JP2004117718A - Method for manufacturing nd filter, nd filter, and light quantity adjusting device and camera having the nd filter - Google Patents

Method for manufacturing nd filter, nd filter, and light quantity adjusting device and camera having the nd filter Download PDF

Info

Publication number
JP2004117718A
JP2004117718A JP2002279665A JP2002279665A JP2004117718A JP 2004117718 A JP2004117718 A JP 2004117718A JP 2002279665 A JP2002279665 A JP 2002279665A JP 2002279665 A JP2002279665 A JP 2002279665A JP 2004117718 A JP2004117718 A JP 2004117718A
Authority
JP
Japan
Prior art keywords
filter
film
manufacturing
laminated
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002279665A
Other languages
Japanese (ja)
Other versions
JP3816048B2 (en
Inventor
Takayuki Wakabayashi
若林 孝幸
Michio Yanagi
柳 道男
Shinji Uchiyama
内山 真志
Fumie Ishii
石井 史江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2002279665A priority Critical patent/JP3816048B2/en
Publication of JP2004117718A publication Critical patent/JP2004117718A/en
Application granted granted Critical
Publication of JP3816048B2 publication Critical patent/JP3816048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an ND filter which have less cracks, improve uniformity of light quantity, are capable of dealing with high image quality and have flat spectral characteristics at each density, and to provide the ND filter, and a light quantity adjusting device and a camera having the ND filters. <P>SOLUTION: In this method for manufacturing ND filters, a plurality of stepwise optical density distributions are formed by stacking films consisting of at least two or more kinds of layers stacked on a substrate onto the same transparent member to change the amount of transmitted light. A single density layer consisting of the above films and having a larger stacking area is formed on one face of the member, and a two-density layer of a smaller stacking area is formed on the opposite face of the member. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、NDフィルタの製造方法及びNDフィルタ、並びにこれらのNDフィルタを有する光量絞り装置及びカメラに関し、特にビデオカメラあるいはスチルビデオカメラ等の撮影系に使用するに適したNDフィルタの製造方法及びNDフィルタ、並びにこれらのNDフィルタを有する光量絞り装置に関するものである。
【0002】
【従来の技術】
光量絞り装置は、銀塩フィルムあるいはCCD等への固体撮像素子へ入射する光量を制御するため、撮影光学系の光路中に設けられており、被写界が明るい場合に光量をより小さく絞り込むように構成されている。
従って、快晴時や高輝度の被写界を撮影すると絞りは小絞りとなり、絞りのハンチング現象や光の回折の影響も受け易く、像性能の劣化を生じる。
これに対する対策として絞り羽根にフィルム状のND(Neutral Density)フィルタを取りつけて被写界の明るさが同一でも絞りの開口が大きくなる様な工夫をしている。
【0003】
近年、撮像素子の感度が向上するに従い、前記NDフィルタの濃度を濃くして、光の透過率をさらに低下させ、被写界の明るさが同一でも絞りの開口を大きくする様になっている。
しかしながら、この様にNDフィルタの濃度が濃くなると図8に示す様な状態でNDフィルタを通過した光aとNDフィルタを通過しない光bの光量差が大きく異なり、画面内で明るさが異なる“シェーディング”現象が起きたり、解像度が低下してしまうという欠点がある。この欠点を解決するためにNDフィルタの濃度を光軸中心に向かって順次透過率が大となる様な構造を取る必要が出てきている。
【0004】
因みに図8において、806A,806B,806C,806Dは撮影光学系806を構成するレンズ、807は固体撮像素子で808はローパスフィルタである。
また811から814は絞り装置を構成する部材で、811がNDフィルタ、812と813が対向的に移動する絞り羽根で、2枚の絞り羽根は略菱形の開口を形成する。NDフィルタは普通、絞り羽根に接着されている。814は絞り羽根支持板である。
【0005】
一般的にNDフィルタの作製方法としては、フィルム状をなす材料(セルロースアセテート、PET(ポリエチレンテレフタレート)、塩化ビニル等)中に光を吸収する有機色素または顔料を混ぜ、練り込むタイプのものと、前記材料に光を吸収する有機色素または顔料を塗布するタイプのものがある。
また、従来例として、クラックを生じることのない高品質の反射防止の光吸収膜が提案されている(特許文献1参照)。
【0006】
【特許文献1】特開平05−93811号
【0007】
【発明が解決しようとする課題】
しかしながら、上記した一般的なNDフィルタの作製方法では、濃度が均一なフィルタは作製可能であるが、同一フィルタ内で濃度が変化するタイプのステップNDフィルタは作製が著しく困難である。
また、特許文献1で開示されているものは、単濃度においてのクラック対策であり、1枚のフィルムに多濃度のNDを成膜した場合においては、膜厚が厚くなり、そのためにクラックが発生してしまうという問題に対する解決策に関して、何も開示されていない。
さらに、近年CCDの高感度化、小型化等の高画質化に対応するため、分光透過率をフラットにして、低反射に抑える必要がある。このような問題に対しても、上記特許文献1には、可視光域550nm付近で透過率が低下してしまう分光特性のものが開示されているにすぎない。
【0008】
そこで、本発明は、上記課題を解決し、クラックの発生が抑制され、光量の均一性が向上し、高画質化に対応することが可能となり、各濃度において分光特性がフラットで低反射率のNDフィルタの製造方法及びNDフィルタ、並びにこれらのNDフィルタを有する光量絞り装置及びカメラを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、つぎのように構成したグラデーション濃度分布を有するNDフィルタの製造方法及びNDフィルタ、並びにこれらのNDフィルタを有する光量絞り装置及びカメラを提供するものである。
本発明のNDフィルタの製造方法は、基板上に積層された少なくとも2種類以上の層からなる膜を用い、該膜を積層することによって段階的な複数の濃度分布を形成して透過光量を変えるようにしたNDフィルタの製造方法であって、前記膜は積層面積の大きい方から小さい方の順に積層されることを特徴としている。
また、本発明のNDフィルタは、基板上に積層された少なくとも2種類以上の層からなる膜を、同一の透明な部材上に積層して段階的な複数の濃度分布を形成し、透過光量を変えるようにしたNDフィルタであって、前記部材の片面側に、大きい積層面積の前記膜による単濃度の層が形成され、該部材の反対面側に、小さい積層面積の2濃度の層が形成されていることを特徴としている。
また、上記本発明のNDフィルタの製造方法によって製造されたNDフィルタ、あるいは上記本発明のNDフィルタを用いて、光量の均一性が向上した光量絞り装置あるいはカメラを構成することができる。
【0010】
【発明の実施の形態】
上記構成を適用し、多濃度膜を作成する際、積層面積が大きい方から順に積層することで、成膜後やプレス等で切断した際にもクラックの発生が起こることなく、高品質に対応したステップNDフィルタを作製することができるが、それは本発明者らが鋭意検討した結果による、つぎのような知見に基づくものである。
【0011】
3濃度の構成のステップNDフィルタを作製する場合、単に2重、3重と層を重ねていくだけでは、成膜後若しくは切り込み後に、その重なった部分にクラックが発生するという問題が生じる。
そこで、本発明者らは次のような成膜手法で、図3に示すような3濃度ステップフィルタを作成した。
先ず、図3に示すプラスチック基板の1面側に、積層面積が最も大きい単濃度の膜を積層し、その次に前記プラスチック基板の2面側に積層面積の小さい2濃度を重ねて成膜し、3濃度ステップフィルタを作成した。
このような積層順を採用したのは、基板温度や蒸着膜の温度により、プラスチック材が熱収縮しない150℃未満を設定してはいるものの、やはり多少は収縮してしまう傾向があり、積層面積が大きい程その熱収縮の影響を受けやすくなる。そのため、積層面積の小さい膜から徐々に大きい膜を成膜すると、先に成膜した積層面積の小さい膜は、後に成膜した大きい膜の熱収縮による応力の影響を受けやすくなり、それがクラック発生の大きな要因になるものと考えられ、上記した積層順を採用し本発明を完成するに至ったのである。
【0012】
以下に、本実施の形態について、図を用いて更に詳細に説明するが、本発明はこれらの具体的な形態によって何ら限定されるものではない。特に、以下においては、NDフィルターに成膜を実施する方法として真空蒸着法を用いた場合を説明しているが、スパッタリング法・インクジェットプリンティング法・スプレー法等においても同様な効果を得ることができ、このことは一般的に知られている事と推測される為、記述を省略する。
【0013】
図5は真空蒸着機におけるチャンバー内の簡易図であり、501は蒸着傘、502は成膜を施す基板、503は蒸着源、504は実際に成膜を実施する基材、505は基材504を固定する為の基板治具である。
また、本実施の形態として説明する基板502とは、図5(b)に示すように基板治具505に基材504がセットされた状態を示しているものとする。
【0014】
一般的に真空蒸着法においては、図5の様にチャンバー内の基板は蒸着傘501に備え付けられ、この蒸着傘501と共に基板502が回転し成膜が行われ、例えば図4に示すような7層の積層膜が基材上に形成される。
本実施の形態においては、これを単濃度に構成して、2重、3重に重ねていき、1枚のシートに3濃度分布を持ったステップNDフィルタを作成する。例えば図3に示すようにプラスチック基板の1面側に、積層面積が最も大きいものをまず積層し、ついで前記プラスチック基板の2面側に積層面積の小さいものを重ねて2濃度のものを形成することで、3濃度分布を持ったステップNDフィルタを作成する。このように構成することによって、成膜後やプレス等で切断した際にもクラックの発生が起こることなく、高品質に対応したステップNDフィルタを作製することが可能となる。
【0015】
【実施例】
つぎに、本発明の実施例について説明する。
まず、材質厚75μmのポリエチレンテレフタレート(以下PETと記す)基材上に、真空蒸着法により膜を成膜する。
基材の材質は耐熱性(ガラス転移点Tg)が高く、可視域の波長域で透明性が高く、また吸水率が低い、PETを選択した。
成膜法として、膜厚を比較的容易に制御でき、かつ可視域の波長域で散乱が非常に小さいことから真空蒸着法を選択した。
【0016】
膜構成は図4に示すように、AlとTiを交互に積層していき、最表層にMgFで成膜して7層を重ね、これを単濃度D=0.5とした。本実施例ではこのD=0.5の膜を2重、3重に重ねていき、1枚のシートにD=0.5・1.0・1.5の3濃度分布を持ったステップNDフィルタを作製した。その際、図3に示すようにプラスチック基板の1面側に、積層面積が最も大きいものをまず積層し、ついで前記プラスチック基板の2面側に積層面積の小さいものを重ねて2濃度のものを形成した。この2面側の2濃度が重なっている部分に、実際にはクラックが発生しやすい傾向がある。
【0017】
なお、本実施例のクラック対策として、上記の積層順番を工夫している以外に、次の(1)〜(3)のような条件の変更を行なっている。
(1)第1層Alの成膜膜厚を5nm〜90nmにする。実際好ましいのは、膜厚10nm〜60nmであり、その範囲未満であると膜厚制御が困難であり、以上であると膜厚が厚くなりクラックが生じてしまう。よって極力膜厚を薄くした方がクラックの発生率は低くなる。そこで透過率、反射率の分光特性に影響を受けることの無い第1層Alを薄くした。
図15は第1層の膜厚を振った時のクラック率の関係を表わしたものである。この結果からも分かる様に、第1層膜を薄くするだけでもクラック率を低下させることができる。この相乗効果として、クロスカット試験(蒸着した膜に縦横1〜2mm間隔の切り込みを入れニチバンテープにより剥離)により膜の密着性も向上するという結果が得られた。
(2)最も面積の大きい膜の成膜時には、図2(b)に示すような分断マスク201を用いて成膜し図1(a)に示すような3濃度ステップNDフィルタを形成する。
これによると、全面マスクで全面に成膜した図1(b)に示す3濃度ステップNDフィルタの場合と比べ、全体のプラスチック基板のソリも抑えることができ、応力が分散し低応力のものが得られる。
(3)面積の小さい2面側の2濃度を重ねる部分は、最表層がMgFであると密着性が下がるため、密着面にはAlを用いる。なお、片側面に3層重ねる方法も考えられるが、極力重なる部分は少なくした方が良いと考えられる。
【0018】
以上のような条件で完成した3濃度分布を持ったステップNDフィルタを、様々な形状に切り抜いて、例えば図2の(a)に示すような形状に切り抜いて、利用することができる。その切断結果を図7に示す。
図7において、左側の(a)に示すものはクラック対策を施さない時のクラック率、中央の(b)に示すものは分断マスク201を用いた時のクラック率、右側の(c)に示すものは面積の大きい順に成膜した時のクラック率を表わしている。
【0019】
図7に示された結果から、本実施例の上記積層順及び分断マスク201を用いる条件で成膜し切り抜いた場合、このような対策を全く施さない膜から比べると格段の効果があることが分かる。
また、図7に示された結果から、図6(a)のように面積の小さい2面側から切り抜く場合に比して、図6(b)のように面積の大きい1面側から切り抜くとクラック率が遥かに低くなることが分かる。
【0020】
このように、最適なのは面積の大きい1面側から切り抜く場合であるが、その理由として考えられるのは、蒸着の傾向として初め1面側に成膜すると、1面側にフィルムは凸になることが分かっている。逆に2面側を先に成膜すると2面側に凸になる。
例として最初に1面側を成膜し1面側から切り抜く場合、切断前後の形状は凸⇒凸と変わらないが、2面側から切り抜く場合、切断前後で凹⇒凸に形状が逆転する為、クラック率が高くなると考えられる。
【0021】
3濃度ステップNDフィルタの各濃度における透過率と反射率を図9・図10・図11・図12・図13・図14に示す。
D=0.5膜(図9・図10)においては、透過率も可視光線域でフラットになっており、反射率も3%未満であり低反射に抑えられている。
D=1.0膜(図11・図12)においては、もう1層D=0.5を積層する為、最表層が反射率を抑えるMgFではなく、Alとなっているが、同様に透過率はフラット、反射率も低く抑えられた。
D=1.5膜(図13・図14)においても、透過率・反射率共に上記と同様な結果を得た。
なお、NDフィルタの透過率をフラットにすることは、近年のCCDの高感度化や小型化等の高画質化への対応として必要不可欠なことである。
【0022】
【発明の効果】
本発明によれば、クラックの発生が抑制され、光量の均一性が向上し、高画質化に対応することが可能となり、各濃度において分光特性がフラットで低反射率のNDフィルタの製造方法及びNDフィルタ、並びにこれらのNDフィルタを有する光量絞り装置及びカメラを実現することができる。
【図面の簡単な説明】
【図1】(a)は本発明の実施例における分断マスクで作製された3濃度ステップNDフィルタの図であり、(b)は全面マスクで作製された3濃度ステップNDフィルタの図である。
【図2】(a)は実施例における蒸着後抜き加工したステップNDフィルタを示す図、(b)は分断マスクを示す図である。
【図3】本発明の実施の形態及び実施例におけるステップNDフィルタの3濃度の成膜構造を示す側面図である。
【図4】本発明の実施の形態及び実施例におけるステップNDフィルタの単濃度D=0.5とした薄膜の積層構造を示す図である。
【図5】本発明の実施の形態を説明するための真空蒸着機におけるチャンバー内の簡易図である。
【図6】(a)は2面側から切断した3濃度ステップNDフィルタ切り抜き図であり、(b)は1面側から切断した本実施例による3濃度ステップNDフィルタ切り抜き図である。
【図7】切り抜き試験によるクラック発生率を示す図である。
【図8】ビデオカメラに使用される撮影光学系を表した図である。
【図9】本発明の実施例におけるD=0.5の分光透過率を表わしたグラフである。
【図10】本発明の実施例におけるD=0.5の分光反射率を表わしたグラフである。
【図11】本発明の実施例におけるD=1.0の分光透過率を表わしたグラフである。
【図12】本発明の実施例におけるD=1.0の分光反射率を表わしたグラフである。
【図13】本発明の実施例におけるD=1.5の分光透過率を表わしたグラフである。
【図14】本発明の実施例におけるD=1.5の分光反射率を表わしたグラフである。
【図15】第1層Al膜厚とクラック率の関係を記したグラフである。
【符号の説明】
201:分断マスク
501:蒸着傘
502:基板
503:蒸着源
504:基材
505:基板治具
806A,806B,806C,
806D:撮影光学系6を構成するレンズ
807:固体撮像素子
808:ローパスフィルタ
8011:NDフィルタ
812,813:絞り羽根
814:絞り羽根支持板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing an ND filter, an ND filter, and a light amount diaphragm device and a camera having the ND filter. The present invention relates to an ND filter and a light amount stop device having the ND filter.
[0002]
[Prior art]
The light amount aperture device is provided in the optical path of the photographing optical system in order to control the amount of light incident on the solid-state imaging device such as a silver halide film or a CCD, and to reduce the amount of light to be smaller when the field is bright. Is configured.
Therefore, when shooting a sunny or high-brightness scene, the aperture becomes small, which is easily affected by the hunting phenomenon of the aperture and the diffraction of light, resulting in deterioration of image performance.
As a countermeasure against this, a film-like ND (Neutral Density) filter is attached to the aperture blade so that the aperture of the aperture becomes large even if the brightness of the field is the same.
[0003]
In recent years, as the sensitivity of an image sensor has been improved, the density of the ND filter has been increased to further reduce the light transmittance, and the aperture of the diaphragm has been increased even if the brightness of the object field is the same. .
However, when the density of the ND filter is increased as described above, the light quantity difference between the light a passing through the ND filter and the light b not passing through the ND filter in the state shown in FIG. There are drawbacks such as the "shading" phenomenon and the reduction in resolution. In order to solve this drawback, it has become necessary to adopt a structure in which the transmittance of the density of the ND filter increases gradually toward the center of the optical axis.
[0004]
In FIG. 8, reference numerals 806A, 806B, 806C, and 806D denote lenses constituting the imaging optical system 806, 807 denotes a solid-state image sensor, and 808 denotes a low-pass filter.
Reference numerals 811 to 814 denote members constituting an aperture device, 811 denotes an ND filter, and 812 and 813 move in opposite directions. The two aperture blades form a substantially rhombic opening. The ND filter is usually bonded to the diaphragm blade. 814 is a diaphragm blade support plate.
[0005]
Generally, ND filters are manufactured by mixing and kneading an organic dye or pigment that absorbs light into a film-like material (cellulose acetate, PET (polyethylene terephthalate), vinyl chloride, etc.), There is a type in which an organic dye or pigment that absorbs light is applied to the material.
Further, as a conventional example, a high-quality antireflection light absorbing film which does not cause cracks has been proposed (see Patent Document 1).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-93811
[Problems to be solved by the invention]
However, according to the above-described general method of manufacturing an ND filter, a filter having a uniform density can be manufactured, but a step ND filter of a type in which the density changes in the same filter is extremely difficult to manufacture.
The technique disclosed in Patent Document 1 is a countermeasure against cracking at a single concentration. When a multi-concentration ND is formed on a single film, the film thickness becomes large, and thus cracks occur. Nothing is disclosed about the solution to this problem.
Furthermore, in recent years, in order to respond to high image quality such as high sensitivity and miniaturization of CCD, it is necessary to flatten the spectral transmittance and suppress the reflection to low. Even with respect to such a problem, Patent Document 1 described above only discloses one having spectral characteristics in which the transmittance is reduced near a visible light region of 550 nm.
[0008]
Therefore, the present invention solves the above problems, suppresses the occurrence of cracks, improves the uniformity of light quantity, and can respond to high image quality. At each density, the spectral characteristics are flat and the reflectance is low. An object of the present invention is to provide a method of manufacturing an ND filter, an ND filter, and a light-amount aperture device and a camera having these ND filters.
[0009]
[Means for Solving the Problems]
The present invention provides a method of manufacturing an ND filter having a gradation density distribution configured as follows, an ND filter, and a light amount diaphragm device and a camera having these ND filters.
The method for manufacturing an ND filter according to the present invention uses a film composed of at least two or more layers laminated on a substrate, and forms a plurality of stepwise concentration distributions by laminating the films to change the amount of transmitted light. A method of manufacturing an ND filter as described above, wherein the films are stacked in order from a larger stacking area to a smaller stacking area.
Further, the ND filter of the present invention forms a plurality of stepwise concentration distributions by laminating films composed of at least two or more types of layers laminated on a substrate on the same transparent member, and reduces the amount of transmitted light. An ND filter adapted to be changed, wherein a single-concentration layer of the film having a large lamination area is formed on one side of the member, and a two-concentration layer having a small lamination area is formed on the opposite side of the member. It is characterized by being.
Further, the ND filter manufactured by the method of manufacturing an ND filter of the present invention or the ND filter of the present invention can be used to configure a light-aperture stop device or a camera with improved uniformity of light amount.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Applying the above configuration, when creating a multi-concentration film, by laminating in order from the larger lamination area, high quality without cracking even after film formation or cutting by pressing etc. The above-described step ND filter can be manufactured, but it is based on the following findings based on the results of intensive studies by the present inventors.
[0011]
In the case of manufacturing a step ND filter having a three-concentration configuration, a problem arises that cracks are generated in the overlapped portion after film formation or cutting, if the layers are simply doubled and tripled.
Therefore, the present inventors have created a three-density step filter as shown in FIG. 3 by the following film forming method.
First, a single-concentration film having the largest lamination area is laminated on one side of the plastic substrate shown in FIG. 3, and then a two-density film having a small lamination area is laminated on the two sides of the plastic substrate. A three density step filter was created.
The reason why such a lamination order is adopted is that although the plastic material is set at a temperature of less than 150 ° C. at which the plastic material does not thermally shrink due to the substrate temperature or the temperature of the vapor-deposited film, the plastic material still tends to slightly shrink. The greater the value, the more susceptible to the heat shrinkage. Therefore, when a film having a small lamination area is gradually formed from a film having a small lamination area, a film having a small lamination area formed earlier is easily affected by stress due to thermal shrinkage of a large film which is formed later. This is considered to be a major factor of occurrence, and the present invention has been completed by adopting the above-described lamination order.
[0012]
Hereinafter, the present embodiment will be described in more detail with reference to the drawings, but the present invention is not limited to these specific embodiments. In particular, in the following, a case is described in which a vacuum deposition method is used as a method for forming a film on an ND filter. However, a similar effect can be obtained in a sputtering method, an inkjet printing method, a spray method, or the like. Since this is presumed to be generally known, the description is omitted.
[0013]
FIG. 5 is a simplified view of the inside of a chamber in a vacuum deposition machine, where 501 is a deposition umbrella, 502 is a substrate on which a film is to be formed, 503 is a deposition source, 504 is a substrate on which a film is actually formed, and 505 is a substrate 504 This is a substrate jig for fixing.
In addition, the substrate 502 described in this embodiment is assumed to be in a state where the substrate 504 is set on the substrate jig 505 as shown in FIG.
[0014]
Generally, in a vacuum deposition method, a substrate in a chamber is provided on a deposition umbrella 501 as shown in FIG. 5, and a substrate 502 rotates together with the deposition umbrella 501 to form a film. A laminated film of layers is formed on the substrate.
In the present embodiment, this is configured to have a single density, and is superimposed twice or three times to create a step ND filter having three density distributions on one sheet. For example, as shown in FIG. 3, a plastic substrate having the largest lamination area is first laminated on one surface side of a plastic substrate, and then a plastic substrate having a smaller lamination area is laminated on the two surface sides of the plastic substrate to form a two-concentration substrate. Thus, a step ND filter having a three density distribution is created. With such a configuration, it is possible to produce a step ND filter that is compatible with high quality without generating cracks even after the film is formed or cut by a press or the like.
[0015]
【Example】
Next, examples of the present invention will be described.
First, a film is formed on a 75 μm-thick polyethylene terephthalate (hereinafter referred to as PET) substrate by a vacuum evaporation method.
As the material of the substrate, PET having high heat resistance (glass transition point Tg), high transparency in the visible wavelength range, and low water absorption was selected.
As a film forming method, a vacuum deposition method was selected because the film thickness can be controlled relatively easily and scattering is very small in a visible wavelength range.
[0016]
As shown in FIG. 4, the film configuration is such that Al 2 O 3 and Ti X O Y are alternately laminated, and the outermost layer is formed of MgF 2 , and seven layers are laminated. It was set to 5. In the present embodiment, the film having D = 0.5 is superimposed twice or three times, and one sheet has three density distributions of D = 0.5, 1.0, 1.5 in step ND. A filter was made. At this time, as shown in FIG. 3, the plastic substrate having the largest lamination area is first laminated on one surface side of the plastic substrate, and then the plastic substrate having the smaller lamination area is laminated on the two surface sides of the plastic substrate to obtain a two-density substrate. Formed. Actually, cracks tend to easily occur in the portions where the two concentrations on the two surfaces overlap each other.
[0017]
As a countermeasure against cracks in the present embodiment, the following conditions (1) to (3) are changed in addition to devising the above stacking order.
(1) The film thickness of the first layer Al 2 O 3 is set to 5 nm to 90 nm. Actually, the film thickness is preferably from 10 nm to 60 nm. If the thickness is less than the range, it is difficult to control the film thickness. If the thickness is more than the range, the film thickness becomes large and cracks occur. Therefore, the smaller the film thickness is, the lower the rate of occurrence of cracks is. Therefore, the first layer Al 2 O 3 which is not affected by the spectral characteristics of the transmittance and the reflectance was thinned.
FIG. 15 shows the relationship between the crack rates when the thickness of the first layer is varied. As can be seen from this result, the crack rate can be reduced only by reducing the thickness of the first layer film. As a synergistic effect, a cross-cut test (cuts made at intervals of 1 to 2 mm in the vertical and horizontal directions in the deposited film and peeled off with a Nichiban tape) resulted in improved adhesion of the film.
(2) When forming a film having the largest area, a film is formed using a dividing mask 201 as shown in FIG. 2B to form a three-density step ND filter as shown in FIG. 1A.
According to this, the warpage of the entire plastic substrate can be suppressed, and the stress is dispersed and the one with low stress can be suppressed, as compared with the case of the three-density step ND filter shown in FIG. can get.
(3) In the portion where the two concentrations are overlapped on the two surfaces having a small area, the adhesiveness is reduced when the outermost layer is MgF 2 , and therefore, Al 2 O 3 is used for the adhesive surface. In addition, although a method of stacking three layers on one side surface is also conceivable, it is considered that it is better to reduce the overlapping portion as much as possible.
[0018]
The step ND filter having the three-density distribution completed under the above conditions can be cut out into various shapes, for example, cut out into a shape as shown in FIG. FIG. 7 shows the cutting results.
In FIG. 7, (a) on the left side shows the crack rate when no crack countermeasures are taken, (b) in the center shows the crack rate when the dividing mask 201 is used, and (c) on the right side. Those indicate the crack ratios when the films were formed in the descending order of the area.
[0019]
From the results shown in FIG. 7, when a film is formed and cut out under the conditions of using the above-described lamination order and the dividing mask 201 of the present embodiment, there is a remarkable effect as compared with a film that does not take such measures at all. I understand.
Also, from the results shown in FIG. 7, when cutting out from one side having a large area as shown in FIG. 6B, compared with cutting out from two sides having a small area as shown in FIG. 6A. It can be seen that the crack rate is much lower.
[0020]
As described above, the optimal case is to cut out from one side having a large area. One possible reason for this is that when a film is formed on the first side as a tendency of vapor deposition, the film becomes convex on the one side. I know. Conversely, if the film is formed on the two surfaces first, it becomes convex on the two surfaces.
For example, when the film is first formed on one side and cut out from the first side, the shape before and after cutting is not changed from convex to convex, but when cut out from the second side, the shape reverses from concave to convex before and after cutting. It is considered that the crack rate increases.
[0021]
9, 10, 11, 12, 13, and 14 show the transmittance and reflectance at each density of the three-density step ND filter.
In the D = 0.5 film (FIGS. 9 and 10), the transmittance is flat in the visible light range, and the reflectance is less than 3%, which is low reflection.
In the D = 1.0 film (FIGS. 11 and 12), since another layer D = 0.5 is laminated, the outermost layer is not MgF 2 for suppressing the reflectance but Al 2 O 3. Similarly, the transmittance was flat and the reflectance was low.
Also in the case of the D = 1.5 film (FIGS. 13 and 14), the same results as described above were obtained for both transmittance and reflectance.
Making the transmittance of the ND filter flat is indispensable in response to high image quality such as recent high sensitivity and miniaturization of CCD.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a crack is suppressed, the uniformity of light quantity improves, it becomes possible to respond to high image quality, and the spectral characteristic is flat in each density | concentration, and the manufacturing method of the ND filter of low reflectance. It is possible to realize an ND filter, a light amount diaphragm device and a camera having these ND filters.
[Brief description of the drawings]
FIG. 1A is a diagram of a three-density step ND filter manufactured using a dividing mask according to an embodiment of the present invention, and FIG. 1B is a diagram of a three-density step ND filter manufactured using an entire surface mask.
FIG. 2A is a diagram illustrating a step ND filter obtained by punching after vapor deposition in an example, and FIG. 2B is a diagram illustrating a dividing mask.
FIG. 3 is a side view showing a three-concentration film formation structure of a step ND filter according to the embodiment and examples of the present invention.
FIG. 4 is a diagram illustrating a laminated structure of thin films with a single concentration D = 0.5 of the step ND filter according to the embodiment and the examples of the present invention.
FIG. 5 is a simplified view of the inside of a chamber in a vacuum deposition machine for describing an embodiment of the present invention.
FIG. 6A is a cutout diagram of a three-density step ND filter cut from two sides, and FIG. 6B is a cutout diagram of a three-density step ND filter according to the present embodiment cut from one side.
FIG. 7 is a diagram showing a crack occurrence rate by a cutout test.
FIG. 8 is a diagram illustrating a photographing optical system used in a video camera.
FIG. 9 is a graph showing a spectral transmittance at D = 0.5 in an example of the present invention.
FIG. 10 is a graph showing a spectral reflectance at D = 0.5 in an example of the present invention.
FIG. 11 is a graph showing a spectral transmittance at D = 1.0 in an example of the present invention.
FIG. 12 is a graph showing a spectral reflectance at D = 1.0 in an example of the present invention.
FIG. 13 is a graph showing a spectral transmittance at D = 1.5 in an example of the present invention.
FIG. 14 is a graph showing a spectral reflectance at D = 1.5 in an example of the present invention.
FIG. 15 is a graph showing the relationship between the thickness of the first layer Al 2 O 3 and the crack rate.
[Explanation of symbols]
201: division mask 501: vapor deposition umbrella 502: substrate 503: vapor deposition source 504: base material 505: substrate jigs 806A, 806B, 806C,
806D: Lens 807 constituting imaging optical system 6: Solid-state image sensor 808: Low-pass filter 8011: ND filters 812, 813: Aperture blade 814: Aperture blade support plate

Claims (9)

基板上に積層された少なくとも2種類以上の層からなる膜を用い、該膜を積層することによって段階的な複数の濃度分布を形成して透過光量を変えるようにしたNDフィルタの製造方法であって、前記膜は積層面積の大きい方から小さい方の順に積層されることを特徴とするNDフィルタの製造方法。A method of manufacturing an ND filter using a film composed of at least two or more types of layers laminated on a substrate, and forming a plurality of stepwise density distributions by changing the laminated amount to change the amount of transmitted light. Wherein the films are stacked in ascending order of lamination area. 前記面積の大きい膜の積層に際して、応力を分散・低減させる分断マスクを用いることを特徴とする請求項1に記載のNDフィルタの製造方法。2. The method according to claim 1, wherein a dividing mask for dispersing and reducing stress is used when stacking the large-area films. 前記NDフィルタの切断に際して、前記面積の大きい膜の側から切断することを特徴とする請求項1または請求項2に記載のNDフィルタの製造方法。The method for manufacturing an ND filter according to claim 1, wherein the ND filter is cut from a side of the film having a large area. 前記膜は、該膜を積層する部材側に面する第1層目の膜が誘電体膜で形成され、その機械膜厚が5nm〜90nmとされていることを特徴とする請求項1〜3のいずれか1項に記載のNDフィルタの製造方法。4. The film according to claim 1, wherein the first film facing the member on which the film is laminated is formed of a dielectric film, and has a mechanical thickness of 5 nm to 90 nm. The method for manufacturing an ND filter according to any one of the above items. 基板上に積層された少なくとも2種類以上の層からなる膜を、同一の透明な部材上に積層して段階的な複数の濃度分布を形成し、透過光量を変えるようにしたNDフィルタであって、
前記部材の片面側に、大きい積層面積の前記膜による単濃度の層が形成され、該部材の反対面側に、小さい積層面積の2濃度の層が形成されていることを特徴とするNDフィルタ。
An ND filter in which a film composed of at least two or more types of layers laminated on a substrate is laminated on the same transparent member to form a plurality of stepwise density distributions, thereby changing the amount of transmitted light. ,
An ND filter characterized in that a single-layered layer of the film having a large lamination area is formed on one side of the member, and a two-density layer having a small lamination area is formed on the opposite side of the member. .
前記単濃度の層が、成膜により単濃度の層側に凸になる構造を有することを特徴とする請求項5に記載のNDフィルタ。The ND filter according to claim 5, wherein the single-concentration layer has a structure that becomes convex toward the single-concentration layer by film formation. 前記膜は、該膜を積層する前記透明な部材に面する第1層目の膜が誘電体膜で形成され、その機械膜厚が5nm〜90nmとされていることを特徴とする請求項5または請求項6に記載のNDフィルタ。6. The film according to claim 5, wherein a first film facing the transparent member on which the film is laminated is formed of a dielectric film, and has a mechanical thickness of 5 nm to 90 nm. Or the ND filter according to claim 6. 相対的に駆動されて絞り開口の大きさを可変する複数の絞り羽根と、該絞り羽根により形成された開口内の少なくとも一部に配置される光量調整のためのNDフィルタとを備えた光量絞り装置において、
前記NDフィルタが、請求項1〜4のいずれか1項に記載の製造方法によって製造されたNDフィルタ、または請求項5〜7のいずれか1項に記載のNDフィルタによって構成されていることを特徴とする光量絞り装置。
A light amount aperture provided with a plurality of aperture blades that are relatively driven to change the size of the aperture opening, and an ND filter for adjusting a light amount disposed at least in a part of the opening formed by the aperture blades In the device,
The ND filter is configured by the ND filter manufactured by the manufacturing method according to any one of claims 1 to 4, or the ND filter according to any one of claims 5 to 7. Characteristic light stop device.
光学系と、該光学系を通過する光量を制限する請求項8に記載の光量絞り装置と、該光学系によって形成される像を受ける固体撮像素子を有することを特徴とするカメラ。9. A camera, comprising: an optical system; a light amount stop device according to claim 8 for restricting an amount of light passing through the optical system; and a solid-state imaging device for receiving an image formed by the optical system.
JP2002279665A 2002-09-25 2002-09-25 Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters Expired - Fee Related JP3816048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279665A JP3816048B2 (en) 2002-09-25 2002-09-25 Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279665A JP3816048B2 (en) 2002-09-25 2002-09-25 Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005354470A Division JP4297370B2 (en) 2005-12-08 2005-12-08 ND filter, and light quantity stop device and camera having these ND filters

Publications (2)

Publication Number Publication Date
JP2004117718A true JP2004117718A (en) 2004-04-15
JP3816048B2 JP3816048B2 (en) 2006-08-30

Family

ID=32274602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279665A Expired - Fee Related JP3816048B2 (en) 2002-09-25 2002-09-25 Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters

Country Status (1)

Country Link
JP (1) JP3816048B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078519A (en) * 2004-09-07 2006-03-23 Canon Electronics Inc Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
US7661892B2 (en) 2004-10-26 2010-02-16 Sony Corporation Image-capturing device, light adjustment mechanism, and light control blade
CN110361803A (en) * 2019-08-05 2019-10-22 上海理工大学 A kind of preparation method of neutral-density filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078519A (en) * 2004-09-07 2006-03-23 Canon Electronics Inc Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
US7661892B2 (en) 2004-10-26 2010-02-16 Sony Corporation Image-capturing device, light adjustment mechanism, and light control blade
CN110361803A (en) * 2019-08-05 2019-10-22 上海理工大学 A kind of preparation method of neutral-density filter

Also Published As

Publication number Publication date
JP3816048B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP4801442B2 (en) ND filter for diaphragm
JP4900678B2 (en) Aperture device having ND filter and optical apparatus
JP2008276112A (en) Nd filter
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2007219210A (en) Nd filter and light quantity controlling diaphragm using the nd filter
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP3816048B2 (en) Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters
JP2012037610A (en) Nd filter with ir cut-off function
JP4345962B2 (en) Light amount diaphragm device and camera with ND filter
JP4297370B2 (en) ND filter, and light quantity stop device and camera having these ND filters
JP3621941B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having this ND filter
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
JP2018180430A (en) Optical filter
JP2007199447A (en) Nd filter, its manufacturing method, and light quantity reducing device
JP4493411B2 (en) Manufacturing method of ND filter
JP3735091B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having this ND filter
JP2007065109A (en) Nd filter, light quantity reducing device and camera
JP2004061903A (en) Method for manufacturing nd filter and nd filter, and light quantity reducing device and camera having such nd filter
JP4976698B2 (en) ND filter
JP3701931B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters
JP3685331B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having these ND filters
JP2006078519A (en) Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
JP4407898B2 (en) Manufacturing method of ND filter, light quantity diaphragm device and camera having the ND filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees