JP2013041027A - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP2013041027A
JP2013041027A JP2011176816A JP2011176816A JP2013041027A JP 2013041027 A JP2013041027 A JP 2013041027A JP 2011176816 A JP2011176816 A JP 2011176816A JP 2011176816 A JP2011176816 A JP 2011176816A JP 2013041027 A JP2013041027 A JP 2013041027A
Authority
JP
Japan
Prior art keywords
filter
film
resin substrate
height
transparent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011176816A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
一雄 鈴木
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2011176816A priority Critical patent/JP2013041027A/en
Publication of JP2013041027A publication Critical patent/JP2013041027A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter made of a multiple-density ND filter including a gradient type with excellent optical characteristics and allowing easy production.SOLUTION: A fine rugged structure 32 being rugged with a variable height or pitch is consecutively formed on a transparent resin substrate 31, and an ND film 33 made of a multilayer film is formed on the fine rugged structure 32, so that transmittance is varied according to the height or pitch of the fine rugged structure 32. Accordingly, by forming on the transparent resin substrate 31 in which the height or pitch of the fine rugged structure 32 is consecutively varied, an ND filter having density variation is manufactured.

Description

本発明は、カメラ等の撮影装置や光学機器等に使用される光学フィルタに関するものである。   The present invention relates to an optical filter used in a photographing apparatus such as a camera or an optical apparatus.

従来から、デジタルカメラやビデオカメラ等の光学機器には、光量を調節するための絞り装置が組み込まれている。この絞り装置は、絞り羽根の開閉によりCCD等の固体撮像素子に入射する光量を調節するものであり、被写界が明るい場合には、より小さく絞り込まれるようになっている。   Conventionally, an aperture device for adjusting the amount of light is incorporated in an optical device such as a digital camera or a video camera. This diaphragm device adjusts the amount of light incident on a solid-state imaging device such as a CCD by opening and closing the diaphragm blades. When the object field is bright, the diaphragm device is further narrowed down.

従って、快晴時や高輝度の被写体を撮影する際には、光量を減衰させるための絞りは小絞りとなるが、絞りを小さくし過ぎると、光は絞りにより回折し、撮影した画像の劣化を引き起こしてしまうことがある。また、CCD等の固体撮像素子が高感度化するにつれ、更に光量を減衰させる必要があり、この画像劣化の傾向は顕著になる。   Therefore, when shooting a clear or high-luminance subject, the aperture for attenuating the light becomes a small aperture, but if the aperture is too small, the light is diffracted by the aperture and the captured image is degraded. It may cause. Further, as the sensitivity of a solid-state imaging device such as a CCD becomes higher, the amount of light needs to be further attenuated, and this tendency of image deterioration becomes remarkable.

そこで、この問題の対策として、絞り羽根に光量調整部材としてフィルム状のND(Neutral Density)フィルタを取り付けることにより、絞り開口が大きいまま光量を減衰させている。具体的には、絞り羽根の一部に、接着剤を介して絞り羽根とは異なる別部材から成るNDフィルタを貼り付け、被写体が高輝度の際には、NDフィルタを光軸上に位置させることにより通過光量を制限する。これにより、絞り開口が小さくなり過ぎるまで絞り込むことを回避でき、絞り開口を一定の大きさに維持することができる。   Therefore, as a countermeasure against this problem, a film-like ND (Neutral Density) filter is attached to the diaphragm blades as a light quantity adjusting member, so that the quantity of light is attenuated while the diaphragm aperture is large. Specifically, an ND filter made of a different member from the diaphragm blade is attached to a part of the diaphragm blade via an adhesive, and when the subject has high brightness, the ND filter is positioned on the optical axis. This limits the amount of light passing through. As a result, it is possible to avoid narrowing down until the aperture opening becomes too small, and the aperture opening can be maintained at a constant size.

更に、光量調節機能として濃度勾配を有するNDフィルタを使用し、このNDフィルタを移動させることにより、更なる光量調節を行うこともできる。この濃度勾配を有するNDフィルタは、グラデーションNDフィルタと呼ばれ、例えば特許文献1に示すように、濃度分布を形成した原版から銀塩フィルムに写し込んで作製する。また、特許文献2に示すように、スリットマスクを使用して成膜して濃度分布を形成したり、特許文献3に示すようなインクジェット法でインクを吐出することにより濃度分布を形成する方法等により作製することができる。   Further, an ND filter having a density gradient is used as the light amount adjustment function, and the light amount can be further adjusted by moving the ND filter. An ND filter having this density gradient is called a gradation ND filter, and for example, as shown in Patent Document 1, is produced by copying from a master plate having a density distribution onto a silver salt film. Further, as shown in Patent Document 2, a film is formed using a slit mask to form a density distribution, or a method of forming a density distribution by ejecting ink by an ink jet method as shown in Patent Document 3 or the like. Can be produced.

図17は従来のグラデーションタイプのNDフィルタ1の模式断面図を示し、透明樹脂基板2上に膜厚を変化させた誘電体層3a及び光吸収層3bを交互に積層し、最表層に膜厚を均一とした誘電体層から成る最表層3cから成るND膜3を成膜している。更に、この透明樹脂基板2の裏面には均一な膜厚の反射防止膜4が成膜されている。   FIG. 17 is a schematic cross-sectional view of a conventional gradation type ND filter 1, in which dielectric layers 3a and light absorption layers 3b having different thicknesses are alternately stacked on a transparent resin substrate 2, and the film thickness is formed on the outermost layer. The ND film 3 made of the outermost layer 3c made of a dielectric layer having a uniform thickness is formed. Further, an antireflection film 4 having a uniform film thickness is formed on the back surface of the transparent resin substrate 2.

特開平6−95208号公報JP-A-6-95208 特開2004−61900号公報JP 2004-61900 A 特開2004−246305号公報JP 2004-246305 A

近年、デジタルカメラやビデオカメラ等の撮像機器に使用される固体撮像素子から成る画像センサは高感度化が進み、それに合わせてNDフィルタの高濃度化も進んでいる。   In recent years, image sensors composed of solid-state image sensors used in imaging devices such as digital cameras and video cameras have been improved in sensitivity, and the density of ND filters has been increased accordingly.

しかし、NDフィルタの濃度が高濃度化すると、開口内におけるフィルタ先端部でのフィルタの有無による光量のむらが大きくなり、画質を劣化させてしまうことがある。そのため、フィルタの先端部に向けて濃度が連続的に減少するグラデーションNDフィルタを使用することが一般的になってきている。   However, when the density of the ND filter is increased, unevenness in the amount of light due to the presence or absence of the filter at the filter tip in the opening may increase, and image quality may deteriorate. Therefore, it has become common to use a gradation ND filter whose density continuously decreases toward the tip of the filter.

しかしながら、特許文献1に示す方法によると、銀塩フィルムに含まれる銀塩粒子が散乱を引き起こし画質劣化を起こす場合がある。また、特許文献2に示す方法では、NDフィルタの表面反射を低減するために、先ずスリットマスクを使用して成膜し、更にスリットマスクを使用せずに再表層に均一な厚みの反射防止膜を成膜するため生産工程に時間が掛かってしまう。また、特許文献3に示す方法においては、現状ではインクの分光特性が蒸着膜に劣るという問題を有している。   However, according to the method shown in Patent Document 1, silver salt particles contained in the silver salt film may cause scattering and image quality deterioration. Moreover, in the method shown in Patent Document 2, in order to reduce the surface reflection of the ND filter, first, a film is formed using a slit mask, and further, an antireflection film having a uniform thickness on the surface layer without using the slit mask. As a result, the production process takes time. In addition, the method disclosed in Patent Document 3 has a problem that the spectral characteristics of the ink are inferior to those of the deposited film at present.

図17に示すグラデーションNDフィルタ1は、グラデーション部においても反射を低減するためには、最表層3cはグラデーション部まで均一の膜厚とすることが好ましい。そのためには、蒸着時に図18(a)に示すように、治具11に取り付けた透明樹脂基板2と蒸着マスク12の間に、所定の間隔を設けて最表層3cの手前の層まで成膜する。続いて、(b)に示すように、蒸着マスク12を外し最表層3cを一定の厚さに成膜する。   In the gradation ND filter 1 shown in FIG. 17, it is preferable that the outermost layer 3c has a uniform thickness up to the gradation part in order to reduce reflection even in the gradation part. For this purpose, as shown in FIG. 18A during deposition, a film is formed up to a layer before the outermost layer 3c with a predetermined interval between the transparent resin substrate 2 attached to the jig 11 and the deposition mask 12. To do. Subsequently, as shown in (b), the vapor deposition mask 12 is removed, and the outermost layer 3c is formed to a certain thickness.

しかし、この方法では蒸着マスク12を外すために、一旦蒸着チャンバから取り出さなくてはならず作業時間が長く掛かってしまう。   However, in this method, in order to remove the vapor deposition mask 12, it must be once taken out of the vapor deposition chamber, and it takes a long working time.

本発明の目的は、上述の課題を解消し、簡便に生産可能で光学特性の優れたグラデーションタイプを含む多濃度の光学フィルタを提供することにある。   An object of the present invention is to solve the above-described problems and provide a multi-density optical filter including a gradation type that can be easily produced and has excellent optical characteristics.

上記目的を達成するための本発明に係る光学フィルタは、透明基板の表面に微小な凹凸形状を連続的に形成し、該凹凸形状の上に複数層の無機硬質膜から成るND膜を成膜し、前記凹凸形状はピッチと高さの少なくとも一方を変化させたことを特徴とする。   In order to achieve the above object, an optical filter according to the present invention continuously forms a minute uneven shape on the surface of a transparent substrate, and forms an ND film composed of a plurality of layers of inorganic hard films on the uneven shape. However, the uneven shape is characterized in that at least one of pitch and height is changed.

本発明に係る光学フィルタによれば、透明樹脂基板上に予めピッチ、高さの少なくとも一方が異なる凹凸形状を連続的に形成し、その上に光吸収層を含むND膜を形成することにより、凹凸形状に応じて透過率の異なる領域を形成することができる。   According to the optical filter according to the present invention, by continuously forming a concavo-convex shape in which at least one of pitch and height is different on a transparent resin substrate in advance, and forming an ND film including a light absorption layer thereon, Regions having different transmittances can be formed according to the uneven shape.

実施例1の撮像装置の構成図である。1 is a configuration diagram of an imaging apparatus according to Embodiment 1. FIG. NDフィルタの模式断面図である。It is a schematic cross section of an ND filter. 微細凹凸構造の斜視図である。It is a perspective view of a fine concavo-convex structure. 微細凹凸構造を作製方法の説明図である。It is explanatory drawing of the manufacturing method of a fine uneven structure. 微細凹凸構造の模式断面図である。It is a schematic cross section of a fine concavo-convex structure. NDフィルタの蒸着治具の断面図である。It is sectional drawing of the vapor deposition jig | tool of ND filter. チャンバの模式図である。It is a schematic diagram of a chamber. NDフィルタの膜構成図である。It is a film | membrane block diagram of a ND filter. 変形例のNDフィルタの膜模式図である。It is a film | membrane schematic diagram of the ND filter of a modification. 微細凹凸構造上に蒸着膜が積層される様子の説明図である。It is explanatory drawing of a mode that a vapor deposition film is laminated | stacked on a fine concavo-convex structure. 微細凹凸構造上に蒸着膜が形成され、膜厚の偏りにより透過率が変化することを説明するモデル図である。It is a model figure explaining that a vapor deposition film is formed on a fine concavo-convex structure, and the transmittance changes due to a deviation in film thickness. 実施例2のNDフィルタの模式断面図及び濃度分布図である。6 is a schematic cross-sectional view and a concentration distribution diagram of an ND filter of Example 2. FIG. 光吸収層にTiを使用したNDフィルタの濃度分布図である。It is a density distribution figure of ND filter which uses Ti for a light absorption layer. NDフィルタをプレス抜きで切断した説明図である。It is explanatory drawing which cut | disconnected the ND filter by press release. 実施例3のNDフィルタの模式断面図及び濃度分布図である。6 is a schematic cross-sectional view and a concentration distribution diagram of an ND filter of Example 3. FIG. 実施例4のNDフィルタの模式断面図及び濃度分布図である。6 is a schematic cross-sectional view and a concentration distribution diagram of an ND filter of Example 4. FIG. 従来のグラデーションNDフィルタの模式断面図である。It is a schematic cross section of a conventional gradation ND filter. 従来のグラデーションNDフィルタの作製方法の説明図である。It is explanatory drawing of the preparation methods of the conventional gradation ND filter.

本発明を図1〜図16に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は実施例1における撮像装置の構成図を示し、撮像光学系としてのレンズ21〜24中に、光量調節装置25が設けられ、その後方にローパスフィルタ26、CCD等から成る固体撮像素子27が順次に配列されている。光量調節装置25においては、絞り羽根支持板28に一対の絞り羽根29a、29bが可動に取り付けられている。絞り羽根29aには、絞り羽根29a、29bにより形成される略菱形状の開口部を通過する光量を減光することを目的としてNDフィルタ30が接着されている。   FIG. 1 is a configuration diagram of an image pickup apparatus according to the first embodiment. A light amount adjusting device 25 is provided in lenses 21 to 24 as an image pickup optical system, and a solid-state image pickup device 27 including a low-pass filter 26, a CCD, and the like behind the lens 21-24. Are arranged sequentially. In the light quantity adjusting device 25, a pair of aperture blades 29 a and 29 b are movably attached to the aperture blade support plate 28. An ND filter 30 is bonded to the diaphragm blade 29a for the purpose of reducing the amount of light passing through the substantially rhombic opening formed by the diaphragm blades 29a and 29b.

撮像装置には、この他に光量調節装置25の駆動や、固体撮像素子27の撮像出力信号を処理する図示しない制御回路が設けられている。   In addition to this, the imaging device is provided with a control circuit (not shown) that drives the light amount adjustment device 25 and processes the imaging output signal of the solid-state imaging device 27.

なお、NDフィルタ30は絞り羽根29a、29bとは別途に、単独で絞り開口部内に進退するようにしてもよい。   Note that the ND filter 30 may be advanced and retracted independently from the aperture blades 29a and 29b.

図2はNDフィルタ30の模式断面図である。板厚100μmの2軸延伸PET(ポリエチレンテレフタレート)樹脂フィルムから成る透明樹脂基板31上に、微細凹凸構造32が形成されている。更に、透明樹脂基板31上及び微細凹凸構造32の隙間と上部に、誘電体層33a、光吸収層33b、誘電体層33cから成るND膜33が成膜されている。また、透明樹脂基板31の裏面には反射防止膜34が成膜されている。   FIG. 2 is a schematic cross-sectional view of the ND filter 30. A fine concavo-convex structure 32 is formed on a transparent resin substrate 31 made of a biaxially stretched PET (polyethylene terephthalate) resin film having a plate thickness of 100 μm. Further, an ND film 33 including a dielectric layer 33a, a light absorption layer 33b, and a dielectric layer 33c is formed on the transparent resin substrate 31 and in the gap and the upper portion of the fine concavo-convex structure 32. An antireflection film 34 is formed on the back surface of the transparent resin substrate 31.

なお、実施例1においては、透明樹脂基板31に2軸延伸PETを使用しているが、PET以外でも透明性及び機械的強度を有するフィルム状の樹脂基板を使用することも可能である。例えば、PEN(ポリエチレンナフタレート)、アクリル系樹脂、ポリカーボネート、ポリイミド系樹脂、ノルボルネン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド等を使用することもできる。   In Example 1, biaxially stretched PET is used for the transparent resin substrate 31. However, it is also possible to use a film-like resin substrate having transparency and mechanical strength other than PET. For example, PEN (polyethylene naphthalate), acrylic resin, polycarbonate, polyimide resin, norbornene resin, polystyrene, polyvinyl chloride, polyarylate, polysulfone, polyethersulfone, polyetherimide, and the like can be used.

また、透明樹脂基板31の板厚としては、NDフィルタ30としての剛性を保持しながら、可能な限り薄くすることが望ましい。具体的には、その板厚は300μm以下とすることが好ましく、より好ましくは50〜100μmとすることがよい。   The plate thickness of the transparent resin substrate 31 is preferably as thin as possible while maintaining the rigidity of the ND filter 30. Specifically, the plate thickness is preferably 300 μm or less, more preferably 50 to 100 μm.

図3(a)は微細凹凸構造32の斜視図を示し、透明樹脂基板31上には円錐形状の突起部35が等間隔で連続的に無数に配置された蛾目(Moth eye)構造とも呼ばれている。突起部35の形状は(a)に示す円錐形状の他に、(b)に示す四角錐形状の突起部36、或いは他の多角錐形状、更には(c)に示す逆円錐形状の凹部37としてもよい。   FIG. 3A is a perspective view of the fine concavo-convex structure 32, which is also referred to as a “Moth eye” structure in which conical protrusions 35 are continuously arranged at equal intervals on the transparent resin substrate 31. It is. In addition to the conical shape shown in (a), the shape of the protruding portion 35 is a quadrangular pyramid-shaped protruding portion 36 shown in (b), or another polygonal pyramid shape, and further an inverted conical concave portion 37 shown in (c). It is good.

また、微細凹凸構造32の凹凸パターンのピッチPは、10〜2000nm程度が好ましく、実施例1においては300nmとしている。   The pitch P of the concave / convex pattern of the fine concavo-convex structure 32 is preferably about 10 to 2000 nm, and in Example 1, it is set to 300 nm.

微細凹凸構造32を構成する突起部35、36、凹部37を形成する手段としては、例えば次のような方法がある。   As means for forming the protrusions 35 and 36 and the recess 37 constituting the fine concavo-convex structure 32, for example, there are the following methods.

(1)微細凹凸構造32と逆の形状を有する微細凹凸構造型を用いて、熱や圧力を加えて透明樹脂基板31の表面に微細凹凸構造32を転写する方法。   (1) A method of transferring the fine concavo-convex structure 32 to the surface of the transparent resin substrate 31 by applying heat or pressure using a fine concavo-convex structure mold having a shape opposite to that of the fine concavo-convex structure 32.

(2)半導体製造技術を用いて透明樹脂基板31の表面に、直接、微細凹凸構造32を形成する方法。   (2) A method of forming the fine relief structure 32 directly on the surface of the transparent resin substrate 31 using a semiconductor manufacturing technique.

(3)透明樹脂基板31の表面に固化可能材料で膜を形成し、微細凹凸構造32と逆の形状を有する微細凹凸構造型を密着させて、固化可能材料を固化させる方法。   (3) A method of forming a film with a solidifiable material on the surface of the transparent resin substrate 31 and closely adhering a fine concavo-convex structure mold having a shape opposite to the fine concavo-convex structure 32 to solidify the solidifiable material.

実施例1においては、形状転写性と生産性に優れ、透明樹脂基板31に与える熱が少ない(3)の方法を用いて、微細凹凸構造32を形成している。   In Example 1, the fine concavo-convex structure 32 is formed by using the method (3) that is excellent in shape transferability and productivity and that gives little heat to the transparent resin substrate 31.

固化可能材料は特に限定されないが、UV硬化樹脂が好ましく、例えばウレタン系、アクリル系、エポキシ系、ウレタンアクリレート系等の樹脂が挙げられる。実施例1においては、UV硬化性のポリメチルメタクリレートを使用し、微細凹凸構造32を形成している。   The solidifiable material is not particularly limited, but a UV curable resin is preferable, and examples thereof include urethane-based, acrylic-based, epoxy-based, and urethane acrylate-based resins. In Example 1, UV curable polymethyl methacrylate is used to form the fine concavo-convex structure 32.

図4は微細凹凸構造32の作製方法の説明図であり、先ず転写型41に形成された微細凹凸構造型42上に、固化可能材料43を塗布する。続いて、固化可能材料43を塗布した面に透明樹脂基板31を密着させた後に、透明樹脂基板31側からUV光を照射させることにより、固化可能材料43を固化させ、最後に透明樹脂基板31を転写型41から離型する。   FIG. 4 is an explanatory view of a method for producing the fine concavo-convex structure 32. First, a solidifiable material 43 is applied onto the fine concavo-convex structure mold 42 formed on the transfer mold 41. FIG. Subsequently, after the transparent resin substrate 31 is brought into close contact with the surface to which the solidifiable material 43 is applied, the solidifiable material 43 is solidified by irradiating UV light from the transparent resin substrate 31 side, and finally the transparent resin substrate 31. Is released from the transfer mold 41.

転写型41の微細凹凸構造型42の形成方法は種々の方法が知られている。例えば、半導体製造に用いられる電子線描画やレーザー干渉法によるフォトリソグラフィ技術を使用したり、ガラス材に所定の微細凹凸構造を形成させた後に、Niメッキを施し、このメッキ層を剥離して型とする電鋳法等を使用することもできる。   Various methods for forming the fine uneven structure mold 42 of the transfer mold 41 are known. For example, using a photolithography technique using electron beam drawing or laser interferometry used in semiconductor manufacturing, or forming a predetermined fine concavo-convex structure on a glass material, Ni plating is performed, and the plating layer is peeled off to form a mold. An electroforming method or the like can also be used.

図5は微細凹凸構造32の模式断面図を示し、透明樹脂基板31上に形成された微細凹凸構造32の突起の高さは、A、B、Cと紙面右側にゆくほど高くなるように変化する構造となっている。このとき、微細凹凸構造型42としては微細凹凸構造32の高さが高い部分ほど深い穴が形成されている。   FIG. 5 is a schematic cross-sectional view of the fine concavo-convex structure 32, and the height of the protrusions of the fine concavo-convex structure 32 formed on the transparent resin substrate 31 is changed so as to increase toward A, B, C and the right side of the page. It has a structure to do. At this time, as the fine concavo-convex structure mold 42, a deeper hole is formed in a portion where the height of the fine concavo-convex structure 32 is higher.

実施例1において形成する微細凹凸構造型42は、形状や高さ、ピッチ、パターン等が限定されるものではない。また、透明樹脂基板31上に形成された微細凹凸構造32の表面形状を原子間力顕微鏡(AFM)で測定したところ、高さhは50〜500nmで連続的に変化し、300nmのピッチの凹凸パターンが形成されていた。また、突起部35の裾部はφ300nmであるため、ピッチが300nmであれば突起部35の裾部は離れずに隣接している。   The fine concavo-convex structure mold 42 formed in Example 1 is not limited in shape, height, pitch, pattern, or the like. Moreover, when the surface shape of the fine concavo-convex structure 32 formed on the transparent resin substrate 31 was measured with an atomic force microscope (AFM), the height h changed continuously from 50 to 500 nm, and the concavo-convex with a pitch of 300 nm. A pattern was formed. Moreover, since the skirt part of the projection part 35 is (phi) 300 nm, if the pitch is 300 nm, the skirt part of the projection part 35 will adjoin without leaving | separating.

このようにして作製された透明樹脂基板31を用い、真空蒸着法を用いて図2に示すように、誘電体層33a、光吸収層33b、誘電体層33cから成る無機硬質膜のND膜33を成膜する。誘電体層33a、光吸収層33b、誘電体層33cの材質は特に限定されず、誘電体層33a、33cとしてはAl23、TiO2、SiO2、MgF2、Nb23、Ta25、HfO2、ZrO2等の単体、或いは混合物が使用可能である。しかし、最表層となる誘電体層33cは屈折率が小さいSiO2やMgF2が望ましい。また、光吸収層33bとしては、CeO2、HfO2、Pr23、Sc23、Tb23、TiO2、Nb25、Ta25、Y23、ZnO、ZrO2等を酸素ガスを導入せずに高真空状態で成膜した不飽和酸化物、Ti、Cr、Ni等の金属やこれらの酸化物及び合金、更にこれらの吸収材料と上述した誘電体材料との混合物が使用可能である。 As shown in FIG. 2 using the thus-prepared transparent resin substrate 31 and using a vacuum deposition method, an inorganic hard film ND film 33 comprising a dielectric layer 33a, a light absorption layer 33b, and a dielectric layer 33c. Is deposited. The material of the dielectric layer 33a, the light absorption layer 33b, and the dielectric layer 33c is not particularly limited, and the dielectric layers 33a and 33c are Al 2 O 3 , TiO 2 , SiO 2 , MgF 2 , Nb 2 O 3 , Ta A simple substance such as 2 O 5 , HfO 2 , ZrO 2 or a mixture thereof can be used. However, the dielectric layer 33c as the outermost layer is preferably made of SiO 2 or MgF 2 having a small refractive index. Further, as the light absorbing layer 33b, CeO 2, HfO 2, Pr 2 O 3, Sc 2 O 3, Tb 2 O 3, TiO 2, Nb 2 O 5, Ta 2 O 5, Y 2 O 3, ZnO, Unsaturated oxides formed by depositing ZrO 2 or the like in a high vacuum state without introducing oxygen gas, metals such as Ti, Cr, and Ni, oxides and alloys thereof, absorption materials thereof, and dielectric materials described above A mixture with can be used.

図6は透明樹脂基板31上にND膜33を成膜するための蒸着治具51の断面図である。この蒸着治具51は図示しないピン等を介して、透明樹脂基板31に微細凹凸構造32が形成された面を成膜面側に向けて、蒸着パターン形成マスク52と共に固定されている。   FIG. 6 is a cross-sectional view of a vapor deposition jig 51 for forming the ND film 33 on the transparent resin substrate 31. The vapor deposition jig 51 is fixed together with a vapor deposition pattern forming mask 52 through a pin or the like (not shown) so that the surface on which the fine concavo-convex structure 32 is formed on the transparent resin substrate 31 faces the film formation surface.

図7は透明樹脂基板31上にND膜33を成膜するための真空蒸着機のチャンバの構成図である。チャンバ53内には蒸着源54が設けられていると共に、回転可能な回転ドーム55が設けられている。この回転ドーム55には、成膜部位に開口部を設けた蒸着パターン形成マスク52と透明樹脂基板31をセットした図6に示す蒸着治具51が配置されている。蒸着治具51に固定された透明樹脂基板31は、回転ドーム55と共にチャンバ53のZ軸を中心に回転し成膜が行われる。   FIG. 7 is a configuration diagram of a chamber of a vacuum evaporation machine for forming the ND film 33 on the transparent resin substrate 31. A vapor deposition source 54 is provided in the chamber 53 and a rotatable dome 55 is provided. In this rotating dome 55, a vapor deposition pattern 51 shown in FIG. 6 in which a vapor deposition pattern forming mask 52 having an opening at a film forming portion and a transparent resin substrate 31 are set is arranged. The transparent resin substrate 31 fixed to the vapor deposition jig 51 rotates around the Z axis of the chamber 53 together with the rotating dome 55 to form a film.

実施例1においては、誘電体層33aとしてAl23、光吸収層33bとしてTiOx、誘電体層33cとしてSiO2を使用し、図8に示す膜構成図から成るNDフィルタ30を作製した。 In Example 1, the ND filter 30 having the film configuration shown in FIG. 8 was manufactured using Al 2 O 3 as the dielectric layer 33a, TiOx as the light absorption layer 33b, and SiO 2 as the dielectric layer 33c.

透明樹脂基板31上に形成された微細凹凸構造32の高さは図5に示すように連続的に変化しているため、図8に示すように微細凹凸構造32上にND膜33を形成すると、微細凹凸構造32の高さに応じてその透過率も変化する。   Since the height of the fine concavo-convex structure 32 formed on the transparent resin substrate 31 continuously changes as shown in FIG. 5, when the ND film 33 is formed on the fine concavo-convex structure 32 as shown in FIG. Depending on the height of the fine concavo-convex structure 32, the transmittance also changes.

また、図8に示すように透明樹脂基板31の裏面側にはTiO2とSiO2から成る反射防止膜34を成膜したが、その代りにND膜33を形成してもよい。 Further, as shown in FIG. 8, an antireflection film 34 made of TiO 2 and SiO 2 is formed on the back surface side of the transparent resin substrate 31, but an ND film 33 may be formed instead.

なお、図9に示すように、透明樹脂基板31の両面のそれぞれに微細凹凸構造32を設け、これらの上にND膜33を形成してもよい。   In addition, as shown in FIG. 9, the fine uneven structure 32 may be provided on each of both surfaces of the transparent resin substrate 31, and the ND film | membrane 33 may be formed on these.

図10は微細凹凸構造32上にND膜33を形成する際の説明図である。(a)に示すように、透明樹脂基板31上に複数の突起部35が形成されており、蒸着材料33’は或る運動エネルギを有して飛翔してくる。そのため、上方から進んできた蒸着材料33’は、突起部35の斜面に到着しても移動を続け、突起部35間の谷部に定着する確率が高い。つまり、(b)に示すように、蒸着膜であるND膜33の厚みとしては谷部が厚く(t2)、突起部35の頂上部ほど薄く(t1)なることになる。   FIG. 10 is an explanatory diagram when the ND film 33 is formed on the fine concavo-convex structure 32. As shown to (a), the some projection part 35 is formed on the transparent resin substrate 31, and the vapor deposition material 33 'flies with a certain kinetic energy. For this reason, the vapor deposition material 33 ′ traveling from above has a high probability of continuing to move even if it reaches the slope of the protrusion 35 and fixing in the valleys between the protrusions 35. That is, as shown in (b), as for the thickness of the ND film 33 which is a vapor deposition film, the valley is thicker (t2), and the top of the protrusion 35 is thinner (t1).

図11は微細領域で膜厚分布ができることで、透過率が変化することの説明図である。(a)は膜厚分布がない、即ち平面上に蒸着膜が形成された状態を示し、(b)は膜厚分布がある、即ち微細凹凸構造32上に蒸着膜が形成され、微細凹凸構造32の谷部の膜厚が厚く、頂上部の膜厚が薄い状態を示している。   FIG. 11 is an explanatory diagram showing that the transmittance changes due to the film thickness distribution in the fine region. (A) shows a state where there is no film thickness distribution, that is, a deposited film is formed on a plane, and (b) shows a state where there is a film thickness distribution, that is, a deposited film is formed on the fine concavo-convex structure 32 and the fine concavo-convex structure is formed. The film thickness of the valley part of 32 is thick, and the film thickness of the top part is thin.

先ず、図11(a)に示す蒸着膜の微小単位をMとし、その幅をd、厚みをL、厚みLの蒸着膜の透過率をTとする。幅dの微小領域A及びBを考えると、入射光I0は微小領域A及びBでそれぞれI0/2であり、それぞれの透過光量はI1及びI2となり、微小領域A及びBの全透過光量はI12となる。それぞれの領域での蒸着膜の総厚はL・xとし、平面上に蒸着膜が形成された(a)では、微小領域A及びBは均等の膜厚であるので、全透過光量I12は次式となる。
12=(I0/2)・Tx・2
First, let M be the minute unit of the deposited film shown in FIG. 11A, d be the width, L be the thickness, and T be the transmittance of the deposited film with the thickness L. Given the small areas A and B of the width d, the incident light I 0 is I 0/2 respectively in the minute areas A and B, each amount of transmitted light I 1 and I 2, and the whole of the minute areas A and B The amount of transmitted light is I 12 . The total thickness of the deposited film in each region and L · x, the deposited film on a plane are formed (a), since the minute areas A and B are the film thickness of equal total transmitted light quantity I 12 is The following formula.
I 12 = (I 0/2 ) · T x · 2

それに対して、図11(b)では微小領域AとBの全域に付着する蒸着膜体積としては(a)と同じであるが、上述したように凹凸により膜厚に偏りが生じ、微小領域AとBで膜厚が異なる。従って、微小領域AとBのそれぞれの領域での透過光量I3及びI4は異なり、結果として全透過光量I34は透過光量I3及びI4の合計となる。図11に示すように微小領域AとBにおいて、微小領域Bの膜厚y分の蒸着膜が微小領域Aに偏って付着したとすると、その全透過光量I34は次式となる。
34=(I0/2)・{T(x+y)+T(x-y)}
On the other hand, in FIG. 11B, the deposition film volume adhering to the entire area of the minute regions A and B is the same as that of FIG. 11A, but the unevenness occurs in the film thickness due to the unevenness as described above. And B have different film thicknesses. Therefore, the transmitted light amounts I 3 and I 4 in the micro regions A and B are different, and as a result, the total transmitted light amount I 34 is the sum of the transmitted light amounts I 3 and I 4 . As shown in FIG. 11, in the minute regions A and B, assuming that the vapor deposition film corresponding to the film thickness y of the minute region B is biased and adhered to the minute region A, the total transmitted light amount I 34 is expressed by the following equation.
I 34 = (I 0/2 ) · {T (x + y) + T (xy) }

透過光量I12とI34を比較すると、全透過光量I34の方が大きな値となり、つまり微小領域A及びBで膜厚の偏りがあると、均一な膜厚よりも透過率が高くなることが分かる。 Comparing the transmitted light amounts I 12 and I 34 , the total transmitted light amount I 34 has a larger value, that is, if there is a deviation in film thickness in the micro regions A and B, the transmittance is higher than the uniform film thickness. I understand.

図12(a)に示すように作製した実施例2のNDフィルタ30は、高さを50〜500nmに幾つかのグループに段階的に変化させた微細凹凸構造32を透明樹脂基板31上に形成し、その上にND膜33を成膜している。(b)は位置と微細凹凸構造32の高さを示し、(c)はそれぞれの位置と光学濃度の関係を示している。光学濃度ODはOD=−logT(Tは透過率)で計算される。(c)によれば、位置により光学濃度が連続的に変化しており、グラデーションNDフィルタとなっていることが分かる。   In the ND filter 30 of Example 2 manufactured as shown in FIG. 12A, the fine uneven structure 32 in which the height is changed to several groups stepwise from 50 to 500 nm is formed on the transparent resin substrate 31. An ND film 33 is formed thereon. (B) shows the position and the height of the fine relief structure 32, and (c) shows the relationship between each position and optical density. The optical density OD is calculated by OD = −logT (T is transmittance). According to (c), it can be seen that the optical density continuously changes depending on the position, resulting in a gradation ND filter.

また、光吸収層33bに消衰係数が異なる材料を使用すると、濃度変化幅の異なるグラデーションNDフィルタを製作ことができる。例えば、Tiを使用すると図13に示すように、図12(c)と異なる濃度変化のグラデーションNDフィルタを作製することもできる。   In addition, when materials having different extinction coefficients are used for the light absorption layer 33b, gradation ND filters having different density change widths can be manufactured. For example, when Ti is used, as shown in FIG. 13, a gradation ND filter having a density change different from that in FIG. 12C can be produced.

最後に、図14に示すようにND膜33が成膜された透明樹脂基板31に対してプレス抜きすることにより、NDフィルタ30を得ることができる。   Finally, as shown in FIG. 14, the ND filter 30 can be obtained by pressing the transparent resin substrate 31 on which the ND film 33 is formed.

実施例1によれば、透明樹脂基板31上に形成する微細凹凸構造32のパターンを変化させることにより、その上に均一な厚みのND膜33を形成しても光学濃度を形成することができるため、従来2回に分けていた成膜工程を1回で済ませることができる。   According to the first embodiment, by changing the pattern of the fine concavo-convex structure 32 formed on the transparent resin substrate 31, the optical density can be formed even when the ND film 33 having a uniform thickness is formed thereon. Therefore, the film forming process that has been divided into two processes can be completed only once.

図15(a)は実施例3のNDフィルタ30’の模式断面図である。微細凹凸構造32のピッチを300〜800nmの間で変化させた透明樹脂基板31を使用し、実施例1と同様の方法でNDフィルタ30’を作製している。(b)は位置と微細凹凸構造32のピッチを示し、(c)はそれぞれの位置と光学濃度ODの関係を示している。   FIG. 15A is a schematic cross-sectional view of the ND filter 30 ′ of the third embodiment. Using the transparent resin substrate 31 in which the pitch of the fine uneven structure 32 is changed between 300 and 800 nm, the ND filter 30 ′ is manufactured by the same method as in the first embodiment. (B) shows the position and the pitch of the fine relief structure 32, and (c) shows the relationship between each position and the optical density OD.

この結果から分かるように、微細凹凸構造32のピッチを変化させることでも濃度が変化するグラデーションNDフィルタ30’を作製することができる。   As can be seen from this result, the gradation ND filter 30 ′ whose density changes can also be produced by changing the pitch of the fine relief structure 32.

図16(a)は実施例4のNDフィルタ30”の模式断面図である。微細凹凸構造32の高さが一率に50nmの領域と、高さが一率に500nmの領域を形成した透明樹脂基板31を使用し、実施例1と同様の方法でNDフィルタ30”を作製している。(b)は位置と微細凹凸構造32の高さを示し、(c)はそれぞれの位置と光学濃度ODの関係を示している。   FIG. 16A is a schematic cross-sectional view of the ND filter 30 ″ of Example 4. The transparent structure in which the fine concavo-convex structure 32 has a region where the height is 50 nm and the height is 500 nm. Using the resin substrate 31, the ND filter 30 ″ is manufactured by the same method as in the first embodiment. (B) shows the position and the height of the fine relief structure 32, and (c) shows the relationship between each position and the optical density OD.

この結果から分かるように、複数の均一濃度部から成る多濃度NDフィルタを作製することができる。   As can be seen from this result, a multi-density ND filter composed of a plurality of uniform density portions can be produced.

なお、実施例1〜3においては微細凹凸構造32の高さを変化させ、実施例4においては微細凹凸構造32の高さを一定としてピッチを変化させた。この他に、微細凹凸構造32の高さとピッチの双方を変化させることもでき、つまりピッチと高さの少なくとも一方が変化するようにすればよい。   In Examples 1 to 3, the height of the fine relief structure 32 was changed, and in Example 4, the pitch was changed with the height of the fine relief structure 32 being constant. In addition, both the height and pitch of the fine concavo-convex structure 32 can be changed, that is, at least one of the pitch and height may be changed.

本発明はデジタルカメラやビデオカメラ等の撮像装置に使われるNDフィルタとして広く適用できる。   The present invention can be widely applied as an ND filter used in an imaging apparatus such as a digital camera or a video camera.

21〜24 レンズ
25 光量調節装置
27 固体撮像素子
28 絞り羽根支持板
29a、29b 絞り羽根
30、30’、30” NDフィルタ
31 透明樹脂基板
32 微細凹凸構造
33 ND膜
33a、33c 誘電体層
33b 光吸収層
33’、33” 蒸着材料
34 反射防止膜
35、36 突起部
37 凹部
41 転写型
42 微細凹凸構造型
43 固化可能材料
51 蒸着治具
52 蒸着パターン形成用マスク
53 チャンバ
54 蒸着源
55 回転ドーム
21-24 Lens 25 Light quantity adjusting device 27 Solid-state imaging device 28 Diaphragm support plate 29a, 29b Diaphragm 30, 30 ', 30 "ND filter 31 Transparent resin substrate 32 Fine uneven structure 33 ND film 33a, 33c Dielectric layer 33b Light Absorbing layer 33 ', 33 "Vapor deposition material 34 Antireflection film 35, 36 Protrusion 37 Recess 41 Transfer mold 42 Fine uneven structure type 43 Solidifiable material 51 Vapor deposition jig 52 Vapor deposition pattern forming mask 53 Chamber 54 Vapor deposition source 55 Rotating dome

Claims (6)

透明基板の表面に微小な凹凸形状を連続的に形成し、該凹凸形状の上に複数層の無機硬質膜から成るND膜を成膜し、前記凹凸形状はピッチと高さの少なくとも一方を変化させたことを特徴とする光学フィルタ。   A minute uneven shape is continuously formed on the surface of a transparent substrate, and an ND film composed of a plurality of layers of inorganic hard films is formed on the uneven shape, and the uneven shape changes at least one of pitch and height. An optical filter characterized by having been made. 前記凹凸形状のピッチと高さの少なくとも一方は連続的に変化することを特徴とする請求項1に記載の光学フィルタ。   The optical filter according to claim 1, wherein at least one of the pitch and the height of the uneven shape continuously changes. 前記凹凸形状のピッチと高さの少なくとも一方は可視光波長以下の微細凹凸構造であることを特徴とする請求項1又は2に記載の光学フィルタ。   The optical filter according to claim 1, wherein at least one of the pitch and height of the concavo-convex shape is a fine concavo-convex structure having a visible light wavelength or less. 前記無機硬質膜は光吸収層を含むことを特徴とする請求項1〜3の何れか1つの請求項に記載の光学フィルタ。   The optical filter according to claim 1, wherein the inorganic hard film includes a light absorption layer. 開口部を有する絞り羽根と、前記開口部内に進退して通過する光の光量を調節するフィルタを有する光量調節装置において、前記フィルタとして請求項1〜4の何れか1つの請求項に記載の光学フィルタを備えたことを特徴とする光量調節装置。   The optical device according to any one of claims 1 to 4, wherein the filter includes a diaphragm blade having an opening and a filter that adjusts the amount of light that moves forward and backward in the opening. A light amount adjusting device comprising a filter. 撮像光学系と、固体撮像素子と、請求項5に記載の光量調節装置とを有することを特徴とする撮像装置。   An imaging apparatus comprising: an imaging optical system; a solid-state imaging device; and the light amount adjusting device according to claim 5.
JP2011176816A 2011-08-12 2011-08-12 Optical filter Withdrawn JP2013041027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176816A JP2013041027A (en) 2011-08-12 2011-08-12 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011176816A JP2013041027A (en) 2011-08-12 2011-08-12 Optical filter

Publications (1)

Publication Number Publication Date
JP2013041027A true JP2013041027A (en) 2013-02-28

Family

ID=47889499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176816A Withdrawn JP2013041027A (en) 2011-08-12 2011-08-12 Optical filter

Country Status (1)

Country Link
JP (1) JP2013041027A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191092A1 (en) * 2012-06-22 2013-12-27 シャープ株式会社 Antireflection structure and display device
WO2015195123A1 (en) 2014-06-18 2015-12-23 Jds Uniphase Corporation Metal-dielectric optical filter, sensor device, and fabrication method
JP2017015999A (en) * 2015-07-02 2017-01-19 キヤノン電子株式会社 Optical filter, and optical device equipped with optical filter
US10197716B2 (en) 2012-12-19 2019-02-05 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
US10222523B2 (en) 2012-12-19 2019-03-05 Viavi Solutions Inc. Sensor device including one or more metal-dielectric optical filters
US10378955B2 (en) 2012-12-19 2019-08-13 Viavi Solutions Inc. Spectroscopic assembly and method
WO2021243220A3 (en) * 2020-05-29 2022-02-17 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784889B2 (en) 2012-06-22 2017-10-10 Sharp Kabushiki Kaisha Antireflection structure and display device
WO2013191092A1 (en) * 2012-06-22 2013-12-27 シャープ株式会社 Antireflection structure and display device
US10670455B2 (en) 2012-12-19 2020-06-02 Viavi Solutions Inc. Spectroscopic assembly and method
US10197716B2 (en) 2012-12-19 2019-02-05 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
US10222523B2 (en) 2012-12-19 2019-03-05 Viavi Solutions Inc. Sensor device including one or more metal-dielectric optical filters
US10378955B2 (en) 2012-12-19 2019-08-13 Viavi Solutions Inc. Spectroscopic assembly and method
US10928570B2 (en) 2012-12-19 2021-02-23 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
US11782199B2 (en) 2012-12-19 2023-10-10 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
KR20170020886A (en) * 2014-06-18 2017-02-24 비아비 솔루션즈 아이엔씨. Metal-dielectric optical filter, sensor device, and fabrication method
JP2017526945A (en) * 2014-06-18 2017-09-14 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Metal dielectric optical filter, sensor device, and manufacturing method
WO2015195123A1 (en) 2014-06-18 2015-12-23 Jds Uniphase Corporation Metal-dielectric optical filter, sensor device, and fabrication method
KR102240253B1 (en) 2014-06-18 2021-04-13 비아비 솔루션즈 아이엔씨. Metal-dielectric optical filter, sensor device, and fabrication method
JP2017015999A (en) * 2015-07-02 2017-01-19 キヤノン電子株式会社 Optical filter, and optical device equipped with optical filter
US11402545B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11614563B2 (en) 2017-09-29 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11397283B2 (en) 2017-09-29 2022-07-26 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402544B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402546B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US12000977B2 (en) 2017-09-29 2024-06-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11609359B2 (en) 2017-09-29 2023-03-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11994649B2 (en) 2017-09-29 2024-05-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11391867B2 (en) 2017-09-29 2022-07-19 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11988806B2 (en) 2017-09-29 2024-05-21 Nike, Inc. Structurally-colored articles and methods of making and using structurally-colored articles
US11840755B2 (en) 2019-06-26 2023-12-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987873B2 (en) 2019-06-26 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987074B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
WO2021243220A3 (en) * 2020-05-29 2022-02-17 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11987073B2 (en) 2020-05-29 2024-05-21 Nike, Inc. Structurally-colored articles having layers which taper in thickness
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer

Similar Documents

Publication Publication Date Title
JP2013041027A (en) Optical filter
JP4988282B2 (en) Optical filter
RU2518101C2 (en) Electroconductive optical device, method for manufacture thereof, touch panel, display and liquid crystal display device
CN1330454C (en) Substrate processing method, micro lens mfg. method and transmissive screen
JP6317954B2 (en) Lens unit, imaging module, and electronic device
TWI413794B (en) Optical components, optical components with anti-reflection function, and main disk
CN101135743B (en) Optical filter and camera device
CN111033118B (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
JP2011053496A (en) Optical device, manufacturing method thereof, and method of manufacturing master
JP2007057622A (en) Optical element, manufacturing method thereof, method for manufacturing shape transfer mold for optical element, and transfer mold for optical element
JP2009258752A (en) Optical element, producing method thereof, and method for producing original board
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP2010281876A (en) Optical element and optical system including the same
CN102692662B (en) Optical filter and image pickup apparatus
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP6556529B2 (en) Optical filter and optical device provided with optical filter
US20160320530A1 (en) Optical member, method for manufacturing the same, and image pickup device
US7295391B1 (en) ND filter for aperture device and aperture device comprising ND filter
JP6336806B2 (en) ND filter, light quantity diaphragm device, and imaging device
US9709706B2 (en) Optical unit, imaging device, electronic apparatus, and master
JP4345962B2 (en) Light amount diaphragm device and camera with ND filter
CN104020515B (en) Transfer mold and manufacturing method for structure
JP2015219338A (en) Optical filter
JP2016105203A (en) Optical element and method for manufacturing the same, and method for manufacturing master
CN107678172B (en) A kind of hot pressing type manufacture method of flexibility varied angle slot array diffraction optical device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104