio of the area of each type of grid is adjusted. Due to the strong wavelength dependence of the Planck rule, gratings with different specific wavelengths generally differ in radiant intensity per unit area.
  • the transmittance and reflectance of the optical system that guides the emitted infrared light generally have wavelength dependence and polarization dependence
  • the ratio of the intensity of infrared light emitted from different types of gratings is It changes when you reach the place where it is used. Therefore, the ratio of the area of each type of grating is appropriately adjusted so that the radiation intensity from each type of grating has a desired ratio.
  • the ratio of emissivity of each type of grating is adjusted appropriately while the area ratio remains constant.
  • Fig. 32 (d) is a diagram showing an example of an arrangement including at least two arrangements of Figs. 32 (a), (b), and (c).
  • FIG. 33 is a diagram showing a method of manufacturing an infrared light source package.
  • An infrared light source package includes one or a plurality of infrared light sources and a terminal for supplying power from the outside. Each of the plurality of infrared light sources has a heating element, and power can be supplied to each heating element independently.
  • One form of infrared light source package is sealed in a metal, ceramic, glass or other housing, and the inside is a vacuum, or inert gas such as N2, Ar, ⁇ , or Xe, or other gases.
  • a getter material that encloses and adsorbs unnecessary gas as needed is also enclosed.
  • the window material is made of infrared transmitting material such as Si, Ge, sapphire, ZnS, BaF2, CaF2, PbF2, and so on.
  • Another form of infrared light source package is one that has no window material, is not sealed, and the infrared light source is exposed to the outside world.
  • the ceramic substrate (13b) on which the heater pattern (13c) is printed is placed on the hermetic seal (13a), and the electrode (13d) and the heater pattern (13c) are coupled by wire bonding. Adhere the grid (13g) to the ceramic substrate (13b).
  • the detailed manufacturing method is as follows.
  • step 1 an adhesive (13e) is applied onto the ceramic substrate (13b). In addition, 13 g of metal grid is bonded.
  • step 2 an insulating layer (13h) is coated on the ceramic substrate (13b). In addition, apply adhesive 13e. Furthermore, a metal grid (13 g) is adhered. [0184] In step 3, an adhesive 13e is applied to the surface of the ceramic substrate (13b) opposite to the surface on which the heater pattern 13c is disposed. Furthermore, a metal grid (13 g) is adhered.
  • the inside of the cap (13i) should be filled with inert gas (Ar, ⁇ , etc.), halogen gas (12, Br2), etc.! /.
  • FIG. 34 shows various forms of the infrared light source package.
  • the window (14j) may have a lens function.
  • the material of the window (14j) is Si, Ge, sapphire, Zn Se, BaF2, CaF2, PbF2, etc. that transmit infrared rays.
  • FIG. 35 is a diagram showing a configuration of an infrared light source manufactured using a semiconductor chip (15d). By making each integrated infrared light source have a different polarization direction, different wavelength, and different area, various combinations of infrared light sources can be fabricated on the semiconductor chip (15d). On the semiconductor chip (15d), an electrode pad (15a), a lattice portion (15b), and a thermally insulated region (15c) are provided. The opening (15c) for thermal insulation is filled with a hollow or thermal insulating material.
  • the thermal time constant can be reduced, enabling high-speed modulation.
  • an independent infrared light source can be integrated on one chip.
  • FIG. 36 shows a one-dimensional array of infrared light sources. 1 chip infrared light source emits Infrared wavelength
  • each infrared light source By switching each infrared light source electrically, it becomes a wavelength scanning light emitting device with no moving parts.
  • Compact, multi-wavelength infrared light source, infrared wavelength scanning element, infrared spectrometer, etc. can be realized by integrating and arraying infrared light sources.
  • FIG. 37 shows a two-dimensional array of infrared light sources.
  • each infrared light source By switching each infrared light source electrically, it becomes a wavelength scanning light emitting element having no moving parts.
  • Compact, multi-wavelength infrared light source, infrared wavelength scanning element, infrared spectrometer, etc. can be realized by integrating and arraying infrared light sources.
  • FIG. 38 is a diagram showing a configuration of an apparatus in which an array of an infrared light source (18a), an electrode pad (18b), a modulation circuit (18c), a temperature control circuit (18d), a noise cut circuit (18e), and the like are integrated. . If an electronic circuit is integrated in a chip, the number of electrode pads can be reduced, so that the space can be reduced.
  • Figure 39 shows an infrared light source (27b) and infrared detector (27c) mounted on a single chip (27d). It is a figure which shows the structure of the light projection / reception element. Gas is introduced from the gas introduction part (27f) into the measurement cell (27e) and discharged from the gas discharge part (27g). The gas concentration can be measured by emitting an infrared light source having a wavelength matching the absorption wavelength of the gas to be analyzed and detecting the reflected light from the reflecting mirror (27d). By providing the infrared light source (27b) and the infrared detection element (27c) on one chip, a compact analysis system can be obtained.
  • Embodiment 20 is the same as Embodiment 8.
  • the manufacturing method is mainly described.
  • design methods and functions are described.
  • Fig. 40 shows a part functioning as a negative dielectric (19a) and a part functioning as a positive dielectric (
  • 19b is a diagram showing a cross section of a lattice in which the boundary surface with the lattice surface forms a predetermined angle ⁇ with the lattice surface.
  • Fig. 41 shows a method for obtaining a grating depth D and a predetermined angle ⁇ when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source. It is a flowchart which shows.
  • step S20010 the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined.
  • a specific wavelength is ⁇
  • step S20020 the grating depth D and the predetermined angle ⁇ are changed to obtain the intensity distribution of infrared rays emitted from the infrared light source.
  • step S20030 it is determined whether or not the first peak wavelength ⁇ matches the specific wavelength ⁇ . If not, the process returns to step S3020 and further changes the lattice depth D. If they match, the grating depth D and the predetermined angle ⁇ at that time are set as the grating depth and the predetermined angle of the infrared light source.
  • FIG. 42 is a diagram showing a relationship between a predetermined angle and an infrared intensity ratio. The grid data is shown below.
  • an infrared intensity ratio higher than that of a grating having a predetermined angle of 90 degrees can be obtained.
  • the force is greater than 90 degrees, which is shown when the predetermined angle is 90 degrees or less, an infrared intensity ratio higher than the infrared intensity ratio of the grid having the predetermined angle of 90 degrees is obtained.
  • Embodiment 21 is a lattice in which one or both of a part A functioning as a negative dielectric and a part B functioning as a positive dielectric are formed of a plurality of substances.
  • Figure 43 shows that part B that functions as a positive dielectric is formed of a positive dielectric material (21b) such as Si and air (hollow), and part A that functions as a negative dielectric is gold. It is a figure which shows the lattice formed from (21a).
  • Figure 44 shows that part B that functions as a positive dielectric is formed of a positive dielectric material (22b) such as Si and air (hollow), and part A that functions as a negative dielectric is gold. It is a figure which shows the grating
  • FIG. 45 is a diagram showing the relationship between the wavelength and the absorption rate when the ratio of D1 to D2 in the lattice shown in FIG. 43 is changed.
  • Increasing the Si depth D1 of the part B that functions as a positive dielectric shifts the first peak wavelength to the longer wavelength side. Therefore, when determining the grating depth D required to obtain a specific wavelength, if a positive dielectric material with a refractive index greater than air is used, the grating depth is compared with the case where all the grating portions are air. D can be reduced And the lattice processing becomes easier.
  • the force S can be adjusted by adjusting the wavelength peak of the first peak wavelength by adjusting the depth ratio (D 1: D2) of at least two kinds of materials having different refractive indexes in the grating portion.
  • the carbon dioxide concentration is detected by detecting the attenuation rate of infrared light of that wavelength.
  • a laser heater or the like is conventionally used as a light source.
  • the absorption of carbon dioxide is large, and there is no laser at a wavelength, so there are many cases where a laser with a near wavelength is used.
  • the light intensity at wavelengths where absorption of carbon dioxide is large is small relative to the total energy.
  • Infrared spectrometers have conventionally used silicon carbide light sources, halogen light sources, ceramic light sources, and the like, and the light from these light sources is dispersed using a filter or a diffraction grating.
  • the infrared light source according to the present invention the load on the filter and the diffraction grating is reduced, and the efficiency is improved.
  • Infrared analyzers use a light source such as a silicon carbide light source, a halogen light source, or a ceramic light source to separate specific light components with an infrared spectrometer, irradiate the sample, and measure the amount of reflection and transmission of the sample. To analyze the state of the specimen.
  • a light source such as a silicon carbide light source, a halogen light source, or a ceramic light source to separate specific light components with an infrared spectrometer, irradiate the sample, and measure the amount of reflection and transmission of the sample.
  • the load on the infrared spectrometer is reduced, and in some cases, the infrared spectrometer is unnecessary.
  • the road surface is irradiated with infrared rays of 2 to 7 micrometers, which is the absorption wavelength of moisture, and information on the road surface condition is acquired by observing the amount of reflection with a sensor.
  • the road surface is irradiated with infrared light having a wavelength that is absorbed by the soil, and the amount of reflection is observed by a sensor to obtain information on the road surface condition.
  • a light-emitting diode or a laser diode is used as a light source.
  • These light sources exist only at specific wavelengths.
  • a light source having an arbitrary wavelength can be obtained. Therefore, it is possible to obtain more information regarding the road surface condition with the force S.
  • Medical instruments that irradiate the human body with 8 to 14 micrometer far infrared rays are used.
  • a lamp, a light emitting diode, a laser diode, or the like is used.
  • a lamp since the wavelength range of light is wide, most of the input power is emitted as unnecessary light.
  • the infrared light source according to the present invention a light source having a desired wavelength can be obtained, so that treatment can be performed efficiently.
  • the sugar content meter measures sugar content or acidity by irradiating an object with infrared light and measuring the amount of transmission or absorption.
  • halogen lamps, light emitting diodes, laser diodes, and the like are used as light sources. If a halogen lamp or the like is used, a cooling device is required and the size of the device increases.
  • Light emitting diodes and laser diodes exist only at specific wavelengths. By using the infrared light source according to the present invention, a light source having a desired wavelength can be obtained, so that more information on sugar content can be acquired.
  • the moisture meter measures the amount of moisture by irradiating the object with infrared light and measuring the amount absorbed by water molecules.
  • a halogen lamp or the like is used as the light source. Because halogen lamps have a wide light wavelength range, most of the input power is emitted as unnecessary light.
  • a light source having a desired wavelength is obtained. Therefore, the water content can be measured efficiently.
  • It consists of a projector equipped with an infrared light source and a light receiver equipped with an infrared light sensor.
  • the infrared light emitted from the light source is shielded by an object in the optical path and is not detected by the sensor, the presence of the object is detected.
  • In-vehicle radars are used, for example, to detect the position of preceding vehicles and obstacles by emitting millimeter waves and infrared light and measuring their reflections.
  • on-vehicle radars instead of expensive millimeter-wave radars, light-emitting diode and laser diode light source radars are beginning to be used. There are only light emitting diodes and laser diodes of a specific wavelength.
  • the infrared light source according to the present invention, a light source having a desired wavelength can be obtained, so that more information can be acquired.
  • Infrared heater combined with an infrared lamp and gold-coated reflector It is used to heat objects without contact.
  • Conventional infrared lamps irradiate objects with infrared light in the V, wide, and wavelength range based on Planck's law. Infrared light with a wavelength that is difficult for the object to absorb is dissipated unnecessarily without being effectively used for heating, resulting in low efficiency.
  • the infrared light source according to the present invention can be produced so as to emit only the absorption wavelength of the heating object, so that the object can be efficiently heated.
  • the object may be a liquid or gas as well as a solid. This infrared heater is particularly effective for objects that show a clear absorption peak. Most gas, liquid, and polymer solids have such an absorption spectrum.
  • a single grating may be used for this infrared light source. If the absorption spectrum of a 1S object has multiple peaks, broad peaks, or if you want to heat multiple substances at once, Combined radiation spectrum A plurality of lattices may be combined so that
  • FIG. 46 (a) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention.
  • two elongated rectangular infrared light sources are fixed back to back and emit infrared light on both sides!
  • the emitted infrared light is focused on one linear region by paraboloid mirrors on both sides.
  • FIG. 46 (b) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention.
  • a flexible sheet-shaped infrared light source according to Embodiment 10 is bonded to the surface of a transparent cylindrical lens that transmits infrared light well, such as sapphire, so that one linear region is emitted. Infrared light is condensed.
  • the configuration of FIG. 46 (b) is also an application example of the embodiment shown in FIGS.
  • FIG. 46 (c) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention.
  • the flexible sheet-like infrared light source according to the embodiment 10 is adhered to the inner surface of the cylindrical holding substrate so as to radiate inward, and the infrared light is collected in one linear region. To be configured.
  • FIG. 46 (d) is a diagram showing an example of the configuration of an infrared heater using a conventional infrared light source.
  • a linear infrared lamp is fixed at the focal position of the parabolic mirror. Infrared rays are collected in a linear shape, and the collected object is heated.
  • a sheet having a grating that emits infrared light of a specific wavelength on the surface has an arbitrary finite (not absolute zero! /) Temperature.
  • the object By sticking to the surface of the object, the object can be changed to an infrared light source that emits infrared light having a specific wavelength and a specific polarization.
  • the radiation spectrum distribution of the object it can be easily detected from other sources by infrared light, or vice versa. For example, if a sheet that emits infrared light that easily absorbs water is attached to the inner wall of the oven, the ability to selectively heat and cook moisture can be increased.
  • infrared cameras have begun to be installed in automobiles to make it easier for pedestrians to see even at night and in poor weather conditions.
  • a sheet with a high sensitivity wavelength of this camera is incorporated into clothes and shoes, and infrared rays are emitted using the human body as a heat source. If you shoot, you can improve the probability that the pedestrian will be recognized as a vehicle, and you can improve safety. Or, conversely, a certain object was prevented from being detected by a device that tracks infrared light of a specific wavelength! /
  • the high temperature part of the object may be of a wavelength different from the specific wavelength. If it is covered with a sheet that emits infrared light, it will be possible to make detection difficult while maintaining the heat release function by radiation.
  • an infrared light source is mounted on a chip as a one-dimensional or two-dimensional array.
  • an infrared light source array that emits a plurality of wavelengths capable of high-speed response by making each infrared light source of the array have a small heat capacity and form as a whole.
  • the infrared light source having a small heat capacity is, for example, the infrared light source according to the eleventh embodiment. If the heating element temperature is about 300 ° C, the entire infrared region with a wavelength of several meters or more can be covered. Since a thermal time constant on the order of milliseconds to seconds can be achieved, an operating frequency on the order of 10-2 to 102 Hz can be obtained.
  • the gas to be specifically measured is, for example, so-called NOx such as carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen monoxide and nitrogen dioxide, red made of different atoms such as ammonia, methane and propane. It is an externally active molecule.
  • FIGS. 55 (a) to (c) are diagrams each showing a configuration of an analysis system according to an embodiment of the present invention.
  • the analysis system according to the above embodiment includes an infrared light source 201, an infrared sensor 203, a demodulator 205, and a gas container (cell) 207.
  • the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and is determined by the shape of the grating having a polarization plane perpendicular to the arrangement direction of the grating (polarization plane in the direction A in FIG. 1). It is an infrared light source that emits infrared light of a specific wavelength.
  • the infrared sensor 203 a pyroelectric sensor utilizing the fact that charges are generated on the surface of the dielectric when heated, a porometer, or a thermo pinole that is a thermocouple array may be used.
  • FIG. 56 is a diagram showing the infrared absorption (FIG. 56 (a)) of the gas to be measured and the radiation intensity of the infrared light source 201 (FIG. 56 (b)).
  • the specific wavelength emitted by the infrared light source 201 is set so as to coincide with the wavelength ⁇ that is convenient for measuring the concentration of the measurement target gas A (for example, the wavelength of the absorbance peak).
  • the specific wavelength emitted from the infrared light source 201 is set to 4.3 m when the measurement target gas is carbon dioxide, and is set to 4.7 m when carbon monoxide is used.
  • the infrared light source 201 can emit infrared light having a specific wavelength according to the characteristics of the measurement target, the wavelength selection element (filter or the like) of the conventional analysis system is unnecessary. In addition, since the infrared light source 201 can concentrate the energy of the heating element at a specific wavelength, the energy efficiency of the infrared light source 201 is higher than that of a conventional analysis system in which light other than the specific wavelength is discarded by the wavelength selection element. ,.
  • the analysis system shown in Fig. 55 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal.
  • Infrared light having a specific wavelength emitted from the infrared light source 201 passes through the measurement target gas in the gas container 207, and its intensity is periodically changed by the chiyotsuba 211, and then detected by the infrared sensor 203.
  • the measurement signal detected by the infrared sensor 203 is demodulated by the demodulator 205 and output.
  • the analysis system shown in Fig. 55 (b) further includes a power source 213 that periodically changes power.
  • a power source 213 that periodically changes the power.
  • the intensity of infrared rays emitted from the external light source 201 is changed.
  • Infrared light having a specific wavelength emitted from the infrared light source 201 is detected by the infrared sensor 203 after passing through the measurement target gas in the gas container 207.
  • the measurement signal detected by the infrared sensor 203 is demodulated by the demodulator 205 and output. Since the intensity of the infrared rays is changed by the power source 213 that periodically changes the power, there is no moving part such as a chiyotsuba and the configuration becomes simple.
  • the analysis system shown in Fig. 55 (c) further includes a polarizing element 215 between the infrared light source 201 and the infrared sensor 203.
  • the polarizing element 215 allows only light having a predetermined polarization plane to pass.
  • a commercially available wire grid polarizer as a polarizing element in the wavelength range of 5 to 25 micrometers. You can power to use the child.
  • the wire grid polarization element reflects the polarization component parallel to the wire and transmits the perpendicular polarization component.
  • the infrared light source 201 emits infrared light of a specific wavelength, the same polarizing element can be used as it is even if the measurement object changes and the wavelength used changes.
  • the polarizing element 215 also functions as a means for periodically changing the intensity.
  • the polarizing element 215 may be configured to rotate around the optical axis as a central axis in a plane perpendicular to the optical axis. As the polarizing element 215 rotates, the intensity of the measurement signal changes periodically.
  • FIGS. 57 (a) to 57 (c) are diagrams each showing a configuration of a reference sample type analysis system according to an embodiment of the present invention.
  • the analysis system according to the above embodiment includes an infrared light source 201, infrared sensors 203 or 203A and 203B, demodulators 205 or 205A and 205B, and gas containers 207A and 207B.
  • the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and has a polarization plane (polarization plane in the direction A in FIG. 1) orthogonal to the arrangement direction of the grating and is determined by the shape of the grating.
  • the gas container 207A contains a reference sample gas
  • the gas container 207B contains a measurement target gas. Infrared light having a specific wavelength is emitted from the infrared light source 201 to the reference sample gas and the measurement target gas. Obtain the measurement output of the infrared sensor for the reference sample gas and the gas to be measured, and compare the two to obtain the concentration of the gas to be measured.
  • the analysis system shown in Fig. 57 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal.
  • Infrared light of a specific wavelength radiated from the infrared light source 201 passes through the reference sample gas in the gas container 207A and the measurement target gas in the gas container 207B, and the intensity periodically changes by the chopper 211.
  • the measurement signals detected by the infrared sensors 203A and 203B are demodulated by the demodulators 205A and 205B, respectively, and output.
  • the analysis system shown in Fig. 57 (b) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 201.
  • a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 201.
  • Infrared light having a specific wavelength emitted from the infrared light source 201 passes through the reference sample gas in the gas container 207A and the measurement target gas in the gas container 207B, and is then detected by the infrared sensors 203A and 203B.
  • the measurement signals detected by the infrared sensors 203A and 203B are demodulated by the demodulators 205A and 205B and output.
  • the analysis system shown in Fig. 57 (c) further includes a polarizing element 2151 between the infrared light source 201 and the infrared sensor 203.
  • the polarizing element 2151 includes two regions, and the polarization directions of light passing through the two regions are orthogonal to each other.
  • the polarizing element 2151 may be configured to rotate around the optical axis as a central axis in a plane perpendicular to the optical axis.
  • the polarization element 2151 is rotated so that the output signal of the demodulator 205 is read when the polarization plane of the infrared light emitted from the infrared light source 201 and the polarization plane of the light transmitted by the polarization element 2151 coincide.
  • Figs. 58 (a) to 58 (f) are diagrams each showing the configuration of a two-wavelength analysis system according to an embodiment of the present invention.
  • the analysis system according to the embodiment includes the infrared light source 2011, the infrared sensors 203 or 203A and 203B, the demodulator 205 or 205A and 205B, and the gas container 207.
  • An infrared light source 2011 is an infrared light source shown in FIG. 19 as an example, and a plurality of gratings having different directions are provided on a one-chip heating element.
  • the infrared light source has polarization planes that have a plane of polarization orthogonal to the direction of arrangement of the respective gratings (polarization plane in the direction of A in FIG. 1) and have a specific wavelength determined by the shape of the grating and that have different directions. It emits infrared rays.
  • the infrared light source 2011 includes a first set of grids arranged in a predetermined direction on a one-chip heating element and a second set of grids arranged in a direction orthogonal to the predetermined direction. With a grid.
  • the shape of the first and second sets of lattices is such that the specific wavelength is ⁇ with high absorbance and ⁇ with low absorbance, taking into account the absorbance of the gas to be measured as shown in Fig. 56 (a).
  • the infrared light source 2011 has a wavelength and a wavelength, respectively.
  • the analysis system shown in Fig. 58 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal.
  • the two types of infrared rays emitted from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and the intensity changes periodically by the chiyotsuba 211.
  • each of the two types of infrared rays is detected by the infrared sensor 203A or 203B after passing through the polarizing element 215A or 215B that transmits light having polarization planes orthogonal to each other.
  • the measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
  • the same polarizing element can be used by changing the arrangement direction. Compared to the conventional two-wavelength analysis system that requires a two-wavelength wavelength selection element, the number of parts is reduced.
  • the analysis system shown in Fig. 58 (b) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 2011.
  • the infrared light source 2011 is the infrared light source shown in FIG. 19, and is radiated by the infrared light source 2011 by changing the power supplied to the heating element of one chip by the power source 213 that periodically changes the power. Change the intensity of infrared rays.
  • Two types of infrared rays radiated from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and each of the two types of infrared rays transmits a light having a polarization plane orthogonal to each other. After passing through 215A or 215B, it is detected by the infrared sensor 203A or 203B.
  • the measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
  • the power source 213 that periodically changes the power changes the intensity of the infrared light emitted by the infrared light source 2011, so there is no moving part and the configuration is simple.
  • the energy of the heating element can be concentrated at a specific wavelength.
  • the heat generation amount of the heating element can be reduced with respect to the required infrared intensity.
  • the chip size can be reduced as described above.
  • the heat capacity of the heating element can be reduced, the output of the power source 213 that periodically changes the power can be reduced, and the cycle of output can be shortened.
  • the analysis system shown in Fig. 58 (c) is further connected between the infrared light source 2011 and the infrared sensor 203.
  • a polarizing element 215 is provided.
  • the polarizing element 215 may be configured to rotate around the optical axis in the plane perpendicular to the optical axis.
  • the output of the demodulator 205 If it is configured to read signals, one infrared sensor 203 can be connected to both infrared and infrared.
  • the analysis system shown in Fig. 58 (d) further includes a polarizing element 2153 between the infrared light source 2011 and the infrared sensor 203.
  • the polarizing element 2153 includes two regions, and the polarization directions of light passing through the two regions are orthogonal to each other. The orthogonal polarization direction radiates from the infrared light source 2011
  • the polarizing element 2153 is configured to reciprocate in translation on the upstream side of the infrared sensor 203.
  • the infrared sensor has an infrared wavelength ⁇ .
  • the translational movement like the polarizing element 2153 in FIG. 58 (d) is realized by a mechanism that does not include a sliding portion by an element such as a bimorph, the reliability of the analysis system is further improved.
  • the analysis system shown in Fig. 58 (e) further includes a chopper 211 for periodically changing the intensity of the measurement signal.
  • the two types of infrared rays emitted from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and the intensity changes periodically by the chiyotsuba 211. Thereafter, each of the two types of infrared rays passes through the polarization separation element 2155 and is then detected by the infrared sensor 203A or 203B.
  • the measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
  • the polarization separation element 2155 the above-described wire grid polarization element can be used.
  • the analysis system shown in Fig. 58 (f) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 2011.
  • Infrared light source 2011 is the infrared light source shown in FIG. 19, and the power supplied to the heating element of one chip is changed by a power source 213 that periodically changes the power, so that the infrared light source 2011 The intensity of the infrared rays emitted by is changed.
  • the two types of infrared rays emitted from the infrared light source 2011 pass through the measurement target gas in the gas container 207, and each of the two types of infrared rays passes through the polarization separation element 2155, and then the infrared sensor 203A. Or detected by 203B.
  • the measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output. Since the intensity of infrared rays is changed by the power source 213 that periodically changes the power, there is no moving part, and the configuration is simplified.
  • the infrared energy emitted from the heating element is concentrated in the infrared of a specific wavelength and emitted from the infrared light source 2011.
  • the intensity of the infrared light itself radiated from the infrared light source 2011 is periodically changed without using a chopper, the emitted infrared light is not cut off and discarded.
  • the two types of infrared rays reach the infrared sensors 203A and 203B with little loss by the polarization separation element 2155. In this way, the analysis system shown in FIG. 58 (f) can use all the energy available in principle and is extremely energy efficient.
  • the analysis system shown in FIGS. 58 (a) to 58 (f) separates infrared rays having two types of polarization planes, which are emitted from an infrared light source, by a polarizing element. For this reason, a small analysis system using two types of infrared rays can be obtained.
  • the use of a polarizing element provides a noise-resistant / analytical system.
  • FIG. 59 is a diagram showing a configuration of a six-wavelength five-component analysis system according to an embodiment of the present invention.
  • the analysis system according to the above embodiment includes an infrared light source 2011A, 201 IB and 2011C, an infrared sensor 203A and 203B, a demodulator 205A and 205B, a gas container 207, and a power source that periodically changes power. 213A, 213B and 213C, and a polarization separation element 2155 are provided.
  • Infrared light sources 2011A, 201 IB, and 2011C are, as an example, the infrared light source shown in FIG. 19, and a plurality of grids having different directions are provided on a one-chip heating element.
  • the infrared light source has a polarization plane orthogonal to the arrangement direction of the respective gratings (polarization plane in the direction of A in FIG. 1), and has a specific wavelength determined by the grating shape and red polarization planes having different directions. Release external lines.
  • Each of the infrared light sources 2011A, 201 IB and 2011C has a first set of grids arranged in a predetermined direction on a one-chip heating element, and a direct connection with the predetermined direction.
  • the array direction of the first set of three infrared light sources is the same, and the array direction of the second set of three infrared light sources is the same.
  • the first and second sets of grating shapes of infrared light sources 2011A, 201 IB, and 2011C have five specific wavelengths, taking into account the absorbance of the gas to be measured as shown in Fig. 56 (a). The characteristic wavelength and the reference wavelength of the measurement target gas are determined. Therefore, each of the infrared light sources 2011A, 201 IB, and 2011C emits two types of infrared rays each having one of the specific wavelengths and having polarization planes orthogonal to each other.
  • the power supplied to the heating element of one chip is radiated by the infrared light sources 2011A, 201 IB and 201 1C by changing the power by the power supplies 213A, 213 B and 213C that periodically change the power. Change the intensity of infrared rays.
  • Two types of infrared rays emitted from each of the infrared light sources 2011A, 201 IB, and 2011C pass through the measurement target gas in the gas container 207, and each of the two types of infrared rays passes through the polarization separation element 2155. After that, it is detected by the infrared sensor 203A or 203B.
  • the measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
  • FIG. 60 (a) is a diagram showing an output pulse waveform of a power supply that periodically changes power.
  • FIG. 60 (b) is a diagram showing output waveforms of infrared rays emitted from three infrared light sources.
  • FIG. 60 (c) is a diagram showing output waveforms of two infrared sensors.
  • the three infrared light sources 201 1A, 201 IB, and 2011C each emit infrared rays of two types of wavelengths with the same period and whose polarization planes are orthogonal to each other.
  • the timings at which the three infrared light sources 2011A, 2011 B, and 2011C emit infrared light are shifted in time.
  • each of the two infrared sensors 203A and 203B has three infrared light sources 2011A, 201 IB and 2011C each having one of two polarization planes. Detects infrared rays emitted at a time shifted timing.
  • the concentration of five kinds of gases can be measured by using one of the six kinds of wavelengths as a reference signal. If no reference signal is used, the concentrations of six gases can be measured.
  • the relationship between the number of infrared light sources (3 in this case) and the number of grid types (2 in this case) with each infrared light source. The concentration of a number of gases can be measured.
  • the infrared rays discarded by the wavelength selection element increase, and the energy efficiency decreases.
  • the energy efficiency does not decrease even if the number of gases to be measured increases.
  • the infrared light source of the conventional analysis system uses a radiator coated ceramic or a ceramic plate embedded with a screen printed wiring pattern. I wouldn't do it.
  • the conventional analysis system since it is impossible to reduce the size of the infrared light source, it is difficult to incorporate a plurality of infrared light sources. Moreover, since the heat capacity of the infrared light source could not be reduced, it was difficult to blink the infrared light source at high speed.
  • the infrared light source used in the present invention is not only highly energy efficient, but also can be produced by semiconductor microfabrication technology, so the heat capacity of each infrared light source can be minimized. it can. It is also possible to integrate multiple independent infrared light sources on a single chip. In this way, the analysis system shown as an example in FIG. 59 can be realized.
  • FIG. 55 and FIGS. 57 to 59 do not describe an optical system for infrared rays, an actual analysis system includes an optical system for infrared rays.
  • FIG. 55 and FIGS. 57 to 59 show the measurement cells (such as the container 207) into which the measurement target gas flows as if they were isolated from the surrounding optical elements by the window material.
  • Infrared rays are of a transmission type that passes through the measurement cell only once. However, this is only a representative configuration.
  • the present invention can be applied to various configurations used in conventional analysis systems, such as a configuration in which infrared rays are reflected and propagated in a confined state.
  • FIG. 65 is a diagram showing a system configuration of the sugar content meter.
  • Glucometer is infrared light source 201, lens
  • the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and has a polarization plane orthogonal to the grid arrangement direction (polarization plane in the direction of A in FIG. 1) and is determined by the shape of the grating. It is an infrared light source that emits infrared light with a wavelength of. Alternatively, the infrared light source 201 shown in FIG. 13 or FIG. 14 may be used.
  • a pyroelectric sensor that utilizes the fact that a charge is generated on the surface of the dielectric, or a thermopile that is a thermocouple array may be used.
  • Infrared radiation emitted from the infrared light source 201 is collimated by the lens 221, passes through the measurement object 251 such as fruit, and is collected by the lens 223 onto the infrared sensor 203.
  • a not-shown chopper may be installed after the lens 223 to periodically change the intensity of infrared rays.
  • the sugar content meter measures the sugar content of the measurement object by utilizing the fact that infrared rays of a specific wavelength are absorbed according to the sugar content of the measurement object.
  • the infrared of a specific wavelength is in the range of 5 to 10 micrometers, depending on the object to be measured.
  • an infrared light source in which multiple specific wavelength light sources are integrated on a single chip as described with reference to FIGS. 58 and 59 may be used. .
  • FIG. 66 is a diagram showing a system configuration of the moisture meter.
  • Moisture meter is infrared light source 201, lens
  • the infrared light source 201 is the infrared light source 100 shown in FIG. 1 and has a polarization plane (polarization plane in the direction of A in FIG. 1) perpendicular to the arrangement direction of the grating and is determined by the shape of the grating. It is an infrared light source that emits infrared light having a constant wavelength. Alternatively, the infrared light source 201 shown in FIG. 13 or FIG. 14 may be used.
  • a pyroelectric sensor that utilizes the fact that a charge is generated on the surface of the dielectric, or a thermopile thermopile is used.
  • Infrared light emitted from the infrared light source 201 is collimated by the lens 225 and reflected by the mirror. (1) Reflected by the object 231 to reach the object 253 and reflected by the object 253. The reflected light from the measurement object 253 is collected by the collecting mirror 233, reflected by the reflecting mirror 235, and then collected by the lens 227 on the infrared sensor 203. Further, for example, a chiyotsuba (not shown) may be installed after the lens 227 to periodically change the infrared intensity.
  • the moisture meter measures the moisture of the measurement object by utilizing the fact that infrared light of a specific wavelength is absorbed according to the moisture content of the measurement object.
  • the analysis system according to the present invention includes an infrared light source that is miniaturized in the form of one chip, and further, an infrared light source in which light sources of many wavelengths and light sources of many polarization planes are integrated on one chip. Can be used.
  • the analysis system according to the present invention can be used to change the power supplied to the heating element of the infrared light source in a short period of time. Infrared light can be emitted from an infrared light source in a short cycle.
  • a monitoring system installed outdoors uses light, a wavelength of light that is not easily affected by noise caused by reflected light from the object, or emitted light from the object.
  • FIG. 72 is a diagram showing spectral components on the ground surface of sunlight.
  • the horizontal axis indicates the wavelength, and the unit is micrometer.
  • the vertical axis shows the spectral radiant intensity, and the unit is
  • the wavelength of sunlight at sea level is less than 2.5 micrometers.
  • Fig. 73 is a diagram showing the reflection characteristics and radiation characteristics of the ground surface.
  • the horizontal axis indicates the wavelength, and the unit is micrometer.
  • the vertical axis represents the relative values of reflection intensity and radiation intensity.
  • the reflected and radiant intensities show relatively low values in the range of 2.5 micrometers to 6.0 micrometers.
  • Infrared light source determined according to the method shown in Fig. 3 and Fig. 5 when the specific wavelength is 2.5 micrometer, 4.0 micrometer and 6-micrometer-meter, respectively.
  • the infrared intensity ratio is shown in FIGS. 52 to 54 as described above.
  • FIG. 67 is a diagram showing a configuration of a monitoring system according to an embodiment of the present invention.
  • the monitoring system according to this embodiment is provided with an infrared light source 1201, lenses 1203 and 1207, a polarization filter 1205, and an infrared sensor 1209.
  • the infrared light emitted from the infrared light source 1201 is collimated by the lens 1203 toward the infrared sensor 207.
  • the emitted infrared light passes through the polarization filter 1205, is collected by the lens 1207, reaches the infrared sensor 1209, and is detected by the infrared sensor 1209.
  • the emitted infrared light is absorbed or reflected by the monitoring object 1221 and does not reach the infrared sensor 1 209. In this way, the presence / absence of the monitoring object 1221 is monitored.
  • the infrared light source 1201 the one shown in FIG. 14 or FIG. 16 that emits infrared light using a lens may be used.
  • the infrared light source 1201 as shown in FIG. 13 or FIG. 15, an infrared light that is condensed by a lens and then diffused may be used.
  • the specific wavelength of the infrared light source 1201 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise.
  • the infrared light source 1201 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1205, the influence of noise due to sunlight or the like is reduced. Further decrease.
  • FIG. 68 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • the monitoring system according to the present embodiment is provided with an infrared light source 1301, a polarization beam splitter 1303, a lens 1305, a nanocup, a reflector 1307, and an infrared sensor 1309.
  • the infrared light emitted from the infrared light source 1301 passes through the polarization beam splitter 1303 and is collimated toward the corner cube 'reflector 307 by the lens 1305.
  • the emitted infrared light is transmitted by corner cube reflector 307.
  • the lens 1305 After being reflected and collected by the lens 1305, it is reflected by the polarization beam splitter 1303, reaches the infrared sensor 1309, and is detected by the infrared sensor 1309.
  • the reason why the beam is reflected by the polarization beam splitter 1303 is that the plane of polarization is changed by 90 degrees due to reflection by the corner cube reflector 1307.
  • the emitted infrared light is absorbed or reflected by the monitoring object 1321 and does not reach the infrared sensor 1309. In this way, the presence / absence of the monitoring object 1321 is monitored.
  • the infrared light source 1301 the one shown in FIG. 14 or 16 that emits infrared light by a lens may be used.
  • a device that collects infrared light with a lens and then diffuses it may be used.
  • the specific wavelength of the infrared light source 301 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of noise from sunlight. Further, since the infrared light source 301 emits only infrared light having a predetermined polarization plane, only the infrared light having the predetermined polarization plane is transmitted by the polarization beam splitter 303 and polarized light orthogonal to the predetermined polarization plane. If only the infrared rays having a surface are reflected, the influence of noise due to sunlight will be further reduced.
  • FIG. 69 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • the monitoring system according to this embodiment is provided with an infrared light source 1401, parabolic reflectors 1403 and 1405, a polarization filter 1407, and an infrared sensor 1409.
  • Infrared radiation emitted from the infrared light source 401 is collimated by the parabolic reflecting mirror 403 toward the parabolic reflecting mirror 405.
  • the emitted infrared rays are collected by the parabolic reflector 1405, and then transmitted through the polarizing filter 1407 to reach the infrared sensor 1409. Detected by.
  • the monitoring target 421 is present, the emitted infrared light is absorbed or reflected by the monitoring target 1421 and does not reach the infrared sensor 1409. In this way, the presence / absence of the monitoring object 421 is monitored.
  • the infrared light source 1401 the one shown in FIG. 14 or 16 that emits infrared light by a lens may be used.
  • the infrared light source 1401 the one shown in FIG. 13 or FIG. 15 that collects infrared light by a lens and then diffuses it may be used.
  • the specific wavelength of the infrared light source 1401 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise.
  • the infrared light source 1401 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1407, the influence of noise due to sunlight or the like is reduced. Further decrease.
  • FIG. 70 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
  • the monitoring system according to the present embodiment includes an infrared light source 1501, a lens 1503, a polarizing filter 505, an imaging lens 1507, and an arrayed infrared sensor 1509.
  • Infrared light emitted from the infrared light source 1501 passes through the lens 1503 and is emitted to a predetermined monitoring target 521.
  • Infrared light reflected on the monitoring object 1521 and its surroundings passes through the polarizing filter 1505 and the imaging lens 1507, reaches the infrared sensor 1509, and forms an image on the arrayed infrared sensor 1509. With this image, the monitoring object 521 and the surrounding situation can be monitored.
  • the infrared light source 1501 the one shown in FIG. 14 or FIG. 16 that emits infrared rays by a lens may be used.
  • the infrared light source 1501 as shown in FIG. 13 or FIG. 15, a device that collects infrared light with a lens and then diffuses it may be used.
  • the specific wavelength of the infrared light source 1501 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise.
  • the infrared light source 501 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1505, the influence of noise due to sunlight or the like is reduced. Further decrease.
  • the lens is made of silicon, germanium, or the like.
  • an infrared sensor a pyroelectric sensor that utilizes the generation of electric charges on the surface of the dielectric, a thermal infrared sensor such as a thermopile that is a thermocouple array, and a PbSe light
  • a quantum infrared sensor such as a conductive element
  • FIG. 71 is a diagram showing the relative sensitivity with respect to wavelength of the PbSe photoconductive element.
  • the relative sensitivity of PbSe photoconductive elements peaks at wavelengths near 4 micrometers, so Suitable for infrared sensors in monitoring systems in the wavelength range (2.5 to 6 ⁇ m) to avoid noise.
  • polarizing filter and the polarizing beam splitter a commercially-available via grid polarizing element may be used.
  • the grating has P as the constant period, T as the width in the constant direction, and D as the grating depth of the portion functioning as the positive dielectric. , If you have a specific wavelength
  • ⁇ , ⁇ , and D where ⁇ 0.5 ⁇ , ⁇ , ⁇ , and D are defined so that the peak wavelength of the infrared intensity emitted from the infrared light source matches the specific wavelength.
  • the specific wavelength can be set to a desired wavelength by adjusting the period ⁇ of the grating, the width ⁇ of the grating, and the depth D of the grating.
  • the grating has a certain period, and the width in the certain direction on the upper surface of the portion functioning as the positive dielectric is a grating depth.
  • D is the angle of the boundary between the part functioning as the negative dielectric and the part functioning as the positive dielectric with respect to the plane of the grating, and the specific wavelength is
  • the period ⁇ of the lattice, the width ⁇ of the lattice, the depth D of the lattice, and the negative By adjusting the angle ⁇ of the boundary surface between the portion functioning as a dielectric and the portion functioning as the positive dielectric with respect to the plane of the lattice, the specific wavelength can be set to a desired wavelength with the force S Monkey.
  • An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the negative dielectric is a negative dielectric material force.
  • an infrared light source with few manufacturing steps and easy manufacturing can be obtained.
  • An infrared light source according to another embodiment of the present invention is characterized in that only the surface of the portion functioning as the negative dielectric is made of a negative dielectric material.
  • an infrared light source that is easy to manufacture and highly accurate can be obtained.
  • An infrared light source is characterized in that the portion functioning as the negative dielectric comprises a plurality of types of negative dielectric material forces.
  • the parameters for adjusting a specific wavelength are increased, and the design and manufacture are facilitated.
  • An infrared light source is characterized in that the portion functioning as the positive dielectric is made of a plurality of types of positive dielectric materials.
  • parameters for adjusting a specific wavelength are increased, and design and manufacturing are facilitated.
  • An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the negative dielectric also serves as the heating element.
  • An infrared light source is characterized in that a portion of the heating element other than the portion corresponding to the lattice is covered with a metal.
  • infrared rays are not emitted to portions other than the portion corresponding to the grating.
  • An infrared light source includes a plurality of gratings respectively corresponding to a plurality of specific wavelengths.
  • an infrared light source having a simple structure and emitting a plurality of infrared rays having specific wavelengths can be obtained.
  • An infrared light source according to another embodiment of the present invention includes two or more types of gratings arranged in different directions.
  • an infrared light source having a simple structure and emitting infrared rays having a specific wavelength polarized on two or more different polarization planes can be obtained.
  • An infrared light source is characterized in that the shape of the grating is changed so that the specific wavelength changes along the certain direction.
  • an infrared light source having a simple structure and capable of emitting infrared rays in a predetermined wavelength band can be obtained.
  • An infrared light source is characterized in that the grating is arranged on a surface of a lens.
  • an infrared light source that collects or diverges the emitted infrared light can be obtained.
  • An infrared light source according to another embodiment of the present invention is formed as a flexible sheet.
  • an infrared light source that can be widely applied to heaters and the like is obtained.
  • a substrate according to the present invention includes the infrared light source according to the present invention.
  • a compact substrate that emits infrared rays having a specific wavelength can be obtained.
  • a substrate according to an embodiment of the present invention is characterized in that an infrared light source is provided on a thermally insulated film structure.
  • an infrared light source having a small heat capacity and capable of operating at high speed can be obtained.
  • a substrate according to an embodiment of the present invention includes a plurality of infrared light sources.
  • a substrate capable of emitting a plurality of types of infrared rays can be obtained.
  • a substrate according to an embodiment of the present invention includes a plurality of heating elements that can be controlled independently.
  • a substrate capable of independently controlling the emission of a plurality of types of infrared rays can be obtained.
  • the method of manufacturing an infrared light source according to the present invention has a case in which a heating element, a portion that functions as a positive dielectric, and a portion that functions as a negative dielectric are alternately formed in a fixed direction at a fixed period. And a method of manufacturing an infrared light source that radiates the radiant energy of the heat generating element while concentrating on infrared rays having a specific wavelength determined by the shape of the grating, having a polarization plane orthogonal to the arrangement direction of the grating. It is.
  • the method is characterized in that a portion that functions as the negative dielectric is formed by forming the lattice mold with plastic and depositing a negative dielectric material on the surface of the mold.
  • the negative dielectric material is deposited on the surface of the plastic mold, thereby forming the portion that functions as the negative dielectric. Form with precision.
  • An analysis system includes the infrared light source according to the present invention and an infrared sensor capable of detecting infrared light of the specific wavelength, and the infrared light source is an object.
  • the property of the object is analyzed by emitting infrared light of the specific wavelength and detecting infrared light of the specific wavelength.
  • the energy of the infrared light source can be concentrated on the infrared ray of a specific wavelength, so that the energy efficiency is improved and the infrared light source and further the analysis system is downsized. be able to.
  • infrared light having a specific wavelength can be emitted by an infrared light source, components such as a wavelength selection element are not required, and the structure of the analysis system is simplified.
  • An analysis system includes at least one polarization element between the infrared light source and the infrared sensor, and the polarization element has a polarization plane in a predetermined direction. It is characterized by being configured to transmit or reflect only.
  • the polarization element since the infrared light source emits infrared rays having a polarization plane orthogonal to the arrangement direction of the grating, the polarization element transmits or reflects only infrared rays having the polarization plane. If you do this, you will be resistant to noise!
  • An analysis system has a polarization plane in the predetermined direction of the specific wavelength that is transmitted through the polarizing element or reflected by the polarizing element. It is characterized in that it is configured to change periodically.
  • the infrared sensor having an intensity that changes periodically is detected by the infrared sensor, and the output of the infrared sensor is demodulated, whereby an analysis system that is resistant to noise is obtained. can get.
  • An analysis system is configured to rotate the polarizing element.
  • an analysis system that is resistant to noise can be obtained with a simple structure that rotates the polarizing element.
  • An analysis system is characterized in that the polarizing element is configured to reciprocate.
  • an analysis system that is resistant to noise can be obtained with a simple structure that reciprocates the polarizing element. If the reciprocating motion is performed by a structure that does not include a sliding part by an element such as a bimorph, the reliability of the analysis system is further improved.
  • An analysis system includes a power source that supplies power to the heating element, and changes the power supplied to the heating element to change the infrared light emitted from the infrared light source. It is characterized in that the intensity is changed periodically.
  • an analysis system that is resistant to noise can be obtained without including a movable part for periodically changing the intensity of infrared rays. Furthermore, since the energy efficiency of the infrared light source is high, the heat capacity of the infrared light source can be reduced, and the infrared intensity change period can be reduced.
  • the infrared light source includes a heating element and a plurality of gratings, and each of the plurality of gratings includes a positive dielectric part and a grating. And a plurality of gratings having a plane of polarization perpendicular to the arrangement direction of the plurality of gratings. It is characterized by being focused on multiple infrared rays of specific wavelengths determined by the shape.
  • the infrared light source emits infrared rays having a plurality of specific wavelengths
  • an energy-efficient and small analysis system using infrared rays having a plurality of specific wavelengths can be obtained.
  • the infrared light source includes a heating element and a plurality of gratings arranged in different directions, and each case of the plurality of gratings.
  • the child is a lattice in which positive dielectric portions and negative dielectric portions are alternately formed in a constant direction at a constant period, and the radiant energy of the heating element is a plurality of polarizations orthogonal to the arrangement direction of the plurality of lattices It is characterized in that the radiation is concentrated on infrared rays having a specific wavelength determined by the shape of the plurality of gratings.
  • the infrared light source emits infrared light having a plurality of polarization planes. For example, if infrared rays having different wavelengths are emitted for each of a plurality of polarization planes, it is advantageous because infrared rays having different wavelengths can be separated depending on the polarization planes.
  • An analysis system includes a plurality of infrared light sources and a power source for supplying power to each of the heating elements of the plurality of infrared light sources, and each of the plurality of infrared light sources.
  • the timing of supplying power to each heating element is shifted in time, and each of the plurality of infrared light sources is configured to emit infrared rays at a timing shifted in time.
  • a plurality of infrared light source forces can be used to process a plurality of types of infrared rays to be processed with the time harm ij.
  • the power S can be reduced by reducing the heat capacity of the infrared light source and shortening the time division cycle to improve the data processing speed.
  • a monitoring system includes the infrared light source according to the present invention and an infrared sensor capable of detecting infrared light of the specific wavelength, wherein the infrared light source is the specific light source. Infrared light having a wavelength is emitted, and the infrared sensor detects the infrared light having the specific wavelength, thereby monitoring a situation around the infrared light source.
  • the monitoring system according to the present embodiment is capable of using radiation with high intensity at a desired specific wavelength, and can perform monitoring with high accuracy.
  • a monitoring system is characterized in that the specific wavelength is in a range of 2.5 micrometers to 6 micrometers.
  • the monitoring system uses light having a wavelength in the range of 2.5 micrometer to 6.0 micrometer, sunlight, reflected light of sunlight by the object, and emitted light of the object. It is hard to be affected by noise.
  • the specific wavelength may be the infrared sensor. It is characterized in that it is configured so that the sensitivity of the laser coincides with the peak wavelength.
  • the monitoring system according to the present embodiment can perform monitoring with high accuracy because the specific wavelength matches the wavelength at which the sensitivity of the infrared sensor reaches a peak.
  • a monitoring system is characterized in that the depth of the grating is changed along the certain direction so that the specific wavelength varies along the certain direction. To do.
  • the monitoring system according to the present embodiment can use infrared rays in a desired wavelength band.
  • a monitoring system is characterized in that the grating is arranged on a lens surface.
  • infrared light can be collected or diverged by an infrared light source, so that a compact monitoring system can be obtained.
  • a monitoring system includes at least one polarizing element in an infrared path from the infrared light source to the infrared sensor, and the polarizing element has a polarization plane in a predetermined direction. It is characterized by being configured to transmit only the light it has.
  • the polarizing element since the polarizing element transmits only the infrared ray having a predetermined polarization plane emitted from the infrared light source, the influence of noise is reduced and the monitoring is reliably performed. I can do it.

Abstract

There is provided an infrared light source that has a simple structure and radiates infrared rays polarized in a specific direction and having a specific wavelength. The infrared light source (100) comprises a heat generator (107) and a latticework (101) in which a dielectric part (105) and a metal part (103) are alternately formed at a constant pitch in a constant direction. The infrared rays are radiated in a direction perpendicular to the surface of the latticework and are polarized in the direction indicated by an arrow A. If the constant pitch is denoted by P, the width of the dielectric part in the constant direction by T, and the specific wavelength by λ, for arbitrary P and T that meet the inequalities 0 < P ≤ 2.0λ and T ≤ 0.5P, the depth D of the latticework is so selected that the intensity spectrum of the infrared rays radiated from the infrared light source has the peak at λ.

Description

明 細 書  Specification
赤外光源およびその製造方法  Infrared light source and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、特定の波長の赤外光を発する赤外光源およびその製造方法に関する。  The present invention relates to an infrared light source that emits infrared light having a specific wavelength and a method for manufacturing the same.
また、赤外光源を使用した分析システムおよび監視システムに関する。  The present invention also relates to an analysis system and a monitoring system using an infrared light source.
背景技術  Background art
[0002] 赤外波長域の特定波長で強レ、強度が得られる赤外光源は非常に少な!/、。  [0002] There are very few infrared light sources that can obtain strong light and intensity at specific wavelengths in the infrared wavelength region!
[0003] 一部の特定波長で発振するレーザーは高価であり、また、特定波長を任意の値と することはできない。 [0003] Lasers that oscillate at some specific wavelengths are expensive, and the specific wavelengths cannot be set to arbitrary values.
[0004] ヒータなどからの放射光を波長フィルタ等用いて任意波長の光を取り出す装置も考 えられる。しかし、部品点数が多ぐ波長フィルタの製造方法が煩雑であり、出力エネ ノレギが極めて低!/、などの問題がある。  [0004] An apparatus for extracting light having an arbitrary wavelength using a wavelength filter or the like from radiation light from a heater or the like is also conceivable. However, the method of manufacturing a wavelength filter with a large number of parts is complicated, and there are problems such as extremely low output energy.
[0005] また、高温発光マイクロキヤビティ光源も提案されている(たとえば、特表 2001-5190 79号公報)。しかし、構造が煩雑である。  [0005] Further, a high-temperature light-emitting micro-cavity light source has also been proposed (for example, JP 2001-5190 79A). However, the structure is complicated.
[0006] 他方、赤外波長域での光源を使用したアプリケーションは、医療、バイオ分野を含 む分野に拡大しつつある。  [0006] On the other hand, applications using light sources in the infrared wavelength region are expanding to fields including medical and bio fields.
[0007] 物質の赤外吸収を利用した気体や液体の分析方法に非分散型赤外線吸収法があ る。非分散型赤外線吸収法は物質に固有の赤外吸収線を利用して、対応する物質 の濃度や、複数の物質の成分比を測定する方法である。非分散型赤外線吸収法を 利用した分析システムには、工場設備や機器に組み込む据付型のものや電池で駆 動する携帯型のものなど様々な形態のものがある。  [0007] There is a non-dispersive infrared absorption method as an analysis method for gases and liquids using infrared absorption of substances. The non-dispersive infrared absorption method is a method of measuring the concentration of a corresponding substance and the component ratio of a plurality of substances using infrared absorption lines specific to the substance. There are various types of analysis systems using the non-dispersive infrared absorption method, such as a stationary type incorporated in factory facilities and equipment and a portable type driven by a battery.
[0008] 図 61は、非分散型赤外線吸収法を利用した分析システムの基本的な構成を示す 図である。分析システムは、赤外光源 301、測定セル 207、強度を周期的に変化させ る手段 211、波長選択素子 303、赤外センサ 203および復調手段 205を備える。赤 外光源 301としては、もっぱら、黒体放射を利用した白色赤外光源 (ランプ)が用いら れる。強度を周期的に変化させる手段 211としては、放射状スリットや光源を覆うシャ ッターが回転することにより赤外線を周期的に遮断するチヨツバが用いられる。波長 選択素子 303としては、もっぱら、誘電体多層膜などで特定の波長だけを透過させる 狭帯域フィルタが用いられる。赤外センサ 203としては、焦電素子、ポロメータ、サー モパイル、熱流センサなど、様々な検出器が用いられる。赤外光源 301からの赤外 線は、測定対象物を含む測定セル 207を透過し、強度を周期的に変化させる手段 2 11、波長選択素子 303、赤外センサ 203に、順に入射する。 FIG. 61 is a diagram showing a basic configuration of an analysis system using a non-dispersive infrared absorption method. The analysis system includes an infrared light source 301, a measurement cell 207, a means 211 for periodically changing the intensity, a wavelength selection element 303, an infrared sensor 203, and a demodulation means 205. As the infrared light source 301, a white infrared light source (lamp) using black body radiation is exclusively used. As the means 211 for periodically changing the intensity, a chiba that periodically blocks infrared rays by rotating a radial slit or a shutter covering the light source is used. wavelength As the selection element 303, a narrow band filter that transmits only a specific wavelength, such as a dielectric multilayer film, is used. As the infrared sensor 203, various detectors such as a pyroelectric element, a porometer, a thermopile, and a heat flow sensor are used. Infrared rays from the infrared light source 301 pass through the measurement cell 207 including the measurement object, and enter the means 211 for changing the intensity periodically, the wavelength selection element 303, and the infrared sensor 203 in this order.
[0009] 図 62は、測定対象物(一例として気体)の吸光度、光源の強度、波長選択素子の 透過率の関係を示す図である。図 62 (a)は、波長に対する測定対象気体 Aの吸光 度を示す図である。測定対象気体 Aは、波長え において大きな吸収を示す。図 62 ( FIG. 62 is a diagram showing the relationship between the absorbance of a measurement object (gas as an example), the intensity of a light source, and the transmittance of a wavelength selection element. FIG. 62 (a) shows the absorbance of the measurement target gas A with respect to the wavelength. The gas A to be measured exhibits a large absorption at the wavelength. Fig. 62 (
S  S
b)は、赤外光源 301の放射する赤外線の、波長に対する強度を示す図である。赤外 光源 301は、プランクの法則にした力 Sい、広い波長範囲に渡って温度に応じた強度 分布の赤外線を放射する。図 62 (c)は、波長選択素子 303の、波長に対する透過率 を示す図である。波長選択素子 303は、 λ 周辺の狭い波長範囲の光だけを透過す  b) is a diagram showing the intensity of the infrared light emitted from the infrared light source 301 with respect to the wavelength. The infrared light source 301 emits infrared rays having a power distribution according to Planck's law and having an intensity distribution according to temperature over a wide wavelength range. FIG. 62 (c) is a diagram showing the transmittance of the wavelength selection element 303 with respect to the wavelength. The wavelength selection element 303 transmits only light in a narrow wavelength range around λ.
S  S
る狭帯域フィルタである。  Narrow band filter.
[0010] 測定セル中の測定対象気体の濃度に応じて、波長 λ の赤外線の透過量は変化し s  [0010] Depending on the concentration of the gas to be measured in the measurement cell, the amount of transmission of infrared light having a wavelength λ varies.
、赤外センサ 203の出力も変化する。気体の濃度は、検出した信号量と予め求めて おいた基準信号量との比からランベルトの法則に基づいて演算することにより求める 。なお、 λ は必ずしも吸収が最大の波長とは限らず、混在する他の気体の吸収と重  The output of the infrared sensor 203 also changes. The gas concentration is obtained by calculating based on Lambert's law from the ratio between the detected signal amount and the previously obtained reference signal amount. Note that λ is not necessarily the wavelength at which absorption is maximum, and absorption and overlap of other gases that are mixed.
S  S
ならないことなど、様々な要素を考慮して決定される。  It is determined in consideration of various factors, such as not to be.
[0011] 実際には、この方式では素子や光学系の経時変化などの影響により信頼できる結 果が得にくいので、何らかの参照信号を利用する場合が多い。  [0011] Actually, this method often uses some reference signal because it is difficult to obtain a reliable result due to the influence of changes in the elements and the optical system over time.
[0012] 図 63は、参照試料を利用する分析システムを示す図である。組成が既知の気体 Β を参照セル 207Αに封入し、気体 Βの濃度測定用に、波長選択素子 3031Aと赤外 センサ 203Αを設置する。測定対象気体 Αを測定セル 207Βに封入し、気体 Aの濃 度測定用に、波長選択素子 3031Bと赤外センサ 203Bを設置する。赤外センサ 203 Aおよび赤外センサ 203Bの信号比と、 λ における対象気体 Αと参照気体 Βの吸光  FIG. 63 is a diagram showing an analysis system that uses a reference sample. Gas Β having a known composition is sealed in reference cell 207 、, and wavelength selection element 3031A and infrared sensor 203 Α are installed for measuring the concentration of gas Β. Gas 対 象 to be measured is sealed in measurement cell 207Β, and wavelength selection element 3031B and infrared sensor 203B are installed for gas A concentration measurement. Signal ratio of infrared sensor 203 A and infrared sensor 203B, and absorption of target gas Α and reference gas に お け る at λ
S  S
度から気体 Aの濃度を求める。参照セル 207Aには多くの場合、測定対象気体と同じ 種類の気体を封入する。  The concentration of gas A is obtained from the degree. In many cases, the reference cell 207A contains the same type of gas as the measurement target gas.
[0013] 図 64は、 2波長方式の分析システムを示す図である。測定対象気体の吸光度の大 きな波長え の赤外線用に波長選択素子 3033と赤外センサ 203Aを設置し、吸光度FIG. 64 is a diagram showing a two-wavelength analysis system. Large absorbance of target gas Install a wavelength selection element 3033 and infrared sensor 203A for infrared of the desired wavelength, and absorb the absorbance.
S S
の小さな参照波長 λ の赤外線用に波長選択素子 3035と赤外センサ 203Βを設置  Wavelength selective element 3035 and infrared sensor 203Β for infrared light with a small reference wavelength of λ
R  R
する。波長選択素子 3033の、波長え に対する透過率は、図 62(c)に示した波長選  To do. The transmittance of the wavelength selection element 3033 with respect to the wavelength is shown in FIG. 62 (c).
S  S
択素子 303の特性と同じである。波長選択素子 3035の、波長 λ に対する透過率は  The characteristics of the selection element 303 are the same. The transmittance of wavelength selection element 3035 with respect to wavelength λ is
R  R
、図 62(d)に示したとおりである。赤外センサ 203Αおよび赤外センサ 203Βの信号比 と、測定対象気体 Αのえ における吸光度と λ における吸光度から気体 Αの濃度を  This is as shown in FIG. 62 (d). From the signal ratio of infrared sensor 203Α and infrared sensor 203Β, the absorbance at the measurement target gas Α, and the absorbance at λ, the concentration of gas Α
S R  S R
求める。  Ask.
[0014] 上記のように分析システムは、測定対象物質によって決まる特定の波長の赤外線を 使用する。一方、図 62 (b)に示すように、従来の分析システムの赤外光源は、広い波 長域の赤外線を放出する。そこで、従来の分析システムにおいて、赤外光源が放出 した赤外線のうち、フィルタなどの波長選択素子によって選択した波長の赤外線のみ が使用され、その他の波長の赤外線は廃棄される。したがって、従来の分析システム において、無駄になるエネルギが多ぐ赤外光源の出力を小さくすることができず、赤 外光源を小型化するのが困難である。この結果、従来の分析システムは、エネルギ 効率が低ぐ比較的大型である。  [0014] As described above, the analysis system uses infrared light having a specific wavelength determined by the measurement target substance. On the other hand, as shown in Fig. 62 (b), the infrared light source of the conventional analysis system emits infrared light in a wide wavelength range. Therefore, in the conventional analysis system, only infrared rays having wavelengths selected by a wavelength selection element such as a filter among infrared rays emitted from the infrared light source are used, and infrared rays having other wavelengths are discarded. Therefore, in the conventional analysis system, it is difficult to reduce the output of the infrared light source because much energy is wasted, and it is difficult to reduce the size of the infrared light source. As a result, conventional analytical systems are relatively large with low energy efficiency.
[0015] 対象物を監視するために、光源によって特定の波長の光を放射して、センサによつ て当該光を受光する、監視システム(たとえば、特開 2005-106523号公報)が使用さ れている。  [0015] In order to monitor an object, a monitoring system (for example, JP-A-2005-106523) that emits light of a specific wavelength by a light source and receives the light by a sensor is used. It is.
[0016] このようなシステムには、受光素子としてシリコンセンサが使用されることが多い。シ リコンセンサは、 400ナノ'メータから 1000ナノ'メータの範囲で感度が高いので、上 記システムにおいて、この範囲の波長の光が使用されることが多い。ところ力 太陽 光や照明光には、この範囲の波長成分が多ぐノイズ成分となり、上記システムの誤 動作の原因となる。太陽光などのノイズの影響を避けるためには、赤外波長域の光を 使用するのが有利である。  In such a system, a silicon sensor is often used as a light receiving element. Silicon sensors are highly sensitive in the 400 nanometer to 1000 nanometer range, so light in this range is often used in the system. However, in the force sunlight and illumination light, the wavelength component in this range becomes a large noise component, which causes malfunction of the system. In order to avoid the influence of noise such as sunlight, it is advantageous to use light in the infrared wavelength region.
[0017] このように、対象物を監視するシステムにおいて、赤外波長域の光を放射する赤外 光源が必要である。しかし、赤外波長域の特定波長で強い強度が得られる赤外光源 は非常に少ない。  [0017] Thus, in a system for monitoring an object, an infrared light source that emits light in the infrared wavelength region is required. However, there are very few infrared light sources that can provide strong intensity at specific wavelengths in the infrared wavelength region.
[0018] 一部の特定波長で発振するレーザーは高価であり、また、特定波長を任意の値と することはできない。 [0018] Lasers that oscillate at some specific wavelengths are expensive, and specific wavelengths can be set to arbitrary values. I can't do it.
[0019] ヒータなどからの放射光を波長フィルタ等用いて任意波長の光を取り出す装置も考 えられる。しかし、部品点数が多ぐ波長フィルタの製造方法が煩雑であり、出力エネ ノレギが極めて低!/、などの問題がある。  [0019] An apparatus for extracting light having an arbitrary wavelength using a wavelength filter or the like using radiation light from a heater or the like is also conceivable. However, the method of manufacturing a wavelength filter with a large number of parts is complicated, and there are problems such as extremely low output energy.
[0020] また、高温発光マイクロキヤビティ光源も提案されている(たとえば、特表 2001-5190 79号公報)。しかし、構造が煩雑である。  [0020] Further, a high-temperature light-emitting micro-cavity light source has also been proposed (for example, JP 2001-5190 79A). However, the structure is complicated.
発明の開示  Disclosure of the invention
[0021] したがって、構造が簡単であり、広い分野に応用することのできる、特定波長の赤 外線を放出する赤外光源に対するニーズがある。  Accordingly, there is a need for an infrared light source that emits infrared light of a specific wavelength, which has a simple structure and can be applied to a wide range of fields.
[0022] 本発明による赤外光源は、発熱体と、正の誘電体として機能する部分および負の 誘電体として機能する部分を一定方向に一定周期で交互に形成した格子とを備え、 前記発熱体の放射エネルギを、前記格子の配列方向と直交する偏光面を有する、 前記格子の形状によって定まる特定の波長の赤外線に集中させて放射することを特 徴とする。  [0022] An infrared light source according to the present invention includes a heating element, and a lattice in which a portion functioning as a positive dielectric and a portion functioning as a negative dielectric are alternately formed in a constant direction at a constant cycle, It is characterized in that the radiation energy of the body is concentrated and radiated to infrared rays having a specific wavelength determined by the shape of the grating, which has a polarization plane orthogonal to the arrangement direction of the grating.
[0023] 本発明によれば、所定の偏光面を有する、特定の波長の赤外線を放出する、簡単 な構造の赤外光源が得られる。  [0023] According to the present invention, an infrared light source having a simple structure and having a predetermined polarization plane and emitting infrared light of a specific wavelength can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の一実施形態による赤外光源の構成を示す図である。  FIG. 1 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention.
[図 2]波長に対する、赤外線の強度分布を示す図である。  FIG. 2 is a diagram showing an infrared intensity distribution with respect to wavelength.
[図 3]赤外光源において、格子周期 Pおよび正の誘電体として機能する部分 (誘電体 など)の幅 Tを定めた場合に、格子深さ Dを求める方法を示す流れ図である。  FIG. 3 is a flowchart showing a method for obtaining the grating depth D when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source.
[図 4]赤外光源の格子深さ Dを変化させた場合の、赤外光源によって放射される赤外 線の強度分布の変化を示す図である。  FIG. 4 is a diagram showing a change in the intensity distribution of infrared rays emitted from an infrared light source when the grating depth D of the infrared light source is changed.
[図 5]赤外光源において、格子周期 Pを定めた場合に、格子深さ Dおよび正の誘電体 として機能する部分 (誘電体など)の幅 Tを求める方法を示す流れ図である。  FIG. 5 is a flowchart showing a method for obtaining the grating depth D and the width T of a portion (such as a dielectric) functioning as a positive dielectric when the grating period P is determined in an infrared light source.
[図 6]赤外光源の正の誘電体として機能する部分 (誘電体など)の幅 Tを変化させた 場合に、特定の波長における赤外線強度比の変化を示す図である。  FIG. 6 is a diagram showing a change in infrared intensity ratio at a specific wavelength when the width T of a portion (dielectric material, etc.) functioning as a positive dielectric of an infrared light source is changed.
[図 7]赤外光源の格子周期 Pを変化させた場合に、特定の波長における赤外線強度 比の変化を示す図である。 [Figure 7] Infrared intensity at a specific wavelength when the grating period P of the infrared light source is changed It is a figure which shows the change of ratio.
園 8]本発明の一実施形態による赤外光源の構成を示す図である。 FIG. 8 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention.
園 9]本発明の他の実施形態による赤外光源の構成を示す図である。 FIG. 9] A diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 10]本発明の他の実施形態による赤外光源の構成を示す図である。 [10] It is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 11]本発明の他の実施形態による赤外光源の構成を示す図である。 [11] It is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 12]本発明の他の実施形態による赤外光源の構成を示す図である。 [12] FIG. 12 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 13]本発明の他の実施形態による赤外光源の構成を示す図である。 [13] It is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 14]本発明の他の実施形態による赤外光源の構成を示す図である。 14] A diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 15]本発明の他の実施形態による赤外光源の構成を示す図である。 15] A diagram showing the configuration of an infrared light source according to another embodiment of the present invention.
園 16]本発明の他の実施形態による赤外光源の構成を示す図である。 [16] FIG. 16 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention.
園 17A]本発明の他の実施形態による赤外光源の格子の構成を示す図である。 園 17B]本発明の他の実施形態による赤外光源の格子の構成を示す図である。 園 18]本発明の他の実施形態による赤外光源の格子の構成を示す図である。 園 19]本発明の他の実施形態による赤外光源の格子の構成を示す図である。 園 20]図 18の実施形態によって放射される赤外線の強度分布を概念的に示す図で ある。 FIG. 17A] A diagram showing the configuration of a grating of an infrared light source according to another embodiment of the present invention. Fig. 17B] is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention. [18] FIG. 18 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention. FIG. 19] A diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention. FIG. 20] is a diagram conceptually showing the intensity distribution of infrared rays emitted by the embodiment of FIG.
園 21]実施形態 1を説明するための図である。 FIG. 21 is a diagram for explaining the first embodiment.
[図 22]実施形態 2を説明するための図である。 FIG. 22 is a diagram for explaining the second embodiment.
[図 23]実施形態 3を説明するための図である。 FIG. 23 is a diagram for explaining the third embodiment.
[図 24]実施形態 4を説明するための図である。 FIG. 24 is a diagram for explaining the fourth embodiment.
[図 25]実施形態 5を説明するための図である。 FIG. 25 is a diagram for explaining the fifth embodiment.
[図 26]実施形態 6を説明するための図である。 FIG. 26 is a diagram for explaining the sixth embodiment.
[図 27]実施形態 7を説明するための図である。 FIG. 27 is a diagram for explaining the embodiment 7.
[図 28]実施形態 8を説明するための図である。 FIG. 28 is a diagram for explaining the eighth embodiment.
[図 29]実施形態 9を説明するための図である。 FIG. 29 is a diagram for explaining the ninth embodiment.
園 30]実施形態 10を説明するための図である。 FIG. 30 is a diagram for explaining the tenth embodiment.
園 31]実施形態 11を説明するための図である。 FIG. 31 is a diagram for explaining the embodiment 11.
園 32]実施形態 12を説明するための図である。 園 33]実施形態 13を説明するための図である。 FIG. 32 is a diagram for explaining the embodiment 12. 37] It is a diagram for explaining the embodiment 13.
園 34]実施形態 14を説明するための図である。 14] A diagram for explaining the fourteenth embodiment.
園 35]実施形態 15を説明するための図である。 FIG. 35 is a diagram for explaining the embodiment 15.
園 36]実施形態 16を説明するための図である。 [36] A diagram for explaining the sixteenth embodiment.
園 37]実施形態 17を説明するための図である。 37] A diagram for explaining the seventeenth embodiment.
園 38]実施形態 18を説明するための図である。 37] It is a diagram for explaining the embodiment 18.
園 39]実施形態 19を説明するための図である。 37] A diagram for explaining the nineteenth embodiment.
園 40]実施形態 20の、負の誘電体として機能する部分と正の誘電体として機能する 部分との境界面が、格子面と所定の角度をなす格子の断面を示す図である。 FIG. 40 is a diagram illustrating a cross section of a lattice in which a boundary surface between a portion functioning as a negative dielectric and a portion functioning as a positive dielectric forms a predetermined angle with the lattice surface in the twentieth embodiment.
園 41]実施形態 20の赤外光源において、格子周期 Pおよび正の誘電体として機能 する部分の幅 Tを定めた場合に、格子深さ Dおよび所定の角度 Θを求める方法を示 す流れ図である。 41] In the infrared light source of Embodiment 20, when the grating period P and the width T of the portion functioning as a positive dielectric are determined, a flowchart showing a method for obtaining the grating depth D and the predetermined angle Θ is there.
園 42]実施形態 20の赤外光源において、所定の角度と赤外線強度比の関係を示す 図である。 FIG. 42] In the infrared light source of Embodiment 20, the relationship between a predetermined angle and an infrared intensity ratio is shown.
[図 43]実施形態 21の、正の誘電体として機能する部分が正の誘電体材料および空 気(中空)から形成され、負の誘電体として機能する部分が金力 形成される格子を 示す図である。  FIG. 43 shows a lattice in which a portion functioning as a positive dielectric is formed of a positive dielectric material and air (hollow), and a portion functioning as a negative dielectric is formed of a metal force in Embodiment 21 FIG.
園 44]実施形態 21の、正の誘電体として機能する部分が正の誘電体材料および空 気(中空)から形成され、負の誘電体として機能する部分が金および銀力 形成され る格子を示す図である。 44] A lattice in which the portion functioning as a positive dielectric is formed of a positive dielectric material and air (hollow) and the portion functioning as a negative dielectric is formed of gold and silver force in Embodiment 21 FIG.
園 45]実施形態 21の格子の、 D1と D2との比率を変化させた場合の、波長と吸収率 との関係を示す図である。 [45] FIG. 45 is a diagram showing the relationship between the wavelength and the absorptance when the ratio of D1 and D2 of the grating of Embodiment 21 is changed.
[図 46]本発明および従来技術の赤外光源を使用した赤外線ヒータの構成例を示す 図である。  FIG. 46 is a diagram showing a configuration example of an infrared heater using the infrared light source of the present invention and the prior art.
園 47]格子の単位構造において、表面波の波数と角周波数との関係を示す図である 園 48]格子の単位構造と表面波との関係を示す図である。 Fig. 47] A diagram showing the relationship between the wave number of surface waves and the angular frequency in the unit structure of the lattice.
[図 49]本発明の一実施形態による赤外光源の波長と赤外線強度との関係を示す図 である。 FIG. 49 is a diagram showing the relationship between the wavelength of an infrared light source and the infrared intensity according to an embodiment of the present invention. It is.
園 50]本発明の一実施形態による赤外光源の放射指向性を示す図である。 FIG. 50 is a diagram showing the radiation directivity of an infrared light source according to an embodiment of the present invention.
[図 51]発熱体表面温度と発熱体から放射される赤外線強度との関係を示す図である  FIG. 51 is a diagram showing the relationship between the heating element surface temperature and the intensity of infrared rays emitted from the heating element.
[図 52]特定の波長を、 2. 5マイクロ ·メータとした場合に、図 3および図 5に示した方法 にしたがって求めた赤外光源の赤外線強度比を示す。 [Fig.52] Shows the infrared intensity ratio of the infrared light source obtained according to the method shown in Fig. 3 and Fig. 5 when the specific wavelength is 2.5 micrometers.
[図 53]特定の波長を、 4. 0マイクロ ·メータとした場合に、図 3および図 5に示した方法 にしたがって求めた赤外光源の赤外線強度比を示す。  FIG. 53 shows the infrared intensity ratio of the infrared light source obtained according to the method shown in FIGS. 3 and 5 when the specific wavelength is 4.0 micrometers.
[図 54]特定の波長を、 6マイクロ ·メータとした場合に、図 3および図 5に示した方法に したがって求めた赤外光源の赤外線強度比を示す。  FIG. 54 shows the infrared intensity ratio of the infrared light source obtained by the method shown in FIGS. 3 and 5 when the specific wavelength is 6 micrometers.
園 55]本発明の一実施形態による分析システムの構成を示す図である。 [55] FIG. 55 is a diagram showing a configuration of an analysis system according to an embodiment of the present invention.
[図 56]測定対象の気体の赤外線吸収度および赤外光源の放射強度を示す図である 園 57]本発明の一実施形態による参照試料方式の分析システムの構成を示す図で ある。  FIG. 56 is a diagram showing the infrared absorption of a gas to be measured and the radiation intensity of the infrared light source. FIG. 56 is a diagram showing the configuration of a reference sample type analysis system according to an embodiment of the present invention.
園 58]本発明の一実施形態による 2波長方式の分析システムの構成を示す図である Sono 58] is a diagram showing a configuration of a two-wavelength analysis system according to an embodiment of the present invention.
[図 59]本発明の一実施形態による 6波長方式の 5成分分析システムの構成を示す図 である。 FIG. 59 is a diagram showing a configuration of a six-wavelength five-component analysis system according to an embodiment of the present invention.
[図 60]3個の周期的に電力を変化させる電源の出力パルス波形、 3個の赤外光源か ら放出される赤外線の出力波形および 2個の赤外センサの出力波形を示す図である  FIG. 60 is a diagram showing an output pulse waveform of a power source that periodically changes power, output waveforms of infrared rays emitted from three infrared light sources, and output waveforms of two infrared sensors.
[図 61]非分散型赤外線吸収法を利用した分析システムの基本的な構成を示す図で ある。 FIG. 61 is a diagram showing a basic configuration of an analysis system using a non-dispersive infrared absorption method.
[図 62]測定対象物(一例として気体)の吸光度、光源の強度、波長選択素子の透過 率の関係を示す図である。  FIG. 62 is a diagram showing the relationship between the absorbance of a measurement object (for example, gas), the intensity of a light source, and the transmittance of a wavelength selection element.
園 63]参照試料を利用する分析システムを示す図である。 [36] is a diagram showing an analysis system using a reference sample.
[図 64]2波長方式の分析システムの構成を示す図である。 [図 65]糖度計のシステム構成を示す図である。 FIG. 64 is a diagram showing a configuration of a two-wavelength analysis system. FIG. 65 is a diagram showing a system configuration of a sugar content meter.
[図 66]水分計のシステム構成を示す図である。  FIG. 66 is a diagram showing a system configuration of a moisture meter.
[図 67]本発明の一実施形態による、監視システムの構成を示す図である。  FIG. 67 is a diagram showing a configuration of a monitoring system according to an embodiment of the present invention.
[図 68]本発明の他の実施形態による、監視システムの構成を示す図である。  FIG. 68 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
[図 69]本発明の他の実施形態による、監視システムの構成を示す図である。  FIG. 69 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
[図 70]本発明の他の実施形態による、監視システムの構成を示す図である。  FIG. 70 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention.
[図 71]PbSe光導電素子の、波長に対する相対感度を示す図である。  FIG. 71 is a diagram showing a relative sensitivity with respect to wavelength of a PbSe photoconductive element.
[図 72]太陽光の地表におけるスペクトル成分を示す図である。  FIG. 72 is a diagram showing spectral components on the surface of sunlight.
[図 73]地表の反射特性および放射特性を示す図である。  FIG. 73 is a diagram showing the reflection characteristics and radiation characteristics of the ground surface.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 図 1は、本発明の一実施形態による赤外光源 100の構成を示す図である。赤外光 源 100は、格子 101と発熱体 107とを含む。本実施形態においては、発熱体 107の 表面に格子 101が備わる。発熱体 107は、たとえば、セラミック 'ヒータである。他に、 SiCヒータなどであってもよい。格子 101は、負の誘電体として機能する部分(金属な ど) 103と正の誘電体として機能する部分 (誘電体など) 105と力、らなる。負の誘電体 として機能する部分(金属など) 103は、たとえば、アルミニウム、金、銀などの金属で もよい。また、負の誘電体として機能する部分 103は、任意の材料の表面に金属膜を 形成したものであってもよい。正の誘電体として機能する部分 (誘電体など) 105は、 たとえば、中空またはシリコンなどの半導体としてもよい。格子 101の周期を P、格子 1 01の深さを D、正の誘電体として機能する部分 (誘電体など) 105の幅を Tで表わす 。図 1における矢印 Aは、赤外光源 100が発する光の、格子の配列方向に対して直 交する偏光面の方向を示す。この偏光面については後で説明する。  FIG. 1 is a diagram showing a configuration of an infrared light source 100 according to an embodiment of the present invention. The infrared light source 100 includes a grating 101 and a heating element 107. In the present embodiment, the lattice 101 is provided on the surface of the heating element 107. The heating element 107 is, for example, a ceramic heater. In addition, a SiC heater or the like may be used. The lattice 101 is composed of a portion (such as a metal) 103 that functions as a negative dielectric and a portion (such as a dielectric) 105 that functions as a positive dielectric. The portion (metal or the like) 103 that functions as a negative dielectric may be a metal such as aluminum, gold, or silver. Further, the portion 103 functioning as a negative dielectric may be formed by forming a metal film on the surface of an arbitrary material. The portion that functions as a positive dielectric (such as a dielectric) 105 may be, for example, a hollow or a semiconductor such as silicon. The period of the lattice 101 is represented by P, the depth of the lattice 101 is represented by D, and the width of a portion 105 (such as a dielectric) that functions as a positive dielectric is represented by T. An arrow A in FIG. 1 indicates the direction of the plane of polarization of the light emitted from the infrared light source 100, which is perpendicular to the arrangement direction of the grating. This polarization plane will be described later.
[0026] 図 2は、波長に対する、赤外線の強度分布を示す図である。横軸は波長、縦軸は 放射エネルギ密度を表わす。放射エネルギ密度を強度と呼称する。  FIG. 2 is a diagram showing the intensity distribution of infrared rays with respect to the wavelength. The horizontal axis represents wavelength and the vertical axis represents radiant energy density. The radiant energy density is called intensity.
[0027] 一点鎖線は、格子 101を伴わな!/、発熱体 107によって放射される赤外線の強度分 布を表わす。赤外線は、広い波長にわたり緩やかに分布している。発熱体 107によつ て放射される赤外線は、あらゆる偏光面を有している。  The alternate long and short dash line represents the intensity distribution of infrared rays emitted by the heating element 107 without the grid 101! Infrared rays are gently distributed over a wide wavelength. The infrared rays emitted by the heating element 107 have all polarization planes.
[0028] 実線は赤外光源 100によって放射される赤外線の強度分布を表わす。実線で表わ される赤外光源 100によって放射される赤外線の強度分布は、複数のピークを有し、 ピーク以外の波長における強度はほぼゼロである。複数のピークは、波長の長い方 から、第 1のピーク、第 2のピークというように、数字によって特定する。第 2のピーク波 長え は、第 1のピーク波長え に対して、図 8の形態の構造では約 1/3である。またThe solid line represents the intensity distribution of infrared rays emitted from the infrared light source 100. Represented by a solid line The infrared light intensity distribution emitted by the infrared light source 100 has a plurality of peaks, and the intensity at wavelengths other than the peaks is almost zero. Multiple peaks are identified numerically from the longest wavelength, such as the first peak and the second peak. The second peak wavelength is about 1/3 of the first peak wavelength in the structure shown in FIG. Also
2 1 twenty one
、図 9の形態の構造では約 1/2である。図 2以下の図において、第 1および第 2のピ ーク以外は図示しない。  In the structure of the form of FIG. In the figures after Fig. 2, only the first and second peaks are not shown.
[0029] 上記のピーク波長においては、格子 101の配列方向に対して直交する偏光面を有 する光(図 1参照)のみが放射される。 [0029] At the above peak wavelength, only light having a polarization plane orthogonal to the arrangement direction of the grating 101 (see FIG. 1) is emitted.
[0030] 図 2において、横軸と一点鎖線によって囲まれる部分の面積は、同じパワーを放射 する光源を比較すると、横軸と実線によって囲まれる部分の面積と等しい。このようにIn FIG. 2, the area of the part surrounded by the horizontal axis and the one-dot chain line is equal to the area of the part surrounded by the horizontal axis and the solid line when comparing light sources that emit the same power. in this way
、赤外光源 100は、発熱体の放射エネルギを特定の波長の赤外線に集中させる機 能を有する。し力、も、特定の波長の赤外線は、格子 101の配列方向に対して直交す る偏光面を有する(図 1参照)。 The infrared light source 100 has a function of concentrating the radiant energy of the heating element on infrared rays having a specific wavelength. However, an infrared ray having a specific wavelength has a polarization plane orthogonal to the arrangement direction of the grating 101 (see FIG. 1).
[0031] 図 2において、第 1のピーク波長における、赤外光源 100によって放射される赤外 線の強度(B)の、発熱体によって放射される赤外線の強度 (A)に対する比率を赤外 線強度比と呼称する。 [0031] In FIG. 2, the ratio of the infrared ray intensity (B) emitted by the infrared light source 100 to the infrared ray intensity (A) emitted by the heating element at the first peak wavelength is shown as the infrared ray. It is called intensity ratio.
[0032] そこで、特定の波長を第 1のピーク波長と一致させることができれば、当該特定波長 の赤外光源が得られる。以下に、特定の波長を第 1のピーク波長と一致させた赤外 光源を製作する方法について説明する。  [0032] Thus, if the specific wavelength can be matched with the first peak wavelength, an infrared light source having the specific wavelength can be obtained. The following describes how to fabricate an infrared light source that matches a specific wavelength with the first peak wavelength.
[0033] 図 3は、赤外光源において、格子周期 Pおよび正の誘電体として機能する部分 (誘 電体など)の幅 Tを定めた場合に、格子深さ Dを求める方法を示す流れ図である。 [0033] FIG. 3 is a flowchart showing a method for obtaining the grating depth D when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source. is there.
[0034] ステップ S3010において、格子周期 Pおよび正の誘電体として機能する部分 (誘電 体など)の幅 Tを定める。特定の波長を λとした場合に [0034] In step S3010, the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined. When a specific wavelength is λ
 Country
Τ≤0.5Ρ である任意の格子周期 Ρおよび正の誘電体として機能する部分 (誘電体など)の幅 τを定める。 [0035] ここで、赤外光源が回折を生じないようにするには、格子周期 Pが、 [数 2] Determine any lattice period Ρ Τ≤0.5Ρ and the width τ of the part that functions as a positive dielectric (such as dielectric). [0035] Here, in order to prevent the infrared light source from diffracting, the grating period P is
0 < < 0.5λ であるように定める。 Determine that 0 <<0.5λ.
[0036] 以下において、赤外光源 100の放射する赤外線の強度を、たとえば、 FDTD法な どの計算によって求めてもよい。 FDTD法は、マクスゥエルの方程式を差分化して電 磁界をシミュレートする方法である。  [0036] In the following, the intensity of infrared light emitted from the infrared light source 100 may be obtained by calculation such as the FDTD method. The FDTD method simulates an electromagnetic field by differentiating Maxwell's equations.
[0037] ステップ S3020において、格子深さ Dを変化させて、赤外光源 100によって放射さ れる赤外線の強度分布をもとめる。  [0037] In step S3020, the grating depth D is changed to determine the intensity distribution of infrared rays emitted from the infrared light source 100.
[0038] 図 4は、赤外光源の格子深さ Dを変化させた場合の、赤外光源によって放射される 赤外線の強度分布の変化を示す図である。 (Β)の場合の格子深さは、(Α)の場合の 格子深さよりも大きく、(C)の場合の格子深さは、(Β)の場合の格子深さよりも大きい 。図 4に示すように、格子深さ Dを大きくすると、第 1のピーク波長 も大きくなる。し たがって、格子深さ Dを調整することにより、第 1のピーク波長 λ を特定の波長 λに 一致させること力 Sできる。 (C)において、第 1のピーク波長え は、特定の波長えに一 致している。  FIG. 4 is a diagram showing a change in the intensity distribution of infrared rays emitted from the infrared light source when the grating depth D of the infrared light source is changed. The lattice depth in (Β) is larger than the lattice depth in (Α), and the lattice depth in (C) is larger than the lattice depth in (Β). As shown in Fig. 4, increasing the grating depth D increases the first peak wavelength. Therefore, by adjusting the grating depth D, the force S can be made to match the first peak wavelength λ to a specific wavelength λ. In (C), the first peak wavelength matches the specific wavelength.
[0039] ステップ S3030において、第 1のピーク波長 λ が特定の波長 λに一致したかどう か判断する。一致していなければ、ステップ S3020に戻り、さらに格子深さ Dを変化 させる。一致していれば、そのときの、格子深さ Dを赤外光源 100の格子深さとして終 了する。  In step S3030, it is determined whether or not the first peak wavelength λ matches the specific wavelength λ. If not, the process returns to step S3020 and further changes the lattice depth D. If they match, the grating depth D at that time is terminated as the grating depth of the infrared light source 100.
[0040] 図 5は、赤外光源において、格子周期 Ρを定めた場合に、格子深さ Dおよび正の誘 電体として機能する部分 (誘電体など)の幅 Τを求める方法を示す流れ図である。  [0040] Fig. 5 is a flowchart showing a method for obtaining the grating depth D and the width の of a portion (such as a dielectric) functioning as a positive dielectric when the grating period Ρ is determined in an infrared light source. is there.
[0041] ステップ S5010において、特定の波長をえとした場合に  [0041] In step S5010, when a specific wavelength is used
 Country
0 < < 2.0λ である任意の格子周期 Ρを定める。 Define an arbitrary lattice period Ρ where 0 <<2.0λ.
[0042] ここで、赤外光源が回折を生じないようにするには、格子周期 Ρが、 [数 4コ [0042] Here, in order to prevent the infrared light source from diffracting, the grating period Ρ [Number 4
0 < ≤0.5λ であるように定める。 Determine that 0 <≤0.5λ.
[0043] ステップ S5020において、正の誘電体として機能する部分(誘電体など)の幅 Τを 変化させて、第 1のピーク波長が特定の波長に一致する格子深さ Dおよびその格子 深さの場合の赤外線強度比を求める。具体的に、正の誘電体として機能する部分( 誘電体など)の幅 Τをある値に定めた後、図 3の流れ図にしたがって、第 1のピーク波 長が特定の波長に一致する格子深さ Dおよびその格子深さの場合の赤外線強度比 を求める。つぎに、正の誘電体として機能する部分 (誘電体など)の幅 Τを別の値に 定めた後、図 3の流れ図にしたがって、第 1のピーク波長が特定の波長に一致する格 子深さ Dおよびその格子深さの場合の赤外線強度比を求める。このステップを繰り返 して、正の誘電体として機能する部分 (誘電体など)の幅 Τの値を変化させながら、そ の値に対して、第 1のピーク波長が特定の波長に一致する格子深さ Dおよびその格 子深さの場合の赤外線強度比を求める。  [0043] In step S5020, the width の of the portion functioning as a positive dielectric (such as a dielectric) is changed, and the grating depth D and the grating depth at which the first peak wavelength matches the specific wavelength are changed. Find the infrared intensity ratio for the case. Specifically, after setting the width の of the portion functioning as a positive dielectric (such as a dielectric) to a certain value, the first peak wavelength matches the specific wavelength according to the flowchart of FIG. Find the infrared intensity ratio for depth D and its grating depth. Next, after setting the width の of the portion that functions as a positive dielectric (such as a dielectric) to a different value, the first peak wavelength matches the specific wavelength according to the flowchart in Fig. 3. Find the infrared intensity ratio for depth D and its grating depth. Repeat this step to change the value of the width の of the part that functions as a positive dielectric (dielectric, etc.), and the first peak wavelength matches the specific wavelength for that value. Obtain the infrared intensity ratio for the lattice depth D and its lattice depth.
[0044] 図 6は、赤外光源の正の誘電体として機能する部分 (誘電体など)の幅 Τを変化さ せた場合に、特定の波長における赤外線強度比の変化を示す図である。格子 101 の負の誘電体として機能する部分(金属など) 103は、金であり、正の誘電体として機 能する部分 (誘電体など) 105は、空気である。図 6の横軸は、所定の格子周期 Ρに 対する正の誘電体として機能する部分 (誘電体など)の幅 Τの比であり、縦軸は、第 1 のピークと一致する特定の波長における赤外線強度比である。図 6に示すように、特 定の波長における赤外線強度比は、正の誘電体として機能する部分 (誘電体など) の幅 Τの特定の値に対してピークを示す。具体的に、特定の波長は、 9. 6マイクロ'メ ータ、所定の格子周期 Ρは、 3マイクロ 'メータであり、  FIG. 6 is a diagram showing a change in the infrared intensity ratio at a specific wavelength when the width of a portion (dielectric, etc.) functioning as a positive dielectric of the infrared light source is changed. A portion (such as a metal) 103 that functions as a negative dielectric of the lattice 101 is gold, and a portion (such as a dielectric) 105 that functions as a positive dielectric is air. The horizontal axis in Fig. 6 is the ratio of the width の of a portion that functions as a positive dielectric (such as a dielectric) for a given grating period Ρ, and the vertical axis is at a specific wavelength that coincides with the first peak. Infrared intensity ratio. As shown in Fig. 6, the infrared intensity ratio at a specific wavelength shows a peak with respect to a specific value of the width 部分 of a portion functioning as a positive dielectric (such as a dielectric). Specifically, the specific wavelength is 9.6 micrometer, the predetermined grating period Ρ is 3 micrometer,
[数 5コ  [Number 5
Τ / Ρ = 0.Q2 Τ / Ρ = 0.Q2
すなわち、正の誘電体として機能する部分 (誘電体など)の幅 Τが 0. 06マイクロ'メー タ(60ナノ'メータ)の値に対して、赤外線強度比は、ピークを示す。 [0045] また、図 6から、特定の波長における赤外線強度比が十分な大きさであるのは、せ ぃぜい、 In other words, the infrared intensity ratio shows a peak when the width の of the portion functioning as a positive dielectric (dielectric, etc.) is 0.06 micrometer (60 nanometers). [0045] Further, from FIG. 6, the infrared intensity ratio at a specific wavelength is sufficiently large.
[数 6]  [Equation 6]
T≤ 0.5 P の範囲である。 The range is T≤ 0.5 P.
[0046] 図 5のステップ S 5030において、正の誘電体として機能する部分(誘電体など)の 幅 Tが、図 6における赤外線強度比の曲線のピークに対応する値かどうか判断する。 ピークに対応していなければ、ステップ S5020に戻り、正の誘電体として機能する部 分 (誘電体など)の幅 Tをさらに変化させる。ピークに対応していれば、そのときの正 の誘電体として機能する部分 (誘電体など)の幅 Tを赤外光源 100の正の誘電体とし て機能する部分 (誘電体など)の幅として終了する。  In step S 5030 in FIG. 5, it is determined whether or not the width T of the portion functioning as a positive dielectric (such as a dielectric) is a value corresponding to the peak of the infrared intensity ratio curve in FIG. If it does not correspond to the peak, the process returns to step S5020, and the width T of the part functioning as a positive dielectric (dielectric etc.) is further changed. If it corresponds to the peak, the width T of the portion that functions as a positive dielectric (such as a dielectric) at that time is the width of the portion that functions as the positive dielectric of the infrared light source 100 (such as a dielectric). finish.
[0047] 図 7は、正の誘電体として機能する部分 (誘電体など)の幅 Tを一定として赤外光源 の格子周期 Pを変化させた場合に、特定の波長における赤外線強度比の変化を示 す図である。格子 101の負の誘電体として機能する部分(金属など) 103は、金であり 、正の誘電体として機能する部分 (誘電体など) 105は、空気である。図 7の横軸は、 所定の格子周期 Pであり、縦軸は、第 1のピークと一致する特定の波長における赤外 線強度比である。図 7に示すように、特定の波長における赤外線強度比は、格子周 期 Pの特定の値に対してピークを示す。具体的に、特定の波長は、 9. 6マイクロ'メー タ、正の誘電体として機能する部分 (誘電体など)の幅 Tは、 400ナノ'メータであり、 [数 7]
Figure imgf000014_0001
[0047] Figure 7 shows the change in the infrared intensity ratio at a specific wavelength when the grating period P of the infrared light source is changed with the width T of the portion functioning as a positive dielectric (dielectric, etc.) constant. FIG. A portion (such as a metal) 103 that functions as a negative dielectric of the lattice 101 is gold, and a portion that functions as a positive dielectric (such as a dielectric) 105 is air. The horizontal axis in FIG. 7 is the predetermined grating period P, and the vertical axis is the infrared ray intensity ratio at a specific wavelength that coincides with the first peak. As shown in Fig. 7, the infrared intensity ratio at a specific wavelength shows a peak for a specific value of the grating period P. Specifically, the specific wavelength is 9.6 micrometer, and the width T of the part that functions as a positive dielectric (such as dielectric) is 400 nanometers.
Figure imgf000014_0001
すなわち、格子周期 Pが特定の波長の近傍の値に対して、赤外線強度比は、ピーク を示す。  That is, the infrared intensity ratio shows a peak when the grating period P is near a specific wavelength.
[0048] また、図 7から、特定の波長における赤外線強度比が十分な大きさであるのは、 [数 8コ  [0048] Further, from FIG. 7, the infrared intensity ratio at a specific wavelength is sufficiently large as follows.
0 < < 2.0λ の範囲である。 [0049] 上記においては、格子周期 Pを定め、所望の特定の波長において、赤外線強度比 が最大となるように格子深さ Dおよび正の誘電体として機能する部分 (誘電体など)の 幅 Tを定める方法について説明した。上記の方法に代わり、格子深さ Dを定め、所望 の特定の波長において、赤外線強度比が最大となるように格子周期 Pおよび正の誘 電体として機能する部分 (誘電体など)の幅 Tを定めてもよい。あるいは、誘電体材料 部 (誘電体など)の幅 Tを定め、所望の特定の波長において、赤外線強度比が最大と なるように格子周期 Pおよび格子深さ Dを定めてもよい。 The range is 0 <<2.0λ. [0049] In the above, the grating period P is determined, and the grating depth D and the width T of a portion (such as a dielectric) functioning as a positive dielectric so that the infrared intensity ratio is maximized at a desired specific wavelength. Explained how to determine Instead of the above method, the grating depth D is determined, the grating period P and the width T of the part (such as dielectric) functioning as a positive dielectric so that the infrared intensity ratio is maximized at the desired specific wavelength. May be determined. Alternatively, the width T of the dielectric material portion (dielectric material, etc.) may be determined, and the grating period P and the grating depth D may be determined so that the infrared intensity ratio is maximized at a desired specific wavelength.
[0050] いずれの場合にも、格子周期 Pおよび正の誘電体として機能する部分 (誘電体など )の幅 Tは、以下の関係を満たすように定める。  [0050] In any case, the grating period P and the width T of the portion (such as a dielectric) functioning as a positive dielectric are determined so as to satisfy the following relationship.
[数 9コ  [Number 9
0 < < 0.5λ 0 <<0.5λ
[数 10] [Equation 10]
Γ < 0.5 Γ <0.5
[0051] 図 52乃至 54は、特定の波長を、それぞれ、 2. 5マイクロ 'メータ、 4. 0マイクロ'メー タおよび 6マイクロ ·メータとした場合に、図 3および図 5に示した方法にしたがって求 めた赤外光源の赤外線強度比を示す。  [0051] FIGS. 52 to 54 show the method shown in FIGS. 3 and 5 when the specific wavelength is 2.5 micrometer, 4.0 micrometer, and 6 micrometer, respectively. Therefore, the obtained infrared intensity ratio of the infrared light source is shown.
[0052] 表 1乃至 3は、特定の波長を、それぞれ、 2. 5マイクロ 'メータ、 4. 0マイクロ 'メータ および 6. 0マイクロ 'メータとした場合に、図 3および図 5に示した方法にしたがって求 めた赤外光源の仕様を示す。 [0052] Tables 1 to 3 show the methods shown in FIGS. 3 and 5 when the specific wavelengths are 2.5 micrometer, 4.0 micrometer, and 6.0 micrometer, respectively. The specifications of the infrared light source obtained according to are shown below.
[表 1]  [table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[表 2]
Figure imgf000016_0001
[Table 2]
Figure imgf000016_0001
[表 3] [Table 3]
Figure imgf000016_0002
Figure imgf000016_0002
[0053] 以下、本発明の赤外光源の原理について説明する。格子の前記一定周期を P、一 定方向の正の誘電体として機能する部分の幅を T、格子深さを Dとする。本発明の赤 外光源では、 Hereinafter, the principle of the infrared light source of the present invention will be described. Let P be the constant period of the lattice, T be the width of the portion that functions as a positive dielectric in a certain direction, and D be the lattice depth. In the infrared light source of the present invention,
[数 11]  [Equation 11]
Γ < 0.5 とする。正の誘電体として機能する部分の幅の方が負の誘電体として機能する部分 の幅よりも一般に小さいのであるから、この格子は、正の誘電体材料でできたコアを 負の誘電体材料でできたクラッドによりはさみ、有限の長さ Dを有するスラブ導波路が 周期的に配列したものとみなすことができる。本発明の赤外光源の基本となる物理現 象は、スラブ導波路の表面波モードが、有限の長さの両端面で反射されることにより 起こる共鳴現象である。 Let Γ <0.5. Since the width of the part that functions as a positive dielectric is generally smaller than the width of the part that functions as a negative dielectric, this grid is made up of a core made of a positive dielectric material. It can be regarded as a periodic arrangement of slab waveguides sandwiched by clad made of and having a finite length D. The physical phenomenon that is the basis of the infrared light source of the present invention is a resonance phenomenon that occurs when the surface wave mode of the slab waveguide is reflected from both end faces of a finite length.
[0054] ここで、正の誘電体とは、誘電率の実数部が正の値であるものであり、負の誘電体 とは、誘電率の実数部が負の値であるものである。正の誘電体は、一般的な非金属 材料が該当し、具体的にはガラス、金属酸化物、金属フッ化物、セラミタス、半導体、 高分子、液体などである。また、空気やその他の気体、真空の空間も正の誘電体に 含まれる。一方、負の誘電体は、プラズマ周波数よりも低周波数、つまり可視光や赤 外光領域における金属材料、正誘電体材料に金属を複合した材料などである。この 他に、遠赤外光領域における炭化ケィ素や各種イオン結晶などの大きな格子振動の 共鳴を示す材料、キャリアが励起された状態のシリコンなどの半導体材料も負の誘電 体に含まれる。 [0054] Here, the positive dielectric is a substance having a positive real part of the dielectric constant, and the negative dielectric is a substance having a negative real part of the dielectric constant. The positive dielectric corresponds to a general non-metallic material, and specifically, glass, metal oxide, metal fluoride, ceramics, semiconductor, polymer, liquid, and the like. Air, other gases, and vacuum spaces are also included in the positive dielectric. On the other hand, the negative dielectric is a metal material in a frequency lower than the plasma frequency, that is, in the visible light or infrared light region, or a material in which a metal is combined with a positive dielectric material. this In addition, negative dielectrics include materials that exhibit large lattice vibration resonance, such as silicon carbide and various ion crystals in the far-infrared light region, and semiconductor materials such as silicon in which carriers are excited.
[0055] 負の誘電体と正の誘電体との界面には、一般に、電界が界面に垂直で、電磁界が 界面において最大値を取り、界面から離れるにしたがって、指数関数的に減衰する ような電磁界分布を持ち、表面に沿って伝搬するような表面波モードが存在する。特 に誘電率の虚数成分の値が小さな材料に対しては、このような表面波は長レ、距離伝 搬できる。負の誘電体を金属材料とする場合の表面波を、表面プラズモンと呼ぶ。  [0055] An interface between a negative dielectric and a positive dielectric generally has an electric field perpendicular to the interface, and the electromagnetic field takes a maximum value at the interface, and decays exponentially as the distance from the interface increases. There is a surface wave mode that has a strong electromagnetic field distribution and propagates along the surface. Especially for materials with a small value of the imaginary component of the dielectric constant, such surface waves can be propagated over long distances. A surface wave when a negative dielectric is a metal material is called surface plasmon.
[0056] 格子の周期 Pが特定の波長 λに比べて十分に小さ!/、場合、格子全体の光学特性 は、格子を構成する 1つの単位構造、すなわち、有限の長さを有するスラブ導波路の 光学特性でほとんど決定される。  [0056] When the period P of the grating is sufficiently small compared to a specific wavelength λ! /, The optical characteristic of the entire grating is one unit structure constituting the grating, that is, a slab waveguide having a finite length. Mostly determined by optical properties.
[0057] 図 47は、表面波の波数  [0057] Figure 47 shows the wave number of surface waves.
[数 12] kp = 2π / λρ と角周波数 [Equation 12] k p = 2π / λ ρ and angular frequency
[数 13] ω = 27i l との関係を示す図である。ここで、  [Equation 13] This is a diagram showing the relationship with ω = 27i l. here,
[数 14] K  [Equation 14] K
は、表面波の波長であり、 cは光速である。所定の角周波数において表面波の波長 [数 15]  Is the wavelength of the surface wave, and c is the speed of light. Wavelength of surface wave at a given angular frequency [Equation 15]
K K
は、コア厚さ Tが小さくなるほど短くなる。つまり、コア厚さ Tと角周波数 ωと表面波の 波長 κ Decreases as the core thickness T decreases. That is, core thickness T, angular frequency ω, and surface wave wavelength κ
の内の 2つが決まれば残りの 1つは決まる。  If two of these are determined, the remaining one is determined.
[0058] 図 48は、格子の単位構造と表面波との関係を示す図である。図 48において、負の 誘電体として機能する部分および正の誘電体として機能する部分を、それぞれ、 Αお よび Bで示し、負の誘電体材料を斜線で示す。 FIG. 48 is a diagram showing the relationship between the unit structure of the lattice and the surface wave. In FIG. 48, the part that functions as a negative dielectric and the part that functions as a positive dielectric are indicated by Α and B, respectively, and the negative dielectric material is indicated by diagonal lines.
[0059] 図 48 (a)において、負の誘電体として機能する部分 Aは、負の誘電体材料 (たとえ ば金属)によって形成されている。図 48 (b)において、負の誘電体として機能する部 分 Aは、正の誘電体材料 (たとえばプラスチック)に負の誘電体材料 (たとえば金属) を被覆して形成されてレ、る。 In FIG. 48 (a), the portion A that functions as a negative dielectric is formed of a negative dielectric material (for example, metal). In FIG. 48 (b), the portion A that functions as a negative dielectric is formed by coating a positive dielectric material (for example, plastic) with a negative dielectric material (for example, metal).
[0060] 図 48に示すように、一方が開放端、他方が閉鎖端の場合には、導波路の長さ Dが[0060] As shown in FIG. 48, when one is an open end and the other is a closed end, the length D of the waveguide is
[数 17] [Equation 17]
( 1 / 4 ) λρ , ( 3 / 4 ) ^、 ( 5 / 4 ) λρ■ - - に一致するような複数の場合に、波長 (1/4) λ ρ , (3/4) ^, ( 5/4 ) λ ρ
[数 18]  [Equation 18]
Κ Κ
の表面波が共鳴する。これらの複数の導波路の共鳴モードを、波長  Resonate surface waves. The resonance modes of these multiple waveguides are
[数 19]  [Equation 19]
Κ Κ
が大きいほうから、第 1の共鳴モード (第 1ピーク波長)、第 2の共鳴モード (第 2ピーク 波長)というように、数字によって特定する。以上のことから、有限の長さを有するスラ ブ導波路において、それぞれの共鳴モードにおいて、角周波数 ωとコア厚さ Τと導波 路の長さ Dの内の 2つが決まれば残りの 1つは決まる。  From the largest, the first resonance mode (first peak wavelength) and the second resonance mode (second peak wavelength) are specified by numbers. From the above, in a slab waveguide having a finite length, in each resonance mode, if one of the angular frequency ω, the core thickness Τ, and the waveguide length D is determined, the remaining one is determined. Is determined.
[0061] ここまで、周期 Ρが共鳴に影響しない極限的なケースを考えてきたが、現実には、共 鳴モードの生じる条件は周期 Ρにも影響される。周期 Ρが、角周波数 ωに対応する真 空中の波長 λと近い値の時には、共鳴モードの生じる条件に対する周期 Ρの影響は 特に大きくなる。したがって、有限の長さを有するスラブ導波路が周期的に配列され た格子において、それぞれの共鳴モードにおいて、角周波数 ωとコア厚さ Tと導波路 の長さ Dと周期 Ρの内の 3つが決まれば残りの 1つは決まる。 [0061] So far, we have considered the extreme case where the period Ρ does not affect the resonance, but in reality, the conditions under which the resonance mode occurs are also affected by the period Ρ. When the period Ρ is a value close to the wavelength λ in the air corresponding to the angular frequency ω, the influence of the period に 対 す る on the conditions in which the resonance mode occurs is particularly large. Therefore, slab waveguides with a finite length are periodically arranged. In each grating mode, if one of the angular frequency ω, core thickness T, waveguide length D, and period Ρ is determined, the remaining one is determined.
[0062] 実際には、図 3から図 7で説明したような繰り返し計算により、特定の波長 λにおい て、放射率ができる限り高くなるように、格子の周期 Ρ、正の誘電体として機能する部 分の幅 Τ、格子深さ Dを決定する。 [0062] Actually, iterative calculations as described in FIGS. 3 to 7 function as a positive dielectric, with a grating period Ρ so that the emissivity is as high as possible at a specific wavelength λ. Determine part width Τ and grid depth D.
[0063] この格子における共鳴モードは、正の誘電体と負の誘電体の界面に垂直な電界成 分を有するため、格子の配列方向に直交する偏光面を有する平面波と電磁界の対 称性が一致する。したがって、格子に共鳴モードが励起されたとき。格子から空間に そのような偏光面を有する特定の波長 λの平面波を格子表面の法線方向に放射す ること力 Sでさる。 [0063] Since the resonance mode in this lattice has an electric field component perpendicular to the interface between the positive dielectric and the negative dielectric, the plane wave having a plane of polarization perpendicular to the arrangement direction of the lattice and the electromagnetic field are symmetrical. Match. Therefore, when resonance mode is excited in the lattice. A force S that emits a plane wave of a specific wavelength λ having such a plane of polarization from the grating to the space in the normal direction of the grating surface.
[0064] 一方、この共鳴モードは、格子の配列方向に平行な偏光面を有する平面波を放射 することはできない。  On the other hand, this resonance mode cannot emit a plane wave having a polarization plane parallel to the arrangement direction of the grating.
[0065] 図 49は、本発明の一実施形態による赤外光源の波長と赤外線強度との関係を示 す図である。計算結果 (左側目盛り)および実験結果 (右側目盛り)を示す。  FIG. 49 is a diagram showing the relationship between the wavelength of the infrared light source and the infrared intensity according to an embodiment of the present invention. Calculation results (left scale) and experimental results (right scale) are shown.
[0066] 格子部の寸法は以下のとおりである。  [0066] The dimensions of the lattice portion are as follows.
[0067] サイズ 8mm X 8mm  [0067] Size 8mm X 8mm
P 3. 0マイクロ 'メータ  P 3.0 micro 'meter
D 1. 0マイクロ.メータ  D 1.0 micrometer
T 0. 35マイクロ 'メータ  T 0.35 micrometer
発熱体温度は、 250°C、格子部面積 8mm X 8mmの赤外光源で単位面積当たりの放 射強度は 0.01〜 O. lW/cm2/ ;^!!程度である。 The temperature of the heating element is 250 ° C, and the radiation intensity per unit area is about 0.01 to O.lW / cm 2 /; ^ !!
[0068] 赤外光源の格子部面積、表面温度、受光センサの感度により一律に検出可能な距 離は様々であるが、赤外光源の格子部面積が数 mm角程度,表面温度が 250°Cの場 合には少なくとも数 mは検出可能な距離である。赤外光源の格子部面積が 8mm角、 表面温度が 250°Cの場合、一般的なトリグリシンサルフェイト検出器を用いても、赤外 光源から数 m離れても検出可能であった。トリグリシンサルフェイト検出器は、焦電効 果という、光の照射により発生する熱により電荷が変動する効果を利用した赤外線の 検出器である。様々な赤外線検出器の中で、検出可能な波長範囲が特に広いことが 特徴でるが、他の検出器に比べると低感度である。その低感度の検出器でも数 m程 度の距離で検出できる赤外線強度が得られている。 [0068] Although the distance that can be detected uniformly varies depending on the grating area, surface temperature of the infrared light source, and the sensitivity of the light receiving sensor, the grating area of the infrared light source is about several mm square and the surface temperature is 250 °. In the case of C, at least a few meters is a detectable distance. When the grating area of the infrared light source was 8mm square and the surface temperature was 250 ° C, it could be detected using a general triglycine sulfate detector or even several meters away from the infrared light source. The triglycine sulfate detector is an infrared detector that uses the pyroelectric effect, which is an effect of changing the charge due to heat generated by light irradiation. Among various infrared detectors, the detectable wavelength range is particularly wide. Although it is a feature, it is less sensitive than other detectors. Infrared intensity that can be detected at a distance of several meters even with this low sensitivity detector is obtained.
[0069] 図 50は、本発明の一実施形態による赤外光源の放射指向性を示す図である。不 要な放射を抑制するための金属の成膜により、赤外光の放射は格子のみから生じ、 法線方向に極大となるように半空間だけに放射される。その放射パターンは、一般的 な平面型の光源と同様である。  FIG. 50 is a diagram showing the radiation directivity of the infrared light source according to one embodiment of the present invention. By forming a metal film to suppress unwanted radiation, infrared light is emitted only from the grating, and is emitted only in the half space so that it is maximized in the normal direction. The radiation pattern is the same as that of a general planar light source.
[0070] 図 8は、本発明の一実施形態による赤外光源の構成を示す図である。発熱体 107 上に負の誘電体として機能する部分 (金属など) 103からなる格子 101を設けている 。本実施形態において、正の誘電体として機能する部分 (誘電体など) 105は、中空 である。格子の負の誘電体として機能する部分 (金属など) 103および発熱体 107は 、金属のケース 109に収納されている。金属のケース 109は、格子 101以外からの赤 外線の放射を抑制する。ケース 109の金属は、格子の負の誘電体として機能する部 分(金属など) 103と同種の金属であっても異種の金属であってもよい。  FIG. 8 is a diagram showing a configuration of an infrared light source according to an embodiment of the present invention. On the heating element 107, a lattice 101 composed of a portion (metal or the like) 103 that functions as a negative dielectric is provided. In the present embodiment, a portion (such as a dielectric) 105 that functions as a positive dielectric is hollow. A portion (metal or the like) 103 that functions as a negative dielectric of the lattice and a heating element 107 are housed in a metal case 109. The metal case 109 suppresses infrared radiation from other than the lattice 101. The metal of the case 109 may be the same kind of metal as the part 103 (metal etc.) functioning as a negative dielectric of the lattice or a different kind of metal.
[0071] 本実施形態による赤外光源は、以下の手順によって製造することができる。発熱体 107上に金属を成膜し、レジストを塗布し電子線描画かマスク露光によって格子のパ ターンを形成し、その後エッチング加工を行う。あるいは、発熱体 107上に金属を成 膜し、高温に熱せられた、格子形成された金型によりインプリンティングして金属に格 子パターンを形成する。金属を成膜するには、たとえば、真空蒸着法ゃスパッタ法な どによる。  [0071] The infrared light source according to the present embodiment can be manufactured by the following procedure. A metal film is formed on the heating element 107, a resist is applied, and a lattice pattern is formed by electron beam drawing or mask exposure, followed by etching. Alternatively, a metal film is formed on the heating element 107 and imprinted by a grid-shaped mold heated to a high temperature to form a lattice pattern on the metal. To form a metal film, for example, vacuum deposition or sputtering is used.
[0072] 図 9は、本発明の他の実施形態による赤外光源の構成を示す図である。発熱体 10 7上に金属の格子凸部(格子の負の誘電体として機能する部分 (金属など)) 103を 設けている。本実施形態において、正の誘電体として機能する部分 (誘電体など) 10 5は、中空である。金属の格子凸部 103および発熱体 107は、金属のケース 109に 収納されている。金属のケース 109は、格子 101以外からの赤外線の放射を抑制す る。ケース 109の金属は、格子の負の誘電体として機能する部分(金属など) 103と 同種の金属であっても異種の金属であってもよ!/、。  FIG. 9 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. On the heating element 107, a metal lattice convex portion (a portion (metal or the like) functioning as a negative dielectric of the lattice) 103 is provided. In the present embodiment, the portion (dielectric etc.) 10 5 that functions as a positive dielectric is hollow. The metal lattice projection 103 and the heating element 107 are housed in a metal case 109. The metal case 109 suppresses infrared radiation from other than the lattice 101. The metal in case 109 may be the same type of metal as the negative dielectric of the lattice (metal, etc.) 103 or a different metal! /.
[0073] 本実施形態による赤外光源は、以下の手順によって製造することができる。発熱体 107上に金属を成膜し、レジストを塗布し電子線描画かマスク露光によって格子のパ ターンを形成し、その後エッチング加工を行う。金属を成膜するには、たとえば、真空 蒸着法ゃスパッタ法などによる。 [0073] The infrared light source according to the present embodiment can be manufactured by the following procedure. A metal film is formed on the heating element 107, a resist is applied, and the grid pattern is formed by electron beam drawing or mask exposure. A turn is formed, and then etching is performed. For forming a metal film, for example, vacuum deposition or sputtering is used.
[0074] 図 10は、本発明の他の実施形態による赤外光源の構成を示す図である。本実施 形態は、正の誘電体材料 (誘電体など) 105に格子の形状を形成し、その上に金属 膜 111を成膜し、さらに材料 103Aを配置して製造してもよい。材料 103Aは、セラミ ック系接着剤やエポキシ系接着剤などの接合材料や金属などである。正の誘電体材 料 (誘電体など) 105は、シリコンなどの半導体であってもよい。材料 103Aと発熱体 1 07とを接続する。赤外光源の赤外線放射面に反射防止コート 121を設けている。反 射防止 121コートにより、赤外光源の放射効率が向上する。発熱体 107、金属膜 11FIG. 10 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. In the present embodiment, a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed. The material 103A is a bonding material such as a ceramic adhesive or an epoxy adhesive, or a metal. The positive dielectric material (dielectric etc.) 105 may be a semiconductor such as silicon. Connect material 103A and heating element 107. An antireflection coating 121 is provided on the infrared radiation surface of the infrared light source. Anti-reflection 121 coat improves the radiation efficiency of infrared light source. Heating element 107, metal film 11
I、材料 103A、正の誘電体材料 (誘電体など) 105および反射防止コート 121は、金 属のケース 109に収納されている。金属のケース 109は、格子 101以外からの赤外 線の放射を抑制する。ケース 109の金属は、金属膜 111と同種の金属であっても異 種の金属であってもよい。 I, material 103A, positive dielectric material (dielectric, etc.) 105 and antireflection coating 121 are housed in a metal case 109. The metal case 109 suppresses infrared radiation from other than the grating 101. The metal of the case 109 may be the same kind of metal as the metal film 111 or a different kind of metal.
[0075] 図 11は、本発明の他の実施形態による赤外光源の構成を示す図である。本実施 形態においては、材料 103Aが発熱体をかねている。本実施形態は、正の誘電体材 料 (誘電体など) 105に格子の形状を形成し、その上に金属膜 111を成膜し、さらに 材料 103Aを配置して製造してもよい。正の誘電体材料 (誘電体など) 105は、シリコ ンなどの半導体であってもよい。赤外光源の赤外線放射面に反射防止コート 121を 設けている。反射防止コート 121により、赤外光源の放射効率が向上する。金属膜 1 FIG. 11 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. In the present embodiment, the material 103A also serves as a heating element. In the present embodiment, a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed. The positive dielectric material (such as a dielectric) 105 may be a semiconductor such as silicon. An antireflection coating 121 is provided on the infrared radiation surface of the infrared light source. The radiation efficiency of the infrared light source is improved by the antireflection coating 121. Metal film 1
I I、材料 103A、正の誘電体材料 (誘電体など) 105および反射防止コート 121は、 金属のケース 109に収納されている。金属のケース 109は、格子 101以外からの赤 外線の放射を抑制する。ケース 109の金属は、金属膜 111と同種の金属であっても 異種の金属であってもよレ、。 I I, material 103A, positive dielectric material (dielectric, etc.) 105 and antireflection coating 121 are housed in a metal case 109. The metal case 109 suppresses infrared radiation from other than the lattice 101. The metal in case 109 may be the same type of metal as metal film 111 or a different type of metal.
[0076] 図 12は、本発明の他の実施形態による赤外光源の構成を示す図である。本実施 形態においては、半導体などの正の誘電体材料 (誘電体など) 105が発熱体をかね ている。本実施形態は、正の誘電体材料 (誘電体など) 105に格子の形状を形成し、 その上に金属膜 111を成膜し、さらに材料 103Aを配置して製造してもよい。赤外光 源の赤外線放射面に反射防止コート 121を設けている。反射防止コート 121により、 赤外光源の放射効率が向上する。金属膜 111、材料 103A、正の誘電体材料 (誘電 体など) 105および反射防止コート 121は、金属のケース 109に収納されている。金 属のケース 109は、格子 101以外からの赤外線の放射を抑制する。ケース 109の金 属は、金属膜 111と同種の金属であっても異種の金属であってもよレ、。 FIG. 12 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. In the present embodiment, a positive dielectric material (such as a dielectric) 105 such as a semiconductor also serves as a heating element. In the present embodiment, a lattice shape may be formed on a positive dielectric material (such as a dielectric) 105, a metal film 111 may be formed thereon, and a material 103A may be further disposed. An anti-reflection coating 121 is provided on the infrared radiation surface of the infrared light source. With anti-reflection coating 121, The radiation efficiency of the infrared light source is improved. The metal film 111, the material 103A, the positive dielectric material (such as a dielectric) 105, and the antireflection coating 121 are housed in a metal case 109. The metal case 109 suppresses infrared radiation from other than the lattice 101. The metal of case 109 can be the same or different metal as metal film 111.
[0077] 図 10乃至 12に示した実施形態による赤外光源は、以下の手順によって製造するこ と力 Sできる。正の誘電体材料 (誘電体など) 105上に金属を成膜し、レジストを塗布し 電子線描画かマスク露光によって格子のパターンを形成し、金属膜 11 1および材料 103Aを成膜する。その後、成膜面を研磨処理してもよい。つぎに、発熱体 107を使 用する場合には、材料 103Aを接着材などで発熱体 107に接続する。その後、周囲 に金属を成膜してケース部 109とする。金属を成膜するには、たとえば、真空蒸着法 ゃスパッタ法などによる。  The infrared light source according to the embodiment shown in FIGS. 10 to 12 can be manufactured by the following procedure. A metal is deposited on a positive dielectric material (such as a dielectric) 105, a resist is applied, a lattice pattern is formed by electron beam drawing or mask exposure, and a metal film 111 and a material 103A are deposited. Thereafter, the film formation surface may be polished. Next, when the heating element 107 is used, the material 103A is connected to the heating element 107 with an adhesive or the like. Thereafter, a metal film is formed around the periphery to form the case portion 109. For forming a metal film, for example, vacuum deposition or sputtering is used.
[0078] 現在の半導体製造技術を利用した場合、格子周期 Pおよび正の誘電体として機能 する部分 (誘電体など)の幅 Tは、 30ナノ'メータまで小さくすることができる。格子深 さ Dは、誘電体材料部(誘電体など)の幅 Tの約 50倍まで大きくすることができる。  [0078] When the current semiconductor manufacturing technology is used, the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric can be reduced to 30 nanometers. The grating depth D can be increased up to about 50 times the width T of the dielectric material part (dielectric, etc.).
[0079] 図 13は、本発明の他の実施形態による赤外光源の構成を示す図である。一方の 面が平面で他方の面が凸面のレンズ 131の、凸面に赤外光源 100がレンズ 131に 向けて赤外線を放射するように設けられている。赤外光源 100から放射された赤外 線は、レンズ 131によって集光される。レンズ 131の平面には、反射防止コート 121が 設けられる。反射防止コート 121により、赤外光源の放射効率が向上する。  FIG. 13 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. The lens 131 has one surface that is flat and the other surface is convex, and the infrared light source 100 is provided on the convex surface so as to emit infrared rays toward the lens 131. Infrared rays emitted from the infrared light source 100 are collected by the lens 131. On the plane of the lens 131, an antireflection coating 121 is provided. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
[0080] 図 14は、本発明の他の実施形態による赤外光源の構成を示す図である。一方の 面が平面で他方の面が凸面のレンズ 131の、平面に赤外光源 100がレンズ 131に 向けて赤外線を放射するように設けられている。赤外光源 100から放射された赤外 線は、レンズ 131によって発散される。レンズ 131の凸面には、反射防止コート 121が 設けられる。反射防止コート 121により、赤外光源の放射効率が向上する。  FIG. 14 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. The infrared light source 100 emits infrared rays toward the lens 131 on the flat surface of the lens 131 having one surface that is flat and the other surface convex. Infrared rays emitted from the infrared light source 100 are emitted by the lens 131. An antireflection coating 121 is provided on the convex surface of the lens 131. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
[0081] 図 15は、本発明の他の実施形態による赤外光源の構成を示す図である。一方の 面が平面で他方の面が凸面のレンズ 131の、凸面に格子 101が設けられている。発 熱体 107は、レンズ 131の凸面に対向する位置に配置される。赤外光源 100から放 射された赤外線は、格子 101によって特定波長に変換され、レンズ 131によって集光 される。レンズ 131の平面には、反射防止コート 121が設けられる。反射防止コート 1 21により、赤外光源の放射効率が向上する。 FIG. 15 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. A lens 101 is provided on the convex surface of the lens 131 having one surface which is flat and the other surface is convex. The heat generating body 107 is disposed at a position facing the convex surface of the lens 131. Infrared light emitted from the infrared light source 100 is converted into a specific wavelength by the grating 101 and condensed by the lens 131. Is done. An antireflection coat 121 is provided on the plane of the lens 131. The anti-reflection coating 121 improves the radiation efficiency of the infrared light source.
[0082] 図 16は、本発明の他の実施形態による赤外光源の構成を示す図である。一方の 面が平面で他方の面が凸面のレンズ 131の、平面に格子 101が設けられている。赤 外光源 100から放射された赤外線は、格子 101によって特定波長に変換され、レン ズ 131によって発散される。レンズ 131の凸面には、反射防止コート 121が設けられ る。反射防止コート 121により、赤外光源の放射効率が向上する。  FIG. 16 is a diagram showing a configuration of an infrared light source according to another embodiment of the present invention. A grating 101 is provided on the plane of the lens 131 having one surface that is a flat surface and the other surface that is a convex surface. Infrared light emitted from the infrared light source 100 is converted into a specific wavelength by the grating 101 and emitted by the lens 131. An antireflection coating 121 is provided on the convex surface of the lens 131. The radiation efficiency of the infrared light source is improved by the antireflection coating 121.
[0083] 図 13乃至 16に示した実施形態のレンズは、平凸形状である。他に、平凹形状およ び凹凸形状のレンズのいずれかの面に格子 101を設けてもよい。  The lens of the embodiment shown in FIGS. 13 to 16 has a plano-convex shape. In addition, the grating 101 may be provided on either surface of the plano-concave and concave-convex lenses.
[0084] 図 17Aは、本発明の他の実施形態による赤外光源の格子の構成を示す図である。  FIG. 17A is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
本実施形態においては、 1チップの発熱体上に複数の、特定波長の異なる格子を設 けている。具体的に、 A乃至 Dの各領域で、格子深さ Dを一定として、格子周期 P、正 の誘電体として機能する部分 (誘電体など)の幅 Tを各領域で変化させることにより、 各領域のピーク波長を変化させ、かつ電界強度を大きくすることが可能となる。格子 周期 Pについては各領域で一定としてもよい。本実施形態によれば、 1チップで、複 数の特定波長の赤外光源が得られる。  In the present embodiment, a plurality of gratings having different specific wavelengths are provided on a single chip heating element. Specifically, in each region A to D, the lattice depth D is constant, the lattice period P, and the width T of a portion that functions as a positive dielectric (such as a dielectric) is changed in each region. It is possible to change the peak wavelength of the region and increase the electric field strength. The lattice period P may be constant in each region. According to this embodiment, an infrared light source having a plurality of specific wavelengths can be obtained with one chip.
[0085] 図 17Bは、本発明の他の実施形態による赤外光源の格子の構成を示す図である。  FIG. 17B is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
本実施形態においては、 1チップの発熱体上に複数の、特定波長の異なる格子を設 けている。具体的に、 A乃至 Dの各領域で、正の誘電体として機能する部分 (誘電体 など)の幅 Tを一定として、格子周期 P、格子深さ Dを各領域で変化させることにより、 各領域のピーク波長を変化させ、かつ電界強度を大きくすることが可能となる。格子 周期 Pについては各領域で一定としてもよい。本実施形態によれば、 1チップで、複 数の特定波長の赤外光源が得られる。  In the present embodiment, a plurality of gratings having different specific wavelengths are provided on a single chip heating element. Specifically, in each region A to D, the width T of the portion functioning as a positive dielectric (dielectric, etc.) is constant, and the lattice period P and the lattice depth D are changed in each region. It is possible to change the peak wavelength of the region and increase the electric field strength. The lattice period P may be constant in each region. According to this embodiment, an infrared light source having a plurality of specific wavelengths can be obtained with one chip.
[0086] 図 18は、本発明の他の実施形態による赤外光源の格子の構成を示す図である。  FIG. 18 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
本実施形態においては、格子周期 Pおよび正の誘電体として機能する部分 (誘電体 など)の幅 Tを一定として、深さ Dを変化させて!/、る。  In the present embodiment, the depth D is varied while the grating period P and the width T of the portion functioning as a positive dielectric (dielectric, etc.) are constant!
[0087] 図 20は、図 18の実施形態によって放射される赤外線の強度分布を概念的に示す 図である。本実施形態によれば、所定の波長帯域の赤外線を放射する赤外光源が 得られる。 FIG. 20 is a diagram conceptually showing the intensity distribution of infrared rays emitted by the embodiment of FIG. According to this embodiment, an infrared light source that emits infrared light in a predetermined wavelength band is provided. can get.
[0088] 図 19は、本発明の他の実施形態による赤外光源の格子の構成を示す図である。  FIG. 19 is a diagram showing a configuration of a grating of an infrared light source according to another embodiment of the present invention.
本実施形態においては、 1チップの発熱体上に、方向の異なる、複数の格子を設け ている。本実施形態によれば、偏光された方向の異なる、複数の特定波長の赤外光 源が得られる。  In the present embodiment, a plurality of grids having different directions are provided on a one-chip heating element. According to this embodiment, infrared light sources having a plurality of specific wavelengths with different directions of polarization can be obtained.
本発明によれば、構造が簡単であり、広い分野に応用することのできる、特定波長 の赤外光源が得られる。  According to the present invention, an infrared light source having a specific wavelength, which has a simple structure and can be applied to a wide range of fields, can be obtained.
[0089] 以下に、本発明の赤外光源の実施形態 1乃至 21を、図 21乃至図 45を使用して説 明する。図 21乃至図 30において、負の誘電体として機能する部分および正の誘電 体として機能する部分を、それぞれ、 Aおよび Bで示す。また、負の誘電体材料を斜 線で示す。  Hereinafter, embodiments 1 to 21 of the infrared light source of the present invention will be described with reference to FIGS. 21 to 45. In FIGS. 21 to 30, a portion functioning as a negative dielectric and a portion functioning as a positive dielectric are denoted by A and B, respectively. Negative dielectric materials are indicated by diagonal lines.
[0090] 実施形熊 1 (図 21)  [0090] Implementation bear 1 (Fig. 21)
本実施形態では、基板上に成膜された平坦表面に直接、格子部を形成する。ガラ ス等の基板(la)表面に金等(lb)を成膜し、その上にレジストを塗布し、電子線描画 、干渉露光、マスク露光等により格子パターンを形成する。ドライエッチング等により 表面に格子を作製する。あるいはマスター格子を直接インプリンティングし表面に格 子を作製する方法である。基板と金との間に樹脂 (プラスチック)やガラス等を挟んだ 構造でもよい。  In the present embodiment, the lattice portion is formed directly on the flat surface formed on the substrate. Gold or the like (lb) is formed on the surface of a substrate (la) such as glass, a resist is applied thereon, and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure or the like. A lattice is produced on the surface by dry etching or the like. Alternatively, a master lattice is directly imprinted to create a lattice on the surface. A structure in which a resin (plastic) or glass is sandwiched between the substrate and gold may be used.
[0091] つぎに、発熱体(lc)を基板(la)と接着する。発熱体と基板との間にエポキシ系や セラミック系の接着剤(le)を配置してもよい。基板および発熱体の、格子に対応する 部分以外の部分を赤外光の反射率が高い金属等(Id)で被覆すると、不要の赤外光 の放射が抑制されエネルギ効率が向上する。  [0091] Next, the heating element (lc) is bonded to the substrate (la). An epoxy or ceramic adhesive (le) may be disposed between the heating element and the substrate. Covering the part of the substrate and the heating element other than the part corresponding to the grating with a metal (Id) having a high reflectance of infrared light suppresses unnecessary infrared light emission and improves energy efficiency.
[0092] 図 51は、発熱体表面温度と発熱体から放射される赤外線強度との関係を示す図で ある。図 51の A2は、発熱体の表面を金で被覆した場合、 A1は、被覆しない場合を 示す。図 51により、発熱体表面に金を成膜することで発熱体から放射される赤外線 強度が抑制されることが確認できる。発熱体温度 250°C、格子部面積数 mm角では 0.0 1〜 0.1Wん m2/um程度である。  FIG. 51 is a diagram showing the relationship between the surface temperature of the heating element and the intensity of infrared rays emitted from the heating element. A2 in Fig. 51 shows the case where the surface of the heating element is covered with gold, and A1 shows the case where it is not covered. From FIG. 51, it can be confirmed that the intensity of infrared rays emitted from the heating element is suppressed by depositing gold on the heating element surface. When the heating element temperature is 250 ° C and the grid area is several square mm, it is about 0.01 to 0.1 W m2 / um.
[0093] 本実施形態は製造工程が少なぐ安価に製造することができる。 [0094] 実施形熊 2 (図 22) This embodiment can be manufactured inexpensively with a small number of manufacturing steps. [0094] Implementation bear 2 (Fig. 22)
格子部を形成するための基板 (2a) (樹脂、金属、半導体等、本実施形態では Si基 板)にレジスト(2b)を塗布する (図 22(a))。つぎに電子線描画あるいは干渉露光、マス ク露光により格子パターンを形成し (図 22(b))、ドライエッチング等により突起のアレイ を作製する (図 22(c))。以上の突起アレイを作製する工程にはナノインプリンティング 技術を用いても良い。  A resist (2b) is applied to a substrate (2a) (resin, metal, semiconductor, etc., Si substrate in this embodiment) for forming a lattice portion (FIG. 22 (a)). Next, a lattice pattern is formed by electron beam drawing, interference exposure, or mask exposure (Fig. 22 (b)), and an array of protrusions is produced by dry etching or the like (Fig. 22 (c)). Nano-imprinting technology may be used in the process of manufacturing the above protrusion array.
[0095] つぎに、レジストを除去した後に突起アレイに Au等(2c)を成膜する (図 22(d))。この 時の膜厚は全ての面について表皮深さ(Auの場合 20〜30nm)の数倍であることが望 ましい。成膜法は、真空蒸着法やスパッタリング法のほか、特に膜厚の均一性の高い 原子層堆積 (ALD)法が有効である。比較的厚い膜が得やすい方法として、 Au超微粒 子分散液をスピンコートなどで塗布した後、焼結する方法や、電解メツキ、無電解メッ キなどの電気化学的手法などがある。また Auの成膜後に塗布する接着剤との密着を 確保するために Au膜上に Crなどの密着層を成膜しても良い。  Next, after removing the resist, Au or the like (2c) is formed on the projection array (FIG. 22 (d)). The film thickness at this time is preferably several times the skin depth (20 to 30 nm for Au) on all surfaces. In addition to the vacuum deposition method and the sputtering method, the atomic layer deposition (ALD) method with a highly uniform film thickness is effective. Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating. In addition, an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after the Au film formation.
[0096] 上記のようにして作製した格子に、発熱体(2d) (ヒータの抵抗線パターンを形成し た発熱体等)を接着する (図 22(e))。接着には耐熱性エポキシ系やセラミック系接着剤 等(2e)を用いる。ここで接着剤に粘性などがあった場合、格子部への接着剤の充填 が不十分となるため、接着剤は格子部への充填性が良いものを使用した方が好まし い。また接着剤が厚くなつた場合、線熱膨張係数の違いにより剥離等の問題が発生 する可能性があるため、接着剤は可能な限り薄く充填させる方が好ましい。さらに本 実施形態においてこの接着剤は、発熱体のヒータパターンと Auとの電気的絶縁を保 つ役目も果たす。  [0096] A heating element (2d) (such as a heating element on which a resistance line pattern of the heater is formed) is bonded to the lattice produced as described above (Fig. 22 (e)). Use a heat-resistant epoxy or ceramic adhesive (2e) for bonding. If the adhesive is viscous, the grid will not be sufficiently filled with the adhesive. Therefore, it is preferable to use an adhesive that has a good fillability in the grid. In addition, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible. Further, in this embodiment, the adhesive also serves to maintain electrical insulation between the heater pattern of the heating element and Au.
[0097] この接着剤塗布工程においては接着剤を充填させる部位の構造は微細であるため 、接着剤に気泡が混入しないように接着前に真空脱泡処理をした方が好ましい。  [0097] In this adhesive application step, the structure of the portion to be filled with the adhesive is fine, so it is preferable to perform a vacuum defoaming treatment before bonding so that bubbles do not enter the adhesive.
[0098] つぎに、機械的剥離あるいはエッチング等により、 Au表面から Si基板(2a)を除去す る (図 22(f))。ここでウエットエッチングを用いて Si基板を除去する場合は、 HF : HN03 : CH3COOH (または H20)の混合液、または KOH水溶液を使用するのが好ましい。 HF : HN03系の場合は CH3COOH (または H20)の濃度でエッチング速度を大きく変える ことが可能である。エッチング速度は一例として HF: HN03: CH3COOH=l: 3: 5の時 で 0.3 m/min程度である。 KOH水溶液の場合はエッチング速度に結晶面方位に異 方性がありシリコンの場合は 100面と 110面で数 m/minのエッチング速度を得ること が可能である。 [0098] Next, the Si substrate (2a) is removed from the Au surface by mechanical peeling or etching (FIG. 22 (f)). Here, when the Si substrate is removed by wet etching, a mixed solution of HF: HN03: CH3COOH (or H20) or a KOH aqueous solution is preferably used. In the case of HF: HN03, the etching rate can be greatly changed by the concentration of CH3COOH (or H20). As an example, the etching rate is HF: HN03: CH3COOH = l: 3: 5 It is about 0.3 m / min. In the case of KOH aqueous solution, the etching rate is anisotropic in the crystal plane orientation, and in the case of silicon, it is possible to obtain an etching rate of several m / min on the 100 and 110 planes.
[0099] また、図 22(f)で Si基板を機械的に剥離した場合には、図 22(d)に戻ることにより、 Si 基板は複数回使用することができる。ここで正確に転写された Au表面も、長期間の使 用の間に Au原子の拡散により形状が変化したり、空洞に異物が析出したりして、光源 の放射特性が変化してしまう可能性がある。そのため安定性の向上のために空洞に Si02や樹脂などの正の誘電体材料 (2f)を充填することが有効である (図 22 (g) )。  [0099] When the Si substrate is mechanically peeled in FIG. 22 (f), the Si substrate can be used a plurality of times by returning to FIG. 22 (d). The correctly transferred Au surface can change its shape due to the diffusion of Au atoms during long-term use, or foreign matter can be deposited in the cavity, which can change the radiation characteristics of the light source. There is sex. Therefore, it is effective to fill the cavity with a positive dielectric material (2f) such as Si02 or resin to improve stability (Fig. 22 (g)).
[0100] 誘電体の充填方法としては、 CVD法や ALD法による Si02、 Si3N4、 A1203、パリレン などの気相成長、真空蒸着法やスパッタリング法などのほか、スピンオングラス (SOG) 、ポリイミドなどのスピンコート'加熱硬化などがある。  [0100] Dielectric filling methods include CVD, ALD, Si02, Si3N4, A1203, Parylene, etc., vapor deposition, vacuum deposition, sputtering, etc., spin-on-glass (SOG), polyimide, etc. There are coats' heat curing and so on.
[0101] さらに、格子面以外の外周面に Au等(2h)を成膜すると、不要な赤外放射を抑制す ることができる(図 22 (h) )。なお、外周部の Auの効果を確認するために発熱体表面 の金成膜の有無における発熱体表面温度と赤外線強度の測定結果の実験を行った ところ、金を成膜することで発熱体から放射される赤外線強度が抑制されてレ、ること が確認、できた。  [0101] Furthermore, if an Au or the like (2h) film is formed on the outer peripheral surface other than the lattice plane, unnecessary infrared radiation can be suppressed (Fig. 22 (h)). In addition, in order to confirm the effect of Au on the outer periphery, an experiment was conducted on the measurement results of the heating element surface temperature and infrared intensity with and without gold film formation on the heating element surface. It was confirmed that the intensity of emitted infrared rays was suppressed.
[0102] 最後に電気配線を形成することで赤外光源が完成し、発熱体に電流を流すと Au表 面から図中矢印の方向に赤外光が放射される。  [0102] Finally, by forming the electrical wiring, the infrared light source is completed, and when current is passed through the heating element, infrared light is emitted from the Au surface in the direction of the arrow in the figure.
[0103] また、ここでは一例として赤外線が放射する反対面に発熱体を設置している力 他 の製造フローを使用することで赤外線が放射する面に発熱体を設置する、または、 格子自身(2c)を発熱体とする構造でも良い。 Au層に直接電流を流し、格子自身を 発熱体として用いることで、 Au表面から図中矢印の方向に赤外光が放射される。  [0103] In addition, as an example here, the power of installing a heating element on the opposite surface where infrared rays radiate is used. The heating element is installed on the surface where infrared rays are emitted by using another manufacturing flow, or the grid itself ( A structure using 2c) as a heating element may be used. By passing a current directly through the Au layer and using the lattice itself as a heating element, infrared light is emitted from the Au surface in the direction of the arrow in the figure.
[0104] 突起アレイ上に Auを成膜した後に突起アレイを除去する方法の重要な利点は、最 終的に表面に出る Auの表面は、それまで平滑な Siの突起アレイに密着していた面で あるので、どのような手法で Au膜を堆積した場合でも、平滑な Au表面が得られること である。また、 Au表面の外形も正確に突起アレイの外形を転写したものになる。した がって、正確に設計通りの赤外放射特性を実現することができる。  [0104] An important advantage of the method of removing the protrusion array after depositing Au on the protrusion array is that the surface of the Au that finally comes to the surface was in close contact with the smooth Si protrusion array. Therefore, a smooth Au surface can be obtained no matter what method is used to deposit the Au film. In addition, the outer shape of the Au surface is an exact transfer of the outer shape of the projection array. Therefore, it is possible to realize the infrared radiation characteristics exactly as designed.
[0105] 成膜時に表に出ている Auの表面は、一般に結晶粒の成長などにより凹凸が激しい 。また、 Au膜の厚さは一般に突起の上面、側面、底面で異なるので、 Au膜の外形を 設計通りのプロファイルにするのは容易ではない。し力、し、この面は最終的に発熱体 との接着面となり、表面に現れることはない。 [0105] The surface of Au that appears on the surface during film formation is generally severely uneven due to the growth of crystal grains. . In addition, since the thickness of the Au film generally differs between the top, side and bottom surfaces of the protrusions, it is not easy to make the Au film profile as designed. This surface will eventually become a bonding surface with the heating element and will not appear on the surface.
[0106] 実施形熊 3 (図 23)  [0106] Practical bear 3 (Fig. 23)
本実施形態では表面に溝のアレイが加工された金型(3b)を用いて、熱可塑性樹 脂やゴムの基板等(3a)の表面に突起のアレイを転写する (図 23 (a) )。金型は、 Si基 板等にレジストを塗布し、電子線描画、干渉露光、マスク露光等により格子パターン を形成する方法、金型表面に直接レジスト塗布し、電子線描画、干渉露光、マスク露 光等により格子パターンを形成、ドライエッチング等により微細パターンを形成する方 法、機械的な加工により形成する方法などにより作製することができる。熱可塑性樹 脂としては耐熱性を有する樹脂等が利用できる。また、転写方法としては、射出成形 、ナノインプリンティング成形等が利用できる。  In this embodiment, using a mold (3b) with an array of grooves on the surface, an array of protrusions is transferred to the surface of a thermoplastic resin or rubber substrate (3a) (FIG. 23 (a)). . For the mold, a resist is applied to the Si substrate and the like, and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc., and the resist is directly applied to the mold surface, and electron beam drawing, interference exposure, mask exposure is performed. It can be produced by a method of forming a lattice pattern by light or the like, a method of forming a fine pattern by dry etching, or a method of forming by mechanical processing. As the thermoplastic resin, a resin having heat resistance can be used. As a transfer method, injection molding, nanoimprinting molding, or the like can be used.
[0107] つぎに、熱可塑性樹脂等の表面に Au等(3c)を成膜する (図 23 (b) )。成膜する Au の膜厚は全ての面について表皮深さ(Auの場合 20〜30nm)の数倍の膜厚が必要で ある。成膜法は、真空蒸着法やスパッタリング法のほか、特に膜厚の均一性の高い原 子層堆積 (ALD)法が有効である。比較的厚い膜が得やすい方法として、 Au超微粒子 分散液をスピンコートなどで塗布した後、焼結する方法や、電解メツキ、無電解メツキ などの電気化学的手法などがある。また Auの成膜後に塗布する接着剤との密着を確 保するために Au膜上に Crなどの密着層を成膜しても良い。  Next, Au or the like (3c) is formed on the surface of the thermoplastic resin or the like (FIG. 23 (b)). The film thickness of Au to be deposited must be several times the skin depth (20 to 30 nm for Au) on all surfaces. In addition to the vacuum evaporation method and the sputtering method, the atomic layer deposition (ALD) method having a highly uniform film thickness is effective as the film forming method. Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating. In addition, an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after Au deposition.
[0108] つぎに、樹脂基板の格子面側と固定基板(3e)を接着する (図 23 (c) )。接着には耐 熱性エポキシ樹脂系やセラミック系接着剤等(3d)を用いる。ここで接着剤に粘性な どがあった場合、格子部への接着剤の充填が不十分となるため、接着剤は格子部へ の充填性が良いものを使用した方が好ましい。また接着剤が厚くなつた場合、線熱膨 張係数の違いにより剥離等の問題が発生する可能性があるため、接着剤は可能な 限り薄く充填させる方が好ましい。また、この接着剤塗布工程は実施形態 2同様、接 着前に真空脱泡処理をするのが好ましレ、。  Next, the lattice plane side of the resin substrate and the fixed substrate (3e) are bonded (FIG. 23 (c)). Use a heat resistant epoxy resin or ceramic adhesive (3d) for bonding. Here, when the adhesive is viscous, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion. In addition, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible. In addition, it is preferable to perform a vacuum defoaming process before the bonding in the adhesive application process, as in the second embodiment.
[0109] 接着する固定基板の材質は、金属、半導体、セラミック、ガラスなど、最終的に格子 の形状を維持することができれば何でも良い。ただし、不要な赤外放射を抑制するた めには、接着面以外の外周面を Au等赤外光の反射率の高い金属(3f)で被覆するこ とが好ましい。固定基板が金属の場合には周囲を被覆することはさほど重要ではな いが、赤外光の反射率がより高い金属で被覆すると、さらに高い不要赤外光の抑制 機能が期待できる。 [0109] The material of the fixed substrate to be bonded may be any metal, semiconductor, ceramic, glass, or the like as long as the lattice shape can be finally maintained. However, to suppress unnecessary infrared radiation For this purpose, it is preferable to coat the outer peripheral surface other than the adhesive surface with a metal (3f) having a high reflectance of infrared light such as Au. When the fixed substrate is made of metal, it is not so important to cover the periphery. However, if the substrate is coated with a metal having a higher reflectivity of infrared light, a higher suppression function of unnecessary infrared light can be expected.
[0110] つぎに、トルエンなどの有機溶媒による溶解、あるいは高温加熱による溶融、あるい は酸素プラズマによるアツシング、機械的剥離等により、熱可塑性樹脂基板(3a)を 除去することで赤外光源が得られる(図 23 (d) )。最後に格子表面の Au膜(3c)に直 接電気配線を形成し電流を流すことで図中の矢印方向に赤外線が放射される。ある いは、固定基板(3e)に発熱体を接着してもよい。  [0110] Next, the infrared light source can be obtained by removing the thermoplastic resin substrate (3a) by dissolution with an organic solvent such as toluene, melting by high-temperature heating, ashing with oxygen plasma, mechanical peeling, or the like. (Figure 23 (d)). Finally, by forming an electrical wiring directly on the Au film (3c) on the lattice surface and passing an electric current, infrared rays are emitted in the direction of the arrow in the figure. Alternatively, a heating element may be bonded to the fixed substrate (3e).
[0111] なお、本実施形態では格子部に成膜した Au層(3c)自身が発熱体として作用して いる。  [0111] In the present embodiment, the Au layer (3c) itself formed on the lattice portion acts as a heating element.
[0112] また、この例では Siの突起アレイの代わりに、樹脂やゴムの突起アレイを利用しても 良い。このような突起アレイは別のマスター型から転写により作製することもできる。い ずれも機械的に剥離するのにも使える力 樹脂はトルエン、キシノン、ブタノンなど、 適切な有機溶媒で溶解しても良レ、。  In this example, a resin or rubber protrusion array may be used instead of the Si protrusion array. Such a projection array can also be produced by transfer from another master mold. The power that can be used to mechanically peel off either resin can be dissolved in an appropriate organic solvent such as toluene, xinone, or butanone.
[0113] マスター型として金型を利用する場合は、金型表面にレジストを塗布し、電子線描 画、干渉露光、マスク露光等の方法により格子パターンを形成し、ドライエッチング等 により微細パターンを形成する。又は Si基板等によってマスター金型を作製し、それ をニッケル電铸等で型取りをする等の方法が考えられる。  [0113] When a mold is used as a master mold, a resist is applied to the mold surface, a lattice pattern is formed by a method such as electron beam drawing, interference exposure, or mask exposure, and a fine pattern is formed by dry etching or the like. To do. Alternatively, a master mold can be made using a Si substrate, etc., and the mold can be taken using a nickel electroplater.
[0114] 本実施形態の重要な特徴は、マスター型を 1個だけ作製すれば、既に確立してい るプラスチックの成形技術を用いて安価に再現性良ぐ正確な寸法と形状を持った矩 形格子を量産できることである。  [0114] An important feature of this embodiment is that if only one master mold is produced, a rectangular shape with accurate dimensions and shape that is inexpensive and reproducible using the established plastic molding technology. This means that the lattice can be mass-produced.
[0115] また必要に応じて、さらに図 22 (g)のように空洞に正の誘電体材料を充填すれば、 Au表面形状の安定性を向上させることができる。  Further, if necessary, the stability of the Au surface shape can be improved by filling the cavity with a positive dielectric material as shown in FIG. 22 (g).
[0116] 実施形態 4 (図 24)  [0116] Embodiment 4 (Fig. 24)
本実施形態では Si基板 (4a)の上に Si02層(4b)さらにその上に S漏(4g)が形成さ れた SOI基板を用いる。最表面の Si層 (図 24の 4g)の面方位を 110方向とし、厚さを作 製したい格子の深さに設定しておく。 SOI基板にレジスト(4c)を塗布し (図 24 (a) )、電 子線描画、干渉露光、マスク露光等により格子パターンを形成する (図 24 (b) )。これ を KOH水溶液でエッチングすると、結晶面によるエッチング速度の違いにより、 Si層 は表面に垂直にエッチングが進み、 Si02層に到達したところでエッチングが終了し、 Siの矩形格子を作製できる(図 24 (c) )。つぎに、レジストを除去した後に Siの格子上 に Au等(4d)を成膜する (図 24 (d) )。この時の膜厚は全ての面につ!/、て表皮深さ(Au の場合 20〜30nm)の数倍の膜厚が必要である。成膜法は、真空蒸着法やスパッタリ ング法のほか、特に膜厚の均一性の高い原子層堆積 (ALD)法が有効である。比較的 厚レ、膜が得やすレ、方法として、 Au超微粒子分散液をスピンコートなどで塗布した後、 焼結する方法や、電解メツキ、無電解メツキなどの電気化学的手法などがある。 In this embodiment, an SOI substrate is used in which a Si02 layer (4b) is formed on a Si substrate (4a) and an S leakage (4g) is formed thereon. The surface orientation of the outermost Si layer (4g in Fig. 24) is set to the 110 direction, and the thickness is set to the depth of the lattice to be produced. Apply resist (4c) to the SOI substrate (Fig. 24 (a)) and A lattice pattern is formed by drawing a child line, interference exposure, mask exposure, etc. (Fig. 24 (b)). When this is etched with an aqueous KOH solution, the Si layer progresses perpendicularly to the surface due to the difference in the etching rate depending on the crystal plane, and when it reaches the Si02 layer, the etching is finished, and a Si rectangular lattice can be produced (Fig. 24 ( c)). Next, after removing the resist, Au (4d) is deposited on the Si lattice (Fig. 24 (d)). The film thickness at this time should be several times the skin depth (20-30 nm for Au) on all surfaces. In addition to the vacuum evaporation method and sputtering method, the atomic layer deposition (ALD) method with a highly uniform film thickness is particularly effective. As a method for obtaining a relatively thick film, a film can be easily obtained, a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintering, and an electrochemical method such as electrolytic plating and electroless plating are used.
[0117] つぎに、格子部にエポキシ樹脂系等の接着剤(4e)を充填し発熱体 (4f) (本例では セラミックヒータ)を接着する (図 24 (e) )。図 24に一例として示しているセラミックヒータ は、セラミック基板にスクリーン印刷などで金属の抵抗線パターンを形成したものであ Next, the lattice portion is filled with an adhesive (4e) such as an epoxy resin, and the heating element (4f) (in this example, a ceramic heater) is bonded (FIG. 24 (e)). The ceramic heater shown as an example in Fig. 24 has a metal resistance wire pattern formed on a ceramic substrate by screen printing or the like.
[0118] ここで用いる接着剤は粘性などがあった場合、格子部への接着剤の充填が不十分 となるため、接着剤は格子部への充填性が良いものを使用した方が好ましい。また接 着剤が厚くなつた場合、線熱膨張係数の違いにより剥離等の問題が発生する可能性 力 るため、接着剤は可能な限り薄く充填させる方が好ましい。 [0118] When the adhesive used here is viscous or the like, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion. Also, when the adhesive becomes thicker, problems such as peeling may occur due to differences in the linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
[0119] この接着剤塗布工程においては接着剤を充填させる部位の構造は微細であるため 、接着剤に気泡が混入しないように接着前に真空脱泡処理をした方が好ましい。  [0119] In this adhesive application step, since the structure of the portion to be filled with the adhesive is fine, it is preferable to perform vacuum defoaming treatment before bonding so that bubbles do not enter the adhesive.
[0120] つぎに HF水溶液、ある!/、はバッファード HF液等で Si02層(4b)をエッチングし、 SiO 2と接していた Auを表面露出させる (図 24 (f) )。  [0120] Next, the Si02 layer (4b) is etched with an aqueous HF solution, some! /, Or a buffered HF solution, to expose the Au in contact with SiO 2 (FIG. 24 (f)).
[0121] ここで電気配線を形成しセラミクスヒータに電流を流すと、 Au表面から図中矢印の 方向に赤外光が放射される。さらに格子面以外の外周面に Au (4j)を成膜すると、不 要な赤外放射を抑制できる(図 24 (g) )。  [0121] Here, when electric wiring is formed and current is passed through the ceramic heater, infrared light is emitted from the Au surface in the direction of the arrow in the figure. Furthermore, unnecessary infrared radiation can be suppressed by depositing Au (4j) on the outer peripheral surface other than the lattice plane (Fig. 24 (g)).
[0122] また、ここでは一例として赤外線が放射する反対面に発熱体を設置している力 他 の製造フローを使用することで赤外線が放射する面に発熱体を設置する、または c部 を導電性材料とし格子自身を発熱体とする構造でも良レ、。  [0122] In addition, as an example here, the power of installing a heating element on the opposite surface from which infrared radiation is emitted. By using another manufacturing flow, the heating element is installed on the surface from which infrared radiation is emitted, or part c is conductive. The structure with a lattice material itself as a heat generating element is also acceptable.
[0123] SOI基板を利用する方法の重要な利点は、まず、高度なドライエッチングやエツチン グ深さ制御の技術を用いることなぐ正確な寸法と形状を持った矩形格子を作製でき ることである。また、最終的に表に出る Auの表面は平滑になり、空洞には Siが埋め込 まれた状態になるので、形状が長期間安定で、光源の放射特性が変化しないことで ある。なお、この場合、 Auと Siが共晶合金を形成する場合があるので、動作温度には 注意が必要である。 [0123] The key advantages of using SOI substrates are firstly advanced dry etching and eztin. It is possible to produce a rectangular grid with accurate dimensions and shape without using the technology of depth control. In addition, the surface of Au that finally appears on the surface becomes smooth and Si is embedded in the cavity, so that the shape is stable for a long time and the radiation characteristics of the light source do not change. In this case, attention must be paid to the operating temperature because Au and Si may form a eutectic alloy.
[0124] 実施形態 5 (図 25) [0124] Embodiment 5 (Fig. 25)
本実施形態では Si基板(5a)の上に Si02層(5b)さらにその上に Si層(5e)が形成さ れた SOI基板を用いる。図 24の例と同様に、最表面の Si層 (5e)の面方位を 110方向と し、厚さを作製したい格子の深さに設定しておく。また、 Si基板 (5a)の面方位は 100方 向とする。  In this embodiment, an SOI substrate in which a Si02 layer (5b) is formed on a Si substrate (5a) and a Si layer (5e) is formed thereon is used. As in the example of FIG. 24, the surface orientation of the outermost Si layer (5e) is the 110 direction, and the thickness is set to the depth of the lattice to be fabricated. The plane orientation of the Si substrate (5a) is 100 directions.
[0125] SOI基板にレジスト(5c)を塗布し (図 25 (a) )、電子線描画、干渉露光、マスク露光 等により格子パターンを形成する (図 25 (b) )。本実施形態では突起ではなくて溝のァ レイが残るようなパターンを作製する例を示している。ここでは Si基板の裏面にも同様 にレジスト(5c)を塗布し、開口パターンを形成しておく。  [0125] A resist (5c) is applied to the SOI substrate (Fig. 25 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (Fig. 25 (b)). In the present embodiment, an example is shown in which a pattern in which an array of grooves is left instead of protrusions is produced. Here, the resist (5c) is similarly applied to the back surface of the Si substrate to form an opening pattern.
[0126] これを KOH水溶液等でエッチングすると、表面には Siの矩形格子が形成される。同 時に、裏面からは Si02層に到達するまでピラミッド状にエッチングが進み、薄い Si02 層と Si層の膜が周囲を矩形の枠で保持された状態で残る (図 25 (c) )。  [0126] When this is etched with a KOH aqueous solution or the like, a Si rectangular lattice is formed on the surface. At the same time, etching proceeds in a pyramid shape from the back surface until it reaches the Si02 layer, and the thin Si02 layer and the Si layer film remain in a state of being held by a rectangular frame (Fig. 25 (c)).
[0127] つぎに、レジストを除去した後で Si層の表面に、溝の側面や底面にも堆積するように Au等(5d)を成膜する (図 25 (d) )。この時の膜厚は全ての面につ!/、て表皮深さ (Auの 場合 20〜30nm)の数倍の膜厚が必要である。成膜法は、真空蒸着法やスパッタリン グ法のほか、特に膜厚の均一性の高い原子層堆積 (ALD)法が有効である。比較的 厚い膜が得やすい方法として、 Au超微粒子分散液を塗布した後、焼結する方法や、 電解メツキ、無電解メツキなどの電気化学的手法などがある。  Next, after removing the resist, a film of Au or the like (5d) is formed on the surface of the Si layer so as to be deposited also on the side surface and bottom surface of the groove (FIG. 25 (d)). The film thickness at this time must be several times the skin depth (20-30 nm for Au) on all surfaces! In addition to the vacuum evaporation method and sputtering method, the atomic layer deposition (ALD) method with a highly uniform film thickness is particularly effective. Methods for easily obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
[0128] つぎに、裏面に Au (5f)を成膜すると、不要な赤外放射を抑制でき、最後に電気配 線を形成し格子部の Au層に電流を流すことで図中の矢印方向に赤外線が放射され る (図 25 (e) )。  [0128] Next, if Au (5f) is deposited on the back surface, unnecessary infrared radiation can be suppressed. Finally, electrical wiring is formed, and current is passed through the Au layer in the lattice area, as indicated by the arrows in the figure. Infrared rays are emitted to the surface (Fig. 25 (e)).
[0129] 本実施形態では Au層(5d)自身が発熱体として作用している。  In the present embodiment, the Au layer (5d) itself acts as a heating element.
[0130] 本実施形態は、図 22に示した実施形態 2や図 24に示した実施形態 4に比べると、 工程が少なぐまた構造も簡単である。 [0130] This embodiment is different from the second embodiment shown in FIG. 22 and the fourth embodiment shown in FIG. There are few steps and the structure is simple.
[0131] Au表面形状の安定性については、図 22(g)のように、空洞に正の誘電体材料を充 填することにより改善できる。 [0131] The stability of the Au surface shape can be improved by filling a cavity with a positive dielectric material as shown in Fig. 22 (g).
[0132] 実施形熊 6 (図 26) [0132] Implementation bear 6 (Fig. 26)
本実施形態では、表面に格子深さより厚!/、熱酸化膜 (Si02膜) (6b)を有する Si基板 In this embodiment, a Si substrate having a thermal oxide film (Si02 film) (6b) thicker than the lattice depth on the surface.
(6a)を使用する。 Si基板の面方位は 100方向とする。 Use (6a). The plane orientation of the Si substrate is 100 directions.
[0133] 基板にレジスト(6c)を塗布し (図 26 (a) )、電子線描画、干渉露光、マスク露光等に より格子パターンを形成する (図 26 (b) )。ドライエッチング等により Si02表面に突起の アレイを作製(図 26 (c) )する。ここで、図 25の本実施形態と同様に、 Si基板の裏面に もレジスト(6c)を塗布し、開口パターンを形成してお《図 26 (d) )。 [0133] A resist (6c) is applied to the substrate (Fig. 26 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (Fig. 26 (b)). An array of protrusions is fabricated on the Si02 surface by dry etching (Fig. 26 (c)). Here, as in the present embodiment of FIG. 25, a resist (6c) is applied to the back surface of the Si substrate to form an opening pattern (FIG. 26 (d)).
[0134] これを KOH水溶液でエッチングすると、裏面からは Si02層に到達するまでピラミッド 状にエッチングが進み、薄い Si02の膜が周囲を矩形の枠で保持された状態で残る( 図 26 (e) )。 [0134] When this is etched with an aqueous KOH solution, etching progresses in a pyramid shape from the back surface until it reaches the Si02 layer, and the thin Si02 film remains in a state where the periphery is held by a rectangular frame (Fig. 26 (e) ).
[0135] つぎに、レジストを除去した後で Si02層の表側の表面 (格子部)に、 Au等(6d)を成 膜する (図 26 (f) )。この時の膜厚は全ての面について表皮深さ (Auの場合 20〜30nm )の数倍の膜厚が必要である。成膜法は、真空蒸着法やスパッタリング法のほか、特 に膜厚の均一性の高!/、原子層堆積 (ALD)法が有効である。比較的厚!/、膜が得やす い方法として、 Au超微粒子分散液をスピンコートなどで塗布した後、焼結する方法や 、電解メツキ、無電解メツキなどの電気化学的手法などがある。  [0135] Next, after removing the resist, Au or the like (6d) is formed on the surface (lattice part) of the Si02 layer (FIG. 26 (f)). The film thickness at this time must be several times the skin depth (20-30 nm for Au) on all surfaces. In addition to vacuum deposition and sputtering, film deposition is particularly effective with high uniformity of film thickness and atomic layer deposition (ALD). Relatively thick / and easy to obtain a film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
[0136] ここで得られた構造体の Au層に電気配線を形成し直接電流を流すと、 Au表面から 図中矢印の方向に赤外光が放射される。  [0136] When electric wiring is formed on the Au layer of the structure obtained here and direct current is passed, infrared light is emitted from the Au surface in the direction of the arrow in the figure.
[0137] 図 26 (f)の構造では、反対側の面も Au表面が矩形格子を形成しているので、そち らにも別の波長の赤外光が放射される場合がある。その場合には、 Au膜の上から凹 部を覆い尽くすように充填材 (エポキシ系接着剤、セラミック系接着剤、金属等)(6e) を充填し、さらにその上力も Au (6f)を成膜し、不要な赤外放射を抑制する (図 26 (g) ) [0137] In the structure of Fig. 26 (f), the Au surface also forms a rectangular lattice on the opposite surface, so that infrared light of another wavelength may also be emitted there. In that case, a filler (epoxy adhesive, ceramic adhesive, metal, etc.) (6e) is filled so as to cover the recess from the top of the Au film, and the upper force also forms Au (6f). Film and suppress unwanted infrared radiation (Fig. 26 (g))
Yes
[0138] 本実施形態では格子部に成膜した Au層(6d)自身が発熱体として作用している。  In the present embodiment, the Au layer (6d) itself formed on the lattice portion acts as a heating element.
[0139] 本実施形態の特徴は、 Si02と Auの接着面を放射面として使用するため、平滑で且 つ形状の正確な面を放射面として利用できることである。さらに空洞に Si02が埋め込 まれたまま残るので、エレクト口マイグレーションの起こりやすい状況であるにも関わら ず、正確に設計通りの赤外放射特性が長期間安定に維持されることである。 [0139] The feature of the present embodiment is that the bonding surface of Si02 and Au is used as a radiation surface, so that it is smooth and It is that an accurate surface of a single shape can be used as a radiation surface. Furthermore, since Si02 remains embedded in the cavity, the infrared radiation characteristics exactly as designed are maintained stably for a long period of time despite the fact that electret migration is likely to occur.
[0140] 実施形態 7 (図 27)  [0140] Embodiment 7 (Fig. 27)
本実施形態では表面に格子深さと等しレ、熱酸化膜 (Si02) (7b)を有する Si基板(7a )を使用する。 Si基板の面方位は 100方向とする。基板にレジスト(7c)を塗布し (図 7(a) )、電子線描画、干渉露光、マスク露光等により格子パターンを形成する (図 27 (b) )。 角度のついた格子パターンは、描画速度の制御や加工の前後の温度処理などで制 御が可能である。ドライエッチング等で格子を作製する際に、エッチングの最中にェ ツチング角度を制御することでテーパーの付いた格子を作成する (図 27 (c) )。レジス ト除去後にこの格子溝部に Au等(7d)を成膜法などによって成膜する (図 27 (e) )。成 膜法は、真空蒸着法やスパッタリング法のほか、特に膜厚の均一性の高い原子層堆 積 (ALD)法が有効である。比較的厚い膜が得やすい方法として、 Au超微粒子分散液 をスピンコートなどで塗布した後、焼結する方法や、電解メツキ、無電解メツキなどの 電気化学的手法などがある。また Auの埋め込み後に塗布する接着剤との密着を確 保するために Crなどの密着層を成膜しても良い。  In the present embodiment, a Si substrate (7a) having a thermal oxide film (Si02) (7b) equivalent to the lattice depth on the surface is used. The plane orientation of the Si substrate is 100 directions. A resist (7c) is applied to the substrate (FIG. 7 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 27 (b)). Angled grid patterns can be controlled by controlling the drawing speed and temperature treatment before and after processing. When creating a grating by dry etching or the like, a grating with a taper is created by controlling the etching angle during etching (Fig. 27 (c)). After the resist is removed, a film such as Au (7d) is deposited in this lattice groove by a film deposition method (Fig. 27 (e)). As the deposition method, in addition to the vacuum deposition method and the sputtering method, an atomic layer deposition (ALD) method with particularly high film thickness is effective. Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating. In addition, an adhesion layer such as Cr may be formed in order to ensure adhesion with the adhesive applied after Au is embedded.
[0141] つぎに、 Au等を埋め込んだ面に、接着面以外の面に金等(7f)を成膜した発熱体(  [0141] Next, a heating element in which gold or the like (7f) is formed on a surface other than the bonding surface on the surface embedded with Au or the like (
7g)を、接着剤(7e)によって接着する (図 27 (f) )。接着には耐熱性エポキシ系やセラ ミック系接着剤等を用いる。ここで接着剤に粘性などがあった場合、格子部への接着 剤の充填が不十分となるため、接着剤は格子部への充填性が良いものを使用した方 が好ましい。また接着剤が厚くなつた場合、線熱膨張係数の違いにより剥離等の問 題が発生する可能性があるため、接着剤は可能な限り薄く充填させる方が好ましい。  7g) is bonded with adhesive (7e) (Fig. 27 (f)). Use a heat-resistant epoxy or ceramic adhesive for bonding. Here, when the adhesive has viscosity or the like, filling of the adhesive into the lattice portion becomes insufficient. Therefore, it is preferable to use an adhesive having a good filling property into the lattice portion. In addition, when the adhesive becomes thick, problems such as peeling may occur due to the difference in the linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thin as possible.
[0142] つぎに、機械的剥離、エッチング、レーザーリフトオフ等により、 Auと Si02力、ら成る格 子表面から Si基板(7a)を除去し電気配線を形成することで赤外光源が完成する (図 2 7 (g) )0 [0142] Next, an infrared light source is completed by removing the Si substrate (7a) from the surface of the lattice composed of Au and Si02 by mechanical peeling, etching, laser lift-off, etc., and forming electrical wiring ( Fig. 2 7 (g)) 0
[0143] またここでは一例として赤外線が放射する反対面に発熱体を設置している力 他の 製造フローを使用することで赤外線が放射する面に発熱体を設置し、または格子(7 d)自身を発熱体とする構造でも良い。 [0144] 実施形態 8 (図 28) [0143] Also, here, as an example, the power to install a heating element on the opposite surface from which infrared radiation is emitted. By using another manufacturing flow, a heating element is installed on the surface from which infrared radiation is emitted, or a grid (7 d) A structure using itself as a heating element may be used. [0144] Embodiment 8 (Fig. 28)
本実施形態では表面に格子深さと等しレヽ Au (8b)を有する Si基板(8a)を使用する。  In the present embodiment, a Si substrate (8a) having a surface Au (8b) equivalent to the lattice depth is used.
Si基板の面方位は 100方向とする。基板にレジスト(8c)を塗布し (図 28 (a) )、電子線 描画、干渉露光、マスク露光等により格子パターンを形成する (図 28 (b) )。ドライエツ チング等により表面にテーパーの付いた格子を作製する (図 28 (c) )。レジスト除去後 にこの格子溝部に、成膜法によって酸化膜 (Si02)等を成膜し、流体研磨や MCP (Me chanochemical polishing)などで Au表面が現れるまで平坦にした後、表面に Au膜(8b )を形成する (図 28 (e) )。成膜法は、真空蒸着法やスパッタリング法のほか、特に膜厚 の均一性の高!/、原子層堆積 (ALD)法が有効である。また Auに塗布する接着剤との密 着を確保するために Crなどの密着層を成膜しても良い。  The plane orientation of the Si substrate is 100 directions. A resist (8c) is applied to the substrate (FIG. 28 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 28 (b)). A lattice with a tapered surface is fabricated by dry etching (Fig. 28 (c)). After removing the resist, an oxide film (Si02) or the like is formed in this lattice groove by a film formation method, and is flattened until the Au surface appears by fluid polishing or MCP (Mechanochemical polishing), and then an Au film ( 8b) is formed (FIG. 28 (e)). In addition to vacuum evaporation and sputtering, the film formation method is particularly effective with a highly uniform film thickness / atomic layer deposition (ALD) method. An adhesion layer such as Cr may be formed to ensure adhesion with the adhesive applied to Au.
[0145] つぎに、接着面以外の面に金等(8f)を成膜した発熱体(8g)を接着剤(8e)によつ て接着する (図 28 (f) )。接着には耐熱性エポキシ系やセラミック系接着剤等を用いる 。ここで接着剤に粘性などがあった場合、格子部への接着剤の充填が不十分となる ため、接着剤は格子部への充填性が良いものを使用した方が好ましい。また接着剤 が厚くなつた場合、線熱膨張係数の違いにより剥離等の問題が発生する可能性があ るため、接着剤は可能な限り薄く充填させる方が好ましい。  Next, a heating element (8g) in which gold or the like (8f) is formed on a surface other than the bonding surface is bonded with an adhesive (8e) (FIG. 28 (f)). A heat-resistant epoxy or ceramic adhesive is used for bonding. Here, when the adhesive is viscous, the lattice portion is not sufficiently filled with the adhesive, and therefore, it is preferable to use an adhesive having a good filling property to the lattice portion. Further, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible.
[0146] つぎに、機械的剥離、エッチング、レーザーリフトオフ等により、 Auと Si02力、ら成る格 子表面から Si基板(8a)を除去し電気配線を形成することで赤外光源が完成する (図 2 8 (g) )。  [0146] Next, an infrared light source is completed by removing the Si substrate (8a) from the surface of the lattice composed of Au and Si02 by mechanical peeling, etching, laser lift-off, etc., and forming electrical wiring ( Figure 28 (g)).
[0147] またここでは一例として赤外線が放射する反対面に発熱体を設置している力 他の 製造フローを使用することで赤外線が放射する面に発熱体を設置する、または、格 子(8b)自身を発熱体とする構造でも良い。  [0147] In addition, here, as an example, the force of installing a heating element on the opposite surface from which infrared rays are radiated. By using another manufacturing flow, the heating element is installed on the surface that radiates infrared rays, or a scale (8b ) A structure using itself as a heating element may be used.
[0148] 実施形態 9 (図 29)  [0148] Embodiment 9 (Fig. 29)
本実施形態では、表面に格子深さと等しレ、か薄レ、熱酸化膜 (Si02) (9b)を有する Si 基板(9a)を使用する。 Si基板の面方位は 100方向とする。基板にレジスト(9c)を塗布 し (図 29 (a) )、電子線描画、干渉露光、マスク露光等により格子パターンを形成する( 図 29 (b) )。ドライエッチング等により Si02を加工し表面に突起のアレイを作製する (図 29 (c) )。この格子表面に Au等(9d)を成膜する (図 29 (d) )。成膜する Auの膜厚は全 ての面について表皮深さ (Auの場合 20〜30匪)の数倍の膜厚が必要である。成膜法 は、真空蒸着法やスパッタリング法のほか、特に膜厚の均一性の高い原子層堆積 (A LD)法が有効である。比較的厚い膜が得やすい方法として、 Au超微粒子分散液をス ピンコートなどで塗布した後、焼結する方法や、電解メツキ、無電解メツキなどの電気 化学的手法などがある。また Auの成膜後に塗布する接着剤との密着を確保するため に Au膜上に Crなどの密着層を成膜しても良い。 In this embodiment, a Si substrate (9a) having a surface equivalent to the lattice depth, a thin layer, and a thermal oxide film (Si02) (9b) is used. The plane orientation of the Si substrate is 100 directions. A resist (9c) is applied to the substrate (FIG. 29 (a)), and a lattice pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. (FIG. 29 (b)). Si02 is processed by dry etching to produce an array of protrusions on the surface (Fig. 29 (c)). Au (9d) is deposited on the lattice surface (Fig. 29 (d)). The film thickness of Au is all The thickness of all surfaces should be several times the skin depth (20 to 30 mm for Au). In addition to the vacuum evaporation method and the sputtering method, the atomic layer deposition (ALD) method with a highly uniform film thickness is effective as the film forming method. Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied by spin coating and then sintered, and an electrochemical method such as electrolytic plating and electroless plating. In addition, an adhesion layer such as Cr may be formed on the Au film in order to ensure adhesion with the adhesive applied after the Au film formation.
[0149] つぎに、 Au等を成膜した面に発熱体(9f)を接着する (図 29 (e) )。接着には耐熱性 エポキシ系やセラミック系接着剤等(9e)を用いる。ここで接着剤に粘性などがあった 場合、格子部への接着剤の充填が不十分となるため、接着剤は格子部への充填性 が良いものを使用した方が好ましい。また接着剤が厚くなつた場合、線熱膨張係数の 違いにより剥離等の問題が発生する可能性があるため、接着剤は可能な限り薄く充 填させる方が好ましい。また、この接着剤塗布工程は実施形態 2同様、接着前に真 空脱泡処理をするのが好まし!/、。  Next, a heating element (9f) is bonded to the surface on which Au or the like is formed (FIG. 29 (e)). Use a heat-resistant epoxy or ceramic adhesive (9e) for bonding. Here, if the adhesive has viscosity or the like, filling of the adhesive into the lattice portion becomes insufficient, so it is preferable to use an adhesive that has good filling properties into the lattice portion. In addition, when the adhesive becomes thick, problems such as peeling may occur due to the difference in linear thermal expansion coefficient. Therefore, it is preferable to fill the adhesive as thinly as possible. In addition, as in Embodiment 2, this adhesive application process is preferably vacuum defoamed before bonding! /.
[0150] つぎに、 KOH水溶液でエッチングすることで、 Si基板(9a)だけが溶解し、格子溝中 に Si02 (9b)が残る (図 9 (f) )。  Next, by etching with a KOH aqueous solution, only the Si substrate (9a) is dissolved, and Si02 (9b) remains in the lattice grooves (FIG. 9 (f)).
[0151] 最後に不要な赤外放射を抑制するために格子面以外の外周面に Au (9h)を成膜 する (図 9 (g) )。  [0151] Finally, in order to suppress unnecessary infrared radiation, Au (9h) is deposited on the outer peripheral surface other than the lattice plane (Fig. 9 (g)).
[0152] 本実施形態での特徴は最初の熱酸化膜の厚さと、ドライエッチング等の加工深さを 調整することにより、格子溝中の希望の深さまで Si02が充填された赤外光源が実現 でさることである。  [0152] The feature of the present embodiment is that an infrared light source filled with Si02 to the desired depth in the lattice groove is realized by adjusting the thickness of the initial thermal oxide film and the processing depth such as dry etching. It is to do.
[0153] Si02がちょうど表面まで充填された構造は、その特殊な例である力 このような構造 を実現するには、ドライエッチングの際に、プラズマの発光スペクトルや質量分析計 による反応容器内のガス分析等により、エッチングが Si02層から Si層に到達した瞬間 を検出してエッチングを停止 (エンドポイント法)するのが良い。この方法を用いれば、 熱酸化膜の膜厚が希望の格子深さに一致する Si基板を用意することで、ドライエッチ ングの条件出しに頼ることなぐまた SOI基板のような特殊な基板を必要とすることなく 、再現性良く正確に格子を作製することができる。  [0153] The structure in which Si02 is just filled to the surface is a special example. To achieve such a structure, during dry etching, the plasma emission spectrum and mass spectrometer can be used in the reaction vessel. It is better to stop the etching (endpoint method) by detecting the moment when the etching reaches the Si layer from the Si02 layer by gas analysis. By using this method, by preparing a Si substrate whose thermal oxide film thickness matches the desired lattice depth, a special substrate such as an SOI substrate is required without relying on dry etching conditions. Therefore, it is possible to accurately produce a lattice with good reproducibility.
[0154] 実施形熊 10 (図 30) 本実施形態では、フレキシブルで大面積の赤外光源を実現する例を示すものであ る. [0154] Practical bear 10 (Fig. 30) This embodiment shows an example of realizing a flexible and large-area infrared light source.
たとえば、一方の表面に溝のアレイが加工された一対のローラー(10a、 10b)を用 い、加熱して押圧することにより、プラスチックシートの片面に突起のアレイをエンボス 加工する (図 30 (a) )。厚さ 10〜 100 m程度のポリエステル、ポリ塩化ビュル、ポリプロ ピレンなどにホログラムのような微細構造を転写する技術は十分に確立されている。  For example, a pair of rollers (10a, 10b) with an array of grooves on one surface is used and heated and pressed to emboss an array of protrusions on one side of a plastic sheet (Fig. 30 (a )). The technology to transfer a fine structure such as a hologram to polyester, polychlorinated butyl, polypropylene, etc. with a thickness of about 10-100 m is well established.
[0155] この格子上に真空蒸着あるいはスパッタリングにより A1や Ag等(10d)を成膜する (図 [0155] A1 or Ag (10d) is deposited on this lattice by vacuum evaporation or sputtering.
30 (b) )。  30 (b)).
[0156] つぎに成膜面の上にポリエステルやポリプロピレン等の保護層(10e)を形成する( 図 30 (c) )。この層を粘着層として、他の物体の表面にシールのように貼り付けられる ようにしても良い。任意の発熱体(10f)にこのシートを接着し電気配線を形成すること で、赤外光源を実現することができる (図 30 (d) )。  Next, a protective layer (10e) such as polyester or polypropylene is formed on the film formation surface (FIG. 30 (c)). This layer may be used as an adhesive layer and attached to the surface of another object like a seal. An infrared light source can be realized by bonding this sheet to an arbitrary heating element (10f) to form electrical wiring (Fig. 30 (d)).
[0157] 特殊な使い方として、このシートの金属層に電流を流せば、このフレキシブルなシ ートそのものを赤外光源とすることも可能である。  [0157] As a special usage, if a current is passed through the metal layer of the sheet, the flexible sheet itself can be used as an infrared light source.
[0158] あるいは、このシートにシリコーンゴムシートの内部に抵抗線パターンを埋め込んだ ラバーヒータと接着することによつても、フレキシブルな赤外光源を実現することがで きる。  [0158] Alternatively, a flexible infrared light source can also be realized by adhering to this sheet with a rubber heater in which a resistance wire pattern is embedded in the silicone rubber sheet.
[0159] 実施形熊 11 (図 31)  [0159] Implementation bear 11 (Fig. 31)
図 31は、熱絶縁された赤外光源の具体的な実施形態を示す。赤外光源は、図 25 に示した方法によって作製される。  FIG. 31 shows a specific embodiment of a thermally insulated infrared light source. The infrared light source is produced by the method shown in FIG.
[0160] SOI基板(l la、 l ib, 1 le)の両面にレジスト(1 lc)を塗布し (図 31 (a) )、電子線描 画、マスク露光等により開口パターンを形成する (図 31 (b) ))。つぎに、ドライエツチン グ等により、 Si基板(11a)に到達する深さまで加工し、格子部と外周部を分離する開 口を形成する(図 31 (c) )。 [0160] Resist (1 lc) is applied to both sides of the SOI substrate (l la, l ib, 1 le) (Fig. 31 (a)), and an opening pattern is formed by electron beam drawing, mask exposure, etc. (Fig. 31). (b))). Next, it is processed to a depth that reaches the Si substrate (11a) by dry etching or the like to form an opening that separates the lattice portion and the outer peripheral portion (FIG. 31 (c)).
[0161] つぎに、再度レジストを塗布し電子線描画、干渉露光、マスク露光等により中央部 に格子パターンを形成し、ウエットエッチング等で加工することで赤外線放射部に格 子を作製する(図 31 (d) )。 [0161] Next, a resist is applied again, a lattice pattern is formed in the central portion by electron beam drawing, interference exposure, mask exposure, and the like, and a lattice is produced in the infrared radiation portion by processing by wet etching or the like (Fig. 31 (d)).
[0162] さらにもう一度レジストを塗布して電子線描画、干渉露光、マスク露光等によりバタ 一ユングし、電極および赤外光源の本体となる Au等(l id)を成膜する (図 31 (e) )。外 周部に 2つの電極パッドがあり、それらは 2本の梁を通して格子と接続されている。成 膜する Auの膜厚は全ての面について表皮深さ (Auの場合 20〜30nm)の数倍の膜厚 が必要である。成膜法は、真空蒸着法やスパッタリング法のほか、特に膜厚の均一性 の高い原子層堆積 (ALD)法が有効である。比較的厚い膜が得やすい方法として、 Au 超微粒子分散液を塗布した後、焼結する方法や、電解メツキ、無電解メツキなどの電 気化学的手法などがある。 [0162] Further, a resist is applied again, and a pattern is formed by electron beam drawing, interference exposure, mask exposure, etc. Then, deposit Au, etc. (l id), which will be the main body of the electrode and infrared light source (Fig. 31 (e)). There are two electrode pads on the outer circumference, which are connected to the grid through two beams. The film thickness of the Au film must be several times the skin depth (20 to 30 nm for Au) on all surfaces. In addition to the vacuum deposition method and the sputtering method, the atomic layer deposition (ALD) method with a highly uniform film thickness is effective as the film forming method. Methods for obtaining a relatively thick film include a method in which an Au ultrafine particle dispersion is applied and then sintering, and an electrochemical method such as electrolytic plating and electroless plating.
[0163] つぎに SOI基板の裏側を KOH水溶液でエッチングすると、裏面の開口と表側の開 ロカもピラミッド状にエッチングが進み、薄い Si02層と Si層の膜が周囲を 4本の梁で 保持された状態で残る (図 31 (f) )。  [0163] Next, when the back side of the SOI substrate is etched with KOH aqueous solution, the opening on the back side and the opening on the front side are also etched in a pyramid shape, and the thin Si02 layer and the Si layer film are held around by four beams. (Fig. 31 (f)).
[0164] 不要な赤外放射を抑制するために、裏側から Au等(1 If)を成膜して、不要な赤外 放射を抑制する (図 31 (g) ))。  [0164] In order to suppress unnecessary infrared radiation, a film of Au or the like (1 If) is formed from the back side to suppress unnecessary infrared radiation (Fig. 31 (g))).
[0165] なお、本実施形態では格子部に成膜した Au層(l id)自身が発熱体として作用して いる。  [0165] In the present embodiment, the Au layer (l id) itself formed on the lattice portion acts as a heating element.
[0166] 図 31のような膜構造の上に格子を作る最大のメリットは格子の熱容量が図 22や図  [0166] The biggest merit of creating a lattice on the film structure shown in Fig. 31 is that the heat capacity of the lattice is shown in Fig. 22 and Fig.
24のようなバルタ構造に比べて圧倒的に小さくなることである。熱容量が小さくなれ ば、同じ温度に到達するために必要な電流も低減でき、高速に電流を変化させた場 合の温度、すなわち赤外光強度の追従性も向上する。すなわち高速動作が可能な 赤外光源が実現できる。  It is overwhelmingly smaller than the Balta structure like 24. If the heat capacity is reduced, the current required to reach the same temperature can be reduced, and the temperature when the current is changed at high speed, that is, the followability of the infrared light intensity is improved. In other words, an infrared light source capable of high-speed operation can be realized.
[0167] さらに格子を膜の中央の領域に限定し、その領域を、周囲から支持するのに最低 限必要な数本の梁を残して除去すると、格子部は周囲から熱的に絶縁される。このよ うな構造はマイクロマシンの分野で一般的に利用されている。  [0167] If the grid is further limited to the central region of the membrane, and that region is removed leaving a minimum number of beams to support from the surroundings, the grid is thermally insulated from the surroundings. . Such a structure is generally used in the field of micromachines.
[0168] 熱絶縁性が向上すると、周囲の基板は室温近くに保ったまま、格子部のみ高温に 設定できる。このことは赤外光源の実装性を格段に向上させることができる。  [0168] When the thermal insulation is improved, only the lattice portion can be set to a high temperature while keeping the surrounding substrate close to room temperature. This can greatly improve the mountability of the infrared light source.
[0169] 赤外光源チップは、メタルパッケージにダイボンディングし、パッケージの電極端子 とチップの電極パッドをワイヤボンディングにより接続し、真空封止することで、手軽に 利用できる形態となる。キャップをかぶせる前の状態を図 31 (h)に示す。  [0169] The infrared light source chip can be easily used by die bonding to a metal package, connecting the electrode terminal of the package and the electrode pad of the chip by wire bonding, and vacuum-sealing. Figure 31 (h) shows the state before the cap is put on.
[0170] 電極から電流を流すことにより中央の格子部は高温になる力 その周囲が熱絶縁さ れているため、チップ自体は熱の影響をあまり受けない。したがって、パッケージング にお!/、ては特別な配慮は必要なレ、。 [0170] The force at which the central lattice part becomes hot when current flows from the electrode. Therefore, the chip itself is not affected by heat. Therefore, packaging requires special care!
[0171] 図 31のような熱絶縁された赤外光源は、同一のチップ上に複数配置しても、互い に影響されずに独立に動作する。従って、一つのチップ上に、異なる波長や異なる 偏光の赤外光を放射する光源が集積化できる。 [0171] Even if a plurality of thermally insulated infrared light sources as shown in Fig. 31 are arranged on the same chip, they operate independently without being influenced by each other. Therefore, light sources that emit infrared light with different wavelengths or different polarizations can be integrated on a single chip.
[0172] さらに少しずつ放射波長の異なる赤外光源を同一チップ上に一次元配列あるいわ 二次元配列することにより、可動部なしに、電気的に波長をスキャンすることのできる 波長可変赤外光源が実現する。このような光源は、携帯できるほど小型で低消費電 力の装置で、任意の物質の赤外スペクトルを測定し、物質を同定するために有用で ある。実施形態 16および 17を参照のこと。 [0172] By further arranging infrared light sources with different emission wavelengths little by little on the same chip in a one-dimensional or so-called two-dimensional arrangement, the wavelength variable infrared light source can be scanned electrically without moving parts. Is realized. Such a light source is a portable and small-sized device with low power consumption, and is useful for measuring the infrared spectrum of any substance and identifying the substance. See embodiments 16 and 17.
[0173] さらに Siチップ上には従来技術により様々な電気電子回路が集積化できるので、赤 外光源の他に、その駆動に必要な変調回路、電力分配回路、温度フィードバック回 路などの周辺回路までも搭載できる。実施形態 18を参照のこと。 [0173] Furthermore, since various electric and electronic circuits can be integrated on the Si chip by the conventional technology, in addition to the infrared light source, peripheral circuits such as a modulation circuit, a power distribution circuit, and a temperature feedback circuit required for driving the same are also provided. Can be installed. See embodiment 18.
[0174] Siチップ上には、マイクロマシユング技術の進展により、ポロメータやサーモパイル のような赤外検出素子も実装できるので、 1個の Siチップ上に赤外光源と赤外検出素 子、さらに必要な信号処理回路までも集積化させることができる。実施形態 19を参照 のこと。 [0174] With the progress of micromachining technology, infrared detectors such as porometers and thermopiles can be mounted on a Si chip, so an infrared light source, infrared detector, and further on a single Si chip. Even necessary signal processing circuits can be integrated. See embodiment 19.
[0175] 実施形熊 12 (図 32)  [0175] Practical bear 12 (Fig. 32)
図 32は、 1個の発熱体上に複数種類の格子を設けた赤外光源の格子の配置を示 す図である。 1種類の格子とは、一つの方向に偏光した、一つの特定波長の赤外光 を放射する格子である。複数種類の格子とは偏光の方向あるいは特定波長の異なる 赤外光を放射する格子である。  FIG. 32 is a diagram showing a grid arrangement of an infrared light source in which a plurality of types of grids are provided on one heating element. One type of grating is a grating that emits one specific wavelength of infrared light polarized in one direction. Multiple types of gratings are gratings that emit infrared light with different polarization directions or specific wavelengths.
[0176] 図 32 (a)は、 1個の発熱体上に複数種類の格子を設け、 1種類の格子が、発熱体 上の一つの領域を占めている格子の配置を示す図である。 [0176] Fig. 32 (a) is a diagram showing an arrangement of a grid in which a plurality of types of grids are provided on one heating element, and one type of grid occupies one region on the heating element.
[0177] 図 32 (b)は、 1個の発熱体上に複数種類の格子を設け、 1種類の格子が複数個の 細か!/、格子に分割され、発熱体上の広!/、範囲に分布して!/、る格子の配置を示す図 である。複数種類の格子は市松模様上に、それぞれ同一面積となるように周期的に 配置されている。 [0178] 図 32 (c)は、各種類の格子の面積の比が調整された格子の配置を示す図である。 プランク則の強い波長依存性のために、特定波長の異なる格子は、単位面積あたり の放射強度が一般に異なる。また、放射された赤外光を導く光学系の透過率、反射 率は一般に波長依存性や偏光依存性を持っために、異なる種類の格子から放射さ れた赤外光の放射強度の比は、利用される場所に到達した時には変化する。そこで 、各種類の格子からの放射強度が希望の比率となるように、各種類の格子の面積の 比を適切に調節する。あるいは、面積比は一定のまま、各種類の格子の放射率の比 を適切に調節する。 [0177] Fig. 32 (b) shows that a plurality of types of grids are provided on one heating element, and one type of grid is divided into a plurality of fine! It is a diagram showing the arrangement of! A plurality of types of lattices are periodically arranged on the checkerboard pattern so as to have the same area. [0178] Fig. 32 (c) is a diagram showing a grid arrangement in which the ratio of the area of each type of grid is adjusted. Due to the strong wavelength dependence of the Planck rule, gratings with different specific wavelengths generally differ in radiant intensity per unit area. Also, since the transmittance and reflectance of the optical system that guides the emitted infrared light generally have wavelength dependence and polarization dependence, the ratio of the intensity of infrared light emitted from different types of gratings is It changes when you reach the place where it is used. Therefore, the ratio of the area of each type of grating is appropriately adjusted so that the radiation intensity from each type of grating has a desired ratio. Alternatively, the ratio of emissivity of each type of grating is adjusted appropriately while the area ratio remains constant.
[0179] 図 32 (d)は、図 32 (a)、(b)、(c)の内、少なくとも 2つの配置を含む配置の一例を 示す図である。  [0179] Fig. 32 (d) is a diagram showing an example of an arrangement including at least two arrangements of Figs. 32 (a), (b), and (c).
[0180] 実施形熊 13 (図 33)  [0180] Practical bear 13 (Figure 33)
図 33は、赤外光源パッケージの製造方法を示す図である。赤外光源パッケージと は、 1個または複数の赤外光源を内蔵し、外部から電力を供給する端子を有するもの である。複数の赤外光源はそれぞれ発熱体を備え、それぞれの発熱体に独立に電 力を供給できる。赤外光源パッケージの一つの形態は、金属、セラミック、ガラスなど の筐体に密閉され、内部は真空である力、、あるいは N2、 Ar、 ΚΓ、 Xeなどの不活性ガス 、あるいはその他の気体が封入され,必要に応じて不要な気体を吸着するゲッター 材料も封入されたものである。その窓材は、 Si、 Ge、サファイア、 ZnS、 BaF2、 CaF2、 P bF2などの赤外線透過材料でできて!/、る。赤外光源パッケージのもう一つの形態は, 窓材がなく,密閉されておらず,赤外光源が外界に露出したものである。  FIG. 33 is a diagram showing a method of manufacturing an infrared light source package. An infrared light source package includes one or a plurality of infrared light sources and a terminal for supplying power from the outside. Each of the plurality of infrared light sources has a heating element, and power can be supplied to each heating element independently. One form of infrared light source package is sealed in a metal, ceramic, glass or other housing, and the inside is a vacuum, or inert gas such as N2, Ar, ΚΓ, or Xe, or other gases. A getter material that encloses and adsorbs unnecessary gas as needed is also enclosed. The window material is made of infrared transmitting material such as Si, Ge, sapphire, ZnS, BaF2, CaF2, PbF2, and so on. Another form of infrared light source package is one that has no window material, is not sealed, and the infrared light source is exposed to the outside world.
[0181] ハーメチックシール(13a)上に、ヒータパターン(13c)を印刷したセラミック基板(13 b)を設置してワイヤボンディングで電極(13d)とヒータパターン(13c)を結合する。セ ラミック基板(13b)に格子(13g)を接着する。詳細な製造方法は以下のとおりである [0181] The ceramic substrate (13b) on which the heater pattern (13c) is printed is placed on the hermetic seal (13a), and the electrode (13d) and the heater pattern (13c) are coupled by wire bonding. Adhere the grid (13g) to the ceramic substrate (13b). The detailed manufacturing method is as follows.
Yes
[0182] 工程 1において、セラミック基板(13b)上に接着剤(13e)を塗布する。さらに、金属 格子 13gを接着させる。  [0182] In step 1, an adhesive (13e) is applied onto the ceramic substrate (13b). In addition, 13 g of metal grid is bonded.
[0183] 工程 2において、セラミック基板(13b)上に絶縁層(13h)をコーティングする。さら に、接着剤 13eを塗布する。さらに、金属格子(13g)を接着させる。 [0184] 工程 3において、セラミック基板(13b)の、ヒータパターン 13cが配置された面と反 対側の面に接着剤 13eを塗布する。さらに、金属格子(13g)を接着させる。 [0183] In step 2, an insulating layer (13h) is coated on the ceramic substrate (13b). In addition, apply adhesive 13e. Furthermore, a metal grid (13 g) is adhered. [0184] In step 3, an adhesive 13e is applied to the surface of the ceramic substrate (13b) opposite to the surface on which the heater pattern 13c is disposed. Furthermore, a metal grid (13 g) is adhered.
[0185] 独立した複数の赤外光源を内蔵する場合には上記工程を複数回繰り返す。複数 のヒータを設け、独立に電源をオン'オフすることにより、ヒータごとの赤外線の放射を 制卸すること力 Sでさる。  [0185] When a plurality of independent infrared light sources are incorporated, the above process is repeated a plurality of times. By providing multiple heaters and independently turning the power on and off, it is possible to control the infrared radiation of each heater with the force S.
[0186] キャップ(13i)をかぶせる。長寿命化を目的に、キャップ(13i)の内側には、不活性 ガス(Ar、 ΚΓなど)、ハロゲンガス(12、 Br2)などを封入するとよ!/、。  [0186] Put on the cap (13i). For the purpose of extending the service life, the inside of the cap (13i) should be filled with inert gas (Ar, ΚΓ, etc.), halogen gas (12, Br2), etc.! /.
[0187] 実施形熊 14 (図 34)  [0187] Practical bear 14 (Fig. 34)
図 34は、赤外光源パッケージの種々の形態を示す図である。窓(14j)は、レンズ機 能を有していてもよい。窓(14j)の材料は、赤外線を透過させる Si, Ge、サファイア、 Zn Se、 BaF2、 CaF2、 PbF2などである。  FIG. 34 shows various forms of the infrared light source package. The window (14j) may have a lens function. The material of the window (14j) is Si, Ge, sapphire, Zn Se, BaF2, CaF2, PbF2, etc. that transmit infrared rays.
[0188] 実施形熊 15 (図 35)  [0188] Practical bear 15 (Figure 35)
図 35は、半導体チップ(15d)を使用して作製された赤外光源の構成を示す図であ る。集積化された各赤外光源を異なる偏光方向、異なる波長、異なる面積にすること により、半導体チップ(15d)上に様々な組み合わせの赤外光源を作製することがで きる。半導体チップ(15d)上には、電極パッド(15a)、格子部(15b)、熱絶縁される 領域(15c)が設けられる。熱絶縁のための開口(15c)は、中空または熱絶縁物質で 充填される。  FIG. 35 is a diagram showing a configuration of an infrared light source manufactured using a semiconductor chip (15d). By making each integrated infrared light source have a different polarization direction, different wavelength, and different area, various combinations of infrared light sources can be fabricated on the semiconductor chip (15d). On the semiconductor chip (15d), an electrode pad (15a), a lattice portion (15b), and a thermally insulated region (15c) are provided. The opening (15c) for thermal insulation is filled with a hollow or thermal insulating material.
[0189] 本実施形態の特徴は以下のとおりである。  [0189] Features of the present embodiment are as follows.
1. MEMS(Micro Electro Mechanical Systems)技術等で作製することが可能であり作 製が容易である。  1. It is possible to fabricate with MEMS (Micro Electro Mechanical Systems) technology and so on, and the fabrication is easy.
2.熱絶縁された構造である為、動作時の熱の影響による不良率低減が可能である 2. Because of the heat insulation structure, it is possible to reduce the defective rate due to the influence of heat during operation.
Yes
3.赤外光源格子部以外は熱絶縁された構造である為、熱時定数を小さくすること が出来るので高速変調が可能となる。  3. Since the structure other than the infrared light source grating is thermally insulated, the thermal time constant can be reduced, enabling high-speed modulation.
4. MEMS技術等を利用すれば 1チップ上に独立した赤外光源を集積化できる。  4. If MEMS technology is used, an independent infrared light source can be integrated on one chip.
[0190] 実施形熊 16 (図 36) [0190] Practical bear 16 (Figure 36)
図 36は、赤外光源の 1次元アレイを示す図である。 1チップの赤外光源の放射する 赤外線の波長を FIG. 36 shows a one-dimensional array of infrared light sources. 1 chip infrared light source emits Infrared wavelength
[数 20] 入 N であらわす。  [Numerical equation 20] This is expressed as input N.
[0191] 本実施形態の特徴は以下のとおりである。  [0191] Features of the present embodiment are as follows.
1.電気的に各赤外光源を切り替えることにより、可動部の無い波長スキャン発光素 子となる。  1. By switching each infrared light source electrically, it becomes a wavelength scanning light emitting device with no moving parts.
2.赤外光源の集積化、アレイ化により、コンパクトな、多波長赤外光源、赤外波長ス キャン素子、赤外分光器などを実現できる。  2. Compact, multi-wavelength infrared light source, infrared wavelength scanning element, infrared spectrometer, etc. can be realized by integrating and arraying infrared light sources.
[0192] 実施形熊 17 (図 37)  [0192] Practical bear 17 (Figure 37)
図 37は、赤外光源の 2次元アレイを示す図である。 1チップの赤外光源の放射する 赤外線の波長を  FIG. 37 shows a two-dimensional array of infrared light sources. The infrared wavelength emitted by a single chip infrared light source
[数 21] 入 N であらわす。  [Expression 21] This is expressed as input N.
[0193] 本実施形態の特徴は以下のとおりである。  [0193] The features of the present embodiment are as follows.
[0194] 1.電気的に各赤外光源を切り替えることにより、可動部の無い波長スキャン発光素 子となる。  [0194] 1. By switching each infrared light source electrically, it becomes a wavelength scanning light emitting element having no moving parts.
2.赤外光源の集積化、アレイ化により、コンパクトな、多波長赤外光源、赤外波長ス キャン素子、赤外分光器などを実現できる。  2. Compact, multi-wavelength infrared light source, infrared wavelength scanning element, infrared spectrometer, etc. can be realized by integrating and arraying infrared light sources.
[0195] 実施形熊 18 (図 38) [0195] Practical bear 18 (Fig. 38)
図 38は、赤外光源(18a)のアレイ、電極パッド(18b)、変調回路(18c)、温度制御 回路(18d)ノイズカット回路(18e)などを集積化した装置の構成を示す図である。電 子回路をチップ内に集積化すると、電極パッドの数を削減できるので、スペースを小 さくすることあでさる。  FIG. 38 is a diagram showing a configuration of an apparatus in which an array of an infrared light source (18a), an electrode pad (18b), a modulation circuit (18c), a temperature control circuit (18d), a noise cut circuit (18e), and the like are integrated. . If an electronic circuit is integrated in a chip, the number of electrode pads can be reduced, so that the space can be reduced.
[0196] 実施形熊 19 (図 39) [0196] Practical bear 19 (Fig. 39)
図 39は、 1チップ(27d)上に赤外光源(27b)および赤外検出素子(27c)を搭載し た投受光素子の構成を示す図である。気体導入部(27f)から気体を測定セル(27e) に導入し気体排出部(27g)から排出する。分析したい気体の吸収波長に合致した波 長の赤外光源を発光させて、反射鏡(27d)からの反射光を検出することにより、気体 濃度を測定することができる。 1チップ上に赤外光源(27b)および赤外検出素子(27 c)を設けたことによりコンパクトな分析システムが得られる。 Figure 39 shows an infrared light source (27b) and infrared detector (27c) mounted on a single chip (27d). It is a figure which shows the structure of the light projection / reception element. Gas is introduced from the gas introduction part (27f) into the measurement cell (27e) and discharged from the gas discharge part (27g). The gas concentration can be measured by emitting an infrared light source having a wavelength matching the absorption wavelength of the gas to be analyzed and detecting the reflected light from the reflecting mirror (27d). By providing the infrared light source (27b) and the infrared detection element (27c) on one chip, a compact analysis system can be obtained.
[0197] 実施形熊 20 (図 40乃至図 42)  [0197] Practical bear 20 (Fig. 40 to Fig. 42)
実施形態 20は、実施形態 8と同じである。実施形態 8においては、主に製造方法を 記載した。ここでは、設計方法および機能について記載する。  Embodiment 20 is the same as Embodiment 8. In Embodiment 8, the manufacturing method is mainly described. Here, design methods and functions are described.
[0198] 図 40は、負の誘電体として機能する部分(19a)と正の誘電体として機能する部分(  [0198] Fig. 40 shows a part functioning as a negative dielectric (19a) and a part functioning as a positive dielectric (
19b)との境界面が、格子面と所定の角度 Θをなす格子の断面を示す図である。  19b) is a diagram showing a cross section of a lattice in which the boundary surface with the lattice surface forms a predetermined angle Θ with the lattice surface.
[0199] 図 41は、赤外光源において、格子周期 Pおよび正の誘電体として機能する部分( 誘電体など)の幅 Tを定めた場合に、格子深さ Dおよび所定の角度 Θを求める方法 を示す流れ図である。  [0199] Fig. 41 shows a method for obtaining a grating depth D and a predetermined angle Θ when the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined in an infrared light source. It is a flowchart which shows.
[0200] ステップ S20010において、格子周期 Pおよび正の誘電体として機能する部分 (誘 電体など)の幅 Tを定める。特定の波長を λとした場合に  [0200] In step S20010, the grating period P and the width T of a portion (such as a dielectric) functioning as a positive dielectric are determined. When a specific wavelength is λ
[数 22]  [Number 22]
0 <尸≤2.0 Τ≤ 0.5 Ρ 0 <尸 ≤2.0 Τ≤ 0.5 Ρ
である任意の格子周期 Ρおよび正の誘電体として機能する部分 (誘電体など)の幅 τ を定める。  Determine the arbitrary lattice period あ る and the width τ of the part that functions as a positive dielectric (such as a dielectric).
[0201] ここで、赤外光源が回折を生じないようにするには、格子周期 Ρが、  [0201] Here, in order to prevent the infrared light source from diffracting, the grating period Ρ
[数 23]  [Equation 23]
0 < < 0.5λ であるように定める。 Determine that 0 <<0.5λ.
[0202] ステップ S20020において、格子深さ Dおよび所定の角度 Θを変化させて、赤外光 源によって放射される赤外線の強度分布をもとめる。 [0203] ステップ S20030において、第 1のピーク波長 λ が特定の波長 λに一致したかどう か判断する。一致していなければ、ステップ S3020に戻り、さらに格子深さ Dを変化 させる。一致していれば、そのときの、格子深さ Dおよび所定の角度 Θを赤外光源の 格子深さおよび所定の角度として終了する。 [0202] In step S20020, the grating depth D and the predetermined angle Θ are changed to obtain the intensity distribution of infrared rays emitted from the infrared light source. [0203] In step S20030, it is determined whether or not the first peak wavelength λ matches the specific wavelength λ. If not, the process returns to step S3020 and further changes the lattice depth D. If they match, the grating depth D and the predetermined angle Θ at that time are set as the grating depth and the predetermined angle of the infrared light source.
[0204] 図 42は、所定の角度と赤外線強度比の関係を示す図である。以下に、格子のデー タを示す。  [0204] FIG. 42 is a diagram showing a relationship between a predetermined angle and an infrared intensity ratio. The grid data is shown below.
[0205] Ρ 3. 64マイクロ 'メータ  [0205] Ρ 3. 64 micrometer
D 0. 01 -0. 8マイクロ 'メータの範囲で最適化  D 0. 01 -0. Optimized to 8 micrometer range
Τ 0. 1マイクロ 'メータ  Τ 0.1 micrometer
λ 4. 0マイクロ.メータ  λ 4.0 micrometer
図 42に示すように、格子深さ Dおよび所定の角度 Θを調整することにより、所定の角 度が 90度の格子の赤外線強度比よりも高い赤外線強度比が得られる。図 42は、所 定の角度が 90度以下の場合について示している力 90度よりも大きな場合も同様に 所定の角度が 90度の格子の赤外線強度比よりも高い赤外線強度比が得られる。  As shown in FIG. 42, by adjusting the grating depth D and the predetermined angle Θ, an infrared intensity ratio higher than that of a grating having a predetermined angle of 90 degrees can be obtained. In FIG. 42, when the force is greater than 90 degrees, which is shown when the predetermined angle is 90 degrees or less, an infrared intensity ratio higher than the infrared intensity ratio of the grid having the predetermined angle of 90 degrees is obtained.
[0206] 実施形熊 21 (図 43乃至図 45)  [0206] Practical bear 21 (Fig. 43 to Fig. 45)
実施形態 21は、負の誘電体として機能する部分 Aおよび正の誘電体として機能す る部分 Bの一方または両方が複数の物質から形成される格子である。  Embodiment 21 is a lattice in which one or both of a part A functioning as a negative dielectric and a part B functioning as a positive dielectric are formed of a plurality of substances.
[0207] 図 43は、正の誘電体として機能する部分 Bが Siなどの正の誘電体材料(21b)およ び空気(中空)から形成され、負の誘電体として機能する部分 Aが金(21a)から形成 される格子を示す図である。  [0207] Figure 43 shows that part B that functions as a positive dielectric is formed of a positive dielectric material (21b) such as Si and air (hollow), and part A that functions as a negative dielectric is gold. It is a figure which shows the lattice formed from (21a).
[0208] 図 44は、正の誘電体として機能する部分 Bが Siなどの正の誘電体材料(22b)およ び空気(中空)から形成され、負の誘電体として機能する部分 Aが金(22a)および銀 (22c)から形成される格子を示す図である。  [0208] Figure 44 shows that part B that functions as a positive dielectric is formed of a positive dielectric material (22b) such as Si and air (hollow), and part A that functions as a negative dielectric is gold. It is a figure which shows the grating | lattice formed from (22a) and silver (22c).
[0209] 図 45は、図 43に示した格子の、 D1と D2との比率を変化させた場合の、波長と吸 収率との関係を示す図である。正の誘電体として機能する部分 Bの Siの深さ D1を大 きくすると第 1ピーク波長が長波長側にシフトする。したがって、ある特定波長を得る 為に必要な格子深さ Dを決定する際に、屈折率が空気より大きい正の誘電体材料を 使用すると格子部全てが空気である場合と比較して格子深さ Dを小さくすることが可 能となり格子部加工が容易になる。また、格子部に屈折率が異なる少なくとも 2種以 上の材料の深さ比率 (D 1 :D2)を調整することにより第 1ピーク波長の波長ピークを調 整すること力 Sでさる。 FIG. 45 is a diagram showing the relationship between the wavelength and the absorption rate when the ratio of D1 to D2 in the lattice shown in FIG. 43 is changed. Increasing the Si depth D1 of the part B that functions as a positive dielectric shifts the first peak wavelength to the longer wavelength side. Therefore, when determining the grating depth D required to obtain a specific wavelength, if a positive dielectric material with a refractive index greater than air is used, the grating depth is compared with the case where all the grating portions are air. D can be reduced And the lattice processing becomes easier. Further, the force S can be adjusted by adjusting the wavelength peak of the first peak wavelength by adjusting the depth ratio (D 1: D2) of at least two kinds of materials having different refractive indexes in the grating portion.
[0210] このように、 2種類の正の誘電体材料 (空気を含む)または 2種類の負の誘電体材 料を使用することにより、特定の波長を調整するためのパラメータが増え、設計およ び製造が容易になる。  [0210] In this way, the use of two types of positive dielectric materials (including air) or two types of negative dielectric materials increases the number of parameters for adjusting a specific wavelength. And easier to manufacture.
[0211] 上記にぉレ、て説明した本発明による赤外光源の応用につ!/、て以下に説明する。  [0211] The application of the infrared light source according to the present invention described above will be described below.
[0212] 二酸化炭素の掄出器 [0212] Carbon dioxide extractor
二酸化炭素が特定の赤外光を吸収することを利用し、その波長の赤外線の減衰率 を検出することにより、二酸化炭素濃度を検出する。  Using the fact that carbon dioxide absorbs specific infrared light, the carbon dioxide concentration is detected by detecting the attenuation rate of infrared light of that wavelength.
[0213] このような光吸収法で測定する検出器においては、従来、光源としてレーザーゃセ ラミック ·ヒータなどが使用されている。レーザーを使用した場合は二酸化炭素の吸収 が大きレ、波長でのレーザーが存在しなレ、ので、近レ、波長のレーザーを使用してレ、る ケースが多い。セラミック 'ヒータの場合も二酸化炭素の吸収が大きい波長の光強度 は全エネルギに対して小さい。本発明による赤外光源を使用することにより二酸化炭 素の吸収が大きい波長にエネルギを集中して検出感度および精度を向上させること ができる。 [0213] In a detector for measuring by such a light absorption method, a laser heater or the like is conventionally used as a light source. When a laser is used, the absorption of carbon dioxide is large, and there is no laser at a wavelength, so there are many cases where a laser with a near wavelength is used. In the case of ceramic 'heaters', the light intensity at wavelengths where absorption of carbon dioxide is large is small relative to the total energy. By using the infrared light source according to the present invention, energy can be concentrated at a wavelength where absorption of carbon dioxide is large, and detection sensitivity and accuracy can be improved.
[0214] ^ ^^  [0214] ^ ^^
赤外線分光器においては、従来、シリコンカーバイド光源、ハロゲン光源、セラミック 光源などが使用されており、これらの光源からの光を、フィルタや回折格子などを使 用して分光する。本発明による赤外光源を使用することにより、フィルタや回折格子 の負荷が軽減し、効率が向上する。  Infrared spectrometers have conventionally used silicon carbide light sources, halogen light sources, ceramic light sources, and the like, and the light from these light sources is dispersed using a filter or a diffraction grating. By using the infrared light source according to the present invention, the load on the filter and the diffraction grating is reduced, and the efficiency is improved.
[0215] 赤外線を利用した分析装置 [0215] Analyzer using infrared rays
赤外線を利用した分析装置は、シリコンカーバイド光源、ハロゲン光源、セラミック 光源など力 の光を、赤外線分光器で特定の波長成分に分離し、標本に照射し、標 本の反射量や透過量を測定することにより、標本の状態を分析する。本発明による赤 外光源を使用することにより、赤外線分光器の負荷が軽減し、場合によっては、赤外 線分光器が不要となる。 [0216] ^ . Infrared analyzers use a light source such as a silicon carbide light source, a halogen light source, or a ceramic light source to separate specific light components with an infrared spectrometer, irradiate the sample, and measure the amount of reflection and transmission of the sample. To analyze the state of the specimen. By using the infrared light source according to the present invention, the load on the infrared spectrometer is reduced, and in some cases, the infrared spectrometer is unnecessary. [0216] ^.
路面に、水分の吸収波長である 2乃至 7マイクロ 'メータの赤外線を照射し、反射量 をセンサによって観察することにより、路面状況に関する情報を取得する。また、土が 吸収する波長の赤外線を路面に照射し、反射量をセンサによって観察することにより 、路面状況に関する情報を取得する。  The road surface is irradiated with infrared rays of 2 to 7 micrometers, which is the absorption wavelength of moisture, and information on the road surface condition is acquired by observing the amount of reflection with a sensor. In addition, the road surface is irradiated with infrared light having a wavelength that is absorbed by the soil, and the amount of reflection is observed by a sensor to obtain information on the road surface condition.
[0217] 従来、光源としては発光ダイオードやレーザダイオードが使用されている。これらの 光源は、特定の波長のものしか存在しない。本発明による赤外光源を使用することに より、任意の波長の光源が得られるので、路面状況に関する、より多くの情報を取得 すること力 Sでさる。  Conventionally, a light-emitting diode or a laser diode is used as a light source. These light sources exist only at specific wavelengths. By using the infrared light source according to the present invention, a light source having an arbitrary wavelength can be obtained. Therefore, it is possible to obtain more information regarding the road surface condition with the force S.
[0218] 禾 ll fflした' 7合 のための医 器 H  [0218] ll ll ffl '7's for medical device H
8乃至 14マイクロ 'メータの遠赤外線を人体に照射する医療器具が使用されている。 光源としてはランプ、発光ダイオードおよびレーザダイオードなどが使用されている。 発光ダイオードおよびレーザダイオードは、特定の波長のものしか存在しない。ラン プの場合には、光の波長範囲が広いので、入力電力のほとんどが不要な光として放 射されている。本発明による赤外光源を使用することにより、所望の波長の光源が得 られるので、効率的に治療を行うことができる。  Medical instruments that irradiate the human body with 8 to 14 micrometer far infrared rays are used. As the light source, a lamp, a light emitting diode, a laser diode, or the like is used. There are only light emitting diodes and laser diodes of a specific wavelength. In the case of a lamp, since the wavelength range of light is wide, most of the input power is emitted as unnecessary light. By using the infrared light source according to the present invention, a light source having a desired wavelength can be obtained, so that treatment can be performed efficiently.
[0219] 糖度計  [0219] Sugar meter
糖度計は、赤外光を対象物に照射し、透過量または吸収量を測定することにより糖 度または酸度を測定する。光源としては、従来、ハロゲンランプ、発光ダイオードおよ びレーザダイオードなどが使用されている。ハロゲンランプなどを使用すると、冷却装 置が必要となり装置が大型化する。発光ダイオードおよびレーザダイオードは、特定 の波長のものしか存在しない。本発明による赤外光源を使用することにより、所望の 波長の光源が得られるので、糖度に関する、より多くの情報を取得することができる。  The sugar content meter measures sugar content or acidity by irradiating an object with infrared light and measuring the amount of transmission or absorption. Conventionally, halogen lamps, light emitting diodes, laser diodes, and the like are used as light sources. If a halogen lamp or the like is used, a cooling device is required and the size of the device increases. Light emitting diodes and laser diodes exist only at specific wavelengths. By using the infrared light source according to the present invention, a light source having a desired wavelength can be obtained, so that more information on sugar content can be acquired.
[0220] 水分計 [0220] Moisture meter
水分計は、赤外光を対象物に照射し、水分子による吸収量を測定することによって 水分量を測定する。光源としては、従来、ハロゲンランプなどが使用されている。ハロ ゲンランプは、光の波長範囲が広いので、入力電力のほとんどが不要な光として放 射されている。本発明による赤外光源を使用することにより、所望の波長の光源が得 られるので、効率的に水分量を測定することができる。 The moisture meter measures the amount of moisture by irradiating the object with infrared light and measuring the amount absorbed by water molecules. Conventionally, a halogen lamp or the like is used as the light source. Because halogen lamps have a wide light wavelength range, most of the input power is emitted as unnecessary light. By using the infrared light source according to the present invention, a light source having a desired wavelength is obtained. Therefore, the water content can be measured efficiently.
[0221] 赤外線物体検出システム [0221] Infrared object detection system
赤外光の光源を備えた投光器と赤外光のセンサ備えた受光器からなる。光源から 射出された赤外光が、光径路中の物体によって遮蔽されセンサによって検出されな い場合に、物体が存在することを検出する。光径路に反射板を備え、投光器と受光 器を一体型としたものもある。本発明による赤外光源を使用することにより、たとえば、 太陽光や照明光のスぺ外ル成分が小さい波長を選択して使用することが可能となり 、太陽光や照明光によるノイズを低減することができる。  It consists of a projector equipped with an infrared light source and a light receiver equipped with an infrared light sensor. When the infrared light emitted from the light source is shielded by an object in the optical path and is not detected by the sensor, the presence of the object is detected. Some have a reflector in the optical path and an integrated projector and receiver. By using the infrared light source according to the present invention, for example, it is possible to select and use a wavelength with a small component of sunlight or illumination light, and to reduce noise due to sunlight or illumination light. Can do.
[0222] 車載レーダ [0222] Automotive radar
車載レーダは、ミリ波や赤外光を発射し、その反射を測定することにより、たとえば、 先行車や障害物の位置を検出するのに使用される。車載レーダとして、高価なミリ波 レーダに代わり、発光ダイオードやレーザダイオード光源のレーダが使用され始めて いる。発光ダイオードおよびレーザダイオードは、特定の波長のものしか存在しない。 本発明による赤外光源を使用することにより、所望の波長の光源が得られるので、よ り多くの情報を取得することができる。  In-vehicle radars are used, for example, to detect the position of preceding vehicles and obstacles by emitting millimeter waves and infrared light and measuring their reflections. As on-vehicle radars, instead of expensive millimeter-wave radars, light-emitting diode and laser diode light source radars are beginning to be used. There are only light emitting diodes and laser diodes of a specific wavelength. By using the infrared light source according to the present invention, a light source having a desired wavelength can be obtained, so that more information can be acquired.
[0223] 赤外線ヒータ(図 46)  [0223] Infrared heater (Fig. 46)
赤外ランプに金をコーティングした反射鏡を組み合わせた赤外線ヒータ力 非接触 で対象物を加熱するために使用されている。従来の赤外ランプは、プランク則に基づ V、て広レ、波長範囲の赤外光を対象物に照射する。対象物が吸収しにくい波長の赤 外光は、有効に加熱に利用されることなぐ無駄に散逸されるため効率が低かった。  Infrared heater combined with an infrared lamp and gold-coated reflector It is used to heat objects without contact. Conventional infrared lamps irradiate objects with infrared light in the V, wide, and wavelength range based on Planck's law. Infrared light with a wavelength that is difficult for the object to absorb is dissipated unnecessarily without being effectively used for heating, resulting in low efficiency.
[0224] これに対して、本発明による赤外光源は、加熱対象物の吸収波長だけを放射する よう作製できるので、効率よく対象物を加熱することができる。また、周囲の物体を無 用に加熱することなぐ加熱したい対象物だけを選択的に加熱することも可能になる 。対象物は固体だけではなぐ液体や気体でも良い。本赤外線ヒータは、明瞭な吸収 ピークを示すような対象物に特に有効である。大半の気体や液体、高分子などの固 体がそのような吸収スペクトルを持つ。本赤外光源には単一の格子を用いても良い 1S 対象物の吸収スペクトルが複数のピークを有する場合や、広いピークを持つ場合 、あるいは複数の物質を一度に加熱したい場合には、それに合わせた放射スぺタト ルとなるように複数の格子を組み合わせても良い。 [0224] On the other hand, the infrared light source according to the present invention can be produced so as to emit only the absorption wavelength of the heating object, so that the object can be efficiently heated. In addition, it is possible to selectively heat only an object to be heated without unnecessarily heating surrounding objects. The object may be a liquid or gas as well as a solid. This infrared heater is particularly effective for objects that show a clear absorption peak. Most gas, liquid, and polymer solids have such an absorption spectrum. A single grating may be used for this infrared light source.If the absorption spectrum of a 1S object has multiple peaks, broad peaks, or if you want to heat multiple substances at once, Combined radiation spectrum A plurality of lattices may be combined so that
[0225] 図 46 (a)は、本発明の赤外光源を使用した赤外線ヒータの構成の一例を示す図で ある。本例において、 2つの細長い矩形状の赤外光源が背中合わせに固定され、両 側に赤外光を放射して!/、る。放射された赤外光を両側の放物面鏡で 1本の線状領域 に集光させる。 FIG. 46 (a) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention. In this example, two elongated rectangular infrared light sources are fixed back to back and emit infrared light on both sides! The emitted infrared light is focused on one linear region by paraboloid mirrors on both sides.
[0226] 図 46 (b)は、本発明の赤外光源を使用した赤外線ヒータの構成の一例を示す図で ある。本例において、サファイアなどの赤外光を良く透過する透明材質の円筒レンズ 表面に、実施形態 10によるフレキシブルなシート状の赤外光源を内側に放射するよ うに接着し、 1本の線状領域に赤外光を集光させるように構成する。図 46 (b)の構成 は、 13乃至図 16に示した実施形態の応用事例でもある。  FIG. 46 (b) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention. In this example, a flexible sheet-shaped infrared light source according to Embodiment 10 is bonded to the surface of a transparent cylindrical lens that transmits infrared light well, such as sapphire, so that one linear region is emitted. Infrared light is condensed. The configuration of FIG. 46 (b) is also an application example of the embodiment shown in FIGS.
[0227] 図 46 (c)は、本発明の赤外光源を使用した赤外線ヒータの構成の一例を示す図で ある。本例において、円筒面状の保持基板の内面に、実施形態 10によるフレキシブ ルなシート状の赤外光源を内側に放射するように接着し、 1本の線状領域に赤外光 を集光させるように構成する。  FIG. 46 (c) is a diagram showing an example of the configuration of an infrared heater using the infrared light source of the present invention. In this example, the flexible sheet-like infrared light source according to the embodiment 10 is adhered to the inner surface of the cylindrical holding substrate so as to radiate inward, and the infrared light is collected in one linear region. To be configured.
[0228] 図 46 (d)は、従来の赤外光源を使用した赤外線ヒータの構成の一例を示す図であ る。線状の赤外ランプが放物面鏡の焦点位置に固定されたものである。赤外線が線 状に集光され、集光された部分の物体を加熱する。  FIG. 46 (d) is a diagram showing an example of the configuration of an infrared heater using a conventional infrared light source. A linear infrared lamp is fixed at the focal position of the parabolic mirror. Infrared rays are collected in a linear shape, and the collected object is heated.
[0229] ^: felt t^卸シート  [0229] ^: felt t ^ wholesale sheet
実施形態 10 (図 30)に示したような、表面に特定の波長の赤外光を放射するような 格子を有するシートは、それを有限の(絶対零度ではな!/、)温度を持つ任意の物体 の表面に貼り付けることにより、その物体を、特定の波長および特定の偏光を持つ赤 外光を放射する赤外光源に変えることができる。あるいはその物体の放射スペクトル 分布を適当に変更することにより、他から赤外光により検知されやすくしたり、逆に検 知されに《したりすることもできる。例えば、オーブンの内壁に水の吸収しやすい赤 外光を放射するシートを貼り付けておくと、水分を選択的に効率良く加熱して調理す ること力 Sできる。最近では、夜間や見通しの悪い気象条件下でも歩行者の視認を容 易にするために赤外線カメラが自動車などに搭載され始めている。このカメラの感度 の高い波長に設定したシートを衣服や靴に組み込み,人体を熱源として赤外光を放 射すれば、その歩行者が自動車力 認知される確率を向上し、さらに安全性を高め ること力 Sできる。あるいは、逆に、ある物体が、特定の波長の赤外光を追尾する装置 により検知されることを回避した!/、場合には、物体の高温になる部分を特定の波長と は異なる波長の赤外光を放射するようなシートで覆っておけば,輻射による熱放出機 能は保ったままで、検知を困難にすることができる。 A sheet having a grating that emits infrared light of a specific wavelength on the surface, as shown in Embodiment 10 (FIG. 30), has an arbitrary finite (not absolute zero! /) Temperature. By sticking to the surface of the object, the object can be changed to an infrared light source that emits infrared light having a specific wavelength and a specific polarization. Alternatively, by appropriately changing the radiation spectrum distribution of the object, it can be easily detected from other sources by infrared light, or vice versa. For example, if a sheet that emits infrared light that easily absorbs water is attached to the inner wall of the oven, the ability to selectively heat and cook moisture can be increased. Recently, infrared cameras have begun to be installed in automobiles to make it easier for pedestrians to see even at night and in poor weather conditions. A sheet with a high sensitivity wavelength of this camera is incorporated into clothes and shoes, and infrared rays are emitted using the human body as a heat source. If you shoot, you can improve the probability that the pedestrian will be recognized as a vehicle, and you can improve safety. Or, conversely, a certain object was prevented from being detected by a device that tracks infrared light of a specific wavelength! / In some cases, the high temperature part of the object may be of a wavelength different from the specific wavelength. If it is covered with a sheet that emits infrared light, it will be possible to make detection difficult while maintaining the heat release function by radiation.
[0230] 高谏動作する赤外線アレイ(図 36および図 37)  [0230] Infrared array operating at high altitude (Figure 36 and Figure 37)
図 36および図 37に示したように、赤外光源を 1次元または 2次元のアレイとして 1チ ップ上に搭載する。この場合アレイの各赤外光源は全体として熱容量の小さレ、形態 にすることにより高速応答可能な複数の波長を発光する、赤外光源アレイを実現する ことができる。熱容量の小さな赤外光源は、たとえば、実施形態 11による赤外光源で ある。発熱体温度として 300°C程度とすれば、波長数 m以上の赤外領域全体を力 バーできる。ミリ秒〜秒オーダー程度の熱時定数が実現可能であるので、動作周波 数としては 10-2〜102Hzオーダー程度が得られる。  As shown in Fig. 36 and Fig. 37, an infrared light source is mounted on a chip as a one-dimensional or two-dimensional array. In this case, it is possible to realize an infrared light source array that emits a plurality of wavelengths capable of high-speed response by making each infrared light source of the array have a small heat capacity and form as a whole. The infrared light source having a small heat capacity is, for example, the infrared light source according to the eleventh embodiment. If the heating element temperature is about 300 ° C, the entire infrared region with a wavelength of several meters or more can be covered. Since a thermal time constant on the order of milliseconds to seconds can be achieved, an operating frequency on the order of 10-2 to 102 Hz can be obtained.
[0231] 赤外光源を備える上記のシステムのうち、分析システムについて、測定対象物を気 体の濃度とする分析システムを例として、さらに詳細に説明する。  [0231] Among the above-described systems including an infrared light source, the analysis system will be described in more detail using an analysis system in which the measurement target is a gas concentration as an example.
[0232] 具体的に測定対象となる気体は、たとえば、二酸化炭素、一酸化炭素、二酸化硫 黄、一酸化窒素、二酸化窒素などのいわゆる NOx、アンモニア、メタン、プロパンなど 、異原子でできた赤外活性な分子である。  [0232] The gas to be specifically measured is, for example, so-called NOx such as carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen monoxide and nitrogen dioxide, red made of different atoms such as ammonia, methane and propane. It is an externally active molecule.
[0233] 図 55 (a)乃至(c)は、それぞれ、本発明の一実施形態による分析システムの構成を 示す図である。上記の実施形態による分析システムは、赤外光源 201と、赤外センサ 203と、復調器 205と、気体容器 (セル) 207と、を備える。赤外光源 201は、一例とし て、図 1に示した赤外光源 100であり、格子の配列方向と直交する偏光面(図 1の A の方向の偏光面)を有する、格子の形状によって定まる特定の波長の赤外線を放出 する赤外光源である。赤外センサ 203として、誘電体表面を加熱すると表面に電荷 が発生することを利用した焦電型センサや、ポロメータや、熱電対列であるサーモパ イノレを使用してもよい。  FIGS. 55 (a) to (c) are diagrams each showing a configuration of an analysis system according to an embodiment of the present invention. The analysis system according to the above embodiment includes an infrared light source 201, an infrared sensor 203, a demodulator 205, and a gas container (cell) 207. As an example, the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and is determined by the shape of the grating having a polarization plane perpendicular to the arrangement direction of the grating (polarization plane in the direction A in FIG. 1). It is an infrared light source that emits infrared light of a specific wavelength. As the infrared sensor 203, a pyroelectric sensor utilizing the fact that charges are generated on the surface of the dielectric when heated, a porometer, or a thermo pinole that is a thermocouple array may be used.
[0234] 図 56は、測定対象の気体の赤外線吸収度(図 56 (a) )および赤外光源 201の放射 強度(図 56 (b) )を示す図である。 [0235] 赤外光源 201の放射する特定の波長が、測定対象気体 Aの濃度を測定するのに 都合の良い波長(たとえば、吸収度のピークの波長) λ に一致するように設定してお FIG. 56 is a diagram showing the infrared absorption (FIG. 56 (a)) of the gas to be measured and the radiation intensity of the infrared light source 201 (FIG. 56 (b)). [0235] The specific wavelength emitted by the infrared light source 201 is set so as to coincide with the wavelength λ that is convenient for measuring the concentration of the measurement target gas A (for example, the wavelength of the absorbance peak).
S  S
く。具体的には、たとえば、測定対象気体 Αが二酸化炭素の場合には赤外光源 201 の放射する特定の波長は、 4.3 mに設定し、一酸化炭素の場合には 4.7 mに設定 する。  The Specifically, for example, the specific wavelength emitted from the infrared light source 201 is set to 4.3 m when the measurement target gas is carbon dioxide, and is set to 4.7 m when carbon monoxide is used.
[0236] 赤外光源 201は、測定対象の特性にあわせた特定の波長の赤外線を放射すること ができるので、従来技術の分析システムの波長選択素子(フィルタなど)は不要であ る。また、赤外光源 201は、発熱体のエネルギを特定の波長に集中させることができ るので、波長選択素子によって特定の波長以外の光が捨てられる従来技術の分析 システムよりもエネルギ効率が高レ、。  [0236] Since the infrared light source 201 can emit infrared light having a specific wavelength according to the characteristics of the measurement target, the wavelength selection element (filter or the like) of the conventional analysis system is unnecessary. In addition, since the infrared light source 201 can concentrate the energy of the heating element at a specific wavelength, the energy efficiency of the infrared light source 201 is higher than that of a conventional analysis system in which light other than the specific wavelength is discarded by the wavelength selection element. ,.
[0237] 図 55 (a)に示した分析システムは、さらに、測定信号の強度を周期的に変化させる ためのチヨッパ 211を備える。赤外光源 201から放射された特定の波長の赤外線は、 気体容器 207中の測定対象気体を通過し、チヨツバ 211によって強度を周期的に変 化された後、赤外センサ 203によって検出される。赤外センサ 203によって検出され た測定信号は、復調器 205によって復調されて出力となる。  [0237] The analysis system shown in Fig. 55 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal. Infrared light having a specific wavelength emitted from the infrared light source 201 passes through the measurement target gas in the gas container 207, and its intensity is periodically changed by the chiyotsuba 211, and then detected by the infrared sensor 203. The measurement signal detected by the infrared sensor 203 is demodulated by the demodulator 205 and output.
[0238] 図 55 (b)に示した分析システムは、さらに、周期的に電力を変化させる電源 213を 備える。赤外光源 201として、たとえば、赤外光源 100を使用する場合には、赤外光 源 201の発熱体に供給する電力を、周期的に電力を変化させる電源 213によって変 化させることにより、赤外光源 201によって放射される赤外線の強度を変化させる。赤 外光源 201から放射された特定の波長の赤外線は、気体容器 207中の測定対象気 体を通過した後、赤外センサ 203によって検出される。赤外センサ 203によって検出 された測定信号は、復調器 205によって復調されて出力となる。周期的に電力を変 化させる電源 213によって赤外線の強度を変化させるので、チヨツバなどの可動部が なく構成が簡単になる。  [0238] The analysis system shown in Fig. 55 (b) further includes a power source 213 that periodically changes power. For example, when the infrared light source 100 is used as the infrared light source 201, the power supplied to the heating element of the infrared light source 201 is changed by a power source 213 that periodically changes the power, thereby causing red light. The intensity of infrared rays emitted from the external light source 201 is changed. Infrared light having a specific wavelength emitted from the infrared light source 201 is detected by the infrared sensor 203 after passing through the measurement target gas in the gas container 207. The measurement signal detected by the infrared sensor 203 is demodulated by the demodulator 205 and output. Since the intensity of the infrared rays is changed by the power source 213 that periodically changes the power, there is no moving part such as a chiyotsuba and the configuration becomes simple.
[0239] 図 55 (c)に示した分析システムは、さらに、赤外光源 201と赤外センサ 203との間 に、偏光素子 215を備える。偏光素子 215は、所定の偏光面を有する光のみを通過 させる。  [0239] The analysis system shown in Fig. 55 (c) further includes a polarizing element 215 between the infrared light source 201 and the infrared sensor 203. The polarizing element 215 allows only light having a predetermined polarization plane to pass.
[0240] 2. 5乃至 25マイクロ 'メータの波長域の偏光素子として市販のワイヤグリッド偏光素 子を使用すること力できる。ワイヤグリッド偏光素子はワイヤに平行な偏光成分を反射 し、垂直な偏光成分を透過する。図 55 (a)に示した分析システムでは、赤外光源 20 1が特定の波長の赤外線を放射するので、測定対象物が変わって用いる波長が変 化しても、同じ偏光素子をそのまま利用できる。 [0240] 2. A commercially available wire grid polarizer as a polarizing element in the wavelength range of 5 to 25 micrometers. You can power to use the child. The wire grid polarization element reflects the polarization component parallel to the wire and transmits the perpendicular polarization component. In the analysis system shown in FIG. 55 (a), since the infrared light source 201 emits infrared light of a specific wavelength, the same polarizing element can be used as it is even if the measurement object changes and the wavelength used changes.
[0241] 図 55 (c)に示した分析システムでは、偏光素子 215が強度を周期的に変化させる 手段としても機能する。偏光素子 215は、たとえば、光軸に垂直な面内で、光軸を中 心軸として回転するように構成してもよい。偏光素子 215が回転することにより、測定 信号の強度が周期的に変化する。  [0241] In the analysis system shown in FIG. 55 (c), the polarizing element 215 also functions as a means for periodically changing the intensity. For example, the polarizing element 215 may be configured to rotate around the optical axis as a central axis in a plane perpendicular to the optical axis. As the polarizing element 215 rotates, the intensity of the measurement signal changes periodically.
[0242] 図 57 (a)乃至(c)は、それぞれ、本発明の一実施形態による参照試料方式の分析 システムの構成を示す図である。上記の実施形態による分析システムは、赤外光源 2 01と、赤外センサ 203または 203Aおよび 203Bと、復調器 205または 205Aおよび 2 05Bと、気体容器 207Aおよび 207Bと、を備える。赤外光源 201は、一例として、図 1に示した赤外光源 100であり、格子の配列方向と直交する偏光面(図 1の Aの方向 の偏光面)を有する、格子の形状によって定まる特定の波長の赤外線を放出する赤 外光源である。気体容器 207Aは、参照試料気体を含み、気体容器 207Bは、測定 対象気体を含む。参照試料気体と測定対象気体に、赤外光源 201によって特定の 波長の赤外線が放射される。参照試料気体と測定対象気体に対する赤外センサの 測定出力を求め、両者を比較することにより測定対象気体の濃度を求める。  FIGS. 57 (a) to 57 (c) are diagrams each showing a configuration of a reference sample type analysis system according to an embodiment of the present invention. The analysis system according to the above embodiment includes an infrared light source 201, infrared sensors 203 or 203A and 203B, demodulators 205 or 205A and 205B, and gas containers 207A and 207B. As an example, the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and has a polarization plane (polarization plane in the direction A in FIG. 1) orthogonal to the arrangement direction of the grating and is determined by the shape of the grating. It is an infrared light source that emits infrared light with a wavelength of. The gas container 207A contains a reference sample gas, and the gas container 207B contains a measurement target gas. Infrared light having a specific wavelength is emitted from the infrared light source 201 to the reference sample gas and the measurement target gas. Obtain the measurement output of the infrared sensor for the reference sample gas and the gas to be measured, and compare the two to obtain the concentration of the gas to be measured.
[0243] 図 57 (a)に示した分析システムは、さらに、測定信号の強度を周期的に変化させる ためのチヨッパ 211を備える。赤外光源 201から放射された特定の波長の赤外線は、 気体容器 207A中の参照試料気体および気体容器 207B中の測定対象気体を通過 し、チヨッパ 211によって強度が周期的に変化し、赤外センサ 203Aおよび 203Bによ つて検出される。赤外センサ 203Aおよび 203Bによって検出された測定信号はそれ ぞれ、復調器 205Aおよび 205Bによって復調されて出力となる。  [0243] The analysis system shown in Fig. 57 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal. Infrared light of a specific wavelength radiated from the infrared light source 201 passes through the reference sample gas in the gas container 207A and the measurement target gas in the gas container 207B, and the intensity periodically changes by the chopper 211. Detected by 203A and 203B. The measurement signals detected by the infrared sensors 203A and 203B are demodulated by the demodulators 205A and 205B, respectively, and output.
[0244] 図 57 (b)に示した分析システムは、さらに、赤外光源 201によって放射される赤外 線の強度を変化させるための、周期的に電力を変化させる電源 213を備える。赤外 光源 201として、たとえば、赤外光源 100を使用する場合には、赤外光源 100の発 熱体 107に供給する電力を、周期的に電力を変化させる電源 213によって変化させ ることにより、赤外光源 201によって放射される赤外線の強度を変化させる。赤外光 源 201から放射された特定の波長の赤外線は、気体容器 207A中の参照試料気体 および気体容器 207B中の測定対象気体を通過した後、赤外センサ 203Aおよび 20 3Bによって検出される。赤外センサ 203Aおよび 203Bによって検出された測定信号 は、復調器 205Aおよび 205Bによって復調されて出力となる。 [0244] The analysis system shown in Fig. 57 (b) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 201. For example, when the infrared light source 100 is used as the infrared light source 201, the power supplied to the heating element 107 of the infrared light source 100 is changed by a power source 213 that periodically changes the power. As a result, the intensity of infrared rays emitted from the infrared light source 201 is changed. Infrared light having a specific wavelength emitted from the infrared light source 201 passes through the reference sample gas in the gas container 207A and the measurement target gas in the gas container 207B, and is then detected by the infrared sensors 203A and 203B. The measurement signals detected by the infrared sensors 203A and 203B are demodulated by the demodulators 205A and 205B and output.
[0245] 図 57 (c)に示した分析システムは、さらに、赤外光源 201と赤外センサ 203との間 に、偏光素子 2151を備える。偏光素子 2151は、 2個の領域を備え、 2個の領域を透 過する光の偏光方向は直交する。  [0245] The analysis system shown in Fig. 57 (c) further includes a polarizing element 2151 between the infrared light source 201 and the infrared sensor 203. The polarizing element 2151 includes two regions, and the polarization directions of light passing through the two regions are orthogonal to each other.
[0246] 図 57 (c)に示した分析システムでは、偏光素子 2151は、たとえば、光軸に垂直な 面内で、光軸を中心軸として回転するように構成してもよい。偏光素子 2151を回転さ せ、赤外光源 201によって放射される赤外線の偏光面と、偏光素子 2151が透過さ せる光の偏光面とがー致するときに、復調器 205の出力信号を読み取るように構成 すれば、 1台の赤外センサ 203によって、測定信号と参照信号とを別個に測定するこ と力 Sできる。  In the analysis system shown in FIG. 57 (c), for example, the polarizing element 2151 may be configured to rotate around the optical axis as a central axis in a plane perpendicular to the optical axis. The polarization element 2151 is rotated so that the output signal of the demodulator 205 is read when the polarization plane of the infrared light emitted from the infrared light source 201 and the polarization plane of the light transmitted by the polarization element 2151 coincide. With this configuration, it is possible to measure the measurement signal and the reference signal separately by one infrared sensor 203.
[0247] 図 58 (a)乃至(f)は、それぞれ、本発明の一実施形態による 2波長方式の分析シス テムの構成を示す図である。上記の実施形態による分析システムは、赤外光源 2011 と、赤外センサ 203または 203Aおよび 203Bと、復調器 205または 205Aおよび 205 Bと、気体容器 207と、を備える。  [0247] Figs. 58 (a) to 58 (f) are diagrams each showing the configuration of a two-wavelength analysis system according to an embodiment of the present invention. The analysis system according to the embodiment includes the infrared light source 2011, the infrared sensors 203 or 203A and 203B, the demodulator 205 or 205A and 205B, and the gas container 207.
[0248] 赤外光源 2011は、一例として、図 19に示した赤外光源であり、 1チップの発熱体 上に、方向の異なる、複数の格子を設けている。該赤外光源は、それぞれの格子の 配列方向と直交する偏光面(図 1の Aの方向の偏光面)を有する、格子の形状によつ て定まる特定の波長の、方向の異なる偏光面を有する赤外線を放出する。一例とし て、赤外光源 2011は、 1チップの発熱体上において、所定の方向に配列された第 1 の組の格子と、該所定の方向と直交する方向に配列された第 2の組の格子とを備え る。第 1および第 2の組の格子の形状は、図 56 (a)に示すような測定対象気体の吸光 度を考慮して、特定の波長が、吸光度の大きい λ および吸光度の小さい λ となるよ  An infrared light source 2011 is an infrared light source shown in FIG. 19 as an example, and a plurality of gratings having different directions are provided on a one-chip heating element. The infrared light source has polarization planes that have a plane of polarization orthogonal to the direction of arrangement of the respective gratings (polarization plane in the direction of A in FIG. 1) and have a specific wavelength determined by the shape of the grating and that have different directions. It emits infrared rays. As an example, the infrared light source 2011 includes a first set of grids arranged in a predetermined direction on a one-chip heating element and a second set of grids arranged in a direction orthogonal to the predetermined direction. With a grid. The shape of the first and second sets of lattices is such that the specific wavelength is λ with high absorbance and λ with low absorbance, taking into account the absorbance of the gas to be measured as shown in Fig. 56 (a).
S R  S R
うに定められる。したがって、赤外光源 2011は、それぞれ、波長え およびえ を有し  Determined. Therefore, the infrared light source 2011 has a wavelength and a wavelength, respectively.
S R  S R
、互いに直交する偏光面を有する 2種類の赤外線を放射する(図 56 (c) )。 [0249] 図 58 (a)に示した分析システムは、さらに、測定信号の強度を周期的に変化させる ためのチヨッパ 211を備える。赤外光源 2011から放射された 2種類の赤外線は、気 体容器 207中の測定対象気体を通過し、チヨツバ 211によって強度が周期的に変化 する。その後、 2種類の赤外線のそれぞれは、互いに直交する偏光面を有する光を 透過させる偏光素子 215Aまたは 215Bを通過した後、赤外センサ 203Aまたは 203 Bによって検出される。赤外センサ 203Aまたは 203Bによって検出された測定信号 は、復調器 205Aまたは 205Bによって復調されて出力となる。 Two types of infrared rays having polarization planes orthogonal to each other are emitted (FIG. 56 (c)). [0249] The analysis system shown in Fig. 58 (a) further includes a chopper 211 for periodically changing the intensity of the measurement signal. The two types of infrared rays emitted from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and the intensity changes periodically by the chiyotsuba 211. Thereafter, each of the two types of infrared rays is detected by the infrared sensor 203A or 203B after passing through the polarizing element 215A or 215B that transmits light having polarization planes orthogonal to each other. The measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
[0250] 偏光素子 215Aおよび 215Bは、配置方向を変えて同じ偏光素子を使用することが できる。 2波長の波長選択素子が必要となる従来技術の 2波長方式分析システムと比 較して、部品点数が低減される。  [0250] For the polarizing elements 215A and 215B, the same polarizing element can be used by changing the arrangement direction. Compared to the conventional two-wavelength analysis system that requires a two-wavelength wavelength selection element, the number of parts is reduced.
[0251] 図 58 (b)に示した分析システムは、さらに、赤外光源 2011によって放射される赤外 線の強度を変化させるための、周期的に電力を変化させる電源 213を備える。赤外 光源 2011は、図 19に示した赤外光源であり、 1チップの発熱体に供給する電力を、 周期的に電力を変化させる電源 213によって変化させることにより、赤外光源 2011 によって放射される赤外線の強度を変化させる。赤外光源 2011から放射された 2種 類の赤外線は、気体容器 207中の測定対象気体を通過し、 2種類の赤外線のそれ ぞれは、互いに直交する偏光面を有する光を透過させる偏光素子 215Aまたは 215 Bを通過した後、赤外センサ 203Aまたは 203Bによって検出される。赤外センサ 203 Aまたは 203Bによって検出された測定信号は、復調器 205Aまたは 205Bによって 復調されて出力となる。周期的に電力を変化させる電源 213によって赤外光源 2011 によって放射される赤外線の強度を変化させるので、可動部がなく構成が簡単にな  [0251] The analysis system shown in Fig. 58 (b) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 2011. The infrared light source 2011 is the infrared light source shown in FIG. 19, and is radiated by the infrared light source 2011 by changing the power supplied to the heating element of one chip by the power source 213 that periodically changes the power. Change the intensity of infrared rays. Two types of infrared rays radiated from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and each of the two types of infrared rays transmits a light having a polarization plane orthogonal to each other. After passing through 215A or 215B, it is detected by the infrared sensor 203A or 203B. The measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output. The power source 213 that periodically changes the power changes the intensity of the infrared light emitted by the infrared light source 2011, so there is no moving part and the configuration is simple.
[0252] 赤外光源 2011では、発熱体のエネルギを特定の波長に集中させることができる。 [0252] In the infrared light source 2011, the energy of the heating element can be concentrated at a specific wavelength.
したがって、必要とされる赤外線の強度に対して、発熱体の発熱量を小さくすることが できる。この結果、上記のようにチップのサイズを小さくすることができる。また、発熱 体の熱容量を小さくすることができるので、周期的に電力を変化させる電源 213の出 力を小さくし、出カノ ルスの周期を短くすることができる。  Therefore, the heat generation amount of the heating element can be reduced with respect to the required infrared intensity. As a result, the chip size can be reduced as described above. Further, since the heat capacity of the heating element can be reduced, the output of the power source 213 that periodically changes the power can be reduced, and the cycle of output can be shortened.
[0253] 図 58 (c)に示した分析システムは、さらに、赤外光源 2011と赤外センサ 203との間 に、偏光素子 215を備える。 [0253] The analysis system shown in Fig. 58 (c) is further connected between the infrared light source 2011 and the infrared sensor 203. In addition, a polarizing element 215 is provided.
[0254] 図 58 (c)に示した分析システムでは、偏光素子 215は、たとえば、光軸に垂直な面 内で、光軸を中心軸として回転するように構成してもよい。偏光素子 215を回転させ、 赤外光源 2011によって放射される 2種類の赤外線のそれぞれの偏光面と、偏光素 子 215が透過させる光の偏光面とがー致するときに、復調器 205の出力信号を読み 取るように構成すれば、 1台の赤外センサ 203を、波長え の赤外線およびえ の赤外 In the analysis system shown in FIG. 58 (c), for example, the polarizing element 215 may be configured to rotate around the optical axis in the plane perpendicular to the optical axis. When the polarization element 215 is rotated and the polarization planes of the two kinds of infrared rays emitted by the infrared light source 2011 and the polarization planes of the light transmitted by the polarization element 215 coincide, the output of the demodulator 205 If it is configured to read signals, one infrared sensor 203 can be connected to both infrared and infrared.
S R  S R
泉に使用することカでさる。  Use for springs.
[0255] 図 58 (d)に示した分析システムは、さらに、赤外光源 2011と赤外センサ 203との間 に、偏光素子 2153を備える。偏光素子 2153は、 2個の領域を備え、 2個の領域を透 過する光の偏光方向は直交する。直交する偏光方向は、赤外光源 2011の放射する[0255] The analysis system shown in Fig. 58 (d) further includes a polarizing element 2153 between the infrared light source 2011 and the infrared sensor 203. The polarizing element 2153 includes two regions, and the polarization directions of light passing through the two regions are orthogonal to each other. The orthogonal polarization direction radiates from the infrared light source 2011
2種類の赤外線の偏光面に対応する。 Corresponds to two types of infrared polarization planes.
[0256] 図 58 (d)に示した分析システムで、偏光素子 2153は、赤外センサ 203の上流側で 並進往復運動するように構成される。その結果、赤外センサには、波長 λ の赤外線 In the analysis system shown in FIG. 58 (d), the polarizing element 2153 is configured to reciprocate in translation on the upstream side of the infrared sensor 203. As a result, the infrared sensor has an infrared wavelength λ.
S  S
およびえ の赤外線が交互に入射する。  And the infrared rays are incident alternately.
R  R
[0257] 図 58 (d)の偏光素子 2153のような並進運動を、バイモルフなどの素子により摺動 部を含まない機構によって実現すれば、分析システムの信頼性がさらに向上する。  If the translational movement like the polarizing element 2153 in FIG. 58 (d) is realized by a mechanism that does not include a sliding portion by an element such as a bimorph, the reliability of the analysis system is further improved.
[0258] 図 58 (e)に示した分析システムは、さらに、測定信号の強度を周期的に変化させる ためのチヨッパ 211を備える。赤外光源 2011から放射された 2種類の赤外線は、気 体容器 207中の測定対象気体を通過し、チヨツバ 211によって強度が周期的に変化 する。その後、 2種類の赤外線のそれぞれは、偏光分離素子 2155を通過した後、赤 外センサ 203Aまたは 203Bによって検出される。赤外センサ 203Aまたは 203Bによ つて検出された測定信号は、復調器 205Aまたは 205Bによって復調されて出力とな る。偏光分離素子 2155としては、上述のワイヤグリッド偏光素子を使用することがで きる。  [0258] The analysis system shown in Fig. 58 (e) further includes a chopper 211 for periodically changing the intensity of the measurement signal. The two types of infrared rays emitted from the infrared light source 2011 pass through the gas to be measured in the gas container 207, and the intensity changes periodically by the chiyotsuba 211. Thereafter, each of the two types of infrared rays passes through the polarization separation element 2155 and is then detected by the infrared sensor 203A or 203B. The measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output. As the polarization separation element 2155, the above-described wire grid polarization element can be used.
[0259] 図 58 (f)に示した分析システムは、さらに、赤外光源 2011によって放射される赤外 線の強度を変化させるための、周期的に電力を変化させる電源 213を備える。赤外 光源 2011は、図 19に示した赤外光源であり、 1チップの発熱体に供給する電力を、 周期的に電力を変化させる電源 213によって変化させることにより、赤外光源 2011 によって放射される赤外線の強度を変化させる。赤外光源 2011から放射された 2種 類の赤外線は、気体容器 207中の測定対象気体を通過し、 2種類の赤外線のそれ ぞれは、偏光分離素子 2155を通過した後、赤外センサ 203Aまたは 203Bによって 検出される。赤外センサ 203Aまたは 203Bによって検出された測定信号は、復調器 205Aまたは 205Bによって復調されて出力となる。周期的に電力を変化させる電源 213によって赤外線の強度を変化させるので、可動部がなく構成が簡単になる。 [0259] The analysis system shown in Fig. 58 (f) further includes a power source 213 that periodically changes power to change the intensity of infrared rays emitted by the infrared light source 2011. Infrared light source 2011 is the infrared light source shown in FIG. 19, and the power supplied to the heating element of one chip is changed by a power source 213 that periodically changes the power, so that the infrared light source 2011 The intensity of the infrared rays emitted by is changed. The two types of infrared rays emitted from the infrared light source 2011 pass through the measurement target gas in the gas container 207, and each of the two types of infrared rays passes through the polarization separation element 2155, and then the infrared sensor 203A. Or detected by 203B. The measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output. Since the intensity of infrared rays is changed by the power source 213 that periodically changes the power, there is no moving part, and the configuration is simplified.
[0260] 図 58 (f)に示した分析システムでは、発熱体から放射された赤外線のエネルギは 特定の波長の赤外線に集中されて赤外光源 2011から放射される。また、チヨッパを 用いずに赤外光源 2011から放射される赤外線そのものの強度を周期的に変化させ ているので、一度放射された赤外線が遮断されて廃棄されることもない。さらに、 2種 類の赤外線は、偏光分離素子 2155によって、ほとんど損失なく赤外センサ 203Aお よび 203Bに到達する。このように、図 58 (f)に示した分析システムでは、原理上利用 可能な全てのエネルギを利用することができ、エネルギ効率が極めて高い。  [0260] In the analysis system shown in Fig. 58 (f), the infrared energy emitted from the heating element is concentrated in the infrared of a specific wavelength and emitted from the infrared light source 2011. In addition, since the intensity of the infrared light itself radiated from the infrared light source 2011 is periodically changed without using a chopper, the emitted infrared light is not cut off and discarded. Further, the two types of infrared rays reach the infrared sensors 203A and 203B with little loss by the polarization separation element 2155. In this way, the analysis system shown in FIG. 58 (f) can use all the energy available in principle and is extremely energy efficient.
[0261] 図 58 (a)乃至(f)に示した分析システムは、偏光素子によって、赤外光源から放射 される、 2種類の偏光面を有する赤外線を分離する。このため、 2種類の赤外線を使 用する小型の分析システムが得られる。また、偏光素子を使用することにより、ノイズ に強!/、分析システムが得られる。  [0261] The analysis system shown in FIGS. 58 (a) to 58 (f) separates infrared rays having two types of polarization planes, which are emitted from an infrared light source, by a polarizing element. For this reason, a small analysis system using two types of infrared rays can be obtained. In addition, the use of a polarizing element provides a noise-resistant / analytical system.
[0262] 図 59は、本発明の一実施形態による 6波長方式の 5成分分析システムの構成を示 す図である。上記の実施形態による分析システムは、赤外光源 2011A、 201 IBおよ び 2011Cと、赤外センサ 203Aおよび 203Bと、復調器 205Aおよび 205Bと、気体 容器 207と、周期的に電力を変化させる電源 213A、 213Bおよび 213Cと、偏光分 離素子 2155とを備える。  [0262] FIG. 59 is a diagram showing a configuration of a six-wavelength five-component analysis system according to an embodiment of the present invention. The analysis system according to the above embodiment includes an infrared light source 2011A, 201 IB and 2011C, an infrared sensor 203A and 203B, a demodulator 205A and 205B, a gas container 207, and a power source that periodically changes power. 213A, 213B and 213C, and a polarization separation element 2155 are provided.
[0263] 赤外光源 2011A、 201 IBおよび 2011Cは、一例として、図 19に示した赤外光源 であり、 1チップの発熱体上に、方向の異なる、複数の格子を設けている。該赤外光 源は、それぞれの格子の配列方向と直交する偏光面(図 1の Aの方向の偏光面)を 有する、格子の形状によって定まる特定の波長の、方向の異なる偏光面を有する赤 外線を放出する。赤外光源 2011A、 201 IBおよび 2011Cは、それぞれ、 1チップの 発熱体上において、所定の方向に配列された第 1の組の格子と、該所定の方向と直 交する方向に配列された第 2の組の格子とを備える。 3個の赤外光源の第 1の組の格 子の配列方向は同じであり、 3個の赤外光源の第 2の組の格子の配列方向も同じで ある。赤外光源 2011A、 201 IBおよび 2011Cの第 1および第 2の組の格子の形状 は、図 56 (a)に示すような測定対象気体の吸光度を考慮して、特定の波長が、 5種 類の測定対象気体の特徴的な波長および参照波長となるように定める。したがって、 赤外光源 2011A、 201 IBおよび 2011Cは、それぞれ、上記特定の波長のいずれ かの波長を有し、互いに直交する偏光面を有する 2種類の赤外線を放射する。 [0263] Infrared light sources 2011A, 201 IB, and 2011C are, as an example, the infrared light source shown in FIG. 19, and a plurality of grids having different directions are provided on a one-chip heating element. The infrared light source has a polarization plane orthogonal to the arrangement direction of the respective gratings (polarization plane in the direction of A in FIG. 1), and has a specific wavelength determined by the grating shape and red polarization planes having different directions. Release external lines. Each of the infrared light sources 2011A, 201 IB and 2011C has a first set of grids arranged in a predetermined direction on a one-chip heating element, and a direct connection with the predetermined direction. And a second set of grids arranged in the intersecting direction. The array direction of the first set of three infrared light sources is the same, and the array direction of the second set of three infrared light sources is the same. The first and second sets of grating shapes of infrared light sources 2011A, 201 IB, and 2011C have five specific wavelengths, taking into account the absorbance of the gas to be measured as shown in Fig. 56 (a). The characteristic wavelength and the reference wavelength of the measurement target gas are determined. Therefore, each of the infrared light sources 2011A, 201 IB, and 2011C emits two types of infrared rays each having one of the specific wavelengths and having polarization planes orthogonal to each other.
[0264] 1チップの発熱体に供給する電力を、周期的に電力を変化させる電源 213A、 213 Bおよび 213Cによって変ィ匕させることにより、赤外光原 2011A、 201 IBおよび 201 1Cによって放射される赤外線の強度を変化させる。赤外光源 2011A、 201 IBおよ び 2011Cのそれぞれから放射された 2種類の赤外線は、気体容器 207中の測定対 象気体を通過し、 2種類の赤外線のそれぞれは、偏光分離素子 2155を通過した後 、赤外センサ 203Aまたは 203Bによって検出される。赤外センサ 203Aまたは 203B によって検出された測定信号は、復調器 205Aまたは 205Bによって復調されて出力 となる。 [0264] The power supplied to the heating element of one chip is radiated by the infrared light sources 2011A, 201 IB and 201 1C by changing the power by the power supplies 213A, 213 B and 213C that periodically change the power. Change the intensity of infrared rays. Two types of infrared rays emitted from each of the infrared light sources 2011A, 201 IB, and 2011C pass through the measurement target gas in the gas container 207, and each of the two types of infrared rays passes through the polarization separation element 2155. After that, it is detected by the infrared sensor 203A or 203B. The measurement signal detected by the infrared sensor 203A or 203B is demodulated by the demodulator 205A or 205B and output.
[0265] 図 60 (a)は、 3個の周期的に電力を変化させる電源の出力パルス波形を示す図で ある。図 60 (b)は、 3個の赤外光源から放出される赤外線の出力波形を示す図であ る。図 60 (c)は、 2個の赤外センサの出力波形を示す図である。 3個の赤外光源 201 1A、 201 IBおよび 2011Cは、それぞれ、偏光面が直交する、 2種類の波長の赤外 線を、同じ周期で放出する。図 60 (a)に示すように、 3個の赤外光源 2011A、 2011 Bおよび 2011Cが赤外線を放出するタイミングは、時間的にシフトしている。図 60 (c )に示すように、 2個の赤外センサ 203Aおよび 203Bは、それぞれ、 2種類の偏光面 の内の一方の偏光面を有する、 3個の赤外光源 2011A、 201 IBおよび 2011C力、ら 時間的にシフトされたタイミングで放出される赤外線を検出する。  [0265] FIG. 60 (a) is a diagram showing an output pulse waveform of a power supply that periodically changes power. FIG. 60 (b) is a diagram showing output waveforms of infrared rays emitted from three infrared light sources. FIG. 60 (c) is a diagram showing output waveforms of two infrared sensors. The three infrared light sources 201 1A, 201 IB, and 2011C each emit infrared rays of two types of wavelengths with the same period and whose polarization planes are orthogonal to each other. As shown in FIG. 60 (a), the timings at which the three infrared light sources 2011A, 2011 B, and 2011C emit infrared light are shifted in time. As shown in FIG. 60 (c), each of the two infrared sensors 203A and 203B has three infrared light sources 2011A, 201 IB and 2011C each having one of two polarization planes. Detects infrared rays emitted at a time shifted timing.
[0266] 図 59に示した分析システムによれば、 6種類の波長の内の一つの波長を参照信号 として利用すれば、 5種類の気体の濃度を測定することができる。参照信号を使用し なければ、 6種類の気体の濃度を測定することができる。一般的に、赤外光源の数( この場合は 3)とそれぞれの赤外光源の備える格子の種類の数 (この場合は 2)との関 の数の気体の濃度を測定することができる。 [0266] According to the analysis system shown in Fig. 59, the concentration of five kinds of gases can be measured by using one of the six kinds of wavelengths as a reference signal. If no reference signal is used, the concentrations of six gases can be measured. In general, the relationship between the number of infrared light sources (3 in this case) and the number of grid types (2 in this case) with each infrared light source. The concentration of a number of gases can be measured.
[0267] 従来の分析システムでは、測定対象の気体の数が増えるほどに波長選択素子(フィ ノレタなど)によって廃棄される赤外線が増え、エネルギ効率が低下する。しかし、たと えば、図 59に示した分析システムにおいては、測定対象の気体の数が増えてもエネ ルギ効率は低下しない。  [0267] In the conventional analysis system, as the number of gases to be measured increases, the infrared rays discarded by the wavelength selection element (such as a finoleta) increase, and the energy efficiency decreases. However, for example, in the analysis system shown in FIG. 59, the energy efficiency does not decrease even if the number of gases to be measured increases.
[0268] 従来の分析システムでは、特定の波長の赤外線にエネルギを集中することができな いので、エネルギ効率が低ぐ赤外光源の熱容量を小さくし、また小型化することが でき力、つた。また、従来の分析システムの赤外光源は、セラミックでコーティングしたも のや、スクリーン印刷した配線パターンを埋め込んだセラミックス板を放射体を使用し ていたので、構造的な点からも小型化することができな力、つた。このように従来の分析 システムにおいては、赤外光源を小型化することができな力、つたので、複数の赤外光 源を組み込むことは困難であった。また、赤外光源の熱容量を小さくすることができな かったので、赤外光源を高速で点滅させることは困難であった。  [0268] In the conventional analysis system, energy cannot be concentrated on infrared light of a specific wavelength, so the heat capacity of an infrared light source with low energy efficiency can be reduced and the size can be reduced. . In addition, the infrared light source of the conventional analysis system uses a radiator coated ceramic or a ceramic plate embedded with a screen printed wiring pattern. I couldn't do it. As described above, in the conventional analysis system, since it is impossible to reduce the size of the infrared light source, it is difficult to incorporate a plurality of infrared light sources. Moreover, since the heat capacity of the infrared light source could not be reduced, it was difficult to blink the infrared light source at high speed.
[0269] 他方、本発明に使用する赤外光源は、エネルギ効率が高いことに加え、半導体微 細加工技術で作製できるので、個々の赤外光源の熱容量は必要最小限に抑えるこ と力 Sできる。また、一つのチップに複数の独立の赤外光源を集積化することも可能で ある。このようにして、図 59に例として示した分析システムを実現することができる。  [0269] On the other hand, the infrared light source used in the present invention is not only highly energy efficient, but also can be produced by semiconductor microfabrication technology, so the heat capacity of each infrared light source can be minimized. it can. It is also possible to integrate multiple independent infrared light sources on a single chip. In this way, the analysis system shown as an example in FIG. 59 can be realized.
[0270] なお、図 55および図 57乃至図 59は、赤外線用の光学系を記載していないが、実 際の分析システムは、赤外線用の光学系を備える。  [0270] Although FIG. 55 and FIGS. 57 to 59 do not describe an optical system for infrared rays, an actual analysis system includes an optical system for infrared rays.
[0271] 図 55および図 57乃至図 59は、測定対象気体の流入する測定セル (容器 207など )は周囲の光学素子とは窓材により隔離されているかのように図示した。また、赤外線 は測定セルを 1回だけ通過する透過型のものとした。しかし、これは代表的な構成を 例示したに過ぎない。光源の格子や検出素子が測定セル内に露出している構成や、 1枚あるいは複数枚のミラーを用いて赤外線を一度あるいは複数回反射させて光路 長を長くした構成、導波路状の光路を赤外線が反射されながら閉じ込められた状態 で伝搬する構成など、従来の分析システムで利用されている種々の構成に、本発明 を適用すること力できる。  FIG. 55 and FIGS. 57 to 59 show the measurement cells (such as the container 207) into which the measurement target gas flows as if they were isolated from the surrounding optical elements by the window material. Infrared rays are of a transmission type that passes through the measurement cell only once. However, this is only a representative configuration. A configuration in which the grating of the light source and the detection element are exposed in the measurement cell, a configuration in which the optical path length is increased by reflecting one or more infrared rays using one or more mirrors, and a waveguide-shaped optical path The present invention can be applied to various configurations used in conventional analysis systems, such as a configuration in which infrared rays are reflected and propagated in a confined state.
[0272] さらに、通常は非分散型赤外線吸収法としては分類されないような、測定対象物か らの反射光や散乱光を検出するような測定方法や、全反射法、高感度反射法、顕微 法、光音響法、エリプソメトリなどを適用した特殊な測定方法であっても、本発明の特 徴的な赤外光源を利用して物質を分析するシステムは、本発明の範囲に含まれる。 [0272] Furthermore, it is a measurement object that is not normally classified as a non-dispersive infrared absorption method. Even a measurement method that detects reflected light or scattered light, or a special measurement method that applies total reflection method, high-sensitivity reflection method, microscopic method, photoacoustic method, ellipsometry, etc. A system for analyzing a substance using a characteristic infrared light source is included in the scope of the present invention.
[0273] 図 65は、糖度計のシステム構成を示す図である。糖度計は、赤外光源 201、レンズ  FIG. 65 is a diagram showing a system configuration of the sugar content meter. Glucometer is infrared light source 201, lens
221、レンズ 223および赤外センサ 203を備える。赤外光源 201は、一例として、図 1 に示した赤外光源 100であり、格子の配列方向と直交する偏光面(図 1の Aの方向の 偏光面)を有する、格子の形状によって定まる特定の波長の赤外線を放出する赤外 光源である。あるいは、赤外光源 201として、図 13または図 14に示したものを使用し てもよい。赤外センサ 203として、誘電体表面を加熱すると表面に電荷が発生するこ とを利用した焦電型センサや、熱電対列であるサーモパイルを使用してもよい。  221, a lens 223, and an infrared sensor 203. As an example, the infrared light source 201 is the infrared light source 100 shown in FIG. 1, and has a polarization plane orthogonal to the grid arrangement direction (polarization plane in the direction of A in FIG. 1) and is determined by the shape of the grating. It is an infrared light source that emits infrared light with a wavelength of. Alternatively, the infrared light source 201 shown in FIG. 13 or FIG. 14 may be used. As the infrared sensor 203, a pyroelectric sensor that utilizes the fact that a charge is generated on the surface of the dielectric, or a thermopile that is a thermocouple array may be used.
[0274] 赤外光源 201から放射された赤外線は、レンズ 221によってコリメートされ、果物な どの測定対象物 251を透過し、レンズ 223によって赤外センサ 203に集光される。ま た、たとえば、レンズ 223の後に図示しないチヨッパを設置して、赤外線の強度を周 期的に変化させてもよい。  Infrared radiation emitted from the infrared light source 201 is collimated by the lens 221, passes through the measurement object 251 such as fruit, and is collected by the lens 223 onto the infrared sensor 203. In addition, for example, a not-shown chopper may be installed after the lens 223 to periodically change the intensity of infrared rays.
[0275] 糖度計は、特定の波長の赤外線が、測定対象物の糖度に応じて吸収されることを 利用して測定対象物の糖度を測定する。特定の波長の赤外線は、測定対象物によ つて異なるが、 5乃至 10マイクロ 'メータの範囲である。複数の特定の波長を使用する 場合には、図 58および図 59に関連して説明したような、複数の特定の波長の光源を 1チップに集積した赤外光源を使用してもよレ、。  [0275] The sugar content meter measures the sugar content of the measurement object by utilizing the fact that infrared rays of a specific wavelength are absorbed according to the sugar content of the measurement object. The infrared of a specific wavelength is in the range of 5 to 10 micrometers, depending on the object to be measured. When multiple specific wavelengths are used, an infrared light source in which multiple specific wavelength light sources are integrated on a single chip as described with reference to FIGS. 58 and 59 may be used. .
[0276] 図 66は、水分計のシステム構成を示す図である。水分計は、赤外光源 201、レンズ  FIG. 66 is a diagram showing a system configuration of the moisture meter. Moisture meter is infrared light source 201, lens
225、 227、反射ミラー 231、 235、集光ミラー 233および赤外センサ 203を備える。 赤外光源 201は、一例として、図 1に示した赤外光源 100であり、格子の配列方向と 直交する偏光面(図 1の Aの方向の偏光面)を有する、格子の形状によって定まる特 定の波長の赤外線を放出する赤外光源である。あるいは、赤外光源 201として、図 1 3または図 14に示したものを使用してもよい。赤外センサ 203として、誘電体表面を 加熱すると表面に電荷が発生することを利用した焦電型センサや、熱電対列である サーモパイルを使用してもょレ、。  225 and 227, reflection mirrors 231 and 235, a condenser mirror 233, and an infrared sensor 203. As an example, the infrared light source 201 is the infrared light source 100 shown in FIG. 1 and has a polarization plane (polarization plane in the direction of A in FIG. 1) perpendicular to the arrangement direction of the grating and is determined by the shape of the grating. It is an infrared light source that emits infrared light having a constant wavelength. Alternatively, the infrared light source 201 shown in FIG. 13 or FIG. 14 may be used. As the infrared sensor 203, a pyroelectric sensor that utilizes the fact that a charge is generated on the surface of the dielectric, or a thermopile thermopile is used.
[0277] 赤外光源 201から放射された赤外線は、レンズ 225によってコリメートされ、反射ミラ 一 231によって反射されて測定物 253に至り、測定物 253によって反射される。測定 物 253からの反射光は、集光ミラー 233によって集光され、反射ミラー 235によって 反射された後、レンズ 227によって赤外センサ 203に集光される。また、たとえば、レ ンズ 227の後に図示しないチヨツバを設置して、赤外線の強度を周期的に変化させ てもよい。 [0277] Infrared light emitted from the infrared light source 201 is collimated by the lens 225 and reflected by the mirror. (1) Reflected by the object 231 to reach the object 253 and reflected by the object 253. The reflected light from the measurement object 253 is collected by the collecting mirror 233, reflected by the reflecting mirror 235, and then collected by the lens 227 on the infrared sensor 203. Further, for example, a chiyotsuba (not shown) may be installed after the lens 227 to periodically change the infrared intensity.
[0278] 水分計は、特定の波長の赤外線が、測定対象物の水分量に応じて吸収されること を利用して測定対象物の水分を測定する。  [0278] The moisture meter measures the moisture of the measurement object by utilizing the fact that infrared light of a specific wavelength is absorbed according to the moisture content of the measurement object.
[0279] 本発明による分析システムの赤外光源は、エネルギを、特定の波長の赤外線に集 中させて放出するので、エネルギ効率が高ぐ構造的に小型化に適している。したが つて、本発明による分析システムは、 1チップの形態で小型化した赤外光源や、さら に、 1チップ上に、多数の波長の光源や多数の偏光面の光源を集約した赤外光源を 使用すること力できる。また、赤外光源の熱容量を小さくすることができるので、本発 明による分析システムにお!/、ては、赤外光源の発熱体に供給する電力を短!/、周期で 変化させて、赤外光源から短レ、周期で赤外線を放出させることができる。 [0279] Since the infrared light source of the analysis system according to the present invention concentrates and emits energy in the infrared of a specific wavelength, it is structurally suitable for downsizing because of high energy efficiency. Therefore, the analysis system according to the present invention includes an infrared light source that is miniaturized in the form of one chip, and further, an infrared light source in which light sources of many wavelengths and light sources of many polarization planes are integrated on one chip. Can be used. In addition, since the heat capacity of the infrared light source can be reduced, the analysis system according to the present invention can be used to change the power supplied to the heating element of the infrared light source in a short period of time. Infrared light can be emitted from an infrared light source in a short cycle.
[0280] 以下において、赤外光源を使用する監視システムについて説明する。 [0280] Hereinafter, a monitoring system using an infrared light source will be described.
[0281] 最初に、監視システムに使用される赤外線の波長について説明する。 [0281] First, infrared wavelengths used in the monitoring system will be described.
[0282] たとえば、屋外に設置される監視システムは、太陽光、物体による太陽光の反射光 、物体の放射光によるノイズの影響を受けにくい光の波長を使用するのが好ましい。 [0282] For example, it is preferable that a monitoring system installed outdoors uses light, a wavelength of light that is not easily affected by noise caused by reflected light from the object, or emitted light from the object.
[0283] 図 72は、太陽光の地表におけるスペクトル成分を示す図である。横軸は波長を示 し、単位はマイクロ ·メータである。縦軸は、分光放射強度を示し、単位は、 FIG. 72 is a diagram showing spectral components on the ground surface of sunlight. The horizontal axis indicates the wavelength, and the unit is micrometer. The vertical axis shows the spectral radiant intensity, and the unit is
[数 24]  [Number 24]
W · τη 2μιη ι である。海面レベルでの太陽光の波長は、 2. 5マイクロ 'メータ未満である。 W · τη 2 μιη ι . The wavelength of sunlight at sea level is less than 2.5 micrometers.
[0284] 図 73は、地表の反射特性および放射特性を示す図である。横軸は波長を示し、単 位はマイクロ 'メータである。縦軸は、反射強度および放射強度の相対値を示す。反 射強度および放射強度は、 2. 5マイクロ 'メータから 6. 0マイクロ 'メータの範囲で相 対的に低い値を示す。 [0284] Fig. 73 is a diagram showing the reflection characteristics and radiation characteristics of the ground surface. The horizontal axis indicates the wavelength, and the unit is micrometer. The vertical axis represents the relative values of reflection intensity and radiation intensity. The reflected and radiant intensities show relatively low values in the range of 2.5 micrometers to 6.0 micrometers.
[0285] したがって、太陽光、物体による太陽光の反射光、物体の放射光によるノイズの影 響を受けない光として、 2· 5マイクロ 'メータから 6. 0マイクロ 'メータの範囲の波長の 光を使用するのが好ましい。 [0285] Therefore, sunlight, reflected light of sunlight by an object, and shadows of noise by emitted light of the object It is preferable to use light having a wavelength in the range of 2.5 micrometer to 6.0 micrometer as the light not affected.
[0286] 特定の波長を、それぞれ、 2. 5マイクロ 'メータ、 4. 0マイクロ 'メータおよび 6マイク 口-メータとした場合に、図 3および図 5に示した方法にしたがって求めた赤外光源の 赤外線強度比は、既に説明したように図 52乃至 54に示されている。  [0286] Infrared light source determined according to the method shown in Fig. 3 and Fig. 5 when the specific wavelength is 2.5 micrometer, 4.0 micrometer and 6-micrometer-meter, respectively. The infrared intensity ratio is shown in FIGS. 52 to 54 as described above.
[0287] 図 67は、本発明の一実施形態による、監視システムの構成を示す図である。本実 施形態による監視システムは、赤外光源 1201と、レンズ 1203、 1207と、偏光フィル タ 1205と、赤外センサ 1209と、を備免る。  FIG. 67 is a diagram showing a configuration of a monitoring system according to an embodiment of the present invention. The monitoring system according to this embodiment is provided with an infrared light source 1201, lenses 1203 and 1207, a polarization filter 1205, and an infrared sensor 1209.
[0288] 赤外光源 1201から放射された赤外線は、レンズ 1203によって、赤外センサ 207に 向けてコリメートされる。監視対象物 1221がない場合には、放射された赤外線は、偏 光フイノレタ 1205を透過し、レンズ 1207によって集光された後、赤外センサ 1209に 到達し、赤外センサ 1209によって検出される。監視対象物 1221がある場合には、 放射された赤外線は、監視対象物 1221によって吸収または反射され、赤外センサ 1 209に到達しない。このようにして、監視対象物 1221の有無が監視される。  [0288] The infrared light emitted from the infrared light source 1201 is collimated by the lens 1203 toward the infrared sensor 207. In the absence of the monitoring object 1221, the emitted infrared light passes through the polarization filter 1205, is collected by the lens 1207, reaches the infrared sensor 1209, and is detected by the infrared sensor 1209. When there is a monitoring object 1221, the emitted infrared light is absorbed or reflected by the monitoring object 1221 and does not reach the infrared sensor 1 209. In this way, the presence / absence of the monitoring object 1221 is monitored.
[0289] 赤外光源 1201として、図 14または図 16に示した、レンズによって赤外線を発散す るものを使用してもよい。あるいは、赤外光源 1201として、図 13または図 15に示した 、レンズによって赤外線を集光し、その後拡散させるものを使用してもよい。  [0289] As the infrared light source 1201, the one shown in FIG. 14 or FIG. 16 that emits infrared light using a lens may be used. Alternatively, as the infrared light source 1201, as shown in FIG. 13 or FIG. 15, an infrared light that is condensed by a lens and then diffused may be used.
[0290] 赤外光源 1201の特定の波長を、 2. 5マイクロ 'メータ乃至 6マイクロ 'メータの範囲 とすれば、太陽光によるノイズの影響を受けにくい。また、赤外光源 1201は、所定の 偏光面を有する赤外線のみを放射するので、偏光フィルタ 1205によって上記所定 の偏光面を有する赤外線のみを透過させるようにすれば、太陽光などによるノイズの 影響がさらに低下する。  [0290] If the specific wavelength of the infrared light source 1201 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise. In addition, since the infrared light source 1201 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1205, the influence of noise due to sunlight or the like is reduced. Further decrease.
[0291] 図 68は、本発明の他の実施形態による、監視システムの構成を示す図である。本 実施形態による監視システムは、赤外光源 1301と、偏光ビームスプリッタ 1303と、レ ンズ 1305と、 ーナキュープ、.リフレクタ 1307と、赤外センサ 1309と、を備免る。  FIG. 68 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention. The monitoring system according to the present embodiment is provided with an infrared light source 1301, a polarization beam splitter 1303, a lens 1305, a nanocup, a reflector 1307, and an infrared sensor 1309.
[0292] 赤外光源 1301から放射された赤外線は、偏光ビームスプリッタ 1303を透過し、レ ンズ 1305によって、コーナキューブ'リフレクタ 307に向けてコリメートされる。監視対 象物 321がない場合には、放射された赤外線は、コーナキューブ'リフレクタ 307によ つて反射され、レンズ 1305によって集光された後、偏光ビームスプリッタ 1303で反 射され、赤外センサ 1309に到達し、赤外センサ 1309によって検出される。偏光ビー ムスプリッタ 1303で反射されるのは、コーナキューブ'リフレクタ 1307によって反射さ れることによって偏光面が 90度変化しているためである。監視対象物 1321がある場 合には、放射された赤外線は、監視対象物 1321によって吸収または反射され、赤外 センサ 1309に到達しない。このようにして、監視対象物 1321の有無が監視される。 The infrared light emitted from the infrared light source 1301 passes through the polarization beam splitter 1303 and is collimated toward the corner cube 'reflector 307 by the lens 1305. In the absence of monitored object 321, the emitted infrared light is transmitted by corner cube reflector 307. After being reflected and collected by the lens 1305, it is reflected by the polarization beam splitter 1303, reaches the infrared sensor 1309, and is detected by the infrared sensor 1309. The reason why the beam is reflected by the polarization beam splitter 1303 is that the plane of polarization is changed by 90 degrees due to reflection by the corner cube reflector 1307. When there is a monitoring object 1321, the emitted infrared light is absorbed or reflected by the monitoring object 1321 and does not reach the infrared sensor 1309. In this way, the presence / absence of the monitoring object 1321 is monitored.
[0293] 赤外光源 1301として、図 14または図 16に示した、レンズによって赤外線を発散す るものを使用してもよい。あるいは、赤外光源 1301として、図 13または図 15に示した 、レンズによって赤外線を集光し、その後拡散させるものを使用してもよい。  [0293] As the infrared light source 1301, the one shown in FIG. 14 or 16 that emits infrared light by a lens may be used. Alternatively, as the infrared light source 1301, as shown in FIG. 13 or FIG. 15, a device that collects infrared light with a lens and then diffuses it may be used.
[0294] 赤外光源 301の特定の波長を、 2. 5マイクロ 'メータ乃至 6マイクロ 'メータの範囲と すれば、太陽光によるノイズの影響を受けにくい。また、赤外光源 301は、所定の偏 光面を有する赤外線のみを放射するので、偏光ビームスプリッタ 303によって上記所 定の偏光面を有する赤外線のみを透過させ、上記所定の偏光面と直交する偏光面 を有する赤外線のみを反射するようにすれば、太陽光などによるノイズの影響がさら に低下する。  [0294] If the specific wavelength of the infrared light source 301 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of noise from sunlight. Further, since the infrared light source 301 emits only infrared light having a predetermined polarization plane, only the infrared light having the predetermined polarization plane is transmitted by the polarization beam splitter 303 and polarized light orthogonal to the predetermined polarization plane. If only the infrared rays having a surface are reflected, the influence of noise due to sunlight will be further reduced.
[0295] 図 69は、本発明の他の実施形態による、監視システムの構成を示す図である。本 実施形態による監視システムは、赤外光源 1401と、放物面反射鏡 1403、 1405と、 偏光フイノレタ 1407と、赤外センサ 1409と、を備免る。  FIG. 69 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention. The monitoring system according to this embodiment is provided with an infrared light source 1401, parabolic reflectors 1403 and 1405, a polarization filter 1407, and an infrared sensor 1409.
[0296] 赤外光源 401から放射された赤外線は、放物面反射鏡 403によって、放物面反射 鏡 405に向けてコリメートされる。監視対象物 421がない場合には、放射された赤外 線は、放物面反射鏡 1405によって集光された後、偏光フィルタ 1407を透過し、赤 外センサ 1409に到達し、赤外センサ 1409によって検出される。監視対象物 421が ある場合には、放射された赤外線は、監視対象物 1421によって吸収または反射され 、赤外センサ 1409に到達しない。このようにして、監視対象物 421の有無が監視さ れる。  Infrared radiation emitted from the infrared light source 401 is collimated by the parabolic reflecting mirror 403 toward the parabolic reflecting mirror 405. When there is no monitoring target 421, the emitted infrared rays are collected by the parabolic reflector 1405, and then transmitted through the polarizing filter 1407 to reach the infrared sensor 1409. Detected by. When the monitoring target 421 is present, the emitted infrared light is absorbed or reflected by the monitoring target 1421 and does not reach the infrared sensor 1409. In this way, the presence / absence of the monitoring object 421 is monitored.
[0297] 赤外光源 1401として、図 14または図 16に示した、レンズによって赤外線を発散す るものを使用してもよい。あるいは、赤外光源 1401として、図 13または図 15に示した 、レンズによって赤外線を集光し、その後拡散させるものを使用してもよい。 [0298] 赤外光源 1401の特定の波長を、 2. 5マイクロ 'メータ乃至 6マイクロ 'メータの範囲 とすれば、太陽光によるノイズの影響を受けにくい。また、赤外光源 1401は、所定の 偏光面を有する赤外線のみを放射するので、偏光フィルタ 1407によって上記所定 の偏光面を有する赤外線のみを透過させるようにすれば、太陽光などによるノイズの 影響がさらに低下する。 [0297] As the infrared light source 1401, the one shown in FIG. 14 or 16 that emits infrared light by a lens may be used. Alternatively, as the infrared light source 1401, the one shown in FIG. 13 or FIG. 15 that collects infrared light by a lens and then diffuses it may be used. [0298] If the specific wavelength of the infrared light source 1401 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise. In addition, since the infrared light source 1401 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1407, the influence of noise due to sunlight or the like is reduced. Further decrease.
[0299] 図 70は、本発明の他の実施形態による、監視システムの構成を示す図である。本 実施形態による監視システムは、赤外光源 1501と、レンズ 1503と、偏光フィルタ 50 5と、撮像レンズ 1507と、アレイ状赤外センサ 1509と、を備える。  FIG. 70 is a diagram showing a configuration of a monitoring system according to another embodiment of the present invention. The monitoring system according to the present embodiment includes an infrared light source 1501, a lens 1503, a polarizing filter 505, an imaging lens 1507, and an arrayed infrared sensor 1509.
[0300] 赤外光源 1501から放射された赤外線は、レンズ 1503を透過して、所定の監視対 象物 521に対して放射される。監視対象物 1521およびその周囲において反射され た赤外線は、偏光フィルタ 1505および撮像レンズ 1507を透過し、赤外センサ 1509 に到達し、アレイ状赤外センサ 1509に画像を形成する。該画像によって、監視対象 物 521およびその周囲の状況を監視することができる。  Infrared light emitted from the infrared light source 1501 passes through the lens 1503 and is emitted to a predetermined monitoring target 521. Infrared light reflected on the monitoring object 1521 and its surroundings passes through the polarizing filter 1505 and the imaging lens 1507, reaches the infrared sensor 1509, and forms an image on the arrayed infrared sensor 1509. With this image, the monitoring object 521 and the surrounding situation can be monitored.
[0301] 赤外光源 1501として、図 14または図 16に示した、レンズによって赤外線を発散す るものを使用してもよい。あるいは、赤外光源 1501として、図 13または図 15に示した 、レンズによって赤外線を集光し、その後拡散させるものを使用してもよい。  [0301] As the infrared light source 1501, the one shown in FIG. 14 or FIG. 16 that emits infrared rays by a lens may be used. Alternatively, as the infrared light source 1501, as shown in FIG. 13 or FIG. 15, a device that collects infrared light with a lens and then diffuses it may be used.
[0302] 赤外光源 1501の特定の波長を、 2. 5マイクロ 'メータ乃至 6マイクロ 'メータの範囲 とすれば、太陽光によるノイズの影響を受けにくい。また、赤外光源 501は、所定の 偏光面を有する赤外線のみを放射するので、偏光フィルタ 1505によって上記所定 の偏光面を有する赤外線のみを透過させるようにすれば、太陽光などによるノイズの 影響がさらに低下する。  [0302] If the specific wavelength of the infrared light source 1501 is in the range of 2.5 micrometers to 6 micrometers, it is less susceptible to the effects of sunlight noise. In addition, since the infrared light source 501 emits only infrared light having a predetermined polarization plane, if only the infrared light having the predetermined polarization plane is transmitted by the polarization filter 1505, the influence of noise due to sunlight or the like is reduced. Further decrease.
[0303] 上記の実施形態にお!/、て、レンズは、シリコン、ゲルマニウムなどで作成したもので ある。  [0303] In the above embodiment, the lens is made of silicon, germanium, or the like.
[0304] 上記の実施形態において赤外センサとして、誘電体表面を加熱すると表面に電荷 が発生することを利用した焦電型センサや、熱電対列であるサーモパイルなどの熱 型赤外線センサや PbSe光導電素子などの量子型赤外線センサを使用してもよい。  [0304] In the above embodiment, as an infrared sensor, a pyroelectric sensor that utilizes the generation of electric charges on the surface of the dielectric, a thermal infrared sensor such as a thermopile that is a thermocouple array, and a PbSe light A quantum infrared sensor such as a conductive element may be used.
[0305] 図 71は、 PbSe光導電素子の、波長に対する相対感度を示す図である。 PbSe光 導電素子の相対感度は、 4マイクロ 'メータ付近の波長でピークとなるので、太陽光の ノイズを避ける波長域(2. 5乃至 6マイクロ 'メータ)の監視システムの赤外センサに適 している。 FIG. 71 is a diagram showing the relative sensitivity with respect to wavelength of the PbSe photoconductive element. The relative sensitivity of PbSe photoconductive elements peaks at wavelengths near 4 micrometers, so Suitable for infrared sensors in monitoring systems in the wavelength range (2.5 to 6 μm) to avoid noise.
[0306] 上記の実施形態において、偏光フィルタや偏光ビームスプリッタとしては、市販のヮ ィャグリッド偏光素子を使用してもよい。  [0306] In the above embodiment, as the polarizing filter and the polarizing beam splitter, a commercially-available via grid polarizing element may be used.
[0307] 本発明の一実施形態による赤外光源は、前記格子が、前記一定周期を P、前記正 の誘電体として機能する部分の、前記一定方向の幅を T、格子深さを Dとし、特定の 波長をえとした場合に [0307] In an infrared light source according to an embodiment of the present invention, the grating has P as the constant period, T as the width in the constant direction, and D as the grating depth of the portion functioning as the positive dielectric. , If you have a specific wavelength
[数 25]  [Equation 25]
0 <尸 < 2.0 0 <尸 <2.0
Τ≤ 0.5 Ρ である Ρ、 Τおよび Dに対して、前記赤外光源から放射される赤外線の強度のピーク 波長が前記特定の波長と一致するように Ρ、 Τおよび Dを定めたことを特徴とする。  For Ρ, Τ, and D where Τ≤ 0.5 Ρ, Ρ, Τ, and D are defined so that the peak wavelength of the infrared intensity emitted from the infrared light source matches the specific wavelength. And
[0308] 本実施形態によれば、格子の周期 Ρ、格子の幅 Τおよび格子の深さ Dを調整するこ とによって、前記特定の波長を所望の波長とすることができる。  According to the present embodiment, the specific wavelength can be set to a desired wavelength by adjusting the period 調整 of the grating, the width 深 of the grating, and the depth D of the grating.
[0309] 本発明の他の実施形態による赤外光源は、前記格子が、前記一定周期を Ρ、前記 正の誘電体として機能する部分の上面における、前記一定方向の幅を Τ、格子深さ を D、前記負の誘電体として機能する部分と前記正の誘電体として機能する部分との 境界面の、前記格子の面に対する角度を Θとし、特定の波長をえとした場合に  [0309] In an infrared light source according to another embodiment of the present invention, the grating has a certain period, and the width in the certain direction on the upper surface of the portion functioning as the positive dielectric is a grating depth. Where D is the angle of the boundary between the part functioning as the negative dielectric and the part functioning as the positive dielectric with respect to the plane of the grating, and the specific wavelength is
[数 26]  [Equation 26]
0 <尸≤ 2.0 λ 0 <尸 ≤ 2.0 λ
Τ≤0.5Ρ  Τ≤0.5Ρ
0 < θ < π である Ρ、 Τおよび Dに対して、前記赤外光源から放射される赤外線の強度のピーク 波長が前記特定の波長と一致するように P、 T、 Dおよび Θを定めたことを特徴とする For Ρ, お よ び, and D where 0 <θ <π, P, T, D, and Θ were determined so that the peak wavelength of the infrared intensity emitted from the infrared light source coincided with the specific wavelength. It is characterized by
Yes
[0310] 本実施形態によれば、格子の周期 Ρ、格子の幅 Τ、格子の深さ D、および前記負の 誘電体として機能する部分と前記正の誘電体として機能する部分との境界面の、前 記格子の面に対する角度 Θを調整することによって、前記特定の波長を所望の波長 とすること力 Sでさる。 [0310] According to this embodiment, the period 周期 of the lattice, the width 幅 of the lattice, the depth D of the lattice, and the negative By adjusting the angle Θ of the boundary surface between the portion functioning as a dielectric and the portion functioning as the positive dielectric with respect to the plane of the lattice, the specific wavelength can be set to a desired wavelength with the force S Monkey.
[0311] 本発明の他の実施形態による赤外光源は、前記負の誘電体として機能する部分が 負の誘電体材料力 なることを特徴とする。  [0311] An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the negative dielectric is a negative dielectric material force.
[0312] 本実施形態によれば、製造工程が少なく製造が容易な赤外光源が得られる。 [0312] According to the present embodiment, an infrared light source with few manufacturing steps and easy manufacturing can be obtained.
[0313] 本発明の他の実施形態による赤外光源は、前記負の誘電体として機能する部分の 表面のみが負の誘電体材料からなることを特徴とする。 [0313] An infrared light source according to another embodiment of the present invention is characterized in that only the surface of the portion functioning as the negative dielectric is made of a negative dielectric material.
[0314] 本実施形態によれば、製造が容易で高精度の赤外光源が得られる。 [0314] According to the present embodiment, an infrared light source that is easy to manufacture and highly accurate can be obtained.
[0315] 本発明の他の実施形態による赤外光源は、前記負の誘電体として機能する部分が 複数種類の負の誘電体材料力、らなることを特徴とする。 [0315] An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the negative dielectric comprises a plurality of types of negative dielectric material forces.
[0316] 本実施形態によれば、特定の波長を調整するためのパラメータが増え、設計および 製造が容易になる。 [0316] According to the present embodiment, the parameters for adjusting a specific wavelength are increased, and the design and manufacture are facilitated.
[0317] 本発明の他の実施形態による赤外光源は、前記正の誘電体として機能する部分が 複数種類の正の誘電体材料からなることを特徴とする。  [0317] An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the positive dielectric is made of a plurality of types of positive dielectric materials.
[0318] 本実施形態によれば、特定の波長を調整するためのパラメータが増え、設計および 製造が容易になる。 [0318] According to the present embodiment, parameters for adjusting a specific wavelength are increased, and design and manufacturing are facilitated.
[0319] 本発明の他の実施形態による赤外光源は、前記負の誘電体として機能する部分が 前記発熱体を兼ねることを特徴とする。  [0319] An infrared light source according to another embodiment of the present invention is characterized in that the portion functioning as the negative dielectric also serves as the heating element.
[0320] 本実施形態によれば、構造が簡単でコンパクトな赤外光源が得られる。 [0320] According to the present embodiment, a compact infrared light source having a simple structure can be obtained.
[0321] 本発明の他の実施形態による赤外光源は、前記発熱体の、前記格子に対応する 部分以外の部分を金属で被覆したことを特徴とする。 [0321] An infrared light source according to another embodiment of the present invention is characterized in that a portion of the heating element other than the portion corresponding to the lattice is covered with a metal.
[0322] 本実施形態によれば、赤外光線が格子に対応する部分以外の部分に放射されな[0322] According to the present embodiment, infrared rays are not emitted to portions other than the portion corresponding to the grating.
V、ので、エネルギ効率の高!/、赤外光源が得られる。 V, so energy efficient! /, An infrared light source can be obtained.
[0323] 本発明の他の実施形態による赤外光源は、複数の特定波長にそれぞれ対応する 複数の格子を備えたことを特徴とする。 An infrared light source according to another embodiment of the present invention includes a plurality of gratings respectively corresponding to a plurality of specific wavelengths.
[0324] 本実施形態によれば、複数の特定波長の赤外線を放射する、構造が簡単でコンパ タトな赤外光源が得られる。 [0325] 本発明の他の実施形態による赤外光源は、異なる方向に配列された 2種類以上の 格子を備えたことを特徴とする。 [0324] According to the present embodiment, an infrared light source having a simple structure and emitting a plurality of infrared rays having specific wavelengths can be obtained. [0325] An infrared light source according to another embodiment of the present invention includes two or more types of gratings arranged in different directions.
[0326] 本実施形態によれば、 2種類以上の異なる偏光面に偏光された、特定波長の赤外 線を放射する、構造が簡単でコンパクトな赤外光源が得られる。 [0326] According to the present embodiment, an infrared light source having a simple structure and emitting infrared rays having a specific wavelength polarized on two or more different polarization planes can be obtained.
[0327] 本発明の他の実施形態による赤外光源は、前記一定方向に沿って、前記特定の 波長が変化するように前記格子の形状を変化させたことを特徴とする。 [0327] An infrared light source according to another embodiment of the present invention is characterized in that the shape of the grating is changed so that the specific wavelength changes along the certain direction.
[0328] 本実施形態によれば、所定の波長帯域の赤外線を放射する、構造が簡単でコンパ タトな赤外光源が得られる。 [0328] According to the present embodiment, an infrared light source having a simple structure and capable of emitting infrared rays in a predetermined wavelength band can be obtained.
[0329] 本発明の他の実施形態による赤外光源は、前記格子がレンズの表面に配置された ことを特徴とする。 [0329] An infrared light source according to another embodiment of the present invention is characterized in that the grating is arranged on a surface of a lens.
[0330] 本実施形態によれば、放射する赤外光を集光あるいは発散させる赤外光源が得ら れる。  [0330] According to the present embodiment, an infrared light source that collects or diverges the emitted infrared light can be obtained.
[0331] 本発明の他の実施形態による赤外光源は、フレキシブルなシートとして形成された ことを特徴とする。  [0331] An infrared light source according to another embodiment of the present invention is formed as a flexible sheet.
[0332] 本実施形態によれば、ヒータなどに広く応用することができる赤外光源が得られる。  [0332] According to this embodiment, an infrared light source that can be widely applied to heaters and the like is obtained.
[0333] 本発明による基板は、本発明による赤外光源を備えたことを特徴とする。 [0333] A substrate according to the present invention includes the infrared light source according to the present invention.
[0334] 本発明によれば、特定の波長の赤外線を放出するコンパクトな基板が得られる。 [0334] According to the present invention, a compact substrate that emits infrared rays having a specific wavelength can be obtained.
[0335] 本発明の一実施形態による基板は、熱絶縁された膜構造上に赤外光源を備えたこ とを特徴とする。 [0335] A substrate according to an embodiment of the present invention is characterized in that an infrared light source is provided on a thermally insulated film structure.
[0336] 本実施形態によれば、熱容量が小さく高速動作可能な赤外光源が得られる。  [0336] According to the present embodiment, an infrared light source having a small heat capacity and capable of operating at high speed can be obtained.
[0337] 本発明の一実施形態による基板は、複数の赤外光源を備えたことを特徴とする。 [0337] A substrate according to an embodiment of the present invention includes a plurality of infrared light sources.
[0338] 本実施形態によれば、複数種類の赤外線を放出することのできる基板が得られる。 [0338] According to the present embodiment, a substrate capable of emitting a plurality of types of infrared rays can be obtained.
[0339] 本発明の一実施形態による基板は、独立に制御することのできる複数の発熱体を 備えたことを特徴とする。 [0339] A substrate according to an embodiment of the present invention includes a plurality of heating elements that can be controlled independently.
[0340] 本実施形態によれば、複数種類の赤外線の放出を独立に制御することのできる基 板が得られる。 [0340] According to this embodiment, a substrate capable of independently controlling the emission of a plurality of types of infrared rays can be obtained.
[0341] 本発明による赤外光源の製造方法は、発熱体と、正の誘電体として機能する部分 および負の誘電体として機能する部分を一定方向に一定周期で交互に形成した格 子とを備え、前記発熱体の放射エネルギを、前記格子の配列方向と直交する偏光面 を有する、前記格子の形状によって定まる特定の波長の赤外線に集中させて放射す る赤外光源の製造方法である。本方法は、プラスチックによって前記格子の型を形成 し、該型の表面に負の誘電体材料を成膜することによって、前記負の誘電体として機 能する部分を形成することを特徴とする。 [0341] The method of manufacturing an infrared light source according to the present invention has a case in which a heating element, a portion that functions as a positive dielectric, and a portion that functions as a negative dielectric are alternately formed in a fixed direction at a fixed period. And a method of manufacturing an infrared light source that radiates the radiant energy of the heat generating element while concentrating on infrared rays having a specific wavelength determined by the shape of the grating, having a polarization plane orthogonal to the arrangement direction of the grating. It is. The method is characterized in that a portion that functions as the negative dielectric is formed by forming the lattice mold with plastic and depositing a negative dielectric material on the surface of the mold.
[0342] 本発明によれば、プラスチックの型の表面に負の誘電体材料を成膜することによつ て、負の誘電体として機能する部分を形成するので、赤外光源の格子を高精度で形 成すること力 Sでさる。 [0342] According to the present invention, the negative dielectric material is deposited on the surface of the plastic mold, thereby forming the portion that functions as the negative dielectric. Form with precision.
[0343] 本発明の一実施形態による分析システムは、本発明による赤外光源と、前記特定 の波長の赤外線を検出することのできる赤外センサと、を備え、前記赤外光源が対象 物に前記特定の波長の赤外線を放射し、前記特定の波長の赤外線を検出すること によって、前記対象物の性質を分析することを特徴とする。  [0343] An analysis system according to an embodiment of the present invention includes the infrared light source according to the present invention and an infrared sensor capable of detecting infrared light of the specific wavelength, and the infrared light source is an object. The property of the object is analyzed by emitting infrared light of the specific wavelength and detecting infrared light of the specific wavelength.
[0344] 本実施形態による分析システムによれば、赤外光源のエネルギを特定の波長の赤 外線に集中させることができるので、エネルギ効率が高まり、赤外光源、さらには分析 システムを小型化することができる。また、赤外光源によって特定の波長の赤外線を 放出することができるので、波長選択素子などの部品が不要となり、分析システムの 構造が簡単になる。  [0344] According to the analysis system according to the present embodiment, the energy of the infrared light source can be concentrated on the infrared ray of a specific wavelength, so that the energy efficiency is improved and the infrared light source and further the analysis system is downsized. be able to. In addition, since infrared light having a specific wavelength can be emitted by an infrared light source, components such as a wavelength selection element are not required, and the structure of the analysis system is simplified.
[0345] 本発明の他の実施形態による分析システムは、前記赤外光源と前記赤外センサと の間に、少なくとも一つの偏光素子を備え、前記偏光素子が所定の方向の偏光面を 有する光のみを透過または反射させるように構成したことを特徴する。  [0345] An analysis system according to another embodiment of the present invention includes at least one polarization element between the infrared light source and the infrared sensor, and the polarization element has a polarization plane in a predetermined direction. It is characterized by being configured to transmit or reflect only.
[0346] 本実施形態によれば、赤外光源は、格子の配列方向と直交する偏光面を有する赤 外線を放射するので、偏光素子が該偏光面を有する赤外線のみを透過または反射 させるようにすれば、ノイズに強!/、分析システムが得られる。  [0346] According to this embodiment, since the infrared light source emits infrared rays having a polarization plane orthogonal to the arrangement direction of the grating, the polarization element transmits or reflects only infrared rays having the polarization plane. If you do this, you will be resistant to noise!
[0347] 本発明の他の実施形態による分析システムは、前記偏光素子を透過し、または前 記偏光素子に反射される、前記特定の波長の、前記所定の方向の偏光面を有する 赤外線の強度を周期的に変化させるように構成したことを特徴する。  [0347] An analysis system according to another embodiment of the present invention has a polarization plane in the predetermined direction of the specific wavelength that is transmitted through the polarizing element or reflected by the polarizing element. It is characterized in that it is configured to change periodically.
[0348] 本実施形態によれば、周期的に変化する強度を有する赤外線を赤外センサによつ て検出し、赤外センサの出力を復調することによって、ノイズに強い分析システムが 得られる。 [0348] According to the present embodiment, the infrared sensor having an intensity that changes periodically is detected by the infrared sensor, and the output of the infrared sensor is demodulated, whereby an analysis system that is resistant to noise is obtained. can get.
[0349] 本発明の他の実施形態による分析システムは、前記偏光素子を回転させるように構 成したことを特徴する。  [0349] An analysis system according to another embodiment of the present invention is configured to rotate the polarizing element.
[0350] 本実施形態によれば、偏光素子を回転させる簡単な構造により、ノイズに強い分析 システムが得られる。  [0350] According to the present embodiment, an analysis system that is resistant to noise can be obtained with a simple structure that rotates the polarizing element.
[0351] 本発明の他の実施形態による分析システムは、前記偏光素子を往復運動させるよ うに構成したことを特徴する。  [0351] An analysis system according to another embodiment of the present invention is characterized in that the polarizing element is configured to reciprocate.
[0352] 本実施形態によれば、偏光素子を往復運動させる簡単な構造により、ノイズに強い 分析システムが得られる。往復運動を、バイモルフなどの素子により摺動部を含まな い構造によって行えば、さらに分析システムの信頼性が向上する。  [0352] According to the present embodiment, an analysis system that is resistant to noise can be obtained with a simple structure that reciprocates the polarizing element. If the reciprocating motion is performed by a structure that does not include a sliding part by an element such as a bimorph, the reliability of the analysis system is further improved.
[0353] 本発明の他の実施形態による分析システムは、前記発熱体に電力を供給する電源 を備え、前記発熱体に供給する電力を変化させることによって、前記赤外光源が放 出する赤外線の強度を周期的に変化させるように構成したことを特徴する。  [0353] An analysis system according to another embodiment of the present invention includes a power source that supplies power to the heating element, and changes the power supplied to the heating element to change the infrared light emitted from the infrared light source. It is characterized in that the intensity is changed periodically.
[0354] 本実施形態によれば、赤外線の強度を周期的に変化させるための可動部を備える ことなく、ノイズに強い分析システムが得られる。さらに、赤外光源のエネルギ効率が 高いので、赤外光源の熱容量を小さくし、赤外線の強度変化周期を小さくすることが できる。  [0354] According to the present embodiment, an analysis system that is resistant to noise can be obtained without including a movable part for periodically changing the intensity of infrared rays. Furthermore, since the energy efficiency of the infrared light source is high, the heat capacity of the infrared light source can be reduced, and the infrared intensity change period can be reduced.
[0355] 本発明の他の実施形態による分析システムにおいては、前記赤外光源は、発熱体 と、複数の格子とを備え、前記複数の格子のそれぞれの格子は、正の誘電体部およ び負の誘電体部を一定方向に一定周期で交互に形成した格子であり、前記発熱体 の放射エネルギを、前記複数の格子の配列方向と直交する偏光面を有する、前記複 数の格子の形状によって定まる複数の特定の波長の赤外線に集中させて放射する ことを特徴する。  [0355] In the analysis system according to another embodiment of the present invention, the infrared light source includes a heating element and a plurality of gratings, and each of the plurality of gratings includes a positive dielectric part and a grating. And a plurality of gratings having a plane of polarization perpendicular to the arrangement direction of the plurality of gratings. It is characterized by being focused on multiple infrared rays of specific wavelengths determined by the shape.
[0356] 本実施形態によれば、赤外光源が複数の特定の波長の赤外線を放出するので、 複数の特定の波長の赤外線を使用する、エネルギ効率が高く小型の分析システムが 得られる。  [0356] According to the present embodiment, since the infrared light source emits infrared rays having a plurality of specific wavelengths, an energy-efficient and small analysis system using infrared rays having a plurality of specific wavelengths can be obtained.
[0357] 本発明の他の実施形態による分析システムにおいては、前記赤外光源は、発熱体 と、異なる方向に配列された複数の格子とを備え、前記複数の格子のそれぞれの格 子は、正の誘電体部および負の誘電体部を一定方向に一定周期で交互に形成した 格子であり、前記発熱体の放射エネルギを、前記複数の格子の配列方向と直交する 複数の偏光面を有する、前記複数の格子の形状によって定まる特定の波長の赤外 線に集中させて放射することを特徴する。 [0357] In an analysis system according to another embodiment of the present invention, the infrared light source includes a heating element and a plurality of gratings arranged in different directions, and each case of the plurality of gratings. The child is a lattice in which positive dielectric portions and negative dielectric portions are alternately formed in a constant direction at a constant period, and the radiant energy of the heating element is a plurality of polarizations orthogonal to the arrangement direction of the plurality of lattices It is characterized in that the radiation is concentrated on infrared rays having a specific wavelength determined by the shape of the plurality of gratings.
[0358] 本実施形態によれば、赤外光源が複数の偏光面を有する赤外線を放出する。たと えば、複数の偏光面ごとに異なる波長の赤外線を放出するようにすれば、偏光面に よって異なる波長の赤外線を分離することができるので都合がよい。  [0358] According to this embodiment, the infrared light source emits infrared light having a plurality of polarization planes. For example, if infrared rays having different wavelengths are emitted for each of a plurality of polarization planes, it is advantageous because infrared rays having different wavelengths can be separated depending on the polarization planes.
[0359] 本発明の他の実施形態による分析システムは、複数の赤外光源と前記複数の赤外 光源のそれぞれの発熱体に電力を供給する電源を備え、前記複数の赤外光源のそ れぞれの発熱体に電力を供給するタイミングを時間的にシフトさせ、前記複数の赤外 光源のそれぞれが時間的にシフトしたタイミングで赤外線を放射するように構成した ことを特徴する。  [0359] An analysis system according to another embodiment of the present invention includes a plurality of infrared light sources and a power source for supplying power to each of the heating elements of the plurality of infrared light sources, and each of the plurality of infrared light sources. The timing of supplying power to each heating element is shifted in time, and each of the plurality of infrared light sources is configured to emit infrared rays at a timing shifted in time.
[0360] 本実施形態によれば、複数の赤外光源力 放射される複数種類の赤外線を時分 害 ijで処理すること力 Sできる。さらに、赤外光源のエネルギ効率が高いので、赤外光源 の熱容量を小さくし、時分割の周期を短くすることによってデータ処理速度を向上さ せること力 Sでさる。  [0360] According to the present embodiment, a plurality of infrared light source forces can be used to process a plurality of types of infrared rays to be processed with the time harm ij. In addition, since the energy efficiency of the infrared light source is high, the power S can be reduced by reducing the heat capacity of the infrared light source and shortening the time division cycle to improve the data processing speed.
[0361] 本発明の一実施形態による監視システムは、本発明による赤外光源と、前記特定 の波長の赤外線を検出することのできる赤外センサと、を備え、前記赤外光源が前記 特定の波長の赤外線を放射し、前記赤外センサが前記特定の波長の赤外線を検出 することによって、前記赤外光源の周囲の状況を監視することを特徴する。  [0361] A monitoring system according to an embodiment of the present invention includes the infrared light source according to the present invention and an infrared sensor capable of detecting infrared light of the specific wavelength, wherein the infrared light source is the specific light source. Infrared light having a wavelength is emitted, and the infrared sensor detects the infrared light having the specific wavelength, thereby monitoring a situation around the infrared light source.
[0362] 本実施形態による監視システムは、所望の特定の波長で強い強度の放射線を使用 すること力 Sでき、高い精度で監視を行うことができる。  [0362] The monitoring system according to the present embodiment is capable of using radiation with high intensity at a desired specific wavelength, and can perform monitoring with high accuracy.
[0363] 本発明の他の実施形態による監視システムは、前記特定の波長が 2. 5マイクロ'メ ータから 6マイクロ 'メータの範囲であることを特徴とする。  [0363] A monitoring system according to another embodiment of the present invention is characterized in that the specific wavelength is in a range of 2.5 micrometers to 6 micrometers.
[0364] 本実施形態による監視システムは、 2. 5マイクロ 'メータから 6. 0マイクロ 'メータの 範囲の波長の光を使用するので、太陽光、物体による太陽光の反射光、物体の放射 光によるノイズの影響を受けにくい。  [0364] Since the monitoring system according to the present embodiment uses light having a wavelength in the range of 2.5 micrometer to 6.0 micrometer, sunlight, reflected light of sunlight by the object, and emitted light of the object. It is hard to be affected by noise.
[0365] 本発明の他の実施形態による監視システムは、前記特定の波長が、前記赤外セン サの感度がピークとなる波長と一致するように構成したことを特徴とする。 [0365] In the monitoring system according to another embodiment of the present invention, the specific wavelength may be the infrared sensor. It is characterized in that it is configured so that the sensitivity of the laser coincides with the peak wavelength.
[0366] 本実施形態による監視システムは、特定の波長が、赤外センサの感度がピークとな る波長と一致するので、高!、精度で監視を行うことができる。 [0366] The monitoring system according to the present embodiment can perform monitoring with high accuracy because the specific wavelength matches the wavelength at which the sensitivity of the infrared sensor reaches a peak.
[0367] 本発明の他の実施形態による監視システムは、前記一定方向に沿って前記特定の 波長が変化するように、前記一定方向に沿って前記格子の深さを変化させたことを 特徴とする。 [0367] A monitoring system according to another embodiment of the present invention is characterized in that the depth of the grating is changed along the certain direction so that the specific wavelength varies along the certain direction. To do.
[0368] 本実施形態による監視システムは、所望の波長帯域の赤外線を使用することがで きる。  [0368] The monitoring system according to the present embodiment can use infrared rays in a desired wavelength band.
[0369] 本発明の他の実施形態による監視システムは、前記格子がレンズ面に配置された ことを特徴とする。  [0369] A monitoring system according to another embodiment of the present invention is characterized in that the grating is arranged on a lens surface.
[0370] 本実施形態によれば、赤外光源によって赤外光を集光あるいは発散させることがで きるので、コンパクトな監視システムが得られる。  [0370] According to the present embodiment, infrared light can be collected or diverged by an infrared light source, so that a compact monitoring system can be obtained.
[0371] 本発明の他の実施形態による監視システムは、前記赤外光源から前記赤外センサ に至る赤外線の経路に、少なくとも一つの偏光素子を備え、前記偏光素子が所定の 方向の偏光面を有する光のみを透過させるように構成したことを特徴とする。 [0371] A monitoring system according to another embodiment of the present invention includes at least one polarizing element in an infrared path from the infrared light source to the infrared sensor, and the polarizing element has a polarization plane in a predetermined direction. It is characterized by being configured to transmit only the light it has.
[0372] 本実施形態によれば、偏光素子が、赤外光源によって放射された赤外線の、所定 の偏光面を有する赤外線のみを透過させるので、ノイズの影響が低減され確実に監 視を fiうこと力できる。 [0372] According to the present embodiment, since the polarizing element transmits only the infrared ray having a predetermined polarization plane emitted from the infrared light source, the influence of noise is reduced and the monitoring is reliably performed. I can do it.

Claims

請求の範囲 The scope of the claims
[1] 発熱体と、正の誘電体として機能する部分および負の誘電体として機能する部分を 一定方向に一定周期で交互に形成した格子とを備え、前記発熱体の放射エネルギ を、前記格子の配列方向と直交する偏光面を有する、前記格子の形状によって定ま る特定の波長の赤外線に集中させて放射する赤外光源。  [1] A heating element, and a grid in which a portion functioning as a positive dielectric and a portion functioning as a negative dielectric are alternately formed in a constant direction at a constant period, and the radiant energy of the heating element is An infrared light source that has a plane of polarization perpendicular to the arrangement direction of the light and emits the light in a concentrated manner at a specific wavelength determined by the shape of the grating.
[2] 前記格子が、前記一定周期を P、前記正の誘電体として機能する部分の、前記一 定方向の幅を T、格子深さを Dとし、特定の波長をえとした場合に  [2] When the grating is P, the width of the constant direction of the portion functioning as the positive dielectric is T, the grating depth is D, and a specific wavelength is used.
 Country
0 < Ρ≤2.0λ  0 <Ρ≤2.0λ
Τ≤0.5Ρ である Ρ、 Τおよび Dに対して、前記赤外光源から放射される赤外線の強度のピーク 波長が前記特定の波長と一致するように P、 Tおよび Dを定めた、請求項 1に記載の 赤外光源。  P, T, and D are determined so that the peak wavelength of the infrared intensity emitted from the infrared light source coincides with the specific wavelength for Ρ, Τ, and D that are Τ≤0.5Ρ. The infrared light source according to 1.
[3] 前記格子が、前記一定周期を P、前記正の誘電体として機能する部分の上面にお ける、前記一定方向の幅を T、格子深さを D、前記負の誘電体として機能する部分と 前記正の誘電体として機能する部分との境界面の、前記格子の面に対する角度を Θ とし、特定の波長を λとした場合に  [3] The lattice functions as the negative dielectric, P for the constant period, and T for the constant direction on the upper surface of the portion that functions as the positive dielectric, D for the depth of the lattice. When the angle of the boundary between the part and the part functioning as the positive dielectric with respect to the plane of the grating is Θ and the specific wavelength is λ
[数 2]  [Equation 2]
0 < Ρ≤2.0λ 0 <Ρ≤2.0λ
Τ≤ 0.5Ρ  Τ≤ 0.5Ρ
0 < θ < π である Ρ、 Τおよび Dに対して、前記赤外光源から放射される赤外線の強度のピーク 波長が前記特定の波長と一致するように P、 T、 Dおよび Θを定めた、請求項 1に記 載の赤外光源。  For Ρ, お よ び, and D where 0 <θ <π, P, T, D, and Θ were determined so that the peak wavelength of the infrared intensity emitted from the infrared light source coincided with the specific wavelength. The infrared light source according to claim 1.
[4] 前記負の誘電体として機能する部分が負の誘電体材料からなる請求項 1から 3のい ずれか一項に記載の赤外光源。  4. The infrared light source according to any one of claims 1 to 3, wherein the portion that functions as the negative dielectric is made of a negative dielectric material.
[5] 前記負の誘電体として機能する部分の表面のみが負の誘電体材料からなる請求 項 1から 3の!/、ずれか一項に記載の赤外光源。 [5] Only the surface of the portion functioning as the negative dielectric is made of a negative dielectric material. The infrared light source according to Item 1!
[6] 前記負の誘電体として機能する部分が複数種類の負の誘電体材料力 なる請求 項 1から 5の!/、ずれか一項に記載の赤外光源。 6. The infrared light source according to claim 1, wherein the portion functioning as the negative dielectric is a plurality of types of negative dielectric material forces.
[7] 前記正の誘電体として機能する部分が複数種類の正の誘電体材料力 なる請求 項 1から 6の!/、ずれか一項に記載の赤外光源。 7. The infrared light source according to claim 1, wherein the portion functioning as the positive dielectric is a plurality of types of positive dielectric material forces.
[8] 前記負の誘電体として機能する部分が前記発熱体を兼ねる請求項 1から 7のいず れか一項に記載の赤外光源。 [8] The infrared light source according to any one of [1] to [7], wherein the portion functioning as the negative dielectric also serves as the heating element.
[9] 前記発熱体の、前記格子に対応する部分以外の部分を金属で被覆した請求項 1 から 8の!/、ずれか一項に記載の赤外光源。 [9] The infrared light source according to any one of [1] to [8], wherein a portion other than the portion corresponding to the lattice of the heating element is covered with metal.
[10] 複数の特定波長にそれぞれ対応する複数の格子を備えた請求項 1から 9のいずれ か一項に記載の赤外光源。 10. The infrared light source according to any one of claims 1 to 9, comprising a plurality of gratings respectively corresponding to a plurality of specific wavelengths.
[11] 異なる方向に配列された 2種類以上の格子を備えた請求項 1から 9のいずれか一 項に記載の赤外光源。 [11] The infrared light source according to any one of [1] to [9], comprising two or more types of gratings arranged in different directions.
[12] 前記一定方向に沿って、前記特定の波長が変化するように前記格子の形状を変化 させた請求項 1から 9のいずれか一項に記載の赤外光源。  12. The infrared light source according to any one of claims 1 to 9, wherein the shape of the grating is changed so that the specific wavelength changes along the certain direction.
[13] 前記格子がレンズの表面に配置された請求項 1から 9のいずれか一項に記載の赤外 光源。 13. The infrared light source according to any one of claims 1 to 9, wherein the grating is disposed on a lens surface.
[14] フレキシブルなシートとして形成された請求項 1から 13のいずれか一項に記載の赤 外光源。  [14] The infrared light source according to any one of claims 1 to 13, formed as a flexible sheet.
[15] 請求項 1から 12のいずれか一項に記載の赤外光源を備えた基板。  [15] A substrate provided with the infrared light source according to any one of claims 1 to 12.
[16] 熱絶縁された膜構造上に赤外光源を備えた請求項 15に記載の基板。 16. The substrate according to claim 15, further comprising an infrared light source on a thermally insulated film structure.
[17] 複数の赤外光源を備えた請求項 15または 16に記載の基板。 [17] The substrate according to claim 15 or 16, comprising a plurality of infrared light sources.
[18] 独立に制御することのできる複数の発熱体を備えた請求項 17に記載の基板。 18. The substrate according to claim 17, further comprising a plurality of heating elements that can be controlled independently.
[19] 発熱体と、正の誘電体として機能する部分および負の誘電体として機能する部分を 一定方向に一定周期で交互に形成した格子とを備え、前記発熱体の放射エネルギ を、前記格子の配列方向と直交する偏光面を有する、前記格子の形状によって定ま る特定の波長の赤外線に集中させて放射する赤外光源の製造方法であって、プラス チックによって前記格子の型を形成し、該型の表面に負の誘電体材料を成膜するこ とによって、前記負の誘電体として機能する部分を形成する赤外光源の製造方法。 [19] A heating element, and a grid in which portions that function as a positive dielectric and portions that function as a negative dielectric are alternately formed in a fixed direction at a fixed period, and the radiant energy of the heating element is A method of manufacturing an infrared light source having a plane of polarization perpendicular to the arrangement direction of the light source and radiating concentrated infrared rays having a specific wavelength determined by the shape of the grating, wherein the grating mold is formed by a plastic. A negative dielectric material is deposited on the surface of the mold. And a method of manufacturing an infrared light source that forms the portion functioning as the negative dielectric.
[20] 請求項 1に記載の赤外光源と、  [20] The infrared light source according to claim 1,
前記特定の波長の赤外線を検出することのできる赤外センサと、を備え、前記赤外 光源が対象物に前記特定の波長の赤外線を放射し、前記特定の波長の赤外線を検 出することによって、前記対象物の性質を分析する分析システム。  An infrared sensor capable of detecting the infrared of the specific wavelength, and the infrared light source emits the infrared of the specific wavelength to an object, and detects the infrared of the specific wavelength An analysis system for analyzing properties of the object.
[21] 前記赤外光源と前記赤外センサとの間に、少なくとも一つの偏光素子を備え、前記 偏光素子が所定の方向の偏光面を有する光のみを透過または反射させるように構成 した請求項 20に記載の分析システム。  21. The apparatus according to claim 21, wherein at least one polarizing element is provided between the infrared light source and the infrared sensor, and the polarizing element transmits or reflects only light having a polarization plane in a predetermined direction. 20. The analysis system according to 20.
[22] 前記偏光素子を透過し、または前記偏光素子に反射される、前記特定の波長の、 前記所定の方向の偏光面を有する赤外線の強度を周期的に変化させるように構成 した請求項 21に記載の分析システム。  [22] The infrared light having the specific wavelength and having the polarization plane in the predetermined direction, which is transmitted through or reflected by the polarizing element, is periodically changed. Analysis system described in.
[23] 前記偏光素子を回転させるように構成した請求項 22に記載の分析システム。  23. The analysis system according to claim 22, wherein the polarizing element is configured to rotate.
[24] 前記偏光素子を往復運動させるように構成した請求項 22に記載の分析システム。  24. The analysis system according to claim 22, wherein the polarizing element is configured to reciprocate.
[25] 前記発熱体に電力を供給する電源を備え、前記発熱体に供給する電力を変化さ せることによって、前記赤外光源が放出する赤外線の強度を周期的に変化させるよう に構成した請求項 20に記載の分析システム。  [25] A power supply for supplying electric power to the heating element, wherein the intensity of infrared rays emitted from the infrared light source is periodically changed by changing the electric power supplied to the heating element. Item 20. The analysis system according to item 20.
[26] 前記赤外光源は、発熱体と、複数の格子とを備え、前記複数の格子のそれぞれの 格子は、正の誘電体部および負の誘電体部を一定方向に一定周期で交互に形成し た格子であり、前記発熱体の放射エネルギを、前記複数の格子の配列方向と直交す る偏光面を有する、前記複数の格子の形状によって定まる複数の特定の波長の赤外 線に集中させて放射する請求項 20に記載の分析システム。  [26] The infrared light source includes a heating element and a plurality of gratings, and each of the plurality of gratings alternately has a positive dielectric portion and a negative dielectric portion alternately in a certain direction at a certain period. A grating formed, wherein the radiant energy of the heating element is concentrated on infrared rays having a specific wavelength determined by the shape of the plurality of gratings having a polarization plane perpendicular to the arrangement direction of the plurality of gratings. 21. The analysis system according to claim 20, wherein the analysis system radiates.
[27] 前記赤外光源は、発熱体と、異なる方向に配列された複数の格子とを備え、前記 複数の格子のそれぞれの格子は、正の誘電体部および負の誘電体部を一定方向に 一定周期で交互に形成した格子であり、前記発熱体の放射エネルギを、前記複数の 格子の配列方向と直交する複数の偏光面を有する、前記複数の格子の形状によつ て定まる特定の波長の赤外線に集中させて放射する請求項 20に記載の分析システ ム。  [27] The infrared light source includes a heating element and a plurality of gratings arranged in different directions, and each of the plurality of gratings has a positive dielectric part and a negative dielectric part in a certain direction. A grid formed alternately at a constant cycle, and the radiant energy of the heating element has a plurality of polarization planes orthogonal to the arrangement direction of the plurality of gratings and is determined by a shape of the plurality of gratings 21. The analysis system according to claim 20, wherein the analysis system radiates the light in a concentrated manner at an infrared wavelength.
[28] 複数の赤外光源と前記複数の赤外光源のそれぞれの発熱体に電力を供給する電 源を備え、前記複数の赤外光源のそれぞれの発熱体に電力を供給するタイミングを 時間的にシフトさせ、前記複数の赤外光源のそれぞれが時間的にシフトしたタイミン グで赤外線を放射するように構成した請求項 20に記載の分析システム。 [28] A plurality of infrared light sources and a power source for supplying power to each of the plurality of infrared light sources. A timing for supplying power to each heating element of the plurality of infrared light sources is shifted in time, and each of the plurality of infrared light sources emits infrared light at a time shifted timing. The analysis system according to claim 20, wherein the analysis system is configured as follows.
[29] 請求項 1に記載の赤外光源と、 [29] The infrared light source according to claim 1,
前記特定の波長の赤外線を検出することのできる赤外センサと、を備え、前記赤外 光源が前記特定の波長の赤外線を放射し、前記赤外センサが前記特定の波長の赤 外線を検出することによって、前記赤外光源の周囲の状況を監視する監視システム。  An infrared sensor capable of detecting infrared light of the specific wavelength, the infrared light source emits infrared light of the specific wavelength, and the infrared sensor detects infrared light of the specific wavelength. The monitoring system which monitors the condition around the said infrared light source by this.
[30] 前記特定の波長が 2. 5マイクロ 'メータから 6マイクロ 'メータの範囲である請求項 230. The specific wavelength is in the range of 2.5 micrometer to 6 micrometer.
9に記載の監視システム。 9. The monitoring system according to 9.
[31] 前記特定の波長が、前記赤外センサの感度がピークとなる波長と一致するように構 成した請求項 29に記載の監視システム。 31. The monitoring system according to claim 29, wherein the specific wavelength is configured to coincide with a wavelength at which the sensitivity of the infrared sensor reaches a peak.
[32] 前記一定方向に沿って前記特定の波長が変化するように、前記一定方向に沿って 前記格子の深さを変化させた請求項 29に記載の監視システム。 32. The monitoring system according to claim 29, wherein the depth of the grating is changed along the fixed direction so that the specific wavelength changes along the fixed direction.
[33] 前記格子がレンズ面に配置された請求項 29に記載の監視システム。 The monitoring system according to claim 29, wherein the grating is disposed on a lens surface.
[34] 前記赤外光源から前記赤外センサに至る赤外線の経路に、少なくとも一つの偏光 素子を備え、前記偏光素子が所定の方向の偏光面を有する光のみを透過させるよう に構成した請求項 29に記載の監視システム。 [34] The infrared ray path from the infrared light source to the infrared sensor includes at least one polarizing element, and the polarizing element transmits only light having a polarization plane in a predetermined direction. The monitoring system according to 29.
PCT/JP2007/060711 2006-05-26 2007-05-25 Infrared light source and its fabrication method WO2007139022A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008517912A JP4214178B2 (en) 2006-05-26 2007-05-25 Infrared light source and manufacturing method thereof
US12/084,571 US8017923B2 (en) 2006-05-26 2007-05-25 Infrared source and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2006/310575 WO2007141826A1 (en) 2006-05-26 2006-05-26 Infrared light source
JPPCT/JP2006/310575 2006-05-26
JPPCT/JP2006/324023 2006-11-30
PCT/JP2006/324023 WO2007138726A1 (en) 2006-05-26 2006-11-30 Infrared light source

Publications (1)

Publication Number Publication Date
WO2007139022A1 true WO2007139022A1 (en) 2007-12-06

Family

ID=38778543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060711 WO2007139022A1 (en) 2006-05-26 2007-05-25 Infrared light source and its fabrication method

Country Status (1)

Country Link
WO (1) WO2007139022A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250728A (en) * 2008-04-03 2009-10-29 Panasonic Electric Works Co Ltd Gas concentration measuring instrument
WO2011102316A1 (en) * 2010-02-16 2011-08-25 浜松ホトニクス株式会社 Gas concentration calculation device and gas concentration measurement module
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
WO2011108562A1 (en) 2010-03-02 2011-09-09 独立行政法人物質・材料研究機構 Electromagnetic wave resonator, method of manufacturing same, and electromagnetic wave generator element employing same
US8085301B2 (en) 2009-03-16 2011-12-27 Southwest Research Institute Compact handheld detector for greenhouse gasses
US8134127B2 (en) 2009-03-16 2012-03-13 Southwest Research Institute Compact handheld non-laser detector for greenhouse gasses
JP2012156400A (en) * 2011-01-27 2012-08-16 Disco Abrasive Syst Ltd Tape expanding device
JP2012225829A (en) * 2011-04-21 2012-11-15 Panasonic Corp Infrared radiation element and infrared light source
JP2013083478A (en) * 2011-10-06 2013-05-09 Alps Electric Co Ltd Infrared light source, and sensor and gas sensor using the infrared light source
JP2015176768A (en) * 2014-03-14 2015-10-05 スタンレー電気株式会社 Filament, polarized radiation light source device, polarized infrared radiation heater and manufacturing method of filament
WO2017150523A1 (en) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 Heat-radiating light source
WO2018182013A1 (en) * 2017-03-31 2018-10-04 国立大学法人横浜国立大学 Heating-type light source
CN114525493A (en) * 2022-01-13 2022-05-24 苏州科技大学 Metamaterial infrared emission structure and preparation method
US11751970B2 (en) 2015-12-18 2023-09-12 Alcon Inc. Method of making diverging-light fiber optics illumination delivery system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154041A (en) * 1990-10-16 1992-05-27 Yokogawa Electric Corp Microlamp
JPH05258730A (en) * 1992-03-13 1993-10-08 Matsushita Electric Works Ltd Incandescent body for light source
JPH05332930A (en) * 1992-05-29 1993-12-17 Hochiki Corp Photoelectric separation type smoke detector
JPH076742A (en) * 1993-04-07 1995-01-10 Instrumentarium Oy Electrically modulate-able heat radiating source and manufacture thereof
JPH09184757A (en) * 1995-11-24 1997-07-15 Vaisala Oy Electrically modulable thermal radiation source
JPH11515133A (en) * 1995-09-08 1999-12-21 パティノール ア−エス Infrared emitter and method of manufacturing the same
JP2000267585A (en) * 1999-03-19 2000-09-29 Toshiba Corp Light emitter and system using same
WO2004079773A2 (en) * 2003-03-06 2004-09-16 C.R.F. Società Consortile Per Azioni High efficiency emitter for incandescent light sources
JP2005114534A (en) * 2003-10-07 2005-04-28 Denso Corp Infrared light source
WO2005041246A1 (en) * 2003-10-27 2005-05-06 Matsushita Electric Works, Ltd. Infrared light emitting device and gas sensor using same
JP2005184018A (en) * 2003-12-23 2005-07-07 Ching-Fuh Lin Metallic photonic box and its manufacturing method
JP2005207891A (en) * 2004-01-22 2005-08-04 Denso Corp Infrared ray source, and infrared detection type gas sensor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154041A (en) * 1990-10-16 1992-05-27 Yokogawa Electric Corp Microlamp
JPH05258730A (en) * 1992-03-13 1993-10-08 Matsushita Electric Works Ltd Incandescent body for light source
JPH05332930A (en) * 1992-05-29 1993-12-17 Hochiki Corp Photoelectric separation type smoke detector
JPH076742A (en) * 1993-04-07 1995-01-10 Instrumentarium Oy Electrically modulate-able heat radiating source and manufacture thereof
JPH11515133A (en) * 1995-09-08 1999-12-21 パティノール ア−エス Infrared emitter and method of manufacturing the same
JPH09184757A (en) * 1995-11-24 1997-07-15 Vaisala Oy Electrically modulable thermal radiation source
JP2000267585A (en) * 1999-03-19 2000-09-29 Toshiba Corp Light emitter and system using same
WO2004079773A2 (en) * 2003-03-06 2004-09-16 C.R.F. Società Consortile Per Azioni High efficiency emitter for incandescent light sources
WO2004079897A2 (en) * 2003-03-06 2004-09-16 C.R.F. Società Consortile Per Azioni High efficiency emitter for incandescent light sources
JP2005114534A (en) * 2003-10-07 2005-04-28 Denso Corp Infrared light source
WO2005041246A1 (en) * 2003-10-27 2005-05-06 Matsushita Electric Works, Ltd. Infrared light emitting device and gas sensor using same
JP2005184018A (en) * 2003-12-23 2005-07-07 Ching-Fuh Lin Metallic photonic box and its manufacturing method
JP2005207891A (en) * 2004-01-22 2005-08-04 Denso Corp Infrared ray source, and infrared detection type gas sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PINAS N. ET AL.: "Experimental study of infrared thermal emission from periodic microcavities", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 5360, 2004, pages 40 - 43, XP003002786 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250728A (en) * 2008-04-03 2009-10-29 Panasonic Electric Works Co Ltd Gas concentration measuring instrument
US8085301B2 (en) 2009-03-16 2011-12-27 Southwest Research Institute Compact handheld detector for greenhouse gasses
US8134127B2 (en) 2009-03-16 2012-03-13 Southwest Research Institute Compact handheld non-laser detector for greenhouse gasses
US9274048B2 (en) 2010-02-16 2016-03-01 Hamamatsu Photonics K.K. Gas concentration calculation device and gas concentration measurement module
WO2011102316A1 (en) * 2010-02-16 2011-08-25 浜松ホトニクス株式会社 Gas concentration calculation device and gas concentration measurement module
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
WO2011108562A1 (en) 2010-03-02 2011-09-09 独立行政法人物質・材料研究機構 Electromagnetic wave resonator, method of manufacturing same, and electromagnetic wave generator element employing same
JP2012156400A (en) * 2011-01-27 2012-08-16 Disco Abrasive Syst Ltd Tape expanding device
JP2012225829A (en) * 2011-04-21 2012-11-15 Panasonic Corp Infrared radiation element and infrared light source
JP2013083478A (en) * 2011-10-06 2013-05-09 Alps Electric Co Ltd Infrared light source, and sensor and gas sensor using the infrared light source
JP2015176768A (en) * 2014-03-14 2015-10-05 スタンレー電気株式会社 Filament, polarized radiation light source device, polarized infrared radiation heater and manufacturing method of filament
US11751970B2 (en) 2015-12-18 2023-09-12 Alcon Inc. Method of making diverging-light fiber optics illumination delivery system
WO2017150523A1 (en) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 Heat-radiating light source
CN109075018A (en) * 2016-03-01 2018-12-21 大阪瓦斯株式会社 Heat radiation light source
CN109075018B (en) * 2016-03-01 2020-09-01 大阪瓦斯株式会社 Heat radiation light source
US11112536B2 (en) 2016-03-01 2021-09-07 Osaka Gas Co., Ltd. Thermal emission source
WO2018182013A1 (en) * 2017-03-31 2018-10-04 国立大学法人横浜国立大学 Heating-type light source
JPWO2018182013A1 (en) * 2017-03-31 2020-02-06 国立大学法人横浜国立大学 Heated light source
CN114525493A (en) * 2022-01-13 2022-05-24 苏州科技大学 Metamaterial infrared emission structure and preparation method

Similar Documents

Publication Publication Date Title
JP4214178B2 (en) Infrared light source and manufacturing method thereof
WO2007139022A1 (en) Infrared light source and its fabrication method
JP6355857B2 (en) Mid-infrared hyperspectral spectroscopy system and method
US7286244B2 (en) Analyzer
US8023115B2 (en) Sensor, sensing system and sensing method
KR102052227B1 (en) Infrared ray conversion element, image-capturing apparatus and image-capturing method
US10444076B2 (en) Infrared device
CA2368989C (en) Improvements in, or relating to, infra-red detection
KR20190038177A (en) Spectrometer
JP5657340B2 (en) Laser diode device having temperature-controlled beam forming member and gas detection method using the laser diode device
JP2008541134A (en) Optical micro spectrometer
WO2007142360A1 (en) Spectroscopic device and raman spectroscopic system
CN111665211A (en) Gas sensor
US20170012199A1 (en) Structured silicon-based thermal emitter
US11408824B2 (en) Biological material measurement device
CA3111373A1 (en) Modulation of a movable ir emitter by an aperture structure
WO2016024503A1 (en) Gas measurement apparatus, multiple-device substrate, manufacturing methods therefor, and methods for manufacturing infrared light source and pyroelectric infrared sensor
CN111115565B (en) Preparation method and application of MEMS infrared light source
JP2007324126A (en) Infrared light source
KR101935016B1 (en) Non-dispersive Infrared gas sensor using multi internal reflection
JP4299798B2 (en) Photothermal conversion measuring device, sample cell
KR101469238B1 (en) Infrared ray apparatus and gas measurement optical system including the same
CN114486790B (en) Gas detection device
CN113660433A (en) Uncooled thermal infrared focal plane device and infrared imaging equipment
US20190310191A1 (en) Device And Method For Detecting The Presence of Determined Molecules, And Biosensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008517912

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12084571

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744145

Country of ref document: EP

Kind code of ref document: A1