JP2004205951A - Light quantity adjusting device and optical equipment using the same - Google Patents

Light quantity adjusting device and optical equipment using the same Download PDF

Info

Publication number
JP2004205951A
JP2004205951A JP2002377111A JP2002377111A JP2004205951A JP 2004205951 A JP2004205951 A JP 2004205951A JP 2002377111 A JP2002377111 A JP 2002377111A JP 2002377111 A JP2002377111 A JP 2002377111A JP 2004205951 A JP2004205951 A JP 2004205951A
Authority
JP
Japan
Prior art keywords
filter
aperture
gradation
region
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377111A
Other languages
Japanese (ja)
Other versions
JP4164355B2 (en
Inventor
Yasunori Murata
安規 村田
Susumu Abe
進 阿部
Daisuke Ito
大介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002377111A priority Critical patent/JP4164355B2/en
Priority to US10/744,397 priority patent/US7042662B2/en
Publication of JP2004205951A publication Critical patent/JP2004205951A/en
Application granted granted Critical
Publication of JP4164355B2 publication Critical patent/JP4164355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a light quantity adjusting device in which the optical performance of an optical system is hardly deteriorated. <P>SOLUTION: The light quantity adjusting device equipped with a plurality of aperture blades 1 and 2 for forming an aperture and a filter member 3 for attenuating light passing through the aperture, and the filter member 3 has gradation ND (neutral density) regions 5 and 6 where transmissivity continuously varies and a transparent part region 7 which has uniform transmissivity of ≥80% and the phase difference of light of specified wavelength λ passing through the border part between the gradation ND region 6 and transparent region 7 is ≤λ/5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラやデジタルスチルカメラ等の光学機器に好適な光量調整装置に関し、特に、画素ピッチの小さな撮像素子を用いたカメラの撮影レンズに利用しても光学性能の劣化を抑制することが可能な技術に関するものである。
【0002】
【従来の技術】
ビデオカメラ等の光学機器の撮影光学系には、複数枚の絞り羽根で形成する開口径を変化させて光量を調整する光量調整装置(絞り装置)が使用されている。このような絞り装置では、高輝度被写体を撮影時に開口径が小さくなりすぎると光の回折による光学性能劣化が問題となる。
【0003】
そこで、明るい被写体条件でも開口径が小さくなり過ぎないようにするため、絞り羽根とND(Neutral Density)フィルターを併用した光量調整装置が提案され実用化されている。
【0004】
特許文献1には、絞り羽根で形成される開口内に位置するようにNDフィルターが絞り羽根に貼付けられ、NDフィルターはそれぞれ均一な透過率に設定された第1の領域の透過率と連続的に透過率が変化する第2の領域とを有し、前記絞り装置の絞り開口が設定された小絞り開口になるときに、前記フィルター部材の第1の領域だけが前記絞り羽根により形成される絞り開口内に位置することを特徴とした絞り装置が開示されている。
【0005】
特許文献2には、開放から所定の開口面積までは機械的な絞り羽根を移動させ、一定の絞り値以下の小絞り制御は濃淡によって透光度が連続的に変化するNDフィルターを透過率の高いフィルター部から順に開口に進入させる絞り装置が開示されている。
【0006】
特許文献3では、複数の濃度領域を有するNDフィルターの透過率による回折現象が与える光学性能への影響を説明し、対策を施した露出制御機構を有する撮像装置が開示されている。
【0007】
従来のこれらの提案においては、開放から小絞りに至るまでの中間絞り状態での光学性能劣化の主因は、絞り羽根により形成される開口部を覆うNDフィルター透過率の差に起因する回折の影響が支配的と考えられており、複数の濃度領域を有するNDフィルターの各領域の透過率や開口面積に着目した回折の影響への対策案が提案されていた。
【0008】
一方、中間絞り状態での光学性能劣化の原因は、NDフィルター透過率差に起因する回折の影響だけでなく、NDフィルターの厚み成分に起因する透過波面位相差も大きく影響している。
【0009】
絞り開口部の一部を厚みのあるフィルターが覆うと光学性能が劣化する現象は経験的に知られているが、フィルター厚み成分がどのように光学性能に影響するかを解析し、その具体的な対策をなした例は知られていない。
【0010】
NDフィルターの厚みが光学性能に与える影響への回避策として、特許文献4では、透明な部分と透過率が連続的または段階的に変化する部分を有するNDフィルターを固定の円形絞り開口を全て覆う状態で可動させて透過光量を調整する構成が提案されている。
【0011】
【特許文献1】
特登録2754518号
【特許文献2】
特開昭52−117127号公報
【特許文献3】
特開2000−106649号公報
【特許文献4】
特開平6−265971号公報
【0012】
【発明が解決しようとする課題】
しかしながら、同公報に記載された発明は、フィルター部材を通過する部分とフィルター部材を通過しない素通し部分との大きな位相差についてのみ着目したもので、この大きな位相差が収差となって結像性能を劣化させると記述されている。しかし、濃度変化を有するフィルター部材を通過する光の透過波面位相差については記述されておらず、実際に透過率変化のあるNDフィルターを実現するときに、透過率変化を与えるために生じるであろう微小厚み変化または微小屈折率変化による光の波長λ以下の微小な透過波面位相差についての問題提起と対策については何ら示されていない。
【0013】
本発明者の検討によれば、このような光の波長オーダー以下の微小な透過波面位相差が、ある条件下では光学性能に非常に大きな影響を与えていることが分かった。
【0014】
また、透過波面位相差が与える光学性能への影響と、NDフィルターの隣接する透過率領域の濃度差が与える光学性能への影響の出方が異なり、透過波面位相差と濃度差のこの2つの要素の相乗作用により、ある条件下で光学性能に大きく影響を与えていることも分った。
【0015】
そこで本発明は、光学系の光学性能劣化の少ない光量調整装置の実現を目的としている。
【0016】
【課題を解決するための手段】
上記目的を達成する為、本発明の光量調整装置は、開口を形成するための絞り羽根と、該開口を通過する光の光量を減衰するためのフィルター部材とを備えた光量調整装置において、前記フィルター部材は透過率が連続的に変化するグラデーションND領域と透過率が80%以上で均一透過率の透明部領域とを有し、グラデーションND領域と透明部領域との境界部を通過する所定の波長λの光の位相差がλ/5以下であることを特徴としている。
【0017】
ここで、本発明における「所定の波長」とは、光量調整装置の使用状態によって適宜定めるものであり、例えば、使用波長帯域の中心波長などが用いられ、可視光域が使用波長帯域である場合には、λ=550nmであることが好ましい。
【0018】
【発明の実施の形態】
具体的な例を示して本発明の実施の形態を説明する。
【0019】
図1は本実施形態の実施例1の絞り羽根とグラデーションNDフィルター(フィルター部材)の配置を示している。図1(a)、(b)において、1、2は絞り羽根で、1、2を相対的に移動させ絞り開口の状態を調整している。3はグラデーションNDフィルターであり、基板であるフィルム状の樹脂製フィルターベースの表面に透過光量を減衰させるためのND蒸着膜が楔状に傾斜膜として蒸着されている。図1(a)は部品側面図であり、図(b)は部品正面図である。図1(c)〜(f)は各開口の状態を示しており、(c)は開放F1.8状態、(d)は開放F3.3状態、(e)開放F5状態、(f)は閉切状態を示している。
【0020】
グラデーションNDフィルター3は、ND蒸着膜の膜厚が一定でND1.3(透過率5.0%)(透過率=10−ND濃度)のND領域5と、膜厚を連続的に変化させ、ND濃度がND1.2(透過率6.3%)からND濃度0.1(透過率79.4%)まで連続的に変化するグラデーションND領域6と、ND蒸着膜が蒸着されていない透過率90%の透明部領域7とを有している。
【0021】
透過光量を減衰させるためのND蒸着膜の膜構成を表1に示す。尚、各層の機械膜厚、光学膜厚は、ND領域における値である。
【0022】
【表1】

Figure 2004205951
【0023】
ND蒸着膜は23層構成で、透過率5%、濃度ND1.3の膜構成の例を示している。第1層から第22層までは可視光領域全域に渡り均一な透過率の減衰を行う役割をしており、第1層から第22層までの膜厚を比例縮小又は比例拡大することでグラデーションND領域においてND濃度を変化させることが可能である。
【0024】
但し、各層の光学膜厚がλ/4を超えると、傾斜膜で膜厚が変化するときに光学特性の変化が大きくなるので、各層の光学膜厚をλ/4以下に抑えることが好ましい。第23層は空気と接する最終層で、表面反射を防止するために設けている。また、望ましくは第23層は、膜厚が連続的に変化する傾斜膜ではなく、膜厚が一定であることが望ましい。
【0025】
図2に実施例1のグラデーションNDフィルタの断面図を示した。図2(A)では、フィルター部材であるフィルム状の樹脂製フィルターベース8の表面にND蒸着膜9が成膜されている。NDフィルターは、ND蒸着膜の膜厚が一定の領域であるND領域(断面A−A’)と、ND蒸着膜の膜厚が連続的に変化するグラデーションND領域(断面B−B’〜断面C−C’)と、ND蒸着膜の無い透明部領域(断面E−E’)とから構成されている。
【0026】
図2(A)では、ND蒸着膜の膜厚が一番厚いND領域は濃度ND1.3となっている。グラデーションND領域では傾斜蒸着膜によりND濃度1.2から0.1の範囲で連続的に変化させている。
【0027】
グラデーション領域において、ND濃度が低下するにつれ、傾斜膜の各層の膜厚は少なくなる。しかし、膜厚が少なくなりすぎると、多層膜の膜厚の制御が難しく、各層間の膜厚比や層構成を維持するのが困難になる。従って、例えば、グラデーションND領域でND濃度を1.2から0の範囲で連続的に変化させようとすると、ND濃度0.1以下の領域では、膜厚が少なく層構成や膜厚比が乱れ、分光特性が不安定になりやすい問題がある。
【0028】
そこで本実施例では、分光特性が不安定なND濃度0.1以下の領域を排除している。具体的には、成膜時に、図2(A)の10の領域を覆うようにフィルターベース8の表面にマスクを密着させて成膜を行うことにより、この領域に傾斜膜が成膜されるのを防いでいる。この結果、グラデーションND領域と透明部領域の境界部において、透過波面位相段差が生じるが、透過波面位相差はλ/5以下に抑えることで、光学性能の劣化を実施上問題ないレベルにしている。
【0029】
また、ND蒸着膜9の第23層は空気と接する最終層で、表面反射を防止するために設けている。グラデーション領域では、この第23層も傾斜膜となっており、この状態では、表面反射防止効果が不安定である。この対策として、図2(B)に示すように、ND蒸着膜の傾斜膜とは傾きが逆向きで、かつ傾きの絶対値が等しい逆傾斜反射防止膜11を最終層に再度蒸着し、最終層の膜厚を一定にして表面反射防止効果を安定させている。更に、透明部領域においても最終層を蒸着し、表面反射防止効果を得ている。
【0030】
この膜は濃度ND1.3で光学膜厚は787nm、機械膜厚は496nmである。光路長差は光学膜厚と機械膜厚との差291nmである。
【0031】
波長λ=550nmで計算すると、この膜厚段差部を透過する光の透過波面位相差は0.53λになる。ND濃度と膜厚はほぼ比例関係にあるので、透過波面位相差が1/5λに相当するND濃度は、
ND1.3×0.2λ/0.53λ≒ND0.5
となる。従って透過波面位相段差を1/5λ以下に抑えるためには、グラデーションND傾斜膜のカットする部分のND濃度はND0.5以下であれば良い。
【0032】
次に、本実施形態の実施例2について説明する。実施例2のNDフィルター断面概略図を図3に示す。図2と共通な部分は同一の符号を用いている。実施例2のNDフィルターは、ND領域(断面A−A’)のND濃度が1.5であり、グラデーションND領域(断面B−B’〜断面C−C’)ではND領域から透明部領域(断面E−E’)に向かうにつれ、ND濃度が1.5から0.5に連続的に変化している。ND蒸着膜9は23層構成であり、各層の材質は実施例1と同一である。また、各層の膜厚は、実施例1の各層の膜厚を1.5/1.3倍したものである。
【0033】
グラデーションND領域は濃度ND1.5からND0.5の傾斜膜を設定し、ND0.5以下の膜厚部分は成膜時にマスクでカットしている。マスクでカットした境界部分に透過波面位相差がλ/5生じる。
【0034】
次に、本実施の形態の実施例3について説明する。実施例3のNDフィルター断面概略図を図4に示す。図中、図2と共通な部分は同一の符号を用いている。実施例3のNDフィルターは、ND領域(断面A−A’)のND濃度が1.7であり、グラデーションND領域(断面B−B’〜断面C−C’)ではND領域から透明部領域(断面E−E’)に向かうにつれ、ND濃度が1.7から0.1に連続的に変化している。ND蒸着膜は23層構成であり、各層の材質は実施例1と同一である。また、各層の膜厚は実施例1の各層の膜厚を2.0/1.3倍したものである。
【0035】
グラデーションND領域は濃度ND1.7からND0.1の傾斜膜を設定し、ND0.1以下の膜厚部分は成膜時にマスクでカットしている。
【0036】
次に本実施形態の各実施例のグラデーションNDフィルターが光学性能にどのように効果があるかを説明する。
【0037】
撮像素子イメージサイズ対角3mm、画素ピッチ2.5μm用の撮影レンズを想定する。
撮影レンズの仕様は、焦点距離2.5mm、FNo.1.8とし、無収差の理想レンズを用いて説明する。
【0038】
レンズ断面図を図5に示す。無収差の理想レンズLに入射する光を絞りSが絞り込み、入射光束の開口径Dを調整する。入射光束は理想レンズLで集光され、焦点距離fの位置にある像面Iに結像される。
【0039】
この絞りSの開口形状を変化させると共に、絞り開口を通過する光量を減衰させるためのフィルター部材が絞り開口部にかかる面積を制御し光量調整を行う。
【0040】
この理想レンズでの軸上光学性能(MTF)が光量調整時にどのように変化するかを説明する。光学性能を示すMTF計算条件は、白色カラーウエイトでの波動工学的なMTF計算。評価空間周波数は、100本/mmとした。
【0041】
画素ピッチが2.5μmの撮像素子でのナイキスト周波数は1000/(2×2.5μm)=200本/mm。MTF計算で用いる評価空間周波数をナイキスト周波数の半分に設定した。
【0042】
無収差理想レンズでのNDフィルターを併用しない場合、2枚羽根絞りで絞り開口が開放状態F1.8〜小絞りF16まで絞り込んだ状態でのFNo.と光学性能を示すMTF値との関係を図6に示す。
【0043】
図中のグラフは左縦軸にMTF値、横軸に絞り開口FNo.、そして右縦軸にTNo.を示している。グラフの上側に絞り開口形状の概略イメージ図を示している。(A)は開放状態、(B)はF2.4状態、(C)はF3.3状態、(D)はF5状態、(E)はF8状態、(F)はF16状態の絞り羽根が作る開口状態を示している。
【0044】
無収差の理想レンズでは、絞り開放時の結像性能が最も高く、絞り込むにしたがって回折の影響で光学性能が劣化する。開放状態(A)ではMTF値は98%、少し絞り込みF2.4状態(B)では80%、更に絞り込みF3.3状態(C)では72%、F5状態(D)では50%、F8状態(E)では30%まで劣化する。更に絞り込みF16状態(F)ではMTF値は10%以下となりここまで絞り込むと評価空間周波数での被写体像が解像しない。このままではTNo.22程度の高輝度被写体には対応できない。
【0045】
次に、高輝度被写体に対応するための従来例を図7に示す。
【0046】
絞り羽根の一方にND濃度0.8(透過率15.8%)のNDフィルターを、絞り開口F5状態(D)で絞り開口を全て覆う大きさに設定し貼り付けている。図中の左上側に絞り羽根に貼り付けたNDフィルター部の断面概略図を示している。
【0047】
濃度0.8のNDフィルター(透過率15.8%)を併用することによりTNo.22の高輝度被写体でも絞り開口F9程度でMTF値は26%を確保できている。しかし、NDフィルターが絞り開口覆いきる手前のF3.3状態(C)から覆いきるF5状態(D)の間の状態でMTF値は30%まで光学性能が一旦大きく劣化する問題が発生する。
【0048】
従来、この光学性能劣化の主原因は濃度のあるNDフィルター部と絞り羽根で形成される素通し部分の開口部が小絞り状態となり回折の影響で光学性能が劣化すると考えられていた。
【0049】
しかし、本発明者の検討では、回折の影響だけでなく、NDフィルターのフィルターベース厚みによる大きな透過波面位相差の影響と蒸着膜厚程度の微小な透過波面位相差の影響が大きく影響していることが判った。
【0050】
ND濃度による回折の影響とフィルターベース厚による大きな透過波面位相差及び蒸着膜厚程度の微小な透過波面位相差による影響が光学性能へ与える影響について実例を示して説明する。
【0051】
図7に示した従来例のND0.8フィルター部をグラデーションNDに置き換えた場合、ND濃度の影響による回折の影響がどの程度光学性能改善に寄与するかを検討した。
【0052】
グラデーションNDは濃度ND0.2からND1.2に設定した例を図8に示す。MTF値のウイークポイントは、F3.3状態(C)とF5状態(D)の間に存在し、ウイークポイントでのMTF値は31%であまり改善が見られない。これはND濃度による回折の影響よりも、開口部に存在するNDフィルターベースの厚み段差部分による透過波面位相差の影響が光学性能を大きく劣化させているからである。
【0053】
次に図9に示す例は、従来例図7で示したND0.8フィルターに透明部を追加し、フィルターベースがF3.3状態(C)で開口を覆う設定とした。フィルターにはND0.8の蒸着ND部分の蒸着膜厚とほぼ等価な膜厚の透明部補正膜を施し、透明部分とND0.8部分を透過する光の透過波面位相段差が生じないように設定した。このタイプのNDフィルターの場合、絞り開放状態からフィルター厚みによる大きな透過波面位相差の影響を受けるので、開放状態(A)からF2.4状態(B)で光学性能が52%程度まで劣化するがフィルターが絞り開口を覆いきるF3.3状態(C)からF5状態(D)の間ではMTF値は50%以上あり、光学性能劣化が少ない。
【0054】
これは、ND0.8フィルター部分と絞り羽根が作る素通し部分の開口形状による小絞り回折の影響よりも、フィルターベース厚みによる大きな透過波面位相差の影響が大きいことを示している。フィルターベース厚みによる大きな透過波面位相差の影響だけでなく、光学膜厚程度の微小な透過波面位相差も光学性能を大きく劣化させることが本発明者の検討で明らかになった。
【0055】
図9に示した例の透明部補正膜がない場合を図10に示す。
【0056】
フィルター透明部とND0.8蒸着膜の境界部には透過波面位相段差が生じる。表1に示すND蒸着膜ND1.3設定で透過波面位相差0.53λであるので、ND0.8の膜厚段差で生じる透過波面位相差は0.33λになる。この微小な透過波面位相差が光学性能を大きく劣化させる様子を図10に示す。
【0057】
絞り開口F3.3状態(C)からND0.8蒸着膜が開口を覆いきるF5状態(D)の間でMTF値が23%まで大きく劣化する。絞り開口部をフィルターベースが全て覆いきっているので、影響しているのはND0.8蒸着膜厚による透過波面位相差である。
【0058】
本発明者の検討では、絞り開口の半分領域に微小な透過波面位相差が発生する場合、透過波面位相差がλ/2発生する場合が最も光学性能を劣化させることが判った。
この原理は、光を波として取り扱って説明する。絞り開口を通過する光線のうち、半分領域の光線の位相がλ/2ずれた状態では、結像点で一点に集まるべき光の半分領域の光の位相がλ/2位相ずれているため、結像点において波の打ち消し合いにより光の強度が結像点でゼロになる、しかし、光のエネルギーが消滅するわけではなく、結像点に集まるはずの光は、結像点の近傍に2点分離した点像となる。この現象のために光学性能が劣化する。
【0059】
透過波面位相段差が1λになると結像性能がある程度回復し、1.5λで再び劣化し、2λである程度回復する。透過波面位相差が2λから3λ程度までは周期的に振幅が減衰しながら変化する。透過波面位相差が数λ以上の場合は光学性能の変化は周期的には変化せず落ち着く、このときの光学性能劣化は透過波面位相差がλ/4発生した場合の値に近い。フィルターベース厚みによる大きな透過波面位相差による光学性能劣化がこの場合に相当する。
【0060】
一方、ND0.8蒸着膜による微小な透過波面位相差は0.33λであり、λ/4より大きく、最悪条件のλ/2に近いため、フィルターベース厚の影響よりも光学性能劣化が大きくなっている。
【0061】
上述した本実施の形態の各実施例においては、透過波面位相段差の改善に着目し、蒸着NDフィルターに傾斜膜によるグラデーションND領域を設定し、フィルターの透明部部分とグラデーションND領域との境界部の透過波面位相段差を小さくし光学性能劣化を低減している。
図11に実施例1のグラデーションNDフィルタを有する光量絞りのMTF値とTNo.を示す。
【0062】
フィルターの大きさは絞り開口F3.3状態(C)で覆いきるサイズに設定し、グラデーションND領域は濃度ND1.2からND0.2の濃度変化が、絞り開口F5状態(D)を覆いきるサイズに設定し、透明部とグラデーションND境界部の濃度差をND0.2としている。
開放状態(A)ではフィルター厚み境界部がほぼ開放の半分にあるのでMTF値が68%まで下がっているが、許容できるレベルである。絞りF2.4状態(B)でもMTF値49%を維持している。従来光学性能劣化が問題となっていたF3.3状態(C)からF5状態(D)の間での光学性能劣化は無く、MTF値は59%まで上がり良好な値を維持している。更に絞りF8状態(E)でTNo.22に相当し、そのときのMTF値は30%を維持している。
【0063】
次に、図12に実施例2のグラデーションNDフィルタを有する光量絞りのMTF値とTNo.を示す。
【0064】
グラデーションND領域のND濃度をND1.5〜ND0.5とした。透明部とグラデーションND領域の境界部にND濃度段差ND0.5存在する場合である。この境界部での透過波面位相差はλ/5存在する。
【0065】
絞りF3.3状態(C)からF5状態(D)の間でMTF値は22%まで劣化する。光学性能劣化の主原因は透明部とグラデーションND領域の境界部に透過波面位相差がλ/5存在するからである。この実施例からグラデーションNDを用いても境界部の透過波面位相差がλ/5以上存在すると光学性能向上の効果がないことがわかる。
【0066】
次に、図13に実施例3のグラデーションNDフィルタを有する光量絞りのMTF値とTNo.を示す。
【0067】
グラデーションNDのND濃度をND1.7〜ND0.2とした。
【0068】
開放状態(A)からF5状態(D)までMTF値は42%以上を維持しており良好である。ND濃度の濃い部分がND1.7(透過率2%)であるため高輝度被写体時TNo.22状態でも絞り開口はF6.8で、MTF値は45%を維持できている。しかし、ND濃度が1.7よりも濃くなりすぎると、中間絞り状態において開口部に透明部分と濃度ND1.7の部分が存在するため、撮影画面の上側と下側の光量に差が生じ、シェーディングと呼ばれる光量むらの問題が発生する。そのためグラデーションNDの濃度はND1.7以下の範囲で設定することが好ましい。
【0069】
次に、本実施の形態の実施例3について説明する。実施例3は、実施例1〜3のグラデーションNDフィルターを用いた光量調整装置を有する光学系の実施形態である。
【0070】
図14は、実施例1〜3で説明したグラデーションNDフィルターを用いた光量調整装置を適用した光学系の概略構成図である。
【0071】
図14において、15は屈折系、反射系、回折系等によって構成された撮影光学系、16は光学系10を通過する光を制限し、明るさを調整する絞り、12は光学系15によって形成される被写体像を受光面で受光し電気信号に変換するCCDやCMOS等の固体撮像素子(光電変換素子)である。本実施例において、絞り16には実施例1〜3で説明したグラデーションNDフィルターを用いた光量調整装置を用いている。
【0072】
このように、撮影光学系等の光学系の絞りとして、実施例1〜3で説明したグラデーションNDフィルターを用いた光量調整装置を用いることによって、絞り込んだときのNDフィルターの透過波面位相差による影響を少なくして画質の向上を図ることができる。また、画素ピッチの小さな撮像素子を用いることが可能となる。
【0073】
次に、本実施の形態の実施例5について説明する。実施例5は、実施例4で説明した撮影光学系を用いた撮影装置の実施形態である。
【0074】
図15において、20は撮影装置本体、15は実施例4で説明した撮影光学系、16は実施例1〜3で説明したグラデーションNDフィルターを用いた光量調整装置によって構成される絞り、12は撮影光学系15によって形成される被写体像を受光する固体撮像素子、13は撮像素子12が受光した被写体像を記録する記録媒体、14は被写体像を観察するためのファインダーである。ファインダー14としては、光学ファインダーや液晶パネル等の表示素子に表示された被写体像を観察するタイプのファインダーが考えられる。
【0075】
このように実施例4で説明した撮影光学系をビデオカメラやデジタルスチルカメラ等の撮像素子上に被写体像を形成するタイプの撮影装置に適用することにより、NDフィルターの透過波面位相差による影響を少なくして画質の向上を図ることができる。また、画素ピッチの小さな撮像素子を用いることが可能となる。
【0076】
以下、本発明の様々な実施の態様について述べる。
【0077】
<態様1>
開口を形成するための絞り羽根と、該開口を通過する光の光量を減衰するためのフィルター部材とを備えた光量調整装置において、前記フィルター部材は透過率が連続的に変化するグラデーションND領域と透過率が80%以上で均一透過率の透明部領域とを有し、グラデーションND領域と透明部領域との境界部を通過する所定の波長λの光の位相差がλ/5以下であることを特徴とする光量調整装置。
【0078】
<態様2>
前記グラデーションND領域と前記透明部領域との境界部にはND濃度0.1以上0.5以下の濃度段差を有することを特徴とする態様1に記載の光量調整装置。
ここで、透過率とND濃度の関係は
透過率=10−ND濃度
波長λ=550nm
である。
【0079】
<態様3>
前記グラデーションND領域は、誘電体多層膜より構成され、前記誘電体多層膜の厚みを連続的に変化させることによりND濃度を連続的に変化させていることを特徴とする態様1又は2に記載の光量調整装置。
【0080】
<態様4>
前記グラデーションND領域はND濃度0.1から1.7の範囲でND濃度が連続的に変化していることを特徴とする態様1〜3のいずれか1つに記載の光量調整装置。
【0081】
<態様5>
前記誘電体多層膜の各層の光学膜厚はλ/4以下であることを特徴とする態様3に記載の光量調整装置。
【0082】
<態様6>
前記所定の波長λは使用波長帯域の中心波長であることを特徴とする態様1〜5のいずれか1つに記載の光量調整装置。
【0083】
<態様7>
前記所定の波長λは550nmであることを特徴とする態様1〜6のいずれか1つに記載の光量調整装置。
【0084】
<態様8>
態様1〜7いずれか1つに記載の光量調整装置を有することを特徴とする光学系。
【0085】
<態様9>
態様8に記載の光学系を有することを特徴とする撮像装置。
【0086】
<態様10>
態様8に記載の光学系と光電変換素子とを有することを特徴とするデジタルカメラ。
【0087】
【発明の効果】
本発明により、光学系の光学性能の劣化が少ない光量調整装置が可能となる。
【図面の簡単な説明】
【図1】本実施形態の実施例1のフィルター部材と絞り羽根による開口形状を示す概略図
【図2】本実施形態の実施例1のフィルター断面説明図
【図3】本実施形態の実施例2のフィルター断面説明図
【図4】本実施形態の実施例3のフィルター断面説明図
【図5】本実施形態の実施例の効果を説明するために用いたレンズ断面図
【図6】本実施形態の実施例の効果を説明するために用いるレンズのNDフィルター無し状態での基準状態での開放から小絞りまでのMTF変化説明図
【図7】従来タイプの単濃度NDフィルター併用時の説明図
【図8】従来タイプのグラデーションNDフィルター併用時の説明図
【図9】透過波面位相差と回折の影響を確認するための説明図
【図10】透過波面位相差と回折の影響を確認するための説明図
【図11】本実施形態の実施例1の効果を説明する図
【図12】本実施形態の実施例2の効果を説明する図
【図13】本実施形態の実施例3の効果を説明する図
【図14】本実施形態の実施例4の光学系の説明図
【図15】本実施形態の実施例5の撮影装置の説明図
【符号の説明】
1 絞り羽根
2 絞り羽根
3 グラデーションNDフィルタ(フィルター部材)
5 ND領域
6 グラデーションND領域
7 透明部
8 フィルター部材
9 ND蒸着膜
11 逆傾斜反射防止膜
S 絞り
L 理想レンズ
D 入射光束の開口径
I 像面
f 焦点距離[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light amount adjustment device suitable for an optical device such as a video camera or a digital still camera, and in particular, suppresses deterioration of optical performance even when used for a photographing lens of a camera using an imaging device with a small pixel pitch. Is a technology that can be used.
[0002]
[Prior art]
2. Description of the Related Art A light amount adjusting device (aperture device) that adjusts a light amount by changing an aperture diameter formed by a plurality of aperture blades is used in a photographing optical system of an optical device such as a video camera. In such a diaphragm device, if the aperture diameter becomes too small when photographing a high-luminance subject, optical performance degradation due to light diffraction becomes a problem.
[0003]
Therefore, in order to prevent the aperture diameter from becoming too small even under a bright subject condition, a light amount adjusting device using both an aperture blade and an ND (Neutral Density) filter has been proposed and put into practical use.
[0004]
In Patent Literature 1, an ND filter is attached to an aperture blade so as to be positioned within an opening formed by the aperture blade, and each of the ND filters is continuous with the transmittance of a first region set to a uniform transmittance. When the aperture of the aperture device becomes a set small aperture, only the first area of the filter member is formed by the aperture blades. A diaphragm device characterized by being located in a diaphragm opening is disclosed.
[0005]
Patent Document 2 discloses that a mechanical aperture blade is moved from an opening to a predetermined aperture area, and a small aperture control below a certain aperture value controls an ND filter whose light transmittance continuously changes depending on shading. There is disclosed a diaphragm device that sequentially enters an opening from a high filter portion.
[0006]
Patent Literature 3 describes an influence on optical performance caused by a diffraction phenomenon due to transmittance of an ND filter having a plurality of density regions, and discloses an imaging apparatus having an exposure control mechanism in which measures are taken.
[0007]
In these conventional proposals, the main cause of optical performance degradation in the intermediate stop state from the opening to the small stop is the influence of diffraction caused by the difference in transmittance of the ND filter covering the opening formed by the stop blades. Is considered to be dominant, and a countermeasure against the influence of diffraction focusing on the transmittance and the opening area of each region of the ND filter having a plurality of density regions has been proposed.
[0008]
On the other hand, the cause of the deterioration of the optical performance in the intermediate aperture state is not only the influence of the diffraction caused by the difference in the transmittance of the ND filter, but also the phase difference of the transmitted wavefront caused by the thickness component of the ND filter.
[0009]
It has been empirically known that the optical performance deteriorates when a thick filter covers a part of the aperture opening.However, it is analyzed how the filter thickness component affects the optical performance. There are no known examples of such measures.
[0010]
As a workaround to the effect of the thickness of the ND filter on the optical performance, Patent Document 4 discloses that an ND filter having a transparent portion and a portion where the transmittance changes continuously or stepwise covers all the fixed circular aperture openings. There has been proposed a configuration in which the transmitted light amount is adjusted by being moved in a state.
[0011]
[Patent Document 1]
Special registration No. 2754518
[Patent Document 2]
JP-A-52-117127
[Patent Document 3]
JP 2000-106649 A
[Patent Document 4]
JP-A-6-265971
[0012]
[Problems to be solved by the invention]
However, the invention described in this publication focuses only on a large phase difference between a portion that passes through the filter member and a transparent portion that does not pass through the filter member, and this large phase difference becomes an aberration and reduces imaging performance. It is described as deteriorating. However, there is no description about the transmitted wavefront phase difference of light passing through a filter member having a change in density, and this is generated to give a change in transmittance when an ND filter having a change in transmittance is actually realized. There is no suggestion or countermeasure for a small transmitted wavefront phase difference of less than the wavelength λ of light due to a small thickness change or a small refractive index change in the solder.
[0013]
According to the study by the present inventors, it has been found that such a small transmitted wavefront phase difference of the order of the wavelength of light or less has a very large effect on optical performance under certain conditions.
[0014]
Further, the influence of the transmitted wavefront phase difference on the optical performance differs from the influence of the density difference between the adjacent transmittance regions of the ND filter on the optical performance, and the two factors of the transmitted wavefront phase difference and the density difference are different. It was also found that the synergistic action of the elements greatly affected the optical performance under certain conditions.
[0015]
Therefore, an object of the present invention is to realize a light amount adjusting device that causes little deterioration in optical performance of an optical system.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a light quantity adjusting device according to the present invention is a light quantity adjusting device including an aperture blade for forming an opening and a filter member for attenuating the light amount of light passing through the opening, The filter member has a gradation ND region in which the transmittance continuously changes and a transparent portion region having a transmittance of 80% or more and a uniform transmittance, and a predetermined portion passing through the boundary between the gradation ND region and the transparent portion region. The phase difference of the light having the wavelength λ is λ / 5 or less.
[0017]
Here, the “predetermined wavelength” in the present invention is appropriately determined according to the use state of the light amount adjustment device. For example, when the center wavelength of the used wavelength band is used and the visible light region is the used wavelength band. Is preferably λ = 550 nm.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to specific examples.
[0019]
FIG. 1 shows an arrangement of an aperture blade and a gradation ND filter (filter member) of Example 1 of the present embodiment. In FIGS. 1 (a) and 1 (b), reference numerals 1 and 2 denote aperture blades, which are relatively moved to adjust the state of the aperture opening. Reference numeral 3 denotes a gradation ND filter, in which an ND vapor-deposited film for attenuating the amount of transmitted light is vapor-deposited as a wedge-shaped inclined film on the surface of a film-shaped resin filter base serving as a substrate. FIG. 1A is a side view of the component, and FIG. 1B is a front view of the component. 1 (c) to 1 (f) show the state of each opening, (c) is an open F1.8 state, (d) is an open F3.3 state, (e) is an open F5 state, and (f) is an open F5 state. It shows a closed state.
[0020]
The gradation ND filter 3 has a constant thickness of ND 1.3 (transmittance 5.0%) (transmittance = 10-ND concentration), The film thickness is continuously changed, and the ND concentration is continuously changed from ND1.2 (transmittance 6.3%) to ND concentration 0.1 (transmittance 79.4%). It has a gradation ND region 6 and a transparent region 7 having a transmittance of 90% where no ND vapor-deposited film is deposited.
[0021]
Table 1 shows the film configuration of the ND deposited film for attenuating the transmitted light amount. The mechanical thickness and optical thickness of each layer are values in the ND region.
[0022]
[Table 1]
Figure 2004205951
[0023]
The ND vapor-deposited film has an example of a 23-layer structure with a transmittance of 5% and a concentration of ND 1.3. The first layer to the 22nd layer play a role of uniformly attenuating the transmittance over the entire visible light region, and the gradation is obtained by proportionally reducing or proportionally increasing the film thickness of the first layer to the 22nd layer. It is possible to change the ND concentration in the ND region.
[0024]
However, when the optical film thickness of each layer exceeds λ / 4, the change in optical characteristics becomes large when the film thickness changes in the inclined film. Therefore, it is preferable to suppress the optical film thickness of each layer to λ / 4 or less. The 23rd layer is the last layer in contact with air, and is provided to prevent surface reflection. Preferably, the 23rd layer is not an inclined film having a continuously changing film thickness, but a constant film thickness.
[0025]
FIG. 2 shows a sectional view of the gradation ND filter of the first embodiment. In FIG. 2A, an ND deposited film 9 is formed on the surface of a film-shaped resin filter base 8 which is a filter member. The ND filter includes an ND region (section AA ′) in which the thickness of the ND deposited film is constant and a gradation ND region (section BB ′ to the section) in which the thickness of the ND deposited film continuously changes. CC ′) and a transparent region (cross section EE ′) without an ND deposited film.
[0026]
In FIG. 2A, the ND region where the thickness of the ND deposited film is the thickest has the concentration ND1.3. In the gradation ND region, the ND concentration is continuously changed in the range of 1.2 to 0.1 by the inclined vapor deposition film.
[0027]
In the gradation region, as the ND concentration decreases, the thickness of each layer of the gradient film decreases. However, when the film thickness is too small, it is difficult to control the film thickness of the multilayer film, and it becomes difficult to maintain the film thickness ratio between the layers and the layer configuration. Therefore, for example, if it is attempted to continuously change the ND concentration in the gradation ND region in the range of 1.2 to 0, the film thickness is small in the region having the ND concentration of 0.1 or less, and the layer configuration and the film thickness ratio are disturbed. In addition, there is a problem that the spectral characteristics are likely to be unstable.
[0028]
Therefore, in this embodiment, a region where the spectral characteristics are unstable and the ND concentration is 0.1 or less is excluded. Specifically, at the time of film formation, a mask is closely attached to the surface of the filter base 8 so as to cover the region 10 in FIG. Is preventing. As a result, a transmitted wavefront phase difference occurs at the boundary between the gradation ND region and the transparent portion region. However, by suppressing the transmitted wavefront phase difference to λ / 5 or less, degradation of optical performance is at a level at which there is no practical problem. .
[0029]
The 23rd layer of the ND deposited film 9 is the last layer in contact with air, and is provided to prevent surface reflection. In the gradation region, the 23rd layer is also an inclined film, and in this state, the surface antireflection effect is unstable. As a countermeasure, as shown in FIG. 2 (B), a reverse-slant antireflection film 11 whose inclination is opposite to that of the inclined film of the ND vapor-deposited film and whose absolute value of the inclination is equal is deposited again on the final layer. The surface antireflection effect is stabilized by making the layer thickness constant. Further, a final layer is deposited also in the transparent area to obtain a surface reflection preventing effect.
[0030]
This film has a concentration of ND 1.3, an optical film thickness of 787 nm, and a mechanical film thickness of 496 nm. The optical path length difference is a difference between the optical film thickness and the mechanical film thickness of 291 nm.
[0031]
When calculated at a wavelength λ = 550 nm, the transmitted wavefront phase difference of the light transmitted through the film thickness step is 0.53λ. Since the ND concentration and the film thickness are in a substantially proportional relationship, the ND concentration corresponding to a transmitted wavefront phase difference of 5λ is
ND1.3 × 0.2λ / 0.53λ ≒ ND0.5
Becomes Therefore, in order to suppress the transmitted wavefront phase difference to 1 / λ or less, the ND concentration at the cut portion of the gradation ND inclined film may be ND0.5 or less.
[0032]
Next, Example 2 of the present embodiment will be described. FIG. 3 shows a schematic cross-sectional view of the ND filter of the second embodiment. 2 are denoted by the same reference numerals. In the ND filter of Example 2, the ND concentration in the ND region (cross section AA ′) is 1.5, and the gradation ND region (cross section BB ′ to cross-section CC ′) changes from the ND region to the transparent portion region. The ND concentration continuously changes from 1.5 to 0.5 as going to (section EE ′). The ND deposited film 9 has a 23-layer structure, and the material of each layer is the same as that of the first embodiment. The thickness of each layer is 1.5 / 1.3 times the thickness of each layer in Example 1.
[0033]
In the gradation ND region, a gradient film having a concentration of ND1.5 to ND0.5 is set, and a film thickness portion of ND0.5 or less is cut by a mask during film formation. A transmitted wavefront phase difference occurs at λ / 5 at the boundary portion cut by the mask.
[0034]
Next, Example 3 of the present embodiment will be described. FIG. 4 shows a schematic cross-sectional view of the ND filter of the third embodiment. In the drawing, the same parts as those in FIG. 2 are denoted by the same reference numerals. The ND filter of Example 3 has an ND concentration of 1.7 in the ND region (cross section AA ′), and the ND region to the transparent portion region in the gradation ND region (cross section BB ′ to cross section CC ′). The ND concentration continuously changes from 1.7 to 0.1 as going to (section EE ′). The ND deposited film has 23 layers, and the material of each layer is the same as that of the first embodiment. The thickness of each layer is 2.0 / 1.3 times the thickness of each layer in Example 1.
[0035]
In the gradation ND region, a gradient film having a concentration of ND 1.7 to ND 0.1 is set, and a portion having a thickness of ND 0.1 or less is cut by a mask at the time of film formation.
[0036]
Next, how the gradation ND filter of each example of the present embodiment has an effect on optical performance will be described.
[0037]
It is assumed that a photographing lens has a diagonal image size of 3 mm and a pixel pitch of 2.5 μm.
The specification of the photographing lens will be described using an ideal lens having a focal length of 2.5 mm and an F No. of 1.8 and having no aberration.
[0038]
FIG. 5 shows a lens cross-sectional view. The stop S stops down the light incident on the ideal lens L with no aberration and adjusts the aperture diameter D of the incident light flux. The incident light beam is condensed by the ideal lens L and is imaged on the image plane I at the position of the focal length f.
[0039]
The aperture shape of the stop S is changed, and the area of the filter member for attenuating the amount of light passing through the stop aperture is controlled to control the light amount.
[0040]
How the on-axis optical performance (MTF) of the ideal lens changes at the time of light amount adjustment will be described. The MTF calculation condition indicating the optical performance is a wave engineering MTF calculation with a white color weight. The evaluation spatial frequency was 100 lines / mm.
[0041]
The Nyquist frequency in an image sensor having a pixel pitch of 2.5 μm is 1000 / (2 × 2.5 μm) = 200 lines / mm. The evaluation spatial frequency used in the MTF calculation was set to half of the Nyquist frequency.
[0042]
The figure shows the relationship between the FNo. And the MTF value indicating the optical performance when the aperture stop is narrowed from F1.8 to the small aperture F16 with the two-blade aperture when the ND filter is not used together with the ideal aberration-free lens. 6 is shown.
[0043]
The graph in the figure shows the MTF value on the left vertical axis, the aperture FNo. On the horizontal axis, and the TNo. On the right vertical axis. A schematic image diagram of the shape of the aperture opening is shown above the graph. (A) is an open state, (B) is an F2.4 state, (C) is an F3.3 state, (D) is an F5 state, (E) is an F8 state, and (F) is an F16 state. The state of opening is shown.
[0044]
An ideal lens having no aberration has the highest imaging performance when the aperture is opened, and the optical performance deteriorates due to diffraction as the aperture is stopped down. The MTF value is 98% in the open state (A), 80% in the slightly narrowed F2.4 state (B), 72% in the narrowed F3.3 state (C), 50% in the F5 state (D), and the F8 state ( In E), it deteriorates to 30%. Further, in the aperture stop F16 state (F), the MTF value becomes 10% or less, and when the aperture is stopped down to this point, the subject image at the evaluation spatial frequency is not resolved. In this state, it is not possible to cope with a high-luminance subject of about TNo.
[0045]
Next, FIG. 7 shows a conventional example corresponding to a high-luminance subject.
[0046]
An ND filter having an ND density of 0.8 (transmittance: 15.8%) is attached to one of the aperture blades so that the ND filter is set to a size to cover the entire aperture opening in the aperture opening F5 state (D). A schematic cross-sectional view of the ND filter unit attached to the aperture blade is shown on the upper left side in the figure.
[0047]
By using an ND filter with a density of 0.8 (transmittance: 15.8%), an MTF value of 26% can be secured even with a high-luminance subject of TNo. However, in the state between the state F3.3 (C) just before the ND filter covers the aperture and the state F5 (D) covering the ND filter, there is a problem that the MTF value is temporarily reduced to 30% and the optical performance is greatly deteriorated.
[0048]
Heretofore, it has been thought that the main cause of the deterioration of the optical performance is that the aperture of the transparent portion formed by the ND filter part having the density and the aperture blade is in a small aperture state, and the optical performance is deteriorated by the influence of diffraction.
[0049]
However, in the study of the present inventors, not only the effect of diffraction but also the effect of a large transmitted wavefront phase difference due to the filter base thickness of the ND filter and the effect of a small transmitted wavefront phase difference as small as the thickness of the deposited film have a large effect. It turns out.
[0050]
The effects of diffraction due to the ND concentration, the large transmitted wavefront phase difference due to the filter base thickness, and the small transmitted wavefront phase difference as small as the thickness of the deposited film on the optical performance will be described with reference to actual examples.
[0051]
In the case where the ND 0.8 filter section of the conventional example shown in FIG. 7 was replaced with gradation ND, it was examined how much the influence of diffraction due to the influence of ND density contributes to the improvement of optical performance.
[0052]
FIG. 8 shows an example in which the gradation ND is set from the density ND0.2 to ND1.2. The weak point of the MTF value exists between the F3.3 state (C) and the F5 state (D), and the MTF value at the weak point is 31%, which is not much improved. This is because the effect of the transmitted wavefront phase difference due to the thickness step portion of the ND filter base existing in the opening greatly deteriorates the optical performance, rather than the effect of diffraction due to the ND density.
[0053]
Next, in the example shown in FIG. 9, a transparent portion was added to the ND 0.8 filter shown in FIG. 7 of the related art, and the filter base was set to cover the opening in the F3.3 state (C). The filter is provided with a transparent portion correction film with a film thickness almost equivalent to the deposited film thickness of the ND portion of ND 0.8, and is set so that there is no step difference in the transmitted wavefront of light transmitted through the transparent portion and the ND portion 0.8. did. In the case of this type of ND filter, the optical performance is degraded from the open state (A) to the F2.4 state (B) by about 52% from the open state (A) to the F2.4 state (B) since the transmitted wavefront phase difference is affected by the filter thickness from the open state. In the F3.3 state (C) to the F5 state (D) in which the filter covers the aperture, the MTF value is 50% or more, and the optical performance is less deteriorated.
[0054]
This indicates that the effect of the large transmitted wavefront phase difference due to the filter base thickness is greater than the effect of the small aperture diffraction due to the aperture shape of the ND 0.8 filter portion and the transparent portion formed by the aperture blade. The present inventor has clarified that not only the effect of a large transmitted wavefront phase difference due to the filter base thickness but also a small transmitted wavefront phase difference of about the optical film thickness significantly deteriorates optical performance.
[0055]
FIG. 10 shows a case where the transparent portion correction film of the example shown in FIG. 9 is not provided.
[0056]
A transmitted wavefront phase difference occurs at the boundary between the filter transparent portion and the ND0.8 vapor-deposited film. Since the transmitted wavefront phase difference is 0.53λ when the ND deposited film ND1.3 shown in Table 1 is set, the transmitted wavefront phase difference generated by the film thickness step of ND0.8 is 0.33λ. FIG. 10 shows how the minute transmitted wavefront phase difference greatly deteriorates the optical performance.
[0057]
The MTF value is greatly degraded to 23% from the aperture opening F3.3 state (C) to the F5 state (D) where the ND0.8 vapor-deposited film covers the opening. Since the entire filter opening covers the aperture opening, what is affected is the phase difference of the transmitted wavefront due to the ND0.8 deposited film thickness.
[0058]
The present inventor has found that when a small transmitted wavefront phase difference occurs in a half region of the aperture opening, the optical performance is most deteriorated when the transmitted wavefront phase difference is λ / 2.
This principle is described by treating light as waves. In the state where the phase of the light beam in the half region out of the light beam passing through the aperture opening is shifted by λ / 2, the phase of the light in the half region of the light to be collected at one point at the imaging point is shifted by λ / 2. At the imaging point, the intensity of the light becomes zero at the imaging point due to the cancellation of the waves. However, the energy of the light does not disappear, and the light that should be collected at the imaging point is 2 near the imaging point. It becomes a point image separated by points. This phenomenon degrades optical performance.
[0059]
When the transmitted wavefront phase step becomes 1λ, the imaging performance is recovered to some extent, deteriorates again at 1.5λ, and recovers to some extent at 2λ. The amplitude periodically changes while attenuating until the transmitted wavefront phase difference is about 2λ to 3λ. When the transmitted wavefront phase difference is several λ or more, the change in the optical performance does not change periodically but settles down, and the optical performance degradation at this time is close to the value when the transmitted wavefront phase difference is λ / 4. Optical performance degradation due to a large transmitted wavefront phase difference due to the filter base thickness corresponds to this case.
[0060]
On the other hand, the small transmitted wavefront phase difference due to the ND0.8 vapor-deposited film is 0.33λ, which is larger than λ / 4 and close to the worst condition λ / 2, so that the optical performance deterioration is larger than the effect of the filter base thickness. ing.
[0061]
In each of the examples of the present embodiment described above, focusing on the improvement of the phase difference of the transmitted wavefront, a gradation ND region is set in the evaporation ND filter by the inclined film, and the boundary between the transparent portion of the filter and the gradation ND region is set. The phase difference of the transmitted wavefront is reduced to reduce the deterioration of the optical performance.
FIG. 11 shows the MTF value and TNo. Of the light amount aperture having the gradation ND filter of the first embodiment.
[0062]
The size of the filter is set to a size that covers the aperture opening F3.3 state (C), and the gradation ND area is a size where the density change from the density ND1.2 to ND0.2 covers the aperture opening F5 state (D). And the density difference between the transparent part and the gradation ND boundary part is ND 0.2.
In the open state (A), since the filter thickness boundary is almost half of the open state, the MTF value has dropped to 68%, but this is an acceptable level. The MTF value is maintained at 49% even in the aperture F2.4 state (B). The optical performance has not deteriorated between the F3.3 state (C) and the F5 state (D) where the deterioration of the optical performance has conventionally been a problem, and the MTF value has increased to 59% and maintained a good value. Further, the aperture F8 state (E) corresponds to TNo. 22, and the MTF value at that time is maintained at 30%.
[0063]
Next, FIG. 12 shows the MTF value and TNo. Of the light amount aperture having the gradation ND filter of the second embodiment.
[0064]
The ND concentration in the gradation ND region was set to ND1.5 to ND0.5. This is a case where the ND density step ND0.5 exists at the boundary between the transparent portion and the gradation ND region. The transmitted wavefront phase difference at this boundary portion is λ / 5.
[0065]
The MTF value deteriorates to 22% between the F3.3 state (C) and the F5 state (D). The main cause of the deterioration of the optical performance is that the transmitted wavefront phase difference is λ / 5 at the boundary between the transparent portion and the gradation ND region. From this example, it can be seen that even if the gradation ND is used, there is no effect of improving the optical performance if the transmitted wavefront phase difference at the boundary exists at λ / 5 or more.
[0066]
Next, FIG. 13 shows the MTF value and TNo. Of the light amount aperture having the gradation ND filter of the third embodiment.
[0067]
The ND concentration of the gradation ND was set to ND 1.7 to ND 0.2.
[0068]
From the open state (A) to the F5 state (D), the MTF value is maintained at 42% or more, which is good. Since the portion where the ND density is high is ND1.7 (transmittance 2%), the aperture opening is F6.8 and the MTF value can be maintained at 45% even in the TNo. However, if the ND density is too high than 1.7, a transparent portion and a portion having a density of ND 1.7 are present in the opening in the intermediate aperture state, so that there is a difference in the amount of light between the upper side and the lower side of the shooting screen. The problem of uneven light amount called shading occurs. Therefore, it is preferable to set the density of the gradation ND within the range of ND 1.7 or less.
[0069]
Next, Example 3 of the present embodiment will be described. Example 3 is an embodiment of an optical system having a light amount adjusting device using the gradation ND filter of Examples 1 to 3.
[0070]
FIG. 14 is a schematic configuration diagram of an optical system to which the light amount adjusting device using the gradation ND filter described in Embodiments 1 to 3 is applied.
[0071]
In FIG. 14, reference numeral 15 denotes a photographing optical system constituted by a refraction system, a reflection system, a diffraction system, etc., 16 denotes a stop for restricting light passing through the optical system 10 and adjusts brightness, and 12 denotes an optical system 15. A solid-state imaging device (photoelectric conversion device) such as a CCD or a CMOS that receives a subject image to be received on a light receiving surface and converts the image into an electric signal. In this embodiment, the aperture 16 uses the light amount adjusting device using the gradation ND filter described in the first to third embodiments.
[0072]
As described above, by using the light amount adjusting device using the gradation ND filter described in Embodiments 1 to 3 as the diaphragm of the optical system such as the photographing optical system, the influence of the transmitted wavefront phase difference of the ND filter when the diaphragm is narrowed down. Can be reduced and the image quality can be improved. In addition, it is possible to use an image sensor having a small pixel pitch.
[0073]
Next, a fifth embodiment of the present embodiment will be described. Example 5 is an embodiment of a photographing apparatus using the photographing optical system described in Example 4.
[0074]
In FIG. 15, reference numeral 20 denotes a photographing apparatus main body, reference numeral 15 denotes a photographing optical system described in the fourth embodiment, reference numeral 16 denotes an aperture formed by the light amount adjusting device using the gradation ND filter described in the first to third embodiments, and reference numeral 12 denotes a photographing apparatus. A solid-state image sensor for receiving a subject image formed by the optical system 15, a recording medium 13 for recording the subject image received by the image sensor 12, and a finder 14 for observing the subject image. As the viewfinder 14, a viewfinder of a type for observing a subject image displayed on a display element such as an optical viewfinder or a liquid crystal panel can be considered.
[0075]
As described above, by applying the imaging optical system described in the fourth embodiment to an imaging device that forms a subject image on an imaging device such as a video camera or a digital still camera, the influence of the transmitted wavefront phase difference of the ND filter can be reduced. The image quality can be improved by reducing the number. In addition, it is possible to use an image sensor having a small pixel pitch.
[0076]
Hereinafter, various embodiments of the present invention will be described.
[0077]
<Aspect 1>
In a light amount adjusting device including an aperture blade for forming an opening and a filter member for attenuating the light amount of light passing through the opening, the filter member has a gradation ND region in which transmittance continuously changes. A transparent portion having a transmittance of 80% or more and a uniform transmittance is provided, and a phase difference of light having a predetermined wavelength λ passing through a boundary between the gradation ND region and the transparent portion is λ / 5 or less. A light amount adjusting device characterized by the above-mentioned.
[0078]
<Aspect 2>
The light amount adjusting device according to aspect 1, wherein a boundary between the gradation ND region and the transparent region has a density step having an ND density of 0.1 or more and 0.5 or less.
Here, the relationship between the transmittance and the ND density is
Transmittance = 10-ND concentration
Wavelength λ = 550 nm
It is.
[0079]
<Aspect 3>
The said gradation ND area | region is comprised from a dielectric multilayer film, The ND density | concentration is changed continuously by changing the thickness of the said dielectric multilayer film continuously, The aspect 1 or 2 characterized by the above-mentioned. Light intensity adjustment device.
[0080]
<Aspect 4>
The light amount adjusting device according to any one of aspects 1 to 3, wherein the gradation ND region has an ND concentration continuously changing in a range of ND concentration of 0.1 to 1.7.
[0081]
<Aspect 5>
The light amount adjusting device according to aspect 3, wherein the optical film thickness of each layer of the dielectric multilayer film is λ / 4 or less.
[0082]
<Aspect 6>
The light amount adjusting device according to any one of aspects 1 to 5, wherein the predetermined wavelength λ is a center wavelength of a used wavelength band.
[0083]
<Aspect 7>
The light amount adjusting device according to any one of aspects 1 to 6, wherein the predetermined wavelength λ is 550 nm.
[0084]
<Aspect 8>
An optical system comprising the light amount adjusting device according to any one of aspects 1 to 7.
[0085]
<Aspect 9>
An imaging apparatus comprising the optical system according to aspect 8.
[0086]
<Aspect 10>
A digital camera comprising the optical system according to aspect 8, and a photoelectric conversion element.
[0087]
【The invention's effect】
According to the present invention, it is possible to provide a light amount adjusting device in which the optical performance of the optical system is less deteriorated.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an opening shape formed by a filter member and aperture blades according to a first embodiment of the present invention.
FIG. 2 is an explanatory cross-sectional view of a filter of Example 1 of the present embodiment.
FIG. 3 is an explanatory cross-sectional view of a filter of Example 2 of the present embodiment.
FIG. 4 is an explanatory cross-sectional view of a filter of Example 3 of the present embodiment.
FIG. 5 is a cross-sectional view of a lens used to explain an effect of the example of the embodiment.
FIG. 6 is an explanatory diagram of a change in MTF from opening to a small aperture in a reference state without an ND filter of a lens used to explain the effect of the example of the present embodiment.
FIG. 7 is an explanatory view when a conventional single-density ND filter is used together.
FIG. 8 is an explanatory view when a conventional gradation ND filter is used together.
FIG. 9 is an explanatory diagram for confirming the effects of transmitted wavefront phase difference and diffraction.
FIG. 10 is an explanatory diagram for confirming the effects of transmitted wavefront phase difference and diffraction.
FIG. 11 is a view for explaining the effect of the first embodiment of the present embodiment.
FIG. 12 is a view for explaining the effect of Example 2 of the present embodiment
FIG. 13 is a view for explaining the effect of the third embodiment of the present embodiment.
FIG. 14 is an explanatory diagram of an optical system according to Example 4 of the embodiment.
FIG. 15 is an explanatory diagram of a photographing apparatus according to a fifth embodiment of the present embodiment.
[Explanation of symbols]
1 Aperture blade
2 Aperture blade
3 Gradation ND filter (filter member)
5 ND area
6 Gradation ND area
7 Transparent part
8 Filter components
9 ND deposited film
11 Reverse tilt anti-reflective coating
S aperture
L Ideal lens
D Aperture diameter of incident light beam
I Image plane
f focal length

Claims (1)

開口を形成するための絞り羽根と、該開口を通過する光の光量を減衰するためのフィルター部材とを備えた光量調整装置において、前記フィルター部材は透過率が連続的に変化するグラデーションND領域と透過率が80%以上で均一透過率の透明部領域とを有し、グラデーションND領域と透明部領域との境界部を通過する所定の波長λの光の位相差がλ/5以下であることを特徴とする光量調整装置。In a light amount adjusting device including an aperture blade for forming an opening and a filter member for attenuating the light amount of light passing through the opening, the filter member has a gradation ND region in which transmittance continuously changes. A transparent portion having a transmittance of 80% or more and a uniform transmittance is provided, and a phase difference of light having a predetermined wavelength λ passing through a boundary between the gradation ND region and the transparent portion is λ / 5 or less. A light amount adjusting device characterized by the above-mentioned.
JP2002377111A 2002-12-26 2002-12-26 Light amount adjusting device and optical apparatus using the same Expired - Fee Related JP4164355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002377111A JP4164355B2 (en) 2002-12-26 2002-12-26 Light amount adjusting device and optical apparatus using the same
US10/744,397 US7042662B2 (en) 2002-12-26 2003-12-23 Light amount adjusting device, and optical device using the light amount adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377111A JP4164355B2 (en) 2002-12-26 2002-12-26 Light amount adjusting device and optical apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004205951A true JP2004205951A (en) 2004-07-22
JP4164355B2 JP4164355B2 (en) 2008-10-15

Family

ID=32814387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377111A Expired - Fee Related JP4164355B2 (en) 2002-12-26 2002-12-26 Light amount adjusting device and optical apparatus using the same

Country Status (1)

Country Link
JP (1) JP4164355B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025514A (en) * 2005-07-21 2007-02-01 Canon Inc Light quantity adjusting device, optical system having light quantity adjusting device, and photographing device
JP2007206185A (en) * 2006-01-31 2007-08-16 Canon Electronics Inc Nd filter
JP2008065227A (en) * 2006-09-11 2008-03-21 Canon Electronics Inc Nd filter
JP2008112034A (en) * 2006-10-31 2008-05-15 Canon Electronics Inc Nd filter
JP2009162852A (en) * 2007-12-28 2009-07-23 Canon Electronics Inc Optical element
KR100923060B1 (en) 2006-11-06 2009-10-22 후지논 가부시키가이샤 Lens device
WO2010126079A1 (en) * 2009-04-30 2010-11-04 日本ビクター株式会社 Light quantity control apparatus, image pickup apparatus, and light quantity control method
WO2011007435A1 (en) * 2009-07-16 2011-01-20 株式会社山野光学 Aperture stop
WO2012098806A1 (en) * 2011-01-20 2012-07-26 株式会社山野光学 Lighting diaphragm
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
KR101453309B1 (en) 2014-04-03 2014-10-22 조성구 The optical lens system for a camera
KR20150009050A (en) * 2013-07-11 2015-01-26 삼성디스플레이 주식회사 Optical film assembly, display apparatus having the same and method of manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025514A (en) * 2005-07-21 2007-02-01 Canon Inc Light quantity adjusting device, optical system having light quantity adjusting device, and photographing device
JP2007206185A (en) * 2006-01-31 2007-08-16 Canon Electronics Inc Nd filter
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
JP2008065227A (en) * 2006-09-11 2008-03-21 Canon Electronics Inc Nd filter
JP2008112034A (en) * 2006-10-31 2008-05-15 Canon Electronics Inc Nd filter
KR100923060B1 (en) 2006-11-06 2009-10-22 후지논 가부시키가이샤 Lens device
JP2009162852A (en) * 2007-12-28 2009-07-23 Canon Electronics Inc Optical element
WO2010126079A1 (en) * 2009-04-30 2010-11-04 日本ビクター株式会社 Light quantity control apparatus, image pickup apparatus, and light quantity control method
JP2010262031A (en) * 2009-04-30 2010-11-18 Victor Co Of Japan Ltd Light quantity control apparatus, image pickup apparatus, and light quantity control method
US8934031B2 (en) 2009-04-30 2015-01-13 JVC Kenwood Corporation Light intensity control device, imaging device and light intensity control method
WO2011007435A1 (en) * 2009-07-16 2011-01-20 株式会社山野光学 Aperture stop
CN103327885A (en) * 2011-01-20 2013-09-25 株式会社山野光学 Lighting diaphragm
WO2012098806A1 (en) * 2011-01-20 2012-07-26 株式会社山野光学 Lighting diaphragm
US9175831B2 (en) 2011-01-20 2015-11-03 Yamano Optical Co., Ltd. Illumination aperture diaphragm
EP2666402A4 (en) * 2011-01-20 2015-11-25 Yamano Optical Co Ltd Lighting diaphragm
KR20150009050A (en) * 2013-07-11 2015-01-26 삼성디스플레이 주식회사 Optical film assembly, display apparatus having the same and method of manufacturing the same
KR102221907B1 (en) * 2013-07-11 2021-03-04 삼성디스플레이 주식회사 Optical film assembly, display apparatus having the same and method of manufacturing the same
KR101453309B1 (en) 2014-04-03 2014-10-22 조성구 The optical lens system for a camera

Also Published As

Publication number Publication date
JP4164355B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US7042662B2 (en) Light amount adjusting device, and optical device using the light amount adjusting device
US7099555B2 (en) Light amount adjusting apparatus, optical equipment, optical filter and image-taking apparatus
KR100611437B1 (en) Light quantity regulating device and optical system having it and photographing device
JP4164355B2 (en) Light amount adjusting device and optical apparatus using the same
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP4801442B2 (en) ND filter for diaphragm
JPH10333099A (en) Phase noise type wide spectral band width optical low-pass anti-aliasing filter
US5434709A (en) Wavelength-selective phase grating type optical low-pass filter comprising adhesive layer between transparent layers
US20060132641A1 (en) Optical filter and image pickup apparatus having the same
JP2004333553A (en) Light quantity adjusting device, photographing device and filter
JP5942472B2 (en) Light intensity adjustment device
JP2005266096A (en) Optical filter and imaging apparatus
WO2017150489A1 (en) Optical element and optical system including same
JP2007199447A (en) Nd filter, its manufacturing method, and light quantity reducing device
JP3768858B2 (en) Light amount adjusting device, optical system having the same, and photographing device
JP2004253892A (en) Light quantity adjuster
JP3768898B2 (en) Light amount adjusting device, optical system having the same, and photographing device
JP5757699B2 (en) Imaging device
JP2004029577A (en) Light quantity controller, imaging optical system, and imaging apparatus
JP3701932B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
JP6011662B2 (en) Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP4976698B2 (en) ND filter
JP5084115B2 (en) Light amount adjusting device, optical system having light amount adjusting device, and photographing apparatus
JP2003240919A (en) Device for controlling light quantity, and optical system and photographing device having the same
JP2005157197A (en) Light quantity controller, optical device and photographing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4164355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees