JP3768858B2 - Light amount adjusting device, optical system having the same, and photographing device - Google Patents

Light amount adjusting device, optical system having the same, and photographing device Download PDF

Info

Publication number
JP3768858B2
JP3768858B2 JP2001315355A JP2001315355A JP3768858B2 JP 3768858 B2 JP3768858 B2 JP 3768858B2 JP 2001315355 A JP2001315355 A JP 2001315355A JP 2001315355 A JP2001315355 A JP 2001315355A JP 3768858 B2 JP3768858 B2 JP 3768858B2
Authority
JP
Japan
Prior art keywords
phase difference
filter
light
adjusting device
transmitted wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315355A
Other languages
Japanese (ja)
Other versions
JP2003121900A (en
Inventor
安規 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001315355A priority Critical patent/JP3768858B2/en
Priority to EP02802356A priority patent/EP1445648A4/en
Priority to PCT/JP2002/010275 priority patent/WO2003038516A1/en
Priority to KR1020047005386A priority patent/KR100611437B1/en
Priority to CNB028198093A priority patent/CN100421025C/en
Priority to US10/318,753 priority patent/US7932952B2/en
Publication of JP2003121900A publication Critical patent/JP2003121900A/en
Application granted granted Critical
Publication of JP3768858B2 publication Critical patent/JP3768858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラやデジタルスチルカメラ等の撮影装置に好適な光量調整装置に関し、画素ピッチの小さな撮像素子においても光学性能の劣化を抑制することが可能な技術に関するものである。
【0002】
【従来の技術】
ビデオカメラ等の撮影装置の撮影光学系には、複数枚の絞り羽根で形成する開口径を変化させて光量を調整する光量調整装置が使用されている。このような絞り装置では、開口径が小さくなりすぎると光の回折による光学性能劣化が問題となる。
【0003】
そこで、明るい被写体条件でも開口径が小さくなり過ぎないようにするため、絞り羽根とND(Neutral Density)フィルターを併用した光量調整装置が提案され実用化されている。
【0004】
特許公報第2592949号には、絞り羽根で形成される開口内に位置するようにNDフィルターが絞り羽根に貼付けられ、NDフィルターはそれぞれ均一な透過率に設定された複数の領域を有し、開口の外側から内側に向かって順に透過率が大きくなるよう設定した絞り装置が開示されている。
【0005】
特開昭52−117127号公報には、開放から所定の開口面積までは機械的な絞り羽根を移動させ、一定の絞り値以下の小絞り制御は濃淡によって透光度が連続的に変化しているNDフィルターを透過率の高いフィルター部から順に開口に進入させる絞り装置が開示されている。
【0006】
特開2000−106649号公報には、複数の濃度領域を有するNDフィルターの透過率が与える光学性能への影響を説明し、対策を施した露出制御機構を有する撮像装置が開示されている。
【0007】
従来のこれらの提案においては、開放から小絞りに至るまでの中間絞り状態での光学性能劣化の主因は、絞り羽根により形成される開口部を覆うNDフィルター透過率の差に起因する回折の影響が支配的と考えられており、複数の濃度領域を有するNDフィルターの各領域の透過率や面積に着目した回折の影響への対策案が提案されていた。
【0008】
【発明が解決しようとする課題】
一方、中間絞り状態での光学性能劣化の原因は、NDフィルター透過率差に起因する回折の影響だけでなく、NDフィルターの厚み成分に起因する透過波面位相差も大きく影響している。
【0009】
絞り開口部の一部を厚みのあるフィルターが覆うと光学性能が劣化することは経験的に知られているが、フィルター厚み成分がどのように光学性能に影響するかを解析し、その具体的な対策をなした例は知られていない。
【0010】
NDフィルターの厚みが光学性能に与える影響への回避策として、特開平6−265971号公報では、透明な部分と透過率が連続的または段階的に変化する部分を有するNDフィルターを固定の円形絞り開口を全て覆う状態で可動させて透過光量を調整する構成が提案されている。
【0011】
しかしながら、特開平6−265971号公報に記載された発明は、フィルター部材を通過する部分としない部分との大きな位相差についてのみ着目したもので、実際に透過率変化のあるNDフィルターを実現するときに、透過率変化を与えるために生じるであろう微小厚み変化または微小屈折率変化による光の波長λ以下の微小な透過波面位相差についての問題提起と対策については何ら示されていない。発明者の検討によれば、このような光の波長オーダー以下の微小な透過波面位相差が、ある条件下では光学性能に非常に大きな影響を与えていることが分かった。
【0012】
そこで本発明は、絞りと、NDフィルターのような透過光を減衰させるフィルター部材とを併用して光量調整を行なう光量調整装置において、フィルター部材の微小な厚み成分の影響による光学性能劣化を低減することを目的としている。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明では、開口を形成するための絞りと、その絞りの開口を通過する光の光量を減衰するためのフィルター部材を備え、フィルター部材の開口を覆う割合が変化する光量調整装置において、フィルター部材は、透過率が異なる複数の領域を有し、その複数の領域の各々は、フィルター部材が開口を全て覆った状態で、開口内のフィルター部材の各領域を通過する所定の波長λの光の位相差が(1/5)λ以下となるような、膜厚及び屈折率を有する多層膜で構成されている
【0015】
ここで、本発明における「所定の波長」とは、光量調整装置の使用状態によって適宜定めるものであり、例えば、使用波長帯域の中心波長などが用いられ、可視光域が使用波長帯域である場合には、λ=550nmであることが好ましい。
【0017】
本発明の光量調整装置は、光学系を通過する光量を調整するために好適に用いられ、特にCCDやCMOS等の撮像素子(光電変換素子)上に像を形成する撮影装置の光学系に好適である。
【0018】
【発明の実施の形態】
本実施形態の光量調整装置(絞り装置)の説明をする前に、透過波面位相差が像に対してどのような影響を与えるかについて説明する。
【0019】
まず、絞り開口部の一部を厚みのあるフィルターが覆うと光学的にどのような現象が発生するかについて図9を用いて説明する。
【0020】
図9(a)〜(e)は、無収差の理想レンズLの前方(物体側)にフィルターPと開口絞りSを配置し、波長λの単色光の平面波である平行光線が入射した場合の幾何光学的な結像点I近傍の点像強度分布Qを示している。
【0021】
図9(a)はフィルターPが厚みゼロで透過波面に影響を与えていない状態である。この場合、強度分布QはFナンバーFと光線の波長λの関係による回折像となる。(参照:「レンズ設計のための波面光学」草川徹著、東海大学出版会)
【0022】
絞りSが円形開口の場合、半径が1.22Fλの1つの点像が結像され、その周りにリング状の弱い光の回折光が形成される。ここで、絞りSの開口の半分に相当するフィルターPの紙面下側の領域の厚みを微小量増加させ、図9(b)に示すように透過波面位相差が(1/4)λになるよう設定すると、強い強度の点像の横に小さな強度の点像が出現する。
【0023】
更にフィルターPの下側領域の厚みを増加させ、図9(c)に示すように透過波面位相差が(2/4)λになるよう設定すると、強度分布Qは1つの点像にならず紙面内で上下方向に分離した2点の像強度分布になる。これは、幾何光学的な結像点Iに集光するべき光のうち、瞳の紙面上側半分を通過する光の波面と紙面下側半分の波面の位相が(1/2)λずれているため、波動光学的には波の打ち消し合い現象が発生し、結像点I上での強度がゼロになってしまうからである。その一方でエネルギー保存法則により結像点Iに集光するべき光エネルギーが消失することはないので、結像点Iの紙面上下方向に分散され2つの点に集まることになる。
【0024】
更にフィルターPの下側領域の厚みを増加させ、図9(d)に示すように透過波面位相差が(3/4)λになるよう設定すると、2点像の上側の強度が弱まり下側の強度が強くなる。
【0025】
更にフィルターPの下側領域の厚みを増加させ、図9(e)に示すように透過波面位相差が(4/4)λになるよう設定すると、強度分布Qは再び1つの点像の回折像になり図9(a)と同様な状態に戻る。
【0026】
更にフィルターPの下側領域の厚みを増加させると、強度分布Qは透過波面位相差に応じて周期的に変化を繰り返すことになる。
【0027】
図9(c)に示した透過波面位相差が(1/2)λの場合に分離する2点像の間隔ΔyはΔy≒2Fλの関係があり、Fナンバーと波長λに比例する。例えばFナンバーF=4で波長λ=550nmの場合は、2点像の間隔Δy≒4.4μmになる。これは2点分離のローパスフィルターと同じ原理で、カットオフ周波数が1/(2Δy)=114本/mmのローパスフィルターをかけた場合と同じような効果が発生し、光学系のMTFが劣化することを意味している。
【0028】
光学計算で無収差の理想レンズを設定し、図9(a)〜(e)の状態の点像強度分布を計算した結果を図10〜14に示す。図10〜14は、それぞれ、単色光λ=550nm、FナンバーF=2の円形絞りという条件で、絞り開口の半分の領域の透過波面位相差が(0/4)λから(4/4)λまで(1/4)λずつ増加するようにフィルター厚を増加させた場合の点像強度分布である。図10〜14において、(a)〜(c)は点像強度分布をそれぞれ鳥瞰図示、上面図示、側面図示したものである。
【0029】
ひとつの波長からなる単色光の場合は、フィルター厚の変化に伴う透過波面位相差に応じて結像点Iの強度分布が周期的に変化することが図10〜14からも分かる。
【0030】
ところで、実際に撮影系で使用される光は単色光ではなく、種々の波長の光が混合した白色光である。図10〜14と同じ条件設定で白色光の点像強度分布を計算した結果を図15〜19に示す。なお、白色光としては、標準比視感度に合わせて可視光400nm〜700nmの範囲で550nm近傍に感度ピークをもつカラーウエイトを設定している。
【0031】
波長λ=550nmでの透過波面位相差がゼロλから1λまでの点像強度分布の変化は、白色光の場合も単色光の場合とほぼ同じように、点像が1点から2点に分離し再び1点に変化することが図15〜19から分かる。
【0032】
図17は、波長λ=550nmでの透過波面位相差が(1/2)λのとき、白色光の強度分布が2点分離像になった状態を示している。前述したように、2点分離像の分離幅はFナンバーと波長λに比例するので、波長の長い赤い光の2点分離像の分離幅は広く、逆に波長の短い青い光の2点分離像の分離幅は狭くなる。したがって、図17に示した白色光の2点分離像は色にじみをもった像になっている。単色光の場合は2点分離像の中間の谷間の部分の強度はゼロになるが、白色光の場合は谷間の部分の強度は色にじみの影響でゼロにはならない。
【0033】
図19は、波長λ=550nmでの透過波面位相差がちょうど(4/4)λ=1λのときの白色光の点像強度分布を示している。フィルターを透過する光の位相差は波長によって異なり白色光全ての波長の位相差が1λにはならないため、図19(b)から明らかなように、点像強度分布は完全な円形にならず上下方向に少し伸びた楕円形状になっている。
【0034】
このように白色光の場合、透過波面位相差が2λ以下の比較的小さい領域であれば、単色光の場合と同様に結像点Iの強度分布が周期的に1点になったり2点になったりする。しかしながら、透過波面位相差が数λ以上の大きな領域では、透過波面位相差の波長によるずれが大きくなり、単色光とは点像強度分布に対して異なる挙動を示すことになる。これについて次に説明する。
【0035】
波長λ=550nmでの透過波面位相差が5.5λと6λ発生した場合の単色光と白色光の点像強度分布の違いを計算した結果を図20〜23に示す。
【0036】
図20は単色光で位相差5.5λ発生条件での単色光点像強度分布、図21は白色光での点像強度分布である。
【0037】
図22は単色光で位相差6λ発生条件での単色光点像強度分布、図23は白色光での点像強度分布である。
【0038】
単色光の場合、図20に示した透過波面位相差5.5λでは(1/2)位相ずれているため図12と同様に2点に分離した強度分布を持つが、白色光の場合は既に2点像とはならない。各波長の位相差が全て(1/2)位相ではなく波長による位相差が大きくなり、図21に示すように位相差が存在する方向(図21の上下方向)に伸びた楕円形状の1つの点像強度分布となる。
【0039】
次に透過波面位相差6λの場合を見ると、単色光の場合は丁度位相が合った状態なので、図22に示すように1点の円形の点像強度分布になる。白色光の場合は、図23に示すように位相差が存在する方向(図23の上下方向)に伸びた楕円形の強度分布になっている。
【0040】
図21と図23の強度分布を比較すると、白色光の場合は透過波面位相差が5.5λから6λに変化してもほとんど点像強度分布に変化がないことが分かる。これは、絞り開口である瞳面での透過波面位相差が2λ以下の微小な場合と5λ以上の大きな場合とで、透過波面位相差が光学性能へ与える影響が白色光では大きく異なっていることを示している。
【0041】
NDフィルターを用いた光量調整装置において、透過波面位相差が2λ以下の領域とは、NDフィルター基板が開口を全て覆っている状態で、NDフィルター基板上での光学薄膜程度の厚みによって生ずる位相差を意味している。この領域では透過波面位相差はiλ(i=0,1)から(i+(1/2))λに変化するとき光学性能が急激に劣化し、(i+(1/2))λから(i+1)λに変化すると光学性能がある程度まで回復する。
【0042】
一方、透過波面位相差が5λ以上の領域とは、NDフィルター基板の端縁部が絞り開口に掛かっている状態でのNDフィルター基板自身の厚みによって生ずる位相差などを意味しており、この領域では多少の透過波面位相差が変動しても光学性能はあまり変化しない。
【0043】
これに関して、光学性能評価としてMTF値を用い、透過波面位相差との関係がどのようになっているかを図24を用いて説明する。ここではNDフィルターの透過率に起因する回折の影響は考慮せず、フィルターの厚み成分に起因した透過波面位相差によるMTF値の変化のみに限定して話を進める。
【0044】
図24は、絞り開口の下側半分領域のフィルター厚みをゼロから徐々に増加させ、透過波面位相差を6λまで変化させた場合の無収差理想レンズ系での白色光の波動光学的MTF計算値である。
【0045】
図24(a)は空間周波数50本/mm、図24(b)は空間周波数100本/mmの白色MTF値をグラフ表示している。グラフの縦軸はMTF値、横軸は波長λ=550nmでの透過波面位相差である。円形開口のFナンバーがF1,F1.4、F2、F2.8、F4、F5.6,F8の状態での各MTF値をグラフに示している。
【0046】
ここで、MTF計算で評価する空間周波数について説明する。撮像素子の画素ピッチがpμmの場合、この撮像素子が解像できる限界の空間周波数は1/(2×p)までである。通常この限界の空間周波数近傍よりも高い周波数はモアレや偽色信号の原因となるためローパスフィルターでカットする。画質評価として重要な空間周波数は撮像素子の限界周波数の半分程度である。
【0047】
そこで、評価空間周波数=1/(4×p)と定義し、撮像素子の画素ピッチが5μmの場合は50本/mm、画素ピッチが2.5μmの場合は100本/mmを評価空間周波数とした。
【0048】
例えば、有効画素数38万画素、受光素子画面対角寸法4.5mmのビデオカメラ用の撮像素子の場合、画素ピッチは約5μmで評価空間周波数50本/mmになり、垂直方向テレビジョン解像度に換算すると270TV本に相当する。有効画素数が同じ条件で受光素子画面対角寸法が2.25mmの撮像素子の場合、画素ピッチは約2.5μmで評価空間周波数100本/mmとなる。この場合も垂直方向テレビジョン解像度に換算すると270TV本に相当する。
【0049】
透過波面位相差が光学性能へ与える影響についての説明に話を戻す。
【0050】
評価空間周波数における目標MTF値を仮に70%以上と設定する。なお、ここでのMTF計算は、NDフィルター透過率を考慮していないことと無収差理想レンズ系であることを考慮して少し高めの値を目標MTF値に仮設定しているが、この値は目安であり絶対的な数値目標ではない。
【0051】
まず、図24(a)に示す空間周波数50本/mmでの白色MTF値の説明をする。
【0052】
F8まで開口を絞り込んだ状態での透過波面位相差がゼロλの場合はMTF値72%を確保しているが、透過波面位相差が(1/2)λになるとMTF値は21%まで急激に劣化する。更に透過波面位相差を増加させ1λの状態でMTF値は62%まで回復する。透過波面位相差を更に増加させるとMTF値は振動しながら変動し、透過波面位相差が5λ以上でMTF値42%程度に安定する。F8状態で目標MTF値を満足させるためには透過波面位相差をほぼゼロλ近傍設定にする必要がある。
【0053】
F5.6状態をみると、透過波面位相差ゼロλではMTF値80%を確保しているが、透過波面位相差(1/2)λ状態で44%まで劣化し、透過波面位相差1λでMTF値76%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値61%程度に安定する。
【0054】
F4状態をみると、透過波面位相差がゼロλの場合はMTF値85%、透過波面位相差(1/2)λ発生時は58%まで劣化し、透過波面位相差1λでMTF値82%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値72%に安定する。
【0055】
F2.8状態をみると、透過波面位相差がゼロλの場合はMTF値90%、透過波面位相差(1/2)λ発生時でも71%を確保し、透過波面位相差1λでMTF値88%まで回復し、その後振動しながら透過波面位相差5λ以上でMTF値80%に安定する。
【0056】
F2.8よりも明るい開口絞り状態であれば透過波面位相差の影響でMTF値が70%よりも下がることがない。
【0057】
次に、図24(b)に示す空間周波数100本/mmでの白色MTF値の説明をする。
【0058】
F8まで開口を絞り込んだ状態では回折の影響で、MTF値は45%まで劣化し、透過波面位相差が5λ以上でMTF値5%程度まで劣化してしまう。F8状態では目標MTF値を満足させることは不可能である。
【0059】
F5.6状態をみると、透過波面位相差ゼロλでMTF値61%、透過波面位相差(1/2)λ状態で6%まで劣化し、透過波面位相差1λでMTF値53%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値27%程度に安定する。F5.6状態でもまだ回折の影響が大きく目標MTF値を満足させることはできない。
【0060】
F4状態をみると、透過波面位相差ゼロλではMTF値72%を確保しているが、透過波面位相差(1/2)λ状態で21%まで劣化し、透過波面位相差1λでMTF値66%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値45%程度に安定する。F4状態で目標MTF値を満足させるには透過波面位相差はゼロλ近傍に設定する必要がある。ということは絞り開口F4状態でNDフィルターを挿入するとフィルター厚みによる大きな透過波面位相差が発生し目標MTF値を満足できなくなる。
【0061】
F2.8状態をみると、透過波面位相差ゼロλではMTF値80%を確保しているが、透過波面位相差(1/2)λ状態で43%まで劣化し、透過波面位相差1λでMTF値76%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値60%程度に安定する。
【0062】
F2状態をみると、透過波面位相差ゼロλではMTF値85%を確保しているが、透過波面位相差(1/2)λ状態で58%まで劣化し、透過波面位相差1λでMTF値73%まで回復するが、その後振動しながら透過波面位相差5λ以上でMTF値71%程度に安定する。
【0063】
F1.4状態をみると、透過波面位相差ゼロλではMTF値90%を確保しているが、透過波面位相差(1/2)λ状態で70%まで劣化し、透過波面位相差1λでMTF値88%まで回復し、その後振動しながら透過波面位相差5λ以上でMTF値89%程度に安定する。
【0064】
絞り開口部にフィルターが挿入されフィルター端縁部が開口中央に位置する状態は透過波面位相差が5λ以上の状態である。この透過波面位相差状態において、評価空間周波数が50本/mmの場合はF4まで絞り込んでもMTF値70%を確保することができる。一方、評価空間周波数が100本/mmの場合は、F2まで開口を広げなくてはMTF値70%を確保することができない。
【0065】
ところで、NDフィルターとしては、材料の中に光を吸収する有機色素または顔料を混ぜ練り込むタイプのものと、材料の表面に光学薄膜を蒸着するものとが知られている。練り込みタイプNDフィルターの特徴は、均一な濃度のフィルターを大量に安価で加工可能な点であるが、蒸着タイプNDフィルターに比べて分光透過率の波長依存性が劣るため、撮影装置用の絞り装置として用いられるNDフィルターとしては蒸着タイプが優れている。蒸着タイプNDフィルターは、金属膜や誘電体膜を複数層重ねることで分光透過率の波長依存性が少なくかつ反射防止膜としての作用も併せ持たせることが可能である。
【0066】
蒸着タイプNDフィルターを用いて濃度を段階的に複数領域設定した例を図25に示す。図中、P3は蒸着タイプNDフィルターで2種類の濃度領域を持った例を示している。フィルター基板B3の表面全面にND膜N31を蒸着し、裏面の異なる面積領域にND膜N32を蒸着している。この場合、図示しているように裏面のND蒸着膜境界部でND膜厚の段差に起因する透過波面位相差が発生する。
【0067】
図24において透過波面位相差が2λ以下の領域とは、この膜厚の段差などに起因した微小な透過波面位相差が存在する場合を意味している。以下の具体的な実施例では、透過波面位相差を所定の範囲内に収めることによって、光学性能の劣化を最小限に抑える構成を開示する。
【0068】
(実施例1)
本発明の実施例1を図1に示す。図1は本発明を応用した光量調整装置(絞り装置)の実施例である。図1(A)は開放絞り状態、図1(B)は中間絞り状態、図1(C)は最小絞り状態を示している。
【0069】
図中、S11,S12は絞り開口を形成するための絞り羽根であり、相対的に移動させることによって開口面積を変えることができる。P1はNDフィルター(フィルター部材)であり、絞り羽根S12に貼り付けられ固定されている。したがって、絞り羽根S11,S12の相対的な移動に伴って、NDフィルターP1が開口を覆う面積が変化する。また、NDフィルターP1は、絞り羽根S12の開口周辺側から内側に向かって順に、透過率が小さい(濃度の濃い)領域N13、透過率が次に小さい(透過率が中程の)領域N12、そして透過率の大きい(濃度の薄い)領域N11が基板B1上に形成されている。基板B1には、セルロースアセテート、ポリエチレンテレフタレート(PET)、塩化ビニル、アクリル樹脂等の合成樹脂フィルムが用いられる。合成樹脂フィルムを使用する主な理由は、比重が軽いことと、薄く加工しても割れにくい点である。基板B1の厚みは100μm〜50μm程度である。
【0070】
NDフィルター部P1を透過する透過波面の様子を図2に示す。図2での各濃度領域N11,N12,N13は蒸着膜で各透過率を設定している。そして各濃度領域の膜厚及びその材料の屈折率を適宜設定することにより、製造誤差を含めた透過波面位相差が(1/5)λ以下になるようにしている。透過波面位相差が(1/5)λ以下とは、特開平7−63915号公報に開示されたNDフィルター(多層膜の平均屈折率≒1.63)を想定すると、各濃度領域の実際の段差(機械的な段差)が0.17μm以下に相当する。
【0071】
NDフィルターP1の各領域N11,N12は、図3に示すように、フィルム状の基板B1上に3つの役割をもつ蒸着層を有している。すなわち、透過波面位相差を補正するためのベースコート層31、波長によらず均一に透過率を落とすためのND層32、表面反射を防止するARコート層33である。領域N13はベースコート層31を備えず、ND層32とARコート層33のみを有している。
【0072】
透過波面位相差を補正するためのベースコート層31は、基板B1上にAlやSiO等の基板B1の屈折率に近い誘電体膜の膜厚を適切に設定し蒸着することで透過波面位相差を補正する。透過率を下げるためのND層32は多層膜で構成し、波長依存性が少なくなるように設定する。ND層32は、各領域N11,N12,N13毎に透過率を変えるため厚さが異なっており、これが透過波面位相差の主要因となっている。ベースコート層31はこれを補正するためのものである。そして最終層として表面反射を防止するARコート層33を蒸着する。ARコート層33はMgFなどの誘電体膜を蒸着している。
【0073】
図24に示した透過波面位相差と白色MTFの関係を参照すると、透過波面位相差が(1/5)λを超えるとMTF値は急激に劣化し、透過波面位相差が(1/4)λから(3/4)λの状態では透過波面位相差が5λ以上発生した状態よりもMTF値が下がってしまう。これは、Fナンバーが大きな状態(絞り開口が小さい状態)で特に顕著であり、Fナンバーが小さな状態(絞り開口が大きい状態)では透過波面位相差が全くない状態と比べてもMTF値の劣化は比較的少ない。
【0074】
本実施例において、図1(A)に示すように絞り開口内に数μm以上の厚みのあるNDフィルターP1の端縁部が存在する状態は、透過波面位相差が5λ以上発生する状態に相当する。しかし、図1(A)のようにFナンバーの小さな場合に、この状態となるように設定しているため、光学性能の劣化は実施上問題ないレベルに抑えられる。
【0075】
一方、図1(B)や(C)のようにFナンバーの大きな場合には、NDフィルターP1が開口全体を覆うように設定し、しかもNDフィルターP1の透過率が異なる位置を通過する光の透過波面位相差が(1/5)λ以下になるように設定しているので、光学性能の劣化を抑制できる。
【0076】
このような構成により、絞り込んだ状態でもMTF値の劣化を最小限度に抑え、画質の向上を図ることができる光量調整装置が実現できる。また、本実施例の光量調整装置をビデオカメラやデジタルスチルカメラ等の撮影装置に用いれば、画質の劣化を抑えつつ、画素ピッチの小さな撮像素子を用いることが可能となる。
【0077】
(実施例2)
本発明の実施例2を図4に示す。図4は実施例1と同様に本発明を応用した光量調整装置(絞り装置)の実施例であるが、実施例1とは異なり、絞り羽根とNDフィルターを独立して駆動して光量調整を行う装置の実施例である。
【0078】
図中、S21,S22は開口を形成するための絞り羽根であり、相対的に移動させることによって開口面積を変えることができる。P2はNDフィルターであり、絞り羽根S11,S12とは独立に駆動可能である。本実施例では、図4(a)に示す開放状態から図4(b)に示す所定の絞り状態までは絞り羽根S21,S22で開口を絞ることで光量調整を行い、それ以降は開口面積を固定として、図4(c)に示すようにNDフィルターP2を透過率の大きな領域から透過率の小さな領域の順に開口内に挿入することで光量調整を行なう。
【0079】
NDフィルターP2は、基板B2の一方の面に減光作用のない領域N21、所定の透過率の領域N22が形成され、他方の面に領域N22と同じ透過率の領域N23、領域N22,N23よりも透過率が小さい領域N24が形成されている。したがって、光が領域N21と領域N23を通過する場合に透過率が最も小さく、領域N22と領域N23を通過する場合に透過率が次に小さく、領域N22と領域N24を通過する場合に透過率が最も大きくなる。このように本実施例のNDフィルターP2は、2種類の透過率を有する蒸着ND膜を組合せ、3種類の透過率(濃度)を設定している。なお、基板B2は実施例1で説明した基板B1と同様のものが用いられる。
【0080】
NDフィルター部P2を透過する透過波面の様子を図5に示す。本実施例でも領域N21,N22,N23,N24の膜厚及びその材料の屈折率を適宜設定することにより、製造誤差を含めた透過波面位相差が(1/5)λ以下(機械的な段差0.17μm以下)になるようにしている。
【0081】
NDフィルターP2の拡大断面図を図6に示す。本実施例の各領域N21,N22,N23,N24も実施例1の各濃度領域と同様に、ベースコート層61、ND層62、ARコート層63によって構成されている。本実施例において、特徴的なのは減光作用を持たない領域N21がベースコート層61とARコート層63のみによって構成されていることである。本実施例においても、このベースコート層61の膜厚を適切に設定することで、各領域の透過波面位相差が(1/5)λ以下になるように補正している。なお、ベースコート層61、ND層62、ARコート層63に用いられる材料は実施例1と同様である。
【0082】
本実施例も実施例1と同様に、絞り込んだ状態でもMTF値の劣化を最小限度に抑え、画質の向上を図ることができる光量調整装置が実現できる。また、本実施例の光量調整装置をビデオカメラやデジタルスチルカメラ等の撮影装置に用いれば、画質の劣化を抑えつつ、画素ピッチの小さな撮像素子を用いることが可能となる。
【0083】
(実施例3)
図7は、実施例1,2で説明した光量調整装置を適用した光学系の概略構成図である。
【0084】
図7において、10は屈折系、反射系、回折系等によって構成された撮影光学系、11は光学系10を通過する光を制限し、明るさを調整する絞り、12は光学系10によって形成される被写体像を受光面で受光し電気信号に変換するCCDやCMOS等の撮像素子(光電変換素子)である。本実施例において、絞り11には実施例1や2で説明した光量調整装置を用いている。
【0085】
このように、撮影光学系等の光学系の絞りとして、実施例1,2で説明したような光量調整装置を用いることによって、絞り込んだときのNDフィルターの透過波面位相差による影響を少なくして画質の向上を図ることができる。また、画素ピッチの小さな撮像素子を用いることが可能となる。
【0086】
(実施例4)
次に実施例3で説明した撮影光学系を用いた撮影装置の実施形態を図8を用いて説明する。
【0087】
図8において、20は撮影装置本体、10は実施例4で説明した撮影光学系、11は実施例1や2の光量調整装置によって構成される絞り、12は撮影光学系10によって形成される被写体像を受光する撮像素子、13は撮像素子12が受光した被写体像を記録する記録媒体、14は被写体像を観察するためのファインダーである。ファインダー14としては、光学ファインダーや液晶パネル等の表示素子に表示された被写体像を観察するタイプのファインダーが考えられる。
【0088】
このように実施例4で説明した撮影光学系をビデオカメラやデジタルスチルカメラ等の撮像素子上に被写体像を形成するタイプの撮影装置に適用することにより、NDフィルターの透過波面位相差による影響を少なくして画質の向上を図ることができる。また、画素ピッチの小さな撮像素子を用いることが可能となる。
【0089】
【発明の効果】
以上説明したように、本発明によれば、フィルター部材の微小な厚み成分の影響による光学性能劣化を低減した光量調整装置を実現できる。
【0090】
また本発明の光量調整装置を、撮像素子に像を形成する撮影装置の撮影光学系に用いれば、画素ピッチの小さな撮像素子であっても良好な画像情報を得ることが可能になる。
【図面の簡単な説明】
【図1】実施例1の光量調整装置の概略構成図である。
【図2】実施例1の光量調整装置のNDフィルターを透過した波面の位相の様子を示す図である。
【図3】実施例1のNDフィルターの拡大断面図である。
【図4】実施例2の光量調整装置の概略構成図である。
【図5】実施例2の光量調整装置のNDフィルターを透過した波面の位相の様子を示す図である。
【図6】実施例2のNDフィルターの拡大断面図である。
【図7】光量調整装置を備えた光学系の概略構成図である。
【図8】光量調整装置を備えた撮影装置の概略構成図である。
【図9】透過波面位相差が光学性能へ与える影響を説明するための図である。
【図10】位相差(0/4)λのときの単色光の点像強度分布を示した図である。
【図11】位相差(1/4)λのときの単色光の点像強度分布を示した図である。
【図12】位相差(2/4)λのときの単色光の点像強度分布を示した図である。
【図13】位相差(3/4)λのときの単色光の点像強度分布を示した図である。
【図14】位相差(4/4)λのときの単色光の点像強度分布を示した図である。
【図15】位相差(0/4)λのときの白色光の点像強度分布を示した図である。
【図16】位相差(1/4)λのときの白色光の点像強度分布を示した図である。
【図17】位相差(2/4)λのときの白色光の点像強度分布を示した図である。
【図18】位相差(3/4)λのときの白色光の点像強度分布を示した図である。
【図19】位相差(4/4)λのときの白色光の点像強度分布を示した図である。
【図20】位相差5.5λのときの単色光の点像強度分布を示した図である。
【図21】位相差5.5λのときの白色光の点像強度分布を示した図である。
【図22】位相差6.0λのときの単色光の点像強度分布を示した図である。
【図23】位相差6.0λのときの白色光の点像強度分布を示した図である。
【図24】空間周波数50本/mm及び空間周波数100本/mmの白色MTF値と透過波面位相差の関係を示すグラフである。
【図25】従来のNDフィルターを透過した波面の位相の様子を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light amount adjustment apparatus suitable for a photographing apparatus such as a video camera or a digital still camera, and relates to a technique capable of suppressing deterioration of optical performance even in an image sensor having a small pixel pitch.
[0002]
[Prior art]
In a photographing optical system of a photographing apparatus such as a video camera, a light amount adjusting device that adjusts a light amount by changing an aperture diameter formed by a plurality of diaphragm blades is used. In such a diaphragm device, if the aperture diameter becomes too small, optical performance deterioration due to light diffraction becomes a problem.
[0003]
Therefore, in order to prevent the aperture diameter from becoming too small even under bright subject conditions, a light amount adjusting device using both a diaphragm blade and an ND (Neutral Density) filter has been proposed and put into practical use.
[0004]
In Japanese Patent No. 2592949, an ND filter is attached to an aperture blade so as to be located in an aperture formed by the aperture blade, and the ND filter has a plurality of regions each set to a uniform transmittance, There is disclosed a diaphragm device in which the transmittance is set to increase in order from the outside to the inside.
[0005]
In Japanese Patent Laid-Open No. 52-117127, the mechanical aperture blade is moved from the open position to a predetermined aperture area, and the small aperture control below a certain aperture value causes the light transmittance to change continuously depending on the density. A throttling device is disclosed in which the ND filter that enters the filter enters the opening in order from the filter part having the higher transmittance.
[0006]
Japanese Patent Application Laid-Open No. 2000-106649 describes an effect of the transmittance of an ND filter having a plurality of density regions on the optical performance, and discloses an imaging apparatus having an exposure control mechanism that takes measures.
[0007]
In these conventional proposals, the main cause of optical performance degradation in the intermediate aperture state from the open to the small aperture is the influence of diffraction due to the difference in the transmittance of the ND filter covering the aperture formed by the aperture blades. Is considered to be dominant, and proposals have been made for countermeasures against the influence of diffraction focusing on the transmittance and area of each region of an ND filter having a plurality of concentration regions.
[0008]
[Problems to be solved by the invention]
On the other hand, the cause of the optical performance deterioration in the intermediate stop state is not only the influence of diffraction due to the ND filter transmittance difference, but also the transmitted wavefront phase difference due to the thickness component of the ND filter.
[0009]
Although it is empirically known that the optical performance deteriorates when a thick filter covers a part of the aperture, it is analyzed how the filter thickness component affects the optical performance. There are no known examples of measures taken.
[0010]
As a workaround for the influence of the thickness of the ND filter on the optical performance, Japanese Patent Application Laid-Open No. 6-265971 discloses a ND filter having a transparent portion and a portion having a transmittance changing continuously or stepwise. A configuration has been proposed in which the amount of transmitted light is adjusted by moving in a state of covering all the openings.
[0011]
However, the invention described in Japanese Patent Application Laid-Open No. 6-265971 focuses only on a large phase difference between a portion that passes through the filter member and a portion that does not pass through the filter member. When an ND filter that actually changes transmittance is realized. In addition, there is no mention of a problem raising and countermeasures for a minute transmitted wavefront phase difference equal to or less than the wavelength λ of light due to a minute thickness change or minute refractive index change that would occur to give a transmittance change. According to the inventor's investigation, it has been found that such a small transmitted wavefront phase difference equal to or less than the wavelength order of light has a great influence on optical performance under certain conditions.
[0012]
Therefore, the present invention reduces optical performance deterioration due to the influence of a minute thickness component of a filter member in a light amount adjustment device that performs light amount adjustment using a diaphragm and a filter member that attenuates transmitted light such as an ND filter. The purpose is that.
[0013]
[Means for Solving the Problems]
To achieve the above objective, The present invention Then, in the light amount adjusting device that includes a diaphragm for forming the aperture and a filter member for attenuating the amount of light passing through the aperture of the aperture, and the ratio of covering the aperture of the filter member changes, The filter member has a plurality of regions having different transmittances, and each of the plurality of regions has With the filter member covering all the openings, the filter members in the openings Each area The phase difference of light of a predetermined wavelength λ that passes through (1/5) to be less than λ It is composed of a multilayer film having a film thickness and a refractive index. .
[0015]
here, The present invention The “predetermined wavelength” in FIG. 5 is appropriately determined according to the usage state of the light amount adjusting device. For example, when the center wavelength of the used wavelength band is used and the visible light range is the used wavelength band, λ = It is preferable that it is 550 nm.
[0017]
The present invention The light amount adjusting device is suitably used for adjusting the amount of light passing through the optical system, and is particularly suitable for an optical system of a photographing device that forms an image on an image pickup device (photoelectric conversion device) such as a CCD or CMOS. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Before describing the light amount adjustment device (aperture device) of the present embodiment, how the transmitted wavefront phase difference affects the image will be described.
[0019]
First, what phenomenon optically occurs when a filter having a thickness covers a part of the aperture opening will be described with reference to FIG.
[0020]
FIGS. 9A to 9E show a case where a filter P and an aperture stop S are arranged in front of the non-aberration ideal lens L (on the object side), and parallel rays that are plane waves of monochromatic light having a wavelength λ are incident. A point image intensity distribution Q in the vicinity of the geometrical optical imaging point I is shown.
[0021]
FIG. 9A shows a state in which the filter P has zero thickness and does not affect the transmitted wavefront. In this case, the intensity distribution Q is a diffraction image based on the relationship between the F number F and the wavelength λ of the light beam. (Reference: “Wavefront optics for lens design” written by Toru Kusagawa, Tokai University Press)
[0022]
When the stop S has a circular aperture, a point image having a radius of 1.22Fλ is formed, and ring-shaped weak diffracted light is formed around the point image. Here, the thickness of the area on the lower side of the paper surface of the filter P corresponding to half of the aperture of the diaphragm S is slightly increased, and the transmitted wavefront phase difference becomes (1/4) λ as shown in FIG. 9B. With this setting, a small intensity point image appears next to the strong intensity point image.
[0023]
When the thickness of the lower region of the filter P is further increased and the transmitted wavefront phase difference is set to (2/4) λ as shown in FIG. 9C, the intensity distribution Q does not become one point image. The image intensity distribution is two points separated in the vertical direction on the paper. This is because the phase of the wave front of the light passing through the upper half of the pupil of the pupil and the wave front of the lower half of the paper out of the light to be condensed at the geometric optical imaging point I is shifted by (1/2) λ. Therefore, in wave optics, a wave cancellation phenomenon occurs, and the intensity on the imaging point I becomes zero. On the other hand, the light energy that should be collected at the imaging point I does not disappear due to the law of conservation of energy, so that the imaging point I is dispersed in the vertical direction on the paper surface and collected at two points.
[0024]
Furthermore, if the thickness of the lower region of the filter P is increased and the transmitted wavefront phase difference is set to (3/4) λ as shown in FIG. 9D, the intensity on the upper side of the two-point image becomes weaker and lower The strength of is increased.
[0025]
When the thickness of the lower region of the filter P is further increased and the transmitted wavefront phase difference is set to (4/4) λ as shown in FIG. 9E, the intensity distribution Q is again diffracted by one point image. It becomes an image and returns to the same state as in FIG.
[0026]
When the thickness of the lower region of the filter P is further increased, the intensity distribution Q is periodically changed in accordance with the transmitted wavefront phase difference.
[0027]
The distance Δy between the two-point images separated when the transmitted wavefront phase difference shown in FIG. 9C is (1/2) λ has a relationship of Δy≈2Fλ, and is proportional to the F number and the wavelength λ. For example, when the F number F = 4 and the wavelength λ = 550 nm, the distance between two point images Δy≈4.4 μm. This is the same principle as the two-point separation low-pass filter, and the same effect as when a low-pass filter with a cutoff frequency of 1 / (2Δy) = 114 lines / mm is generated, and the MTF of the optical system deteriorates. It means that.
[0028]
FIGS. 10 to 14 show the result of calculating the point image intensity distribution in the states of FIGS. 9A to 9E by setting an ideal lens having no aberration by optical calculation. FIGS. 10 to 14 show that the transmission wavefront phase difference of the half region of the aperture of the aperture is from (0/4) λ to (4/4) under the condition of a monochromatic light λ = 550 nm and an F number F = 2 circular aperture. This is a point image intensity distribution when the filter thickness is increased so as to increase by (1/4) λ to λ. 10 to 14, (a) to (c) show the point image intensity distribution in a bird's-eye view, a top view, and a side view, respectively.
[0029]
In the case of monochromatic light having a single wavelength, it can also be seen from FIGS. 10 to 14 that the intensity distribution at the imaging point I periodically changes according to the transmitted wavefront phase difference accompanying the change in the filter thickness.
[0030]
By the way, the light actually used in the photographing system is not monochromatic light but white light mixed with light of various wavelengths. The result of calculating the point image intensity distribution of white light under the same condition setting as in FIGS. 10 to 14 is shown in FIGS. As the white light, a color weight having a sensitivity peak in the vicinity of 550 nm in the range of visible light from 400 nm to 700 nm is set in accordance with the standard relative luminous sensitivity.
[0031]
The change in the point image intensity distribution when the transmitted wavefront phase difference at the wavelength λ = 550 nm is from zero λ to 1λ is similar to the case of monochromatic light in the case of white light, and the point image is separated from one point to two points. Then, it can be seen from FIGS.
[0032]
FIG. 17 shows a state where the intensity distribution of white light is a two-point separated image when the transmitted wavefront phase difference at the wavelength λ = 550 nm is (1/2) λ. As described above, since the separation width of the two-point separation image is proportional to the F number and the wavelength λ, the separation width of the two-point separation image of red light having a long wavelength is wide, and conversely the two-point separation of blue light having a short wavelength. The separation width of the image is narrowed. Accordingly, the two-point separated image of white light shown in FIG. 17 is an image with color blur. In the case of monochromatic light, the intensity of the intermediate valley portion of the two-point separated image becomes zero, but in the case of white light, the intensity of the valley portion does not become zero due to the influence of color blur.
[0033]
FIG. 19 shows the point image intensity distribution of white light when the transmitted wavefront phase difference at the wavelength λ = 550 nm is exactly (4/4) λ = 1λ. The phase difference of the light passing through the filter varies depending on the wavelength, and the phase difference of all the wavelengths of white light does not become 1λ. Therefore, as apparent from FIG. It has an elliptical shape that extends slightly in the direction.
[0034]
Thus, in the case of white light, if the transmitted wavefront phase difference is a relatively small region of 2λ or less, the intensity distribution at the imaging point I periodically becomes one point or two points as in the case of monochromatic light. It becomes. However, in a large region where the transmitted wavefront phase difference is several λ or more, the shift of the transmitted wavefront phase difference due to the wavelength is large, and the behavior differs from the monochromatic light with respect to the point image intensity distribution. This will be described next.
[0035]
FIGS. 20 to 23 show the results of calculating the difference in the point image intensity distribution between monochromatic light and white light when the transmission wavefront phase difference at the wavelength λ = 550 nm is generated at 5.5λ and 6λ.
[0036]
FIG. 20 is a monochromatic light point image intensity distribution under the condition of generating a phase difference of 5.5λ, and FIG. 21 is a point image intensity distribution with white light.
[0037]
FIG. 22 is a monochromatic light point image intensity distribution under the condition that a phase difference of 6λ is generated, and FIG. 23 is a point image intensity distribution with white light.
[0038]
In the case of monochromatic light, the transmitted wavefront phase difference of 5.5λ shown in FIG. 20 has a (1/2) phase shift and thus has an intensity distribution separated into two points as in FIG. It is not a two-point image. The phase difference of each wavelength is not a (1/2) phase, but the phase difference due to the wavelength is increased, and one elliptical shape extending in the direction in which the phase difference exists (vertical direction in FIG. 21) as shown in FIG. It becomes a point image intensity distribution.
[0039]
Next, looking at the case of the transmitted wavefront phase difference 6λ, since the phase is just in the case of monochromatic light, a circular point image intensity distribution of one point is obtained as shown in FIG. In the case of white light, as shown in FIG. 23, the intensity distribution has an elliptical shape extending in the direction in which the phase difference exists (the vertical direction in FIG. 23).
[0040]
Comparing the intensity distributions of FIGS. 21 and 23, it can be seen that in the case of white light, even if the transmitted wavefront phase difference changes from 5.5λ to 6λ, the point image intensity distribution hardly changes. This is because the effect of the transmitted wavefront phase difference on the optical performance differs greatly for white light when the transmitted wavefront phase difference at the pupil plane, which is the aperture stop, is as small as 2λ or less and as large as 5λ or more. Is shown.
[0041]
In a light amount adjusting device using an ND filter, a region where the transmitted wavefront phase difference is 2λ or less is a phase difference caused by the thickness of an optical thin film on the ND filter substrate when the ND filter substrate covers all the openings. Means. In this region, when the transmitted wavefront phase difference changes from iλ (i = 0, 1) to (i + (1/2)) λ, the optical performance deteriorates rapidly, and from (i + (1/2)) λ to (i + 1). ) When changed to λ, the optical performance is recovered to some extent.
[0042]
On the other hand, the region where the transmitted wavefront phase difference is 5λ or more means a phase difference caused by the thickness of the ND filter substrate itself when the edge of the ND filter substrate is in contact with the aperture opening. Then, even if the transmitted wavefront phase difference slightly fluctuates, the optical performance does not change much.
[0043]
In this regard, the MTF value is used for optical performance evaluation, and the relationship with the transmitted wavefront phase difference will be described with reference to FIG. Here, the influence of diffraction due to the transmittance of the ND filter is not taken into consideration, and the discussion is limited to only the change in the MTF value due to the transmitted wavefront phase difference due to the thickness component of the filter.
[0044]
FIG. 24 shows the wave optical MTF calculation value of white light in an aberration-free ideal lens system when the filter thickness of the lower half region of the aperture stop is gradually increased from zero and the transmitted wavefront phase difference is changed to 6λ. It is.
[0045]
FIG. 24A shows a graph of white MTF values at a spatial frequency of 50 lines / mm, and FIG. 24B shows a white MTF value at a spatial frequency of 100 lines / mm. The vertical axis of the graph is the MTF value, and the horizontal axis is the transmitted wavefront phase difference at the wavelength λ = 550 nm. The graph shows the MTF values when the F number of the circular aperture is F1, F1.4, F2, F2.8, F4, F5.6, and F8.
[0046]
Here, the spatial frequency evaluated by the MTF calculation will be described. When the pixel pitch of the image sensor is p μm, the limit spatial frequency that can be resolved by this image sensor is 1 / (2 × p). Normally, a frequency higher than the spatial frequency limit of this limit causes moire and false color signals, and is therefore cut with a low-pass filter. The spatial frequency important for image quality evaluation is about half of the limit frequency of the image sensor.
[0047]
Therefore, the evaluation spatial frequency is defined as 1 / (4 × p). When the pixel pitch of the image sensor is 5 μm, 50 / mm, and when the pixel pitch is 2.5 μm, 100 / mm is the evaluation spatial frequency. did.
[0048]
For example, in the case of an image sensor for a video camera having an effective pixel number of 380,000 pixels and a light receiving element screen diagonal dimension of 4.5 mm, the pixel pitch is about 5 μm and the evaluation spatial frequency is 50 lines / mm. In terms of conversion, it corresponds to 270 TV lines. In the case of an image sensor having a light receiving element screen diagonal dimension of 2.25 mm under the same number of effective pixels, the pixel pitch is about 2.5 μm and the evaluation spatial frequency is 100 lines / mm. This also corresponds to 270 TV lines in terms of vertical television resolution.
[0049]
Returning to the explanation of the effect of transmitted wavefront phase difference on optical performance.
[0050]
The target MTF value at the evaluation spatial frequency is set to 70% or more. Note that the MTF calculation here temporarily sets a slightly higher value as the target MTF value in consideration of not considering the ND filter transmittance and being an aberration ideal lens system. Is a guideline and not an absolute numerical target.
[0051]
First, the white MTF value at a spatial frequency of 50 lines / mm shown in FIG.
[0052]
When the transmitted wavefront phase difference with the aperture narrowed down to F8 is zero λ, an MTF value of 72% is secured, but when the transmitted wavefront phase difference becomes (1/2) λ, the MTF value rapidly increases to 21%. It deteriorates to. Further, the transmitted wavefront phase difference is increased, and the MTF value is recovered to 62% in the state of 1λ. When the transmitted wavefront phase difference is further increased, the MTF value fluctuates while oscillating, and when the transmitted wavefront phase difference is 5λ or more, the MTF value is stabilized to about 42%. In order to satisfy the target MTF value in the F8 state, it is necessary to set the transmitted wavefront phase difference to approximately zero λ.
[0053]
Looking at the F5.6 state, an MTF value of 80% is ensured at the transmitted wavefront phase difference of zero λ, but it deteriorates to 44% in the transmitted wavefront phase difference (1/2) λ state, and at a transmitted wavefront phase difference of 1λ. It recovers to an MTF value of 76%, but then stabilizes to an MTF value of about 61% at a transmitted wavefront phase difference of 5λ or more while vibrating.
[0054]
Looking at the F4 state, when the transmitted wavefront phase difference is zero λ, the MTF value is 85%, and when the transmitted wavefront phase difference (1/2) λ is generated, the deterioration is 58%. When the transmitted wavefront phase difference is 1λ, the MTF value is 82%. However, the MTF value is stabilized to 72% when the transmitted wavefront phase difference is 5λ or more while vibrating.
[0055]
Looking at the F2.8 state, when the transmitted wavefront phase difference is zero λ, the MTF value is 90%, and 71% is secured even when the transmitted wavefront phase difference (1/2) λ is generated, and the MTF value is obtained with the transmitted wavefront phase difference of 1λ. It recovers to 88% and then stabilizes to an MTF value of 80% when the transmitted wavefront phase difference is 5λ or more while vibrating.
[0056]
If the aperture stop is brighter than F2.8, the MTF value does not fall below 70% due to the effect of the transmitted wavefront phase difference.
[0057]
Next, the white MTF value at a spatial frequency of 100 lines / mm shown in FIG.
[0058]
When the aperture is narrowed down to F8, the MTF value is degraded to 45% due to the influence of diffraction, and the transmitted wavefront phase difference is 5λ or more, and the MTF value is degraded to about 5%. In the F8 state, it is impossible to satisfy the target MTF value.
[0059]
Looking at the F5.6 state, the transmission wavefront phase difference is zero λ, the MTF value is 61%, the transmission wavefront phase difference is reduced to 6% in the λ state, and the transmission wavefront phase difference is 1λ, and the MTF value is restored to 53%. However, the MTF value is stabilized to about 27% when the transmitted wavefront phase difference is 5λ or more while vibrating thereafter. Even in the F5.6 state, the influence of diffraction is still great and the target MTF value cannot be satisfied.
[0060]
Looking at the F4 state, an MTF value of 72% is secured at the transmitted wavefront phase difference of zero λ, but the MTF value is degraded to 21% in the transmitted wavefront phase difference (1/2) λ state, and the MTF value at the transmitted wavefront phase difference of 1λ. It recovers to 66%, but then stabilizes to an MTF value of about 45% when the transmitted wavefront phase difference is 5λ or more while vibrating. In order to satisfy the target MTF value in the F4 state, the transmitted wavefront phase difference needs to be set near zero λ. That is, if an ND filter is inserted in the state of the aperture opening F4, a large transmitted wavefront phase difference due to the filter thickness is generated and the target MTF value cannot be satisfied.
[0061]
Looking at the F2.8 state, an MTF value of 80% is ensured at the transmitted wavefront phase difference of zero λ, but it deteriorates to 43% in the transmitted wavefront phase difference (1/2) λ state, and at a transmitted wavefront phase difference of 1λ. It recovers to an MTF value of 76%, but then stabilizes to an MTF value of about 60% at a transmitted wavefront phase difference of 5λ or more while vibrating.
[0062]
Looking at the F2 state, the MTF value of 85% is secured at the transmitted wavefront phase difference of zero λ, but the MTF value is degraded to 58% in the transmitted wavefront phase difference (1/2) λ state, and the MTF value at the transmitted wavefront phase difference of 1λ. It recovers to 73%, but then stabilizes to an MTF value of about 71% at a transmitted wavefront phase difference of 5λ or more while vibrating.
[0063]
Looking at the F1.4 state, an MTF value of 90% is ensured at a transmitted wavefront phase difference of zero λ, but it deteriorates to 70% in the transmitted wavefront phase difference (1/2) λ state, and at a transmitted wavefront phase difference of 1λ. It recovers to an MTF value of 88%, and then stabilizes to an MTF value of about 89% at a transmitted wavefront phase difference of 5λ or more while vibrating.
[0064]
A state in which the filter is inserted into the aperture opening and the filter edge is located at the center of the aperture is a state where the transmitted wavefront phase difference is 5λ or more. In this transmitted wavefront phase difference state, when the evaluation spatial frequency is 50 lines / mm, an MTF value of 70% can be ensured even if it is narrowed down to F4. On the other hand, when the evaluation spatial frequency is 100 lines / mm, an MTF value of 70% cannot be secured without widening the aperture to F2.
[0065]
By the way, as the ND filter, there are known a type in which an organic dye or pigment that absorbs light is mixed in a material, and a type in which an optical thin film is deposited on the surface of the material. The feature of the kneading type ND filter is that it is possible to process a filter having a uniform concentration in large quantities at a low cost. However, since the wavelength dependency of the spectral transmittance is inferior to that of the vapor deposition type ND filter, the diaphragm for the photographing apparatus is used. As an ND filter used as an apparatus, a vapor deposition type is excellent. The vapor deposition type ND filter has a plurality of layers of metal films and dielectric films, and has less spectral dependence on wavelength, and can also function as an antireflection film.
[0066]
FIG. 25 shows an example in which a plurality of regions are set stepwise by using a vapor deposition type ND filter. In the figure, P3 is an evaporation type ND filter and shows an example having two types of concentration regions. An ND film N31 is vapor-deposited on the entire surface of the filter substrate B3, and an ND film N32 is vapor-deposited on different area regions on the back surface. In this case, as shown in the figure, a transmitted wavefront phase difference due to a step difference in the ND film thickness occurs at the boundary of the ND vapor deposition film on the back surface.
[0067]
In FIG. 24, the region where the transmitted wavefront phase difference is 2λ or less means a case where there is a minute transmitted wavefront phase difference caused by the step of the film thickness. In the following specific examples, a configuration for minimizing deterioration in optical performance by keeping the transmitted wavefront phase difference within a predetermined range is disclosed.
[0068]
Example 1
A first embodiment of the present invention is shown in FIG. FIG. 1 shows an embodiment of a light amount adjusting device (a diaphragm device) to which the present invention is applied. 1A shows an open aperture state, FIG. 1B shows an intermediate aperture state, and FIG. 1C shows a minimum aperture state.
[0069]
In the figure, S11 and S12 are diaphragm blades for forming a diaphragm aperture, and the aperture area can be changed by relatively moving the diaphragm blades. P1 is an ND filter (filter member), which is affixed and fixed to the diaphragm blade S12. Therefore, as the diaphragm blades S11 and S12 move relative to each other, the area where the ND filter P1 covers the opening changes. In addition, the ND filter P1 has an area N13 having a low transmittance (dense density), an area N12 having the next lowest transmittance (medium transmittance), in order from the periphery of the aperture of the diaphragm blade S12 toward the inside. A region N11 having a high transmittance (low concentration) is formed on the substrate B1. For the substrate B1, a synthetic resin film such as cellulose acetate, polyethylene terephthalate (PET), vinyl chloride, or an acrylic resin is used. The main reason for using a synthetic resin film is that it has a low specific gravity and is difficult to break even when processed thinly. The thickness of the substrate B1 is about 100 μm to 50 μm.
[0070]
FIG. 2 shows the state of the transmitted wavefront that passes through the ND filter portion P1. In the concentration regions N11, N12, and N13 in FIG. 2, each transmittance is set by a vapor deposition film. Then, by appropriately setting the film thickness of each concentration region and the refractive index of the material, the transmitted wavefront phase difference including the manufacturing error is set to (1/5) λ or less. When the transmitted wavefront phase difference is (1/5) λ or less, assuming the ND filter (average refractive index of multilayer film≈1.63) disclosed in Japanese Patent Laid-Open No. 7-63915, the actual density of each density region The step (mechanical step) corresponds to 0.17 μm or less.
[0071]
As shown in FIG. 3, each of the regions N11 and N12 of the ND filter P1 has a deposited layer having three roles on the film-like substrate B1. That is, the base coat layer 31 for correcting the transmitted wavefront phase difference, the ND layer 32 for reducing the transmittance uniformly regardless of the wavelength, and the AR coat layer 33 for preventing surface reflection. The region N13 does not include the base coat layer 31, but has only the ND layer 32 and the AR coat layer 33.
[0072]
The base coat layer 31 for correcting the transmitted wavefront phase difference is formed on the substrate B1 with Al. 2 O 3 And SiO 2 The transmission wavefront phase difference is corrected by appropriately setting the film thickness of the dielectric film close to the refractive index of the substrate B1 or the like and performing deposition. The ND layer 32 for lowering the transmittance is formed of a multilayer film and is set so as to reduce wavelength dependency. The ND layer 32 has a different thickness for changing the transmittance for each of the regions N11, N12, and N13, and this is the main factor of the transmitted wavefront phase difference. The base coat layer 31 is for correcting this. Then, an AR coating layer 33 for preventing surface reflection is deposited as a final layer. The AR coating layer 33 is MgF 2 A dielectric film such as is deposited.
[0073]
Referring to the relationship between the transmitted wavefront phase difference and the white MTF shown in FIG. 24, when the transmitted wavefront phase difference exceeds (1/5) λ, the MTF value rapidly deteriorates and the transmitted wavefront phase difference becomes (1/4). In the state from λ to (3/4) λ, the MTF value is lower than in the state where the transmitted wavefront phase difference is 5λ or more. This is particularly noticeable in a state where the F number is large (a state where the aperture opening is small), and in a state where the F number is small (a state where the aperture opening is large), the MTF value is deteriorated even compared to a state where there is no transmitted wavefront phase difference. Are relatively few.
[0074]
In this embodiment, as shown in FIG. 1A, the state in which the edge of the ND filter P1 having a thickness of several μm or more exists in the aperture opening corresponds to the state in which the transmitted wavefront phase difference is 5λ or more. To do. However, as shown in FIG. 1A, when the F number is small, the optical performance is set to be in this state, so that the deterioration of the optical performance can be suppressed to a level that does not cause a problem in practice.
[0075]
On the other hand, when the F number is large as shown in FIGS. 1B and 1C, the ND filter P1 is set so as to cover the entire opening, and the light passing through the position where the transmittance of the ND filter P1 is different. Since the transmitted wavefront phase difference is set to be (1/5) λ or less, it is possible to suppress deterioration of optical performance.
[0076]
With such a configuration, it is possible to realize a light amount adjusting device that can suppress the deterioration of the MTF value to a minimum and improve the image quality even in a narrowed state. Further, if the light amount adjusting device of the present embodiment is used in a photographing device such as a video camera or a digital still camera, it is possible to use an image pickup device having a small pixel pitch while suppressing deterioration in image quality.
[0077]
(Example 2)
A second embodiment of the present invention is shown in FIG. FIG. 4 shows an embodiment of a light amount adjustment device (aperture device) to which the present invention is applied as in the first embodiment. Unlike the first embodiment, the diaphragm blade and the ND filter are driven independently to adjust the light amount. It is the Example of the apparatus to perform.
[0078]
In the figure, S21 and S22 are diaphragm blades for forming an opening, and the opening area can be changed by relatively moving the diaphragm blade. P2 is an ND filter and can be driven independently of the diaphragm blades S11 and S12. In this embodiment, the light amount is adjusted by narrowing the aperture with the diaphragm blades S21 and S22 from the open state shown in FIG. 4A to the predetermined aperture state shown in FIG. 4B, and thereafter the aperture area is changed. As shown in FIG. 4C, the light amount is adjusted by inserting the ND filter P2 into the opening in order from the region having the highest transmittance to the region having the lowest transmittance as shown in FIG.
[0079]
In the ND filter P2, a region N21 having no light attenuation and a region N22 having a predetermined transmittance are formed on one surface of the substrate B2, and the region N23 and regions N22, N23 having the same transmittance as the region N22 are formed on the other surface. A region N24 having a low transmittance is also formed. Therefore, the transmittance is the lowest when the light passes through the region N21 and the region N23, the transmittance is the next lowest when the light passes through the region N22 and the region N23, and the transmittance is high when the light passes through the region N22 and the region N24. Become the largest. As described above, the ND filter P2 of this embodiment combines the vapor deposition ND film having two kinds of transmittances and sets three kinds of transmittances (concentrations). The substrate B2 is the same as the substrate B1 described in the first embodiment.
[0080]
FIG. 5 shows the state of the transmitted wavefront that passes through the ND filter portion P2. Also in this embodiment, by appropriately setting the film thicknesses of the regions N21, N22, N23, and N24 and the refractive index of the material, the transmitted wavefront phase difference including the manufacturing error is (1/5) λ or less (mechanical step difference). 0.17 μm or less).
[0081]
An enlarged cross-sectional view of the ND filter P2 is shown in FIG. The regions N21, N22, N23, and N24 of the present embodiment are also configured by the base coat layer 61, the ND layer 62, and the AR coat layer 63, similarly to the respective concentration regions of the first embodiment. In the present embodiment, a characteristic is that the region N21 having no dimming action is constituted by only the base coat layer 61 and the AR coat layer 63. Also in the present embodiment, the transmission wavefront phase difference in each region is corrected to be (1/5) λ or less by appropriately setting the film thickness of the base coat layer 61. The materials used for the base coat layer 61, the ND layer 62, and the AR coat layer 63 are the same as those in the first embodiment.
[0082]
Similarly to the first embodiment, this embodiment can also realize a light amount adjusting device that can suppress the deterioration of the MTF value to the minimum and improve the image quality even when the aperture is narrowed down. Further, if the light amount adjusting device of the present embodiment is used in a photographing device such as a video camera or a digital still camera, it is possible to use an image pickup device having a small pixel pitch while suppressing deterioration in image quality.
[0083]
Example 3
FIG. 7 is a schematic configuration diagram of an optical system to which the light amount adjusting device described in the first and second embodiments is applied.
[0084]
In FIG. 7, reference numeral 10 denotes a photographing optical system constituted by a refraction system, a reflection system, a diffraction system, etc., 11 denotes a diaphragm for limiting light passing through the optical system 10 and adjusting brightness, and 12 is formed by the optical system 10. An image pickup device (photoelectric conversion device) such as a CCD or a CMOS that receives an object image to be received by a light receiving surface and converts it into an electrical signal. In this embodiment, the diaphragm 11 uses the light amount adjusting device described in the first and second embodiments.
[0085]
As described above, by using the light amount adjusting device as described in the first and second embodiments as an aperture of an optical system such as a photographing optical system, the influence of the transmitted wavefront phase difference of the ND filter when the aperture is reduced is reduced. The image quality can be improved. In addition, it is possible to use an image sensor with a small pixel pitch.
[0086]
(Example 4)
Next, an embodiment of an imaging apparatus using the imaging optical system described in Example 3 will be described with reference to FIG.
[0087]
In FIG. 8, reference numeral 20 denotes a photographing apparatus main body, 10 denotes a photographing optical system described in the fourth embodiment, 11 denotes a diaphragm configured by the light amount adjusting device according to the first and second embodiments, and 12 denotes a subject formed by the photographing optical system 10. An image sensor that receives an image, 13 is a recording medium that records a subject image received by the image sensor 12, and 14 is a viewfinder for observing the subject image. As the finder 14, a finder of a type that observes a subject image displayed on a display element such as an optical finder or a liquid crystal panel can be considered.
[0088]
Thus, by applying the photographing optical system described in the fourth embodiment to a photographing apparatus that forms a subject image on an image pickup device such as a video camera or a digital still camera, the influence of the transmitted wavefront phase difference of the ND filter is affected. The image quality can be improved with less. In addition, it is possible to use an image sensor with a small pixel pitch.
[0089]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a light amount adjusting device that reduces optical performance deterioration due to the influence of a minute thickness component of a filter member.
[0090]
In addition, when the light amount adjusting device of the present invention is used in a photographing optical system of a photographing device that forms an image on an image sensor, good image information can be obtained even with an image sensor having a small pixel pitch.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a light amount adjusting apparatus according to a first embodiment.
FIG. 2 is a diagram illustrating a phase state of a wavefront transmitted through an ND filter of the light amount adjustment device according to the first embodiment.
FIG. 3 is an enlarged cross-sectional view of an ND filter of Example 1.
FIG. 4 is a schematic configuration diagram of a light amount adjusting apparatus according to a second embodiment.
FIG. 5 is a diagram illustrating a state of a phase of a wavefront transmitted through an ND filter of the light amount adjustment apparatus according to the second embodiment.
6 is an enlarged cross-sectional view of an ND filter of Example 2. FIG.
FIG. 7 is a schematic configuration diagram of an optical system including a light amount adjusting device.
FIG. 8 is a schematic configuration diagram of a photographing apparatus including a light amount adjustment device.
FIG. 9 is a diagram for explaining the influence of transmitted wavefront phase difference on optical performance.
FIG. 10 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is (0/4) λ.
FIG. 11 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is (1/4) λ.
FIG. 12 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is (2/4) λ.
FIG. 13 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is (3/4) λ.
FIG. 14 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is (4/4) λ.
FIG. 15 is a diagram showing a point image intensity distribution of white light when the phase difference is (0/4) λ.
FIG. 16 is a diagram showing a point image intensity distribution of white light when the phase difference is (1/4) λ.
FIG. 17 is a diagram showing a point image intensity distribution of white light when the phase difference is (2/4) λ.
FIG. 18 is a diagram showing a point image intensity distribution of white light when the phase difference is (3/4) λ.
FIG. 19 is a diagram showing a point image intensity distribution of white light when the phase difference is (4/4) λ.
FIG. 20 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is 5.5λ.
FIG. 21 is a diagram showing a point image intensity distribution of white light when the phase difference is 5.5λ.
FIG. 22 is a diagram showing a point image intensity distribution of monochromatic light when the phase difference is 6.0λ.
FIG. 23 is a diagram showing a point image intensity distribution of white light when the phase difference is 6.0λ.
FIG. 24 is a graph showing a relationship between a white MTF value and a transmitted wavefront phase difference at a spatial frequency of 50 lines / mm and a spatial frequency of 100 lines / mm.
FIG. 25 is a diagram illustrating a state of a phase of a wavefront transmitted through a conventional ND filter.

Claims (10)

開口を形成するための絞りと、該開口を通過する光の光量を減衰するためのフィルター部材を備え、該フィルター部材の前記開口を覆う割合が変化する光量調整装置において、前記フィルター部材は、透過率が異なる複数の領域を有し、該複数の領域の各々は、前記フィルター部材が前記開口を全て覆った状態で、前記開口内の前記フィルター部材の各領域を通過する所定の波長λの光の位相差が(1/5)λ以下となるような、膜厚及び屈折率を有する多層膜で構成されていることを特徴とする光量調整装置。In a light amount adjusting apparatus, comprising: a diaphragm for forming an opening; and a filter member for attenuating the amount of light passing through the opening, wherein the ratio of the filter member covering the opening varies. A plurality of regions having different rates, each of the plurality of regions having a predetermined wavelength λ that passes through each region of the filter member in the opening in a state where the filter member covers all of the opening. A light quantity adjusting device comprising a multilayer film having a film thickness and a refractive index such that the phase difference of the first phase becomes (1/5) λ or less. 前記多層膜は反射を低減させるための層を有することを特徴とする請求項1記載の光量調整装置。The light quantity adjusting device according to claim 1, wherein the multilayer film has a layer for reducing reflection. 前記絞りは複数の絞り羽根によって構成され、該複数の絞り羽根を相対的に移動することによって前記開口の面積が変化することを特徴とする請求項1又は2記載の光量調整装置。The light quantity adjusting device according to claim 1, wherein the diaphragm includes a plurality of diaphragm blades, and the area of the opening is changed by relatively moving the plurality of diaphragm blades. 前記フィルター部材は、前記複数の絞り羽根の1つに固定され、前記複数の絞り羽根の相対的な移動に伴って、前記フィルター部材が前記開口を覆う割合が変化することを特徴とする請求項3記載の光量調整装置。The filter member is fixed to one of said plurality of diaphragm blades, the claims with the relative movement of said plurality of diaphragm blades, the filter member, characterized in that the proportion of covering the opening is changed 3. The light quantity adjusting device according to 3 . 前記フィルター部材は、前記複数の絞り羽根とは独立に移動可能であることを特徴とする請求項3記載の光量調整装置。The light amount adjusting device according to claim 3 , wherein the filter member is movable independently of the plurality of aperture blades. 前記所定の波長λは使用波長帯域の中心波長であることを特徴とする請求項1記載の光量調整装置。  2. The light amount adjusting device according to claim 1, wherein the predetermined wavelength λ is a center wavelength of a used wavelength band. 前記所定の波長λは550nmであることを特徴とする請求項1記載の光量調整装置。  2. The light amount adjusting device according to claim 1, wherein the predetermined wavelength λ is 550 nm. 請求項1乃至7いずれか1項記載の光量調整装置を有することを特徴とする光学系。An optical system comprising the light amount adjusting device according to claim 1 . 光電変換素子上に像を形成することを特徴とする請求項8記載の光学系。The optical system according to claim 8 , wherein an image is formed on the photoelectric conversion element. 請求項1乃至7いずれか1項記載の光量調整装置を有する光学系と、該光学系によって形成される像を受光する光電変換素子とを備えることを特徴とする撮影装置。An imaging apparatus comprising: an optical system having the light amount adjusting device according to any one of claims 1 to 7 ; and a photoelectric conversion element that receives an image formed by the optical system.
JP2001315355A 2001-10-12 2001-10-12 Light amount adjusting device, optical system having the same, and photographing device Expired - Fee Related JP3768858B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001315355A JP3768858B2 (en) 2001-10-12 2001-10-12 Light amount adjusting device, optical system having the same, and photographing device
EP02802356A EP1445648A4 (en) 2001-10-12 2002-10-02 Light quantity regulating device and optical system having it and photographing device
PCT/JP2002/010275 WO2003038516A1 (en) 2001-10-12 2002-10-02 Light quantity regulating device and optical system having it and photographing device
KR1020047005386A KR100611437B1 (en) 2001-10-12 2002-10-02 Light quantity regulating device and optical system having it and photographing device
CNB028198093A CN100421025C (en) 2001-10-12 2002-10-02 Quantity-of-light adjusting device, optical system having the same, and photographing device
US10/318,753 US7932952B2 (en) 2001-10-12 2002-12-13 Light quantity adjusting device, optical system having the same, and image taking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315355A JP3768858B2 (en) 2001-10-12 2001-10-12 Light amount adjusting device, optical system having the same, and photographing device

Publications (2)

Publication Number Publication Date
JP2003121900A JP2003121900A (en) 2003-04-23
JP3768858B2 true JP3768858B2 (en) 2006-04-19

Family

ID=19133535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315355A Expired - Fee Related JP3768858B2 (en) 2001-10-12 2001-10-12 Light amount adjusting device, optical system having the same, and photographing device

Country Status (1)

Country Link
JP (1) JP3768858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428504B2 (en) * 2009-04-30 2014-02-26 株式会社Jvcケンウッド LIGHT CONTROL DEVICE, IMAGING DEVICE, AND LIGHT CONTROL METHOD

Also Published As

Publication number Publication date
JP2003121900A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US7042662B2 (en) Light amount adjusting device, and optical device using the light amount adjusting device
US7567285B2 (en) Camera lens device for suppressing reflection waves generated by incident waves
US7932952B2 (en) Light quantity adjusting device, optical system having the same, and image taking apparatus
JP2010079298A (en) Camera and imaging system
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP6808355B2 (en) Optical filter and optical system with it, imaging device
JP4164355B2 (en) Light amount adjusting device and optical apparatus using the same
JPH10333099A (en) Phase noise type wide spectral band width optical low-pass anti-aliasing filter
US7038722B2 (en) Optical imaging system for suppressing the generation of red-toned ghosting particularly when there is background light
JPH06289323A (en) Image pickup optical system
US20060289958A1 (en) Color filter and image pickup apparatus including the same
US20060132641A1 (en) Optical filter and image pickup apparatus having the same
JP2002202455A (en) Photographing optical system and photographing device
JP3768858B2 (en) Light amount adjusting device, optical system having the same, and photographing device
JP3768898B2 (en) Light amount adjusting device, optical system having the same, and photographing device
US10996376B2 (en) Optical element and optical system including the same
JP2004253892A (en) Light quantity adjuster
JP2003240919A (en) Device for controlling light quantity, and optical system and photographing device having the same
US4445136A (en) Television camera having an optical lowpass filter
JP2004029577A (en) Light quantity controller, imaging optical system, and imaging apparatus
US10158791B2 (en) Camera device with red halo reduction
JP6011662B2 (en) Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP2007065109A (en) Nd filter, light quantity reducing device and camera
JP2005157197A (en) Light quantity controller, optical device and photographing device
JP5084115B2 (en) Light amount adjusting device, optical system having light amount adjusting device, and photographing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees