JP2006078519A - Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device - Google Patents

Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device Download PDF

Info

Publication number
JP2006078519A
JP2006078519A JP2004259296A JP2004259296A JP2006078519A JP 2006078519 A JP2006078519 A JP 2006078519A JP 2004259296 A JP2004259296 A JP 2004259296A JP 2004259296 A JP2004259296 A JP 2004259296A JP 2006078519 A JP2006078519 A JP 2006078519A
Authority
JP
Japan
Prior art keywords
filter
substrate
thin film
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259296A
Other languages
Japanese (ja)
Other versions
JP2006078519A5 (en
Inventor
Shinji Uchiyama
真志 内山
Takayuki Wakabayashi
孝幸 若林
Yasunori Saito
康典 斎藤
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2004259296A priority Critical patent/JP2006078519A/en
Publication of JP2006078519A publication Critical patent/JP2006078519A/en
Publication of JP2006078519A5 publication Critical patent/JP2006078519A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diaphragms For Cameras (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ND filter and a light quantity diaphragm device capable of suppressing the deformation of a substrate due to the internal stress of the filter, capable of suppressing the transmission in a visible wavelength region, and also, capable of reducing the transmitted light quantity in a near infrared wavelength region, and to provide a camera equipped with the light quantity diaphragm device. <P>SOLUTION: A thin film 2 having characteristics of attenuating the transmission of a visible region is arranged on a substrate 1 having characteristics of suppressing the transmission of the light in the near-infrared wavelength region as compared with the transmission of the light in the visible wavelength region. In this case, the substrate can be constituted of an infrared cut glass and a resin infrared cut filter or the like, and the thin film can be constituted of a thin film having either of mono-density, multi-density, and gradation in terms of density distribution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、NDフィルタ、光量絞り装置、該光量絞り装置を有するカメラに関するものである。   The present invention relates to an ND filter, a light amount diaphragm device, and a camera having the light amount diaphragm device.

光量絞りは、銀塩フィルムあるいはCCD等の固体撮像素子へ入射する光量を制御するために設けられており、被写界が明るい場合には、より小さく絞り込まれる構造になっている。したがって、快晴時や高輝度の被写界を撮影する際、絞りは小絞りとなり、絞りのハンチング現象や光の回折現象などの影響も受け易く、像性能の劣化を生じる原因となる。
これに対する対策として、絞りの近傍にNDフィルタを配置し、あるいはNDフィルタを絞り羽根に直接貼り付ける等の光量制御によって、被写界の明るさが同一であっても、より絞りの開口が大きくできるような工夫をしている。
The light amount diaphragm is provided to control the amount of light incident on a solid-state image sensor such as a silver salt film or a CCD, and is configured to be further narrowed down when the object field is bright. Therefore, when photographing a clear or high-luminance field, the aperture becomes a small aperture, which is easily affected by the hunting phenomenon of the aperture and the light diffraction phenomenon, causing deterioration in image performance.
As countermeasures against this, even if the brightness of the object field is the same by arranging an ND filter in the vicinity of the diaphragm or by controlling the light quantity such as directly attaching the ND filter to the diaphragm blade, the aperture of the diaphragm is larger. We are trying to make it possible.

また、固体撮像素子は人の目に対応する機能を有しているが、素子そのものの光応答性は必ずしも人間のそれと同じではない。したがって、人とほぼ同じ働きに至るまでには、いくつかの光学的な加工が必要となってくる。
その一つとして、色再現に必要な光波長域のみを固体撮像素子表面に到達させる方法が挙げられる。これは、必要とする波長領域が人間の視感波長領域のみであるにも関わらず、固体撮像素子自体が近赤外領域にまで高い感度を持つために採られる対策である。すなわち、何の加工もせずに固体撮像素子に光を入射させると、近赤外域に高い感度をもったまま信号処理を行うことになり、光量調整、色バランス調整が適切にできなくなる。そのため、光がNDフィルタのみを通過して固体撮像素子に入射した場合、前記した絞りのハンチング現象や光の回折現象などによる画像の劣化は改善されるが、赤外光は透過してしまい、実際に人が目で見るときの視感度とは異なる画像を映し出してしまうこととなる。
このようなことから、通常NDフィルタの他に、近赤外波長領域の透過を制御する赤外カットフィルタを設け、近赤外光が固体撮像素子に入射されるのを防止する方法が採られるのが、一般的となっている。
Further, although the solid-state imaging device has a function corresponding to human eyes, the optical response of the device itself is not necessarily the same as that of humans. Therefore, some optical processing is required to achieve almost the same function as humans.
One of them is a method of allowing only the light wavelength region necessary for color reproduction to reach the surface of the solid-state imaging device. This is a measure taken because the solid-state imaging device itself has high sensitivity in the near-infrared region even though the required wavelength region is only the human visual wavelength region. That is, if light is incident on the solid-state imaging device without any processing, signal processing is performed with high sensitivity in the near infrared region, and light amount adjustment and color balance adjustment cannot be appropriately performed. Therefore, when light passes only through the ND filter and enters the solid-state imaging device, image degradation due to the above-described stop hunting phenomenon or light diffraction phenomenon is improved, but infrared light is transmitted, Actually, an image different from the visibility when a person sees with eyes is projected.
For this reason, in addition to the ND filter, an infrared cut filter that controls transmission in the near-infrared wavelength region is usually provided to prevent near-infrared light from entering the solid-state imaging device. It has become common.

従来においては、可視波長域での透過を抑え、同時に上記した近赤外波長域での透過を制限するために、NDフィルタと赤外光カットフィルタとをそれぞれ独立して持つ構成が必要であった。
これに対して、特許文献1では、透明樹脂基板の両面にNDフィルタ膜と赤外カットフィルタ膜とを蒸着して構成することにより、NDフィルタと赤外光カットフィルタとをそれぞれ独立して持つことを必要としないNDフィルタが提案されている。
特開2002−107509号公報
Conventionally, in order to suppress transmission in the visible wavelength range and simultaneously limit transmission in the near infrared wavelength range, a configuration having an ND filter and an infrared light cut filter independently is necessary. It was.
On the other hand, in patent document 1, it has an ND filter and an infrared-light cut filter independently by comprising vapor-depositing an ND filter film and an infrared cut filter film on both surfaces of a transparent resin substrate. An ND filter that does not require this has been proposed.
JP 2002-107509 A

しかしながら、上記特許文献1では基板の一方の面にNDフィルタを他方の面に赤外カットフィルタを形成することで、それぞれのフィルタを独立して持つ必要をなくするものであるが、基板面に形成される両者のフィルタの膜厚の相違により基板自体に変形を生じるという問題を有している。
すなわち、現在の赤外カットフィルタに求められる一般的な仕様を満足する特性を得る為には、30〜40程度の層数が必要となる。その反対の面に、例えば10層前後のNDフィルタを生成すると、ND面と赤外カット面での膜厚の相違により内部応力が生じ、特に透明樹脂基板のように剛性の弱い基板では、基板自体が変形してしまうこととなる。
However, in Patent Document 1 described above, by forming an ND filter on one surface of the substrate and an infrared cut filter on the other surface, it is not necessary to have each filter independently. There is a problem that the substrate itself is deformed due to the difference in film thickness between the two filters formed.
That is, in order to obtain characteristics satisfying general specifications required for the current infrared cut filter, the number of layers of about 30 to 40 is required. When an ND filter having, for example, about 10 layers is generated on the opposite surface, internal stress is generated due to the difference in film thickness between the ND surface and the infrared cut surface. In particular, in a substrate with low rigidity such as a transparent resin substrate, It will be deformed.

そのため、近赤外をカットする特性を維持しつつ、内部応力による基板変形を補正するには、ND面の膜厚を赤外カット面とほぼ近しい厚さにしなければならないが、それにはNDフィルタ膜の各層に相当の膜厚が必要となるが、NDフィルタ膜の膜厚を厚くすると、これより膜の密着性の低下や、膜ワレといった別の問題が生じることになる。   Therefore, in order to correct the substrate deformation due to internal stress while maintaining the characteristic of cutting the near infrared, the film thickness of the ND surface must be almost close to the infrared cut surface. Although a considerable film thickness is required for each layer of the film, when the film thickness of the ND filter film is increased, other problems such as a decrease in film adhesion and film cracking occur.

本発明は、上記課題に鑑みて、フィルタの内部応力による基板の変形を抑制することができ、可視波長域での透過を抑え、且つ近赤外波長域での透過光量を低減することが可能となるNDフィルタ、光量絞り装置、該光量絞り装置を有するカメラを提供することを目的とするものである。   In view of the above problems, the present invention can suppress the deformation of the substrate due to the internal stress of the filter, suppress the transmission in the visible wavelength range, and reduce the amount of transmitted light in the near infrared wavelength range. It is an object of the present invention to provide an ND filter, a light quantity diaphragm device, and a camera having the light quantity diaphragm device.

本発明は、以下のように構成したNDフィルタ、光量絞り装置、該光量絞り装置を有するカメラを提供するものである。
すなわち、本発明のNDフィルタは、近赤外波長域の光に対し、可視波長域と比較し低透過の特性を持つ基板上に、可視域の透過を減衰する特性を持つ薄膜を有することを特徴としている。本発明において、上記基板は、赤外カットガラス、樹脂製赤外カットフィルタ等で構成することができ、また、上記薄膜は、単濃度、多濃度、グラデーションのいずれかの濃度分布を有する薄膜で構成することができる。
また、本発明の光量絞り装置は、相対的に駆動されて絞り開口の大きさを可変する複数の絞り羽根と、該絞り羽根により形成された開口内の少なくとも一部に配置される光量調整のためのNDフィルタとを備えた光量絞り装置において、
前記NDフィルタが、上記したNDフィルタによって構成されていることを特徴としている。
また、本発明のカメラは、光学系と、該光学系を通過する光量を制限する上記の光量絞り装置と、該光学系によって形成される像を受ける固体撮像素子を有することを特徴としている。
The present invention provides an ND filter, a light quantity diaphragm device, and a camera having the light quantity diaphragm device configured as follows.
That is, the ND filter of the present invention has a thin film having a characteristic of attenuating transmission in the visible range on a substrate having characteristics of low transmission compared to the visible wavelength range for light in the near infrared wavelength range. It is a feature. In the present invention, the substrate can be composed of an infrared cut glass, a resin infrared cut filter, or the like, and the thin film is a thin film having a single concentration, multiple concentration, or gradation concentration distribution. Can be configured.
In addition, the light quantity diaphragm device of the present invention includes a plurality of diaphragm blades that are relatively driven to change the size of the diaphragm opening, and a light quantity adjustment device that is disposed on at least a part of the aperture formed by the diaphragm blades. In the light quantity reduction device provided with the ND filter for
The ND filter is constituted by the ND filter described above.
In addition, a camera of the present invention is characterized by having an optical system, the above-described light amount diaphragm device that limits the amount of light that passes through the optical system, and a solid-state imaging device that receives an image formed by the optical system.

本発明によれば、フィルタの内部応力による基板の変形を抑制することができ、可視波長域での透過を抑え、且つ近赤外波長域での透過光量を低減することが可能となるNDフィルタ、光量絞り装置、該光量絞り装置を有するカメラを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deformation | transformation of the board | substrate by the internal stress of a filter can be suppressed, transmission in a visible wavelength range can be suppressed, and the ND filter which can reduce the transmitted light amount in a near-infrared wavelength range. Further, it is possible to realize a light amount diaphragm device and a camera having the light amount diaphragm device.

つぎに、本発明の実施の形態について説明する。
図1は本実施形態におけるNDフィルタの構成例の一つを示す断面図、図2は図1とは別のNDフィルタの構成例を示す断面図である。
図1及び図2において、1は基板、2はNDフィルタ膜である。
ここで、基板1には近赤外波長領域における光の透過を5%以下程度にカットすることができる赤外カットガラス、若しくはプラスチック製赤外カットフィルタが用いられている。また、ここでの近赤外領域とは、700nm〜1100nmの光波長領域を示している。
NDフィルタとして使用されるため、基板は可視波長領域の透過率に関して、例えば90%以上といった高透過率を求めるなどの制限はないが、NDフィルタに求められる濃度仕様の最小値よりは、高い値である必要がある。濃度仕様の最小値とは、例えば濃度が0.5から1.0の間を順次高濃度に変わっていくグラデーションNDフィルタにおいては、0.5程度の濃度を、また透過率としては約32%程度を指している。
Next, an embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view showing one example of the configuration of an ND filter in the present embodiment, and FIG. 2 is a cross-sectional view showing a configuration example of an ND filter different from FIG.
1 and 2, 1 is a substrate, and 2 is an ND filter film.
Here, an infrared cut glass or a plastic infrared cut filter capable of cutting the transmission of light in the near infrared wavelength region to about 5% or less is used for the substrate 1. Moreover, the near-infrared area | region here has shown the light wavelength area | region of 700 nm-1100 nm.
Since the substrate is used as an ND filter, the substrate is not limited to obtain a high transmittance of, for example, 90% or more with respect to the transmittance in the visible wavelength region, but is higher than the minimum density specification required for the ND filter. Need to be. The minimum value of the density specification is, for example, a density of about 0.5 in a gradation ND filter in which the density gradually changes from 0.5 to 1.0, and the transmittance is about 32%. Refers to the degree.

図1に示すように、前記した赤外カットガラス、若しくはプラスチック製赤外カットフィルタなどの基板上に、真空蒸着法よりNDフィルタ膜を生成する。この際、膜の内部応力による基板の変形等が問題になる場合などは、図2に示すように基板の両面にNDフィルタ膜を構成することで、改善を図ることが可能となる。また、ここで述べているプラスチック製赤外カットフィルタとは、高濃度の銅イオンなどを含有し生成された樹脂基板であり、十分に近赤外領域の透過を抑える事ができるフィルタを意味している。   As shown in FIG. 1, an ND filter film is generated on a substrate such as the above-described infrared cut glass or plastic infrared cut filter by a vacuum deposition method. At this time, when the deformation of the substrate due to the internal stress of the film becomes a problem, improvement can be achieved by forming ND filter films on both surfaces of the substrate as shown in FIG. The plastic infrared cut filter described here is a resin substrate that contains high-concentration copper ions, etc., and means a filter that can sufficiently suppress transmission in the near infrared region. ing.

図3、図4及び図5に、赤外カットフィルタ基板上にNDフィルタ膜を成膜した際の濃度分布例を示す。
赤外カットガラス、若しくはプラスチック製赤外カットフィルタ基板上に成膜するNDフィルタ膜は、図3に示すような全面が均一な透過光量である単濃度膜、図4に示すような同一基板上に数種類の異なる濃度をもつ多濃度膜、さらに図5に示すような濃度が順次小から大、若しくは大から小と変化するグラデーション濃度膜など、用途や仕様によって様々とすることができる。
同様にNDフィルタの外観なども様々に形成することができる。多濃度やグラデーション濃度においては、濃度パターンもまた、用途や仕様によって様々とすることができる。
FIG. 3, FIG. 4 and FIG. 5 show examples of concentration distribution when an ND filter film is formed on the infrared cut filter substrate.
An ND filter film formed on an infrared cut glass or plastic infrared cut filter substrate is a single concentration film whose entire surface has a uniform transmitted light amount as shown in FIG. 3, on the same substrate as shown in FIG. Further, a multi-concentration film having several different concentrations, and a gradation concentration film in which the density sequentially changes from small to large, or from large to small, as shown in FIG.
Similarly, various appearances of the ND filter can be formed. In multi-density and gradation density, the density pattern can also be varied depending on the application and specifications.

以上、本実施の形態について説明してきたが、本発明はこれらの実施の形態に限定されるものではない。特に、以上の本実施の形態においては、赤外カットガラスにNDフィルタ膜を成膜する方法として真空蒸着法を用いた場合を説明したが、スパッタリング法、スプレー法等も適用することができるものである。なお、これらの成膜法は一般的に知られているため、ここではその説明は省略する。   While the present embodiment has been described above, the present invention is not limited to these embodiments. In particular, in the above-described embodiment, the case where the vacuum deposition method is used as the method for forming the ND filter film on the infrared cut glass has been described. However, a sputtering method, a spray method, or the like can also be applied. It is. In addition, since these film-forming methods are generally known, the description is abbreviate | omitted here.

[実施例1]
実施例1として、赤外吸収ガラスにNDフィルタ膜を積層し、NDフィルタを作製した。
図6に、本実施例で基板に用いた赤外吸収ガラスの分光透過率特性示す。
図6に示すように、基板には約700nmから1100nmの波長域において5%以下の透過率を有する特性であり、近赤外領域における光の透過をほぼカットできる赤外吸収ガラスを使用した。この赤外吸収ガラスは610nm付近で50%の透過率を持ち、400nmから600nmの透過率は85%以上のものを使用した。
[Example 1]
As Example 1, an ND filter film was laminated on an infrared absorbing glass to produce an ND filter.
FIG. 6 shows the spectral transmittance characteristics of the infrared absorption glass used for the substrate in this example.
As shown in FIG. 6, an infrared absorbing glass having a transmittance of 5% or less in a wavelength range of about 700 nm to 1100 nm and capable of substantially cutting light transmission in the near infrared region was used for the substrate. This infrared absorbing glass has a transmittance of 50% near 610 nm, and a transmittance of from 400 nm to 600 nm is 85% or more.

図7に本実施例におけるNDフィルタ膜の層構成示す。
上記赤外吸収ガラス基板上に、図1に示すように片面に、図7に示すような11層膜構成のNDフィルタ膜を200度に加熱しながら真空蒸着法により成膜した。成膜したNDフィルタ膜は、図3に示すように全面が均一な透過光量である単濃度膜とした。具体的には可視波長域全域で濃度が約0.5、つまり透過率が約32%の膜とした。ここで、透過(T)と濃度(D)との関係は
D=−log10T である。
真空蒸着法は、膜厚を比較的に容易に制御でき、かつ散乱が非常に小さいことから選択した。
FIG. 7 shows the layer structure of the ND filter film in this embodiment.
On the infrared absorbing glass substrate, an ND filter film having an 11-layer film structure as shown in FIG. 7 was formed on one side as shown in FIG. As shown in FIG. 3, the formed ND filter film was a single concentration film having a uniform transmitted light amount on the entire surface. Specifically, the film has a concentration of about 0.5, that is, a transmittance of about 32% over the entire visible wavelength range. Here, the relationship between transmission (T) and density (D) is D = −log 10 T.
The vacuum deposition method was selected because the film thickness can be controlled relatively easily and the scattering is very small.

最表層は反射防止を目的として設けた層であり、光学膜厚n×d(nは屈折率、dは機械膜厚)でλ/4 λ:540nmの条件で成膜した。
この最表層の膜の屈折率nは可視域の波長域で1.5以下のものを選んだ。具体的にはMgFを使用した。
The outermost layer is a layer provided for the purpose of preventing reflection, and was formed under the condition of λ / 4 λ: 540 nm with an optical film thickness n × d (n is a refractive index, d is a mechanical film thickness).
The refractive index n of the outermost layer film was selected to be 1.5 or less in the visible wavelength range. Specifically, MgF 2 was used.

これにより作成されたNDフィルタの分光透過率を図8に示す。
400nmから600nmの波長域においては32%前後の透過率であり、700nmから1100nmの近赤外波長域においては透過率が5%以下であり、特に700nmから1000nmの領域においては1%以下の透過率特性を有するNDフィルタを得ることができた。
以上により、本実施例においては、図13または図14に示す膜構成であっても、前記したNDフィルタ膜とほぼ同様の透過特性を持つNDフィルタを作製することができた。
FIG. 8 shows the spectral transmittance of the ND filter thus created.
The transmittance is about 32% in the wavelength range from 400 nm to 600 nm, the transmittance is 5% or less in the near infrared wavelength range from 700 nm to 1100 nm, and the transmittance is 1% or less particularly in the region from 700 nm to 1000 nm. An ND filter having a rate characteristic could be obtained.
As described above, in this example, even with the film configuration shown in FIG. 13 or FIG. 14, an ND filter having substantially the same transmission characteristics as the above-described ND filter film could be produced.

[実施例2]
実施例2として、プラスチック製赤外カットフィルタにNDフィルタ膜を積層し、NDフィルタを作製した。以下に本実施例について説明する。
図6に示す赤外吸収ガラスとほぼ同様の特性をもつプラスチック製の赤外吸収フィルタを基板とし、図2に示すように基板の両面に、図9に示すようなそれぞれ11層構成のNDフィルタ膜を真空蒸着法により成膜した。成膜したNDフィルタ膜は、図3に示すような全面が均一な透過光量である単濃度膜とした。具体的には可視波長域全域で片面の濃度が約0.5のNDフィルタ膜で、両面で濃度が約1.0つまり透過率が約10%の膜とした。
真空蒸着法は、膜厚を比較的に容易に制御でき、かつ散乱が非常に小さいことから選択した。
[Example 2]
As Example 2, an ND filter film was laminated on a plastic infrared cut filter to produce an ND filter. This embodiment will be described below.
An infrared absorption filter made of plastic having substantially the same characteristics as the infrared absorption glass shown in FIG. 6 is used as a substrate, and ND filters each having 11 layers as shown in FIG. 9 are formed on both sides of the substrate as shown in FIG. A film was formed by a vacuum evaporation method. The formed ND filter film was a single concentration film having a uniform transmitted light amount as shown in FIG. Specifically, an ND filter film having a density of about 0.5 on one side in the entire visible wavelength region and a film having a density of about 1.0 on both sides, that is, a transmittance of about 10%.
The vacuum deposition method was selected because the film thickness can be controlled relatively easily and the scattering is very small.

両面共に、最表層は反射防止を目的として設けた層であり、光学膜厚n×d(nは屈折率、dは機械膜厚)でλ/4 λ:540nmの条件で成膜した。この最表層の膜の屈折率nは可視域の波長域で1.5以下のものを選んだ。具体的にはMgFを使用した。
以上のように第1層から最表層まで成膜した後、110℃ 1H 空気中で熱処理を行った。110℃を選んだのは、100℃未満では環境安定性向上の効果が不十分であり、130℃を超えると基材の熱的劣化を生じて膜にクラックが発生する等問題が生じる為である。本実施例2の条件下においては、熱処理の温度は、110℃から130℃の間が適当である。
On both surfaces, the outermost layer is a layer provided for the purpose of preventing reflection, and was formed under the condition of λ / 4 λ: 540 nm with an optical film thickness n × d (where n is a refractive index and d is a mechanical film thickness). The refractive index n of the outermost layer film was selected to be 1.5 or less in the visible wavelength range. Specifically, MgF 2 was used.
After the film formation from the first layer to the outermost layer as described above, heat treatment was performed in air at 110 ° C. and 1H. The reason for selecting 110 ° C. is that the effect of improving the environmental stability is insufficient if the temperature is less than 100 ° C., and if the temperature exceeds 130 ° C., problems such as thermal degradation of the base material and cracks in the film occur. is there. Under the conditions of Example 2, the heat treatment temperature is suitably between 110 ° C and 130 ° C.

環境安定性を調べるため、前記プラスチックNDフィルタを 60℃ 85% 240時間の放置試験を行い、試験前後での透過率を測定すると、その差が0.2%以下とほとんど差は見られなかった。参考として、熱処理を行わないものを同様な環境試験を行い、試験前後での透過率を測定すると、2%前後増加していた。
通常、ガラス基板を用いる場合、基板温度は200℃〜250℃、望ましくは300℃前後まで加熱して成膜する。しかし、本実施例のように基板がプラスチックの場合、基板が熱収縮を起こさない温度で成膜する必要があり、その基板温度は150℃未満に制約される。
In order to investigate environmental stability, the plastic ND filter was subjected to a standing test at 60 ° C., 85%, 240 hours, and the transmittance before and after the test was measured. As a result, the difference was almost 0.2% or less. . As a reference, when the same environmental test was performed on the sample without heat treatment, and the transmittance before and after the test was measured, it increased by about 2%.
In general, when a glass substrate is used, the substrate temperature is 200 ° C. to 250 ° C., preferably about 300 ° C. for film formation. However, when the substrate is plastic as in this embodiment, it is necessary to form the film at a temperature at which the substrate does not cause thermal shrinkage, and the substrate temperature is limited to less than 150 ° C.

これにより作成されたNDフィルタの分光透過率を図10に示す。
400nmから600nmの波長域においては約10%の透過率であり、700nmから1100nmの近赤外波長域においては透過率が5%以下であり、特に700nmから1000nmの領域においては1%以下の透過率特性を有するNDフィルタを得ることができた。
以上により、本実施例においては、図15または図16に示す膜構成であっても、前記したNDフィルタ膜とほぼ同様の透過特性を持つNDフィルタを作製することができた。
The spectral transmittance of the ND filter thus created is shown in FIG.
The transmittance is about 10% in the wavelength region of 400 nm to 600 nm, the transmittance is 5% or less in the near infrared wavelength region of 700 nm to 1100 nm, and the transmission of 1% or less particularly in the region of 700 nm to 1000 nm. An ND filter having a rate characteristic could be obtained.
As described above, in this example, even with the film configuration shown in FIG. 15 or FIG. 16, an ND filter having substantially the same transmission characteristics as the above-described ND filter film could be produced.

[実施例3]
実施例3として、プラスチック製赤外カットフィルタにグラデーション濃度分布をもつNDフィルタ膜を積層し、NDフィルタを作製した。
図6に示す赤外吸収ガラスとほぼ同様の特性をもつプラスチック製の赤外吸収フィルタを基板とし、図2に示すように基板の両面に、図9に示すようなそれぞれ11層構成のNDフィルタ膜を真空蒸着法により成膜した。成膜したNDフィルタ膜は、図5に示すような濃度が順次小から大、若しくは大から小と変化するグラデーション濃度膜とした。具体的には濃度が約0.2から約1.0、つまり透過率が約63%から約10%へと順次変化する膜とした。
真空蒸着法は、膜厚を比較的に容易に制御でき、かつ散乱が非常に小さいことから選択した。
[Example 3]
As Example 3, an ND filter film having a gradation density distribution was laminated on a plastic infrared cut filter to produce an ND filter.
An infrared absorption filter made of plastic having substantially the same characteristics as the infrared absorption glass shown in FIG. 6 is used as a substrate, and ND filters each having 11 layers as shown in FIG. 9 are formed on both sides of the substrate as shown in FIG. A film was formed by a vacuum evaporation method. The formed ND filter film was a gradation density film in which the density gradually changed from small to large or from large to small as shown in FIG. Specifically, the film has a concentration that gradually changes from about 0.2 to about 1.0, that is, from about 63% to about 10%.
The vacuum deposition method was selected because the film thickness can be controlled relatively easily and the scattering is very small.

以上のように第1層から最表層手前まで成膜した後、両面共に最表層は濃度勾配を持たせず一定膜厚、具体的には光学膜厚n×d(nは屈折率、dは機械膜厚)でλ/4 λ:540nmの条件で成膜した。ここで、最表層の膜厚形状は、最表層手前までの濃度傾斜と逆テーパ状など、必要とされる仕様によっては、様々に構成することができる。
両面共に、最表層は反射防止を目的として設けた層であり、屈折率nが可視域の波長域で1.5以下のものを選んだ。具体的にはMgFを使用した。以上のように基板両面共に第1層から最表層まで成膜した後、110℃ 1時間 空気中で熱処理を行った。
As described above, after forming the film from the first layer to the front of the outermost layer, the outermost layer has a constant film thickness with no concentration gradient on both surfaces, specifically, the optical film thickness nxd (n is the refractive index, d is the refractive index) The film thickness was λ / 4 λ: 540 nm. Here, the film thickness shape of the outermost layer can be variously configured depending on the required specifications such as a concentration gradient up to the front of the outermost layer and a reverse taper shape.
For both surfaces, the outermost layer was a layer provided for the purpose of preventing reflection, and a layer having a refractive index n of 1.5 or less in the visible wavelength range was selected. Specifically, MgF 2 was used. As described above, after both layers of the substrate were formed from the first layer to the outermost layer, heat treatment was performed in air at 110 ° C. for 1 hour.

これにより作成されたNDフィルタの、基板上の位置と透過率の関係を図11に、分光透過率を図12に示す。図11、12におけるX1、X2、X3は相互に対応している。
これより、400nmから600nmの波長域においては、X1は約63%、X2は約31%、X3は約10%の透過率であり、700nmから1100nmの近赤外波長域においては、X1、X2、X3ともに透過率が5%以下であり、特に700nmから1000nmの領域においては1%以下の透過率特性を有するNDフィルタを得ることができた。
以上により、本実施例においては、図15または図16に示す膜構成であっても、前記したNDフィルタ膜とほぼ同様の透過特性を持つNDフィルタを作製することができた。
FIG. 11 shows the relationship between the position on the substrate and the transmittance of the ND filter thus created, and FIG. 12 shows the spectral transmittance. X1, X2, and X3 in FIGS. 11 and 12 correspond to each other.
Accordingly, in the wavelength range from 400 nm to 600 nm, X1 is about 63%, X2 is about 31%, and X3 is about 10%. In the near infrared wavelength range from 700 nm to 1100 nm, X1, X2 , X3 has a transmittance of 5% or less, and an ND filter having a transmittance characteristic of 1% or less can be obtained particularly in the region of 700 nm to 1000 nm.
As described above, in this example, even with the film configuration shown in FIG. 15 or FIG. 16, an ND filter having substantially the same transmission characteristics as the above-described ND filter film could be produced.

本発明の実施の形態におけるNDフィルタの構成例の一つを示す断面図。Sectional drawing which shows one of the structural examples of ND filter in embodiment of this invention. 本発明の実施の形態におけるNDフィルタの別の構成例を示す断面図。Sectional drawing which shows another structural example of ND filter in embodiment of this invention. 本発明の実施の形態における単濃度NDフィルタの濃度分布例を示す図。The figure which shows the density distribution example of the single density | concentration ND filter in embodiment of this invention. 本発明の実施の形態における多濃度NDフィルタの濃度分布例を示す図。The figure which shows the density distribution example of the multi-density ND filter in embodiment of this invention. 本発明の実施の形態におけるグラデーションNDフィルタの濃度分布例を示す図。The figure which shows the density distribution example of the gradation ND filter in embodiment of this invention. 本発明の実施例1における基板に用いた赤外吸収ガラスの分光透過率特性を示す図。The figure which shows the spectral transmittance characteristic of the infrared rays absorption glass used for the board | substrate in Example 1 of this invention. 本発明の実施例1におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 1 of this invention. 本発明の実施例1におけるNDフィルタの分光透過率特性を示す図。The figure which shows the spectral transmittance characteristic of the ND filter in Example 1 of this invention. 本発明の実施例2におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 2 of this invention. 本発明の実施例2におけるNDフィルタの分光透過率特性を示す図。The figure which shows the spectral transmittance characteristic of the ND filter in Example 2 of this invention. 本発明の実施例3におけるNDフィルタの透過率特性を示す図。The figure which shows the transmittance | permeability characteristic of the ND filter in Example 3 of this invention. 本発明の実施例3におけるNDフィルタの分光透過率特性を示す図。The figure which shows the spectral transmittance characteristic of the ND filter in Example 3 of this invention. 本発明の実施例1におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 1 of this invention. 本発明の実施例1におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 1 of this invention. 本発明の実施例2及び実施例3におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 2 and Example 3 of this invention. 本発明の実施例2及び実施例3におけるNDフィルタ膜の層構成を示す図。The figure which shows the layer structure of the ND filter film | membrane in Example 2 and Example 3 of this invention.

符号の説明Explanation of symbols

1:基板
2:NDフィルタ膜
1: Substrate 2: ND filter film

Claims (11)

近赤外波長域の光に対し、可視波長域と比較し低透過の特性を持つ基板上に、
可視域の透過を減衰する特性を持つ薄膜を有することを特徴とするNDフィルタ。
For light in the near-infrared wavelength region, on a substrate with low transmission characteristics compared to the visible wavelength region,
An ND filter comprising a thin film having a characteristic of attenuating transmission in the visible range.
前記基板は、赤外カットガラス、樹脂製赤外カットフィルタであることを特徴とする請求項1に記載のNDフィルタ。   The ND filter according to claim 1, wherein the substrate is an infrared cut glass or a resin infrared cut filter. 前記基板は、前記近赤外波長域の光に対する光の透過率が5%程度以下であることを特徴とする請求項1または請求項2に記載のNDフィルタ。   The ND filter according to claim 1, wherein the substrate has a light transmittance of about 5% or less with respect to light in the near-infrared wavelength region. 前記薄膜は、単濃度、または多濃度、またはグラデーションのいずれかの濃度分布を有する薄膜であることを特徴とする請求項1〜3のいずれか1項に記載のNDフィルタ。   The ND filter according to any one of claims 1 to 3, wherein the thin film is a thin film having a density distribution of single density, multiple density, or gradation. 前記薄膜が、前記基板の片面または両面に形成されていることを特徴とする請求項1〜4のいずれか1項に記載のNDフィルタ。   The ND filter according to claim 1, wherein the thin film is formed on one side or both sides of the substrate. 前記単濃度の薄膜が、前記基板の片面に形成され、該薄膜の可視波長域での光の透過率が約32%であることを特徴とする請求項4に記載のNDフィルタ。   5. The ND filter according to claim 4, wherein the single-concentration thin film is formed on one surface of the substrate, and the light transmittance in the visible wavelength region of the thin film is about 32%. 前記単濃度の薄膜が、前記基板の両面に形成され、該薄膜の可視波長域での光の透過率が約10%であることを特徴とする請求項4に記載のNDフィルタ。   5. The ND filter according to claim 4, wherein the single-concentration thin film is formed on both surfaces of the substrate, and light transmittance in the visible wavelength region of the thin film is about 10%. 前記グラデーション濃度分布を有する薄膜が、前記基板の両面に形成され、該薄膜の可視波長域での光の透過率がグラデーション濃度分布に応じて約10%から約63%へと順次変化することを特徴とする請求項4に記載のNDフィルタ。   The thin film having the gradation density distribution is formed on both surfaces of the substrate, and the light transmittance in the visible wavelength region of the thin film sequentially changes from about 10% to about 63% according to the gradation density distribution. The ND filter according to claim 4, wherein 前記グラデーション濃度分布を有する薄膜は、最表層が一定膜厚、または最表層手前までの濃度傾斜と逆テーパ状とされていることを特徴とする請求項8に記載のNDフィルタ。   9. The ND filter according to claim 8, wherein the thin film having the gradation density distribution has an outermost layer having a constant film thickness, or an inversely tapered shape with a density gradient before the outermost layer. 相対的に駆動されて絞り開口の大きさを可変する複数の絞り羽根と、該絞り羽根により形成された開口内の少なくとも一部に配置される光量調整のためのNDフィルタとを備えた光量絞り装置において、
前記NDフィルタが、請求項1〜9のいずれか1項に記載のNDフィルタによって構成されていることを特徴とする光量絞り装置。
A light quantity diaphragm comprising a plurality of diaphragm blades that are relatively driven to vary the size of the diaphragm aperture, and an ND filter for adjusting the light quantity disposed at least in part of the aperture formed by the diaphragm blades In the device
The ND filter is constituted by the ND filter according to claim 1.
光学系と、該光学系を通過する光量を制限する請求項10に記載の光量絞り装置と、該光学系によって形成される像を受ける固体撮像素子を有することを特徴とするカメラ。   11. A camera comprising: an optical system; a light quantity diaphragm device according to claim 10 that limits an amount of light that passes through the optical system; and a solid-state imaging device that receives an image formed by the optical system.
JP2004259296A 2004-09-07 2004-09-07 Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device Pending JP2006078519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259296A JP2006078519A (en) 2004-09-07 2004-09-07 Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259296A JP2006078519A (en) 2004-09-07 2004-09-07 Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device

Publications (2)

Publication Number Publication Date
JP2006078519A true JP2006078519A (en) 2006-03-23
JP2006078519A5 JP2006078519A5 (en) 2007-10-25

Family

ID=36158075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259296A Pending JP2006078519A (en) 2004-09-07 2004-09-07 Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device

Country Status (1)

Country Link
JP (1) JP2006078519A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035268A (en) * 2006-07-28 2008-02-14 Canon Inc Imaging device
JP2008065227A (en) * 2006-09-11 2008-03-21 Canon Electronics Inc Nd filter
JP2012053262A (en) * 2010-09-01 2012-03-15 Canon Electronics Inc Optical filter
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
JPWO2014115236A1 (en) * 2013-01-22 2017-01-19 パイオニア株式会社 Light source module, projection apparatus, light source module control method, projection apparatus control method and program, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017702A (en) * 1983-07-12 1985-01-29 Kiyoshi Nagai Composite filter
JPH06167738A (en) * 1992-12-01 1994-06-14 Chinon Ind Inc Diaphragm device
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2004117718A (en) * 2002-09-25 2004-04-15 Canon Electronics Inc Method for manufacturing nd filter, nd filter, and light quantity adjusting device and camera having the nd filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017702A (en) * 1983-07-12 1985-01-29 Kiyoshi Nagai Composite filter
JPH06167738A (en) * 1992-12-01 1994-06-14 Chinon Ind Inc Diaphragm device
JP2002107509A (en) * 2000-09-28 2002-04-10 Asahi Precision Co Ltd Neutral density filter
JP2004117718A (en) * 2002-09-25 2004-04-15 Canon Electronics Inc Method for manufacturing nd filter, nd filter, and light quantity adjusting device and camera having the nd filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035268A (en) * 2006-07-28 2008-02-14 Canon Inc Imaging device
JP4732264B2 (en) * 2006-07-28 2011-07-27 キヤノン株式会社 Imaging device
US8665520B2 (en) 2006-08-30 2014-03-04 Canon Denshi Kabushiki Kaisha Neutral density optical filter and image pickup apparatus
JP2008065227A (en) * 2006-09-11 2008-03-21 Canon Electronics Inc Nd filter
JP2012053262A (en) * 2010-09-01 2012-03-15 Canon Electronics Inc Optical filter
JPWO2014115236A1 (en) * 2013-01-22 2017-01-19 パイオニア株式会社 Light source module, projection apparatus, light source module control method, projection apparatus control method and program, and recording medium

Similar Documents

Publication Publication Date Title
US7230779B2 (en) ND filter and aperture diaphragm apparatus
JP4801442B2 (en) ND filter for diaphragm
JP4963028B2 (en) ND filter and light quantity reduction device using the ND filter
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP2006078519A (en) Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP4240458B2 (en) ND filter for light quantity diaphragm, light quantity diaphragm device, camera having the light quantity diaphragm device, and filter manufacturing method
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JP2007199447A (en) Nd filter, its manufacturing method, and light quantity reducing device
JP2002107509A (en) Neutral density filter
CN105122090A (en) Optical device
JP4976698B2 (en) ND filter
JP2018180430A (en) Optical filter
JP3816048B2 (en) Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters
JP5227506B2 (en) ND filter
JP6268691B2 (en) Beam splitting optical element and digital single lens reflex camera
JP3685331B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having these ND filters
JP2004117470A (en) Method of manufacturing nd filter, and aperture device and camera having the nd filter
JP4493411B2 (en) Manufacturing method of ND filter
JP3701931B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
JP4623724B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device
JP4297370B2 (en) ND filter, and light quantity stop device and camera having these ND filters

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101022